blob: 9ff47e8366dcb7c9c6961cf2d596fcab543fb01d [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledru0604c5c2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvab084af42012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000530.. _namedtypes:
531
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000532Structure Types
533---------------
Sean Silvab084af42012-12-07 10:36:55 +0000534
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000535LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000536types <t_struct>`. Literal types are uniqued structurally, but identified types
537are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000538to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000539
Sean Silva706fba52015-08-06 22:56:24 +0000540An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000541
542.. code-block:: llvm
543
544 %mytype = type { %mytype*, i32 }
545
Sean Silvaa1190322015-08-06 22:56:48 +0000546Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000547literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000548
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000549.. _nointptrtype:
550
551Non-Integral Pointer Type
552-------------------------
553
554Note: non-integral pointer types are a work in progress, and they should be
555considered experimental at this time.
556
557LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000558spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
559Non-integral pointer types represent pointers that have an *unspecified* bitwise
560representation; that is, the integral representation may be target dependent or
561unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000562
563``inttoptr`` instructions converting integers to non-integral pointer types are
564ill-typed, and so are ``ptrtoint`` instructions converting values of
565non-integral pointer types to integers. Vector versions of said instructions
566are ill-typed as well.
567
Sean Silvab084af42012-12-07 10:36:55 +0000568.. _globalvars:
569
570Global Variables
571----------------
572
573Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000574instead of run-time.
575
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000576Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000577
578Global variables in other translation units can also be declared, in which
579case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000580
Bob Wilson85b24f22014-06-12 20:40:33 +0000581Either global variable definitions or declarations may have an explicit section
582to be placed in and may have an optional explicit alignment specified.
583
Michael Gottesman006039c2013-01-31 05:48:48 +0000584A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000585the contents of the variable will **never** be modified (enabling better
586optimization, allowing the global data to be placed in the read-only
587section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000588initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000589variable.
590
591LLVM explicitly allows *declarations* of global variables to be marked
592constant, even if the final definition of the global is not. This
593capability can be used to enable slightly better optimization of the
594program, but requires the language definition to guarantee that
595optimizations based on the 'constantness' are valid for the translation
596units that do not include the definition.
597
598As SSA values, global variables define pointer values that are in scope
599(i.e. they dominate) all basic blocks in the program. Global variables
600always define a pointer to their "content" type because they describe a
601region of memory, and all memory objects in LLVM are accessed through
602pointers.
603
604Global variables can be marked with ``unnamed_addr`` which indicates
605that the address is not significant, only the content. Constants marked
606like this can be merged with other constants if they have the same
607initializer. Note that a constant with significant address *can* be
608merged with a ``unnamed_addr`` constant, the result being a constant
609whose address is significant.
610
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000611If the ``local_unnamed_addr`` attribute is given, the address is known to
612not be significant within the module.
613
Sean Silvab084af42012-12-07 10:36:55 +0000614A global variable may be declared to reside in a target-specific
615numbered address space. For targets that support them, address spaces
616may affect how optimizations are performed and/or what target
617instructions are used to access the variable. The default address space
618is zero. The address space qualifier must precede any other attributes.
619
620LLVM allows an explicit section to be specified for globals. If the
621target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000622Additionally, the global can placed in a comdat if the target has the necessary
623support.
Sean Silvab084af42012-12-07 10:36:55 +0000624
Michael Gottesmane743a302013-02-04 03:22:00 +0000625By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000626variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000627initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000628true even for variables potentially accessible from outside the
629module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000630``@llvm.used`` or dllexported variables. This assumption may be suppressed
631by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000632
Sean Silvab084af42012-12-07 10:36:55 +0000633An explicit alignment may be specified for a global, which must be a
634power of 2. If not present, or if the alignment is set to zero, the
635alignment of the global is set by the target to whatever it feels
636convenient. If an explicit alignment is specified, the global is forced
637to have exactly that alignment. Targets and optimizers are not allowed
638to over-align the global if the global has an assigned section. In this
639case, the extra alignment could be observable: for example, code could
640assume that the globals are densely packed in their section and try to
641iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000642iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000643
Javed Absarf3d79042017-05-11 12:28:08 +0000644Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
645an optional :ref:`global attributes <glattrs>` and
646an optional list of attached :ref:`metadata <metadata>`.
Nico Rieck7157bb72014-01-14 15:22:47 +0000647
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000648Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000649:ref:`Thread Local Storage Model <tls_model>`.
650
Nico Rieck7157bb72014-01-14 15:22:47 +0000651Syntax::
652
Rafael Espindola32483a72016-05-10 18:22:45 +0000653 @<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000654 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
655 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000656 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000657 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000658 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000659
Sean Silvab084af42012-12-07 10:36:55 +0000660For example, the following defines a global in a numbered address space
661with an initializer, section, and alignment:
662
663.. code-block:: llvm
664
665 @G = addrspace(5) constant float 1.0, section "foo", align 4
666
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000667The following example just declares a global variable
668
669.. code-block:: llvm
670
671 @G = external global i32
672
Sean Silvab084af42012-12-07 10:36:55 +0000673The following example defines a thread-local global with the
674``initialexec`` TLS model:
675
676.. code-block:: llvm
677
678 @G = thread_local(initialexec) global i32 0, align 4
679
680.. _functionstructure:
681
682Functions
683---------
684
685LLVM function definitions consist of the "``define``" keyword, an
686optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000687style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
688an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000689an optional ``unnamed_addr`` attribute, a return type, an optional
690:ref:`parameter attribute <paramattrs>` for the return type, a function
691name, a (possibly empty) argument list (each with optional :ref:`parameter
692attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000693an optional section, an optional alignment,
694an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000695an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000696an optional :ref:`prologue <prologuedata>`,
697an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000698an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000699an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000700
701LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000702optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
703<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
704optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
705or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
706attribute <paramattrs>` for the return type, a function name, a possibly
707empty list of arguments, an optional alignment, an optional :ref:`garbage
708collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
709:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000710
Bill Wendling6822ecb2013-10-27 05:09:12 +0000711A function definition contains a list of basic blocks, forming the CFG (Control
712Flow Graph) for the function. Each basic block may optionally start with a label
713(giving the basic block a symbol table entry), contains a list of instructions,
714and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
715function return). If an explicit label is not provided, a block is assigned an
716implicit numbered label, using the next value from the same counter as used for
717unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
718entry block does not have an explicit label, it will be assigned label "%0",
719then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000720
721The first basic block in a function is special in two ways: it is
722immediately executed on entrance to the function, and it is not allowed
723to have predecessor basic blocks (i.e. there can not be any branches to
724the entry block of a function). Because the block can have no
725predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
726
727LLVM allows an explicit section to be specified for functions. If the
728target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000729Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000730
731An explicit alignment may be specified for a function. If not present,
732or if the alignment is set to zero, the alignment of the function is set
733by the target to whatever it feels convenient. If an explicit alignment
734is specified, the function is forced to have at least that much
735alignment. All alignments must be a power of 2.
736
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000737If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000738be significant and two identical functions can be merged.
739
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000740If the ``local_unnamed_addr`` attribute is given, the address is known to
741not be significant within the module.
742
Sean Silvab084af42012-12-07 10:36:55 +0000743Syntax::
744
Nico Rieck7157bb72014-01-14 15:22:47 +0000745 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000746 [cconv] [ret attrs]
747 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000748 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
749 [comdat [($name)]] [align N] [gc] [prefix Constant]
750 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000751
Sean Silva706fba52015-08-06 22:56:24 +0000752The argument list is a comma separated sequence of arguments where each
753argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000754
755Syntax::
756
757 <type> [parameter Attrs] [name]
758
759
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000760.. _langref_aliases:
761
Sean Silvab084af42012-12-07 10:36:55 +0000762Aliases
763-------
764
Rafael Espindola64c1e182014-06-03 02:41:57 +0000765Aliases, unlike function or variables, don't create any new data. They
766are just a new symbol and metadata for an existing position.
767
768Aliases have a name and an aliasee that is either a global value or a
769constant expression.
770
Nico Rieck7157bb72014-01-14 15:22:47 +0000771Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000772:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
773<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000774
775Syntax::
776
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000777 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000778
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000779The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000780``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000781might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000782
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000783Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000784the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
785to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000786
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000787If the ``local_unnamed_addr`` attribute is given, the address is known to
788not be significant within the module.
789
Rafael Espindola64c1e182014-06-03 02:41:57 +0000790Since aliases are only a second name, some restrictions apply, of which
791some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000792
Rafael Espindola64c1e182014-06-03 02:41:57 +0000793* The expression defining the aliasee must be computable at assembly
794 time. Since it is just a name, no relocations can be used.
795
796* No alias in the expression can be weak as the possibility of the
797 intermediate alias being overridden cannot be represented in an
798 object file.
799
800* No global value in the expression can be a declaration, since that
801 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000802
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000803.. _langref_ifunc:
804
805IFuncs
806-------
807
808IFuncs, like as aliases, don't create any new data or func. They are just a new
809symbol that dynamic linker resolves at runtime by calling a resolver function.
810
811IFuncs have a name and a resolver that is a function called by dynamic linker
812that returns address of another function associated with the name.
813
814IFunc may have an optional :ref:`linkage type <linkage>` and an optional
815:ref:`visibility style <visibility>`.
816
817Syntax::
818
819 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
820
821
David Majnemerdad0a642014-06-27 18:19:56 +0000822.. _langref_comdats:
823
824Comdats
825-------
826
827Comdat IR provides access to COFF and ELF object file COMDAT functionality.
828
Sean Silvaa1190322015-08-06 22:56:48 +0000829Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000830specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000831that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000832aliasee computes to, if any.
833
834Comdats have a selection kind to provide input on how the linker should
835choose between keys in two different object files.
836
837Syntax::
838
839 $<Name> = comdat SelectionKind
840
841The selection kind must be one of the following:
842
843``any``
844 The linker may choose any COMDAT key, the choice is arbitrary.
845``exactmatch``
846 The linker may choose any COMDAT key but the sections must contain the
847 same data.
848``largest``
849 The linker will choose the section containing the largest COMDAT key.
850``noduplicates``
851 The linker requires that only section with this COMDAT key exist.
852``samesize``
853 The linker may choose any COMDAT key but the sections must contain the
854 same amount of data.
855
856Note that the Mach-O platform doesn't support COMDATs and ELF only supports
857``any`` as a selection kind.
858
859Here is an example of a COMDAT group where a function will only be selected if
860the COMDAT key's section is the largest:
861
Renato Golin124f2592016-07-20 12:16:38 +0000862.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000863
864 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000865 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000866
Rafael Espindola83a362c2015-01-06 22:55:16 +0000867 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000868 ret void
869 }
870
Rafael Espindola83a362c2015-01-06 22:55:16 +0000871As a syntactic sugar the ``$name`` can be omitted if the name is the same as
872the global name:
873
Renato Golin124f2592016-07-20 12:16:38 +0000874.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000875
876 $foo = comdat any
877 @foo = global i32 2, comdat
878
879
David Majnemerdad0a642014-06-27 18:19:56 +0000880In a COFF object file, this will create a COMDAT section with selection kind
881``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
882and another COMDAT section with selection kind
883``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000884section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000885
886There are some restrictions on the properties of the global object.
887It, or an alias to it, must have the same name as the COMDAT group when
888targeting COFF.
889The contents and size of this object may be used during link-time to determine
890which COMDAT groups get selected depending on the selection kind.
891Because the name of the object must match the name of the COMDAT group, the
892linkage of the global object must not be local; local symbols can get renamed
893if a collision occurs in the symbol table.
894
895The combined use of COMDATS and section attributes may yield surprising results.
896For example:
897
Renato Golin124f2592016-07-20 12:16:38 +0000898.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000899
900 $foo = comdat any
901 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000902 @g1 = global i32 42, section "sec", comdat($foo)
903 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000904
905From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000906with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000907COMDAT groups and COMDATs, at the object file level, are represented by
908sections.
909
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000910Note that certain IR constructs like global variables and functions may
911create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000912COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000913in individual sections (e.g. when `-data-sections` or `-function-sections`
914is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000915
Sean Silvab084af42012-12-07 10:36:55 +0000916.. _namedmetadatastructure:
917
918Named Metadata
919--------------
920
921Named metadata is a collection of metadata. :ref:`Metadata
922nodes <metadata>` (but not metadata strings) are the only valid
923operands for a named metadata.
924
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000925#. Named metadata are represented as a string of characters with the
926 metadata prefix. The rules for metadata names are the same as for
927 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
928 are still valid, which allows any character to be part of a name.
929
Sean Silvab084af42012-12-07 10:36:55 +0000930Syntax::
931
932 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000933 !0 = !{!"zero"}
934 !1 = !{!"one"}
935 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000936 ; A named metadata.
937 !name = !{!0, !1, !2}
938
939.. _paramattrs:
940
941Parameter Attributes
942--------------------
943
944The return type and each parameter of a function type may have a set of
945*parameter attributes* associated with them. Parameter attributes are
946used to communicate additional information about the result or
947parameters of a function. Parameter attributes are considered to be part
948of the function, not of the function type, so functions with different
949parameter attributes can have the same function type.
950
951Parameter attributes are simple keywords that follow the type specified.
952If multiple parameter attributes are needed, they are space separated.
953For example:
954
955.. code-block:: llvm
956
957 declare i32 @printf(i8* noalias nocapture, ...)
958 declare i32 @atoi(i8 zeroext)
959 declare signext i8 @returns_signed_char()
960
961Note that any attributes for the function result (``nounwind``,
962``readonly``) come immediately after the argument list.
963
964Currently, only the following parameter attributes are defined:
965
966``zeroext``
967 This indicates to the code generator that the parameter or return
968 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000969 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000970``signext``
971 This indicates to the code generator that the parameter or return
972 value should be sign-extended to the extent required by the target's
973 ABI (which is usually 32-bits) by the caller (for a parameter) or
974 the callee (for a return value).
975``inreg``
976 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000977 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000978 a function call or return (usually, by putting it in a register as
979 opposed to memory, though some targets use it to distinguish between
980 two different kinds of registers). Use of this attribute is
981 target-specific.
982``byval``
983 This indicates that the pointer parameter should really be passed by
984 value to the function. The attribute implies that a hidden copy of
985 the pointee is made between the caller and the callee, so the callee
986 is unable to modify the value in the caller. This attribute is only
987 valid on LLVM pointer arguments. It is generally used to pass
988 structs and arrays by value, but is also valid on pointers to
989 scalars. The copy is considered to belong to the caller not the
990 callee (for example, ``readonly`` functions should not write to
991 ``byval`` parameters). This is not a valid attribute for return
992 values.
993
994 The byval attribute also supports specifying an alignment with the
995 align attribute. It indicates the alignment of the stack slot to
996 form and the known alignment of the pointer specified to the call
997 site. If the alignment is not specified, then the code generator
998 makes a target-specific assumption.
999
Reid Klecknera534a382013-12-19 02:14:12 +00001000.. _attr_inalloca:
1001
1002``inalloca``
1003
Reid Kleckner60d3a832014-01-16 22:59:24 +00001004 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001005 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001006 be a pointer to stack memory produced by an ``alloca`` instruction.
1007 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001008 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001009 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001010
Reid Kleckner436c42e2014-01-17 23:58:17 +00001011 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001012 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001013 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001014 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001015 ``inalloca`` attribute also disables LLVM's implicit lowering of
1016 large aggregate return values, which means that frontend authors
1017 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001018
Reid Kleckner60d3a832014-01-16 22:59:24 +00001019 When the call site is reached, the argument allocation must have
1020 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001021 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001022 space after an argument allocation and before its call site, but it
1023 must be cleared off with :ref:`llvm.stackrestore
1024 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001025
1026 See :doc:`InAlloca` for more information on how to use this
1027 attribute.
1028
Sean Silvab084af42012-12-07 10:36:55 +00001029``sret``
1030 This indicates that the pointer parameter specifies the address of a
1031 structure that is the return value of the function in the source
1032 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001033 loads and stores to the structure may be assumed by the callee not
1034 to trap and to be properly aligned. This is not a valid attribute
1035 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001036
Hal Finkelccc70902014-07-22 16:58:55 +00001037``align <n>``
1038 This indicates that the pointer value may be assumed by the optimizer to
1039 have the specified alignment.
1040
1041 Note that this attribute has additional semantics when combined with the
1042 ``byval`` attribute.
1043
Sean Silva1703e702014-04-08 21:06:22 +00001044.. _noalias:
1045
Sean Silvab084af42012-12-07 10:36:55 +00001046``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001047 This indicates that objects accessed via pointer values
1048 :ref:`based <pointeraliasing>` on the argument or return value are not also
1049 accessed, during the execution of the function, via pointer values not
1050 *based* on the argument or return value. The attribute on a return value
1051 also has additional semantics described below. The caller shares the
1052 responsibility with the callee for ensuring that these requirements are met.
1053 For further details, please see the discussion of the NoAlias response in
1054 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001055
1056 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001057 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001058
1059 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001060 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1061 attribute on return values are stronger than the semantics of the attribute
1062 when used on function arguments. On function return values, the ``noalias``
1063 attribute indicates that the function acts like a system memory allocation
1064 function, returning a pointer to allocated storage disjoint from the
1065 storage for any other object accessible to the caller.
1066
Sean Silvab084af42012-12-07 10:36:55 +00001067``nocapture``
1068 This indicates that the callee does not make any copies of the
1069 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001070 attribute for return values. Addresses used in volatile operations
1071 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001072
1073.. _nest:
1074
1075``nest``
1076 This indicates that the pointer parameter can be excised using the
1077 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001078 attribute for return values and can only be applied to one parameter.
1079
1080``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001081 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001082 value. This is a hint to the optimizer and code generator used when
1083 generating the caller, allowing value propagation, tail call optimization,
1084 and omission of register saves and restores in some cases; it is not
1085 checked or enforced when generating the callee. The parameter and the
1086 function return type must be valid operands for the
1087 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1088 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001089
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001090``nonnull``
1091 This indicates that the parameter or return pointer is not null. This
1092 attribute may only be applied to pointer typed parameters. This is not
1093 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001094 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001095 is non-null.
1096
Hal Finkelb0407ba2014-07-18 15:51:28 +00001097``dereferenceable(<n>)``
1098 This indicates that the parameter or return pointer is dereferenceable. This
1099 attribute may only be applied to pointer typed parameters. A pointer that
1100 is dereferenceable can be loaded from speculatively without a risk of
1101 trapping. The number of bytes known to be dereferenceable must be provided
1102 in parentheses. It is legal for the number of bytes to be less than the
1103 size of the pointee type. The ``nonnull`` attribute does not imply
1104 dereferenceability (consider a pointer to one element past the end of an
1105 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1106 ``addrspace(0)`` (which is the default address space).
1107
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001108``dereferenceable_or_null(<n>)``
1109 This indicates that the parameter or return value isn't both
1110 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001111 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001112 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1113 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1114 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1115 and in other address spaces ``dereferenceable_or_null(<n>)``
1116 implies that a pointer is at least one of ``dereferenceable(<n>)``
1117 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001118 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001119 pointer typed parameters.
1120
Manman Renf46262e2016-03-29 17:37:21 +00001121``swiftself``
1122 This indicates that the parameter is the self/context parameter. This is not
1123 a valid attribute for return values and can only be applied to one
1124 parameter.
1125
Manman Ren9bfd0d02016-04-01 21:41:15 +00001126``swifterror``
1127 This attribute is motivated to model and optimize Swift error handling. It
1128 can be applied to a parameter with pointer to pointer type or a
1129 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001130 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1131 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1132 the parameter or the alloca) can only be loaded and stored from, or used as
1133 a ``swifterror`` argument. This is not a valid attribute for return values
1134 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001135
1136 These constraints allow the calling convention to optimize access to
1137 ``swifterror`` variables by associating them with a specific register at
1138 call boundaries rather than placing them in memory. Since this does change
1139 the calling convention, a function which uses the ``swifterror`` attribute
1140 on a parameter is not ABI-compatible with one which does not.
1141
1142 These constraints also allow LLVM to assume that a ``swifterror`` argument
1143 does not alias any other memory visible within a function and that a
1144 ``swifterror`` alloca passed as an argument does not escape.
1145
Sean Silvab084af42012-12-07 10:36:55 +00001146.. _gc:
1147
Philip Reamesf80bbff2015-02-25 23:45:20 +00001148Garbage Collector Strategy Names
1149--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001150
Philip Reamesf80bbff2015-02-25 23:45:20 +00001151Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001152string:
1153
1154.. code-block:: llvm
1155
1156 define void @f() gc "name" { ... }
1157
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001158The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001159<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001160strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001161named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001162garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001163which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001164
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001165.. _prefixdata:
1166
1167Prefix Data
1168-----------
1169
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001170Prefix data is data associated with a function which the code
1171generator will emit immediately before the function's entrypoint.
1172The purpose of this feature is to allow frontends to associate
1173language-specific runtime metadata with specific functions and make it
1174available through the function pointer while still allowing the
1175function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001176
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001177To access the data for a given function, a program may bitcast the
1178function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001179index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001180the prefix data. For instance, take the example of a function annotated
1181with a single ``i32``,
1182
1183.. code-block:: llvm
1184
1185 define void @f() prefix i32 123 { ... }
1186
1187The prefix data can be referenced as,
1188
1189.. code-block:: llvm
1190
David Blaikie16a97eb2015-03-04 22:02:58 +00001191 %0 = bitcast void* () @f to i32*
1192 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001193 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001194
1195Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001196of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001197beginning of the prefix data is aligned. This means that if the size
1198of the prefix data is not a multiple of the alignment size, the
1199function's entrypoint will not be aligned. If alignment of the
1200function's entrypoint is desired, padding must be added to the prefix
1201data.
1202
Sean Silvaa1190322015-08-06 22:56:48 +00001203A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001204to the ``available_externally`` linkage in that the data may be used by the
1205optimizers but will not be emitted in the object file.
1206
1207.. _prologuedata:
1208
1209Prologue Data
1210-------------
1211
1212The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1213be inserted prior to the function body. This can be used for enabling
1214function hot-patching and instrumentation.
1215
1216To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001217have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001218bytes which decode to a sequence of machine instructions, valid for the
1219module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001220the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001221the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001222definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001223makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001224
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001225A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001226which encodes the ``nop`` instruction:
1227
Renato Golin124f2592016-07-20 12:16:38 +00001228.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001229
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001230 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001231
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001232Generally prologue data can be formed by encoding a relative branch instruction
1233which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001234x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1235
Renato Golin124f2592016-07-20 12:16:38 +00001236.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001237
1238 %0 = type <{ i8, i8, i8* }>
1239
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001240 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001241
Sean Silvaa1190322015-08-06 22:56:48 +00001242A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001243to the ``available_externally`` linkage in that the data may be used by the
1244optimizers but will not be emitted in the object file.
1245
David Majnemer7fddecc2015-06-17 20:52:32 +00001246.. _personalityfn:
1247
1248Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001249--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001250
1251The ``personality`` attribute permits functions to specify what function
1252to use for exception handling.
1253
Bill Wendling63b88192013-02-06 06:52:58 +00001254.. _attrgrp:
1255
1256Attribute Groups
1257----------------
1258
1259Attribute groups are groups of attributes that are referenced by objects within
1260the IR. They are important for keeping ``.ll`` files readable, because a lot of
1261functions will use the same set of attributes. In the degenerative case of a
1262``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1263group will capture the important command line flags used to build that file.
1264
1265An attribute group is a module-level object. To use an attribute group, an
1266object references the attribute group's ID (e.g. ``#37``). An object may refer
1267to more than one attribute group. In that situation, the attributes from the
1268different groups are merged.
1269
1270Here is an example of attribute groups for a function that should always be
1271inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1272
1273.. code-block:: llvm
1274
1275 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001276 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001277
1278 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001279 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001280
1281 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1282 define void @f() #0 #1 { ... }
1283
Sean Silvab084af42012-12-07 10:36:55 +00001284.. _fnattrs:
1285
1286Function Attributes
1287-------------------
1288
1289Function attributes are set to communicate additional information about
1290a function. Function attributes are considered to be part of the
1291function, not of the function type, so functions with different function
1292attributes can have the same function type.
1293
1294Function attributes are simple keywords that follow the type specified.
1295If multiple attributes are needed, they are space separated. For
1296example:
1297
1298.. code-block:: llvm
1299
1300 define void @f() noinline { ... }
1301 define void @f() alwaysinline { ... }
1302 define void @f() alwaysinline optsize { ... }
1303 define void @f() optsize { ... }
1304
Sean Silvab084af42012-12-07 10:36:55 +00001305``alignstack(<n>)``
1306 This attribute indicates that, when emitting the prologue and
1307 epilogue, the backend should forcibly align the stack pointer.
1308 Specify the desired alignment, which must be a power of two, in
1309 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001310``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1311 This attribute indicates that the annotated function will always return at
1312 least a given number of bytes (or null). Its arguments are zero-indexed
1313 parameter numbers; if one argument is provided, then it's assumed that at
1314 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1315 returned pointer. If two are provided, then it's assumed that
1316 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1317 available. The referenced parameters must be integer types. No assumptions
1318 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001319``alwaysinline``
1320 This attribute indicates that the inliner should attempt to inline
1321 this function into callers whenever possible, ignoring any active
1322 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001323``builtin``
1324 This indicates that the callee function at a call site should be
1325 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001326 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001327 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001328 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001329``cold``
1330 This attribute indicates that this function is rarely called. When
1331 computing edge weights, basic blocks post-dominated by a cold
1332 function call are also considered to be cold; and, thus, given low
1333 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001334``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001335 In some parallel execution models, there exist operations that cannot be
1336 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001337 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001338
Justin Lebar58535b12016-02-17 17:46:41 +00001339 The ``convergent`` attribute may appear on functions or call/invoke
1340 instructions. When it appears on a function, it indicates that calls to
1341 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001342 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001343 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001344 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001345
Justin Lebar58535b12016-02-17 17:46:41 +00001346 When it appears on a call/invoke, the ``convergent`` attribute indicates
1347 that we should treat the call as though we're calling a convergent
1348 function. This is particularly useful on indirect calls; without this we
1349 may treat such calls as though the target is non-convergent.
1350
1351 The optimizer may remove the ``convergent`` attribute on functions when it
1352 can prove that the function does not execute any convergent operations.
1353 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1354 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001355``inaccessiblememonly``
1356 This attribute indicates that the function may only access memory that
1357 is not accessible by the module being compiled. This is a weaker form
1358 of ``readnone``.
1359``inaccessiblemem_or_argmemonly``
1360 This attribute indicates that the function may only access memory that is
1361 either not accessible by the module being compiled, or is pointed to
1362 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001363``inlinehint``
1364 This attribute indicates that the source code contained a hint that
1365 inlining this function is desirable (such as the "inline" keyword in
1366 C/C++). It is just a hint; it imposes no requirements on the
1367 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001368``jumptable``
1369 This attribute indicates that the function should be added to a
1370 jump-instruction table at code-generation time, and that all address-taken
1371 references to this function should be replaced with a reference to the
1372 appropriate jump-instruction-table function pointer. Note that this creates
1373 a new pointer for the original function, which means that code that depends
1374 on function-pointer identity can break. So, any function annotated with
1375 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001376``minsize``
1377 This attribute suggests that optimization passes and code generator
1378 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001379 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001380 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001381``naked``
1382 This attribute disables prologue / epilogue emission for the
1383 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001384``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001385 This indicates that the callee function at a call site is not recognized as
1386 a built-in function. LLVM will retain the original call and not replace it
1387 with equivalent code based on the semantics of the built-in function, unless
1388 the call site uses the ``builtin`` attribute. This is valid at call sites
1389 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001390``noduplicate``
1391 This attribute indicates that calls to the function cannot be
1392 duplicated. A call to a ``noduplicate`` function may be moved
1393 within its parent function, but may not be duplicated within
1394 its parent function.
1395
1396 A function containing a ``noduplicate`` call may still
1397 be an inlining candidate, provided that the call is not
1398 duplicated by inlining. That implies that the function has
1399 internal linkage and only has one call site, so the original
1400 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001401``noimplicitfloat``
1402 This attributes disables implicit floating point instructions.
1403``noinline``
1404 This attribute indicates that the inliner should never inline this
1405 function in any situation. This attribute may not be used together
1406 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001407``nonlazybind``
1408 This attribute suppresses lazy symbol binding for the function. This
1409 may make calls to the function faster, at the cost of extra program
1410 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001411``noredzone``
1412 This attribute indicates that the code generator should not use a
1413 red zone, even if the target-specific ABI normally permits it.
1414``noreturn``
1415 This function attribute indicates that the function never returns
1416 normally. This produces undefined behavior at runtime if the
1417 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001418``norecurse``
1419 This function attribute indicates that the function does not call itself
1420 either directly or indirectly down any possible call path. This produces
1421 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001422``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001423 This function attribute indicates that the function never raises an
1424 exception. If the function does raise an exception, its runtime
1425 behavior is undefined. However, functions marked nounwind may still
1426 trap or generate asynchronous exceptions. Exception handling schemes
1427 that are recognized by LLVM to handle asynchronous exceptions, such
1428 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001429``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001430 This function attribute indicates that most optimization passes will skip
1431 this function, with the exception of interprocedural optimization passes.
1432 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001433 This attribute cannot be used together with the ``alwaysinline``
1434 attribute; this attribute is also incompatible
1435 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001436
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001437 This attribute requires the ``noinline`` attribute to be specified on
1438 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001439 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001440 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001441``optsize``
1442 This attribute suggests that optimization passes and code generator
1443 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001444 and otherwise do optimizations specifically to reduce code size as
1445 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001446``"patchable-function"``
1447 This attribute tells the code generator that the code
1448 generated for this function needs to follow certain conventions that
1449 make it possible for a runtime function to patch over it later.
1450 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001451 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001452
1453 * ``"prologue-short-redirect"`` - This style of patchable
1454 function is intended to support patching a function prologue to
1455 redirect control away from the function in a thread safe
1456 manner. It guarantees that the first instruction of the
1457 function will be large enough to accommodate a short jump
1458 instruction, and will be sufficiently aligned to allow being
1459 fully changed via an atomic compare-and-swap instruction.
1460 While the first requirement can be satisfied by inserting large
1461 enough NOP, LLVM can and will try to re-purpose an existing
1462 instruction (i.e. one that would have to be emitted anyway) as
1463 the patchable instruction larger than a short jump.
1464
1465 ``"prologue-short-redirect"`` is currently only supported on
1466 x86-64.
1467
1468 This attribute by itself does not imply restrictions on
1469 inter-procedural optimizations. All of the semantic effects the
1470 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001471``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001472 On a function, this attribute indicates that the function computes its
1473 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001474 without dereferencing any pointer arguments or otherwise accessing
1475 any mutable state (e.g. memory, control registers, etc) visible to
1476 caller functions. It does not write through any pointer arguments
1477 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das5be2e842017-02-13 23:19:07 +00001478 to callers. This means while it cannot unwind exceptions by calling
1479 the ``C++`` exception throwing methods (since they write to memory), there may
1480 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1481 visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001482
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001483 On an argument, this attribute indicates that the function does not
1484 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001485 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001486``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001487 On a function, this attribute indicates that the function does not write
1488 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001489 modify any state (e.g. memory, control registers, etc) visible to
1490 caller functions. It may dereference pointer arguments and read
1491 state that may be set in the caller. A readonly function always
1492 returns the same value (or unwinds an exception identically) when
Sanjoy Das5be2e842017-02-13 23:19:07 +00001493 called with the same set of arguments and global state. This means while it
1494 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1495 (since they write to memory), there may be non-``C++`` mechanisms that throw
1496 exceptions without writing to LLVM visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001497
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001498 On an argument, this attribute indicates that the function does not write
1499 through this pointer argument, even though it may write to the memory that
1500 the pointer points to.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001501``writeonly``
1502 On a function, this attribute indicates that the function may write to but
1503 does not read from memory.
1504
1505 On an argument, this attribute indicates that the function may write to but
1506 does not read through this pointer argument (even though it may read from
1507 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001508``argmemonly``
1509 This attribute indicates that the only memory accesses inside function are
1510 loads and stores from objects pointed to by its pointer-typed arguments,
1511 with arbitrary offsets. Or in other words, all memory operations in the
1512 function can refer to memory only using pointers based on its function
1513 arguments.
1514 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1515 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001516``returns_twice``
1517 This attribute indicates that this function can return twice. The C
1518 ``setjmp`` is an example of such a function. The compiler disables
1519 some optimizations (like tail calls) in the caller of these
1520 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001521``safestack``
1522 This attribute indicates that
1523 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1524 protection is enabled for this function.
1525
1526 If a function that has a ``safestack`` attribute is inlined into a
1527 function that doesn't have a ``safestack`` attribute or which has an
1528 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1529 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001530``sanitize_address``
1531 This attribute indicates that AddressSanitizer checks
1532 (dynamic address safety analysis) are enabled for this function.
1533``sanitize_memory``
1534 This attribute indicates that MemorySanitizer checks (dynamic detection
1535 of accesses to uninitialized memory) are enabled for this function.
1536``sanitize_thread``
1537 This attribute indicates that ThreadSanitizer checks
1538 (dynamic thread safety analysis) are enabled for this function.
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001539``speculatable``
1540 This function attribute indicates that the function does not have any
1541 effects besides calculating its result and does not have undefined behavior.
1542 Note that ``speculatable`` is not enough to conclude that along any
Xin Tongc7180202017-05-02 23:24:12 +00001543 particular execution path the number of calls to this function will not be
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001544 externally observable. This attribute is only valid on functions
1545 and declarations, not on individual call sites. If a function is
1546 incorrectly marked as speculatable and really does exhibit
1547 undefined behavior, the undefined behavior may be observed even
1548 if the call site is dead code.
1549
Sean Silvab084af42012-12-07 10:36:55 +00001550``ssp``
1551 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001552 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001553 placed on the stack before the local variables that's checked upon
1554 return from the function to see if it has been overwritten. A
1555 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001556 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001557
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001558 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1559 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1560 - Calls to alloca() with variable sizes or constant sizes greater than
1561 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001562
Josh Magee24c7f062014-02-01 01:36:16 +00001563 Variables that are identified as requiring a protector will be arranged
1564 on the stack such that they are adjacent to the stack protector guard.
1565
Sean Silvab084af42012-12-07 10:36:55 +00001566 If a function that has an ``ssp`` attribute is inlined into a
1567 function that doesn't have an ``ssp`` attribute, then the resulting
1568 function will have an ``ssp`` attribute.
1569``sspreq``
1570 This attribute indicates that the function should *always* emit a
1571 stack smashing protector. This overrides the ``ssp`` function
1572 attribute.
1573
Josh Magee24c7f062014-02-01 01:36:16 +00001574 Variables that are identified as requiring a protector will be arranged
1575 on the stack such that they are adjacent to the stack protector guard.
1576 The specific layout rules are:
1577
1578 #. Large arrays and structures containing large arrays
1579 (``>= ssp-buffer-size``) are closest to the stack protector.
1580 #. Small arrays and structures containing small arrays
1581 (``< ssp-buffer-size``) are 2nd closest to the protector.
1582 #. Variables that have had their address taken are 3rd closest to the
1583 protector.
1584
Sean Silvab084af42012-12-07 10:36:55 +00001585 If a function that has an ``sspreq`` attribute is inlined into a
1586 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001587 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1588 an ``sspreq`` attribute.
1589``sspstrong``
1590 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001591 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001592 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001593 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001594
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001595 - Arrays of any size and type
1596 - Aggregates containing an array of any size and type.
1597 - Calls to alloca().
1598 - Local variables that have had their address taken.
1599
Josh Magee24c7f062014-02-01 01:36:16 +00001600 Variables that are identified as requiring a protector will be arranged
1601 on the stack such that they are adjacent to the stack protector guard.
1602 The specific layout rules are:
1603
1604 #. Large arrays and structures containing large arrays
1605 (``>= ssp-buffer-size``) are closest to the stack protector.
1606 #. Small arrays and structures containing small arrays
1607 (``< ssp-buffer-size``) are 2nd closest to the protector.
1608 #. Variables that have had their address taken are 3rd closest to the
1609 protector.
1610
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001611 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001612
1613 If a function that has an ``sspstrong`` attribute is inlined into a
1614 function that doesn't have an ``sspstrong`` attribute, then the
1615 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001616``"thunk"``
1617 This attribute indicates that the function will delegate to some other
1618 function with a tail call. The prototype of a thunk should not be used for
1619 optimization purposes. The caller is expected to cast the thunk prototype to
1620 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001621``uwtable``
1622 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001623 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001624 show that no exceptions passes by it. This is normally the case for
1625 the ELF x86-64 abi, but it can be disabled for some compilation
1626 units.
Sean Silvab084af42012-12-07 10:36:55 +00001627
Javed Absarf3d79042017-05-11 12:28:08 +00001628.. _glattrs:
1629
1630Global Attributes
1631-----------------
1632
1633Attributes may be set to communicate additional information about a global variable.
1634Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
1635are grouped into a single :ref:`attribute group <attrgrp>`.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001636
1637.. _opbundles:
1638
1639Operand Bundles
1640---------------
1641
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001642Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001643with certain LLVM instructions (currently only ``call`` s and
1644``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001645incorrect and will change program semantics.
1646
1647Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001648
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001649 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001650 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1651 bundle operand ::= SSA value
1652 tag ::= string constant
1653
1654Operand bundles are **not** part of a function's signature, and a
1655given function may be called from multiple places with different kinds
1656of operand bundles. This reflects the fact that the operand bundles
1657are conceptually a part of the ``call`` (or ``invoke``), not the
1658callee being dispatched to.
1659
1660Operand bundles are a generic mechanism intended to support
1661runtime-introspection-like functionality for managed languages. While
1662the exact semantics of an operand bundle depend on the bundle tag,
1663there are certain limitations to how much the presence of an operand
1664bundle can influence the semantics of a program. These restrictions
1665are described as the semantics of an "unknown" operand bundle. As
1666long as the behavior of an operand bundle is describable within these
1667restrictions, LLVM does not need to have special knowledge of the
1668operand bundle to not miscompile programs containing it.
1669
David Majnemer34cacb42015-10-22 01:46:38 +00001670- The bundle operands for an unknown operand bundle escape in unknown
1671 ways before control is transferred to the callee or invokee.
1672- Calls and invokes with operand bundles have unknown read / write
1673 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001674 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001675 callsite specific attributes.
1676- An operand bundle at a call site cannot change the implementation
1677 of the called function. Inter-procedural optimizations work as
1678 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001679
Sanjoy Dascdafd842015-11-11 21:38:02 +00001680More specific types of operand bundles are described below.
1681
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001682.. _deopt_opbundles:
1683
Sanjoy Dascdafd842015-11-11 21:38:02 +00001684Deoptimization Operand Bundles
1685^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1686
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001687Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001688operand bundle tag. These operand bundles represent an alternate
1689"safe" continuation for the call site they're attached to, and can be
1690used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001691specified call site. There can be at most one ``"deopt"`` operand
1692bundle attached to a call site. Exact details of deoptimization is
1693out of scope for the language reference, but it usually involves
1694rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001695
1696From the compiler's perspective, deoptimization operand bundles make
1697the call sites they're attached to at least ``readonly``. They read
1698through all of their pointer typed operands (even if they're not
1699otherwise escaped) and the entire visible heap. Deoptimization
1700operand bundles do not capture their operands except during
1701deoptimization, in which case control will not be returned to the
1702compiled frame.
1703
Sanjoy Das2d161452015-11-18 06:23:38 +00001704The inliner knows how to inline through calls that have deoptimization
1705operand bundles. Just like inlining through a normal call site
1706involves composing the normal and exceptional continuations, inlining
1707through a call site with a deoptimization operand bundle needs to
1708appropriately compose the "safe" deoptimization continuation. The
1709inliner does this by prepending the parent's deoptimization
1710continuation to every deoptimization continuation in the inlined body.
1711E.g. inlining ``@f`` into ``@g`` in the following example
1712
1713.. code-block:: llvm
1714
1715 define void @f() {
1716 call void @x() ;; no deopt state
1717 call void @y() [ "deopt"(i32 10) ]
1718 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1719 ret void
1720 }
1721
1722 define void @g() {
1723 call void @f() [ "deopt"(i32 20) ]
1724 ret void
1725 }
1726
1727will result in
1728
1729.. code-block:: llvm
1730
1731 define void @g() {
1732 call void @x() ;; still no deopt state
1733 call void @y() [ "deopt"(i32 20, i32 10) ]
1734 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1735 ret void
1736 }
1737
1738It is the frontend's responsibility to structure or encode the
1739deoptimization state in a way that syntactically prepending the
1740caller's deoptimization state to the callee's deoptimization state is
1741semantically equivalent to composing the caller's deoptimization
1742continuation after the callee's deoptimization continuation.
1743
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001744.. _ob_funclet:
1745
David Majnemer3bb88c02015-12-15 21:27:27 +00001746Funclet Operand Bundles
1747^^^^^^^^^^^^^^^^^^^^^^^
1748
1749Funclet operand bundles are characterized by the ``"funclet"``
1750operand bundle tag. These operand bundles indicate that a call site
1751is within a particular funclet. There can be at most one
1752``"funclet"`` operand bundle attached to a call site and it must have
1753exactly one bundle operand.
1754
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001755If any funclet EH pads have been "entered" but not "exited" (per the
1756`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1757it is undefined behavior to execute a ``call`` or ``invoke`` which:
1758
1759* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1760 intrinsic, or
1761* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1762 not-yet-exited funclet EH pad.
1763
1764Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1765executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1766
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001767GC Transition Operand Bundles
1768^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1769
1770GC transition operand bundles are characterized by the
1771``"gc-transition"`` operand bundle tag. These operand bundles mark a
1772call as a transition between a function with one GC strategy to a
1773function with a different GC strategy. If coordinating the transition
1774between GC strategies requires additional code generation at the call
1775site, these bundles may contain any values that are needed by the
1776generated code. For more details, see :ref:`GC Transitions
1777<gc_transition_args>`.
1778
Sean Silvab084af42012-12-07 10:36:55 +00001779.. _moduleasm:
1780
1781Module-Level Inline Assembly
1782----------------------------
1783
1784Modules may contain "module-level inline asm" blocks, which corresponds
1785to the GCC "file scope inline asm" blocks. These blocks are internally
1786concatenated by LLVM and treated as a single unit, but may be separated
1787in the ``.ll`` file if desired. The syntax is very simple:
1788
1789.. code-block:: llvm
1790
1791 module asm "inline asm code goes here"
1792 module asm "more can go here"
1793
1794The strings can contain any character by escaping non-printable
1795characters. The escape sequence used is simply "\\xx" where "xx" is the
1796two digit hex code for the number.
1797
James Y Knightbc832ed2015-07-08 18:08:36 +00001798Note that the assembly string *must* be parseable by LLVM's integrated assembler
1799(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001800
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001801.. _langref_datalayout:
1802
Sean Silvab084af42012-12-07 10:36:55 +00001803Data Layout
1804-----------
1805
1806A module may specify a target specific data layout string that specifies
1807how data is to be laid out in memory. The syntax for the data layout is
1808simply:
1809
1810.. code-block:: llvm
1811
1812 target datalayout = "layout specification"
1813
1814The *layout specification* consists of a list of specifications
1815separated by the minus sign character ('-'). Each specification starts
1816with a letter and may include other information after the letter to
1817define some aspect of the data layout. The specifications accepted are
1818as follows:
1819
1820``E``
1821 Specifies that the target lays out data in big-endian form. That is,
1822 the bits with the most significance have the lowest address
1823 location.
1824``e``
1825 Specifies that the target lays out data in little-endian form. That
1826 is, the bits with the least significance have the lowest address
1827 location.
1828``S<size>``
1829 Specifies the natural alignment of the stack in bits. Alignment
1830 promotion of stack variables is limited to the natural stack
1831 alignment to avoid dynamic stack realignment. The stack alignment
1832 must be a multiple of 8-bits. If omitted, the natural stack
1833 alignment defaults to "unspecified", which does not prevent any
1834 alignment promotions.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001835``A<address space>``
1836 Specifies the address space of objects created by '``alloca``'.
1837 Defaults to the default address space of 0.
Sean Silvab084af42012-12-07 10:36:55 +00001838``p[n]:<size>:<abi>:<pref>``
1839 This specifies the *size* of a pointer and its ``<abi>`` and
1840 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001841 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001842 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001843 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001844``i<size>:<abi>:<pref>``
1845 This specifies the alignment for an integer type of a given bit
1846 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1847``v<size>:<abi>:<pref>``
1848 This specifies the alignment for a vector type of a given bit
1849 ``<size>``.
1850``f<size>:<abi>:<pref>``
1851 This specifies the alignment for a floating point type of a given bit
1852 ``<size>``. Only values of ``<size>`` that are supported by the target
1853 will work. 32 (float) and 64 (double) are supported on all targets; 80
1854 or 128 (different flavors of long double) are also supported on some
1855 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001856``a:<abi>:<pref>``
1857 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001858``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001859 If present, specifies that llvm names are mangled in the output. The
1860 options are
1861
1862 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1863 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1864 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1865 symbols get a ``_`` prefix.
1866 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1867 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001868 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1869 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001870``n<size1>:<size2>:<size3>...``
1871 This specifies a set of native integer widths for the target CPU in
1872 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1873 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1874 this set are considered to support most general arithmetic operations
1875 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001876``ni:<address space0>:<address space1>:<address space2>...``
1877 This specifies pointer types with the specified address spaces
1878 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1879 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001880
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001881On every specification that takes a ``<abi>:<pref>``, specifying the
1882``<pref>`` alignment is optional. If omitted, the preceding ``:``
1883should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1884
Sean Silvab084af42012-12-07 10:36:55 +00001885When constructing the data layout for a given target, LLVM starts with a
1886default set of specifications which are then (possibly) overridden by
1887the specifications in the ``datalayout`` keyword. The default
1888specifications are given in this list:
1889
1890- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001891- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1892- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1893 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001894- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001895- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1896- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1897- ``i16:16:16`` - i16 is 16-bit aligned
1898- ``i32:32:32`` - i32 is 32-bit aligned
1899- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1900 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001901- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001902- ``f32:32:32`` - float is 32-bit aligned
1903- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001904- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001905- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1906- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001907- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001908
1909When LLVM is determining the alignment for a given type, it uses the
1910following rules:
1911
1912#. If the type sought is an exact match for one of the specifications,
1913 that specification is used.
1914#. If no match is found, and the type sought is an integer type, then
1915 the smallest integer type that is larger than the bitwidth of the
1916 sought type is used. If none of the specifications are larger than
1917 the bitwidth then the largest integer type is used. For example,
1918 given the default specifications above, the i7 type will use the
1919 alignment of i8 (next largest) while both i65 and i256 will use the
1920 alignment of i64 (largest specified).
1921#. If no match is found, and the type sought is a vector type, then the
1922 largest vector type that is smaller than the sought vector type will
1923 be used as a fall back. This happens because <128 x double> can be
1924 implemented in terms of 64 <2 x double>, for example.
1925
1926The function of the data layout string may not be what you expect.
1927Notably, this is not a specification from the frontend of what alignment
1928the code generator should use.
1929
1930Instead, if specified, the target data layout is required to match what
1931the ultimate *code generator* expects. This string is used by the
1932mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001933what the ultimate code generator uses. There is no way to generate IR
1934that does not embed this target-specific detail into the IR. If you
1935don't specify the string, the default specifications will be used to
1936generate a Data Layout and the optimization phases will operate
1937accordingly and introduce target specificity into the IR with respect to
1938these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001939
Bill Wendling5cc90842013-10-18 23:41:25 +00001940.. _langref_triple:
1941
1942Target Triple
1943-------------
1944
1945A module may specify a target triple string that describes the target
1946host. The syntax for the target triple is simply:
1947
1948.. code-block:: llvm
1949
1950 target triple = "x86_64-apple-macosx10.7.0"
1951
1952The *target triple* string consists of a series of identifiers delimited
1953by the minus sign character ('-'). The canonical forms are:
1954
1955::
1956
1957 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1958 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1959
1960This information is passed along to the backend so that it generates
1961code for the proper architecture. It's possible to override this on the
1962command line with the ``-mtriple`` command line option.
1963
Sean Silvab084af42012-12-07 10:36:55 +00001964.. _pointeraliasing:
1965
1966Pointer Aliasing Rules
1967----------------------
1968
1969Any memory access must be done through a pointer value associated with
1970an address range of the memory access, otherwise the behavior is
1971undefined. Pointer values are associated with address ranges according
1972to the following rules:
1973
1974- A pointer value is associated with the addresses associated with any
1975 value it is *based* on.
1976- An address of a global variable is associated with the address range
1977 of the variable's storage.
1978- The result value of an allocation instruction is associated with the
1979 address range of the allocated storage.
1980- A null pointer in the default address-space is associated with no
1981 address.
1982- An integer constant other than zero or a pointer value returned from
1983 a function not defined within LLVM may be associated with address
1984 ranges allocated through mechanisms other than those provided by
1985 LLVM. Such ranges shall not overlap with any ranges of addresses
1986 allocated by mechanisms provided by LLVM.
1987
1988A pointer value is *based* on another pointer value according to the
1989following rules:
1990
1991- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001992 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001993- The result value of a ``bitcast`` is *based* on the operand of the
1994 ``bitcast``.
1995- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1996 values that contribute (directly or indirectly) to the computation of
1997 the pointer's value.
1998- The "*based* on" relationship is transitive.
1999
2000Note that this definition of *"based"* is intentionally similar to the
2001definition of *"based"* in C99, though it is slightly weaker.
2002
2003LLVM IR does not associate types with memory. The result type of a
2004``load`` merely indicates the size and alignment of the memory from
2005which to load, as well as the interpretation of the value. The first
2006operand type of a ``store`` similarly only indicates the size and
2007alignment of the store.
2008
2009Consequently, type-based alias analysis, aka TBAA, aka
2010``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2011:ref:`Metadata <metadata>` may be used to encode additional information
2012which specialized optimization passes may use to implement type-based
2013alias analysis.
2014
2015.. _volatile:
2016
2017Volatile Memory Accesses
2018------------------------
2019
2020Certain memory accesses, such as :ref:`load <i_load>`'s,
2021:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2022marked ``volatile``. The optimizers must not change the number of
2023volatile operations or change their order of execution relative to other
2024volatile operations. The optimizers *may* change the order of volatile
2025operations relative to non-volatile operations. This is not Java's
2026"volatile" and has no cross-thread synchronization behavior.
2027
Andrew Trick89fc5a62013-01-30 21:19:35 +00002028IR-level volatile loads and stores cannot safely be optimized into
2029llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2030flagged volatile. Likewise, the backend should never split or merge
2031target-legal volatile load/store instructions.
2032
Andrew Trick7e6f9282013-01-31 00:49:39 +00002033.. admonition:: Rationale
2034
2035 Platforms may rely on volatile loads and stores of natively supported
2036 data width to be executed as single instruction. For example, in C
2037 this holds for an l-value of volatile primitive type with native
2038 hardware support, but not necessarily for aggregate types. The
2039 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002040 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002041 do not violate the frontend's contract with the language.
2042
Sean Silvab084af42012-12-07 10:36:55 +00002043.. _memmodel:
2044
2045Memory Model for Concurrent Operations
2046--------------------------------------
2047
2048The LLVM IR does not define any way to start parallel threads of
2049execution or to register signal handlers. Nonetheless, there are
2050platform-specific ways to create them, and we define LLVM IR's behavior
2051in their presence. This model is inspired by the C++0x memory model.
2052
2053For a more informal introduction to this model, see the :doc:`Atomics`.
2054
2055We define a *happens-before* partial order as the least partial order
2056that
2057
2058- Is a superset of single-thread program order, and
2059- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2060 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2061 techniques, like pthread locks, thread creation, thread joining,
2062 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2063 Constraints <ordering>`).
2064
2065Note that program order does not introduce *happens-before* edges
2066between a thread and signals executing inside that thread.
2067
2068Every (defined) read operation (load instructions, memcpy, atomic
2069loads/read-modify-writes, etc.) R reads a series of bytes written by
2070(defined) write operations (store instructions, atomic
2071stores/read-modify-writes, memcpy, etc.). For the purposes of this
2072section, initialized globals are considered to have a write of the
2073initializer which is atomic and happens before any other read or write
2074of the memory in question. For each byte of a read R, R\ :sub:`byte`
2075may see any write to the same byte, except:
2076
2077- If write\ :sub:`1` happens before write\ :sub:`2`, and
2078 write\ :sub:`2` happens before R\ :sub:`byte`, then
2079 R\ :sub:`byte` does not see write\ :sub:`1`.
2080- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2081 R\ :sub:`byte` does not see write\ :sub:`3`.
2082
2083Given that definition, R\ :sub:`byte` is defined as follows:
2084
2085- If R is volatile, the result is target-dependent. (Volatile is
2086 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002087 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002088 like normal memory. It does not generally provide cross-thread
2089 synchronization.)
2090- Otherwise, if there is no write to the same byte that happens before
2091 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2092- Otherwise, if R\ :sub:`byte` may see exactly one write,
2093 R\ :sub:`byte` returns the value written by that write.
2094- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2095 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2096 Memory Ordering Constraints <ordering>` section for additional
2097 constraints on how the choice is made.
2098- Otherwise R\ :sub:`byte` returns ``undef``.
2099
2100R returns the value composed of the series of bytes it read. This
2101implies that some bytes within the value may be ``undef`` **without**
2102the entire value being ``undef``. Note that this only defines the
2103semantics of the operation; it doesn't mean that targets will emit more
2104than one instruction to read the series of bytes.
2105
2106Note that in cases where none of the atomic intrinsics are used, this
2107model places only one restriction on IR transformations on top of what
2108is required for single-threaded execution: introducing a store to a byte
2109which might not otherwise be stored is not allowed in general.
2110(Specifically, in the case where another thread might write to and read
2111from an address, introducing a store can change a load that may see
2112exactly one write into a load that may see multiple writes.)
2113
2114.. _ordering:
2115
2116Atomic Memory Ordering Constraints
2117----------------------------------
2118
2119Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2120:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2121:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002122ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002123the same address they *synchronize with*. These semantics are borrowed
2124from Java and C++0x, but are somewhat more colloquial. If these
2125descriptions aren't precise enough, check those specs (see spec
2126references in the :doc:`atomics guide <Atomics>`).
2127:ref:`fence <i_fence>` instructions treat these orderings somewhat
2128differently since they don't take an address. See that instruction's
2129documentation for details.
2130
2131For a simpler introduction to the ordering constraints, see the
2132:doc:`Atomics`.
2133
2134``unordered``
2135 The set of values that can be read is governed by the happens-before
2136 partial order. A value cannot be read unless some operation wrote
2137 it. This is intended to provide a guarantee strong enough to model
2138 Java's non-volatile shared variables. This ordering cannot be
2139 specified for read-modify-write operations; it is not strong enough
2140 to make them atomic in any interesting way.
2141``monotonic``
2142 In addition to the guarantees of ``unordered``, there is a single
2143 total order for modifications by ``monotonic`` operations on each
2144 address. All modification orders must be compatible with the
2145 happens-before order. There is no guarantee that the modification
2146 orders can be combined to a global total order for the whole program
2147 (and this often will not be possible). The read in an atomic
2148 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2149 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2150 order immediately before the value it writes. If one atomic read
2151 happens before another atomic read of the same address, the later
2152 read must see the same value or a later value in the address's
2153 modification order. This disallows reordering of ``monotonic`` (or
2154 stronger) operations on the same address. If an address is written
2155 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2156 read that address repeatedly, the other threads must eventually see
2157 the write. This corresponds to the C++0x/C1x
2158 ``memory_order_relaxed``.
2159``acquire``
2160 In addition to the guarantees of ``monotonic``, a
2161 *synchronizes-with* edge may be formed with a ``release`` operation.
2162 This is intended to model C++'s ``memory_order_acquire``.
2163``release``
2164 In addition to the guarantees of ``monotonic``, if this operation
2165 writes a value which is subsequently read by an ``acquire``
2166 operation, it *synchronizes-with* that operation. (This isn't a
2167 complete description; see the C++0x definition of a release
2168 sequence.) This corresponds to the C++0x/C1x
2169 ``memory_order_release``.
2170``acq_rel`` (acquire+release)
2171 Acts as both an ``acquire`` and ``release`` operation on its
2172 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2173``seq_cst`` (sequentially consistent)
2174 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002175 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002176 writes), there is a global total order on all
2177 sequentially-consistent operations on all addresses, which is
2178 consistent with the *happens-before* partial order and with the
2179 modification orders of all the affected addresses. Each
2180 sequentially-consistent read sees the last preceding write to the
2181 same address in this global order. This corresponds to the C++0x/C1x
2182 ``memory_order_seq_cst`` and Java volatile.
2183
2184.. _singlethread:
2185
2186If an atomic operation is marked ``singlethread``, it only *synchronizes
2187with* or participates in modification and seq\_cst total orderings with
2188other operations running in the same thread (for example, in signal
2189handlers).
2190
2191.. _fastmath:
2192
2193Fast-Math Flags
2194---------------
2195
2196LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2197:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002198:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
2199instructions have the following flags that can be set to enable
2200otherwise unsafe floating point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002201
2202``nnan``
2203 No NaNs - Allow optimizations to assume the arguments and result are not
2204 NaN. Such optimizations are required to retain defined behavior over
2205 NaNs, but the value of the result is undefined.
2206
2207``ninf``
2208 No Infs - Allow optimizations to assume the arguments and result are not
2209 +/-Inf. Such optimizations are required to retain defined behavior over
2210 +/-Inf, but the value of the result is undefined.
2211
2212``nsz``
2213 No Signed Zeros - Allow optimizations to treat the sign of a zero
2214 argument or result as insignificant.
2215
2216``arcp``
2217 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2218 argument rather than perform division.
2219
Adam Nemetcd847a82017-03-28 20:11:52 +00002220``contract``
2221 Allow floating-point contraction (e.g. fusing a multiply followed by an
2222 addition into a fused multiply-and-add).
2223
Sean Silvab084af42012-12-07 10:36:55 +00002224``fast``
2225 Fast - Allow algebraically equivalent transformations that may
2226 dramatically change results in floating point (e.g. reassociate). This
2227 flag implies all the others.
2228
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002229.. _uselistorder:
2230
2231Use-list Order Directives
2232-------------------------
2233
2234Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002235order to be recreated. ``<order-indexes>`` is a comma-separated list of
2236indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002237value's use-list is immediately sorted by these indexes.
2238
Sean Silvaa1190322015-08-06 22:56:48 +00002239Use-list directives may appear at function scope or global scope. They are not
2240instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002241function scope, they must appear after the terminator of the final basic block.
2242
2243If basic blocks have their address taken via ``blockaddress()`` expressions,
2244``uselistorder_bb`` can be used to reorder their use-lists from outside their
2245function's scope.
2246
2247:Syntax:
2248
2249::
2250
2251 uselistorder <ty> <value>, { <order-indexes> }
2252 uselistorder_bb @function, %block { <order-indexes> }
2253
2254:Examples:
2255
2256::
2257
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002258 define void @foo(i32 %arg1, i32 %arg2) {
2259 entry:
2260 ; ... instructions ...
2261 bb:
2262 ; ... instructions ...
2263
2264 ; At function scope.
2265 uselistorder i32 %arg1, { 1, 0, 2 }
2266 uselistorder label %bb, { 1, 0 }
2267 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002268
2269 ; At global scope.
2270 uselistorder i32* @global, { 1, 2, 0 }
2271 uselistorder i32 7, { 1, 0 }
2272 uselistorder i32 (i32) @bar, { 1, 0 }
2273 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2274
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002275.. _source_filename:
2276
2277Source Filename
2278---------------
2279
2280The *source filename* string is set to the original module identifier,
2281which will be the name of the compiled source file when compiling from
2282source through the clang front end, for example. It is then preserved through
2283the IR and bitcode.
2284
2285This is currently necessary to generate a consistent unique global
2286identifier for local functions used in profile data, which prepends the
2287source file name to the local function name.
2288
2289The syntax for the source file name is simply:
2290
Renato Golin124f2592016-07-20 12:16:38 +00002291.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002292
2293 source_filename = "/path/to/source.c"
2294
Sean Silvab084af42012-12-07 10:36:55 +00002295.. _typesystem:
2296
2297Type System
2298===========
2299
2300The LLVM type system is one of the most important features of the
2301intermediate representation. Being typed enables a number of
2302optimizations to be performed on the intermediate representation
2303directly, without having to do extra analyses on the side before the
2304transformation. A strong type system makes it easier to read the
2305generated code and enables novel analyses and transformations that are
2306not feasible to perform on normal three address code representations.
2307
Rafael Espindola08013342013-12-07 19:34:20 +00002308.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002309
Rafael Espindola08013342013-12-07 19:34:20 +00002310Void Type
2311---------
Sean Silvab084af42012-12-07 10:36:55 +00002312
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002313:Overview:
2314
Rafael Espindola08013342013-12-07 19:34:20 +00002315
2316The void type does not represent any value and has no size.
2317
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002318:Syntax:
2319
Rafael Espindola08013342013-12-07 19:34:20 +00002320
2321::
2322
2323 void
Sean Silvab084af42012-12-07 10:36:55 +00002324
2325
Rafael Espindola08013342013-12-07 19:34:20 +00002326.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002327
Rafael Espindola08013342013-12-07 19:34:20 +00002328Function Type
2329-------------
Sean Silvab084af42012-12-07 10:36:55 +00002330
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002331:Overview:
2332
Sean Silvab084af42012-12-07 10:36:55 +00002333
Rafael Espindola08013342013-12-07 19:34:20 +00002334The function type can be thought of as a function signature. It consists of a
2335return type and a list of formal parameter types. The return type of a function
2336type is a void type or first class type --- except for :ref:`label <t_label>`
2337and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002338
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002339:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002340
Rafael Espindola08013342013-12-07 19:34:20 +00002341::
Sean Silvab084af42012-12-07 10:36:55 +00002342
Rafael Espindola08013342013-12-07 19:34:20 +00002343 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002344
Rafael Espindola08013342013-12-07 19:34:20 +00002345...where '``<parameter list>``' is a comma-separated list of type
2346specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002347indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002348argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002349handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002350except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002351
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002352:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002353
Rafael Espindola08013342013-12-07 19:34:20 +00002354+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2355| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2356+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2357| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2358+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2359| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2360+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2361| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2362+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2363
2364.. _t_firstclass:
2365
2366First Class Types
2367-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002368
2369The :ref:`first class <t_firstclass>` types are perhaps the most important.
2370Values of these types are the only ones which can be produced by
2371instructions.
2372
Rafael Espindola08013342013-12-07 19:34:20 +00002373.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002374
Rafael Espindola08013342013-12-07 19:34:20 +00002375Single Value Types
2376^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002377
Rafael Espindola08013342013-12-07 19:34:20 +00002378These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002379
2380.. _t_integer:
2381
2382Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002383""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002384
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002385:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002386
2387The integer type is a very simple type that simply specifies an
2388arbitrary bit width for the integer type desired. Any bit width from 1
2389bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2390
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002391:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002392
2393::
2394
2395 iN
2396
2397The number of bits the integer will occupy is specified by the ``N``
2398value.
2399
2400Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002401*********
Sean Silvab084af42012-12-07 10:36:55 +00002402
2403+----------------+------------------------------------------------+
2404| ``i1`` | a single-bit integer. |
2405+----------------+------------------------------------------------+
2406| ``i32`` | a 32-bit integer. |
2407+----------------+------------------------------------------------+
2408| ``i1942652`` | a really big integer of over 1 million bits. |
2409+----------------+------------------------------------------------+
2410
2411.. _t_floating:
2412
2413Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002414""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002415
2416.. list-table::
2417 :header-rows: 1
2418
2419 * - Type
2420 - Description
2421
2422 * - ``half``
2423 - 16-bit floating point value
2424
2425 * - ``float``
2426 - 32-bit floating point value
2427
2428 * - ``double``
2429 - 64-bit floating point value
2430
2431 * - ``fp128``
2432 - 128-bit floating point value (112-bit mantissa)
2433
2434 * - ``x86_fp80``
2435 - 80-bit floating point value (X87)
2436
2437 * - ``ppc_fp128``
2438 - 128-bit floating point value (two 64-bits)
2439
Reid Kleckner9a16d082014-03-05 02:41:37 +00002440X86_mmx Type
2441""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002442
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002443:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002444
Reid Kleckner9a16d082014-03-05 02:41:37 +00002445The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002446machine. The operations allowed on it are quite limited: parameters and
2447return values, load and store, and bitcast. User-specified MMX
2448instructions are represented as intrinsic or asm calls with arguments
2449and/or results of this type. There are no arrays, vectors or constants
2450of this type.
2451
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002452:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002453
2454::
2455
Reid Kleckner9a16d082014-03-05 02:41:37 +00002456 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002457
Sean Silvab084af42012-12-07 10:36:55 +00002458
Rafael Espindola08013342013-12-07 19:34:20 +00002459.. _t_pointer:
2460
2461Pointer Type
2462""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002463
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002464:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002465
Rafael Espindola08013342013-12-07 19:34:20 +00002466The pointer type is used to specify memory locations. Pointers are
2467commonly used to reference objects in memory.
2468
2469Pointer types may have an optional address space attribute defining the
2470numbered address space where the pointed-to object resides. The default
2471address space is number zero. The semantics of non-zero address spaces
2472are target-specific.
2473
2474Note that LLVM does not permit pointers to void (``void*``) nor does it
2475permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002476
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002477:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002478
2479::
2480
Rafael Espindola08013342013-12-07 19:34:20 +00002481 <type> *
2482
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002483:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002484
2485+-------------------------+--------------------------------------------------------------------------------------------------------------+
2486| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2487+-------------------------+--------------------------------------------------------------------------------------------------------------+
2488| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2489+-------------------------+--------------------------------------------------------------------------------------------------------------+
2490| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2491+-------------------------+--------------------------------------------------------------------------------------------------------------+
2492
2493.. _t_vector:
2494
2495Vector Type
2496"""""""""""
2497
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002498:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002499
2500A vector type is a simple derived type that represents a vector of
2501elements. Vector types are used when multiple primitive data are
2502operated in parallel using a single instruction (SIMD). A vector type
2503requires a size (number of elements) and an underlying primitive data
2504type. Vector types are considered :ref:`first class <t_firstclass>`.
2505
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002506:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002507
2508::
2509
2510 < <# elements> x <elementtype> >
2511
2512The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002513elementtype may be any integer, floating point or pointer type. Vectors
2514of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002515
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002516:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002517
2518+-------------------+--------------------------------------------------+
2519| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2520+-------------------+--------------------------------------------------+
2521| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2522+-------------------+--------------------------------------------------+
2523| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2524+-------------------+--------------------------------------------------+
2525| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2526+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002527
2528.. _t_label:
2529
2530Label Type
2531^^^^^^^^^^
2532
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002533:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002534
2535The label type represents code labels.
2536
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002537:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002538
2539::
2540
2541 label
2542
David Majnemerb611e3f2015-08-14 05:09:07 +00002543.. _t_token:
2544
2545Token Type
2546^^^^^^^^^^
2547
2548:Overview:
2549
2550The token type is used when a value is associated with an instruction
2551but all uses of the value must not attempt to introspect or obscure it.
2552As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2553:ref:`select <i_select>` of type token.
2554
2555:Syntax:
2556
2557::
2558
2559 token
2560
2561
2562
Sean Silvab084af42012-12-07 10:36:55 +00002563.. _t_metadata:
2564
2565Metadata Type
2566^^^^^^^^^^^^^
2567
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002568:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002569
2570The metadata type represents embedded metadata. No derived types may be
2571created from metadata except for :ref:`function <t_function>` arguments.
2572
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002573:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002574
2575::
2576
2577 metadata
2578
Sean Silvab084af42012-12-07 10:36:55 +00002579.. _t_aggregate:
2580
2581Aggregate Types
2582^^^^^^^^^^^^^^^
2583
2584Aggregate Types are a subset of derived types that can contain multiple
2585member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2586aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2587aggregate types.
2588
2589.. _t_array:
2590
2591Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002592""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002593
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002594:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002595
2596The array type is a very simple derived type that arranges elements
2597sequentially in memory. The array type requires a size (number of
2598elements) and an underlying data type.
2599
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002600:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002601
2602::
2603
2604 [<# elements> x <elementtype>]
2605
2606The number of elements is a constant integer value; ``elementtype`` may
2607be any type with a size.
2608
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002609:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002610
2611+------------------+--------------------------------------+
2612| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2613+------------------+--------------------------------------+
2614| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2615+------------------+--------------------------------------+
2616| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2617+------------------+--------------------------------------+
2618
2619Here are some examples of multidimensional arrays:
2620
2621+-----------------------------+----------------------------------------------------------+
2622| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2623+-----------------------------+----------------------------------------------------------+
2624| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2625+-----------------------------+----------------------------------------------------------+
2626| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2627+-----------------------------+----------------------------------------------------------+
2628
2629There is no restriction on indexing beyond the end of the array implied
2630by a static type (though there are restrictions on indexing beyond the
2631bounds of an allocated object in some cases). This means that
2632single-dimension 'variable sized array' addressing can be implemented in
2633LLVM with a zero length array type. An implementation of 'pascal style
2634arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2635example.
2636
Sean Silvab084af42012-12-07 10:36:55 +00002637.. _t_struct:
2638
2639Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002640""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002641
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002642:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002643
2644The structure type is used to represent a collection of data members
2645together in memory. The elements of a structure may be any type that has
2646a size.
2647
2648Structures in memory are accessed using '``load``' and '``store``' by
2649getting a pointer to a field with the '``getelementptr``' instruction.
2650Structures in registers are accessed using the '``extractvalue``' and
2651'``insertvalue``' instructions.
2652
2653Structures may optionally be "packed" structures, which indicate that
2654the alignment of the struct is one byte, and that there is no padding
2655between the elements. In non-packed structs, padding between field types
2656is inserted as defined by the DataLayout string in the module, which is
2657required to match what the underlying code generator expects.
2658
2659Structures can either be "literal" or "identified". A literal structure
2660is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2661identified types are always defined at the top level with a name.
2662Literal types are uniqued by their contents and can never be recursive
2663or opaque since there is no way to write one. Identified types can be
2664recursive, can be opaqued, and are never uniqued.
2665
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002666:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002667
2668::
2669
2670 %T1 = type { <type list> } ; Identified normal struct type
2671 %T2 = type <{ <type list> }> ; Identified packed struct type
2672
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002673:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002674
2675+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2676| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2677+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002678| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002679+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2680| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2681+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2682
2683.. _t_opaque:
2684
2685Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002686""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002687
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002688:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002689
2690Opaque structure types are used to represent named structure types that
2691do not have a body specified. This corresponds (for example) to the C
2692notion of a forward declared structure.
2693
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002694:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002695
2696::
2697
2698 %X = type opaque
2699 %52 = type opaque
2700
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002701:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002702
2703+--------------+-------------------+
2704| ``opaque`` | An opaque type. |
2705+--------------+-------------------+
2706
Sean Silva1703e702014-04-08 21:06:22 +00002707.. _constants:
2708
Sean Silvab084af42012-12-07 10:36:55 +00002709Constants
2710=========
2711
2712LLVM has several different basic types of constants. This section
2713describes them all and their syntax.
2714
2715Simple Constants
2716----------------
2717
2718**Boolean constants**
2719 The two strings '``true``' and '``false``' are both valid constants
2720 of the ``i1`` type.
2721**Integer constants**
2722 Standard integers (such as '4') are constants of the
2723 :ref:`integer <t_integer>` type. Negative numbers may be used with
2724 integer types.
2725**Floating point constants**
2726 Floating point constants use standard decimal notation (e.g.
2727 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2728 hexadecimal notation (see below). The assembler requires the exact
2729 decimal value of a floating-point constant. For example, the
2730 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2731 decimal in binary. Floating point constants must have a :ref:`floating
2732 point <t_floating>` type.
2733**Null pointer constants**
2734 The identifier '``null``' is recognized as a null pointer constant
2735 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002736**Token constants**
2737 The identifier '``none``' is recognized as an empty token constant
2738 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002739
2740The one non-intuitive notation for constants is the hexadecimal form of
2741floating point constants. For example, the form
2742'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2743than) '``double 4.5e+15``'. The only time hexadecimal floating point
2744constants are required (and the only time that they are generated by the
2745disassembler) is when a floating point constant must be emitted but it
2746cannot be represented as a decimal floating point number in a reasonable
2747number of digits. For example, NaN's, infinities, and other special
2748values are represented in their IEEE hexadecimal format so that assembly
2749and disassembly do not cause any bits to change in the constants.
2750
2751When using the hexadecimal form, constants of types half, float, and
2752double are represented using the 16-digit form shown above (which
2753matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002754must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002755precision, respectively. Hexadecimal format is always used for long
2756double, and there are three forms of long double. The 80-bit format used
2757by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2758128-bit format used by PowerPC (two adjacent doubles) is represented by
2759``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002760represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2761will only work if they match the long double format on your target.
2762The IEEE 16-bit format (half precision) is represented by ``0xH``
2763followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2764(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002765
Reid Kleckner9a16d082014-03-05 02:41:37 +00002766There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002767
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002768.. _complexconstants:
2769
Sean Silvab084af42012-12-07 10:36:55 +00002770Complex Constants
2771-----------------
2772
2773Complex constants are a (potentially recursive) combination of simple
2774constants and smaller complex constants.
2775
2776**Structure constants**
2777 Structure constants are represented with notation similar to
2778 structure type definitions (a comma separated list of elements,
2779 surrounded by braces (``{}``)). For example:
2780 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2781 "``@G = external global i32``". Structure constants must have
2782 :ref:`structure type <t_struct>`, and the number and types of elements
2783 must match those specified by the type.
2784**Array constants**
2785 Array constants are represented with notation similar to array type
2786 definitions (a comma separated list of elements, surrounded by
2787 square brackets (``[]``)). For example:
2788 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2789 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002790 match those specified by the type. As a special case, character array
2791 constants may also be represented as a double-quoted string using the ``c``
2792 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002793**Vector constants**
2794 Vector constants are represented with notation similar to vector
2795 type definitions (a comma separated list of elements, surrounded by
2796 less-than/greater-than's (``<>``)). For example:
2797 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2798 must have :ref:`vector type <t_vector>`, and the number and types of
2799 elements must match those specified by the type.
2800**Zero initialization**
2801 The string '``zeroinitializer``' can be used to zero initialize a
2802 value to zero of *any* type, including scalar and
2803 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2804 having to print large zero initializers (e.g. for large arrays) and
2805 is always exactly equivalent to using explicit zero initializers.
2806**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002807 A metadata node is a constant tuple without types. For example:
2808 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002809 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2810 Unlike other typed constants that are meant to be interpreted as part of
2811 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002812 information such as debug info.
2813
2814Global Variable and Function Addresses
2815--------------------------------------
2816
2817The addresses of :ref:`global variables <globalvars>` and
2818:ref:`functions <functionstructure>` are always implicitly valid
2819(link-time) constants. These constants are explicitly referenced when
2820the :ref:`identifier for the global <identifiers>` is used and always have
2821:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2822file:
2823
2824.. code-block:: llvm
2825
2826 @X = global i32 17
2827 @Y = global i32 42
2828 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2829
2830.. _undefvalues:
2831
2832Undefined Values
2833----------------
2834
2835The string '``undef``' can be used anywhere a constant is expected, and
2836indicates that the user of the value may receive an unspecified
2837bit-pattern. Undefined values may be of any type (other than '``label``'
2838or '``void``') and be used anywhere a constant is permitted.
2839
2840Undefined values are useful because they indicate to the compiler that
2841the program is well defined no matter what value is used. This gives the
2842compiler more freedom to optimize. Here are some examples of
2843(potentially surprising) transformations that are valid (in pseudo IR):
2844
2845.. code-block:: llvm
2846
2847 %A = add %X, undef
2848 %B = sub %X, undef
2849 %C = xor %X, undef
2850 Safe:
2851 %A = undef
2852 %B = undef
2853 %C = undef
2854
2855This is safe because all of the output bits are affected by the undef
2856bits. Any output bit can have a zero or one depending on the input bits.
2857
2858.. code-block:: llvm
2859
2860 %A = or %X, undef
2861 %B = and %X, undef
2862 Safe:
2863 %A = -1
2864 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00002865 Safe:
2866 %A = %X ;; By choosing undef as 0
2867 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00002868 Unsafe:
2869 %A = undef
2870 %B = undef
2871
2872These logical operations have bits that are not always affected by the
2873input. For example, if ``%X`` has a zero bit, then the output of the
2874'``and``' operation will always be a zero for that bit, no matter what
2875the corresponding bit from the '``undef``' is. As such, it is unsafe to
2876optimize or assume that the result of the '``and``' is '``undef``'.
2877However, it is safe to assume that all bits of the '``undef``' could be
28780, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2879all the bits of the '``undef``' operand to the '``or``' could be set,
2880allowing the '``or``' to be folded to -1.
2881
2882.. code-block:: llvm
2883
2884 %A = select undef, %X, %Y
2885 %B = select undef, 42, %Y
2886 %C = select %X, %Y, undef
2887 Safe:
2888 %A = %X (or %Y)
2889 %B = 42 (or %Y)
2890 %C = %Y
2891 Unsafe:
2892 %A = undef
2893 %B = undef
2894 %C = undef
2895
2896This set of examples shows that undefined '``select``' (and conditional
2897branch) conditions can go *either way*, but they have to come from one
2898of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2899both known to have a clear low bit, then ``%A`` would have to have a
2900cleared low bit. However, in the ``%C`` example, the optimizer is
2901allowed to assume that the '``undef``' operand could be the same as
2902``%Y``, allowing the whole '``select``' to be eliminated.
2903
Renato Golin124f2592016-07-20 12:16:38 +00002904.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002905
2906 %A = xor undef, undef
2907
2908 %B = undef
2909 %C = xor %B, %B
2910
2911 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002912 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002913 %F = icmp gte %D, 4
2914
2915 Safe:
2916 %A = undef
2917 %B = undef
2918 %C = undef
2919 %D = undef
2920 %E = undef
2921 %F = undef
2922
2923This example points out that two '``undef``' operands are not
2924necessarily the same. This can be surprising to people (and also matches
2925C semantics) where they assume that "``X^X``" is always zero, even if
2926``X`` is undefined. This isn't true for a number of reasons, but the
2927short answer is that an '``undef``' "variable" can arbitrarily change
2928its value over its "live range". This is true because the variable
2929doesn't actually *have a live range*. Instead, the value is logically
2930read from arbitrary registers that happen to be around when needed, so
2931the value is not necessarily consistent over time. In fact, ``%A`` and
2932``%C`` need to have the same semantics or the core LLVM "replace all
2933uses with" concept would not hold.
2934
2935.. code-block:: llvm
2936
2937 %A = fdiv undef, %X
2938 %B = fdiv %X, undef
2939 Safe:
2940 %A = undef
2941 b: unreachable
2942
2943These examples show the crucial difference between an *undefined value*
2944and *undefined behavior*. An undefined value (like '``undef``') is
2945allowed to have an arbitrary bit-pattern. This means that the ``%A``
2946operation can be constant folded to '``undef``', because the '``undef``'
2947could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2948However, in the second example, we can make a more aggressive
2949assumption: because the ``undef`` is allowed to be an arbitrary value,
2950we are allowed to assume that it could be zero. Since a divide by zero
2951has *undefined behavior*, we are allowed to assume that the operation
2952does not execute at all. This allows us to delete the divide and all
2953code after it. Because the undefined operation "can't happen", the
2954optimizer can assume that it occurs in dead code.
2955
Renato Golin124f2592016-07-20 12:16:38 +00002956.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002957
2958 a: store undef -> %X
2959 b: store %X -> undef
2960 Safe:
2961 a: <deleted>
2962 b: unreachable
2963
2964These examples reiterate the ``fdiv`` example: a store *of* an undefined
2965value can be assumed to not have any effect; we can assume that the
2966value is overwritten with bits that happen to match what was already
2967there. However, a store *to* an undefined location could clobber
2968arbitrary memory, therefore, it has undefined behavior.
2969
2970.. _poisonvalues:
2971
2972Poison Values
2973-------------
2974
2975Poison values are similar to :ref:`undef values <undefvalues>`, however
2976they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002977that cannot evoke side effects has nevertheless detected a condition
2978that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002979
2980There is currently no way of representing a poison value in the IR; they
2981only exist when produced by operations such as :ref:`add <i_add>` with
2982the ``nsw`` flag.
2983
2984Poison value behavior is defined in terms of value *dependence*:
2985
2986- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2987- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2988 their dynamic predecessor basic block.
2989- Function arguments depend on the corresponding actual argument values
2990 in the dynamic callers of their functions.
2991- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2992 instructions that dynamically transfer control back to them.
2993- :ref:`Invoke <i_invoke>` instructions depend on the
2994 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2995 call instructions that dynamically transfer control back to them.
2996- Non-volatile loads and stores depend on the most recent stores to all
2997 of the referenced memory addresses, following the order in the IR
2998 (including loads and stores implied by intrinsics such as
2999 :ref:`@llvm.memcpy <int_memcpy>`.)
3000- An instruction with externally visible side effects depends on the
3001 most recent preceding instruction with externally visible side
3002 effects, following the order in the IR. (This includes :ref:`volatile
3003 operations <volatile>`.)
3004- An instruction *control-depends* on a :ref:`terminator
3005 instruction <terminators>` if the terminator instruction has
3006 multiple successors and the instruction is always executed when
3007 control transfers to one of the successors, and may not be executed
3008 when control is transferred to another.
3009- Additionally, an instruction also *control-depends* on a terminator
3010 instruction if the set of instructions it otherwise depends on would
3011 be different if the terminator had transferred control to a different
3012 successor.
3013- Dependence is transitive.
3014
Richard Smith32dbdf62014-07-31 04:25:36 +00003015Poison values have the same behavior as :ref:`undef values <undefvalues>`,
3016with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00003017on a poison value has undefined behavior.
3018
3019Here are some examples:
3020
3021.. code-block:: llvm
3022
3023 entry:
3024 %poison = sub nuw i32 0, 1 ; Results in a poison value.
3025 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00003026 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00003027 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3028
3029 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003030 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003031
3032 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3033
3034 %narrowaddr = bitcast i32* @g to i16*
3035 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003036 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3037 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003038
3039 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3040 br i1 %cmp, label %true, label %end ; Branch to either destination.
3041
3042 true:
3043 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3044 ; it has undefined behavior.
3045 br label %end
3046
3047 end:
3048 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3049 ; Both edges into this PHI are
3050 ; control-dependent on %cmp, so this
3051 ; always results in a poison value.
3052
3053 store volatile i32 0, i32* @g ; This would depend on the store in %true
3054 ; if %cmp is true, or the store in %entry
3055 ; otherwise, so this is undefined behavior.
3056
3057 br i1 %cmp, label %second_true, label %second_end
3058 ; The same branch again, but this time the
3059 ; true block doesn't have side effects.
3060
3061 second_true:
3062 ; No side effects!
3063 ret void
3064
3065 second_end:
3066 store volatile i32 0, i32* @g ; This time, the instruction always depends
3067 ; on the store in %end. Also, it is
3068 ; control-equivalent to %end, so this is
3069 ; well-defined (ignoring earlier undefined
3070 ; behavior in this example).
3071
3072.. _blockaddress:
3073
3074Addresses of Basic Blocks
3075-------------------------
3076
3077``blockaddress(@function, %block)``
3078
3079The '``blockaddress``' constant computes the address of the specified
3080basic block in the specified function, and always has an ``i8*`` type.
3081Taking the address of the entry block is illegal.
3082
3083This value only has defined behavior when used as an operand to the
3084':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3085against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003086undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003087no label is equal to the null pointer. This may be passed around as an
3088opaque pointer sized value as long as the bits are not inspected. This
3089allows ``ptrtoint`` and arithmetic to be performed on these values so
3090long as the original value is reconstituted before the ``indirectbr``
3091instruction.
3092
3093Finally, some targets may provide defined semantics when using the value
3094as the operand to an inline assembly, but that is target specific.
3095
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003096.. _constantexprs:
3097
Sean Silvab084af42012-12-07 10:36:55 +00003098Constant Expressions
3099--------------------
3100
3101Constant expressions are used to allow expressions involving other
3102constants to be used as constants. Constant expressions may be of any
3103:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3104that does not have side effects (e.g. load and call are not supported).
3105The following is the syntax for constant expressions:
3106
3107``trunc (CST to TYPE)``
3108 Truncate a constant to another type. The bit size of CST must be
3109 larger than the bit size of TYPE. Both types must be integers.
3110``zext (CST to TYPE)``
3111 Zero extend a constant to another type. The bit size of CST must be
3112 smaller than the bit size of TYPE. Both types must be integers.
3113``sext (CST to TYPE)``
3114 Sign extend a constant to another type. The bit size of CST must be
3115 smaller than the bit size of TYPE. Both types must be integers.
3116``fptrunc (CST to TYPE)``
3117 Truncate a floating point constant to another floating point type.
3118 The size of CST must be larger than the size of TYPE. Both types
3119 must be floating point.
3120``fpext (CST to TYPE)``
3121 Floating point extend a constant to another type. The size of CST
3122 must be smaller or equal to the size of TYPE. Both types must be
3123 floating point.
3124``fptoui (CST to TYPE)``
3125 Convert a floating point constant to the corresponding unsigned
3126 integer constant. TYPE must be a scalar or vector integer type. CST
3127 must be of scalar or vector floating point type. Both CST and TYPE
3128 must be scalars, or vectors of the same number of elements. If the
3129 value won't fit in the integer type, the results are undefined.
3130``fptosi (CST to TYPE)``
3131 Convert a floating point constant to the corresponding signed
3132 integer constant. TYPE must be a scalar or vector integer type. CST
3133 must be of scalar or vector floating point type. Both CST and TYPE
3134 must be scalars, or vectors of the same number of elements. If the
3135 value won't fit in the integer type, the results are undefined.
3136``uitofp (CST to TYPE)``
3137 Convert an unsigned integer constant to the corresponding floating
3138 point constant. TYPE must be a scalar or vector floating point type.
3139 CST must be of scalar or vector integer type. Both CST and TYPE must
3140 be scalars, or vectors of the same number of elements. If the value
3141 won't fit in the floating point type, the results are undefined.
3142``sitofp (CST to TYPE)``
3143 Convert a signed integer constant to the corresponding floating
3144 point constant. TYPE must be a scalar or vector floating point type.
3145 CST must be of scalar or vector integer type. Both CST and TYPE must
3146 be scalars, or vectors of the same number of elements. If the value
3147 won't fit in the floating point type, the results are undefined.
3148``ptrtoint (CST to TYPE)``
3149 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003150 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003151 pointer type. The ``CST`` value is zero extended, truncated, or
3152 unchanged to make it fit in ``TYPE``.
3153``inttoptr (CST to TYPE)``
3154 Convert an integer constant to a pointer constant. TYPE must be a
3155 pointer type. CST must be of integer type. The CST value is zero
3156 extended, truncated, or unchanged to make it fit in a pointer size.
3157 This one is *really* dangerous!
3158``bitcast (CST to TYPE)``
3159 Convert a constant, CST, to another TYPE. The constraints of the
3160 operands are the same as those for the :ref:`bitcast
3161 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003162``addrspacecast (CST to TYPE)``
3163 Convert a constant pointer or constant vector of pointer, CST, to another
3164 TYPE in a different address space. The constraints of the operands are the
3165 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003166``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003167 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3168 constants. As with the :ref:`getelementptr <i_getelementptr>`
3169 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003170 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003171``select (COND, VAL1, VAL2)``
3172 Perform the :ref:`select operation <i_select>` on constants.
3173``icmp COND (VAL1, VAL2)``
3174 Performs the :ref:`icmp operation <i_icmp>` on constants.
3175``fcmp COND (VAL1, VAL2)``
3176 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3177``extractelement (VAL, IDX)``
3178 Perform the :ref:`extractelement operation <i_extractelement>` on
3179 constants.
3180``insertelement (VAL, ELT, IDX)``
3181 Perform the :ref:`insertelement operation <i_insertelement>` on
3182 constants.
3183``shufflevector (VEC1, VEC2, IDXMASK)``
3184 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3185 constants.
3186``extractvalue (VAL, IDX0, IDX1, ...)``
3187 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3188 constants. The index list is interpreted in a similar manner as
3189 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3190 least one index value must be specified.
3191``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3192 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3193 The index list is interpreted in a similar manner as indices in a
3194 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3195 value must be specified.
3196``OPCODE (LHS, RHS)``
3197 Perform the specified operation of the LHS and RHS constants. OPCODE
3198 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3199 binary <bitwiseops>` operations. The constraints on operands are
3200 the same as those for the corresponding instruction (e.g. no bitwise
3201 operations on floating point values are allowed).
3202
3203Other Values
3204============
3205
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003206.. _inlineasmexprs:
3207
Sean Silvab084af42012-12-07 10:36:55 +00003208Inline Assembler Expressions
3209----------------------------
3210
3211LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003212Inline Assembly <moduleasm>`) through the use of a special value. This value
3213represents the inline assembler as a template string (containing the
3214instructions to emit), a list of operand constraints (stored as a string), a
3215flag that indicates whether or not the inline asm expression has side effects,
3216and a flag indicating whether the function containing the asm needs to align its
3217stack conservatively.
3218
3219The template string supports argument substitution of the operands using "``$``"
3220followed by a number, to indicate substitution of the given register/memory
3221location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3222be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3223operand (See :ref:`inline-asm-modifiers`).
3224
3225A literal "``$``" may be included by using "``$$``" in the template. To include
3226other special characters into the output, the usual "``\XX``" escapes may be
3227used, just as in other strings. Note that after template substitution, the
3228resulting assembly string is parsed by LLVM's integrated assembler unless it is
3229disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3230syntax known to LLVM.
3231
Reid Kleckner71cb1642017-02-06 18:08:45 +00003232LLVM also supports a few more substitions useful for writing inline assembly:
3233
3234- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3235 This substitution is useful when declaring a local label. Many standard
3236 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3237 Adding a blob-unique identifier ensures that the two labels will not conflict
3238 during assembly. This is used to implement `GCC's %= special format
3239 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3240- ``${:comment}``: Expands to the comment character of the current target's
3241 assembly dialect. This is usually ``#``, but many targets use other strings,
3242 such as ``;``, ``//``, or ``!``.
3243- ``${:private}``: Expands to the assembler private label prefix. Labels with
3244 this prefix will not appear in the symbol table of the assembled object.
3245 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3246 relatively popular.
3247
James Y Knightbc832ed2015-07-08 18:08:36 +00003248LLVM's support for inline asm is modeled closely on the requirements of Clang's
3249GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3250modifier codes listed here are similar or identical to those in GCC's inline asm
3251support. However, to be clear, the syntax of the template and constraint strings
3252described here is *not* the same as the syntax accepted by GCC and Clang, and,
3253while most constraint letters are passed through as-is by Clang, some get
3254translated to other codes when converting from the C source to the LLVM
3255assembly.
3256
3257An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003258
3259.. code-block:: llvm
3260
3261 i32 (i32) asm "bswap $0", "=r,r"
3262
3263Inline assembler expressions may **only** be used as the callee operand
3264of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3265Thus, typically we have:
3266
3267.. code-block:: llvm
3268
3269 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3270
3271Inline asms with side effects not visible in the constraint list must be
3272marked as having side effects. This is done through the use of the
3273'``sideeffect``' keyword, like so:
3274
3275.. code-block:: llvm
3276
3277 call void asm sideeffect "eieio", ""()
3278
3279In some cases inline asms will contain code that will not work unless
3280the stack is aligned in some way, such as calls or SSE instructions on
3281x86, yet will not contain code that does that alignment within the asm.
3282The compiler should make conservative assumptions about what the asm
3283might contain and should generate its usual stack alignment code in the
3284prologue if the '``alignstack``' keyword is present:
3285
3286.. code-block:: llvm
3287
3288 call void asm alignstack "eieio", ""()
3289
3290Inline asms also support using non-standard assembly dialects. The
3291assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3292the inline asm is using the Intel dialect. Currently, ATT and Intel are
3293the only supported dialects. An example is:
3294
3295.. code-block:: llvm
3296
3297 call void asm inteldialect "eieio", ""()
3298
3299If multiple keywords appear the '``sideeffect``' keyword must come
3300first, the '``alignstack``' keyword second and the '``inteldialect``'
3301keyword last.
3302
James Y Knightbc832ed2015-07-08 18:08:36 +00003303Inline Asm Constraint String
3304^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3305
3306The constraint list is a comma-separated string, each element containing one or
3307more constraint codes.
3308
3309For each element in the constraint list an appropriate register or memory
3310operand will be chosen, and it will be made available to assembly template
3311string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3312second, etc.
3313
3314There are three different types of constraints, which are distinguished by a
3315prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3316constraints must always be given in that order: outputs first, then inputs, then
3317clobbers. They cannot be intermingled.
3318
3319There are also three different categories of constraint codes:
3320
3321- Register constraint. This is either a register class, or a fixed physical
3322 register. This kind of constraint will allocate a register, and if necessary,
3323 bitcast the argument or result to the appropriate type.
3324- Memory constraint. This kind of constraint is for use with an instruction
3325 taking a memory operand. Different constraints allow for different addressing
3326 modes used by the target.
3327- Immediate value constraint. This kind of constraint is for an integer or other
3328 immediate value which can be rendered directly into an instruction. The
3329 various target-specific constraints allow the selection of a value in the
3330 proper range for the instruction you wish to use it with.
3331
3332Output constraints
3333""""""""""""""""""
3334
3335Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3336indicates that the assembly will write to this operand, and the operand will
3337then be made available as a return value of the ``asm`` expression. Output
3338constraints do not consume an argument from the call instruction. (Except, see
3339below about indirect outputs).
3340
3341Normally, it is expected that no output locations are written to by the assembly
3342expression until *all* of the inputs have been read. As such, LLVM may assign
3343the same register to an output and an input. If this is not safe (e.g. if the
3344assembly contains two instructions, where the first writes to one output, and
3345the second reads an input and writes to a second output), then the "``&``"
3346modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003347"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003348will not use the same register for any inputs (other than an input tied to this
3349output).
3350
3351Input constraints
3352"""""""""""""""""
3353
3354Input constraints do not have a prefix -- just the constraint codes. Each input
3355constraint will consume one argument from the call instruction. It is not
3356permitted for the asm to write to any input register or memory location (unless
3357that input is tied to an output). Note also that multiple inputs may all be
3358assigned to the same register, if LLVM can determine that they necessarily all
3359contain the same value.
3360
3361Instead of providing a Constraint Code, input constraints may also "tie"
3362themselves to an output constraint, by providing an integer as the constraint
3363string. Tied inputs still consume an argument from the call instruction, and
3364take up a position in the asm template numbering as is usual -- they will simply
3365be constrained to always use the same register as the output they've been tied
3366to. For example, a constraint string of "``=r,0``" says to assign a register for
3367output, and use that register as an input as well (it being the 0'th
3368constraint).
3369
3370It is permitted to tie an input to an "early-clobber" output. In that case, no
3371*other* input may share the same register as the input tied to the early-clobber
3372(even when the other input has the same value).
3373
3374You may only tie an input to an output which has a register constraint, not a
3375memory constraint. Only a single input may be tied to an output.
3376
3377There is also an "interesting" feature which deserves a bit of explanation: if a
3378register class constraint allocates a register which is too small for the value
3379type operand provided as input, the input value will be split into multiple
3380registers, and all of them passed to the inline asm.
3381
3382However, this feature is often not as useful as you might think.
3383
3384Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3385architectures that have instructions which operate on multiple consecutive
3386instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3387SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3388hardware then loads into both the named register, and the next register. This
3389feature of inline asm would not be useful to support that.)
3390
3391A few of the targets provide a template string modifier allowing explicit access
3392to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3393``D``). On such an architecture, you can actually access the second allocated
3394register (yet, still, not any subsequent ones). But, in that case, you're still
3395probably better off simply splitting the value into two separate operands, for
3396clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3397despite existing only for use with this feature, is not really a good idea to
3398use)
3399
3400Indirect inputs and outputs
3401"""""""""""""""""""""""""""
3402
3403Indirect output or input constraints can be specified by the "``*``" modifier
3404(which goes after the "``=``" in case of an output). This indicates that the asm
3405will write to or read from the contents of an *address* provided as an input
3406argument. (Note that in this way, indirect outputs act more like an *input* than
3407an output: just like an input, they consume an argument of the call expression,
3408rather than producing a return value. An indirect output constraint is an
3409"output" only in that the asm is expected to write to the contents of the input
3410memory location, instead of just read from it).
3411
3412This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3413address of a variable as a value.
3414
3415It is also possible to use an indirect *register* constraint, but only on output
3416(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3417value normally, and then, separately emit a store to the address provided as
3418input, after the provided inline asm. (It's not clear what value this
3419functionality provides, compared to writing the store explicitly after the asm
3420statement, and it can only produce worse code, since it bypasses many
3421optimization passes. I would recommend not using it.)
3422
3423
3424Clobber constraints
3425"""""""""""""""""""
3426
3427A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3428consume an input operand, nor generate an output. Clobbers cannot use any of the
3429general constraint code letters -- they may use only explicit register
3430constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3431"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3432memory locations -- not only the memory pointed to by a declared indirect
3433output.
3434
Peter Zotov00257232016-08-30 10:48:31 +00003435Note that clobbering named registers that are also present in output
3436constraints is not legal.
3437
James Y Knightbc832ed2015-07-08 18:08:36 +00003438
3439Constraint Codes
3440""""""""""""""""
3441After a potential prefix comes constraint code, or codes.
3442
3443A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3444followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3445(e.g. "``{eax}``").
3446
3447The one and two letter constraint codes are typically chosen to be the same as
3448GCC's constraint codes.
3449
3450A single constraint may include one or more than constraint code in it, leaving
3451it up to LLVM to choose which one to use. This is included mainly for
3452compatibility with the translation of GCC inline asm coming from clang.
3453
3454There are two ways to specify alternatives, and either or both may be used in an
3455inline asm constraint list:
3456
34571) Append the codes to each other, making a constraint code set. E.g. "``im``"
3458 or "``{eax}m``". This means "choose any of the options in the set". The
3459 choice of constraint is made independently for each constraint in the
3460 constraint list.
3461
34622) Use "``|``" between constraint code sets, creating alternatives. Every
3463 constraint in the constraint list must have the same number of alternative
3464 sets. With this syntax, the same alternative in *all* of the items in the
3465 constraint list will be chosen together.
3466
3467Putting those together, you might have a two operand constraint string like
3468``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3469operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3470may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3471
3472However, the use of either of the alternatives features is *NOT* recommended, as
3473LLVM is not able to make an intelligent choice about which one to use. (At the
3474point it currently needs to choose, not enough information is available to do so
3475in a smart way.) Thus, it simply tries to make a choice that's most likely to
3476compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3477always choose to use memory, not registers). And, if given multiple registers,
3478or multiple register classes, it will simply choose the first one. (In fact, it
3479doesn't currently even ensure explicitly specified physical registers are
3480unique, so specifying multiple physical registers as alternatives, like
3481``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3482intended.)
3483
3484Supported Constraint Code List
3485""""""""""""""""""""""""""""""
3486
3487The constraint codes are, in general, expected to behave the same way they do in
3488GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3489inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3490and GCC likely indicates a bug in LLVM.
3491
3492Some constraint codes are typically supported by all targets:
3493
3494- ``r``: A register in the target's general purpose register class.
3495- ``m``: A memory address operand. It is target-specific what addressing modes
3496 are supported, typical examples are register, or register + register offset,
3497 or register + immediate offset (of some target-specific size).
3498- ``i``: An integer constant (of target-specific width). Allows either a simple
3499 immediate, or a relocatable value.
3500- ``n``: An integer constant -- *not* including relocatable values.
3501- ``s``: An integer constant, but allowing *only* relocatable values.
3502- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3503 useful to pass a label for an asm branch or call.
3504
3505 .. FIXME: but that surely isn't actually okay to jump out of an asm
3506 block without telling llvm about the control transfer???)
3507
3508- ``{register-name}``: Requires exactly the named physical register.
3509
3510Other constraints are target-specific:
3511
3512AArch64:
3513
3514- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3515- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3516 i.e. 0 to 4095 with optional shift by 12.
3517- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3518 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3519- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3520 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3521- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3522 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3523- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3524 32-bit register. This is a superset of ``K``: in addition to the bitmask
3525 immediate, also allows immediate integers which can be loaded with a single
3526 ``MOVZ`` or ``MOVL`` instruction.
3527- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3528 64-bit register. This is a superset of ``L``.
3529- ``Q``: Memory address operand must be in a single register (no
3530 offsets). (However, LLVM currently does this for the ``m`` constraint as
3531 well.)
3532- ``r``: A 32 or 64-bit integer register (W* or X*).
3533- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3534- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3535
3536AMDGPU:
3537
3538- ``r``: A 32 or 64-bit integer register.
3539- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3540- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3541
3542
3543All ARM modes:
3544
3545- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3546 operand. Treated the same as operand ``m``, at the moment.
3547
3548ARM and ARM's Thumb2 mode:
3549
3550- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3551- ``I``: An immediate integer valid for a data-processing instruction.
3552- ``J``: An immediate integer between -4095 and 4095.
3553- ``K``: An immediate integer whose bitwise inverse is valid for a
3554 data-processing instruction. (Can be used with template modifier "``B``" to
3555 print the inverted value).
3556- ``L``: An immediate integer whose negation is valid for a data-processing
3557 instruction. (Can be used with template modifier "``n``" to print the negated
3558 value).
3559- ``M``: A power of two or a integer between 0 and 32.
3560- ``N``: Invalid immediate constraint.
3561- ``O``: Invalid immediate constraint.
3562- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3563- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3564 as ``r``.
3565- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3566 invalid.
3567- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3568 ``d0-d31``, or ``q0-q15``.
3569- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3570 ``d0-d7``, or ``q0-q3``.
3571- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3572 ``s0-s31``.
3573
3574ARM's Thumb1 mode:
3575
3576- ``I``: An immediate integer between 0 and 255.
3577- ``J``: An immediate integer between -255 and -1.
3578- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3579 some amount.
3580- ``L``: An immediate integer between -7 and 7.
3581- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3582- ``N``: An immediate integer between 0 and 31.
3583- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3584- ``r``: A low 32-bit GPR register (``r0-r7``).
3585- ``l``: A low 32-bit GPR register (``r0-r7``).
3586- ``h``: A high GPR register (``r0-r7``).
3587- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3588 ``d0-d31``, or ``q0-q15``.
3589- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3590 ``d0-d7``, or ``q0-q3``.
3591- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3592 ``s0-s31``.
3593
3594
3595Hexagon:
3596
3597- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3598 at the moment.
3599- ``r``: A 32 or 64-bit register.
3600
3601MSP430:
3602
3603- ``r``: An 8 or 16-bit register.
3604
3605MIPS:
3606
3607- ``I``: An immediate signed 16-bit integer.
3608- ``J``: An immediate integer zero.
3609- ``K``: An immediate unsigned 16-bit integer.
3610- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3611- ``N``: An immediate integer between -65535 and -1.
3612- ``O``: An immediate signed 15-bit integer.
3613- ``P``: An immediate integer between 1 and 65535.
3614- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3615 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3616- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3617 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3618 ``m``.
3619- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3620 ``sc`` instruction on the given subtarget (details vary).
3621- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3622- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003623 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3624 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003625- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3626 ``25``).
3627- ``l``: The ``lo`` register, 32 or 64-bit.
3628- ``x``: Invalid.
3629
3630NVPTX:
3631
3632- ``b``: A 1-bit integer register.
3633- ``c`` or ``h``: A 16-bit integer register.
3634- ``r``: A 32-bit integer register.
3635- ``l`` or ``N``: A 64-bit integer register.
3636- ``f``: A 32-bit float register.
3637- ``d``: A 64-bit float register.
3638
3639
3640PowerPC:
3641
3642- ``I``: An immediate signed 16-bit integer.
3643- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3644- ``K``: An immediate unsigned 16-bit integer.
3645- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3646- ``M``: An immediate integer greater than 31.
3647- ``N``: An immediate integer that is an exact power of 2.
3648- ``O``: The immediate integer constant 0.
3649- ``P``: An immediate integer constant whose negation is a signed 16-bit
3650 constant.
3651- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3652 treated the same as ``m``.
3653- ``r``: A 32 or 64-bit integer register.
3654- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3655 ``R1-R31``).
3656- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3657 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3658- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3659 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3660 altivec vector register (``V0-V31``).
3661
3662 .. FIXME: is this a bug that v accepts QPX registers? I think this
3663 is supposed to only use the altivec vector registers?
3664
3665- ``y``: Condition register (``CR0-CR7``).
3666- ``wc``: An individual CR bit in a CR register.
3667- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3668 register set (overlapping both the floating-point and vector register files).
3669- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3670 set.
3671
3672Sparc:
3673
3674- ``I``: An immediate 13-bit signed integer.
3675- ``r``: A 32-bit integer register.
James Y Knightd4e1b002017-05-12 15:59:10 +00003676- ``f``: Any floating-point register on SparcV8, or a floating point
3677 register in the "low" half of the registers on SparcV9.
3678- ``e``: Any floating point register. (Same as ``f`` on SparcV8.)
James Y Knightbc832ed2015-07-08 18:08:36 +00003679
3680SystemZ:
3681
3682- ``I``: An immediate unsigned 8-bit integer.
3683- ``J``: An immediate unsigned 12-bit integer.
3684- ``K``: An immediate signed 16-bit integer.
3685- ``L``: An immediate signed 20-bit integer.
3686- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003687- ``Q``: A memory address operand with a base address and a 12-bit immediate
3688 unsigned displacement.
3689- ``R``: A memory address operand with a base address, a 12-bit immediate
3690 unsigned displacement, and an index register.
3691- ``S``: A memory address operand with a base address and a 20-bit immediate
3692 signed displacement.
3693- ``T``: A memory address operand with a base address, a 20-bit immediate
3694 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003695- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3696- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3697 address context evaluates as zero).
3698- ``h``: A 32-bit value in the high part of a 64bit data register
3699 (LLVM-specific)
3700- ``f``: A 32, 64, or 128-bit floating point register.
3701
3702X86:
3703
3704- ``I``: An immediate integer between 0 and 31.
3705- ``J``: An immediate integer between 0 and 64.
3706- ``K``: An immediate signed 8-bit integer.
3707- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3708 0xffffffff.
3709- ``M``: An immediate integer between 0 and 3.
3710- ``N``: An immediate unsigned 8-bit integer.
3711- ``O``: An immediate integer between 0 and 127.
3712- ``e``: An immediate 32-bit signed integer.
3713- ``Z``: An immediate 32-bit unsigned integer.
3714- ``o``, ``v``: Treated the same as ``m``, at the moment.
3715- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3716 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3717 registers, and on X86-64, it is all of the integer registers.
3718- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3719 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3720- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3721- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3722 existed since i386, and can be accessed without the REX prefix.
3723- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3724- ``y``: A 64-bit MMX register, if MMX is enabled.
3725- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3726 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3727 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3728 512-bit vector operand in an AVX512 register, Otherwise, an error.
3729- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3730- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3731 32-bit mode, a 64-bit integer operand will get split into two registers). It
3732 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3733 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3734 you're better off splitting it yourself, before passing it to the asm
3735 statement.
3736
3737XCore:
3738
3739- ``r``: A 32-bit integer register.
3740
3741
3742.. _inline-asm-modifiers:
3743
3744Asm template argument modifiers
3745^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3746
3747In the asm template string, modifiers can be used on the operand reference, like
3748"``${0:n}``".
3749
3750The modifiers are, in general, expected to behave the same way they do in
3751GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3752inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3753and GCC likely indicates a bug in LLVM.
3754
3755Target-independent:
3756
Sean Silvaa1190322015-08-06 22:56:48 +00003757- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003758 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3759- ``n``: Negate and print immediate integer constant unadorned, without the
3760 target-specific immediate punctuation (e.g. no ``$`` prefix).
3761- ``l``: Print as an unadorned label, without the target-specific label
3762 punctuation (e.g. no ``$`` prefix).
3763
3764AArch64:
3765
3766- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3767 instead of ``x30``, print ``w30``.
3768- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3769- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3770 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3771 ``v*``.
3772
3773AMDGPU:
3774
3775- ``r``: No effect.
3776
3777ARM:
3778
3779- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3780 register).
3781- ``P``: No effect.
3782- ``q``: No effect.
3783- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3784 as ``d4[1]`` instead of ``s9``)
3785- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3786 prefix.
3787- ``L``: Print the low 16-bits of an immediate integer constant.
3788- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3789 register operands subsequent to the specified one (!), so use carefully.
3790- ``Q``: Print the low-order register of a register-pair, or the low-order
3791 register of a two-register operand.
3792- ``R``: Print the high-order register of a register-pair, or the high-order
3793 register of a two-register operand.
3794- ``H``: Print the second register of a register-pair. (On a big-endian system,
3795 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3796 to ``R``.)
3797
3798 .. FIXME: H doesn't currently support printing the second register
3799 of a two-register operand.
3800
3801- ``e``: Print the low doubleword register of a NEON quad register.
3802- ``f``: Print the high doubleword register of a NEON quad register.
3803- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3804 adornment.
3805
3806Hexagon:
3807
3808- ``L``: Print the second register of a two-register operand. Requires that it
3809 has been allocated consecutively to the first.
3810
3811 .. FIXME: why is it restricted to consecutive ones? And there's
3812 nothing that ensures that happens, is there?
3813
3814- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3815 nothing. Used to print 'addi' vs 'add' instructions.
3816
3817MSP430:
3818
3819No additional modifiers.
3820
3821MIPS:
3822
3823- ``X``: Print an immediate integer as hexadecimal
3824- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3825- ``d``: Print an immediate integer as decimal.
3826- ``m``: Subtract one and print an immediate integer as decimal.
3827- ``z``: Print $0 if an immediate zero, otherwise print normally.
3828- ``L``: Print the low-order register of a two-register operand, or prints the
3829 address of the low-order word of a double-word memory operand.
3830
3831 .. FIXME: L seems to be missing memory operand support.
3832
3833- ``M``: Print the high-order register of a two-register operand, or prints the
3834 address of the high-order word of a double-word memory operand.
3835
3836 .. FIXME: M seems to be missing memory operand support.
3837
3838- ``D``: Print the second register of a two-register operand, or prints the
3839 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3840 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3841 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003842- ``w``: No effect. Provided for compatibility with GCC which requires this
3843 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3844 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003845
3846NVPTX:
3847
3848- ``r``: No effect.
3849
3850PowerPC:
3851
3852- ``L``: Print the second register of a two-register operand. Requires that it
3853 has been allocated consecutively to the first.
3854
3855 .. FIXME: why is it restricted to consecutive ones? And there's
3856 nothing that ensures that happens, is there?
3857
3858- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3859 nothing. Used to print 'addi' vs 'add' instructions.
3860- ``y``: For a memory operand, prints formatter for a two-register X-form
3861 instruction. (Currently always prints ``r0,OPERAND``).
3862- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3863 otherwise. (NOTE: LLVM does not support update form, so this will currently
3864 always print nothing)
3865- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3866 not support indexed form, so this will currently always print nothing)
3867
3868Sparc:
3869
3870- ``r``: No effect.
3871
3872SystemZ:
3873
3874SystemZ implements only ``n``, and does *not* support any of the other
3875target-independent modifiers.
3876
3877X86:
3878
3879- ``c``: Print an unadorned integer or symbol name. (The latter is
3880 target-specific behavior for this typically target-independent modifier).
3881- ``A``: Print a register name with a '``*``' before it.
3882- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3883 operand.
3884- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3885 memory operand.
3886- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3887 operand.
3888- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3889 operand.
3890- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3891 available, otherwise the 32-bit register name; do nothing on a memory operand.
3892- ``n``: Negate and print an unadorned integer, or, for operands other than an
3893 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3894 the operand. (The behavior for relocatable symbol expressions is a
3895 target-specific behavior for this typically target-independent modifier)
3896- ``H``: Print a memory reference with additional offset +8.
3897- ``P``: Print a memory reference or operand for use as the argument of a call
3898 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3899
3900XCore:
3901
3902No additional modifiers.
3903
3904
Sean Silvab084af42012-12-07 10:36:55 +00003905Inline Asm Metadata
3906^^^^^^^^^^^^^^^^^^^
3907
3908The call instructions that wrap inline asm nodes may have a
3909"``!srcloc``" MDNode attached to it that contains a list of constant
3910integers. If present, the code generator will use the integer as the
3911location cookie value when report errors through the ``LLVMContext``
3912error reporting mechanisms. This allows a front-end to correlate backend
3913errors that occur with inline asm back to the source code that produced
3914it. For example:
3915
3916.. code-block:: llvm
3917
3918 call void asm sideeffect "something bad", ""(), !srcloc !42
3919 ...
3920 !42 = !{ i32 1234567 }
3921
3922It is up to the front-end to make sense of the magic numbers it places
3923in the IR. If the MDNode contains multiple constants, the code generator
3924will use the one that corresponds to the line of the asm that the error
3925occurs on.
3926
3927.. _metadata:
3928
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003929Metadata
3930========
Sean Silvab084af42012-12-07 10:36:55 +00003931
3932LLVM IR allows metadata to be attached to instructions in the program
3933that can convey extra information about the code to the optimizers and
3934code generator. One example application of metadata is source-level
3935debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003936
Sean Silvaa1190322015-08-06 22:56:48 +00003937Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003938``call`` instruction, it uses the ``metadata`` type.
3939
3940All metadata are identified in syntax by a exclamation point ('``!``').
3941
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003942.. _metadata-string:
3943
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003944Metadata Nodes and Metadata Strings
3945-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003946
3947A metadata string is a string surrounded by double quotes. It can
3948contain any character by escaping non-printable characters with
3949"``\xx``" where "``xx``" is the two digit hex code. For example:
3950"``!"test\00"``".
3951
3952Metadata nodes are represented with notation similar to structure
3953constants (a comma separated list of elements, surrounded by braces and
3954preceded by an exclamation point). Metadata nodes can have any values as
3955their operand. For example:
3956
3957.. code-block:: llvm
3958
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003959 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003960
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003961Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3962
Renato Golin124f2592016-07-20 12:16:38 +00003963.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003964
3965 !0 = distinct !{!"test\00", i32 10}
3966
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003967``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003968content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003969when metadata operands change.
3970
Sean Silvab084af42012-12-07 10:36:55 +00003971A :ref:`named metadata <namedmetadatastructure>` is a collection of
3972metadata nodes, which can be looked up in the module symbol table. For
3973example:
3974
3975.. code-block:: llvm
3976
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003977 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003978
3979Metadata can be used as function arguments. Here ``llvm.dbg.value``
3980function is using two metadata arguments:
3981
3982.. code-block:: llvm
3983
3984 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3985
Peter Collingbourne50108682015-11-06 02:41:02 +00003986Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3987to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003988
3989.. code-block:: llvm
3990
3991 %indvar.next = add i64 %indvar, 1, !dbg !21
3992
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003993Metadata can also be attached to a function or a global variable. Here metadata
3994``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
3995and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00003996
3997.. code-block:: llvm
3998
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003999 declare !dbg !22 void @f1()
4000 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00004001 ret void
4002 }
4003
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004004 @g1 = global i32 0, !dbg !22
4005 @g2 = external global i32, !dbg !22
4006
4007A transformation is required to drop any metadata attachment that it does not
4008know or know it can't preserve. Currently there is an exception for metadata
4009attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
4010unconditionally dropped unless the global is itself deleted.
4011
4012Metadata attached to a module using named metadata may not be dropped, with
4013the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
4014
Sean Silvab084af42012-12-07 10:36:55 +00004015More information about specific metadata nodes recognized by the
4016optimizers and code generator is found below.
4017
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004018.. _specialized-metadata:
4019
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004020Specialized Metadata Nodes
4021^^^^^^^^^^^^^^^^^^^^^^^^^^
4022
4023Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00004024to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004025order.
4026
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004027These aren't inherently debug info centric, but currently all the specialized
4028metadata nodes are related to debug info.
4029
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004030.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004031
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004032DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004033"""""""""""""
4034
Sean Silvaa1190322015-08-06 22:56:48 +00004035``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00004036``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
4037fields are tuples containing the debug info to be emitted along with the compile
4038unit, regardless of code optimizations (some nodes are only emitted if there are
Dehao Chenfb02f712017-02-10 21:09:07 +00004039references to them from instructions). The ``debugInfoForProfiling:`` field is a
4040boolean indicating whether or not line-table discriminators are updated to
4041provide more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004042
Renato Golin124f2592016-07-20 12:16:38 +00004043.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004044
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004045 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004046 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004047 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004048 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00004049 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004050
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004051Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00004052specific compilation unit. File descriptors are defined using this scope.
4053These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004054keep track of subprograms, global variables, type information, and imported
4055entities (declarations and namespaces).
4056
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004057.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004058
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004059DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004060""""""
4061
Sean Silvaa1190322015-08-06 22:56:48 +00004062``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004063
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004064.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004065
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004066 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4067 checksumkind: CSK_MD5,
4068 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004069
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004070Files are sometimes used in ``scope:`` fields, and are the only valid target
4071for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004072Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004073
Michael Kuperstein605308a2015-05-14 10:58:59 +00004074.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004075
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004076DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004077"""""""""""
4078
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004079``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004080``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004081
Renato Golin124f2592016-07-20 12:16:38 +00004082.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004083
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004084 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004085 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004086 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004087
Sean Silvaa1190322015-08-06 22:56:48 +00004088The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004089following:
4090
Renato Golin124f2592016-07-20 12:16:38 +00004091.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004092
4093 DW_ATE_address = 1
4094 DW_ATE_boolean = 2
4095 DW_ATE_float = 4
4096 DW_ATE_signed = 5
4097 DW_ATE_signed_char = 6
4098 DW_ATE_unsigned = 7
4099 DW_ATE_unsigned_char = 8
4100
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004101.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004102
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004103DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004104""""""""""""""""
4105
Sean Silvaa1190322015-08-06 22:56:48 +00004106``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004107refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004108types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004109represents a function with no return value (such as ``void foo() {}`` in C++).
4110
Renato Golin124f2592016-07-20 12:16:38 +00004111.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004112
4113 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4114 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004115 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004116
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004117.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004118
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004119DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004120"""""""""""""
4121
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004122``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004123qualified types.
4124
Renato Golin124f2592016-07-20 12:16:38 +00004125.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004126
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004127 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004128 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004129 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004130 align: 32)
4131
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004132The following ``tag:`` values are valid:
4133
Renato Golin124f2592016-07-20 12:16:38 +00004134.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004135
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004136 DW_TAG_member = 13
4137 DW_TAG_pointer_type = 15
4138 DW_TAG_reference_type = 16
4139 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004140 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004141 DW_TAG_ptr_to_member_type = 31
4142 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004143 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004144 DW_TAG_volatile_type = 53
4145 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004146 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004147
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004148.. _DIDerivedTypeMember:
4149
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004150``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004151<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004152``offset:`` is the member's bit offset. If the composite type has an ODR
4153``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4154uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004155
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004156``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4157field of :ref:`composite types <DICompositeType>` to describe parents and
4158friends.
4159
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004160``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4161
4162``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004163``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4164are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004165
4166Note that the ``void *`` type is expressed as a type derived from NULL.
4167
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004168.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004169
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004170DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004171"""""""""""""""
4172
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004173``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004174structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004175
4176If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004177identifier used for type merging between modules. When specified,
4178:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4179derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4180``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004181
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004182For a given ``identifier:``, there should only be a single composite type that
4183does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4184together will unique such definitions at parse time via the ``identifier:``
4185field, even if the nodes are ``distinct``.
4186
Renato Golin124f2592016-07-20 12:16:38 +00004187.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004188
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004189 !0 = !DIEnumerator(name: "SixKind", value: 7)
4190 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4191 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4192 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004193 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4194 elements: !{!0, !1, !2})
4195
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004196The following ``tag:`` values are valid:
4197
Renato Golin124f2592016-07-20 12:16:38 +00004198.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004199
4200 DW_TAG_array_type = 1
4201 DW_TAG_class_type = 2
4202 DW_TAG_enumeration_type = 4
4203 DW_TAG_structure_type = 19
4204 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004205
4206For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004207descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004208level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004209array type is a native packed vector.
4210
4211For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004212descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004213value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004214``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004215
4216For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4217``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004218<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4219``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4220``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004221
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004222.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004223
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004224DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004225""""""""""
4226
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004227``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004228:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004229
4230.. code-block:: llvm
4231
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004232 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4233 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4234 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004235
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004236.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004237
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004238DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004239""""""""""""
4240
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004241``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4242variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004243
4244.. code-block:: llvm
4245
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004246 !0 = !DIEnumerator(name: "SixKind", value: 7)
4247 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4248 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004249
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004250DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004251"""""""""""""""""""""""
4252
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004253``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004254language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004255:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004256
4257.. code-block:: llvm
4258
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004259 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004260
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004261DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004262""""""""""""""""""""""""
4263
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004264``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004265language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004266but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004267``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004268:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004269
4270.. code-block:: llvm
4271
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004272 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004273
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004274DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004275"""""""""""
4276
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004277``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004278
4279.. code-block:: llvm
4280
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004281 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004282
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004283DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004284""""""""""""""""
4285
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004286``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004287
4288.. code-block:: llvm
4289
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004290 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004291 file: !2, line: 7, type: !3, isLocal: true,
4292 isDefinition: false, variable: i32* @foo,
4293 declaration: !4)
4294
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004295All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004296:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004297
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004298.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004299
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004300DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004301""""""""""""
4302
Peter Collingbourne50108682015-11-06 02:41:02 +00004303``DISubprogram`` nodes represent functions from the source language. A
4304``DISubprogram`` may be attached to a function definition using ``!dbg``
4305metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4306that must be retained, even if their IR counterparts are optimized out of
4307the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004308
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004309.. _DISubprogramDeclaration:
4310
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004311When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004312tree as opposed to a definition of a function. If the scope is a composite
4313type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4314then the subprogram declaration is uniqued based only on its ``linkageName:``
4315and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004316
Renato Golin124f2592016-07-20 12:16:38 +00004317.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004318
Peter Collingbourne50108682015-11-06 02:41:02 +00004319 define void @_Z3foov() !dbg !0 {
4320 ...
4321 }
4322
4323 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4324 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004325 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004326 containingType: !4,
4327 virtuality: DW_VIRTUALITY_pure_virtual,
4328 virtualIndex: 10, flags: DIFlagPrototyped,
4329 isOptimized: true, templateParams: !5,
4330 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004331
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004332.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004333
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004334DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004335""""""""""""""
4336
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004337``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004338<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004339two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004340fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004341
Renato Golin124f2592016-07-20 12:16:38 +00004342.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004343
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004344 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004345
4346Usually lexical blocks are ``distinct`` to prevent node merging based on
4347operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004348
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004349.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004350
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004351DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004352""""""""""""""""""
4353
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004354``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004355:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004356indicate textual inclusion, or the ``discriminator:`` field can be used to
4357discriminate between control flow within a single block in the source language.
4358
4359.. code-block:: llvm
4360
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004361 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4362 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4363 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004364
Michael Kuperstein605308a2015-05-14 10:58:59 +00004365.. _DILocation:
4366
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004367DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004368""""""""""
4369
Sean Silvaa1190322015-08-06 22:56:48 +00004370``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004371mandatory, and points at an :ref:`DILexicalBlockFile`, an
4372:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004373
4374.. code-block:: llvm
4375
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004376 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004377
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004378.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004379
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004380DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004381"""""""""""""""
4382
Sean Silvaa1190322015-08-06 22:56:48 +00004383``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004384the ``arg:`` field is set to non-zero, then this variable is a subprogram
4385parameter, and it will be included in the ``variables:`` field of its
4386:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004387
Renato Golin124f2592016-07-20 12:16:38 +00004388.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004389
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004390 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4391 type: !3, flags: DIFlagArtificial)
4392 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4393 type: !3)
4394 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004395
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004396DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004397""""""""""""
4398
Adrian Prantlb44c7762017-03-22 18:01:01 +00004399``DIExpression`` nodes represent expressions that are inspired by the DWARF
4400expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
4401(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
4402referenced LLVM variable relates to the source language variable.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004403
4404The current supported vocabulary is limited:
4405
Adrian Prantl6825fb62017-04-18 01:21:53 +00004406- ``DW_OP_deref`` dereferences the top of the expression stack.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004407- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004408- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
4409 here, respectively) of the variable fragment from the working expression. Note
4410 that contrary to DW_OP_bit_piece, the offset is describing the the location
4411 within the described source variable.
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004412- ``DW_OP_swap`` swaps top two stack entries.
4413- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
4414 of the stack is treated as an address. The second stack entry is treated as an
4415 address space identifier.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004416- ``DW_OP_stack_value`` marks a constant value.
4417
4418DIExpression nodes that contain a ``DW_OP_stack_value`` operator are standalone
4419location descriptions that describe constant values. This form is used to
4420describe global constants that have been optimized away. All other expressions
4421are modifiers to another location: A debug intrinsic ties a location and a
Adrian Prantl6825fb62017-04-18 01:21:53 +00004422DIExpression together.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004423
Adrian Prantl6825fb62017-04-18 01:21:53 +00004424DWARF specifies three kinds of simple location descriptions: Register, memory,
4425and implicit location descriptions. Register and memory location descriptions
4426describe the *location* of a source variable (in the sense that a debugger might
4427modify its value), whereas implicit locations describe merely the *value* of a
4428source variable. DIExpressions also follow this model: A DIExpression that
4429doesn't have a trailing ``DW_OP_stack_value`` will describe an *address* when
4430combined with a concrete location.
4431
4432.. code-block:: llvm
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004433
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004434 !0 = !DIExpression(DW_OP_deref)
4435 !1 = !DIExpression(DW_OP_plus, 3)
4436 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004437 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_LLVM_fragment, 3, 7)
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004438 !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004439 !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004440
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004441DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004442""""""""""""""
4443
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004444``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004445
4446.. code-block:: llvm
4447
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004448 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004449 getter: "getFoo", attributes: 7, type: !2)
4450
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004451DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004452""""""""""""""""
4453
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004454``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004455compile unit.
4456
Renato Golin124f2592016-07-20 12:16:38 +00004457.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004458
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004459 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004460 entity: !1, line: 7)
4461
Amjad Abouda9bcf162015-12-10 12:56:35 +00004462DIMacro
4463"""""""
4464
4465``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4466The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004467defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004468used to expand the macro identifier.
4469
Renato Golin124f2592016-07-20 12:16:38 +00004470.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004471
4472 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4473 value: "((x) + 1)")
4474 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4475
4476DIMacroFile
4477"""""""""""
4478
4479``DIMacroFile`` nodes represent inclusion of source files.
4480The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4481appear in the included source file.
4482
Renato Golin124f2592016-07-20 12:16:38 +00004483.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004484
4485 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4486 nodes: !3)
4487
Sean Silvab084af42012-12-07 10:36:55 +00004488'``tbaa``' Metadata
4489^^^^^^^^^^^^^^^^^^^
4490
4491In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004492suitable for doing type based alias analysis (TBAA). Instead, metadata is
4493added to the IR to describe a type system of a higher level language. This
4494can be used to implement C/C++ strict type aliasing rules, but it can also
4495be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004496
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004497This description of LLVM's TBAA system is broken into two parts:
4498:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4499:ref:`Representation<tbaa_node_representation>` talks about the metadata
4500encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004501
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004502It is always possible to trace any TBAA node to a "root" TBAA node (details
4503in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4504nodes with different roots have an unknown aliasing relationship, and LLVM
4505conservatively infers ``MayAlias`` between them. The rules mentioned in
4506this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004507
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004508.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004509
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004510Semantics
4511"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004512
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004513The TBAA metadata system, referred to as "struct path TBAA" (not to be
4514confused with ``tbaa.struct``), consists of the following high level
4515concepts: *Type Descriptors*, further subdivided into scalar type
4516descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004517
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004518**Type descriptors** describe the type system of the higher level language
4519being compiled. **Scalar type descriptors** describe types that do not
4520contain other types. Each scalar type has a parent type, which must also
4521be a scalar type or the TBAA root. Via this parent relation, scalar types
4522within a TBAA root form a tree. **Struct type descriptors** denote types
4523that contain a sequence of other type descriptors, at known offsets. These
4524contained type descriptors can either be struct type descriptors themselves
4525or scalar type descriptors.
4526
4527**Access tags** are metadata nodes attached to load and store instructions.
4528Access tags use type descriptors to describe the *location* being accessed
4529in terms of the type system of the higher level language. Access tags are
4530tuples consisting of a base type, an access type and an offset. The base
4531type is a scalar type descriptor or a struct type descriptor, the access
4532type is a scalar type descriptor, and the offset is a constant integer.
4533
4534The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4535things:
4536
4537 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4538 or store) of a value of type ``AccessTy`` contained in the struct type
4539 ``BaseTy`` at offset ``Offset``.
4540
4541 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4542 ``AccessTy`` must be the same; and the access tag describes a scalar
4543 access with scalar type ``AccessTy``.
4544
4545We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4546tuples this way:
4547
4548 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4549 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4550 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4551 undefined if ``Offset`` is non-zero.
4552
4553 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4554 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4555 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4556 to be relative within that inner type.
4557
4558A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4559aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4560Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4561Offset2)`` via the ``Parent`` relation or vice versa.
4562
4563As a concrete example, the type descriptor graph for the following program
4564
4565.. code-block:: c
4566
4567 struct Inner {
4568 int i; // offset 0
4569 float f; // offset 4
4570 };
4571
4572 struct Outer {
4573 float f; // offset 0
4574 double d; // offset 4
4575 struct Inner inner_a; // offset 12
4576 };
4577
4578 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4579 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4580 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
4581 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, IntScalarTy, 16)
4582 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4583 }
4584
4585is (note that in C and C++, ``char`` can be used to access any arbitrary
4586type):
4587
4588.. code-block:: text
4589
4590 Root = "TBAA Root"
4591 CharScalarTy = ("char", Root, 0)
4592 FloatScalarTy = ("float", CharScalarTy, 0)
4593 DoubleScalarTy = ("double", CharScalarTy, 0)
4594 IntScalarTy = ("int", CharScalarTy, 0)
4595 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4596 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4597 (InnerStructTy, 12)}
4598
4599
4600with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
46010)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4602``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4603
4604.. _tbaa_node_representation:
4605
4606Representation
4607""""""""""""""
4608
4609The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4610with exactly one ``MDString`` operand.
4611
4612Scalar type descriptors are represented as an ``MDNode`` s with two
4613operands. The first operand is an ``MDString`` denoting the name of the
4614struct type. LLVM does not assign meaning to the value of this operand, it
4615only cares about it being an ``MDString``. The second operand is an
4616``MDNode`` which points to the parent for said scalar type descriptor,
4617which is either another scalar type descriptor or the TBAA root. Scalar
4618type descriptors can have an optional third argument, but that must be the
4619constant integer zero.
4620
4621Struct type descriptors are represented as ``MDNode`` s with an odd number
4622of operands greater than 1. The first operand is an ``MDString`` denoting
4623the name of the struct type. Like in scalar type descriptors the actual
4624value of this name operand is irrelevant to LLVM. After the name operand,
4625the struct type descriptors have a sequence of alternating ``MDNode`` and
4626``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4627an ``MDNode``, denotes a contained field, and the 2N th operand, a
4628``ConstantInt``, is the offset of the said contained field. The offsets
4629must be in non-decreasing order.
4630
4631Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4632The first operand is an ``MDNode`` pointing to the node representing the
4633base type. The second operand is an ``MDNode`` pointing to the node
4634representing the access type. The third operand is a ``ConstantInt`` that
4635states the offset of the access. If a fourth field is present, it must be
4636a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4637that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004638``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004639AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4640the access type and the base type of an access tag must be the same, and
4641that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004642
4643'``tbaa.struct``' Metadata
4644^^^^^^^^^^^^^^^^^^^^^^^^^^
4645
4646The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4647aggregate assignment operations in C and similar languages, however it
4648is defined to copy a contiguous region of memory, which is more than
4649strictly necessary for aggregate types which contain holes due to
4650padding. Also, it doesn't contain any TBAA information about the fields
4651of the aggregate.
4652
4653``!tbaa.struct`` metadata can describe which memory subregions in a
4654memcpy are padding and what the TBAA tags of the struct are.
4655
4656The current metadata format is very simple. ``!tbaa.struct`` metadata
4657nodes are a list of operands which are in conceptual groups of three.
4658For each group of three, the first operand gives the byte offset of a
4659field in bytes, the second gives its size in bytes, and the third gives
4660its tbaa tag. e.g.:
4661
4662.. code-block:: llvm
4663
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004664 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004665
4666This describes a struct with two fields. The first is at offset 0 bytes
4667with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4668and has size 4 bytes and has tbaa tag !2.
4669
4670Note that the fields need not be contiguous. In this example, there is a
46714 byte gap between the two fields. This gap represents padding which
4672does not carry useful data and need not be preserved.
4673
Hal Finkel94146652014-07-24 14:25:39 +00004674'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004675^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004676
4677``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4678noalias memory-access sets. This means that some collection of memory access
4679instructions (loads, stores, memory-accessing calls, etc.) that carry
4680``noalias`` metadata can specifically be specified not to alias with some other
4681collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004682Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004683a domain.
4684
4685When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004686of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004687subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004688instruction's ``noalias`` list, then the two memory accesses are assumed not to
4689alias.
Hal Finkel94146652014-07-24 14:25:39 +00004690
Adam Nemet569a5b32016-04-27 00:52:48 +00004691Because scopes in one domain don't affect scopes in other domains, separate
4692domains can be used to compose multiple independent noalias sets. This is
4693used for example during inlining. As the noalias function parameters are
4694turned into noalias scope metadata, a new domain is used every time the
4695function is inlined.
4696
Hal Finkel029cde62014-07-25 15:50:02 +00004697The metadata identifying each domain is itself a list containing one or two
4698entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004699string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004700self-reference can be used to create globally unique domain names. A
4701descriptive string may optionally be provided as a second list entry.
4702
4703The metadata identifying each scope is also itself a list containing two or
4704three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004705is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004706self-reference can be used to create globally unique scope names. A metadata
4707reference to the scope's domain is the second entry. A descriptive string may
4708optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004709
4710For example,
4711
4712.. code-block:: llvm
4713
Hal Finkel029cde62014-07-25 15:50:02 +00004714 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004715 !0 = !{!0}
4716 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004717
Hal Finkel029cde62014-07-25 15:50:02 +00004718 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004719 !2 = !{!2, !0}
4720 !3 = !{!3, !0}
4721 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004722
Hal Finkel029cde62014-07-25 15:50:02 +00004723 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004724 !5 = !{!4} ; A list containing only scope !4
4725 !6 = !{!4, !3, !2}
4726 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004727
4728 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004729 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004730 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004731
Hal Finkel029cde62014-07-25 15:50:02 +00004732 ; These two instructions also don't alias (for domain !1, the set of scopes
4733 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004734 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004735 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004736
Adam Nemet0a8416f2015-05-11 08:30:28 +00004737 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004738 ; the !noalias list is not a superset of, or equal to, the scopes in the
4739 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004740 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004741 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004742
Sean Silvab084af42012-12-07 10:36:55 +00004743'``fpmath``' Metadata
4744^^^^^^^^^^^^^^^^^^^^^
4745
4746``fpmath`` metadata may be attached to any instruction of floating point
4747type. It can be used to express the maximum acceptable error in the
4748result of that instruction, in ULPs, thus potentially allowing the
4749compiler to use a more efficient but less accurate method of computing
4750it. ULP is defined as follows:
4751
4752 If ``x`` is a real number that lies between two finite consecutive
4753 floating-point numbers ``a`` and ``b``, without being equal to one
4754 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4755 distance between the two non-equal finite floating-point numbers
4756 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4757
Matt Arsenault82f41512016-06-27 19:43:15 +00004758The metadata node shall consist of a single positive float type number
4759representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004760
4761.. code-block:: llvm
4762
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004763 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004764
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004765.. _range-metadata:
4766
Sean Silvab084af42012-12-07 10:36:55 +00004767'``range``' Metadata
4768^^^^^^^^^^^^^^^^^^^^
4769
Jingyue Wu37fcb592014-06-19 16:50:16 +00004770``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4771integer types. It expresses the possible ranges the loaded value or the value
4772returned by the called function at this call site is in. The ranges are
4773represented with a flattened list of integers. The loaded value or the value
4774returned is known to be in the union of the ranges defined by each consecutive
4775pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004776
4777- The type must match the type loaded by the instruction.
4778- The pair ``a,b`` represents the range ``[a,b)``.
4779- Both ``a`` and ``b`` are constants.
4780- The range is allowed to wrap.
4781- The range should not represent the full or empty set. That is,
4782 ``a!=b``.
4783
4784In addition, the pairs must be in signed order of the lower bound and
4785they must be non-contiguous.
4786
4787Examples:
4788
4789.. code-block:: llvm
4790
David Blaikiec7aabbb2015-03-04 22:06:14 +00004791 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4792 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004793 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4794 %d = invoke i8 @bar() to label %cont
4795 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004796 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004797 !0 = !{ i8 0, i8 2 }
4798 !1 = !{ i8 255, i8 2 }
4799 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4800 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004801
Peter Collingbourne235c2752016-12-08 19:01:00 +00004802'``absolute_symbol``' Metadata
4803^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4804
4805``absolute_symbol`` metadata may be attached to a global variable
4806declaration. It marks the declaration as a reference to an absolute symbol,
4807which causes the backend to use absolute relocations for the symbol even
4808in position independent code, and expresses the possible ranges that the
4809global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00004810``range`` metadata, with the extension that the pair ``all-ones,all-ones``
4811may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00004812
Peter Collingbourned88f9282017-01-20 21:56:37 +00004813Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00004814
4815.. code-block:: llvm
4816
4817 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00004818 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00004819
4820 ...
4821 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00004822 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00004823
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004824'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004825^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004826
4827``unpredictable`` metadata may be attached to any branch or switch
4828instruction. It can be used to express the unpredictability of control
4829flow. Similar to the llvm.expect intrinsic, it may be used to alter
4830optimizations related to compare and branch instructions. The metadata
4831is treated as a boolean value; if it exists, it signals that the branch
4832or switch that it is attached to is completely unpredictable.
4833
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004834'``llvm.loop``'
4835^^^^^^^^^^^^^^^
4836
4837It is sometimes useful to attach information to loop constructs. Currently,
4838loop metadata is implemented as metadata attached to the branch instruction
4839in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004840guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004841specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004842
4843The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004844itself to avoid merging it with any other identifier metadata, e.g.,
4845during module linkage or function inlining. That is, each loop should refer
4846to their own identification metadata even if they reside in separate functions.
4847The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004848constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004849
4850.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004851
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004852 !0 = !{!0}
4853 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004854
Mark Heffernan893752a2014-07-18 19:24:51 +00004855The loop identifier metadata can be used to specify additional
4856per-loop metadata. Any operands after the first operand can be treated
4857as user-defined metadata. For example the ``llvm.loop.unroll.count``
4858suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004859
Paul Redmond5fdf8362013-05-28 20:00:34 +00004860.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004861
Paul Redmond5fdf8362013-05-28 20:00:34 +00004862 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4863 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004864 !0 = !{!0, !1}
4865 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004866
Mark Heffernan9d20e422014-07-21 23:11:03 +00004867'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4868^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004869
Mark Heffernan9d20e422014-07-21 23:11:03 +00004870Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4871used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004872vectorization width and interleave count. These metadata should be used in
4873conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004874``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4875optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004876it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004877which contains information about loop-carried memory dependencies can be helpful
4878in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004879
Mark Heffernan9d20e422014-07-21 23:11:03 +00004880'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004881^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4882
Mark Heffernan9d20e422014-07-21 23:11:03 +00004883This metadata suggests an interleave count to the loop interleaver.
4884The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004885second operand is an integer specifying the interleave count. For
4886example:
4887
4888.. code-block:: llvm
4889
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004890 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004891
Mark Heffernan9d20e422014-07-21 23:11:03 +00004892Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004893multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004894then the interleave count will be determined automatically.
4895
4896'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004897^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004898
4899This metadata selectively enables or disables vectorization for the loop. The
4900first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004901is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000049020 disables vectorization:
4903
4904.. code-block:: llvm
4905
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004906 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4907 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004908
4909'``llvm.loop.vectorize.width``' Metadata
4910^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4911
4912This metadata sets the target width of the vectorizer. The first
4913operand is the string ``llvm.loop.vectorize.width`` and the second
4914operand is an integer specifying the width. For example:
4915
4916.. code-block:: llvm
4917
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004918 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004919
4920Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004921vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000049220 or if the loop does not have this metadata the width will be
4923determined automatically.
4924
4925'``llvm.loop.unroll``'
4926^^^^^^^^^^^^^^^^^^^^^^
4927
4928Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4929optimization hints such as the unroll factor. ``llvm.loop.unroll``
4930metadata should be used in conjunction with ``llvm.loop`` loop
4931identification metadata. The ``llvm.loop.unroll`` metadata are only
4932optimization hints and the unrolling will only be performed if the
4933optimizer believes it is safe to do so.
4934
Mark Heffernan893752a2014-07-18 19:24:51 +00004935'``llvm.loop.unroll.count``' Metadata
4936^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4937
4938This metadata suggests an unroll factor to the loop unroller. The
4939first operand is the string ``llvm.loop.unroll.count`` and the second
4940operand is a positive integer specifying the unroll factor. For
4941example:
4942
4943.. code-block:: llvm
4944
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004945 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004946
4947If the trip count of the loop is less than the unroll count the loop
4948will be partially unrolled.
4949
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004950'``llvm.loop.unroll.disable``' Metadata
4951^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4952
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004953This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004954which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004955
4956.. code-block:: llvm
4957
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004958 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004959
Kevin Qin715b01e2015-03-09 06:14:18 +00004960'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004961^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004962
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004963This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004964operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004965
4966.. code-block:: llvm
4967
4968 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4969
Mark Heffernan89391542015-08-10 17:28:08 +00004970'``llvm.loop.unroll.enable``' Metadata
4971^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4972
4973This metadata suggests that the loop should be fully unrolled if the trip count
4974is known at compile time and partially unrolled if the trip count is not known
4975at compile time. The metadata has a single operand which is the string
4976``llvm.loop.unroll.enable``. For example:
4977
4978.. code-block:: llvm
4979
4980 !0 = !{!"llvm.loop.unroll.enable"}
4981
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004982'``llvm.loop.unroll.full``' Metadata
4983^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4984
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004985This metadata suggests that the loop should be unrolled fully. The
4986metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004987For example:
4988
4989.. code-block:: llvm
4990
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004991 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004992
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004993'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004994^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004995
4996This metadata indicates that the loop should not be versioned for the purpose
4997of enabling loop-invariant code motion (LICM). The metadata has a single operand
4998which is the string ``llvm.loop.licm_versioning.disable``. For example:
4999
5000.. code-block:: llvm
5001
5002 !0 = !{!"llvm.loop.licm_versioning.disable"}
5003
Adam Nemetd2fa4142016-04-27 05:28:18 +00005004'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00005005^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00005006
5007Loop distribution allows splitting a loop into multiple loops. Currently,
5008this is only performed if the entire loop cannot be vectorized due to unsafe
5009memory dependencies. The transformation will atempt to isolate the unsafe
5010dependencies into their own loop.
5011
5012This metadata can be used to selectively enable or disable distribution of the
5013loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
5014second operand is a bit. If the bit operand value is 1 distribution is
5015enabled. A value of 0 disables distribution:
5016
5017.. code-block:: llvm
5018
5019 !0 = !{!"llvm.loop.distribute.enable", i1 0}
5020 !1 = !{!"llvm.loop.distribute.enable", i1 1}
5021
5022This metadata should be used in conjunction with ``llvm.loop`` loop
5023identification metadata.
5024
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005025'``llvm.mem``'
5026^^^^^^^^^^^^^^^
5027
5028Metadata types used to annotate memory accesses with information helpful
5029for optimizations are prefixed with ``llvm.mem``.
5030
5031'``llvm.mem.parallel_loop_access``' Metadata
5032^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5033
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005034The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
5035or metadata containing a list of loop identifiers for nested loops.
5036The metadata is attached to memory accessing instructions and denotes that
5037no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00005038with the same loop identifier. The metadata on memory reads also implies that
5039if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005040
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005041Precisely, given two instructions ``m1`` and ``m2`` that both have the
5042``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
5043set of loops associated with that metadata, respectively, then there is no loop
5044carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005045``L2``.
5046
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005047As a special case, if all memory accessing instructions in a loop have
5048``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
5049loop has no loop carried memory dependences and is considered to be a parallel
5050loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005051
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005052Note that if not all memory access instructions have such metadata referring to
5053the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00005054memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005055safe mechanism, this causes loops that were originally parallel to be considered
5056sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005057insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005058
5059Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00005060both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005061metadata types that refer to the same loop identifier metadata.
5062
5063.. code-block:: llvm
5064
5065 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005066 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005067 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005068 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005069 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005070 ...
5071 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005072
5073 for.end:
5074 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005075 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005076
5077It is also possible to have nested parallel loops. In that case the
5078memory accesses refer to a list of loop identifier metadata nodes instead of
5079the loop identifier metadata node directly:
5080
5081.. code-block:: llvm
5082
5083 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005084 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005085 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005086 ...
5087 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005088
5089 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005090 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005091 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005092 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005093 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005094 ...
5095 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005096
5097 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005098 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005099 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00005100 ...
5101 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005102
5103 outer.for.end: ; preds = %for.body
5104 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005105 !0 = !{!1, !2} ; a list of loop identifiers
5106 !1 = !{!1} ; an identifier for the inner loop
5107 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005108
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005109'``invariant.group``' Metadata
5110^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5111
5112The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
5113The existence of the ``invariant.group`` metadata on the instruction tells
5114the optimizer that every ``load`` and ``store`` to the same pointer operand
5115within the same invariant group can be assumed to load or store the same
5116value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005117when two pointers are considered the same). Pointers returned by bitcast or
5118getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005119
5120Examples:
5121
5122.. code-block:: llvm
5123
5124 @unknownPtr = external global i8
5125 ...
5126 %ptr = alloca i8
5127 store i8 42, i8* %ptr, !invariant.group !0
5128 call void @foo(i8* %ptr)
5129
5130 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5131 call void @foo(i8* %ptr)
5132 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
5133
5134 %newPtr = call i8* @getPointer(i8* %ptr)
5135 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
5136
5137 %unknownValue = load i8, i8* @unknownPtr
5138 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
5139
5140 call void @foo(i8* %ptr)
5141 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
5142 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
5143
5144 ...
5145 declare void @foo(i8*)
5146 declare i8* @getPointer(i8*)
5147 declare i8* @llvm.invariant.group.barrier(i8*)
5148
5149 !0 = !{!"magic ptr"}
5150 !1 = !{!"other ptr"}
5151
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005152The invariant.group metadata must be dropped when replacing one pointer by
5153another based on aliasing information. This is because invariant.group is tied
5154to the SSA value of the pointer operand.
5155
5156.. code-block:: llvm
Piotr Padlewskiaa1b2412017-04-12 11:18:19 +00005157
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005158 %v = load i8, i8* %x, !invariant.group !0
5159 ; if %x mustalias %y then we can replace the above instruction with
5160 %v = load i8, i8* %y
5161
5162
Peter Collingbournea333db82016-07-26 22:31:30 +00005163'``type``' Metadata
5164^^^^^^^^^^^^^^^^^^^
5165
5166See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005167
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005168'``associated``' Metadata
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005169^^^^^^^^^^^^^^^^^^^^^^^^^
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005170
5171The ``associated`` metadata may be attached to a global object
5172declaration with a single argument that references another global object.
5173
5174This metadata prevents discarding of the global object in linker GC
5175unless the referenced object is also discarded. The linker support for
5176this feature is spotty. For best compatibility, globals carrying this
5177metadata may also:
5178
5179- Be in a comdat with the referenced global.
5180- Be in @llvm.compiler.used.
5181- Have an explicit section with a name which is a valid C identifier.
5182
5183It does not have any effect on non-ELF targets.
5184
5185Example:
5186
5187.. code-block:: llvm
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005188
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005189 $a = comdat any
5190 @a = global i32 1, comdat $a
5191 @b = internal global i32 2, comdat $a, section "abc", !associated !0
5192 !0 = !{i32* @a}
5193
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005194
Sean Silvab084af42012-12-07 10:36:55 +00005195Module Flags Metadata
5196=====================
5197
5198Information about the module as a whole is difficult to convey to LLVM's
5199subsystems. The LLVM IR isn't sufficient to transmit this information.
5200The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005201this. These flags are in the form of key / value pairs --- much like a
5202dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005203look it up.
5204
5205The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5206Each triplet has the following form:
5207
5208- The first element is a *behavior* flag, which specifies the behavior
5209 when two (or more) modules are merged together, and it encounters two
5210 (or more) metadata with the same ID. The supported behaviors are
5211 described below.
5212- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005213 metadata. Each module may only have one flag entry for each unique ID (not
5214 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005215- The third element is the value of the flag.
5216
5217When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005218``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5219each unique metadata ID string, there will be exactly one entry in the merged
5220modules ``llvm.module.flags`` metadata table, and the value for that entry will
5221be determined by the merge behavior flag, as described below. The only exception
5222is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005223
5224The following behaviors are supported:
5225
5226.. list-table::
5227 :header-rows: 1
5228 :widths: 10 90
5229
5230 * - Value
5231 - Behavior
5232
5233 * - 1
5234 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005235 Emits an error if two values disagree, otherwise the resulting value
5236 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005237
5238 * - 2
5239 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005240 Emits a warning if two values disagree. The result value will be the
5241 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005242
5243 * - 3
5244 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005245 Adds a requirement that another module flag be present and have a
5246 specified value after linking is performed. The value must be a
5247 metadata pair, where the first element of the pair is the ID of the
5248 module flag to be restricted, and the second element of the pair is
5249 the value the module flag should be restricted to. This behavior can
5250 be used to restrict the allowable results (via triggering of an
5251 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005252
5253 * - 4
5254 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005255 Uses the specified value, regardless of the behavior or value of the
5256 other module. If both modules specify **Override**, but the values
5257 differ, an error will be emitted.
5258
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005259 * - 5
5260 - **Append**
5261 Appends the two values, which are required to be metadata nodes.
5262
5263 * - 6
5264 - **AppendUnique**
5265 Appends the two values, which are required to be metadata
5266 nodes. However, duplicate entries in the second list are dropped
5267 during the append operation.
5268
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005269It is an error for a particular unique flag ID to have multiple behaviors,
5270except in the case of **Require** (which adds restrictions on another metadata
5271value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005272
5273An example of module flags:
5274
5275.. code-block:: llvm
5276
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005277 !0 = !{ i32 1, !"foo", i32 1 }
5278 !1 = !{ i32 4, !"bar", i32 37 }
5279 !2 = !{ i32 2, !"qux", i32 42 }
5280 !3 = !{ i32 3, !"qux",
5281 !{
5282 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005283 }
5284 }
5285 !llvm.module.flags = !{ !0, !1, !2, !3 }
5286
5287- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5288 if two or more ``!"foo"`` flags are seen is to emit an error if their
5289 values are not equal.
5290
5291- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5292 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005293 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005294
5295- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5296 behavior if two or more ``!"qux"`` flags are seen is to emit a
5297 warning if their values are not equal.
5298
5299- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5300
5301 ::
5302
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005303 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005304
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005305 The behavior is to emit an error if the ``llvm.module.flags`` does not
5306 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5307 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005308
5309Objective-C Garbage Collection Module Flags Metadata
5310----------------------------------------------------
5311
5312On the Mach-O platform, Objective-C stores metadata about garbage
5313collection in a special section called "image info". The metadata
5314consists of a version number and a bitmask specifying what types of
5315garbage collection are supported (if any) by the file. If two or more
5316modules are linked together their garbage collection metadata needs to
5317be merged rather than appended together.
5318
5319The Objective-C garbage collection module flags metadata consists of the
5320following key-value pairs:
5321
5322.. list-table::
5323 :header-rows: 1
5324 :widths: 30 70
5325
5326 * - Key
5327 - Value
5328
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005329 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005330 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005331
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005332 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005333 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005334 always 0.
5335
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005336 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005337 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005338 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5339 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5340 Objective-C ABI version 2.
5341
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005342 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005343 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005344 not. Valid values are 0, for no garbage collection, and 2, for garbage
5345 collection supported.
5346
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005347 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005348 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005349 If present, its value must be 6. This flag requires that the
5350 ``Objective-C Garbage Collection`` flag have the value 2.
5351
5352Some important flag interactions:
5353
5354- If a module with ``Objective-C Garbage Collection`` set to 0 is
5355 merged with a module with ``Objective-C Garbage Collection`` set to
5356 2, then the resulting module has the
5357 ``Objective-C Garbage Collection`` flag set to 0.
5358- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5359 merged with a module with ``Objective-C GC Only`` set to 6.
5360
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005361Automatic Linker Flags Module Flags Metadata
5362--------------------------------------------
5363
5364Some targets support embedding flags to the linker inside individual object
5365files. Typically this is used in conjunction with language extensions which
5366allow source files to explicitly declare the libraries they depend on, and have
5367these automatically be transmitted to the linker via object files.
5368
5369These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005370using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005371to be ``AppendUnique``, and the value for the key is expected to be a metadata
5372node which should be a list of other metadata nodes, each of which should be a
5373list of metadata strings defining linker options.
5374
5375For example, the following metadata section specifies two separate sets of
5376linker options, presumably to link against ``libz`` and the ``Cocoa``
5377framework::
5378
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005379 !0 = !{ i32 6, !"Linker Options",
5380 !{
5381 !{ !"-lz" },
5382 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005383 !llvm.module.flags = !{ !0 }
5384
5385The metadata encoding as lists of lists of options, as opposed to a collapsed
5386list of options, is chosen so that the IR encoding can use multiple option
5387strings to specify e.g., a single library, while still having that specifier be
5388preserved as an atomic element that can be recognized by a target specific
5389assembly writer or object file emitter.
5390
5391Each individual option is required to be either a valid option for the target's
5392linker, or an option that is reserved by the target specific assembly writer or
5393object file emitter. No other aspect of these options is defined by the IR.
5394
Oliver Stannard5dc29342014-06-20 10:08:11 +00005395C type width Module Flags Metadata
5396----------------------------------
5397
5398The ARM backend emits a section into each generated object file describing the
5399options that it was compiled with (in a compiler-independent way) to prevent
5400linking incompatible objects, and to allow automatic library selection. Some
5401of these options are not visible at the IR level, namely wchar_t width and enum
5402width.
5403
5404To pass this information to the backend, these options are encoded in module
5405flags metadata, using the following key-value pairs:
5406
5407.. list-table::
5408 :header-rows: 1
5409 :widths: 30 70
5410
5411 * - Key
5412 - Value
5413
5414 * - short_wchar
5415 - * 0 --- sizeof(wchar_t) == 4
5416 * 1 --- sizeof(wchar_t) == 2
5417
5418 * - short_enum
5419 - * 0 --- Enums are at least as large as an ``int``.
5420 * 1 --- Enums are stored in the smallest integer type which can
5421 represent all of its values.
5422
5423For example, the following metadata section specifies that the module was
5424compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5425enum is the smallest type which can represent all of its values::
5426
5427 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005428 !0 = !{i32 1, !"short_wchar", i32 1}
5429 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005430
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005431.. _intrinsicglobalvariables:
5432
Sean Silvab084af42012-12-07 10:36:55 +00005433Intrinsic Global Variables
5434==========================
5435
5436LLVM has a number of "magic" global variables that contain data that
5437affect code generation or other IR semantics. These are documented here.
5438All globals of this sort should have a section specified as
5439"``llvm.metadata``". This section and all globals that start with
5440"``llvm.``" are reserved for use by LLVM.
5441
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005442.. _gv_llvmused:
5443
Sean Silvab084af42012-12-07 10:36:55 +00005444The '``llvm.used``' Global Variable
5445-----------------------------------
5446
Rafael Espindola74f2e462013-04-22 14:58:02 +00005447The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005448:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005449pointers to named global variables, functions and aliases which may optionally
5450have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005451use of it is:
5452
5453.. code-block:: llvm
5454
5455 @X = global i8 4
5456 @Y = global i32 123
5457
5458 @llvm.used = appending global [2 x i8*] [
5459 i8* @X,
5460 i8* bitcast (i32* @Y to i8*)
5461 ], section "llvm.metadata"
5462
Rafael Espindola74f2e462013-04-22 14:58:02 +00005463If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5464and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005465symbol that it cannot see (which is why they have to be named). For example, if
5466a variable has internal linkage and no references other than that from the
5467``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5468references from inline asms and other things the compiler cannot "see", and
5469corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005470
5471On some targets, the code generator must emit a directive to the
5472assembler or object file to prevent the assembler and linker from
5473molesting the symbol.
5474
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005475.. _gv_llvmcompilerused:
5476
Sean Silvab084af42012-12-07 10:36:55 +00005477The '``llvm.compiler.used``' Global Variable
5478--------------------------------------------
5479
5480The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5481directive, except that it only prevents the compiler from touching the
5482symbol. On targets that support it, this allows an intelligent linker to
5483optimize references to the symbol without being impeded as it would be
5484by ``@llvm.used``.
5485
5486This is a rare construct that should only be used in rare circumstances,
5487and should not be exposed to source languages.
5488
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005489.. _gv_llvmglobalctors:
5490
Sean Silvab084af42012-12-07 10:36:55 +00005491The '``llvm.global_ctors``' Global Variable
5492-------------------------------------------
5493
5494.. code-block:: llvm
5495
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005496 %0 = type { i32, void ()*, i8* }
5497 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005498
5499The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005500functions, priorities, and an optional associated global or function.
5501The functions referenced by this array will be called in ascending order
5502of priority (i.e. lowest first) when the module is loaded. The order of
5503functions with the same priority is not defined.
5504
5505If the third field is present, non-null, and points to a global variable
5506or function, the initializer function will only run if the associated
5507data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005508
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005509.. _llvmglobaldtors:
5510
Sean Silvab084af42012-12-07 10:36:55 +00005511The '``llvm.global_dtors``' Global Variable
5512-------------------------------------------
5513
5514.. code-block:: llvm
5515
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005516 %0 = type { i32, void ()*, i8* }
5517 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005518
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005519The ``@llvm.global_dtors`` array contains a list of destructor
5520functions, priorities, and an optional associated global or function.
5521The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005522order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005523order of functions with the same priority is not defined.
5524
5525If the third field is present, non-null, and points to a global variable
5526or function, the destructor function will only run if the associated
5527data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005528
5529Instruction Reference
5530=====================
5531
5532The LLVM instruction set consists of several different classifications
5533of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5534instructions <binaryops>`, :ref:`bitwise binary
5535instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5536:ref:`other instructions <otherops>`.
5537
5538.. _terminators:
5539
5540Terminator Instructions
5541-----------------------
5542
5543As mentioned :ref:`previously <functionstructure>`, every basic block in a
5544program ends with a "Terminator" instruction, which indicates which
5545block should be executed after the current block is finished. These
5546terminator instructions typically yield a '``void``' value: they produce
5547control flow, not values (the one exception being the
5548':ref:`invoke <i_invoke>`' instruction).
5549
5550The terminator instructions are: ':ref:`ret <i_ret>`',
5551':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5552':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005553':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005554':ref:`catchret <i_catchret>`',
5555':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005556and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005557
5558.. _i_ret:
5559
5560'``ret``' Instruction
5561^^^^^^^^^^^^^^^^^^^^^
5562
5563Syntax:
5564"""""""
5565
5566::
5567
5568 ret <type> <value> ; Return a value from a non-void function
5569 ret void ; Return from void function
5570
5571Overview:
5572"""""""""
5573
5574The '``ret``' instruction is used to return control flow (and optionally
5575a value) from a function back to the caller.
5576
5577There are two forms of the '``ret``' instruction: one that returns a
5578value and then causes control flow, and one that just causes control
5579flow to occur.
5580
5581Arguments:
5582""""""""""
5583
5584The '``ret``' instruction optionally accepts a single argument, the
5585return value. The type of the return value must be a ':ref:`first
5586class <t_firstclass>`' type.
5587
5588A function is not :ref:`well formed <wellformed>` if it it has a non-void
5589return type and contains a '``ret``' instruction with no return value or
5590a return value with a type that does not match its type, or if it has a
5591void return type and contains a '``ret``' instruction with a return
5592value.
5593
5594Semantics:
5595""""""""""
5596
5597When the '``ret``' instruction is executed, control flow returns back to
5598the calling function's context. If the caller is a
5599":ref:`call <i_call>`" instruction, execution continues at the
5600instruction after the call. If the caller was an
5601":ref:`invoke <i_invoke>`" instruction, execution continues at the
5602beginning of the "normal" destination block. If the instruction returns
5603a value, that value shall set the call or invoke instruction's return
5604value.
5605
5606Example:
5607""""""""
5608
5609.. code-block:: llvm
5610
5611 ret i32 5 ; Return an integer value of 5
5612 ret void ; Return from a void function
5613 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5614
5615.. _i_br:
5616
5617'``br``' Instruction
5618^^^^^^^^^^^^^^^^^^^^
5619
5620Syntax:
5621"""""""
5622
5623::
5624
5625 br i1 <cond>, label <iftrue>, label <iffalse>
5626 br label <dest> ; Unconditional branch
5627
5628Overview:
5629"""""""""
5630
5631The '``br``' instruction is used to cause control flow to transfer to a
5632different basic block in the current function. There are two forms of
5633this instruction, corresponding to a conditional branch and an
5634unconditional branch.
5635
5636Arguments:
5637""""""""""
5638
5639The conditional branch form of the '``br``' instruction takes a single
5640'``i1``' value and two '``label``' values. The unconditional form of the
5641'``br``' instruction takes a single '``label``' value as a target.
5642
5643Semantics:
5644""""""""""
5645
5646Upon execution of a conditional '``br``' instruction, the '``i1``'
5647argument is evaluated. If the value is ``true``, control flows to the
5648'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5649to the '``iffalse``' ``label`` argument.
5650
5651Example:
5652""""""""
5653
5654.. code-block:: llvm
5655
5656 Test:
5657 %cond = icmp eq i32 %a, %b
5658 br i1 %cond, label %IfEqual, label %IfUnequal
5659 IfEqual:
5660 ret i32 1
5661 IfUnequal:
5662 ret i32 0
5663
5664.. _i_switch:
5665
5666'``switch``' Instruction
5667^^^^^^^^^^^^^^^^^^^^^^^^
5668
5669Syntax:
5670"""""""
5671
5672::
5673
5674 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5675
5676Overview:
5677"""""""""
5678
5679The '``switch``' instruction is used to transfer control flow to one of
5680several different places. It is a generalization of the '``br``'
5681instruction, allowing a branch to occur to one of many possible
5682destinations.
5683
5684Arguments:
5685""""""""""
5686
5687The '``switch``' instruction uses three parameters: an integer
5688comparison value '``value``', a default '``label``' destination, and an
5689array of pairs of comparison value constants and '``label``'s. The table
5690is not allowed to contain duplicate constant entries.
5691
5692Semantics:
5693""""""""""
5694
5695The ``switch`` instruction specifies a table of values and destinations.
5696When the '``switch``' instruction is executed, this table is searched
5697for the given value. If the value is found, control flow is transferred
5698to the corresponding destination; otherwise, control flow is transferred
5699to the default destination.
5700
5701Implementation:
5702"""""""""""""""
5703
5704Depending on properties of the target machine and the particular
5705``switch`` instruction, this instruction may be code generated in
5706different ways. For example, it could be generated as a series of
5707chained conditional branches or with a lookup table.
5708
5709Example:
5710""""""""
5711
5712.. code-block:: llvm
5713
5714 ; Emulate a conditional br instruction
5715 %Val = zext i1 %value to i32
5716 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5717
5718 ; Emulate an unconditional br instruction
5719 switch i32 0, label %dest [ ]
5720
5721 ; Implement a jump table:
5722 switch i32 %val, label %otherwise [ i32 0, label %onzero
5723 i32 1, label %onone
5724 i32 2, label %ontwo ]
5725
5726.. _i_indirectbr:
5727
5728'``indirectbr``' Instruction
5729^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5730
5731Syntax:
5732"""""""
5733
5734::
5735
5736 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5737
5738Overview:
5739"""""""""
5740
5741The '``indirectbr``' instruction implements an indirect branch to a
5742label within the current function, whose address is specified by
5743"``address``". Address must be derived from a
5744:ref:`blockaddress <blockaddress>` constant.
5745
5746Arguments:
5747""""""""""
5748
5749The '``address``' argument is the address of the label to jump to. The
5750rest of the arguments indicate the full set of possible destinations
5751that the address may point to. Blocks are allowed to occur multiple
5752times in the destination list, though this isn't particularly useful.
5753
5754This destination list is required so that dataflow analysis has an
5755accurate understanding of the CFG.
5756
5757Semantics:
5758""""""""""
5759
5760Control transfers to the block specified in the address argument. All
5761possible destination blocks must be listed in the label list, otherwise
5762this instruction has undefined behavior. This implies that jumps to
5763labels defined in other functions have undefined behavior as well.
5764
5765Implementation:
5766"""""""""""""""
5767
5768This is typically implemented with a jump through a register.
5769
5770Example:
5771""""""""
5772
5773.. code-block:: llvm
5774
5775 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5776
5777.. _i_invoke:
5778
5779'``invoke``' Instruction
5780^^^^^^^^^^^^^^^^^^^^^^^^
5781
5782Syntax:
5783"""""""
5784
5785::
5786
David Blaikieb83cf102016-07-13 17:21:34 +00005787 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005788 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005789
5790Overview:
5791"""""""""
5792
5793The '``invoke``' instruction causes control to transfer to a specified
5794function, with the possibility of control flow transfer to either the
5795'``normal``' label or the '``exception``' label. If the callee function
5796returns with the "``ret``" instruction, control flow will return to the
5797"normal" label. If the callee (or any indirect callees) returns via the
5798":ref:`resume <i_resume>`" instruction or other exception handling
5799mechanism, control is interrupted and continued at the dynamically
5800nearest "exception" label.
5801
5802The '``exception``' label is a `landing
5803pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5804'``exception``' label is required to have the
5805":ref:`landingpad <i_landingpad>`" instruction, which contains the
5806information about the behavior of the program after unwinding happens,
5807as its first non-PHI instruction. The restrictions on the
5808"``landingpad``" instruction's tightly couples it to the "``invoke``"
5809instruction, so that the important information contained within the
5810"``landingpad``" instruction can't be lost through normal code motion.
5811
5812Arguments:
5813""""""""""
5814
5815This instruction requires several arguments:
5816
5817#. The optional "cconv" marker indicates which :ref:`calling
5818 convention <callingconv>` the call should use. If none is
5819 specified, the call defaults to using C calling conventions.
5820#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5821 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5822 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00005823#. '``ty``': the type of the call instruction itself which is also the
5824 type of the return value. Functions that return no value are marked
5825 ``void``.
5826#. '``fnty``': shall be the signature of the function being invoked. The
5827 argument types must match the types implied by this signature. This
5828 type can be omitted if the function is not varargs.
5829#. '``fnptrval``': An LLVM value containing a pointer to a function to
5830 be invoked. In most cases, this is a direct function invocation, but
5831 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
5832 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00005833#. '``function args``': argument list whose types match the function
5834 signature argument types and parameter attributes. All arguments must
5835 be of :ref:`first class <t_firstclass>` type. If the function signature
5836 indicates the function accepts a variable number of arguments, the
5837 extra arguments can be specified.
5838#. '``normal label``': the label reached when the called function
5839 executes a '``ret``' instruction.
5840#. '``exception label``': the label reached when a callee returns via
5841 the :ref:`resume <i_resume>` instruction or other exception handling
5842 mechanism.
George Burgess IV8a464a72017-04-13 05:00:31 +00005843#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005844#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005845
5846Semantics:
5847""""""""""
5848
5849This instruction is designed to operate as a standard '``call``'
5850instruction in most regards. The primary difference is that it
5851establishes an association with a label, which is used by the runtime
5852library to unwind the stack.
5853
5854This instruction is used in languages with destructors to ensure that
5855proper cleanup is performed in the case of either a ``longjmp`` or a
5856thrown exception. Additionally, this is important for implementation of
5857'``catch``' clauses in high-level languages that support them.
5858
5859For the purposes of the SSA form, the definition of the value returned
5860by the '``invoke``' instruction is deemed to occur on the edge from the
5861current block to the "normal" label. If the callee unwinds then no
5862return value is available.
5863
5864Example:
5865""""""""
5866
5867.. code-block:: llvm
5868
5869 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005870 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005871 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005872 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005873
5874.. _i_resume:
5875
5876'``resume``' Instruction
5877^^^^^^^^^^^^^^^^^^^^^^^^
5878
5879Syntax:
5880"""""""
5881
5882::
5883
5884 resume <type> <value>
5885
5886Overview:
5887"""""""""
5888
5889The '``resume``' instruction is a terminator instruction that has no
5890successors.
5891
5892Arguments:
5893""""""""""
5894
5895The '``resume``' instruction requires one argument, which must have the
5896same type as the result of any '``landingpad``' instruction in the same
5897function.
5898
5899Semantics:
5900""""""""""
5901
5902The '``resume``' instruction resumes propagation of an existing
5903(in-flight) exception whose unwinding was interrupted with a
5904:ref:`landingpad <i_landingpad>` instruction.
5905
5906Example:
5907""""""""
5908
5909.. code-block:: llvm
5910
5911 resume { i8*, i32 } %exn
5912
David Majnemer8a1c45d2015-12-12 05:38:55 +00005913.. _i_catchswitch:
5914
5915'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005916^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005917
5918Syntax:
5919"""""""
5920
5921::
5922
5923 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5924 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5925
5926Overview:
5927"""""""""
5928
5929The '``catchswitch``' instruction is used by `LLVM's exception handling system
5930<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5931that may be executed by the :ref:`EH personality routine <personalityfn>`.
5932
5933Arguments:
5934""""""""""
5935
5936The ``parent`` argument is the token of the funclet that contains the
5937``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5938this operand may be the token ``none``.
5939
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005940The ``default`` argument is the label of another basic block beginning with
5941either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5942must be a legal target with respect to the ``parent`` links, as described in
5943the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005944
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005945The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005946:ref:`catchpad <i_catchpad>` instruction.
5947
5948Semantics:
5949""""""""""
5950
5951Executing this instruction transfers control to one of the successors in
5952``handlers``, if appropriate, or continues to unwind via the unwind label if
5953present.
5954
5955The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5956it must be both the first non-phi instruction and last instruction in the basic
5957block. Therefore, it must be the only non-phi instruction in the block.
5958
5959Example:
5960""""""""
5961
Renato Golin124f2592016-07-20 12:16:38 +00005962.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00005963
5964 dispatch1:
5965 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5966 dispatch2:
5967 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5968
David Majnemer654e1302015-07-31 17:58:14 +00005969.. _i_catchret:
5970
5971'``catchret``' Instruction
5972^^^^^^^^^^^^^^^^^^^^^^^^^^
5973
5974Syntax:
5975"""""""
5976
5977::
5978
David Majnemer8a1c45d2015-12-12 05:38:55 +00005979 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005980
5981Overview:
5982"""""""""
5983
5984The '``catchret``' instruction is a terminator instruction that has a
5985single successor.
5986
5987
5988Arguments:
5989""""""""""
5990
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005991The first argument to a '``catchret``' indicates which ``catchpad`` it
5992exits. It must be a :ref:`catchpad <i_catchpad>`.
5993The second argument to a '``catchret``' specifies where control will
5994transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005995
5996Semantics:
5997""""""""""
5998
David Majnemer8a1c45d2015-12-12 05:38:55 +00005999The '``catchret``' instruction ends an existing (in-flight) exception whose
6000unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
6001:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
6002code to, for example, destroy the active exception. Control then transfers to
6003``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006004
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006005The ``token`` argument must be a token produced by a ``catchpad`` instruction.
6006If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
6007funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6008the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00006009
6010Example:
6011""""""""
6012
Renato Golin124f2592016-07-20 12:16:38 +00006013.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006014
David Majnemer8a1c45d2015-12-12 05:38:55 +00006015 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006016
David Majnemer654e1302015-07-31 17:58:14 +00006017.. _i_cleanupret:
6018
6019'``cleanupret``' Instruction
6020^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6021
6022Syntax:
6023"""""""
6024
6025::
6026
David Majnemer8a1c45d2015-12-12 05:38:55 +00006027 cleanupret from <value> unwind label <continue>
6028 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00006029
6030Overview:
6031"""""""""
6032
6033The '``cleanupret``' instruction is a terminator instruction that has
6034an optional successor.
6035
6036
6037Arguments:
6038""""""""""
6039
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006040The '``cleanupret``' instruction requires one argument, which indicates
6041which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006042If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
6043funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6044the ``cleanupret``'s behavior is undefined.
6045
6046The '``cleanupret``' instruction also has an optional successor, ``continue``,
6047which must be the label of another basic block beginning with either a
6048``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
6049be a legal target with respect to the ``parent`` links, as described in the
6050`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00006051
6052Semantics:
6053""""""""""
6054
6055The '``cleanupret``' instruction indicates to the
6056:ref:`personality function <personalityfn>` that one
6057:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
6058It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006059
David Majnemer654e1302015-07-31 17:58:14 +00006060Example:
6061""""""""
6062
Renato Golin124f2592016-07-20 12:16:38 +00006063.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006064
David Majnemer8a1c45d2015-12-12 05:38:55 +00006065 cleanupret from %cleanup unwind to caller
6066 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00006067
Sean Silvab084af42012-12-07 10:36:55 +00006068.. _i_unreachable:
6069
6070'``unreachable``' Instruction
6071^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6072
6073Syntax:
6074"""""""
6075
6076::
6077
6078 unreachable
6079
6080Overview:
6081"""""""""
6082
6083The '``unreachable``' instruction has no defined semantics. This
6084instruction is used to inform the optimizer that a particular portion of
6085the code is not reachable. This can be used to indicate that the code
6086after a no-return function cannot be reached, and other facts.
6087
6088Semantics:
6089""""""""""
6090
6091The '``unreachable``' instruction has no defined semantics.
6092
6093.. _binaryops:
6094
6095Binary Operations
6096-----------------
6097
6098Binary operators are used to do most of the computation in a program.
6099They require two operands of the same type, execute an operation on
6100them, and produce a single value. The operands might represent multiple
6101data, as is the case with the :ref:`vector <t_vector>` data type. The
6102result value has the same type as its operands.
6103
6104There are several different binary operators:
6105
6106.. _i_add:
6107
6108'``add``' Instruction
6109^^^^^^^^^^^^^^^^^^^^^
6110
6111Syntax:
6112"""""""
6113
6114::
6115
Tim Northover675a0962014-06-13 14:24:23 +00006116 <result> = add <ty> <op1>, <op2> ; yields ty:result
6117 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
6118 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
6119 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006120
6121Overview:
6122"""""""""
6123
6124The '``add``' instruction returns the sum of its two operands.
6125
6126Arguments:
6127""""""""""
6128
6129The two arguments to the '``add``' instruction must be
6130:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6131arguments must have identical types.
6132
6133Semantics:
6134""""""""""
6135
6136The value produced is the integer sum of the two operands.
6137
6138If the sum has unsigned overflow, the result returned is the
6139mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6140the result.
6141
6142Because LLVM integers use a two's complement representation, this
6143instruction is appropriate for both signed and unsigned integers.
6144
6145``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6146respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6147result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
6148unsigned and/or signed overflow, respectively, occurs.
6149
6150Example:
6151""""""""
6152
Renato Golin124f2592016-07-20 12:16:38 +00006153.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006154
Tim Northover675a0962014-06-13 14:24:23 +00006155 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006156
6157.. _i_fadd:
6158
6159'``fadd``' Instruction
6160^^^^^^^^^^^^^^^^^^^^^^
6161
6162Syntax:
6163"""""""
6164
6165::
6166
Tim Northover675a0962014-06-13 14:24:23 +00006167 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006168
6169Overview:
6170"""""""""
6171
6172The '``fadd``' instruction returns the sum of its two operands.
6173
6174Arguments:
6175""""""""""
6176
6177The two arguments to the '``fadd``' instruction must be :ref:`floating
6178point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6179Both arguments must have identical types.
6180
6181Semantics:
6182""""""""""
6183
6184The value produced is the floating point sum of the two operands. This
6185instruction can also take any number of :ref:`fast-math flags <fastmath>`,
6186which are optimization hints to enable otherwise unsafe floating point
6187optimizations:
6188
6189Example:
6190""""""""
6191
Renato Golin124f2592016-07-20 12:16:38 +00006192.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006193
Tim Northover675a0962014-06-13 14:24:23 +00006194 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006195
6196'``sub``' Instruction
6197^^^^^^^^^^^^^^^^^^^^^
6198
6199Syntax:
6200"""""""
6201
6202::
6203
Tim Northover675a0962014-06-13 14:24:23 +00006204 <result> = sub <ty> <op1>, <op2> ; yields ty:result
6205 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
6206 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
6207 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006208
6209Overview:
6210"""""""""
6211
6212The '``sub``' instruction returns the difference of its two operands.
6213
6214Note that the '``sub``' instruction is used to represent the '``neg``'
6215instruction present in most other intermediate representations.
6216
6217Arguments:
6218""""""""""
6219
6220The two arguments to the '``sub``' instruction must be
6221:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6222arguments must have identical types.
6223
6224Semantics:
6225""""""""""
6226
6227The value produced is the integer difference of the two operands.
6228
6229If the difference has unsigned overflow, the result returned is the
6230mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6231the result.
6232
6233Because LLVM integers use a two's complement representation, this
6234instruction is appropriate for both signed and unsigned integers.
6235
6236``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6237respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6238result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
6239unsigned and/or signed overflow, respectively, occurs.
6240
6241Example:
6242""""""""
6243
Renato Golin124f2592016-07-20 12:16:38 +00006244.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006245
Tim Northover675a0962014-06-13 14:24:23 +00006246 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6247 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006248
6249.. _i_fsub:
6250
6251'``fsub``' Instruction
6252^^^^^^^^^^^^^^^^^^^^^^
6253
6254Syntax:
6255"""""""
6256
6257::
6258
Tim Northover675a0962014-06-13 14:24:23 +00006259 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006260
6261Overview:
6262"""""""""
6263
6264The '``fsub``' instruction returns the difference of its two operands.
6265
6266Note that the '``fsub``' instruction is used to represent the '``fneg``'
6267instruction present in most other intermediate representations.
6268
6269Arguments:
6270""""""""""
6271
6272The two arguments to the '``fsub``' instruction must be :ref:`floating
6273point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6274Both arguments must have identical types.
6275
6276Semantics:
6277""""""""""
6278
6279The value produced is the floating point difference of the two operands.
6280This instruction can also take any number of :ref:`fast-math
6281flags <fastmath>`, which are optimization hints to enable otherwise
6282unsafe floating point optimizations:
6283
6284Example:
6285""""""""
6286
Renato Golin124f2592016-07-20 12:16:38 +00006287.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006288
Tim Northover675a0962014-06-13 14:24:23 +00006289 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6290 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006291
6292'``mul``' Instruction
6293^^^^^^^^^^^^^^^^^^^^^
6294
6295Syntax:
6296"""""""
6297
6298::
6299
Tim Northover675a0962014-06-13 14:24:23 +00006300 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6301 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6302 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6303 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006304
6305Overview:
6306"""""""""
6307
6308The '``mul``' instruction returns the product of its two operands.
6309
6310Arguments:
6311""""""""""
6312
6313The two arguments to the '``mul``' instruction must be
6314:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6315arguments must have identical types.
6316
6317Semantics:
6318""""""""""
6319
6320The value produced is the integer product of the two operands.
6321
6322If the result of the multiplication has unsigned overflow, the result
6323returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6324bit width of the result.
6325
6326Because LLVM integers use a two's complement representation, and the
6327result is the same width as the operands, this instruction returns the
6328correct result for both signed and unsigned integers. If a full product
6329(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6330sign-extended or zero-extended as appropriate to the width of the full
6331product.
6332
6333``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6334respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6335result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6336unsigned and/or signed overflow, respectively, occurs.
6337
6338Example:
6339""""""""
6340
Renato Golin124f2592016-07-20 12:16:38 +00006341.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006342
Tim Northover675a0962014-06-13 14:24:23 +00006343 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006344
6345.. _i_fmul:
6346
6347'``fmul``' Instruction
6348^^^^^^^^^^^^^^^^^^^^^^
6349
6350Syntax:
6351"""""""
6352
6353::
6354
Tim Northover675a0962014-06-13 14:24:23 +00006355 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006356
6357Overview:
6358"""""""""
6359
6360The '``fmul``' instruction returns the product of its two operands.
6361
6362Arguments:
6363""""""""""
6364
6365The two arguments to the '``fmul``' instruction must be :ref:`floating
6366point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6367Both arguments must have identical types.
6368
6369Semantics:
6370""""""""""
6371
6372The value produced is the floating point product of the two operands.
6373This instruction can also take any number of :ref:`fast-math
6374flags <fastmath>`, which are optimization hints to enable otherwise
6375unsafe floating point optimizations:
6376
6377Example:
6378""""""""
6379
Renato Golin124f2592016-07-20 12:16:38 +00006380.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006381
Tim Northover675a0962014-06-13 14:24:23 +00006382 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006383
6384'``udiv``' Instruction
6385^^^^^^^^^^^^^^^^^^^^^^
6386
6387Syntax:
6388"""""""
6389
6390::
6391
Tim Northover675a0962014-06-13 14:24:23 +00006392 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6393 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006394
6395Overview:
6396"""""""""
6397
6398The '``udiv``' instruction returns the quotient of its two operands.
6399
6400Arguments:
6401""""""""""
6402
6403The two arguments to the '``udiv``' instruction must be
6404:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6405arguments must have identical types.
6406
6407Semantics:
6408""""""""""
6409
6410The value produced is the unsigned integer quotient of the two operands.
6411
6412Note that unsigned integer division and signed integer division are
6413distinct operations; for signed integer division, use '``sdiv``'.
6414
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006415Division by zero is undefined behavior. For vectors, if any element
6416of the divisor is zero, the operation has undefined behavior.
6417
Sean Silvab084af42012-12-07 10:36:55 +00006418
6419If the ``exact`` keyword is present, the result value of the ``udiv`` is
6420a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6421such, "((a udiv exact b) mul b) == a").
6422
6423Example:
6424""""""""
6425
Renato Golin124f2592016-07-20 12:16:38 +00006426.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006427
Tim Northover675a0962014-06-13 14:24:23 +00006428 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006429
6430'``sdiv``' Instruction
6431^^^^^^^^^^^^^^^^^^^^^^
6432
6433Syntax:
6434"""""""
6435
6436::
6437
Tim Northover675a0962014-06-13 14:24:23 +00006438 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6439 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006440
6441Overview:
6442"""""""""
6443
6444The '``sdiv``' instruction returns the quotient of its two operands.
6445
6446Arguments:
6447""""""""""
6448
6449The two arguments to the '``sdiv``' instruction must be
6450:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6451arguments must have identical types.
6452
6453Semantics:
6454""""""""""
6455
6456The value produced is the signed integer quotient of the two operands
6457rounded towards zero.
6458
6459Note that signed integer division and unsigned integer division are
6460distinct operations; for unsigned integer division, use '``udiv``'.
6461
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006462Division by zero is undefined behavior. For vectors, if any element
6463of the divisor is zero, the operation has undefined behavior.
6464Overflow also leads to undefined behavior; this is a rare case, but can
6465occur, for example, by doing a 32-bit division of -2147483648 by -1.
Sean Silvab084af42012-12-07 10:36:55 +00006466
6467If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6468a :ref:`poison value <poisonvalues>` if the result would be rounded.
6469
6470Example:
6471""""""""
6472
Renato Golin124f2592016-07-20 12:16:38 +00006473.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006474
Tim Northover675a0962014-06-13 14:24:23 +00006475 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006476
6477.. _i_fdiv:
6478
6479'``fdiv``' Instruction
6480^^^^^^^^^^^^^^^^^^^^^^
6481
6482Syntax:
6483"""""""
6484
6485::
6486
Tim Northover675a0962014-06-13 14:24:23 +00006487 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006488
6489Overview:
6490"""""""""
6491
6492The '``fdiv``' instruction returns the quotient of its two operands.
6493
6494Arguments:
6495""""""""""
6496
6497The two arguments to the '``fdiv``' instruction must be :ref:`floating
6498point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6499Both arguments must have identical types.
6500
6501Semantics:
6502""""""""""
6503
6504The value produced is the floating point quotient of the two operands.
6505This instruction can also take any number of :ref:`fast-math
6506flags <fastmath>`, which are optimization hints to enable otherwise
6507unsafe floating point optimizations:
6508
6509Example:
6510""""""""
6511
Renato Golin124f2592016-07-20 12:16:38 +00006512.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006513
Tim Northover675a0962014-06-13 14:24:23 +00006514 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006515
6516'``urem``' Instruction
6517^^^^^^^^^^^^^^^^^^^^^^
6518
6519Syntax:
6520"""""""
6521
6522::
6523
Tim Northover675a0962014-06-13 14:24:23 +00006524 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006525
6526Overview:
6527"""""""""
6528
6529The '``urem``' instruction returns the remainder from the unsigned
6530division of its two arguments.
6531
6532Arguments:
6533""""""""""
6534
6535The two arguments to the '``urem``' instruction must be
6536:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6537arguments must have identical types.
6538
6539Semantics:
6540""""""""""
6541
6542This instruction returns the unsigned integer *remainder* of a division.
6543This instruction always performs an unsigned division to get the
6544remainder.
6545
6546Note that unsigned integer remainder and signed integer remainder are
6547distinct operations; for signed integer remainder, use '``srem``'.
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006548
6549Taking the remainder of a division by zero is undefined behavior.
6550For vectors, if any element of the divisor is zero, the operation has
6551undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006552
6553Example:
6554""""""""
6555
Renato Golin124f2592016-07-20 12:16:38 +00006556.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006557
Tim Northover675a0962014-06-13 14:24:23 +00006558 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006559
6560'``srem``' Instruction
6561^^^^^^^^^^^^^^^^^^^^^^
6562
6563Syntax:
6564"""""""
6565
6566::
6567
Tim Northover675a0962014-06-13 14:24:23 +00006568 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006569
6570Overview:
6571"""""""""
6572
6573The '``srem``' instruction returns the remainder from the signed
6574division of its two operands. This instruction can also take
6575:ref:`vector <t_vector>` versions of the values in which case the elements
6576must be integers.
6577
6578Arguments:
6579""""""""""
6580
6581The two arguments to the '``srem``' instruction must be
6582:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6583arguments must have identical types.
6584
6585Semantics:
6586""""""""""
6587
6588This instruction returns the *remainder* of a division (where the result
6589is either zero or has the same sign as the dividend, ``op1``), not the
6590*modulo* operator (where the result is either zero or has the same sign
6591as the divisor, ``op2``) of a value. For more information about the
6592difference, see `The Math
6593Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6594table of how this is implemented in various languages, please see
6595`Wikipedia: modulo
6596operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6597
6598Note that signed integer remainder and unsigned integer remainder are
6599distinct operations; for unsigned integer remainder, use '``urem``'.
6600
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006601Taking the remainder of a division by zero is undefined behavior.
6602For vectors, if any element of the divisor is zero, the operation has
6603undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006604Overflow also leads to undefined behavior; this is a rare case, but can
6605occur, for example, by taking the remainder of a 32-bit division of
6606-2147483648 by -1. (The remainder doesn't actually overflow, but this
6607rule lets srem be implemented using instructions that return both the
6608result of the division and the remainder.)
6609
6610Example:
6611""""""""
6612
Renato Golin124f2592016-07-20 12:16:38 +00006613.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006614
Tim Northover675a0962014-06-13 14:24:23 +00006615 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006616
6617.. _i_frem:
6618
6619'``frem``' Instruction
6620^^^^^^^^^^^^^^^^^^^^^^
6621
6622Syntax:
6623"""""""
6624
6625::
6626
Tim Northover675a0962014-06-13 14:24:23 +00006627 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006628
6629Overview:
6630"""""""""
6631
6632The '``frem``' instruction returns the remainder from the division of
6633its two operands.
6634
6635Arguments:
6636""""""""""
6637
6638The two arguments to the '``frem``' instruction must be :ref:`floating
6639point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6640Both arguments must have identical types.
6641
6642Semantics:
6643""""""""""
6644
6645This instruction returns the *remainder* of a division. The remainder
6646has the same sign as the dividend. This instruction can also take any
6647number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6648to enable otherwise unsafe floating point optimizations:
6649
6650Example:
6651""""""""
6652
Renato Golin124f2592016-07-20 12:16:38 +00006653.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006654
Tim Northover675a0962014-06-13 14:24:23 +00006655 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006656
6657.. _bitwiseops:
6658
6659Bitwise Binary Operations
6660-------------------------
6661
6662Bitwise binary operators are used to do various forms of bit-twiddling
6663in a program. They are generally very efficient instructions and can
6664commonly be strength reduced from other instructions. They require two
6665operands of the same type, execute an operation on them, and produce a
6666single value. The resulting value is the same type as its operands.
6667
6668'``shl``' Instruction
6669^^^^^^^^^^^^^^^^^^^^^
6670
6671Syntax:
6672"""""""
6673
6674::
6675
Tim Northover675a0962014-06-13 14:24:23 +00006676 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6677 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6678 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6679 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006680
6681Overview:
6682"""""""""
6683
6684The '``shl``' instruction returns the first operand shifted to the left
6685a specified number of bits.
6686
6687Arguments:
6688""""""""""
6689
6690Both arguments to the '``shl``' instruction must be the same
6691:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6692'``op2``' is treated as an unsigned value.
6693
6694Semantics:
6695""""""""""
6696
6697The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6698where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006699dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006700``op1``, the result is undefined. If the arguments are vectors, each
6701vector element of ``op1`` is shifted by the corresponding shift amount
6702in ``op2``.
6703
6704If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6705value <poisonvalues>` if it shifts out any non-zero bits. If the
6706``nsw`` keyword is present, then the shift produces a :ref:`poison
6707value <poisonvalues>` if it shifts out any bits that disagree with the
Sanjoy Dasdbc58d02016-11-13 23:40:40 +00006708resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00006709
6710Example:
6711""""""""
6712
Renato Golin124f2592016-07-20 12:16:38 +00006713.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006714
Tim Northover675a0962014-06-13 14:24:23 +00006715 <result> = shl i32 4, %var ; yields i32: 4 << %var
6716 <result> = shl i32 4, 2 ; yields i32: 16
6717 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006718 <result> = shl i32 1, 32 ; undefined
6719 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6720
6721'``lshr``' Instruction
6722^^^^^^^^^^^^^^^^^^^^^^
6723
6724Syntax:
6725"""""""
6726
6727::
6728
Tim Northover675a0962014-06-13 14:24:23 +00006729 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6730 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006731
6732Overview:
6733"""""""""
6734
6735The '``lshr``' instruction (logical shift right) returns the first
6736operand shifted to the right a specified number of bits with zero fill.
6737
6738Arguments:
6739""""""""""
6740
6741Both arguments to the '``lshr``' instruction must be the same
6742:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6743'``op2``' is treated as an unsigned value.
6744
6745Semantics:
6746""""""""""
6747
6748This instruction always performs a logical shift right operation. The
6749most significant bits of the result will be filled with zero bits after
6750the shift. If ``op2`` is (statically or dynamically) equal to or larger
6751than the number of bits in ``op1``, the result is undefined. If the
6752arguments are vectors, each vector element of ``op1`` is shifted by the
6753corresponding shift amount in ``op2``.
6754
6755If the ``exact`` keyword is present, the result value of the ``lshr`` is
6756a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6757non-zero.
6758
6759Example:
6760""""""""
6761
Renato Golin124f2592016-07-20 12:16:38 +00006762.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006763
Tim Northover675a0962014-06-13 14:24:23 +00006764 <result> = lshr i32 4, 1 ; yields i32:result = 2
6765 <result> = lshr i32 4, 2 ; yields i32:result = 1
6766 <result> = lshr i8 4, 3 ; yields i8:result = 0
6767 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006768 <result> = lshr i32 1, 32 ; undefined
6769 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6770
6771'``ashr``' Instruction
6772^^^^^^^^^^^^^^^^^^^^^^
6773
6774Syntax:
6775"""""""
6776
6777::
6778
Tim Northover675a0962014-06-13 14:24:23 +00006779 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6780 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006781
6782Overview:
6783"""""""""
6784
6785The '``ashr``' instruction (arithmetic shift right) returns the first
6786operand shifted to the right a specified number of bits with sign
6787extension.
6788
6789Arguments:
6790""""""""""
6791
6792Both arguments to the '``ashr``' instruction must be the same
6793:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6794'``op2``' is treated as an unsigned value.
6795
6796Semantics:
6797""""""""""
6798
6799This instruction always performs an arithmetic shift right operation,
6800The most significant bits of the result will be filled with the sign bit
6801of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6802than the number of bits in ``op1``, the result is undefined. If the
6803arguments are vectors, each vector element of ``op1`` is shifted by the
6804corresponding shift amount in ``op2``.
6805
6806If the ``exact`` keyword is present, the result value of the ``ashr`` is
6807a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6808non-zero.
6809
6810Example:
6811""""""""
6812
Renato Golin124f2592016-07-20 12:16:38 +00006813.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006814
Tim Northover675a0962014-06-13 14:24:23 +00006815 <result> = ashr i32 4, 1 ; yields i32:result = 2
6816 <result> = ashr i32 4, 2 ; yields i32:result = 1
6817 <result> = ashr i8 4, 3 ; yields i8:result = 0
6818 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006819 <result> = ashr i32 1, 32 ; undefined
6820 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6821
6822'``and``' Instruction
6823^^^^^^^^^^^^^^^^^^^^^
6824
6825Syntax:
6826"""""""
6827
6828::
6829
Tim Northover675a0962014-06-13 14:24:23 +00006830 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006831
6832Overview:
6833"""""""""
6834
6835The '``and``' instruction returns the bitwise logical and of its two
6836operands.
6837
6838Arguments:
6839""""""""""
6840
6841The two arguments to the '``and``' instruction must be
6842:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6843arguments must have identical types.
6844
6845Semantics:
6846""""""""""
6847
6848The truth table used for the '``and``' instruction is:
6849
6850+-----+-----+-----+
6851| In0 | In1 | Out |
6852+-----+-----+-----+
6853| 0 | 0 | 0 |
6854+-----+-----+-----+
6855| 0 | 1 | 0 |
6856+-----+-----+-----+
6857| 1 | 0 | 0 |
6858+-----+-----+-----+
6859| 1 | 1 | 1 |
6860+-----+-----+-----+
6861
6862Example:
6863""""""""
6864
Renato Golin124f2592016-07-20 12:16:38 +00006865.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006866
Tim Northover675a0962014-06-13 14:24:23 +00006867 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6868 <result> = and i32 15, 40 ; yields i32:result = 8
6869 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006870
6871'``or``' Instruction
6872^^^^^^^^^^^^^^^^^^^^
6873
6874Syntax:
6875"""""""
6876
6877::
6878
Tim Northover675a0962014-06-13 14:24:23 +00006879 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006880
6881Overview:
6882"""""""""
6883
6884The '``or``' instruction returns the bitwise logical inclusive or of its
6885two operands.
6886
6887Arguments:
6888""""""""""
6889
6890The two arguments to the '``or``' instruction must be
6891:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6892arguments must have identical types.
6893
6894Semantics:
6895""""""""""
6896
6897The truth table used for the '``or``' instruction is:
6898
6899+-----+-----+-----+
6900| In0 | In1 | Out |
6901+-----+-----+-----+
6902| 0 | 0 | 0 |
6903+-----+-----+-----+
6904| 0 | 1 | 1 |
6905+-----+-----+-----+
6906| 1 | 0 | 1 |
6907+-----+-----+-----+
6908| 1 | 1 | 1 |
6909+-----+-----+-----+
6910
6911Example:
6912""""""""
6913
6914::
6915
Tim Northover675a0962014-06-13 14:24:23 +00006916 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6917 <result> = or i32 15, 40 ; yields i32:result = 47
6918 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006919
6920'``xor``' Instruction
6921^^^^^^^^^^^^^^^^^^^^^
6922
6923Syntax:
6924"""""""
6925
6926::
6927
Tim Northover675a0962014-06-13 14:24:23 +00006928 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006929
6930Overview:
6931"""""""""
6932
6933The '``xor``' instruction returns the bitwise logical exclusive or of
6934its two operands. The ``xor`` is used to implement the "one's
6935complement" operation, which is the "~" operator in C.
6936
6937Arguments:
6938""""""""""
6939
6940The two arguments to the '``xor``' instruction must be
6941:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6942arguments must have identical types.
6943
6944Semantics:
6945""""""""""
6946
6947The truth table used for the '``xor``' instruction is:
6948
6949+-----+-----+-----+
6950| In0 | In1 | Out |
6951+-----+-----+-----+
6952| 0 | 0 | 0 |
6953+-----+-----+-----+
6954| 0 | 1 | 1 |
6955+-----+-----+-----+
6956| 1 | 0 | 1 |
6957+-----+-----+-----+
6958| 1 | 1 | 0 |
6959+-----+-----+-----+
6960
6961Example:
6962""""""""
6963
Renato Golin124f2592016-07-20 12:16:38 +00006964.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006965
Tim Northover675a0962014-06-13 14:24:23 +00006966 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6967 <result> = xor i32 15, 40 ; yields i32:result = 39
6968 <result> = xor i32 4, 8 ; yields i32:result = 12
6969 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006970
6971Vector Operations
6972-----------------
6973
6974LLVM supports several instructions to represent vector operations in a
6975target-independent manner. These instructions cover the element-access
6976and vector-specific operations needed to process vectors effectively.
6977While LLVM does directly support these vector operations, many
6978sophisticated algorithms will want to use target-specific intrinsics to
6979take full advantage of a specific target.
6980
6981.. _i_extractelement:
6982
6983'``extractelement``' Instruction
6984^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6985
6986Syntax:
6987"""""""
6988
6989::
6990
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006991 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006992
6993Overview:
6994"""""""""
6995
6996The '``extractelement``' instruction extracts a single scalar element
6997from a vector at a specified index.
6998
6999Arguments:
7000""""""""""
7001
7002The first operand of an '``extractelement``' instruction is a value of
7003:ref:`vector <t_vector>` type. The second operand is an index indicating
7004the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007005variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007006
7007Semantics:
7008""""""""""
7009
7010The result is a scalar of the same type as the element type of ``val``.
7011Its value is the value at position ``idx`` of ``val``. If ``idx``
7012exceeds the length of ``val``, the results are undefined.
7013
7014Example:
7015""""""""
7016
Renato Golin124f2592016-07-20 12:16:38 +00007017.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007018
7019 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
7020
7021.. _i_insertelement:
7022
7023'``insertelement``' Instruction
7024^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7025
7026Syntax:
7027"""""""
7028
7029::
7030
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007031 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00007032
7033Overview:
7034"""""""""
7035
7036The '``insertelement``' instruction inserts a scalar element into a
7037vector at a specified index.
7038
7039Arguments:
7040""""""""""
7041
7042The first operand of an '``insertelement``' instruction is a value of
7043:ref:`vector <t_vector>` type. The second operand is a scalar value whose
7044type must equal the element type of the first operand. The third operand
7045is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007046index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007047
7048Semantics:
7049""""""""""
7050
7051The result is a vector of the same type as ``val``. Its element values
7052are those of ``val`` except at position ``idx``, where it gets the value
7053``elt``. If ``idx`` exceeds the length of ``val``, the results are
7054undefined.
7055
7056Example:
7057""""""""
7058
Renato Golin124f2592016-07-20 12:16:38 +00007059.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007060
7061 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
7062
7063.. _i_shufflevector:
7064
7065'``shufflevector``' Instruction
7066^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7067
7068Syntax:
7069"""""""
7070
7071::
7072
7073 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
7074
7075Overview:
7076"""""""""
7077
7078The '``shufflevector``' instruction constructs a permutation of elements
7079from two input vectors, returning a vector with the same element type as
7080the input and length that is the same as the shuffle mask.
7081
7082Arguments:
7083""""""""""
7084
7085The first two operands of a '``shufflevector``' instruction are vectors
7086with the same type. The third argument is a shuffle mask whose element
7087type is always 'i32'. The result of the instruction is a vector whose
7088length is the same as the shuffle mask and whose element type is the
7089same as the element type of the first two operands.
7090
7091The shuffle mask operand is required to be a constant vector with either
7092constant integer or undef values.
7093
7094Semantics:
7095""""""""""
7096
7097The elements of the two input vectors are numbered from left to right
7098across both of the vectors. The shuffle mask operand specifies, for each
7099element of the result vector, which element of the two input vectors the
Sanjay Patel6e410182017-04-12 18:39:53 +00007100result element gets. If the shuffle mask is undef, the result vector is
7101undef. If any element of the mask operand is undef, that element of the
7102result is undef. If the shuffle mask selects an undef element from one
7103of the input vectors, the resulting element is undef.
Sean Silvab084af42012-12-07 10:36:55 +00007104
7105Example:
7106""""""""
7107
Renato Golin124f2592016-07-20 12:16:38 +00007108.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007109
7110 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7111 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
7112 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
7113 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
7114 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
7115 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
7116 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7117 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
7118
7119Aggregate Operations
7120--------------------
7121
7122LLVM supports several instructions for working with
7123:ref:`aggregate <t_aggregate>` values.
7124
7125.. _i_extractvalue:
7126
7127'``extractvalue``' Instruction
7128^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7129
7130Syntax:
7131"""""""
7132
7133::
7134
7135 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
7136
7137Overview:
7138"""""""""
7139
7140The '``extractvalue``' instruction extracts the value of a member field
7141from an :ref:`aggregate <t_aggregate>` value.
7142
7143Arguments:
7144""""""""""
7145
7146The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00007147:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00007148constant indices to specify which value to extract in a similar manner
7149as indices in a '``getelementptr``' instruction.
7150
7151The major differences to ``getelementptr`` indexing are:
7152
7153- Since the value being indexed is not a pointer, the first index is
7154 omitted and assumed to be zero.
7155- At least one index must be specified.
7156- Not only struct indices but also array indices must be in bounds.
7157
7158Semantics:
7159""""""""""
7160
7161The result is the value at the position in the aggregate specified by
7162the index operands.
7163
7164Example:
7165""""""""
7166
Renato Golin124f2592016-07-20 12:16:38 +00007167.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007168
7169 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
7170
7171.. _i_insertvalue:
7172
7173'``insertvalue``' Instruction
7174^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7175
7176Syntax:
7177"""""""
7178
7179::
7180
7181 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
7182
7183Overview:
7184"""""""""
7185
7186The '``insertvalue``' instruction inserts a value into a member field in
7187an :ref:`aggregate <t_aggregate>` value.
7188
7189Arguments:
7190""""""""""
7191
7192The first operand of an '``insertvalue``' instruction is a value of
7193:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
7194a first-class value to insert. The following operands are constant
7195indices indicating the position at which to insert the value in a
7196similar manner as indices in a '``extractvalue``' instruction. The value
7197to insert must have the same type as the value identified by the
7198indices.
7199
7200Semantics:
7201""""""""""
7202
7203The result is an aggregate of the same type as ``val``. Its value is
7204that of ``val`` except that the value at the position specified by the
7205indices is that of ``elt``.
7206
7207Example:
7208""""""""
7209
7210.. code-block:: llvm
7211
7212 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
7213 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00007214 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00007215
7216.. _memoryops:
7217
7218Memory Access and Addressing Operations
7219---------------------------------------
7220
7221A key design point of an SSA-based representation is how it represents
7222memory. In LLVM, no memory locations are in SSA form, which makes things
7223very simple. This section describes how to read, write, and allocate
7224memory in LLVM.
7225
7226.. _i_alloca:
7227
7228'``alloca``' Instruction
7229^^^^^^^^^^^^^^^^^^^^^^^^
7230
7231Syntax:
7232"""""""
7233
7234::
7235
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007236 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result
Sean Silvab084af42012-12-07 10:36:55 +00007237
7238Overview:
7239"""""""""
7240
7241The '``alloca``' instruction allocates memory on the stack frame of the
7242currently executing function, to be automatically released when this
7243function returns to its caller. The object is always allocated in the
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007244address space for allocas indicated in the datalayout.
Sean Silvab084af42012-12-07 10:36:55 +00007245
7246Arguments:
7247""""""""""
7248
7249The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7250bytes of memory on the runtime stack, returning a pointer of the
7251appropriate type to the program. If "NumElements" is specified, it is
7252the number of elements allocated, otherwise "NumElements" is defaulted
7253to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007254allocation is guaranteed to be aligned to at least that boundary. The
7255alignment may not be greater than ``1 << 29``. If not specified, or if
7256zero, the target can choose to align the allocation on any convenient
7257boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007258
7259'``type``' may be any sized type.
7260
7261Semantics:
7262""""""""""
7263
7264Memory is allocated; a pointer is returned. The operation is undefined
7265if there is insufficient stack space for the allocation. '``alloca``'d
7266memory is automatically released when the function returns. The
7267'``alloca``' instruction is commonly used to represent automatic
7268variables that must have an address available. When the function returns
7269(either with the ``ret`` or ``resume`` instructions), the memory is
7270reclaimed. Allocating zero bytes is legal, but the result is undefined.
7271The order in which memory is allocated (ie., which way the stack grows)
7272is not specified.
7273
7274Example:
7275""""""""
7276
7277.. code-block:: llvm
7278
Tim Northover675a0962014-06-13 14:24:23 +00007279 %ptr = alloca i32 ; yields i32*:ptr
7280 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7281 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7282 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007283
7284.. _i_load:
7285
7286'``load``' Instruction
7287^^^^^^^^^^^^^^^^^^^^^^
7288
7289Syntax:
7290"""""""
7291
7292::
7293
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007294 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00007295 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007296 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007297 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007298 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007299
7300Overview:
7301"""""""""
7302
7303The '``load``' instruction is used to read from memory.
7304
7305Arguments:
7306""""""""""
7307
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007308The argument to the ``load`` instruction specifies the memory address from which
7309to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7310known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7311the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7312modify the number or order of execution of this ``load`` with other
7313:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007314
JF Bastiend1fb5852015-12-17 22:09:19 +00007315If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
7316<ordering>` and optional ``singlethread`` argument. The ``release`` and
7317``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
7318produce :ref:`defined <memmodel>` results when they may see multiple atomic
7319stores. The type of the pointee must be an integer, pointer, or floating-point
7320type whose bit width is a power of two greater than or equal to eight and less
7321than or equal to a target-specific size limit. ``align`` must be explicitly
7322specified on atomic loads, and the load has undefined behavior if the alignment
7323is not set to a value which is at least the size in bytes of the
7324pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007325
7326The optional constant ``align`` argument specifies the alignment of the
7327operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007328or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007329alignment for the target. It is the responsibility of the code emitter
7330to ensure that the alignment information is correct. Overestimating the
7331alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007332may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007333maximum possible alignment is ``1 << 29``. An alignment value higher
7334than the size of the loaded type implies memory up to the alignment
7335value bytes can be safely loaded without trapping in the default
7336address space. Access of the high bytes can interfere with debugging
7337tools, so should not be accessed if the function has the
7338``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007339
7340The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007341metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007342``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007343metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007344that this load is not expected to be reused in the cache. The code
7345generator may select special instructions to save cache bandwidth, such
7346as the ``MOVNT`` instruction on x86.
7347
7348The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007349metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007350entries. If a load instruction tagged with the ``!invariant.load``
7351metadata is executed, the optimizer may assume the memory location
7352referenced by the load contains the same value at all points in the
7353program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007354
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007355The optional ``!invariant.group`` metadata must reference a single metadata name
7356 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7357
Philip Reamescdb72f32014-10-20 22:40:55 +00007358The optional ``!nonnull`` metadata must reference a single
7359metadata name ``<index>`` corresponding to a metadata node with no
7360entries. The existence of the ``!nonnull`` metadata on the
7361instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007362never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007363on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007364to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007365
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007366The optional ``!dereferenceable`` metadata must reference a single metadata
7367name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007368entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007369tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007370The number of bytes known to be dereferenceable is specified by the integer
7371value in the metadata node. This is analogous to the ''dereferenceable''
7372attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007373to loads of a pointer type.
7374
7375The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007376metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7377``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007378instruction tells the optimizer that the value loaded is known to be either
7379dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007380The number of bytes known to be dereferenceable is specified by the integer
7381value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7382attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007383to loads of a pointer type.
7384
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007385The optional ``!align`` metadata must reference a single metadata name
7386``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7387The existence of the ``!align`` metadata on the instruction tells the
7388optimizer that the value loaded is known to be aligned to a boundary specified
7389by the integer value in the metadata node. The alignment must be a power of 2.
7390This is analogous to the ''align'' attribute on parameters and return values.
7391This metadata can only be applied to loads of a pointer type.
7392
Sean Silvab084af42012-12-07 10:36:55 +00007393Semantics:
7394""""""""""
7395
7396The location of memory pointed to is loaded. If the value being loaded
7397is of scalar type then the number of bytes read does not exceed the
7398minimum number of bytes needed to hold all bits of the type. For
7399example, loading an ``i24`` reads at most three bytes. When loading a
7400value of a type like ``i20`` with a size that is not an integral number
7401of bytes, the result is undefined if the value was not originally
7402written using a store of the same type.
7403
7404Examples:
7405"""""""""
7406
7407.. code-block:: llvm
7408
Tim Northover675a0962014-06-13 14:24:23 +00007409 %ptr = alloca i32 ; yields i32*:ptr
7410 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007411 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007412
7413.. _i_store:
7414
7415'``store``' Instruction
7416^^^^^^^^^^^^^^^^^^^^^^^
7417
7418Syntax:
7419"""""""
7420
7421::
7422
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007423 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7424 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007425
7426Overview:
7427"""""""""
7428
7429The '``store``' instruction is used to write to memory.
7430
7431Arguments:
7432""""""""""
7433
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007434There are two arguments to the ``store`` instruction: a value to store and an
7435address at which to store it. The type of the ``<pointer>`` operand must be a
7436pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7437operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7438allowed to modify the number or order of execution of this ``store`` with other
7439:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7440<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7441structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007442
JF Bastiend1fb5852015-12-17 22:09:19 +00007443If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7444<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7445``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7446produce :ref:`defined <memmodel>` results when they may see multiple atomic
7447stores. The type of the pointee must be an integer, pointer, or floating-point
7448type whose bit width is a power of two greater than or equal to eight and less
7449than or equal to a target-specific size limit. ``align`` must be explicitly
7450specified on atomic stores, and the store has undefined behavior if the
7451alignment is not set to a value which is at least the size in bytes of the
7452pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007453
Eli Benderskyca380842013-04-17 17:17:20 +00007454The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007455operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007456or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007457alignment for the target. It is the responsibility of the code emitter
7458to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007459alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007460alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007461safe. The maximum possible alignment is ``1 << 29``. An alignment
7462value higher than the size of the stored type implies memory up to the
7463alignment value bytes can be stored to without trapping in the default
7464address space. Storing to the higher bytes however may result in data
7465races if another thread can access the same address. Introducing a
7466data race is not allowed. Storing to the extra bytes is not allowed
7467even in situations where a data race is known to not exist if the
7468function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007469
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007470The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007471name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007472value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007473tells the optimizer and code generator that this load is not expected to
7474be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007475instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007476x86.
7477
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007478The optional ``!invariant.group`` metadata must reference a
7479single metadata name ``<index>``. See ``invariant.group`` metadata.
7480
Sean Silvab084af42012-12-07 10:36:55 +00007481Semantics:
7482""""""""""
7483
Eli Benderskyca380842013-04-17 17:17:20 +00007484The contents of memory are updated to contain ``<value>`` at the
7485location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007486of scalar type then the number of bytes written does not exceed the
7487minimum number of bytes needed to hold all bits of the type. For
7488example, storing an ``i24`` writes at most three bytes. When writing a
7489value of a type like ``i20`` with a size that is not an integral number
7490of bytes, it is unspecified what happens to the extra bits that do not
7491belong to the type, but they will typically be overwritten.
7492
7493Example:
7494""""""""
7495
7496.. code-block:: llvm
7497
Tim Northover675a0962014-06-13 14:24:23 +00007498 %ptr = alloca i32 ; yields i32*:ptr
7499 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007500 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007501
7502.. _i_fence:
7503
7504'``fence``' Instruction
7505^^^^^^^^^^^^^^^^^^^^^^^
7506
7507Syntax:
7508"""""""
7509
7510::
7511
Tim Northover675a0962014-06-13 14:24:23 +00007512 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007513
7514Overview:
7515"""""""""
7516
7517The '``fence``' instruction is used to introduce happens-before edges
7518between operations.
7519
7520Arguments:
7521""""""""""
7522
7523'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7524defines what *synchronizes-with* edges they add. They can only be given
7525``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7526
7527Semantics:
7528""""""""""
7529
7530A fence A which has (at least) ``release`` ordering semantics
7531*synchronizes with* a fence B with (at least) ``acquire`` ordering
7532semantics if and only if there exist atomic operations X and Y, both
7533operating on some atomic object M, such that A is sequenced before X, X
7534modifies M (either directly or through some side effect of a sequence
7535headed by X), Y is sequenced before B, and Y observes M. This provides a
7536*happens-before* dependency between A and B. Rather than an explicit
7537``fence``, one (but not both) of the atomic operations X or Y might
7538provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7539still *synchronize-with* the explicit ``fence`` and establish the
7540*happens-before* edge.
7541
7542A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7543``acquire`` and ``release`` semantics specified above, participates in
7544the global program order of other ``seq_cst`` operations and/or fences.
7545
7546The optional ":ref:`singlethread <singlethread>`" argument specifies
7547that the fence only synchronizes with other fences in the same thread.
7548(This is useful for interacting with signal handlers.)
7549
7550Example:
7551""""""""
7552
7553.. code-block:: llvm
7554
Tim Northover675a0962014-06-13 14:24:23 +00007555 fence acquire ; yields void
7556 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007557
7558.. _i_cmpxchg:
7559
7560'``cmpxchg``' Instruction
7561^^^^^^^^^^^^^^^^^^^^^^^^^
7562
7563Syntax:
7564"""""""
7565
7566::
7567
Tim Northover675a0962014-06-13 14:24:23 +00007568 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007569
7570Overview:
7571"""""""""
7572
7573The '``cmpxchg``' instruction is used to atomically modify memory. It
7574loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007575equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007576
7577Arguments:
7578""""""""""
7579
7580There are three arguments to the '``cmpxchg``' instruction: an address
7581to operate on, a value to compare to the value currently be at that
7582address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007583are equal. The type of '<cmp>' must be an integer or pointer type whose
7584bit width is a power of two greater than or equal to eight and less
7585than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7586have the same type, and the type of '<pointer>' must be a pointer to
7587that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7588optimizer is not allowed to modify the number or order of execution of
7589this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007590
Tim Northovere94a5182014-03-11 10:48:52 +00007591The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007592``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7593must be at least ``monotonic``, the ordering constraint on failure must be no
7594stronger than that on success, and the failure ordering cannot be either
7595``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007596
7597The optional "``singlethread``" argument declares that the ``cmpxchg``
7598is only atomic with respect to code (usually signal handlers) running in
7599the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7600respect to all other code in the system.
7601
7602The pointer passed into cmpxchg must have alignment greater than or
7603equal to the size in memory of the operand.
7604
7605Semantics:
7606""""""""""
7607
Tim Northover420a2162014-06-13 14:24:07 +00007608The contents of memory at the location specified by the '``<pointer>``' operand
7609is read and compared to '``<cmp>``'; if the read value is the equal, the
7610'``<new>``' is written. The original value at the location is returned, together
7611with a flag indicating success (true) or failure (false).
7612
7613If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7614permitted: the operation may not write ``<new>`` even if the comparison
7615matched.
7616
7617If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7618if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007619
Tim Northovere94a5182014-03-11 10:48:52 +00007620A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7621identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7622load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007623
7624Example:
7625""""""""
7626
7627.. code-block:: llvm
7628
7629 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007630 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007631 br label %loop
7632
7633 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007634 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007635 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007636 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007637 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7638 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007639 br i1 %success, label %done, label %loop
7640
7641 done:
7642 ...
7643
7644.. _i_atomicrmw:
7645
7646'``atomicrmw``' Instruction
7647^^^^^^^^^^^^^^^^^^^^^^^^^^^
7648
7649Syntax:
7650"""""""
7651
7652::
7653
Tim Northover675a0962014-06-13 14:24:23 +00007654 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007655
7656Overview:
7657"""""""""
7658
7659The '``atomicrmw``' instruction is used to atomically modify memory.
7660
7661Arguments:
7662""""""""""
7663
7664There are three arguments to the '``atomicrmw``' instruction: an
7665operation to apply, an address whose value to modify, an argument to the
7666operation. The operation must be one of the following keywords:
7667
7668- xchg
7669- add
7670- sub
7671- and
7672- nand
7673- or
7674- xor
7675- max
7676- min
7677- umax
7678- umin
7679
7680The type of '<value>' must be an integer type whose bit width is a power
7681of two greater than or equal to eight and less than or equal to a
7682target-specific size limit. The type of the '``<pointer>``' operand must
7683be a pointer to that type. If the ``atomicrmw`` is marked as
7684``volatile``, then the optimizer is not allowed to modify the number or
7685order of execution of this ``atomicrmw`` with other :ref:`volatile
7686operations <volatile>`.
7687
7688Semantics:
7689""""""""""
7690
7691The contents of memory at the location specified by the '``<pointer>``'
7692operand are atomically read, modified, and written back. The original
7693value at the location is returned. The modification is specified by the
7694operation argument:
7695
7696- xchg: ``*ptr = val``
7697- add: ``*ptr = *ptr + val``
7698- sub: ``*ptr = *ptr - val``
7699- and: ``*ptr = *ptr & val``
7700- nand: ``*ptr = ~(*ptr & val)``
7701- or: ``*ptr = *ptr | val``
7702- xor: ``*ptr = *ptr ^ val``
7703- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7704- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7705- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7706 comparison)
7707- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7708 comparison)
7709
7710Example:
7711""""""""
7712
7713.. code-block:: llvm
7714
Tim Northover675a0962014-06-13 14:24:23 +00007715 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007716
7717.. _i_getelementptr:
7718
7719'``getelementptr``' Instruction
7720^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7721
7722Syntax:
7723"""""""
7724
7725::
7726
Peter Collingbourned93620b2016-11-10 22:34:55 +00007727 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7728 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7729 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007730
7731Overview:
7732"""""""""
7733
7734The '``getelementptr``' instruction is used to get the address of a
7735subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007736address calculation only and does not access memory. The instruction can also
7737be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007738
7739Arguments:
7740""""""""""
7741
David Blaikie16a97eb2015-03-04 22:02:58 +00007742The first argument is always a type used as the basis for the calculations.
7743The second argument is always a pointer or a vector of pointers, and is the
7744base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007745that indicate which of the elements of the aggregate object are indexed.
7746The interpretation of each index is dependent on the type being indexed
7747into. The first index always indexes the pointer value given as the
7748first argument, the second index indexes a value of the type pointed to
7749(not necessarily the value directly pointed to, since the first index
7750can be non-zero), etc. The first type indexed into must be a pointer
7751value, subsequent types can be arrays, vectors, and structs. Note that
7752subsequent types being indexed into can never be pointers, since that
7753would require loading the pointer before continuing calculation.
7754
7755The type of each index argument depends on the type it is indexing into.
7756When indexing into a (optionally packed) structure, only ``i32`` integer
7757**constants** are allowed (when using a vector of indices they must all
7758be the **same** ``i32`` integer constant). When indexing into an array,
7759pointer or vector, integers of any width are allowed, and they are not
7760required to be constant. These integers are treated as signed values
7761where relevant.
7762
7763For example, let's consider a C code fragment and how it gets compiled
7764to LLVM:
7765
7766.. code-block:: c
7767
7768 struct RT {
7769 char A;
7770 int B[10][20];
7771 char C;
7772 };
7773 struct ST {
7774 int X;
7775 double Y;
7776 struct RT Z;
7777 };
7778
7779 int *foo(struct ST *s) {
7780 return &s[1].Z.B[5][13];
7781 }
7782
7783The LLVM code generated by Clang is:
7784
7785.. code-block:: llvm
7786
7787 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7788 %struct.ST = type { i32, double, %struct.RT }
7789
7790 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7791 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007792 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007793 ret i32* %arrayidx
7794 }
7795
7796Semantics:
7797""""""""""
7798
7799In the example above, the first index is indexing into the
7800'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7801= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7802indexes into the third element of the structure, yielding a
7803'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7804structure. The third index indexes into the second element of the
7805structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7806dimensions of the array are subscripted into, yielding an '``i32``'
7807type. The '``getelementptr``' instruction returns a pointer to this
7808element, thus computing a value of '``i32*``' type.
7809
7810Note that it is perfectly legal to index partially through a structure,
7811returning a pointer to an inner element. Because of this, the LLVM code
7812for the given testcase is equivalent to:
7813
7814.. code-block:: llvm
7815
7816 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007817 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7818 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7819 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7820 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7821 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007822 ret i32* %t5
7823 }
7824
7825If the ``inbounds`` keyword is present, the result value of the
7826``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7827pointer is not an *in bounds* address of an allocated object, or if any
7828of the addresses that would be formed by successive addition of the
7829offsets implied by the indices to the base address with infinitely
7830precise signed arithmetic are not an *in bounds* address of that
7831allocated object. The *in bounds* addresses for an allocated object are
7832all the addresses that point into the object, plus the address one byte
Eli Friedman13f2e352017-02-23 00:48:18 +00007833past the end. The only *in bounds* address for a null pointer in the
7834default address-space is the null pointer itself. In cases where the
7835base is a vector of pointers the ``inbounds`` keyword applies to each
7836of the computations element-wise.
Sean Silvab084af42012-12-07 10:36:55 +00007837
7838If the ``inbounds`` keyword is not present, the offsets are added to the
7839base address with silently-wrapping two's complement arithmetic. If the
7840offsets have a different width from the pointer, they are sign-extended
7841or truncated to the width of the pointer. The result value of the
7842``getelementptr`` may be outside the object pointed to by the base
7843pointer. The result value may not necessarily be used to access memory
7844though, even if it happens to point into allocated storage. See the
7845:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7846information.
7847
Peter Collingbourned93620b2016-11-10 22:34:55 +00007848If the ``inrange`` keyword is present before any index, loading from or
7849storing to any pointer derived from the ``getelementptr`` has undefined
7850behavior if the load or store would access memory outside of the bounds of
7851the element selected by the index marked as ``inrange``. The result of a
7852pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
7853involving memory) involving a pointer derived from a ``getelementptr`` with
7854the ``inrange`` keyword is undefined, with the exception of comparisons
7855in the case where both operands are in the range of the element selected
7856by the ``inrange`` keyword, inclusive of the address one past the end of
7857that element. Note that the ``inrange`` keyword is currently only allowed
7858in constant ``getelementptr`` expressions.
7859
Sean Silvab084af42012-12-07 10:36:55 +00007860The getelementptr instruction is often confusing. For some more insight
7861into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7862
7863Example:
7864""""""""
7865
7866.. code-block:: llvm
7867
7868 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007869 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007870 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007871 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007872 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007873 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007874 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007875 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007876
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007877Vector of pointers:
7878"""""""""""""""""""
7879
7880The ``getelementptr`` returns a vector of pointers, instead of a single address,
7881when one or more of its arguments is a vector. In such cases, all vector
7882arguments should have the same number of elements, and every scalar argument
7883will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007884
7885.. code-block:: llvm
7886
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007887 ; All arguments are vectors:
7888 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7889 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007890
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007891 ; Add the same scalar offset to each pointer of a vector:
7892 ; A[i] = ptrs[i] + offset*sizeof(i8)
7893 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007894
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007895 ; Add distinct offsets to the same pointer:
7896 ; A[i] = ptr + offsets[i]*sizeof(i8)
7897 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007898
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007899 ; In all cases described above the type of the result is <4 x i8*>
7900
7901The two following instructions are equivalent:
7902
7903.. code-block:: llvm
7904
7905 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7906 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7907 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7908 <4 x i32> %ind4,
7909 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007910
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007911 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7912 i32 2, i32 1, <4 x i32> %ind4, i64 13
7913
7914Let's look at the C code, where the vector version of ``getelementptr``
7915makes sense:
7916
7917.. code-block:: c
7918
7919 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00007920 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007921 for (int i = 0; i < size; ++i) {
7922 A[i] = B[C[i]];
7923 }
7924
7925.. code-block:: llvm
7926
7927 ; get pointers for 8 elements from array B
7928 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7929 ; load 8 elements from array B into A
Elad Cohenef5798a2017-05-03 12:28:54 +00007930 %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007931 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007932
7933Conversion Operations
7934---------------------
7935
7936The instructions in this category are the conversion instructions
7937(casting) which all take a single operand and a type. They perform
7938various bit conversions on the operand.
7939
7940'``trunc .. to``' Instruction
7941^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7942
7943Syntax:
7944"""""""
7945
7946::
7947
7948 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7949
7950Overview:
7951"""""""""
7952
7953The '``trunc``' instruction truncates its operand to the type ``ty2``.
7954
7955Arguments:
7956""""""""""
7957
7958The '``trunc``' instruction takes a value to trunc, and a type to trunc
7959it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7960of the same number of integers. The bit size of the ``value`` must be
7961larger than the bit size of the destination type, ``ty2``. Equal sized
7962types are not allowed.
7963
7964Semantics:
7965""""""""""
7966
7967The '``trunc``' instruction truncates the high order bits in ``value``
7968and converts the remaining bits to ``ty2``. Since the source size must
7969be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7970It will always truncate bits.
7971
7972Example:
7973""""""""
7974
7975.. code-block:: llvm
7976
7977 %X = trunc i32 257 to i8 ; yields i8:1
7978 %Y = trunc i32 123 to i1 ; yields i1:true
7979 %Z = trunc i32 122 to i1 ; yields i1:false
7980 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7981
7982'``zext .. to``' Instruction
7983^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7984
7985Syntax:
7986"""""""
7987
7988::
7989
7990 <result> = zext <ty> <value> to <ty2> ; yields ty2
7991
7992Overview:
7993"""""""""
7994
7995The '``zext``' instruction zero extends its operand to type ``ty2``.
7996
7997Arguments:
7998""""""""""
7999
8000The '``zext``' instruction takes a value to cast, and a type to cast it
8001to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8002the same number of integers. The bit size of the ``value`` must be
8003smaller than the bit size of the destination type, ``ty2``.
8004
8005Semantics:
8006""""""""""
8007
8008The ``zext`` fills the high order bits of the ``value`` with zero bits
8009until it reaches the size of the destination type, ``ty2``.
8010
8011When zero extending from i1, the result will always be either 0 or 1.
8012
8013Example:
8014""""""""
8015
8016.. code-block:: llvm
8017
8018 %X = zext i32 257 to i64 ; yields i64:257
8019 %Y = zext i1 true to i32 ; yields i32:1
8020 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8021
8022'``sext .. to``' Instruction
8023^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8024
8025Syntax:
8026"""""""
8027
8028::
8029
8030 <result> = sext <ty> <value> to <ty2> ; yields ty2
8031
8032Overview:
8033"""""""""
8034
8035The '``sext``' sign extends ``value`` to the type ``ty2``.
8036
8037Arguments:
8038""""""""""
8039
8040The '``sext``' instruction takes a value to cast, and a type to cast it
8041to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8042the same number of integers. The bit size of the ``value`` must be
8043smaller than the bit size of the destination type, ``ty2``.
8044
8045Semantics:
8046""""""""""
8047
8048The '``sext``' instruction performs a sign extension by copying the sign
8049bit (highest order bit) of the ``value`` until it reaches the bit size
8050of the type ``ty2``.
8051
8052When sign extending from i1, the extension always results in -1 or 0.
8053
8054Example:
8055""""""""
8056
8057.. code-block:: llvm
8058
8059 %X = sext i8 -1 to i16 ; yields i16 :65535
8060 %Y = sext i1 true to i32 ; yields i32:-1
8061 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8062
8063'``fptrunc .. to``' Instruction
8064^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8065
8066Syntax:
8067"""""""
8068
8069::
8070
8071 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
8072
8073Overview:
8074"""""""""
8075
8076The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
8077
8078Arguments:
8079""""""""""
8080
8081The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
8082value to cast and a :ref:`floating point <t_floating>` type to cast it to.
8083The size of ``value`` must be larger than the size of ``ty2``. This
8084implies that ``fptrunc`` cannot be used to make a *no-op cast*.
8085
8086Semantics:
8087""""""""""
8088
Dan Liew50456fb2015-09-03 18:43:56 +00008089The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00008090:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00008091point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
8092destination type, ``ty2``, then the results are undefined. If the cast produces
8093an inexact result, how rounding is performed (e.g. truncation, also known as
8094round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00008095
8096Example:
8097""""""""
8098
8099.. code-block:: llvm
8100
8101 %X = fptrunc double 123.0 to float ; yields float:123.0
8102 %Y = fptrunc double 1.0E+300 to float ; yields undefined
8103
8104'``fpext .. to``' Instruction
8105^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8106
8107Syntax:
8108"""""""
8109
8110::
8111
8112 <result> = fpext <ty> <value> to <ty2> ; yields ty2
8113
8114Overview:
8115"""""""""
8116
8117The '``fpext``' extends a floating point ``value`` to a larger floating
8118point value.
8119
8120Arguments:
8121""""""""""
8122
8123The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
8124``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
8125to. The source type must be smaller than the destination type.
8126
8127Semantics:
8128""""""""""
8129
8130The '``fpext``' instruction extends the ``value`` from a smaller
8131:ref:`floating point <t_floating>` type to a larger :ref:`floating
8132point <t_floating>` type. The ``fpext`` cannot be used to make a
8133*no-op cast* because it always changes bits. Use ``bitcast`` to make a
8134*no-op cast* for a floating point cast.
8135
8136Example:
8137""""""""
8138
8139.. code-block:: llvm
8140
8141 %X = fpext float 3.125 to double ; yields double:3.125000e+00
8142 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
8143
8144'``fptoui .. to``' Instruction
8145^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8146
8147Syntax:
8148"""""""
8149
8150::
8151
8152 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
8153
8154Overview:
8155"""""""""
8156
8157The '``fptoui``' converts a floating point ``value`` to its unsigned
8158integer equivalent of type ``ty2``.
8159
8160Arguments:
8161""""""""""
8162
8163The '``fptoui``' instruction takes a value to cast, which must be a
8164scalar or vector :ref:`floating point <t_floating>` value, and a type to
8165cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8166``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8167type with the same number of elements as ``ty``
8168
8169Semantics:
8170""""""""""
8171
8172The '``fptoui``' instruction converts its :ref:`floating
8173point <t_floating>` operand into the nearest (rounding towards zero)
8174unsigned integer value. If the value cannot fit in ``ty2``, the results
8175are undefined.
8176
8177Example:
8178""""""""
8179
8180.. code-block:: llvm
8181
8182 %X = fptoui double 123.0 to i32 ; yields i32:123
8183 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
8184 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
8185
8186'``fptosi .. to``' Instruction
8187^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8188
8189Syntax:
8190"""""""
8191
8192::
8193
8194 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
8195
8196Overview:
8197"""""""""
8198
8199The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
8200``value`` to type ``ty2``.
8201
8202Arguments:
8203""""""""""
8204
8205The '``fptosi``' instruction takes a value to cast, which must be a
8206scalar or vector :ref:`floating point <t_floating>` value, and a type to
8207cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8208``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8209type with the same number of elements as ``ty``
8210
8211Semantics:
8212""""""""""
8213
8214The '``fptosi``' instruction converts its :ref:`floating
8215point <t_floating>` operand into the nearest (rounding towards zero)
8216signed integer value. If the value cannot fit in ``ty2``, the results
8217are undefined.
8218
8219Example:
8220""""""""
8221
8222.. code-block:: llvm
8223
8224 %X = fptosi double -123.0 to i32 ; yields i32:-123
8225 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
8226 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
8227
8228'``uitofp .. to``' Instruction
8229^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8230
8231Syntax:
8232"""""""
8233
8234::
8235
8236 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
8237
8238Overview:
8239"""""""""
8240
8241The '``uitofp``' instruction regards ``value`` as an unsigned integer
8242and converts that value to the ``ty2`` type.
8243
8244Arguments:
8245""""""""""
8246
8247The '``uitofp``' instruction takes a value to cast, which must be a
8248scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8249``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8250``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8251type with the same number of elements as ``ty``
8252
8253Semantics:
8254""""""""""
8255
8256The '``uitofp``' instruction interprets its operand as an unsigned
8257integer quantity and converts it to the corresponding floating point
8258value. If the value cannot fit in the floating point value, the results
8259are undefined.
8260
8261Example:
8262""""""""
8263
8264.. code-block:: llvm
8265
8266 %X = uitofp i32 257 to float ; yields float:257.0
8267 %Y = uitofp i8 -1 to double ; yields double:255.0
8268
8269'``sitofp .. to``' Instruction
8270^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8271
8272Syntax:
8273"""""""
8274
8275::
8276
8277 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8278
8279Overview:
8280"""""""""
8281
8282The '``sitofp``' instruction regards ``value`` as a signed integer and
8283converts that value to the ``ty2`` type.
8284
8285Arguments:
8286""""""""""
8287
8288The '``sitofp``' instruction takes a value to cast, which must be a
8289scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8290``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8291``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8292type with the same number of elements as ``ty``
8293
8294Semantics:
8295""""""""""
8296
8297The '``sitofp``' instruction interprets its operand as a signed integer
8298quantity and converts it to the corresponding floating point value. If
8299the value cannot fit in the floating point value, the results are
8300undefined.
8301
8302Example:
8303""""""""
8304
8305.. code-block:: llvm
8306
8307 %X = sitofp i32 257 to float ; yields float:257.0
8308 %Y = sitofp i8 -1 to double ; yields double:-1.0
8309
8310.. _i_ptrtoint:
8311
8312'``ptrtoint .. to``' Instruction
8313^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8314
8315Syntax:
8316"""""""
8317
8318::
8319
8320 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8321
8322Overview:
8323"""""""""
8324
8325The '``ptrtoint``' instruction converts the pointer or a vector of
8326pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8327
8328Arguments:
8329""""""""""
8330
8331The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008332a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008333type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8334a vector of integers type.
8335
8336Semantics:
8337""""""""""
8338
8339The '``ptrtoint``' instruction converts ``value`` to integer type
8340``ty2`` by interpreting the pointer value as an integer and either
8341truncating or zero extending that value to the size of the integer type.
8342If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8343``value`` is larger than ``ty2`` then a truncation is done. If they are
8344the same size, then nothing is done (*no-op cast*) other than a type
8345change.
8346
8347Example:
8348""""""""
8349
8350.. code-block:: llvm
8351
8352 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8353 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8354 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8355
8356.. _i_inttoptr:
8357
8358'``inttoptr .. to``' Instruction
8359^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8360
8361Syntax:
8362"""""""
8363
8364::
8365
8366 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8367
8368Overview:
8369"""""""""
8370
8371The '``inttoptr``' instruction converts an integer ``value`` to a
8372pointer type, ``ty2``.
8373
8374Arguments:
8375""""""""""
8376
8377The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8378cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8379type.
8380
8381Semantics:
8382""""""""""
8383
8384The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8385applying either a zero extension or a truncation depending on the size
8386of the integer ``value``. If ``value`` is larger than the size of a
8387pointer then a truncation is done. If ``value`` is smaller than the size
8388of a pointer then a zero extension is done. If they are the same size,
8389nothing is done (*no-op cast*).
8390
8391Example:
8392""""""""
8393
8394.. code-block:: llvm
8395
8396 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8397 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8398 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8399 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8400
8401.. _i_bitcast:
8402
8403'``bitcast .. to``' Instruction
8404^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8405
8406Syntax:
8407"""""""
8408
8409::
8410
8411 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8412
8413Overview:
8414"""""""""
8415
8416The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8417changing any bits.
8418
8419Arguments:
8420""""""""""
8421
8422The '``bitcast``' instruction takes a value to cast, which must be a
8423non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008424also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8425bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008426identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008427also be a pointer of the same size. This instruction supports bitwise
8428conversion of vectors to integers and to vectors of other types (as
8429long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008430
8431Semantics:
8432""""""""""
8433
Matt Arsenault24b49c42013-07-31 17:49:08 +00008434The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8435is always a *no-op cast* because no bits change with this
8436conversion. The conversion is done as if the ``value`` had been stored
8437to memory and read back as type ``ty2``. Pointer (or vector of
8438pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008439pointers) types with the same address space through this instruction.
8440To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8441or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008442
8443Example:
8444""""""""
8445
Renato Golin124f2592016-07-20 12:16:38 +00008446.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008447
8448 %X = bitcast i8 255 to i8 ; yields i8 :-1
8449 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8450 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8451 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8452
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008453.. _i_addrspacecast:
8454
8455'``addrspacecast .. to``' Instruction
8456^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8457
8458Syntax:
8459"""""""
8460
8461::
8462
8463 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8464
8465Overview:
8466"""""""""
8467
8468The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8469address space ``n`` to type ``pty2`` in address space ``m``.
8470
8471Arguments:
8472""""""""""
8473
8474The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8475to cast and a pointer type to cast it to, which must have a different
8476address space.
8477
8478Semantics:
8479""""""""""
8480
8481The '``addrspacecast``' instruction converts the pointer value
8482``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008483value modification, depending on the target and the address space
8484pair. Pointer conversions within the same address space must be
8485performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008486conversion is legal then both result and operand refer to the same memory
8487location.
8488
8489Example:
8490""""""""
8491
8492.. code-block:: llvm
8493
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008494 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8495 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8496 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008497
Sean Silvab084af42012-12-07 10:36:55 +00008498.. _otherops:
8499
8500Other Operations
8501----------------
8502
8503The instructions in this category are the "miscellaneous" instructions,
8504which defy better classification.
8505
8506.. _i_icmp:
8507
8508'``icmp``' Instruction
8509^^^^^^^^^^^^^^^^^^^^^^
8510
8511Syntax:
8512"""""""
8513
8514::
8515
Tim Northover675a0962014-06-13 14:24:23 +00008516 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008517
8518Overview:
8519"""""""""
8520
8521The '``icmp``' instruction returns a boolean value or a vector of
8522boolean values based on comparison of its two integer, integer vector,
8523pointer, or pointer vector operands.
8524
8525Arguments:
8526""""""""""
8527
8528The '``icmp``' instruction takes three operands. The first operand is
8529the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008530not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008531
8532#. ``eq``: equal
8533#. ``ne``: not equal
8534#. ``ugt``: unsigned greater than
8535#. ``uge``: unsigned greater or equal
8536#. ``ult``: unsigned less than
8537#. ``ule``: unsigned less or equal
8538#. ``sgt``: signed greater than
8539#. ``sge``: signed greater or equal
8540#. ``slt``: signed less than
8541#. ``sle``: signed less or equal
8542
8543The remaining two arguments must be :ref:`integer <t_integer>` or
8544:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8545must also be identical types.
8546
8547Semantics:
8548""""""""""
8549
8550The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8551code given as ``cond``. The comparison performed always yields either an
8552:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8553
8554#. ``eq``: yields ``true`` if the operands are equal, ``false``
8555 otherwise. No sign interpretation is necessary or performed.
8556#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8557 otherwise. No sign interpretation is necessary or performed.
8558#. ``ugt``: interprets the operands as unsigned values and yields
8559 ``true`` if ``op1`` is greater than ``op2``.
8560#. ``uge``: interprets the operands as unsigned values and yields
8561 ``true`` if ``op1`` is greater than or equal to ``op2``.
8562#. ``ult``: interprets the operands as unsigned values and yields
8563 ``true`` if ``op1`` is less than ``op2``.
8564#. ``ule``: interprets the operands as unsigned values and yields
8565 ``true`` if ``op1`` is less than or equal to ``op2``.
8566#. ``sgt``: interprets the operands as signed values and yields ``true``
8567 if ``op1`` is greater than ``op2``.
8568#. ``sge``: interprets the operands as signed values and yields ``true``
8569 if ``op1`` is greater than or equal to ``op2``.
8570#. ``slt``: interprets the operands as signed values and yields ``true``
8571 if ``op1`` is less than ``op2``.
8572#. ``sle``: interprets the operands as signed values and yields ``true``
8573 if ``op1`` is less than or equal to ``op2``.
8574
8575If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8576are compared as if they were integers.
8577
8578If the operands are integer vectors, then they are compared element by
8579element. The result is an ``i1`` vector with the same number of elements
8580as the values being compared. Otherwise, the result is an ``i1``.
8581
8582Example:
8583""""""""
8584
Renato Golin124f2592016-07-20 12:16:38 +00008585.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008586
8587 <result> = icmp eq i32 4, 5 ; yields: result=false
8588 <result> = icmp ne float* %X, %X ; yields: result=false
8589 <result> = icmp ult i16 4, 5 ; yields: result=true
8590 <result> = icmp sgt i16 4, 5 ; yields: result=false
8591 <result> = icmp ule i16 -4, 5 ; yields: result=false
8592 <result> = icmp sge i16 4, 5 ; yields: result=false
8593
Sean Silvab084af42012-12-07 10:36:55 +00008594.. _i_fcmp:
8595
8596'``fcmp``' Instruction
8597^^^^^^^^^^^^^^^^^^^^^^
8598
8599Syntax:
8600"""""""
8601
8602::
8603
James Molloy88eb5352015-07-10 12:52:00 +00008604 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008605
8606Overview:
8607"""""""""
8608
8609The '``fcmp``' instruction returns a boolean value or vector of boolean
8610values based on comparison of its operands.
8611
8612If the operands are floating point scalars, then the result type is a
8613boolean (:ref:`i1 <t_integer>`).
8614
8615If the operands are floating point vectors, then the result type is a
8616vector of boolean with the same number of elements as the operands being
8617compared.
8618
8619Arguments:
8620""""""""""
8621
8622The '``fcmp``' instruction takes three operands. The first operand is
8623the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008624not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008625
8626#. ``false``: no comparison, always returns false
8627#. ``oeq``: ordered and equal
8628#. ``ogt``: ordered and greater than
8629#. ``oge``: ordered and greater than or equal
8630#. ``olt``: ordered and less than
8631#. ``ole``: ordered and less than or equal
8632#. ``one``: ordered and not equal
8633#. ``ord``: ordered (no nans)
8634#. ``ueq``: unordered or equal
8635#. ``ugt``: unordered or greater than
8636#. ``uge``: unordered or greater than or equal
8637#. ``ult``: unordered or less than
8638#. ``ule``: unordered or less than or equal
8639#. ``une``: unordered or not equal
8640#. ``uno``: unordered (either nans)
8641#. ``true``: no comparison, always returns true
8642
8643*Ordered* means that neither operand is a QNAN while *unordered* means
8644that either operand may be a QNAN.
8645
8646Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8647point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8648type. They must have identical types.
8649
8650Semantics:
8651""""""""""
8652
8653The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8654condition code given as ``cond``. If the operands are vectors, then the
8655vectors are compared element by element. Each comparison performed
8656always yields an :ref:`i1 <t_integer>` result, as follows:
8657
8658#. ``false``: always yields ``false``, regardless of operands.
8659#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8660 is equal to ``op2``.
8661#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8662 is greater than ``op2``.
8663#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8664 is greater than or equal to ``op2``.
8665#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8666 is less than ``op2``.
8667#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8668 is less than or equal to ``op2``.
8669#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8670 is not equal to ``op2``.
8671#. ``ord``: yields ``true`` if both operands are not a QNAN.
8672#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8673 equal to ``op2``.
8674#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8675 greater than ``op2``.
8676#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8677 greater than or equal to ``op2``.
8678#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8679 less than ``op2``.
8680#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8681 less than or equal to ``op2``.
8682#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8683 not equal to ``op2``.
8684#. ``uno``: yields ``true`` if either operand is a QNAN.
8685#. ``true``: always yields ``true``, regardless of operands.
8686
James Molloy88eb5352015-07-10 12:52:00 +00008687The ``fcmp`` instruction can also optionally take any number of
8688:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8689otherwise unsafe floating point optimizations.
8690
8691Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8692only flags that have any effect on its semantics are those that allow
8693assumptions to be made about the values of input arguments; namely
8694``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8695
Sean Silvab084af42012-12-07 10:36:55 +00008696Example:
8697""""""""
8698
Renato Golin124f2592016-07-20 12:16:38 +00008699.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008700
8701 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8702 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8703 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8704 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8705
Sean Silvab084af42012-12-07 10:36:55 +00008706.. _i_phi:
8707
8708'``phi``' Instruction
8709^^^^^^^^^^^^^^^^^^^^^
8710
8711Syntax:
8712"""""""
8713
8714::
8715
8716 <result> = phi <ty> [ <val0>, <label0>], ...
8717
8718Overview:
8719"""""""""
8720
8721The '``phi``' instruction is used to implement the φ node in the SSA
8722graph representing the function.
8723
8724Arguments:
8725""""""""""
8726
8727The type of the incoming values is specified with the first type field.
8728After this, the '``phi``' instruction takes a list of pairs as
8729arguments, with one pair for each predecessor basic block of the current
8730block. Only values of :ref:`first class <t_firstclass>` type may be used as
8731the value arguments to the PHI node. Only labels may be used as the
8732label arguments.
8733
8734There must be no non-phi instructions between the start of a basic block
8735and the PHI instructions: i.e. PHI instructions must be first in a basic
8736block.
8737
8738For the purposes of the SSA form, the use of each incoming value is
8739deemed to occur on the edge from the corresponding predecessor block to
8740the current block (but after any definition of an '``invoke``'
8741instruction's return value on the same edge).
8742
8743Semantics:
8744""""""""""
8745
8746At runtime, the '``phi``' instruction logically takes on the value
8747specified by the pair corresponding to the predecessor basic block that
8748executed just prior to the current block.
8749
8750Example:
8751""""""""
8752
8753.. code-block:: llvm
8754
8755 Loop: ; Infinite loop that counts from 0 on up...
8756 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8757 %nextindvar = add i32 %indvar, 1
8758 br label %Loop
8759
8760.. _i_select:
8761
8762'``select``' Instruction
8763^^^^^^^^^^^^^^^^^^^^^^^^
8764
8765Syntax:
8766"""""""
8767
8768::
8769
8770 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8771
8772 selty is either i1 or {<N x i1>}
8773
8774Overview:
8775"""""""""
8776
8777The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008778condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008779
8780Arguments:
8781""""""""""
8782
8783The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8784values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008785class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008786
8787Semantics:
8788""""""""""
8789
8790If the condition is an i1 and it evaluates to 1, the instruction returns
8791the first value argument; otherwise, it returns the second value
8792argument.
8793
8794If the condition is a vector of i1, then the value arguments must be
8795vectors of the same size, and the selection is done element by element.
8796
David Majnemer40a0b592015-03-03 22:45:47 +00008797If the condition is an i1 and the value arguments are vectors of the
8798same size, then an entire vector is selected.
8799
Sean Silvab084af42012-12-07 10:36:55 +00008800Example:
8801""""""""
8802
8803.. code-block:: llvm
8804
8805 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8806
8807.. _i_call:
8808
8809'``call``' Instruction
8810^^^^^^^^^^^^^^^^^^^^^^
8811
8812Syntax:
8813"""""""
8814
8815::
8816
David Blaikieb83cf102016-07-13 17:21:34 +00008817 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008818 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008819
8820Overview:
8821"""""""""
8822
8823The '``call``' instruction represents a simple function call.
8824
8825Arguments:
8826""""""""""
8827
8828This instruction requires several arguments:
8829
Reid Kleckner5772b772014-04-24 20:14:34 +00008830#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008831 should perform tail call optimization. The ``tail`` marker is a hint that
8832 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008833 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008834 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008835
8836 #. The call will not cause unbounded stack growth if it is part of a
8837 recursive cycle in the call graph.
8838 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8839 forwarded in place.
8840
8841 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008842 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008843 rules:
8844
8845 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8846 or a pointer bitcast followed by a ret instruction.
8847 - The ret instruction must return the (possibly bitcasted) value
8848 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008849 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008850 parameters or return types may differ in pointee type, but not
8851 in address space.
8852 - The calling conventions of the caller and callee must match.
8853 - All ABI-impacting function attributes, such as sret, byval, inreg,
8854 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008855 - The callee must be varargs iff the caller is varargs. Bitcasting a
8856 non-varargs function to the appropriate varargs type is legal so
8857 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008858
8859 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8860 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008861
8862 - Caller and callee both have the calling convention ``fastcc``.
8863 - The call is in tail position (ret immediately follows call and ret
8864 uses value of call or is void).
8865 - Option ``-tailcallopt`` is enabled, or
8866 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008867 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008868 met. <CodeGenerator.html#tailcallopt>`_
8869
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008870#. The optional ``notail`` marker indicates that the optimizers should not add
8871 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8872 call optimization from being performed on the call.
8873
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008874#. The optional ``fast-math flags`` marker indicates that the call has one or more
8875 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8876 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8877 for calls that return a floating-point scalar or vector type.
8878
Sean Silvab084af42012-12-07 10:36:55 +00008879#. The optional "cconv" marker indicates which :ref:`calling
8880 convention <callingconv>` the call should use. If none is
8881 specified, the call defaults to using C calling conventions. The
8882 calling convention of the call must match the calling convention of
8883 the target function, or else the behavior is undefined.
8884#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8885 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8886 are valid here.
8887#. '``ty``': the type of the call instruction itself which is also the
8888 type of the return value. Functions that return no value are marked
8889 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00008890#. '``fnty``': shall be the signature of the function being called. The
8891 argument types must match the types implied by this signature. This
8892 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00008893#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00008894 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00008895 indirect ``call``'s are just as possible, calling an arbitrary pointer
8896 to function value.
8897#. '``function args``': argument list whose types match the function
8898 signature argument types and parameter attributes. All arguments must
8899 be of :ref:`first class <t_firstclass>` type. If the function signature
8900 indicates the function accepts a variable number of arguments, the
8901 extra arguments can be specified.
George Burgess IV39c91052017-04-13 04:01:55 +00008902#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008903#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008904
8905Semantics:
8906""""""""""
8907
8908The '``call``' instruction is used to cause control flow to transfer to
8909a specified function, with its incoming arguments bound to the specified
8910values. Upon a '``ret``' instruction in the called function, control
8911flow continues with the instruction after the function call, and the
8912return value of the function is bound to the result argument.
8913
8914Example:
8915""""""""
8916
8917.. code-block:: llvm
8918
8919 %retval = call i32 @test(i32 %argc)
8920 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8921 %X = tail call i32 @foo() ; yields i32
8922 %Y = tail call fastcc i32 @foo() ; yields i32
8923 call void %foo(i8 97 signext)
8924
8925 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008926 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008927 %gr = extractvalue %struct.A %r, 0 ; yields i32
8928 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8929 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8930 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8931
8932llvm treats calls to some functions with names and arguments that match
8933the standard C99 library as being the C99 library functions, and may
8934perform optimizations or generate code for them under that assumption.
8935This is something we'd like to change in the future to provide better
8936support for freestanding environments and non-C-based languages.
8937
8938.. _i_va_arg:
8939
8940'``va_arg``' Instruction
8941^^^^^^^^^^^^^^^^^^^^^^^^
8942
8943Syntax:
8944"""""""
8945
8946::
8947
8948 <resultval> = va_arg <va_list*> <arglist>, <argty>
8949
8950Overview:
8951"""""""""
8952
8953The '``va_arg``' instruction is used to access arguments passed through
8954the "variable argument" area of a function call. It is used to implement
8955the ``va_arg`` macro in C.
8956
8957Arguments:
8958""""""""""
8959
8960This instruction takes a ``va_list*`` value and the type of the
8961argument. It returns a value of the specified argument type and
8962increments the ``va_list`` to point to the next argument. The actual
8963type of ``va_list`` is target specific.
8964
8965Semantics:
8966""""""""""
8967
8968The '``va_arg``' instruction loads an argument of the specified type
8969from the specified ``va_list`` and causes the ``va_list`` to point to
8970the next argument. For more information, see the variable argument
8971handling :ref:`Intrinsic Functions <int_varargs>`.
8972
8973It is legal for this instruction to be called in a function which does
8974not take a variable number of arguments, for example, the ``vfprintf``
8975function.
8976
8977``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8978function <intrinsics>` because it takes a type as an argument.
8979
8980Example:
8981""""""""
8982
8983See the :ref:`variable argument processing <int_varargs>` section.
8984
8985Note that the code generator does not yet fully support va\_arg on many
8986targets. Also, it does not currently support va\_arg with aggregate
8987types on any target.
8988
8989.. _i_landingpad:
8990
8991'``landingpad``' Instruction
8992^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8993
8994Syntax:
8995"""""""
8996
8997::
8998
David Majnemer7fddecc2015-06-17 20:52:32 +00008999 <resultval> = landingpad <resultty> <clause>+
9000 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00009001
9002 <clause> := catch <type> <value>
9003 <clause> := filter <array constant type> <array constant>
9004
9005Overview:
9006"""""""""
9007
9008The '``landingpad``' instruction is used by `LLVM's exception handling
9009system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009010is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00009011code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00009012defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00009013re-entry to the function. The ``resultval`` has the type ``resultty``.
9014
9015Arguments:
9016""""""""""
9017
David Majnemer7fddecc2015-06-17 20:52:32 +00009018The optional
Sean Silvab084af42012-12-07 10:36:55 +00009019``cleanup`` flag indicates that the landing pad block is a cleanup.
9020
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009021A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00009022contains the global variable representing the "type" that may be caught
9023or filtered respectively. Unlike the ``catch`` clause, the ``filter``
9024clause takes an array constant as its argument. Use
9025"``[0 x i8**] undef``" for a filter which cannot throw. The
9026'``landingpad``' instruction must contain *at least* one ``clause`` or
9027the ``cleanup`` flag.
9028
9029Semantics:
9030""""""""""
9031
9032The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00009033:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00009034therefore the "result type" of the ``landingpad`` instruction. As with
9035calling conventions, how the personality function results are
9036represented in LLVM IR is target specific.
9037
9038The clauses are applied in order from top to bottom. If two
9039``landingpad`` instructions are merged together through inlining, the
9040clauses from the calling function are appended to the list of clauses.
9041When the call stack is being unwound due to an exception being thrown,
9042the exception is compared against each ``clause`` in turn. If it doesn't
9043match any of the clauses, and the ``cleanup`` flag is not set, then
9044unwinding continues further up the call stack.
9045
9046The ``landingpad`` instruction has several restrictions:
9047
9048- A landing pad block is a basic block which is the unwind destination
9049 of an '``invoke``' instruction.
9050- A landing pad block must have a '``landingpad``' instruction as its
9051 first non-PHI instruction.
9052- There can be only one '``landingpad``' instruction within the landing
9053 pad block.
9054- A basic block that is not a landing pad block may not include a
9055 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009056
9057Example:
9058""""""""
9059
9060.. code-block:: llvm
9061
9062 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00009063 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009064 catch i8** @_ZTIi
9065 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00009066 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009067 cleanup
9068 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00009069 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009070 catch i8** @_ZTIi
9071 filter [1 x i8**] [@_ZTId]
9072
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009073.. _i_catchpad:
9074
9075'``catchpad``' Instruction
9076^^^^^^^^^^^^^^^^^^^^^^^^^^
9077
9078Syntax:
9079"""""""
9080
9081::
9082
9083 <resultval> = catchpad within <catchswitch> [<args>*]
9084
9085Overview:
9086"""""""""
9087
9088The '``catchpad``' instruction is used by `LLVM's exception handling
9089system <ExceptionHandling.html#overview>`_ to specify that a basic block
9090begins a catch handler --- one where a personality routine attempts to transfer
9091control to catch an exception.
9092
9093Arguments:
9094""""""""""
9095
9096The ``catchswitch`` operand must always be a token produced by a
9097:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
9098ensures that each ``catchpad`` has exactly one predecessor block, and it always
9099terminates in a ``catchswitch``.
9100
9101The ``args`` correspond to whatever information the personality routine
9102requires to know if this is an appropriate handler for the exception. Control
9103will transfer to the ``catchpad`` if this is the first appropriate handler for
9104the exception.
9105
9106The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
9107``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
9108pads.
9109
9110Semantics:
9111""""""""""
9112
9113When the call stack is being unwound due to an exception being thrown, the
9114exception is compared against the ``args``. If it doesn't match, control will
9115not reach the ``catchpad`` instruction. The representation of ``args`` is
9116entirely target and personality function-specific.
9117
9118Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
9119instruction must be the first non-phi of its parent basic block.
9120
9121The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
9122instructions is described in the
9123`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
9124
9125When a ``catchpad`` has been "entered" but not yet "exited" (as
9126described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9127it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9128that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
9129
9130Example:
9131""""""""
9132
Renato Golin124f2592016-07-20 12:16:38 +00009133.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009134
9135 dispatch:
9136 %cs = catchswitch within none [label %handler0] unwind to caller
9137 ;; A catch block which can catch an integer.
9138 handler0:
9139 %tok = catchpad within %cs [i8** @_ZTIi]
9140
David Majnemer654e1302015-07-31 17:58:14 +00009141.. _i_cleanuppad:
9142
9143'``cleanuppad``' Instruction
9144^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9145
9146Syntax:
9147"""""""
9148
9149::
9150
David Majnemer8a1c45d2015-12-12 05:38:55 +00009151 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00009152
9153Overview:
9154"""""""""
9155
9156The '``cleanuppad``' instruction is used by `LLVM's exception handling
9157system <ExceptionHandling.html#overview>`_ to specify that a basic block
9158is a cleanup block --- one where a personality routine attempts to
9159transfer control to run cleanup actions.
9160The ``args`` correspond to whatever additional
9161information the :ref:`personality function <personalityfn>` requires to
9162execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00009163The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00009164match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
9165The ``parent`` argument is the token of the funclet that contains the
9166``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
9167this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00009168
9169Arguments:
9170""""""""""
9171
9172The instruction takes a list of arbitrary values which are interpreted
9173by the :ref:`personality function <personalityfn>`.
9174
9175Semantics:
9176""""""""""
9177
David Majnemer654e1302015-07-31 17:58:14 +00009178When the call stack is being unwound due to an exception being thrown,
9179the :ref:`personality function <personalityfn>` transfers control to the
9180``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00009181As with calling conventions, how the personality function results are
9182represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00009183
9184The ``cleanuppad`` instruction has several restrictions:
9185
9186- A cleanup block is a basic block which is the unwind destination of
9187 an exceptional instruction.
9188- A cleanup block must have a '``cleanuppad``' instruction as its
9189 first non-PHI instruction.
9190- There can be only one '``cleanuppad``' instruction within the
9191 cleanup block.
9192- A basic block that is not a cleanup block may not include a
9193 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009194
Joseph Tremoulete28885e2016-01-10 04:28:38 +00009195When a ``cleanuppad`` has been "entered" but not yet "exited" (as
9196described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9197it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9198that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009199
David Majnemer654e1302015-07-31 17:58:14 +00009200Example:
9201""""""""
9202
Renato Golin124f2592016-07-20 12:16:38 +00009203.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00009204
David Majnemer8a1c45d2015-12-12 05:38:55 +00009205 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00009206
Sean Silvab084af42012-12-07 10:36:55 +00009207.. _intrinsics:
9208
9209Intrinsic Functions
9210===================
9211
9212LLVM supports the notion of an "intrinsic function". These functions
9213have well known names and semantics and are required to follow certain
9214restrictions. Overall, these intrinsics represent an extension mechanism
9215for the LLVM language that does not require changing all of the
9216transformations in LLVM when adding to the language (or the bitcode
9217reader/writer, the parser, etc...).
9218
9219Intrinsic function names must all start with an "``llvm.``" prefix. This
9220prefix is reserved in LLVM for intrinsic names; thus, function names may
9221not begin with this prefix. Intrinsic functions must always be external
9222functions: you cannot define the body of intrinsic functions. Intrinsic
9223functions may only be used in call or invoke instructions: it is illegal
9224to take the address of an intrinsic function. Additionally, because
9225intrinsic functions are part of the LLVM language, it is required if any
9226are added that they be documented here.
9227
9228Some intrinsic functions can be overloaded, i.e., the intrinsic
9229represents a family of functions that perform the same operation but on
9230different data types. Because LLVM can represent over 8 million
9231different integer types, overloading is used commonly to allow an
9232intrinsic function to operate on any integer type. One or more of the
9233argument types or the result type can be overloaded to accept any
9234integer type. Argument types may also be defined as exactly matching a
9235previous argument's type or the result type. This allows an intrinsic
9236function which accepts multiple arguments, but needs all of them to be
9237of the same type, to only be overloaded with respect to a single
9238argument or the result.
9239
9240Overloaded intrinsics will have the names of its overloaded argument
9241types encoded into its function name, each preceded by a period. Only
9242those types which are overloaded result in a name suffix. Arguments
9243whose type is matched against another type do not. For example, the
9244``llvm.ctpop`` function can take an integer of any width and returns an
9245integer of exactly the same integer width. This leads to a family of
9246functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
9247``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
9248overloaded, and only one type suffix is required. Because the argument's
9249type is matched against the return type, it does not require its own
9250name suffix.
9251
9252To learn how to add an intrinsic function, please see the `Extending
9253LLVM Guide <ExtendingLLVM.html>`_.
9254
9255.. _int_varargs:
9256
9257Variable Argument Handling Intrinsics
9258-------------------------------------
9259
9260Variable argument support is defined in LLVM with the
9261:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9262functions. These functions are related to the similarly named macros
9263defined in the ``<stdarg.h>`` header file.
9264
9265All of these functions operate on arguments that use a target-specific
9266value type "``va_list``". The LLVM assembly language reference manual
9267does not define what this type is, so all transformations should be
9268prepared to handle these functions regardless of the type used.
9269
9270This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9271variable argument handling intrinsic functions are used.
9272
9273.. code-block:: llvm
9274
Tim Northoverab60bb92014-11-02 01:21:51 +00009275 ; This struct is different for every platform. For most platforms,
9276 ; it is merely an i8*.
9277 %struct.va_list = type { i8* }
9278
9279 ; For Unix x86_64 platforms, va_list is the following struct:
9280 ; %struct.va_list = type { i32, i32, i8*, i8* }
9281
Sean Silvab084af42012-12-07 10:36:55 +00009282 define i32 @test(i32 %X, ...) {
9283 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009284 %ap = alloca %struct.va_list
9285 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009286 call void @llvm.va_start(i8* %ap2)
9287
9288 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009289 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009290
9291 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9292 %aq = alloca i8*
9293 %aq2 = bitcast i8** %aq to i8*
9294 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9295 call void @llvm.va_end(i8* %aq2)
9296
9297 ; Stop processing of arguments.
9298 call void @llvm.va_end(i8* %ap2)
9299 ret i32 %tmp
9300 }
9301
9302 declare void @llvm.va_start(i8*)
9303 declare void @llvm.va_copy(i8*, i8*)
9304 declare void @llvm.va_end(i8*)
9305
9306.. _int_va_start:
9307
9308'``llvm.va_start``' Intrinsic
9309^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9310
9311Syntax:
9312"""""""
9313
9314::
9315
Nick Lewycky04f6de02013-09-11 22:04:52 +00009316 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009317
9318Overview:
9319"""""""""
9320
9321The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9322subsequent use by ``va_arg``.
9323
9324Arguments:
9325""""""""""
9326
9327The argument is a pointer to a ``va_list`` element to initialize.
9328
9329Semantics:
9330""""""""""
9331
9332The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9333available in C. In a target-dependent way, it initializes the
9334``va_list`` element to which the argument points, so that the next call
9335to ``va_arg`` will produce the first variable argument passed to the
9336function. Unlike the C ``va_start`` macro, this intrinsic does not need
9337to know the last argument of the function as the compiler can figure
9338that out.
9339
9340'``llvm.va_end``' Intrinsic
9341^^^^^^^^^^^^^^^^^^^^^^^^^^^
9342
9343Syntax:
9344"""""""
9345
9346::
9347
9348 declare void @llvm.va_end(i8* <arglist>)
9349
9350Overview:
9351"""""""""
9352
9353The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9354initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9355
9356Arguments:
9357""""""""""
9358
9359The argument is a pointer to a ``va_list`` to destroy.
9360
9361Semantics:
9362""""""""""
9363
9364The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9365available in C. In a target-dependent way, it destroys the ``va_list``
9366element to which the argument points. Calls to
9367:ref:`llvm.va_start <int_va_start>` and
9368:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9369``llvm.va_end``.
9370
9371.. _int_va_copy:
9372
9373'``llvm.va_copy``' Intrinsic
9374^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9375
9376Syntax:
9377"""""""
9378
9379::
9380
9381 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9382
9383Overview:
9384"""""""""
9385
9386The '``llvm.va_copy``' intrinsic copies the current argument position
9387from the source argument list to the destination argument list.
9388
9389Arguments:
9390""""""""""
9391
9392The first argument is a pointer to a ``va_list`` element to initialize.
9393The second argument is a pointer to a ``va_list`` element to copy from.
9394
9395Semantics:
9396""""""""""
9397
9398The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9399available in C. In a target-dependent way, it copies the source
9400``va_list`` element into the destination ``va_list`` element. This
9401intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9402arbitrarily complex and require, for example, memory allocation.
9403
9404Accurate Garbage Collection Intrinsics
9405--------------------------------------
9406
Philip Reamesc5b0f562015-02-25 23:52:06 +00009407LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009408(GC) requires the frontend to generate code containing appropriate intrinsic
9409calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009410intrinsics in a manner which is appropriate for the target collector.
9411
Sean Silvab084af42012-12-07 10:36:55 +00009412These intrinsics allow identification of :ref:`GC roots on the
9413stack <int_gcroot>`, as well as garbage collector implementations that
9414require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009415Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009416these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009417details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009418
Philip Reamesf80bbff2015-02-25 23:45:20 +00009419Experimental Statepoint Intrinsics
9420^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9421
9422LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009423collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009424to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009425:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009426differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009427<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009428described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009429
9430.. _int_gcroot:
9431
9432'``llvm.gcroot``' Intrinsic
9433^^^^^^^^^^^^^^^^^^^^^^^^^^^
9434
9435Syntax:
9436"""""""
9437
9438::
9439
9440 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9441
9442Overview:
9443"""""""""
9444
9445The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9446the code generator, and allows some metadata to be associated with it.
9447
9448Arguments:
9449""""""""""
9450
9451The first argument specifies the address of a stack object that contains
9452the root pointer. The second pointer (which must be either a constant or
9453a global value address) contains the meta-data to be associated with the
9454root.
9455
9456Semantics:
9457""""""""""
9458
9459At runtime, a call to this intrinsic stores a null pointer into the
9460"ptrloc" location. At compile-time, the code generator generates
9461information to allow the runtime to find the pointer at GC safe points.
9462The '``llvm.gcroot``' intrinsic may only be used in a function which
9463:ref:`specifies a GC algorithm <gc>`.
9464
9465.. _int_gcread:
9466
9467'``llvm.gcread``' Intrinsic
9468^^^^^^^^^^^^^^^^^^^^^^^^^^^
9469
9470Syntax:
9471"""""""
9472
9473::
9474
9475 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9476
9477Overview:
9478"""""""""
9479
9480The '``llvm.gcread``' intrinsic identifies reads of references from heap
9481locations, allowing garbage collector implementations that require read
9482barriers.
9483
9484Arguments:
9485""""""""""
9486
9487The second argument is the address to read from, which should be an
9488address allocated from the garbage collector. The first object is a
9489pointer to the start of the referenced object, if needed by the language
9490runtime (otherwise null).
9491
9492Semantics:
9493""""""""""
9494
9495The '``llvm.gcread``' intrinsic has the same semantics as a load
9496instruction, but may be replaced with substantially more complex code by
9497the garbage collector runtime, as needed. The '``llvm.gcread``'
9498intrinsic may only be used in a function which :ref:`specifies a GC
9499algorithm <gc>`.
9500
9501.. _int_gcwrite:
9502
9503'``llvm.gcwrite``' Intrinsic
9504^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9505
9506Syntax:
9507"""""""
9508
9509::
9510
9511 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9512
9513Overview:
9514"""""""""
9515
9516The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9517locations, allowing garbage collector implementations that require write
9518barriers (such as generational or reference counting collectors).
9519
9520Arguments:
9521""""""""""
9522
9523The first argument is the reference to store, the second is the start of
9524the object to store it to, and the third is the address of the field of
9525Obj to store to. If the runtime does not require a pointer to the
9526object, Obj may be null.
9527
9528Semantics:
9529""""""""""
9530
9531The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9532instruction, but may be replaced with substantially more complex code by
9533the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9534intrinsic may only be used in a function which :ref:`specifies a GC
9535algorithm <gc>`.
9536
9537Code Generator Intrinsics
9538-------------------------
9539
9540These intrinsics are provided by LLVM to expose special features that
9541may only be implemented with code generator support.
9542
9543'``llvm.returnaddress``' Intrinsic
9544^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9545
9546Syntax:
9547"""""""
9548
9549::
9550
9551 declare i8 *@llvm.returnaddress(i32 <level>)
9552
9553Overview:
9554"""""""""
9555
9556The '``llvm.returnaddress``' intrinsic attempts to compute a
9557target-specific value indicating the return address of the current
9558function or one of its callers.
9559
9560Arguments:
9561""""""""""
9562
9563The argument to this intrinsic indicates which function to return the
9564address for. Zero indicates the calling function, one indicates its
9565caller, etc. The argument is **required** to be a constant integer
9566value.
9567
9568Semantics:
9569""""""""""
9570
9571The '``llvm.returnaddress``' intrinsic either returns a pointer
9572indicating the return address of the specified call frame, or zero if it
9573cannot be identified. The value returned by this intrinsic is likely to
9574be incorrect or 0 for arguments other than zero, so it should only be
9575used for debugging purposes.
9576
9577Note that calling this intrinsic does not prevent function inlining or
9578other aggressive transformations, so the value returned may not be that
9579of the obvious source-language caller.
9580
Albert Gutowski795d7d62016-10-12 22:13:19 +00009581'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +00009582^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +00009583
9584Syntax:
9585"""""""
9586
9587::
9588
9589 declare i8 *@llvm.addressofreturnaddress()
9590
9591Overview:
9592"""""""""
9593
9594The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
9595pointer to the place in the stack frame where the return address of the
9596current function is stored.
9597
9598Semantics:
9599""""""""""
9600
9601Note that calling this intrinsic does not prevent function inlining or
9602other aggressive transformations, so the value returned may not be that
9603of the obvious source-language caller.
9604
9605This intrinsic is only implemented for x86.
9606
Sean Silvab084af42012-12-07 10:36:55 +00009607'``llvm.frameaddress``' Intrinsic
9608^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9609
9610Syntax:
9611"""""""
9612
9613::
9614
9615 declare i8* @llvm.frameaddress(i32 <level>)
9616
9617Overview:
9618"""""""""
9619
9620The '``llvm.frameaddress``' intrinsic attempts to return the
9621target-specific frame pointer value for the specified stack frame.
9622
9623Arguments:
9624""""""""""
9625
9626The argument to this intrinsic indicates which function to return the
9627frame pointer for. Zero indicates the calling function, one indicates
9628its caller, etc. The argument is **required** to be a constant integer
9629value.
9630
9631Semantics:
9632""""""""""
9633
9634The '``llvm.frameaddress``' intrinsic either returns a pointer
9635indicating the frame address of the specified call frame, or zero if it
9636cannot be identified. The value returned by this intrinsic is likely to
9637be incorrect or 0 for arguments other than zero, so it should only be
9638used for debugging purposes.
9639
9640Note that calling this intrinsic does not prevent function inlining or
9641other aggressive transformations, so the value returned may not be that
9642of the obvious source-language caller.
9643
Reid Kleckner60381792015-07-07 22:25:32 +00009644'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009645^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9646
9647Syntax:
9648"""""""
9649
9650::
9651
Reid Kleckner60381792015-07-07 22:25:32 +00009652 declare void @llvm.localescape(...)
9653 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009654
9655Overview:
9656"""""""""
9657
Reid Kleckner60381792015-07-07 22:25:32 +00009658The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9659allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009660live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009661computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009662
9663Arguments:
9664""""""""""
9665
Reid Kleckner60381792015-07-07 22:25:32 +00009666All arguments to '``llvm.localescape``' must be pointers to static allocas or
9667casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009668once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009669
Reid Kleckner60381792015-07-07 22:25:32 +00009670The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009671bitcasted pointer to a function defined in the current module. The code
9672generator cannot determine the frame allocation offset of functions defined in
9673other modules.
9674
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009675The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9676call frame that is currently live. The return value of '``llvm.localaddress``'
9677is one way to produce such a value, but various runtimes also expose a suitable
9678pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009679
Reid Kleckner60381792015-07-07 22:25:32 +00009680The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9681'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009682
Reid Klecknere9b89312015-01-13 00:48:10 +00009683Semantics:
9684""""""""""
9685
Reid Kleckner60381792015-07-07 22:25:32 +00009686These intrinsics allow a group of functions to share access to a set of local
9687stack allocations of a one parent function. The parent function may call the
9688'``llvm.localescape``' intrinsic once from the function entry block, and the
9689child functions can use '``llvm.localrecover``' to access the escaped allocas.
9690The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9691the escaped allocas are allocated, which would break attempts to use
9692'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009693
Renato Golinc7aea402014-05-06 16:51:25 +00009694.. _int_read_register:
9695.. _int_write_register:
9696
9697'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9698^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9699
9700Syntax:
9701"""""""
9702
9703::
9704
9705 declare i32 @llvm.read_register.i32(metadata)
9706 declare i64 @llvm.read_register.i64(metadata)
9707 declare void @llvm.write_register.i32(metadata, i32 @value)
9708 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009709 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009710
9711Overview:
9712"""""""""
9713
9714The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9715provides access to the named register. The register must be valid on
9716the architecture being compiled to. The type needs to be compatible
9717with the register being read.
9718
9719Semantics:
9720""""""""""
9721
9722The '``llvm.read_register``' intrinsic returns the current value of the
9723register, where possible. The '``llvm.write_register``' intrinsic sets
9724the current value of the register, where possible.
9725
9726This is useful to implement named register global variables that need
9727to always be mapped to a specific register, as is common practice on
9728bare-metal programs including OS kernels.
9729
9730The compiler doesn't check for register availability or use of the used
9731register in surrounding code, including inline assembly. Because of that,
9732allocatable registers are not supported.
9733
9734Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009735architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009736work is needed to support other registers and even more so, allocatable
9737registers.
9738
Sean Silvab084af42012-12-07 10:36:55 +00009739.. _int_stacksave:
9740
9741'``llvm.stacksave``' Intrinsic
9742^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9743
9744Syntax:
9745"""""""
9746
9747::
9748
9749 declare i8* @llvm.stacksave()
9750
9751Overview:
9752"""""""""
9753
9754The '``llvm.stacksave``' intrinsic is used to remember the current state
9755of the function stack, for use with
9756:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9757implementing language features like scoped automatic variable sized
9758arrays in C99.
9759
9760Semantics:
9761""""""""""
9762
9763This intrinsic returns a opaque pointer value that can be passed to
9764:ref:`llvm.stackrestore <int_stackrestore>`. When an
9765``llvm.stackrestore`` intrinsic is executed with a value saved from
9766``llvm.stacksave``, it effectively restores the state of the stack to
9767the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9768practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9769were allocated after the ``llvm.stacksave`` was executed.
9770
9771.. _int_stackrestore:
9772
9773'``llvm.stackrestore``' Intrinsic
9774^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9775
9776Syntax:
9777"""""""
9778
9779::
9780
9781 declare void @llvm.stackrestore(i8* %ptr)
9782
9783Overview:
9784"""""""""
9785
9786The '``llvm.stackrestore``' intrinsic is used to restore the state of
9787the function stack to the state it was in when the corresponding
9788:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9789useful for implementing language features like scoped automatic variable
9790sized arrays in C99.
9791
9792Semantics:
9793""""""""""
9794
9795See the description for :ref:`llvm.stacksave <int_stacksave>`.
9796
Yury Gribovd7dbb662015-12-01 11:40:55 +00009797.. _int_get_dynamic_area_offset:
9798
9799'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009800^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009801
9802Syntax:
9803"""""""
9804
9805::
9806
9807 declare i32 @llvm.get.dynamic.area.offset.i32()
9808 declare i64 @llvm.get.dynamic.area.offset.i64()
9809
Lang Hames10239932016-10-08 00:20:42 +00009810Overview:
9811"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +00009812
9813 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9814 get the offset from native stack pointer to the address of the most
9815 recent dynamic alloca on the caller's stack. These intrinsics are
9816 intendend for use in combination with
9817 :ref:`llvm.stacksave <int_stacksave>` to get a
9818 pointer to the most recent dynamic alloca. This is useful, for example,
9819 for AddressSanitizer's stack unpoisoning routines.
9820
9821Semantics:
9822""""""""""
9823
9824 These intrinsics return a non-negative integer value that can be used to
9825 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9826 on the caller's stack. In particular, for targets where stack grows downwards,
9827 adding this offset to the native stack pointer would get the address of the most
9828 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +00009829 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +00009830 one past the end of the most recent dynamic alloca.
9831
9832 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9833 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9834 compile-time-known constant value.
9835
9836 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
Matt Arsenaultc749bdc2017-03-30 23:36:47 +00009837 must match the target's default address space's (address space 0) pointer type.
Yury Gribovd7dbb662015-12-01 11:40:55 +00009838
Sean Silvab084af42012-12-07 10:36:55 +00009839'``llvm.prefetch``' Intrinsic
9840^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9841
9842Syntax:
9843"""""""
9844
9845::
9846
9847 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9848
9849Overview:
9850"""""""""
9851
9852The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9853insert a prefetch instruction if supported; otherwise, it is a noop.
9854Prefetches have no effect on the behavior of the program but can change
9855its performance characteristics.
9856
9857Arguments:
9858""""""""""
9859
9860``address`` is the address to be prefetched, ``rw`` is the specifier
9861determining if the fetch should be for a read (0) or write (1), and
9862``locality`` is a temporal locality specifier ranging from (0) - no
9863locality, to (3) - extremely local keep in cache. The ``cache type``
9864specifies whether the prefetch is performed on the data (1) or
9865instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9866arguments must be constant integers.
9867
9868Semantics:
9869""""""""""
9870
9871This intrinsic does not modify the behavior of the program. In
9872particular, prefetches cannot trap and do not produce a value. On
9873targets that support this intrinsic, the prefetch can provide hints to
9874the processor cache for better performance.
9875
9876'``llvm.pcmarker``' Intrinsic
9877^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9878
9879Syntax:
9880"""""""
9881
9882::
9883
9884 declare void @llvm.pcmarker(i32 <id>)
9885
9886Overview:
9887"""""""""
9888
9889The '``llvm.pcmarker``' intrinsic is a method to export a Program
9890Counter (PC) in a region of code to simulators and other tools. The
9891method is target specific, but it is expected that the marker will use
9892exported symbols to transmit the PC of the marker. The marker makes no
9893guarantees that it will remain with any specific instruction after
9894optimizations. It is possible that the presence of a marker will inhibit
9895optimizations. The intended use is to be inserted after optimizations to
9896allow correlations of simulation runs.
9897
9898Arguments:
9899""""""""""
9900
9901``id`` is a numerical id identifying the marker.
9902
9903Semantics:
9904""""""""""
9905
9906This intrinsic does not modify the behavior of the program. Backends
9907that do not support this intrinsic may ignore it.
9908
9909'``llvm.readcyclecounter``' Intrinsic
9910^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9911
9912Syntax:
9913"""""""
9914
9915::
9916
9917 declare i64 @llvm.readcyclecounter()
9918
9919Overview:
9920"""""""""
9921
9922The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9923counter register (or similar low latency, high accuracy clocks) on those
9924targets that support it. On X86, it should map to RDTSC. On Alpha, it
9925should map to RPCC. As the backing counters overflow quickly (on the
9926order of 9 seconds on alpha), this should only be used for small
9927timings.
9928
9929Semantics:
9930""""""""""
9931
9932When directly supported, reading the cycle counter should not modify any
9933memory. Implementations are allowed to either return a application
9934specific value or a system wide value. On backends without support, this
9935is lowered to a constant 0.
9936
Tim Northoverbc933082013-05-23 19:11:20 +00009937Note that runtime support may be conditional on the privilege-level code is
9938running at and the host platform.
9939
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009940'``llvm.clear_cache``' Intrinsic
9941^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9942
9943Syntax:
9944"""""""
9945
9946::
9947
9948 declare void @llvm.clear_cache(i8*, i8*)
9949
9950Overview:
9951"""""""""
9952
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009953The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9954in the specified range to the execution unit of the processor. On
9955targets with non-unified instruction and data cache, the implementation
9956flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009957
9958Semantics:
9959""""""""""
9960
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009961On platforms with coherent instruction and data caches (e.g. x86), this
9962intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009963cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009964instructions or a system call, if cache flushing requires special
9965privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009966
Sean Silvad02bf3e2014-04-07 22:29:53 +00009967The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009968time library.
Renato Golin93010e62014-03-26 14:01:32 +00009969
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009970This instrinsic does *not* empty the instruction pipeline. Modifications
9971of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009972
Justin Bogner61ba2e32014-12-08 18:02:35 +00009973'``llvm.instrprof_increment``' Intrinsic
9974^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9975
9976Syntax:
9977"""""""
9978
9979::
9980
9981 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9982 i32 <num-counters>, i32 <index>)
9983
9984Overview:
9985"""""""""
9986
9987The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9988frontend for use with instrumentation based profiling. These will be
9989lowered by the ``-instrprof`` pass to generate execution counts of a
9990program at runtime.
9991
9992Arguments:
9993""""""""""
9994
9995The first argument is a pointer to a global variable containing the
9996name of the entity being instrumented. This should generally be the
9997(mangled) function name for a set of counters.
9998
9999The second argument is a hash value that can be used by the consumer
10000of the profile data to detect changes to the instrumented source, and
10001the third is the number of counters associated with ``name``. It is an
10002error if ``hash`` or ``num-counters`` differ between two instances of
10003``instrprof_increment`` that refer to the same name.
10004
10005The last argument refers to which of the counters for ``name`` should
10006be incremented. It should be a value between 0 and ``num-counters``.
10007
10008Semantics:
10009""""""""""
10010
10011This intrinsic represents an increment of a profiling counter. It will
10012cause the ``-instrprof`` pass to generate the appropriate data
10013structures and the code to increment the appropriate value, in a
10014format that can be written out by a compiler runtime and consumed via
10015the ``llvm-profdata`` tool.
10016
Xinliang David Li4ca17332016-09-18 18:34:07 +000010017'``llvm.instrprof_increment_step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +000010018^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +000010019
10020Syntax:
10021"""""""
10022
10023::
10024
10025 declare void @llvm.instrprof_increment_step(i8* <name>, i64 <hash>,
10026 i32 <num-counters>,
10027 i32 <index>, i64 <step>)
10028
10029Overview:
10030"""""""""
10031
10032The '``llvm.instrprof_increment_step``' intrinsic is an extension to
10033the '``llvm.instrprof_increment``' intrinsic with an additional fifth
10034argument to specify the step of the increment.
10035
10036Arguments:
10037""""""""""
10038The first four arguments are the same as '``llvm.instrprof_increment``'
10039instrinsic.
10040
10041The last argument specifies the value of the increment of the counter variable.
10042
10043Semantics:
10044""""""""""
10045See description of '``llvm.instrprof_increment``' instrinsic.
10046
10047
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010048'``llvm.instrprof_value_profile``' Intrinsic
10049^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10050
10051Syntax:
10052"""""""
10053
10054::
10055
10056 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
10057 i64 <value>, i32 <value_kind>,
10058 i32 <index>)
10059
10060Overview:
10061"""""""""
10062
10063The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
10064frontend for use with instrumentation based profiling. This will be
10065lowered by the ``-instrprof`` pass to find out the target values,
10066instrumented expressions take in a program at runtime.
10067
10068Arguments:
10069""""""""""
10070
10071The first argument is a pointer to a global variable containing the
10072name of the entity being instrumented. ``name`` should generally be the
10073(mangled) function name for a set of counters.
10074
10075The second argument is a hash value that can be used by the consumer
10076of the profile data to detect changes to the instrumented source. It
10077is an error if ``hash`` differs between two instances of
10078``llvm.instrprof_*`` that refer to the same name.
10079
10080The third argument is the value of the expression being profiled. The profiled
10081expression's value should be representable as an unsigned 64-bit value. The
10082fourth argument represents the kind of value profiling that is being done. The
10083supported value profiling kinds are enumerated through the
10084``InstrProfValueKind`` type declared in the
10085``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
10086index of the instrumented expression within ``name``. It should be >= 0.
10087
10088Semantics:
10089""""""""""
10090
10091This intrinsic represents the point where a call to a runtime routine
10092should be inserted for value profiling of target expressions. ``-instrprof``
10093pass will generate the appropriate data structures and replace the
10094``llvm.instrprof_value_profile`` intrinsic with the call to the profile
10095runtime library with proper arguments.
10096
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000010097'``llvm.thread.pointer``' Intrinsic
10098^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10099
10100Syntax:
10101"""""""
10102
10103::
10104
10105 declare i8* @llvm.thread.pointer()
10106
10107Overview:
10108"""""""""
10109
10110The '``llvm.thread.pointer``' intrinsic returns the value of the thread
10111pointer.
10112
10113Semantics:
10114""""""""""
10115
10116The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
10117for the current thread. The exact semantics of this value are target
10118specific: it may point to the start of TLS area, to the end, or somewhere
10119in the middle. Depending on the target, this intrinsic may read a register,
10120call a helper function, read from an alternate memory space, or perform
10121other operations necessary to locate the TLS area. Not all targets support
10122this intrinsic.
10123
Sean Silvab084af42012-12-07 10:36:55 +000010124Standard C Library Intrinsics
10125-----------------------------
10126
10127LLVM provides intrinsics for a few important standard C library
10128functions. These intrinsics allow source-language front-ends to pass
10129information about the alignment of the pointer arguments to the code
10130generator, providing opportunity for more efficient code generation.
10131
10132.. _int_memcpy:
10133
10134'``llvm.memcpy``' Intrinsic
10135^^^^^^^^^^^^^^^^^^^^^^^^^^^
10136
10137Syntax:
10138"""""""
10139
10140This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
10141integer bit width and for different address spaces. Not all targets
10142support all bit widths however.
10143
10144::
10145
10146 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
10147 i32 <len>, i32 <align>, i1 <isvolatile>)
10148 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
10149 i64 <len>, i32 <align>, i1 <isvolatile>)
10150
10151Overview:
10152"""""""""
10153
10154The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10155source location to the destination location.
10156
10157Note that, unlike the standard libc function, the ``llvm.memcpy.*``
10158intrinsics do not return a value, takes extra alignment/isvolatile
10159arguments and the pointers can be in specified address spaces.
10160
10161Arguments:
10162""""""""""
10163
10164The first argument is a pointer to the destination, the second is a
10165pointer to the source. The third argument is an integer argument
10166specifying the number of bytes to copy, the fourth argument is the
10167alignment of the source and destination locations, and the fifth is a
10168boolean indicating a volatile access.
10169
10170If the call to this intrinsic has an alignment value that is not 0 or 1,
10171then the caller guarantees that both the source and destination pointers
10172are aligned to that boundary.
10173
10174If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
10175a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10176very cleanly specified and it is unwise to depend on it.
10177
10178Semantics:
10179""""""""""
10180
10181The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10182source location to the destination location, which are not allowed to
10183overlap. It copies "len" bytes of memory over. If the argument is known
10184to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +000010185argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010186
10187'``llvm.memmove``' Intrinsic
10188^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10189
10190Syntax:
10191"""""""
10192
10193This is an overloaded intrinsic. You can use llvm.memmove on any integer
10194bit width and for different address space. Not all targets support all
10195bit widths however.
10196
10197::
10198
10199 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
10200 i32 <len>, i32 <align>, i1 <isvolatile>)
10201 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
10202 i64 <len>, i32 <align>, i1 <isvolatile>)
10203
10204Overview:
10205"""""""""
10206
10207The '``llvm.memmove.*``' intrinsics move a block of memory from the
10208source location to the destination location. It is similar to the
10209'``llvm.memcpy``' intrinsic but allows the two memory locations to
10210overlap.
10211
10212Note that, unlike the standard libc function, the ``llvm.memmove.*``
10213intrinsics do not return a value, takes extra alignment/isvolatile
10214arguments and the pointers can be in specified address spaces.
10215
10216Arguments:
10217""""""""""
10218
10219The first argument is a pointer to the destination, the second is a
10220pointer to the source. The third argument is an integer argument
10221specifying the number of bytes to copy, the fourth argument is the
10222alignment of the source and destination locations, and the fifth is a
10223boolean indicating a volatile access.
10224
10225If the call to this intrinsic has an alignment value that is not 0 or 1,
10226then the caller guarantees that the source and destination pointers are
10227aligned to that boundary.
10228
10229If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
10230is a :ref:`volatile operation <volatile>`. The detailed access behavior is
10231not very cleanly specified and it is unwise to depend on it.
10232
10233Semantics:
10234""""""""""
10235
10236The '``llvm.memmove.*``' intrinsics copy a block of memory from the
10237source location to the destination location, which may overlap. It
10238copies "len" bytes of memory over. If the argument is known to be
10239aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000010240otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010241
10242'``llvm.memset.*``' Intrinsics
10243^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10244
10245Syntax:
10246"""""""
10247
10248This is an overloaded intrinsic. You can use llvm.memset on any integer
10249bit width and for different address spaces. However, not all targets
10250support all bit widths.
10251
10252::
10253
10254 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
10255 i32 <len>, i32 <align>, i1 <isvolatile>)
10256 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
10257 i64 <len>, i32 <align>, i1 <isvolatile>)
10258
10259Overview:
10260"""""""""
10261
10262The '``llvm.memset.*``' intrinsics fill a block of memory with a
10263particular byte value.
10264
10265Note that, unlike the standard libc function, the ``llvm.memset``
10266intrinsic does not return a value and takes extra alignment/volatile
10267arguments. Also, the destination can be in an arbitrary address space.
10268
10269Arguments:
10270""""""""""
10271
10272The first argument is a pointer to the destination to fill, the second
10273is the byte value with which to fill it, the third argument is an
10274integer argument specifying the number of bytes to fill, and the fourth
10275argument is the known alignment of the destination location.
10276
10277If the call to this intrinsic has an alignment value that is not 0 or 1,
10278then the caller guarantees that the destination pointer is aligned to
10279that boundary.
10280
10281If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10282a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10283very cleanly specified and it is unwise to depend on it.
10284
10285Semantics:
10286""""""""""
10287
10288The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
10289at the destination location. If the argument is known to be aligned to
10290some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +000010291it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010292
10293'``llvm.sqrt.*``' Intrinsic
10294^^^^^^^^^^^^^^^^^^^^^^^^^^^
10295
10296Syntax:
10297"""""""
10298
10299This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
10300floating point or vector of floating point type. Not all targets support
10301all types however.
10302
10303::
10304
10305 declare float @llvm.sqrt.f32(float %Val)
10306 declare double @llvm.sqrt.f64(double %Val)
10307 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10308 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10309 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10310
10311Overview:
10312"""""""""
10313
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010314The '``llvm.sqrt``' intrinsics return the square root of the specified value,
Justin Lebarcb9b41d2017-01-27 00:58:03 +000010315returning the same value as the libm '``sqrt``' functions would, but without
10316trapping or setting ``errno``.
Sean Silvab084af42012-12-07 10:36:55 +000010317
10318Arguments:
10319""""""""""
10320
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010321The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010322
10323Semantics:
10324""""""""""
10325
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010326This function returns the square root of the operand if it is a nonnegative
10327floating point number.
Sean Silvab084af42012-12-07 10:36:55 +000010328
10329'``llvm.powi.*``' Intrinsic
10330^^^^^^^^^^^^^^^^^^^^^^^^^^^
10331
10332Syntax:
10333"""""""
10334
10335This is an overloaded intrinsic. You can use ``llvm.powi`` on any
10336floating point or vector of floating point type. Not all targets support
10337all types however.
10338
10339::
10340
10341 declare float @llvm.powi.f32(float %Val, i32 %power)
10342 declare double @llvm.powi.f64(double %Val, i32 %power)
10343 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10344 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10345 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10346
10347Overview:
10348"""""""""
10349
10350The '``llvm.powi.*``' intrinsics return the first operand raised to the
10351specified (positive or negative) power. The order of evaluation of
10352multiplications is not defined. When a vector of floating point type is
10353used, the second argument remains a scalar integer value.
10354
10355Arguments:
10356""""""""""
10357
10358The second argument is an integer power, and the first is a value to
10359raise to that power.
10360
10361Semantics:
10362""""""""""
10363
10364This function returns the first value raised to the second power with an
10365unspecified sequence of rounding operations.
10366
10367'``llvm.sin.*``' Intrinsic
10368^^^^^^^^^^^^^^^^^^^^^^^^^^
10369
10370Syntax:
10371"""""""
10372
10373This is an overloaded intrinsic. You can use ``llvm.sin`` on any
10374floating point or vector of floating point type. Not all targets support
10375all types however.
10376
10377::
10378
10379 declare float @llvm.sin.f32(float %Val)
10380 declare double @llvm.sin.f64(double %Val)
10381 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10382 declare fp128 @llvm.sin.f128(fp128 %Val)
10383 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10384
10385Overview:
10386"""""""""
10387
10388The '``llvm.sin.*``' intrinsics return the sine of the operand.
10389
10390Arguments:
10391""""""""""
10392
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010393The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010394
10395Semantics:
10396""""""""""
10397
10398This function returns the sine of the specified operand, returning the
10399same values as the libm ``sin`` functions would, and handles error
10400conditions in the same way.
10401
10402'``llvm.cos.*``' Intrinsic
10403^^^^^^^^^^^^^^^^^^^^^^^^^^
10404
10405Syntax:
10406"""""""
10407
10408This is an overloaded intrinsic. You can use ``llvm.cos`` on any
10409floating point or vector of floating point type. Not all targets support
10410all types however.
10411
10412::
10413
10414 declare float @llvm.cos.f32(float %Val)
10415 declare double @llvm.cos.f64(double %Val)
10416 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10417 declare fp128 @llvm.cos.f128(fp128 %Val)
10418 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10419
10420Overview:
10421"""""""""
10422
10423The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10424
10425Arguments:
10426""""""""""
10427
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010428The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010429
10430Semantics:
10431""""""""""
10432
10433This function returns the cosine of the specified operand, returning the
10434same values as the libm ``cos`` functions would, and handles error
10435conditions in the same way.
10436
10437'``llvm.pow.*``' Intrinsic
10438^^^^^^^^^^^^^^^^^^^^^^^^^^
10439
10440Syntax:
10441"""""""
10442
10443This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10444floating point or vector of floating point type. Not all targets support
10445all types however.
10446
10447::
10448
10449 declare float @llvm.pow.f32(float %Val, float %Power)
10450 declare double @llvm.pow.f64(double %Val, double %Power)
10451 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10452 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10453 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10454
10455Overview:
10456"""""""""
10457
10458The '``llvm.pow.*``' intrinsics return the first operand raised to the
10459specified (positive or negative) power.
10460
10461Arguments:
10462""""""""""
10463
10464The second argument is a floating point power, and the first is a value
10465to raise to that power.
10466
10467Semantics:
10468""""""""""
10469
10470This function returns the first value raised to the second power,
10471returning the same values as the libm ``pow`` functions would, and
10472handles error conditions in the same way.
10473
10474'``llvm.exp.*``' Intrinsic
10475^^^^^^^^^^^^^^^^^^^^^^^^^^
10476
10477Syntax:
10478"""""""
10479
10480This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10481floating point or vector of floating point type. Not all targets support
10482all types however.
10483
10484::
10485
10486 declare float @llvm.exp.f32(float %Val)
10487 declare double @llvm.exp.f64(double %Val)
10488 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10489 declare fp128 @llvm.exp.f128(fp128 %Val)
10490 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10491
10492Overview:
10493"""""""""
10494
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010495The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
10496value.
Sean Silvab084af42012-12-07 10:36:55 +000010497
10498Arguments:
10499""""""""""
10500
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010501The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010502
10503Semantics:
10504""""""""""
10505
10506This function returns the same values as the libm ``exp`` functions
10507would, and handles error conditions in the same way.
10508
10509'``llvm.exp2.*``' Intrinsic
10510^^^^^^^^^^^^^^^^^^^^^^^^^^^
10511
10512Syntax:
10513"""""""
10514
10515This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10516floating point or vector of floating point type. Not all targets support
10517all types however.
10518
10519::
10520
10521 declare float @llvm.exp2.f32(float %Val)
10522 declare double @llvm.exp2.f64(double %Val)
10523 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10524 declare fp128 @llvm.exp2.f128(fp128 %Val)
10525 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10526
10527Overview:
10528"""""""""
10529
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010530The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
10531specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010532
10533Arguments:
10534""""""""""
10535
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010536The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010537
10538Semantics:
10539""""""""""
10540
10541This function returns the same values as the libm ``exp2`` functions
10542would, and handles error conditions in the same way.
10543
10544'``llvm.log.*``' Intrinsic
10545^^^^^^^^^^^^^^^^^^^^^^^^^^
10546
10547Syntax:
10548"""""""
10549
10550This is an overloaded intrinsic. You can use ``llvm.log`` on any
10551floating point or vector of floating point type. Not all targets support
10552all types however.
10553
10554::
10555
10556 declare float @llvm.log.f32(float %Val)
10557 declare double @llvm.log.f64(double %Val)
10558 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10559 declare fp128 @llvm.log.f128(fp128 %Val)
10560 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10561
10562Overview:
10563"""""""""
10564
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010565The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
10566value.
Sean Silvab084af42012-12-07 10:36:55 +000010567
10568Arguments:
10569""""""""""
10570
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010571The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010572
10573Semantics:
10574""""""""""
10575
10576This function returns the same values as the libm ``log`` functions
10577would, and handles error conditions in the same way.
10578
10579'``llvm.log10.*``' Intrinsic
10580^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10581
10582Syntax:
10583"""""""
10584
10585This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10586floating point or vector of floating point type. Not all targets support
10587all types however.
10588
10589::
10590
10591 declare float @llvm.log10.f32(float %Val)
10592 declare double @llvm.log10.f64(double %Val)
10593 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10594 declare fp128 @llvm.log10.f128(fp128 %Val)
10595 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10596
10597Overview:
10598"""""""""
10599
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010600The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
10601specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010602
10603Arguments:
10604""""""""""
10605
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010606The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010607
10608Semantics:
10609""""""""""
10610
10611This function returns the same values as the libm ``log10`` functions
10612would, and handles error conditions in the same way.
10613
10614'``llvm.log2.*``' Intrinsic
10615^^^^^^^^^^^^^^^^^^^^^^^^^^^
10616
10617Syntax:
10618"""""""
10619
10620This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10621floating point or vector of floating point type. Not all targets support
10622all types however.
10623
10624::
10625
10626 declare float @llvm.log2.f32(float %Val)
10627 declare double @llvm.log2.f64(double %Val)
10628 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10629 declare fp128 @llvm.log2.f128(fp128 %Val)
10630 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10631
10632Overview:
10633"""""""""
10634
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010635The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
10636value.
Sean Silvab084af42012-12-07 10:36:55 +000010637
10638Arguments:
10639""""""""""
10640
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010641The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010642
10643Semantics:
10644""""""""""
10645
10646This function returns the same values as the libm ``log2`` functions
10647would, and handles error conditions in the same way.
10648
10649'``llvm.fma.*``' Intrinsic
10650^^^^^^^^^^^^^^^^^^^^^^^^^^
10651
10652Syntax:
10653"""""""
10654
10655This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10656floating point or vector of floating point type. Not all targets support
10657all types however.
10658
10659::
10660
10661 declare float @llvm.fma.f32(float %a, float %b, float %c)
10662 declare double @llvm.fma.f64(double %a, double %b, double %c)
10663 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10664 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10665 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10666
10667Overview:
10668"""""""""
10669
10670The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10671operation.
10672
10673Arguments:
10674""""""""""
10675
10676The argument and return value are floating point numbers of the same
10677type.
10678
10679Semantics:
10680""""""""""
10681
10682This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010683would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010684
10685'``llvm.fabs.*``' Intrinsic
10686^^^^^^^^^^^^^^^^^^^^^^^^^^^
10687
10688Syntax:
10689"""""""
10690
10691This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10692floating point or vector of floating point type. Not all targets support
10693all types however.
10694
10695::
10696
10697 declare float @llvm.fabs.f32(float %Val)
10698 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010699 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010700 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010701 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010702
10703Overview:
10704"""""""""
10705
10706The '``llvm.fabs.*``' intrinsics return the absolute value of the
10707operand.
10708
10709Arguments:
10710""""""""""
10711
10712The argument and return value are floating point numbers of the same
10713type.
10714
10715Semantics:
10716""""""""""
10717
10718This function returns the same values as the libm ``fabs`` functions
10719would, and handles error conditions in the same way.
10720
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010721'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010722^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010723
10724Syntax:
10725"""""""
10726
10727This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10728floating point or vector of floating point type. Not all targets support
10729all types however.
10730
10731::
10732
Matt Arsenault64313c92014-10-22 18:25:02 +000010733 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10734 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10735 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10736 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10737 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010738
10739Overview:
10740"""""""""
10741
10742The '``llvm.minnum.*``' intrinsics return the minimum of the two
10743arguments.
10744
10745
10746Arguments:
10747""""""""""
10748
10749The arguments and return value are floating point numbers of the same
10750type.
10751
10752Semantics:
10753""""""""""
10754
10755Follows the IEEE-754 semantics for minNum, which also match for libm's
10756fmin.
10757
10758If either operand is a NaN, returns the other non-NaN operand. Returns
10759NaN only if both operands are NaN. If the operands compare equal,
10760returns a value that compares equal to both operands. This means that
10761fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10762
10763'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010764^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010765
10766Syntax:
10767"""""""
10768
10769This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10770floating point or vector of floating point type. Not all targets support
10771all types however.
10772
10773::
10774
Matt Arsenault64313c92014-10-22 18:25:02 +000010775 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10776 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10777 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10778 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10779 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010780
10781Overview:
10782"""""""""
10783
10784The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10785arguments.
10786
10787
10788Arguments:
10789""""""""""
10790
10791The arguments and return value are floating point numbers of the same
10792type.
10793
10794Semantics:
10795""""""""""
10796Follows the IEEE-754 semantics for maxNum, which also match for libm's
10797fmax.
10798
10799If either operand is a NaN, returns the other non-NaN operand. Returns
10800NaN only if both operands are NaN. If the operands compare equal,
10801returns a value that compares equal to both operands. This means that
10802fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10803
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010804'``llvm.copysign.*``' Intrinsic
10805^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10806
10807Syntax:
10808"""""""
10809
10810This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10811floating point or vector of floating point type. Not all targets support
10812all types however.
10813
10814::
10815
10816 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10817 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10818 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10819 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10820 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10821
10822Overview:
10823"""""""""
10824
10825The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10826first operand and the sign of the second operand.
10827
10828Arguments:
10829""""""""""
10830
10831The arguments and return value are floating point numbers of the same
10832type.
10833
10834Semantics:
10835""""""""""
10836
10837This function returns the same values as the libm ``copysign``
10838functions would, and handles error conditions in the same way.
10839
Sean Silvab084af42012-12-07 10:36:55 +000010840'``llvm.floor.*``' Intrinsic
10841^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10842
10843Syntax:
10844"""""""
10845
10846This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10847floating point or vector of floating point type. Not all targets support
10848all types however.
10849
10850::
10851
10852 declare float @llvm.floor.f32(float %Val)
10853 declare double @llvm.floor.f64(double %Val)
10854 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10855 declare fp128 @llvm.floor.f128(fp128 %Val)
10856 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10857
10858Overview:
10859"""""""""
10860
10861The '``llvm.floor.*``' intrinsics return the floor of the operand.
10862
10863Arguments:
10864""""""""""
10865
10866The argument and return value are floating point numbers of the same
10867type.
10868
10869Semantics:
10870""""""""""
10871
10872This function returns the same values as the libm ``floor`` functions
10873would, and handles error conditions in the same way.
10874
10875'``llvm.ceil.*``' Intrinsic
10876^^^^^^^^^^^^^^^^^^^^^^^^^^^
10877
10878Syntax:
10879"""""""
10880
10881This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10882floating point or vector of floating point type. Not all targets support
10883all types however.
10884
10885::
10886
10887 declare float @llvm.ceil.f32(float %Val)
10888 declare double @llvm.ceil.f64(double %Val)
10889 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10890 declare fp128 @llvm.ceil.f128(fp128 %Val)
10891 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10892
10893Overview:
10894"""""""""
10895
10896The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10897
10898Arguments:
10899""""""""""
10900
10901The argument and return value are floating point numbers of the same
10902type.
10903
10904Semantics:
10905""""""""""
10906
10907This function returns the same values as the libm ``ceil`` functions
10908would, and handles error conditions in the same way.
10909
10910'``llvm.trunc.*``' Intrinsic
10911^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10912
10913Syntax:
10914"""""""
10915
10916This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10917floating point or vector of floating point type. Not all targets support
10918all types however.
10919
10920::
10921
10922 declare float @llvm.trunc.f32(float %Val)
10923 declare double @llvm.trunc.f64(double %Val)
10924 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10925 declare fp128 @llvm.trunc.f128(fp128 %Val)
10926 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10927
10928Overview:
10929"""""""""
10930
10931The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10932nearest integer not larger in magnitude than the operand.
10933
10934Arguments:
10935""""""""""
10936
10937The argument and return value are floating point numbers of the same
10938type.
10939
10940Semantics:
10941""""""""""
10942
10943This function returns the same values as the libm ``trunc`` functions
10944would, and handles error conditions in the same way.
10945
10946'``llvm.rint.*``' Intrinsic
10947^^^^^^^^^^^^^^^^^^^^^^^^^^^
10948
10949Syntax:
10950"""""""
10951
10952This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10953floating point or vector of floating point type. Not all targets support
10954all types however.
10955
10956::
10957
10958 declare float @llvm.rint.f32(float %Val)
10959 declare double @llvm.rint.f64(double %Val)
10960 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10961 declare fp128 @llvm.rint.f128(fp128 %Val)
10962 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10963
10964Overview:
10965"""""""""
10966
10967The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10968nearest integer. It may raise an inexact floating-point exception if the
10969operand isn't an integer.
10970
10971Arguments:
10972""""""""""
10973
10974The argument and return value are floating point numbers of the same
10975type.
10976
10977Semantics:
10978""""""""""
10979
10980This function returns the same values as the libm ``rint`` functions
10981would, and handles error conditions in the same way.
10982
10983'``llvm.nearbyint.*``' Intrinsic
10984^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10985
10986Syntax:
10987"""""""
10988
10989This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10990floating point or vector of floating point type. Not all targets support
10991all types however.
10992
10993::
10994
10995 declare float @llvm.nearbyint.f32(float %Val)
10996 declare double @llvm.nearbyint.f64(double %Val)
10997 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10998 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10999 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
11000
11001Overview:
11002"""""""""
11003
11004The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
11005nearest integer.
11006
11007Arguments:
11008""""""""""
11009
11010The argument and return value are floating point numbers of the same
11011type.
11012
11013Semantics:
11014""""""""""
11015
11016This function returns the same values as the libm ``nearbyint``
11017functions would, and handles error conditions in the same way.
11018
Hal Finkel171817e2013-08-07 22:49:12 +000011019'``llvm.round.*``' Intrinsic
11020^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11021
11022Syntax:
11023"""""""
11024
11025This is an overloaded intrinsic. You can use ``llvm.round`` on any
11026floating point or vector of floating point type. Not all targets support
11027all types however.
11028
11029::
11030
11031 declare float @llvm.round.f32(float %Val)
11032 declare double @llvm.round.f64(double %Val)
11033 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
11034 declare fp128 @llvm.round.f128(fp128 %Val)
11035 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
11036
11037Overview:
11038"""""""""
11039
11040The '``llvm.round.*``' intrinsics returns the operand rounded to the
11041nearest integer.
11042
11043Arguments:
11044""""""""""
11045
11046The argument and return value are floating point numbers of the same
11047type.
11048
11049Semantics:
11050""""""""""
11051
11052This function returns the same values as the libm ``round``
11053functions would, and handles error conditions in the same way.
11054
Sean Silvab084af42012-12-07 10:36:55 +000011055Bit Manipulation Intrinsics
11056---------------------------
11057
11058LLVM provides intrinsics for a few important bit manipulation
11059operations. These allow efficient code generation for some algorithms.
11060
James Molloy90111f72015-11-12 12:29:09 +000011061'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000011062^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000011063
11064Syntax:
11065"""""""
11066
11067This is an overloaded intrinsic function. You can use bitreverse on any
11068integer type.
11069
11070::
11071
11072 declare i16 @llvm.bitreverse.i16(i16 <id>)
11073 declare i32 @llvm.bitreverse.i32(i32 <id>)
11074 declare i64 @llvm.bitreverse.i64(i64 <id>)
11075
11076Overview:
11077"""""""""
11078
11079The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000011080bitpattern of an integer value; for example ``0b10110110`` becomes
11081``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000011082
11083Semantics:
11084""""""""""
11085
Yichao Yu5abf14b2016-11-23 16:25:31 +000011086The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000011087``M`` in the input moved to bit ``N-M`` in the output.
11088
Sean Silvab084af42012-12-07 10:36:55 +000011089'``llvm.bswap.*``' Intrinsics
11090^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11091
11092Syntax:
11093"""""""
11094
11095This is an overloaded intrinsic function. You can use bswap on any
11096integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
11097
11098::
11099
11100 declare i16 @llvm.bswap.i16(i16 <id>)
11101 declare i32 @llvm.bswap.i32(i32 <id>)
11102 declare i64 @llvm.bswap.i64(i64 <id>)
11103
11104Overview:
11105"""""""""
11106
11107The '``llvm.bswap``' family of intrinsics is used to byte swap integer
11108values with an even number of bytes (positive multiple of 16 bits).
11109These are useful for performing operations on data that is not in the
11110target's native byte order.
11111
11112Semantics:
11113""""""""""
11114
11115The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
11116and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
11117intrinsic returns an i32 value that has the four bytes of the input i32
11118swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
11119returned i32 will have its bytes in 3, 2, 1, 0 order. The
11120``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
11121concept to additional even-byte lengths (6 bytes, 8 bytes and more,
11122respectively).
11123
11124'``llvm.ctpop.*``' Intrinsic
11125^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11126
11127Syntax:
11128"""""""
11129
11130This is an overloaded intrinsic. You can use llvm.ctpop on any integer
11131bit width, or on any vector with integer elements. Not all targets
11132support all bit widths or vector types, however.
11133
11134::
11135
11136 declare i8 @llvm.ctpop.i8(i8 <src>)
11137 declare i16 @llvm.ctpop.i16(i16 <src>)
11138 declare i32 @llvm.ctpop.i32(i32 <src>)
11139 declare i64 @llvm.ctpop.i64(i64 <src>)
11140 declare i256 @llvm.ctpop.i256(i256 <src>)
11141 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
11142
11143Overview:
11144"""""""""
11145
11146The '``llvm.ctpop``' family of intrinsics counts the number of bits set
11147in a value.
11148
11149Arguments:
11150""""""""""
11151
11152The only argument is the value to be counted. The argument may be of any
11153integer type, or a vector with integer elements. The return type must
11154match the argument type.
11155
11156Semantics:
11157""""""""""
11158
11159The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
11160each element of a vector.
11161
11162'``llvm.ctlz.*``' Intrinsic
11163^^^^^^^^^^^^^^^^^^^^^^^^^^^
11164
11165Syntax:
11166"""""""
11167
11168This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
11169integer bit width, or any vector whose elements are integers. Not all
11170targets support all bit widths or vector types, however.
11171
11172::
11173
11174 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
11175 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
11176 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
11177 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
11178 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011179 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011180
11181Overview:
11182"""""""""
11183
11184The '``llvm.ctlz``' family of intrinsic functions counts the number of
11185leading zeros in a variable.
11186
11187Arguments:
11188""""""""""
11189
11190The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011191any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011192type must match the first argument type.
11193
11194The second argument must be a constant and is a flag to indicate whether
11195the intrinsic should ensure that a zero as the first argument produces a
11196defined result. Historically some architectures did not provide a
11197defined result for zero values as efficiently, and many algorithms are
11198now predicated on avoiding zero-value inputs.
11199
11200Semantics:
11201""""""""""
11202
11203The '``llvm.ctlz``' intrinsic counts the leading (most significant)
11204zeros in a variable, or within each element of the vector. If
11205``src == 0`` then the result is the size in bits of the type of ``src``
11206if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11207``llvm.ctlz(i32 2) = 30``.
11208
11209'``llvm.cttz.*``' Intrinsic
11210^^^^^^^^^^^^^^^^^^^^^^^^^^^
11211
11212Syntax:
11213"""""""
11214
11215This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
11216integer bit width, or any vector of integer elements. Not all targets
11217support all bit widths or vector types, however.
11218
11219::
11220
11221 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
11222 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
11223 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
11224 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
11225 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011226 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011227
11228Overview:
11229"""""""""
11230
11231The '``llvm.cttz``' family of intrinsic functions counts the number of
11232trailing zeros.
11233
11234Arguments:
11235""""""""""
11236
11237The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011238any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011239type must match the first argument type.
11240
11241The second argument must be a constant and is a flag to indicate whether
11242the intrinsic should ensure that a zero as the first argument produces a
11243defined result. Historically some architectures did not provide a
11244defined result for zero values as efficiently, and many algorithms are
11245now predicated on avoiding zero-value inputs.
11246
11247Semantics:
11248""""""""""
11249
11250The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11251zeros in a variable, or within each element of a vector. If ``src == 0``
11252then the result is the size in bits of the type of ``src`` if
11253``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11254``llvm.cttz(2) = 1``.
11255
Philip Reames34843ae2015-03-05 05:55:55 +000011256.. _int_overflow:
11257
Sean Silvab084af42012-12-07 10:36:55 +000011258Arithmetic with Overflow Intrinsics
11259-----------------------------------
11260
John Regehr6a493f22016-05-12 20:55:09 +000011261LLVM provides intrinsics for fast arithmetic overflow checking.
11262
11263Each of these intrinsics returns a two-element struct. The first
11264element of this struct contains the result of the corresponding
11265arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
11266the result. Therefore, for example, the first element of the struct
11267returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
11268result of a 32-bit ``add`` instruction with the same operands, where
11269the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
11270
11271The second element of the result is an ``i1`` that is 1 if the
11272arithmetic operation overflowed and 0 otherwise. An operation
11273overflows if, for any values of its operands ``A`` and ``B`` and for
11274any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
11275not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
11276``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11277``op`` is the underlying arithmetic operation.
11278
11279The behavior of these intrinsics is well-defined for all argument
11280values.
Sean Silvab084af42012-12-07 10:36:55 +000011281
11282'``llvm.sadd.with.overflow.*``' Intrinsics
11283^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11284
11285Syntax:
11286"""""""
11287
11288This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11289on any integer bit width.
11290
11291::
11292
11293 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11294 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11295 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11296
11297Overview:
11298"""""""""
11299
11300The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11301a signed addition of the two arguments, and indicate whether an overflow
11302occurred during the signed summation.
11303
11304Arguments:
11305""""""""""
11306
11307The arguments (%a and %b) and the first element of the result structure
11308may be of integer types of any bit width, but they must have the same
11309bit width. The second element of the result structure must be of type
11310``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11311addition.
11312
11313Semantics:
11314""""""""""
11315
11316The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011317a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011318first element of which is the signed summation, and the second element
11319of which is a bit specifying if the signed summation resulted in an
11320overflow.
11321
11322Examples:
11323"""""""""
11324
11325.. code-block:: llvm
11326
11327 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11328 %sum = extractvalue {i32, i1} %res, 0
11329 %obit = extractvalue {i32, i1} %res, 1
11330 br i1 %obit, label %overflow, label %normal
11331
11332'``llvm.uadd.with.overflow.*``' Intrinsics
11333^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11334
11335Syntax:
11336"""""""
11337
11338This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11339on any integer bit width.
11340
11341::
11342
11343 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11344 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11345 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11346
11347Overview:
11348"""""""""
11349
11350The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11351an unsigned addition of the two arguments, and indicate whether a carry
11352occurred during the unsigned summation.
11353
11354Arguments:
11355""""""""""
11356
11357The arguments (%a and %b) and the first element of the result structure
11358may be of integer types of any bit width, but they must have the same
11359bit width. The second element of the result structure must be of type
11360``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11361addition.
11362
11363Semantics:
11364""""""""""
11365
11366The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011367an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011368first element of which is the sum, and the second element of which is a
11369bit specifying if the unsigned summation resulted in a carry.
11370
11371Examples:
11372"""""""""
11373
11374.. code-block:: llvm
11375
11376 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11377 %sum = extractvalue {i32, i1} %res, 0
11378 %obit = extractvalue {i32, i1} %res, 1
11379 br i1 %obit, label %carry, label %normal
11380
11381'``llvm.ssub.with.overflow.*``' Intrinsics
11382^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11383
11384Syntax:
11385"""""""
11386
11387This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11388on any integer bit width.
11389
11390::
11391
11392 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11393 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11394 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11395
11396Overview:
11397"""""""""
11398
11399The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11400a signed subtraction of the two arguments, and indicate whether an
11401overflow occurred during the signed subtraction.
11402
11403Arguments:
11404""""""""""
11405
11406The arguments (%a and %b) and the first element of the result structure
11407may be of integer types of any bit width, but they must have the same
11408bit width. The second element of the result structure must be of type
11409``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11410subtraction.
11411
11412Semantics:
11413""""""""""
11414
11415The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011416a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011417first element of which is the subtraction, and the second element of
11418which is a bit specifying if the signed subtraction resulted in an
11419overflow.
11420
11421Examples:
11422"""""""""
11423
11424.. code-block:: llvm
11425
11426 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11427 %sum = extractvalue {i32, i1} %res, 0
11428 %obit = extractvalue {i32, i1} %res, 1
11429 br i1 %obit, label %overflow, label %normal
11430
11431'``llvm.usub.with.overflow.*``' Intrinsics
11432^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11433
11434Syntax:
11435"""""""
11436
11437This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11438on any integer bit width.
11439
11440::
11441
11442 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11443 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11444 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11445
11446Overview:
11447"""""""""
11448
11449The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11450an unsigned subtraction of the two arguments, and indicate whether an
11451overflow occurred during the unsigned subtraction.
11452
11453Arguments:
11454""""""""""
11455
11456The arguments (%a and %b) and the first element of the result structure
11457may be of integer types of any bit width, but they must have the same
11458bit width. The second element of the result structure must be of type
11459``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11460subtraction.
11461
11462Semantics:
11463""""""""""
11464
11465The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011466an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011467the first element of which is the subtraction, and the second element of
11468which is a bit specifying if the unsigned subtraction resulted in an
11469overflow.
11470
11471Examples:
11472"""""""""
11473
11474.. code-block:: llvm
11475
11476 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11477 %sum = extractvalue {i32, i1} %res, 0
11478 %obit = extractvalue {i32, i1} %res, 1
11479 br i1 %obit, label %overflow, label %normal
11480
11481'``llvm.smul.with.overflow.*``' Intrinsics
11482^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11483
11484Syntax:
11485"""""""
11486
11487This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11488on any integer bit width.
11489
11490::
11491
11492 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11493 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11494 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11495
11496Overview:
11497"""""""""
11498
11499The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11500a signed multiplication of the two arguments, and indicate whether an
11501overflow occurred during the signed multiplication.
11502
11503Arguments:
11504""""""""""
11505
11506The arguments (%a and %b) and the first element of the result structure
11507may be of integer types of any bit width, but they must have the same
11508bit width. The second element of the result structure must be of type
11509``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11510multiplication.
11511
11512Semantics:
11513""""""""""
11514
11515The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011516a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011517the first element of which is the multiplication, and the second element
11518of which is a bit specifying if the signed multiplication resulted in an
11519overflow.
11520
11521Examples:
11522"""""""""
11523
11524.. code-block:: llvm
11525
11526 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11527 %sum = extractvalue {i32, i1} %res, 0
11528 %obit = extractvalue {i32, i1} %res, 1
11529 br i1 %obit, label %overflow, label %normal
11530
11531'``llvm.umul.with.overflow.*``' Intrinsics
11532^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11533
11534Syntax:
11535"""""""
11536
11537This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11538on any integer bit width.
11539
11540::
11541
11542 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11543 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11544 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11545
11546Overview:
11547"""""""""
11548
11549The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11550a unsigned multiplication of the two arguments, and indicate whether an
11551overflow occurred during the unsigned multiplication.
11552
11553Arguments:
11554""""""""""
11555
11556The arguments (%a and %b) and the first element of the result structure
11557may be of integer types of any bit width, but they must have the same
11558bit width. The second element of the result structure must be of type
11559``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11560multiplication.
11561
11562Semantics:
11563""""""""""
11564
11565The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011566an unsigned multiplication of the two arguments. They return a structure ---
11567the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011568element of which is a bit specifying if the unsigned multiplication
11569resulted in an overflow.
11570
11571Examples:
11572"""""""""
11573
11574.. code-block:: llvm
11575
11576 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11577 %sum = extractvalue {i32, i1} %res, 0
11578 %obit = extractvalue {i32, i1} %res, 1
11579 br i1 %obit, label %overflow, label %normal
11580
11581Specialised Arithmetic Intrinsics
11582---------------------------------
11583
Owen Anderson1056a922015-07-11 07:01:27 +000011584'``llvm.canonicalize.*``' Intrinsic
11585^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11586
11587Syntax:
11588"""""""
11589
11590::
11591
11592 declare float @llvm.canonicalize.f32(float %a)
11593 declare double @llvm.canonicalize.f64(double %b)
11594
11595Overview:
11596"""""""""
11597
11598The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011599encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011600implementing certain numeric primitives such as frexp. The canonical encoding is
11601defined by IEEE-754-2008 to be:
11602
11603::
11604
11605 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011606 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011607 numbers, infinities, and NaNs, especially in decimal formats.
11608
11609This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011610conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011611according to section 6.2.
11612
11613Examples of non-canonical encodings:
11614
Sean Silvaa1190322015-08-06 22:56:48 +000011615- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011616 converted to a canonical representation per hardware-specific protocol.
11617- Many normal decimal floating point numbers have non-canonical alternative
11618 encodings.
11619- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011620 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011621 a zero of the same sign by this operation.
11622
11623Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11624default exception handling must signal an invalid exception, and produce a
11625quiet NaN result.
11626
11627This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011628that the compiler does not constant fold the operation. Likewise, division by
116291.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011630-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11631
Sean Silvaa1190322015-08-06 22:56:48 +000011632``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011633
11634- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11635- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11636 to ``(x == y)``
11637
11638Additionally, the sign of zero must be conserved:
11639``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11640
11641The payload bits of a NaN must be conserved, with two exceptions.
11642First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011643must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011644usual methods.
11645
11646The canonicalization operation may be optimized away if:
11647
Sean Silvaa1190322015-08-06 22:56:48 +000011648- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011649 floating-point operation that is required by the standard to be canonical.
11650- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011651 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011652
Sean Silvab084af42012-12-07 10:36:55 +000011653'``llvm.fmuladd.*``' Intrinsic
11654^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11655
11656Syntax:
11657"""""""
11658
11659::
11660
11661 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11662 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11663
11664Overview:
11665"""""""""
11666
11667The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011668expressions that can be fused if the code generator determines that (a) the
11669target instruction set has support for a fused operation, and (b) that the
11670fused operation is more efficient than the equivalent, separate pair of mul
11671and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011672
11673Arguments:
11674""""""""""
11675
11676The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11677multiplicands, a and b, and an addend c.
11678
11679Semantics:
11680""""""""""
11681
11682The expression:
11683
11684::
11685
11686 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11687
11688is equivalent to the expression a \* b + c, except that rounding will
11689not be performed between the multiplication and addition steps if the
11690code generator fuses the operations. Fusion is not guaranteed, even if
11691the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011692corresponding llvm.fma.\* intrinsic function should be used
11693instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011694
11695Examples:
11696"""""""""
11697
11698.. code-block:: llvm
11699
Tim Northover675a0962014-06-13 14:24:23 +000011700 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011701
Amara Emersoncf9daa32017-05-09 10:43:25 +000011702
11703Experimental Vector Reduction Intrinsics
11704----------------------------------------
11705
11706Horizontal reductions of vectors can be expressed using the following
11707intrinsics. Each one takes a vector operand as an input and applies its
11708respective operation across all elements of the vector, returning a single
11709scalar result of the same element type.
11710
11711
11712'``llvm.experimental.vector.reduce.add.*``' Intrinsic
11713^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11714
11715Syntax:
11716"""""""
11717
11718::
11719
11720 declare i32 @llvm.experimental.vector.reduce.add.i32.v4i32(<4 x i32> %a)
11721 declare i64 @llvm.experimental.vector.reduce.add.i64.v2i64(<2 x i64> %a)
11722
11723Overview:
11724"""""""""
11725
11726The '``llvm.experimental.vector.reduce.add.*``' intrinsics do an integer ``ADD``
11727reduction of a vector, returning the result as a scalar. The return type matches
11728the element-type of the vector input.
11729
11730Arguments:
11731""""""""""
11732The argument to this intrinsic must be a vector of integer values.
11733
11734'``llvm.experimental.vector.reduce.fadd.*``' Intrinsic
11735^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11736
11737Syntax:
11738"""""""
11739
11740::
11741
11742 declare float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %a)
11743 declare double @llvm.experimental.vector.reduce.fadd.f64.v2f64(double %acc, <2 x double> %a)
11744
11745Overview:
11746"""""""""
11747
11748The '``llvm.experimental.vector.reduce.fadd.*``' intrinsics do a floating point
11749``ADD`` reduction of a vector, returning the result as a scalar. The return type
11750matches the element-type of the vector input.
11751
11752If the intrinsic call has fast-math flags, then the reduction will not preserve
11753the associativity of an equivalent scalarized counterpart. If it does not have
11754fast-math flags, then the reduction will be *ordered*, implying that the
11755operation respects the associativity of a scalarized reduction.
11756
11757
11758Arguments:
11759""""""""""
11760The first argument to this intrinsic is a scalar accumulator value, which is
11761only used when there are no fast-math flags attached. This argument may be undef
11762when fast-math flags are used.
11763
11764The second argument must be a vector of floating point values.
11765
11766Examples:
11767"""""""""
11768
11769.. code-block:: llvm
11770
11771 %fast = call fast float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
11772 %ord = call float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
11773
11774
11775'``llvm.experimental.vector.reduce.mul.*``' Intrinsic
11776^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11777
11778Syntax:
11779"""""""
11780
11781::
11782
11783 declare i32 @llvm.experimental.vector.reduce.mul.i32.v4i32(<4 x i32> %a)
11784 declare i64 @llvm.experimental.vector.reduce.mul.i64.v2i64(<2 x i64> %a)
11785
11786Overview:
11787"""""""""
11788
11789The '``llvm.experimental.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
11790reduction of a vector, returning the result as a scalar. The return type matches
11791the element-type of the vector input.
11792
11793Arguments:
11794""""""""""
11795The argument to this intrinsic must be a vector of integer values.
11796
11797'``llvm.experimental.vector.reduce.fmul.*``' Intrinsic
11798^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11799
11800Syntax:
11801"""""""
11802
11803::
11804
11805 declare float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %a)
11806 declare double @llvm.experimental.vector.reduce.fmul.f64.v2f64(double %acc, <2 x double> %a)
11807
11808Overview:
11809"""""""""
11810
11811The '``llvm.experimental.vector.reduce.fmul.*``' intrinsics do a floating point
11812``MUL`` reduction of a vector, returning the result as a scalar. The return type
11813matches the element-type of the vector input.
11814
11815If the intrinsic call has fast-math flags, then the reduction will not preserve
11816the associativity of an equivalent scalarized counterpart. If it does not have
11817fast-math flags, then the reduction will be *ordered*, implying that the
11818operation respects the associativity of a scalarized reduction.
11819
11820
11821Arguments:
11822""""""""""
11823The first argument to this intrinsic is a scalar accumulator value, which is
11824only used when there are no fast-math flags attached. This argument may be undef
11825when fast-math flags are used.
11826
11827The second argument must be a vector of floating point values.
11828
11829Examples:
11830"""""""""
11831
11832.. code-block:: llvm
11833
11834 %fast = call fast float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
11835 %ord = call float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
11836
11837'``llvm.experimental.vector.reduce.and.*``' Intrinsic
11838^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11839
11840Syntax:
11841"""""""
11842
11843::
11844
11845 declare i32 @llvm.experimental.vector.reduce.and.i32.v4i32(<4 x i32> %a)
11846
11847Overview:
11848"""""""""
11849
11850The '``llvm.experimental.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
11851reduction of a vector, returning the result as a scalar. The return type matches
11852the element-type of the vector input.
11853
11854Arguments:
11855""""""""""
11856The argument to this intrinsic must be a vector of integer values.
11857
11858'``llvm.experimental.vector.reduce.or.*``' Intrinsic
11859^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11860
11861Syntax:
11862"""""""
11863
11864::
11865
11866 declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
11867
11868Overview:
11869"""""""""
11870
11871The '``llvm.experimental.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
11872of a vector, returning the result as a scalar. The return type matches the
11873element-type of the vector input.
11874
11875Arguments:
11876""""""""""
11877The argument to this intrinsic must be a vector of integer values.
11878
11879'``llvm.experimental.vector.reduce.xor.*``' Intrinsic
11880^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11881
11882Syntax:
11883"""""""
11884
11885::
11886
11887 declare i32 @llvm.experimental.vector.reduce.xor.i32.v4i32(<4 x i32> %a)
11888
11889Overview:
11890"""""""""
11891
11892The '``llvm.experimental.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
11893reduction of a vector, returning the result as a scalar. The return type matches
11894the element-type of the vector input.
11895
11896Arguments:
11897""""""""""
11898The argument to this intrinsic must be a vector of integer values.
11899
11900'``llvm.experimental.vector.reduce.smax.*``' Intrinsic
11901^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11902
11903Syntax:
11904"""""""
11905
11906::
11907
11908 declare i32 @llvm.experimental.vector.reduce.smax.i32.v4i32(<4 x i32> %a)
11909
11910Overview:
11911"""""""""
11912
11913The '``llvm.experimental.vector.reduce.smax.*``' intrinsics do a signed integer
11914``MAX`` reduction of a vector, returning the result as a scalar. The return type
11915matches the element-type of the vector input.
11916
11917Arguments:
11918""""""""""
11919The argument to this intrinsic must be a vector of integer values.
11920
11921'``llvm.experimental.vector.reduce.smin.*``' Intrinsic
11922^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11923
11924Syntax:
11925"""""""
11926
11927::
11928
11929 declare i32 @llvm.experimental.vector.reduce.smin.i32.v4i32(<4 x i32> %a)
11930
11931Overview:
11932"""""""""
11933
11934The '``llvm.experimental.vector.reduce.smin.*``' intrinsics do a signed integer
11935``MIN`` reduction of a vector, returning the result as a scalar. The return type
11936matches the element-type of the vector input.
11937
11938Arguments:
11939""""""""""
11940The argument to this intrinsic must be a vector of integer values.
11941
11942'``llvm.experimental.vector.reduce.umax.*``' Intrinsic
11943^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11944
11945Syntax:
11946"""""""
11947
11948::
11949
11950 declare i32 @llvm.experimental.vector.reduce.umax.i32.v4i32(<4 x i32> %a)
11951
11952Overview:
11953"""""""""
11954
11955The '``llvm.experimental.vector.reduce.umax.*``' intrinsics do an unsigned
11956integer ``MAX`` reduction of a vector, returning the result as a scalar. The
11957return type matches the element-type of the vector input.
11958
11959Arguments:
11960""""""""""
11961The argument to this intrinsic must be a vector of integer values.
11962
11963'``llvm.experimental.vector.reduce.umin.*``' Intrinsic
11964^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11965
11966Syntax:
11967"""""""
11968
11969::
11970
11971 declare i32 @llvm.experimental.vector.reduce.umin.i32.v4i32(<4 x i32> %a)
11972
11973Overview:
11974"""""""""
11975
11976The '``llvm.experimental.vector.reduce.umin.*``' intrinsics do an unsigned
11977integer ``MIN`` reduction of a vector, returning the result as a scalar. The
11978return type matches the element-type of the vector input.
11979
11980Arguments:
11981""""""""""
11982The argument to this intrinsic must be a vector of integer values.
11983
11984'``llvm.experimental.vector.reduce.fmax.*``' Intrinsic
11985^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11986
11987Syntax:
11988"""""""
11989
11990::
11991
11992 declare float @llvm.experimental.vector.reduce.fmax.f32.v4f32(<4 x float> %a)
11993 declare double @llvm.experimental.vector.reduce.fmax.f64.v2f64(<2 x double> %a)
11994
11995Overview:
11996"""""""""
11997
11998The '``llvm.experimental.vector.reduce.fmax.*``' intrinsics do a floating point
11999``MAX`` reduction of a vector, returning the result as a scalar. The return type
12000matches the element-type of the vector input.
12001
12002If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12003assume that NaNs are not present in the input vector.
12004
12005Arguments:
12006""""""""""
12007The argument to this intrinsic must be a vector of floating point values.
12008
12009'``llvm.experimental.vector.reduce.fmin.*``' Intrinsic
12010^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12011
12012Syntax:
12013"""""""
12014
12015::
12016
12017 declare float @llvm.experimental.vector.reduce.fmin.f32.v4f32(<4 x float> %a)
12018 declare double @llvm.experimental.vector.reduce.fmin.f64.v2f64(<2 x double> %a)
12019
12020Overview:
12021"""""""""
12022
12023The '``llvm.experimental.vector.reduce.fmin.*``' intrinsics do a floating point
12024``MIN`` reduction of a vector, returning the result as a scalar. The return type
12025matches the element-type of the vector input.
12026
12027If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12028assume that NaNs are not present in the input vector.
12029
12030Arguments:
12031""""""""""
12032The argument to this intrinsic must be a vector of floating point values.
12033
Sean Silvab084af42012-12-07 10:36:55 +000012034Half Precision Floating Point Intrinsics
12035----------------------------------------
12036
12037For most target platforms, half precision floating point is a
12038storage-only format. This means that it is a dense encoding (in memory)
12039but does not support computation in the format.
12040
12041This means that code must first load the half-precision floating point
12042value as an i16, then convert it to float with
12043:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
12044then be performed on the float value (including extending to double
12045etc). To store the value back to memory, it is first converted to float
12046if needed, then converted to i16 with
12047:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
12048i16 value.
12049
12050.. _int_convert_to_fp16:
12051
12052'``llvm.convert.to.fp16``' Intrinsic
12053^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12054
12055Syntax:
12056"""""""
12057
12058::
12059
Tim Northoverfd7e4242014-07-17 10:51:23 +000012060 declare i16 @llvm.convert.to.fp16.f32(float %a)
12061 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000012062
12063Overview:
12064"""""""""
12065
Tim Northoverfd7e4242014-07-17 10:51:23 +000012066The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
12067conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000012068
12069Arguments:
12070""""""""""
12071
12072The intrinsic function contains single argument - the value to be
12073converted.
12074
12075Semantics:
12076""""""""""
12077
Tim Northoverfd7e4242014-07-17 10:51:23 +000012078The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
12079conventional floating point format to half precision floating point format. The
12080return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000012081
12082Examples:
12083"""""""""
12084
12085.. code-block:: llvm
12086
Tim Northoverfd7e4242014-07-17 10:51:23 +000012087 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000012088 store i16 %res, i16* @x, align 2
12089
12090.. _int_convert_from_fp16:
12091
12092'``llvm.convert.from.fp16``' Intrinsic
12093^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12094
12095Syntax:
12096"""""""
12097
12098::
12099
Tim Northoverfd7e4242014-07-17 10:51:23 +000012100 declare float @llvm.convert.from.fp16.f32(i16 %a)
12101 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012102
12103Overview:
12104"""""""""
12105
12106The '``llvm.convert.from.fp16``' intrinsic function performs a
12107conversion from half precision floating point format to single precision
12108floating point format.
12109
12110Arguments:
12111""""""""""
12112
12113The intrinsic function contains single argument - the value to be
12114converted.
12115
12116Semantics:
12117""""""""""
12118
12119The '``llvm.convert.from.fp16``' intrinsic function performs a
12120conversion from half single precision floating point format to single
12121precision floating point format. The input half-float value is
12122represented by an ``i16`` value.
12123
12124Examples:
12125"""""""""
12126
12127.. code-block:: llvm
12128
David Blaikiec7aabbb2015-03-04 22:06:14 +000012129 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000012130 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012131
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000012132.. _dbg_intrinsics:
12133
Sean Silvab084af42012-12-07 10:36:55 +000012134Debugger Intrinsics
12135-------------------
12136
12137The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
12138prefix), are described in the `LLVM Source Level
12139Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
12140document.
12141
12142Exception Handling Intrinsics
12143-----------------------------
12144
12145The LLVM exception handling intrinsics (which all start with
12146``llvm.eh.`` prefix), are described in the `LLVM Exception
12147Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
12148
12149.. _int_trampoline:
12150
12151Trampoline Intrinsics
12152---------------------
12153
12154These intrinsics make it possible to excise one parameter, marked with
12155the :ref:`nest <nest>` attribute, from a function. The result is a
12156callable function pointer lacking the nest parameter - the caller does
12157not need to provide a value for it. Instead, the value to use is stored
12158in advance in a "trampoline", a block of memory usually allocated on the
12159stack, which also contains code to splice the nest value into the
12160argument list. This is used to implement the GCC nested function address
12161extension.
12162
12163For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
12164then the resulting function pointer has signature ``i32 (i32, i32)*``.
12165It can be created as follows:
12166
12167.. code-block:: llvm
12168
12169 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000012170 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000012171 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
12172 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
12173 %fp = bitcast i8* %p to i32 (i32, i32)*
12174
12175The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
12176``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
12177
12178.. _int_it:
12179
12180'``llvm.init.trampoline``' Intrinsic
12181^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12182
12183Syntax:
12184"""""""
12185
12186::
12187
12188 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
12189
12190Overview:
12191"""""""""
12192
12193This fills the memory pointed to by ``tramp`` with executable code,
12194turning it into a trampoline.
12195
12196Arguments:
12197""""""""""
12198
12199The ``llvm.init.trampoline`` intrinsic takes three arguments, all
12200pointers. The ``tramp`` argument must point to a sufficiently large and
12201sufficiently aligned block of memory; this memory is written to by the
12202intrinsic. Note that the size and the alignment are target-specific -
12203LLVM currently provides no portable way of determining them, so a
12204front-end that generates this intrinsic needs to have some
12205target-specific knowledge. The ``func`` argument must hold a function
12206bitcast to an ``i8*``.
12207
12208Semantics:
12209""""""""""
12210
12211The block of memory pointed to by ``tramp`` is filled with target
12212dependent code, turning it into a function. Then ``tramp`` needs to be
12213passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
12214be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
12215function's signature is the same as that of ``func`` with any arguments
12216marked with the ``nest`` attribute removed. At most one such ``nest``
12217argument is allowed, and it must be of pointer type. Calling the new
12218function is equivalent to calling ``func`` with the same argument list,
12219but with ``nval`` used for the missing ``nest`` argument. If, after
12220calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
12221modified, then the effect of any later call to the returned function
12222pointer is undefined.
12223
12224.. _int_at:
12225
12226'``llvm.adjust.trampoline``' Intrinsic
12227^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12228
12229Syntax:
12230"""""""
12231
12232::
12233
12234 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
12235
12236Overview:
12237"""""""""
12238
12239This performs any required machine-specific adjustment to the address of
12240a trampoline (passed as ``tramp``).
12241
12242Arguments:
12243""""""""""
12244
12245``tramp`` must point to a block of memory which already has trampoline
12246code filled in by a previous call to
12247:ref:`llvm.init.trampoline <int_it>`.
12248
12249Semantics:
12250""""""""""
12251
12252On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012253different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000012254intrinsic returns the executable address corresponding to ``tramp``
12255after performing the required machine specific adjustments. The pointer
12256returned can then be :ref:`bitcast and executed <int_trampoline>`.
12257
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012258.. _int_mload_mstore:
12259
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012260Masked Vector Load and Store Intrinsics
12261---------------------------------------
12262
12263LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
12264
12265.. _int_mload:
12266
12267'``llvm.masked.load.*``' Intrinsics
12268^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12269
12270Syntax:
12271"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012272This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012273
12274::
12275
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012276 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12277 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012278 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012279 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012280 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012281 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012282
12283Overview:
12284"""""""""
12285
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012286Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012287
12288
12289Arguments:
12290""""""""""
12291
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012292The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012293
12294
12295Semantics:
12296""""""""""
12297
12298The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
12299The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
12300
12301
12302::
12303
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012304 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012305
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012306 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000012307 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012308 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012309
12310.. _int_mstore:
12311
12312'``llvm.masked.store.*``' Intrinsics
12313^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12314
12315Syntax:
12316"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012317This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012318
12319::
12320
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012321 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
12322 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012323 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012324 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012325 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012326 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012327
12328Overview:
12329"""""""""
12330
12331Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12332
12333Arguments:
12334""""""""""
12335
12336The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12337
12338
12339Semantics:
12340""""""""""
12341
12342The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
12343The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
12344
12345::
12346
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012347 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012348
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012349 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000012350 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012351 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
12352 store <16 x float> %res, <16 x float>* %ptr, align 4
12353
12354
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012355Masked Vector Gather and Scatter Intrinsics
12356-------------------------------------------
12357
12358LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
12359
12360.. _int_mgather:
12361
12362'``llvm.masked.gather.*``' Intrinsics
12363^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12364
12365Syntax:
12366"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012367This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012368
12369::
12370
Elad Cohenef5798a2017-05-03 12:28:54 +000012371 declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12372 declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64 (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
12373 declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012374
12375Overview:
12376"""""""""
12377
12378Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
12379
12380
12381Arguments:
12382""""""""""
12383
12384The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
12385
12386
12387Semantics:
12388""""""""""
12389
12390The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
12391The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
12392
12393
12394::
12395
Elad Cohenef5798a2017-05-03 12:28:54 +000012396 %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012397
12398 ;; The gather with all-true mask is equivalent to the following instruction sequence
12399 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
12400 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
12401 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
12402 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
12403
12404 %val0 = load double, double* %ptr0, align 8
12405 %val1 = load double, double* %ptr1, align 8
12406 %val2 = load double, double* %ptr2, align 8
12407 %val3 = load double, double* %ptr3, align 8
12408
12409 %vec0 = insertelement <4 x double>undef, %val0, 0
12410 %vec01 = insertelement <4 x double>%vec0, %val1, 1
12411 %vec012 = insertelement <4 x double>%vec01, %val2, 2
12412 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
12413
12414.. _int_mscatter:
12415
12416'``llvm.masked.scatter.*``' Intrinsics
12417^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12418
12419Syntax:
12420"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012421This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012422
12423::
12424
Elad Cohenef5798a2017-05-03 12:28:54 +000012425 declare void @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
12426 declare void @llvm.masked.scatter.v16f32.v16p1f32 (<16 x float> <value>, <16 x float addrspace(1)*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
12427 declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012428
12429Overview:
12430"""""""""
12431
12432Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12433
12434Arguments:
12435""""""""""
12436
12437The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12438
12439
12440Semantics:
12441""""""""""
12442
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000012443The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012444
12445::
12446
Sylvestre Ledru84666a12016-02-14 20:16:22 +000012447 ;; This instruction unconditionally stores data vector in multiple addresses
Elad Cohenef5798a2017-05-03 12:28:54 +000012448 call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012449
12450 ;; It is equivalent to a list of scalar stores
12451 %val0 = extractelement <8 x i32> %value, i32 0
12452 %val1 = extractelement <8 x i32> %value, i32 1
12453 ..
12454 %val7 = extractelement <8 x i32> %value, i32 7
12455 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
12456 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
12457 ..
12458 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
12459 ;; Note: the order of the following stores is important when they overlap:
12460 store i32 %val0, i32* %ptr0, align 4
12461 store i32 %val1, i32* %ptr1, align 4
12462 ..
12463 store i32 %val7, i32* %ptr7, align 4
12464
12465
Sean Silvab084af42012-12-07 10:36:55 +000012466Memory Use Markers
12467------------------
12468
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012469This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000012470memory objects and ranges where variables are immutable.
12471
Reid Klecknera534a382013-12-19 02:14:12 +000012472.. _int_lifestart:
12473
Sean Silvab084af42012-12-07 10:36:55 +000012474'``llvm.lifetime.start``' Intrinsic
12475^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12476
12477Syntax:
12478"""""""
12479
12480::
12481
12482 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
12483
12484Overview:
12485"""""""""
12486
12487The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
12488object's lifetime.
12489
12490Arguments:
12491""""""""""
12492
12493The first argument is a constant integer representing the size of the
12494object, or -1 if it is variable sized. The second argument is a pointer
12495to the object.
12496
12497Semantics:
12498""""""""""
12499
12500This intrinsic indicates that before this point in the code, the value
12501of the memory pointed to by ``ptr`` is dead. This means that it is known
12502to never be used and has an undefined value. A load from the pointer
12503that precedes this intrinsic can be replaced with ``'undef'``.
12504
Reid Klecknera534a382013-12-19 02:14:12 +000012505.. _int_lifeend:
12506
Sean Silvab084af42012-12-07 10:36:55 +000012507'``llvm.lifetime.end``' Intrinsic
12508^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12509
12510Syntax:
12511"""""""
12512
12513::
12514
12515 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
12516
12517Overview:
12518"""""""""
12519
12520The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
12521object's lifetime.
12522
12523Arguments:
12524""""""""""
12525
12526The first argument is a constant integer representing the size of the
12527object, or -1 if it is variable sized. The second argument is a pointer
12528to the object.
12529
12530Semantics:
12531""""""""""
12532
12533This intrinsic indicates that after this point in the code, the value of
12534the memory pointed to by ``ptr`` is dead. This means that it is known to
12535never be used and has an undefined value. Any stores into the memory
12536object following this intrinsic may be removed as dead.
12537
12538'``llvm.invariant.start``' Intrinsic
12539^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12540
12541Syntax:
12542"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012543This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012544
12545::
12546
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012547 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012548
12549Overview:
12550"""""""""
12551
12552The '``llvm.invariant.start``' intrinsic specifies that the contents of
12553a memory object will not change.
12554
12555Arguments:
12556""""""""""
12557
12558The first argument is a constant integer representing the size of the
12559object, or -1 if it is variable sized. The second argument is a pointer
12560to the object.
12561
12562Semantics:
12563""""""""""
12564
12565This intrinsic indicates that until an ``llvm.invariant.end`` that uses
12566the return value, the referenced memory location is constant and
12567unchanging.
12568
12569'``llvm.invariant.end``' Intrinsic
12570^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12571
12572Syntax:
12573"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012574This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012575
12576::
12577
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012578 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012579
12580Overview:
12581"""""""""
12582
12583The '``llvm.invariant.end``' intrinsic specifies that the contents of a
12584memory object are mutable.
12585
12586Arguments:
12587""""""""""
12588
12589The first argument is the matching ``llvm.invariant.start`` intrinsic.
12590The second argument is a constant integer representing the size of the
12591object, or -1 if it is variable sized and the third argument is a
12592pointer to the object.
12593
12594Semantics:
12595""""""""""
12596
12597This intrinsic indicates that the memory is mutable again.
12598
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012599'``llvm.invariant.group.barrier``' Intrinsic
12600^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12601
12602Syntax:
12603"""""""
12604
12605::
12606
12607 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
12608
12609Overview:
12610"""""""""
12611
12612The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
12613established by invariant.group metadata no longer holds, to obtain a new pointer
12614value that does not carry the invariant information.
12615
12616
12617Arguments:
12618""""""""""
12619
12620The ``llvm.invariant.group.barrier`` takes only one argument, which is
12621the pointer to the memory for which the ``invariant.group`` no longer holds.
12622
12623Semantics:
12624""""""""""
12625
12626Returns another pointer that aliases its argument but which is considered different
12627for the purposes of ``load``/``store`` ``invariant.group`` metadata.
12628
Andrew Kaylora0a11642017-01-26 23:27:59 +000012629Constrained Floating Point Intrinsics
12630-------------------------------------
12631
12632These intrinsics are used to provide special handling of floating point
12633operations when specific rounding mode or floating point exception behavior is
12634required. By default, LLVM optimization passes assume that the rounding mode is
12635round-to-nearest and that floating point exceptions will not be monitored.
12636Constrained FP intrinsics are used to support non-default rounding modes and
12637accurately preserve exception behavior without compromising LLVM's ability to
12638optimize FP code when the default behavior is used.
12639
12640Each of these intrinsics corresponds to a normal floating point operation. The
12641first two arguments and the return value are the same as the corresponding FP
12642operation.
12643
12644The third argument is a metadata argument specifying the rounding mode to be
12645assumed. This argument must be one of the following strings:
12646
12647::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012648
Andrew Kaylora0a11642017-01-26 23:27:59 +000012649 "round.dynamic"
12650 "round.tonearest"
12651 "round.downward"
12652 "round.upward"
12653 "round.towardzero"
12654
12655If this argument is "round.dynamic" optimization passes must assume that the
12656rounding mode is unknown and may change at runtime. No transformations that
12657depend on rounding mode may be performed in this case.
12658
12659The other possible values for the rounding mode argument correspond to the
12660similarly named IEEE rounding modes. If the argument is any of these values
12661optimization passes may perform transformations as long as they are consistent
12662with the specified rounding mode.
12663
12664For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
12665"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
12666'x-0' should evaluate to '-0' when rounding downward. However, this
12667transformation is legal for all other rounding modes.
12668
12669For values other than "round.dynamic" optimization passes may assume that the
12670actual runtime rounding mode (as defined in a target-specific manner) matches
12671the specified rounding mode, but this is not guaranteed. Using a specific
12672non-dynamic rounding mode which does not match the actual rounding mode at
12673runtime results in undefined behavior.
12674
12675The fourth argument to the constrained floating point intrinsics specifies the
12676required exception behavior. This argument must be one of the following
12677strings:
12678
12679::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012680
Andrew Kaylora0a11642017-01-26 23:27:59 +000012681 "fpexcept.ignore"
12682 "fpexcept.maytrap"
12683 "fpexcept.strict"
12684
12685If this argument is "fpexcept.ignore" optimization passes may assume that the
12686exception status flags will not be read and that floating point exceptions will
12687be masked. This allows transformations to be performed that may change the
12688exception semantics of the original code. For example, FP operations may be
12689speculatively executed in this case whereas they must not be for either of the
12690other possible values of this argument.
12691
12692If the exception behavior argument is "fpexcept.maytrap" optimization passes
12693must avoid transformations that may raise exceptions that would not have been
12694raised by the original code (such as speculatively executing FP operations), but
12695passes are not required to preserve all exceptions that are implied by the
12696original code. For example, exceptions may be potentially hidden by constant
12697folding.
12698
12699If the exception behavior argument is "fpexcept.strict" all transformations must
12700strictly preserve the floating point exception semantics of the original code.
12701Any FP exception that would have been raised by the original code must be raised
12702by the transformed code, and the transformed code must not raise any FP
12703exceptions that would not have been raised by the original code. This is the
12704exception behavior argument that will be used if the code being compiled reads
12705the FP exception status flags, but this mode can also be used with code that
12706unmasks FP exceptions.
12707
12708The number and order of floating point exceptions is NOT guaranteed. For
12709example, a series of FP operations that each may raise exceptions may be
12710vectorized into a single instruction that raises each unique exception a single
12711time.
12712
12713
12714'``llvm.experimental.constrained.fadd``' Intrinsic
12715^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12716
12717Syntax:
12718"""""""
12719
12720::
12721
12722 declare <type>
12723 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
12724 metadata <rounding mode>,
12725 metadata <exception behavior>)
12726
12727Overview:
12728"""""""""
12729
12730The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
12731two operands.
12732
12733
12734Arguments:
12735""""""""""
12736
12737The first two arguments to the '``llvm.experimental.constrained.fadd``'
12738intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12739of floating point values. Both arguments must have identical types.
12740
12741The third and fourth arguments specify the rounding mode and exception
12742behavior as described above.
12743
12744Semantics:
12745""""""""""
12746
12747The value produced is the floating point sum of the two value operands and has
12748the same type as the operands.
12749
12750
12751'``llvm.experimental.constrained.fsub``' Intrinsic
12752^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12753
12754Syntax:
12755"""""""
12756
12757::
12758
12759 declare <type>
12760 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
12761 metadata <rounding mode>,
12762 metadata <exception behavior>)
12763
12764Overview:
12765"""""""""
12766
12767The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
12768of its two operands.
12769
12770
12771Arguments:
12772""""""""""
12773
12774The first two arguments to the '``llvm.experimental.constrained.fsub``'
12775intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12776of floating point values. Both arguments must have identical types.
12777
12778The third and fourth arguments specify the rounding mode and exception
12779behavior as described above.
12780
12781Semantics:
12782""""""""""
12783
12784The value produced is the floating point difference of the two value operands
12785and has the same type as the operands.
12786
12787
12788'``llvm.experimental.constrained.fmul``' Intrinsic
12789^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12790
12791Syntax:
12792"""""""
12793
12794::
12795
12796 declare <type>
12797 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
12798 metadata <rounding mode>,
12799 metadata <exception behavior>)
12800
12801Overview:
12802"""""""""
12803
12804The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
12805its two operands.
12806
12807
12808Arguments:
12809""""""""""
12810
12811The first two arguments to the '``llvm.experimental.constrained.fmul``'
12812intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12813of floating point values. Both arguments must have identical types.
12814
12815The third and fourth arguments specify the rounding mode and exception
12816behavior as described above.
12817
12818Semantics:
12819""""""""""
12820
12821The value produced is the floating point product of the two value operands and
12822has the same type as the operands.
12823
12824
12825'``llvm.experimental.constrained.fdiv``' Intrinsic
12826^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12827
12828Syntax:
12829"""""""
12830
12831::
12832
12833 declare <type>
12834 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
12835 metadata <rounding mode>,
12836 metadata <exception behavior>)
12837
12838Overview:
12839"""""""""
12840
12841The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
12842its two operands.
12843
12844
12845Arguments:
12846""""""""""
12847
12848The first two arguments to the '``llvm.experimental.constrained.fdiv``'
12849intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12850of floating point values. Both arguments must have identical types.
12851
12852The third and fourth arguments specify the rounding mode and exception
12853behavior as described above.
12854
12855Semantics:
12856""""""""""
12857
12858The value produced is the floating point quotient of the two value operands and
12859has the same type as the operands.
12860
12861
12862'``llvm.experimental.constrained.frem``' Intrinsic
12863^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12864
12865Syntax:
12866"""""""
12867
12868::
12869
12870 declare <type>
12871 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
12872 metadata <rounding mode>,
12873 metadata <exception behavior>)
12874
12875Overview:
12876"""""""""
12877
12878The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
12879from the division of its two operands.
12880
12881
12882Arguments:
12883""""""""""
12884
12885The first two arguments to the '``llvm.experimental.constrained.frem``'
12886intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12887of floating point values. Both arguments must have identical types.
12888
12889The third and fourth arguments specify the rounding mode and exception
12890behavior as described above. The rounding mode argument has no effect, since
12891the result of frem is never rounded, but the argument is included for
12892consistency with the other constrained floating point intrinsics.
12893
12894Semantics:
12895""""""""""
12896
12897The value produced is the floating point remainder from the division of the two
12898value operands and has the same type as the operands. The remainder has the
12899same sign as the dividend.
12900
12901
Sean Silvab084af42012-12-07 10:36:55 +000012902General Intrinsics
12903------------------
12904
12905This class of intrinsics is designed to be generic and has no specific
12906purpose.
12907
12908'``llvm.var.annotation``' Intrinsic
12909^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12910
12911Syntax:
12912"""""""
12913
12914::
12915
12916 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12917
12918Overview:
12919"""""""""
12920
12921The '``llvm.var.annotation``' intrinsic.
12922
12923Arguments:
12924""""""""""
12925
12926The first argument is a pointer to a value, the second is a pointer to a
12927global string, the third is a pointer to a global string which is the
12928source file name, and the last argument is the line number.
12929
12930Semantics:
12931""""""""""
12932
12933This intrinsic allows annotation of local variables with arbitrary
12934strings. This can be useful for special purpose optimizations that want
12935to look for these annotations. These have no other defined use; they are
12936ignored by code generation and optimization.
12937
Michael Gottesman88d18832013-03-26 00:34:27 +000012938'``llvm.ptr.annotation.*``' Intrinsic
12939^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12940
12941Syntax:
12942"""""""
12943
12944This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
12945pointer to an integer of any width. *NOTE* you must specify an address space for
12946the pointer. The identifier for the default address space is the integer
12947'``0``'.
12948
12949::
12950
12951 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12952 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
12953 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
12954 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
12955 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
12956
12957Overview:
12958"""""""""
12959
12960The '``llvm.ptr.annotation``' intrinsic.
12961
12962Arguments:
12963""""""""""
12964
12965The first argument is a pointer to an integer value of arbitrary bitwidth
12966(result of some expression), the second is a pointer to a global string, the
12967third is a pointer to a global string which is the source file name, and the
12968last argument is the line number. It returns the value of the first argument.
12969
12970Semantics:
12971""""""""""
12972
12973This intrinsic allows annotation of a pointer to an integer with arbitrary
12974strings. This can be useful for special purpose optimizations that want to look
12975for these annotations. These have no other defined use; they are ignored by code
12976generation and optimization.
12977
Sean Silvab084af42012-12-07 10:36:55 +000012978'``llvm.annotation.*``' Intrinsic
12979^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12980
12981Syntax:
12982"""""""
12983
12984This is an overloaded intrinsic. You can use '``llvm.annotation``' on
12985any integer bit width.
12986
12987::
12988
12989 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
12990 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
12991 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
12992 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
12993 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
12994
12995Overview:
12996"""""""""
12997
12998The '``llvm.annotation``' intrinsic.
12999
13000Arguments:
13001""""""""""
13002
13003The first argument is an integer value (result of some expression), the
13004second is a pointer to a global string, the third is a pointer to a
13005global string which is the source file name, and the last argument is
13006the line number. It returns the value of the first argument.
13007
13008Semantics:
13009""""""""""
13010
13011This intrinsic allows annotations to be put on arbitrary expressions
13012with arbitrary strings. This can be useful for special purpose
13013optimizations that want to look for these annotations. These have no
13014other defined use; they are ignored by code generation and optimization.
13015
13016'``llvm.trap``' Intrinsic
13017^^^^^^^^^^^^^^^^^^^^^^^^^
13018
13019Syntax:
13020"""""""
13021
13022::
13023
13024 declare void @llvm.trap() noreturn nounwind
13025
13026Overview:
13027"""""""""
13028
13029The '``llvm.trap``' intrinsic.
13030
13031Arguments:
13032""""""""""
13033
13034None.
13035
13036Semantics:
13037""""""""""
13038
13039This intrinsic is lowered to the target dependent trap instruction. If
13040the target does not have a trap instruction, this intrinsic will be
13041lowered to a call of the ``abort()`` function.
13042
13043'``llvm.debugtrap``' Intrinsic
13044^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13045
13046Syntax:
13047"""""""
13048
13049::
13050
13051 declare void @llvm.debugtrap() nounwind
13052
13053Overview:
13054"""""""""
13055
13056The '``llvm.debugtrap``' intrinsic.
13057
13058Arguments:
13059""""""""""
13060
13061None.
13062
13063Semantics:
13064""""""""""
13065
13066This intrinsic is lowered to code which is intended to cause an
13067execution trap with the intention of requesting the attention of a
13068debugger.
13069
13070'``llvm.stackprotector``' Intrinsic
13071^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13072
13073Syntax:
13074"""""""
13075
13076::
13077
13078 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
13079
13080Overview:
13081"""""""""
13082
13083The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
13084onto the stack at ``slot``. The stack slot is adjusted to ensure that it
13085is placed on the stack before local variables.
13086
13087Arguments:
13088""""""""""
13089
13090The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
13091The first argument is the value loaded from the stack guard
13092``@__stack_chk_guard``. The second variable is an ``alloca`` that has
13093enough space to hold the value of the guard.
13094
13095Semantics:
13096""""""""""
13097
Michael Gottesmandafc7d92013-08-12 18:35:32 +000013098This intrinsic causes the prologue/epilogue inserter to force the position of
13099the ``AllocaInst`` stack slot to be before local variables on the stack. This is
13100to ensure that if a local variable on the stack is overwritten, it will destroy
13101the value of the guard. When the function exits, the guard on the stack is
13102checked against the original guard by ``llvm.stackprotectorcheck``. If they are
13103different, then ``llvm.stackprotectorcheck`` causes the program to abort by
13104calling the ``__stack_chk_fail()`` function.
13105
Tim Shene885d5e2016-04-19 19:40:37 +000013106'``llvm.stackguard``' Intrinsic
13107^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13108
13109Syntax:
13110"""""""
13111
13112::
13113
13114 declare i8* @llvm.stackguard()
13115
13116Overview:
13117"""""""""
13118
13119The ``llvm.stackguard`` intrinsic returns the system stack guard value.
13120
13121It should not be generated by frontends, since it is only for internal usage.
13122The reason why we create this intrinsic is that we still support IR form Stack
13123Protector in FastISel.
13124
13125Arguments:
13126""""""""""
13127
13128None.
13129
13130Semantics:
13131""""""""""
13132
13133On some platforms, the value returned by this intrinsic remains unchanged
13134between loads in the same thread. On other platforms, it returns the same
13135global variable value, if any, e.g. ``@__stack_chk_guard``.
13136
13137Currently some platforms have IR-level customized stack guard loading (e.g.
13138X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
13139in the future.
13140
Sean Silvab084af42012-12-07 10:36:55 +000013141'``llvm.objectsize``' Intrinsic
13142^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13143
13144Syntax:
13145"""""""
13146
13147::
13148
George Burgess IV56c7e882017-03-21 20:08:59 +000013149 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>)
13150 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>)
Sean Silvab084af42012-12-07 10:36:55 +000013151
13152Overview:
13153"""""""""
13154
13155The ``llvm.objectsize`` intrinsic is designed to provide information to
13156the optimizers to determine at compile time whether a) an operation
13157(like memcpy) will overflow a buffer that corresponds to an object, or
13158b) that a runtime check for overflow isn't necessary. An object in this
13159context means an allocation of a specific class, structure, array, or
13160other object.
13161
13162Arguments:
13163""""""""""
13164
George Burgess IV56c7e882017-03-21 20:08:59 +000013165The ``llvm.objectsize`` intrinsic takes three arguments. The first argument is
13166a pointer to or into the ``object``. The second argument determines whether
13167``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size
13168is unknown. The third argument controls how ``llvm.objectsize`` acts when
13169``null`` is used as its pointer argument. If it's true and the pointer is in
13170address space 0, ``null`` is treated as an opaque value with an unknown number
13171of bytes. Otherwise, ``llvm.objectsize`` reports 0 bytes available when given
13172``null``.
13173
13174The second and third arguments only accept constants.
Sean Silvab084af42012-12-07 10:36:55 +000013175
13176Semantics:
13177""""""""""
13178
13179The ``llvm.objectsize`` intrinsic is lowered to a constant representing
13180the size of the object concerned. If the size cannot be determined at
13181compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
13182on the ``min`` argument).
13183
13184'``llvm.expect``' Intrinsic
13185^^^^^^^^^^^^^^^^^^^^^^^^^^^
13186
13187Syntax:
13188"""""""
13189
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000013190This is an overloaded intrinsic. You can use ``llvm.expect`` on any
13191integer bit width.
13192
Sean Silvab084af42012-12-07 10:36:55 +000013193::
13194
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000013195 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000013196 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
13197 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
13198
13199Overview:
13200"""""""""
13201
13202The ``llvm.expect`` intrinsic provides information about expected (the
13203most probable) value of ``val``, which can be used by optimizers.
13204
13205Arguments:
13206""""""""""
13207
13208The ``llvm.expect`` intrinsic takes two arguments. The first argument is
13209a value. The second argument is an expected value, this needs to be a
13210constant value, variables are not allowed.
13211
13212Semantics:
13213""""""""""
13214
13215This intrinsic is lowered to the ``val``.
13216
Philip Reamese0e90832015-04-26 22:23:12 +000013217.. _int_assume:
13218
Hal Finkel93046912014-07-25 21:13:35 +000013219'``llvm.assume``' Intrinsic
13220^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13221
13222Syntax:
13223"""""""
13224
13225::
13226
13227 declare void @llvm.assume(i1 %cond)
13228
13229Overview:
13230"""""""""
13231
13232The ``llvm.assume`` allows the optimizer to assume that the provided
13233condition is true. This information can then be used in simplifying other parts
13234of the code.
13235
13236Arguments:
13237""""""""""
13238
13239The condition which the optimizer may assume is always true.
13240
13241Semantics:
13242""""""""""
13243
13244The intrinsic allows the optimizer to assume that the provided condition is
13245always true whenever the control flow reaches the intrinsic call. No code is
13246generated for this intrinsic, and instructions that contribute only to the
13247provided condition are not used for code generation. If the condition is
13248violated during execution, the behavior is undefined.
13249
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000013250Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000013251used by the ``llvm.assume`` intrinsic in order to preserve the instructions
13252only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000013253if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000013254sufficient overall improvement in code quality. For this reason,
13255``llvm.assume`` should not be used to document basic mathematical invariants
13256that the optimizer can otherwise deduce or facts that are of little use to the
13257optimizer.
13258
Daniel Berlin2c438a32017-02-07 19:29:25 +000013259.. _int_ssa_copy:
13260
13261'``llvm.ssa_copy``' Intrinsic
13262^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13263
13264Syntax:
13265"""""""
13266
13267::
13268
13269 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
13270
13271Arguments:
13272""""""""""
13273
13274The first argument is an operand which is used as the returned value.
13275
13276Overview:
13277""""""""""
13278
13279The ``llvm.ssa_copy`` intrinsic can be used to attach information to
13280operations by copying them and giving them new names. For example,
13281the PredicateInfo utility uses it to build Extended SSA form, and
13282attach various forms of information to operands that dominate specific
13283uses. It is not meant for general use, only for building temporary
13284renaming forms that require value splits at certain points.
13285
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013286.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000013287
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013288'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000013289^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13290
13291Syntax:
13292"""""""
13293
13294::
13295
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013296 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000013297
13298
13299Arguments:
13300""""""""""
13301
13302The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013303metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000013304
13305Overview:
13306"""""""""
13307
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013308The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
13309with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000013310
Peter Collingbourne0312f612016-06-25 00:23:04 +000013311'``llvm.type.checked.load``' Intrinsic
13312^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13313
13314Syntax:
13315"""""""
13316
13317::
13318
13319 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
13320
13321
13322Arguments:
13323""""""""""
13324
13325The first argument is a pointer from which to load a function pointer. The
13326second argument is the byte offset from which to load the function pointer. The
13327third argument is a metadata object representing a :doc:`type identifier
13328<TypeMetadata>`.
13329
13330Overview:
13331"""""""""
13332
13333The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
13334virtual table pointer using type metadata. This intrinsic is used to implement
13335control flow integrity in conjunction with virtual call optimization. The
13336virtual call optimization pass will optimize away ``llvm.type.checked.load``
13337intrinsics associated with devirtualized calls, thereby removing the type
13338check in cases where it is not needed to enforce the control flow integrity
13339constraint.
13340
13341If the given pointer is associated with a type metadata identifier, this
13342function returns true as the second element of its return value. (Note that
13343the function may also return true if the given pointer is not associated
13344with a type metadata identifier.) If the function's return value's second
13345element is true, the following rules apply to the first element:
13346
13347- If the given pointer is associated with the given type metadata identifier,
13348 it is the function pointer loaded from the given byte offset from the given
13349 pointer.
13350
13351- If the given pointer is not associated with the given type metadata
13352 identifier, it is one of the following (the choice of which is unspecified):
13353
13354 1. The function pointer that would have been loaded from an arbitrarily chosen
13355 (through an unspecified mechanism) pointer associated with the type
13356 metadata.
13357
13358 2. If the function has a non-void return type, a pointer to a function that
13359 returns an unspecified value without causing side effects.
13360
13361If the function's return value's second element is false, the value of the
13362first element is undefined.
13363
13364
Sean Silvab084af42012-12-07 10:36:55 +000013365'``llvm.donothing``' Intrinsic
13366^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13367
13368Syntax:
13369"""""""
13370
13371::
13372
13373 declare void @llvm.donothing() nounwind readnone
13374
13375Overview:
13376"""""""""
13377
Juergen Ributzkac9161192014-10-23 22:36:13 +000013378The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000013379three intrinsics (besides ``llvm.experimental.patchpoint`` and
13380``llvm.experimental.gc.statepoint``) that can be called with an invoke
13381instruction.
Sean Silvab084af42012-12-07 10:36:55 +000013382
13383Arguments:
13384""""""""""
13385
13386None.
13387
13388Semantics:
13389""""""""""
13390
13391This intrinsic does nothing, and it's removed by optimizers and ignored
13392by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000013393
Sanjoy Dasb51325d2016-03-11 19:08:34 +000013394'``llvm.experimental.deoptimize``' Intrinsic
13395^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13396
13397Syntax:
13398"""""""
13399
13400::
13401
13402 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
13403
13404Overview:
13405"""""""""
13406
13407This intrinsic, together with :ref:`deoptimization operand bundles
13408<deopt_opbundles>`, allow frontends to express transfer of control and
13409frame-local state from the currently executing (typically more specialized,
13410hence faster) version of a function into another (typically more generic, hence
13411slower) version.
13412
13413In languages with a fully integrated managed runtime like Java and JavaScript
13414this intrinsic can be used to implement "uncommon trap" or "side exit" like
13415functionality. In unmanaged languages like C and C++, this intrinsic can be
13416used to represent the slow paths of specialized functions.
13417
13418
13419Arguments:
13420""""""""""
13421
13422The intrinsic takes an arbitrary number of arguments, whose meaning is
13423decided by the :ref:`lowering strategy<deoptimize_lowering>`.
13424
13425Semantics:
13426""""""""""
13427
13428The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
13429deoptimization continuation (denoted using a :ref:`deoptimization
13430operand bundle <deopt_opbundles>`) and returns the value returned by
13431the deoptimization continuation. Defining the semantic properties of
13432the continuation itself is out of scope of the language reference --
13433as far as LLVM is concerned, the deoptimization continuation can
13434invoke arbitrary side effects, including reading from and writing to
13435the entire heap.
13436
13437Deoptimization continuations expressed using ``"deopt"`` operand bundles always
13438continue execution to the end of the physical frame containing them, so all
13439calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
13440
13441 - ``@llvm.experimental.deoptimize`` cannot be invoked.
13442 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
13443 - The ``ret`` instruction must return the value produced by the
13444 ``@llvm.experimental.deoptimize`` call if there is one, or void.
13445
13446Note that the above restrictions imply that the return type for a call to
13447``@llvm.experimental.deoptimize`` will match the return type of its immediate
13448caller.
13449
13450The inliner composes the ``"deopt"`` continuations of the caller into the
13451``"deopt"`` continuations present in the inlinee, and also updates calls to this
13452intrinsic to return directly from the frame of the function it inlined into.
13453
Sanjoy Dase0aa4142016-05-12 01:17:38 +000013454All declarations of ``@llvm.experimental.deoptimize`` must share the
13455same calling convention.
13456
Sanjoy Dasb51325d2016-03-11 19:08:34 +000013457.. _deoptimize_lowering:
13458
13459Lowering:
13460"""""""""
13461
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000013462Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
13463symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
13464ensure that this symbol is defined). The call arguments to
13465``@llvm.experimental.deoptimize`` are lowered as if they were formal
13466arguments of the specified types, and not as varargs.
13467
Sanjoy Dasb51325d2016-03-11 19:08:34 +000013468
Sanjoy Das021de052016-03-31 00:18:46 +000013469'``llvm.experimental.guard``' Intrinsic
13470^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13471
13472Syntax:
13473"""""""
13474
13475::
13476
13477 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
13478
13479Overview:
13480"""""""""
13481
13482This intrinsic, together with :ref:`deoptimization operand bundles
13483<deopt_opbundles>`, allows frontends to express guards or checks on
13484optimistic assumptions made during compilation. The semantics of
13485``@llvm.experimental.guard`` is defined in terms of
13486``@llvm.experimental.deoptimize`` -- its body is defined to be
13487equivalent to:
13488
Renato Golin124f2592016-07-20 12:16:38 +000013489.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000013490
Renato Golin124f2592016-07-20 12:16:38 +000013491 define void @llvm.experimental.guard(i1 %pred, <args...>) {
13492 %realPred = and i1 %pred, undef
13493 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000013494
Renato Golin124f2592016-07-20 12:16:38 +000013495 leave:
13496 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
13497 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000013498
Renato Golin124f2592016-07-20 12:16:38 +000013499 continue:
13500 ret void
13501 }
Sanjoy Das021de052016-03-31 00:18:46 +000013502
Sanjoy Das47cf2af2016-04-30 00:55:59 +000013503
13504with the optional ``[, !make.implicit !{}]`` present if and only if it
13505is present on the call site. For more details on ``!make.implicit``,
13506see :doc:`FaultMaps`.
13507
Sanjoy Das021de052016-03-31 00:18:46 +000013508In words, ``@llvm.experimental.guard`` executes the attached
13509``"deopt"`` continuation if (but **not** only if) its first argument
13510is ``false``. Since the optimizer is allowed to replace the ``undef``
13511with an arbitrary value, it can optimize guard to fail "spuriously",
13512i.e. without the original condition being false (hence the "not only
13513if"); and this allows for "check widening" type optimizations.
13514
13515``@llvm.experimental.guard`` cannot be invoked.
13516
13517
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000013518'``llvm.load.relative``' Intrinsic
13519^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13520
13521Syntax:
13522"""""""
13523
13524::
13525
13526 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
13527
13528Overview:
13529"""""""""
13530
13531This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
13532adds ``%ptr`` to that value and returns it. The constant folder specifically
13533recognizes the form of this intrinsic and the constant initializers it may
13534load from; if a loaded constant initializer is known to have the form
13535``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
13536
13537LLVM provides that the calculation of such a constant initializer will
13538not overflow at link time under the medium code model if ``x`` is an
13539``unnamed_addr`` function. However, it does not provide this guarantee for
13540a constant initializer folded into a function body. This intrinsic can be
13541used to avoid the possibility of overflows when loading from such a constant.
13542
Andrew Trick5e029ce2013-12-24 02:57:25 +000013543Stack Map Intrinsics
13544--------------------
13545
13546LLVM provides experimental intrinsics to support runtime patching
13547mechanisms commonly desired in dynamic language JITs. These intrinsics
13548are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000013549
13550Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000013551-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000013552
13553These intrinsics are similar to the standard library memory intrinsics except
13554that they perform memory transfer as a sequence of atomic memory accesses.
13555
13556.. _int_memcpy_element_atomic:
13557
13558'``llvm.memcpy.element.atomic``' Intrinsic
Igor Laevskyfedab152016-12-29 15:08:57 +000013559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000013560
13561Syntax:
13562"""""""
13563
13564This is an overloaded intrinsic. You can use ``llvm.memcpy.element.atomic`` on
13565any integer bit width and for different address spaces. Not all targets
13566support all bit widths however.
13567
13568::
13569
13570 declare void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* <dest>, i8* <src>,
13571 i64 <num_elements>, i32 <element_size>)
13572
13573Overview:
13574"""""""""
13575
13576The '``llvm.memcpy.element.atomic.*``' intrinsic performs copy of a block of
13577memory from the source location to the destination location as a sequence of
13578unordered atomic memory accesses where each access is a multiple of
13579``element_size`` bytes wide and aligned at an element size boundary. For example
13580each element is accessed atomically in source and destination buffers.
13581
13582Arguments:
13583""""""""""
13584
13585The first argument is a pointer to the destination, the second is a
13586pointer to the source. The third argument is an integer argument
13587specifying the number of elements to copy, the fourth argument is size of
13588the single element in bytes.
13589
13590``element_size`` should be a power of two, greater than zero and less than
13591a target-specific atomic access size limit.
13592
13593For each of the input pointers ``align`` parameter attribute must be specified.
13594It must be a power of two and greater than or equal to the ``element_size``.
13595Caller guarantees that both the source and destination pointers are aligned to
13596that boundary.
13597
13598Semantics:
13599""""""""""
13600
13601The '``llvm.memcpy.element.atomic.*``' intrinsic copies
13602'``num_elements`` * ``element_size``' bytes of memory from the source location to
13603the destination location. These locations are not allowed to overlap. Memory copy
13604is performed as a sequence of unordered atomic memory accesses where each access
13605is guaranteed to be a multiple of ``element_size`` bytes wide and aligned at an
13606element size boundary.
13607
13608The order of the copy is unspecified. The same value may be read from the source
13609buffer many times, but only one write is issued to the destination buffer per
13610element. It is well defined to have concurrent reads and writes to both source
13611and destination provided those reads and writes are at least unordered atomic.
13612
13613This intrinsic does not provide any additional ordering guarantees over those
13614provided by a set of unordered loads from the source location and stores to the
13615destination.
13616
13617Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000013618"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000013619
13620In the most general case call to the '``llvm.memcpy.element.atomic.*``' is lowered
13621to a call to the symbol ``__llvm_memcpy_element_atomic_*``. Where '*' is replaced
13622with an actual element size.
13623
13624Optimizer is allowed to inline memory copy when it's profitable to do so.