blob: e063f6bd35fe79ee16ba7decfb62823bb588045b [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
George Burgess IVfbc34982017-05-20 04:52:29 +0000164 ; Convert [13 x i8]* to i8*...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledru0604c5c2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvab084af42012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000530.. _namedtypes:
531
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000532Structure Types
533---------------
Sean Silvab084af42012-12-07 10:36:55 +0000534
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000535LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000536types <t_struct>`. Literal types are uniqued structurally, but identified types
537are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000538to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000539
Sean Silva706fba52015-08-06 22:56:24 +0000540An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000541
542.. code-block:: llvm
543
544 %mytype = type { %mytype*, i32 }
545
Sean Silvaa1190322015-08-06 22:56:48 +0000546Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000547literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000548
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000549.. _nointptrtype:
550
551Non-Integral Pointer Type
552-------------------------
553
554Note: non-integral pointer types are a work in progress, and they should be
555considered experimental at this time.
556
557LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000558spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
559Non-integral pointer types represent pointers that have an *unspecified* bitwise
560representation; that is, the integral representation may be target dependent or
561unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000562
563``inttoptr`` instructions converting integers to non-integral pointer types are
564ill-typed, and so are ``ptrtoint`` instructions converting values of
565non-integral pointer types to integers. Vector versions of said instructions
566are ill-typed as well.
567
Sean Silvab084af42012-12-07 10:36:55 +0000568.. _globalvars:
569
570Global Variables
571----------------
572
573Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000574instead of run-time.
575
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000576Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000577
578Global variables in other translation units can also be declared, in which
579case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000580
Bob Wilson85b24f22014-06-12 20:40:33 +0000581Either global variable definitions or declarations may have an explicit section
582to be placed in and may have an optional explicit alignment specified.
583
Michael Gottesman006039c2013-01-31 05:48:48 +0000584A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000585the contents of the variable will **never** be modified (enabling better
586optimization, allowing the global data to be placed in the read-only
587section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000588initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000589variable.
590
591LLVM explicitly allows *declarations* of global variables to be marked
592constant, even if the final definition of the global is not. This
593capability can be used to enable slightly better optimization of the
594program, but requires the language definition to guarantee that
595optimizations based on the 'constantness' are valid for the translation
596units that do not include the definition.
597
598As SSA values, global variables define pointer values that are in scope
599(i.e. they dominate) all basic blocks in the program. Global variables
600always define a pointer to their "content" type because they describe a
601region of memory, and all memory objects in LLVM are accessed through
602pointers.
603
604Global variables can be marked with ``unnamed_addr`` which indicates
605that the address is not significant, only the content. Constants marked
606like this can be merged with other constants if they have the same
607initializer. Note that a constant with significant address *can* be
608merged with a ``unnamed_addr`` constant, the result being a constant
609whose address is significant.
610
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000611If the ``local_unnamed_addr`` attribute is given, the address is known to
612not be significant within the module.
613
Sean Silvab084af42012-12-07 10:36:55 +0000614A global variable may be declared to reside in a target-specific
615numbered address space. For targets that support them, address spaces
616may affect how optimizations are performed and/or what target
617instructions are used to access the variable. The default address space
618is zero. The address space qualifier must precede any other attributes.
619
620LLVM allows an explicit section to be specified for globals. If the
621target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000622Additionally, the global can placed in a comdat if the target has the necessary
623support.
Sean Silvab084af42012-12-07 10:36:55 +0000624
Michael Gottesmane743a302013-02-04 03:22:00 +0000625By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000626variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000627initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000628true even for variables potentially accessible from outside the
629module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000630``@llvm.used`` or dllexported variables. This assumption may be suppressed
631by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000632
Sean Silvab084af42012-12-07 10:36:55 +0000633An explicit alignment may be specified for a global, which must be a
634power of 2. If not present, or if the alignment is set to zero, the
635alignment of the global is set by the target to whatever it feels
636convenient. If an explicit alignment is specified, the global is forced
637to have exactly that alignment. Targets and optimizers are not allowed
638to over-align the global if the global has an assigned section. In this
639case, the extra alignment could be observable: for example, code could
640assume that the globals are densely packed in their section and try to
641iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000642iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000643
Javed Absarf3d79042017-05-11 12:28:08 +0000644Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
645an optional :ref:`global attributes <glattrs>` and
646an optional list of attached :ref:`metadata <metadata>`.
Nico Rieck7157bb72014-01-14 15:22:47 +0000647
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000648Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000649:ref:`Thread Local Storage Model <tls_model>`.
650
Nico Rieck7157bb72014-01-14 15:22:47 +0000651Syntax::
652
Rafael Espindola32483a72016-05-10 18:22:45 +0000653 @<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000654 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
655 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000656 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000657 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000658 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000659
Sean Silvab084af42012-12-07 10:36:55 +0000660For example, the following defines a global in a numbered address space
661with an initializer, section, and alignment:
662
663.. code-block:: llvm
664
665 @G = addrspace(5) constant float 1.0, section "foo", align 4
666
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000667The following example just declares a global variable
668
669.. code-block:: llvm
670
671 @G = external global i32
672
Sean Silvab084af42012-12-07 10:36:55 +0000673The following example defines a thread-local global with the
674``initialexec`` TLS model:
675
676.. code-block:: llvm
677
678 @G = thread_local(initialexec) global i32 0, align 4
679
680.. _functionstructure:
681
682Functions
683---------
684
685LLVM function definitions consist of the "``define``" keyword, an
686optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000687style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
688an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000689an optional ``unnamed_addr`` attribute, a return type, an optional
690:ref:`parameter attribute <paramattrs>` for the return type, a function
691name, a (possibly empty) argument list (each with optional :ref:`parameter
692attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000693an optional section, an optional alignment,
694an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000695an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000696an optional :ref:`prologue <prologuedata>`,
697an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000698an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000699an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000700
701LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000702optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
703<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
704optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
705or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
706attribute <paramattrs>` for the return type, a function name, a possibly
707empty list of arguments, an optional alignment, an optional :ref:`garbage
708collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
709:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000710
Bill Wendling6822ecb2013-10-27 05:09:12 +0000711A function definition contains a list of basic blocks, forming the CFG (Control
712Flow Graph) for the function. Each basic block may optionally start with a label
713(giving the basic block a symbol table entry), contains a list of instructions,
714and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
715function return). If an explicit label is not provided, a block is assigned an
716implicit numbered label, using the next value from the same counter as used for
717unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
718entry block does not have an explicit label, it will be assigned label "%0",
719then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000720
721The first basic block in a function is special in two ways: it is
722immediately executed on entrance to the function, and it is not allowed
723to have predecessor basic blocks (i.e. there can not be any branches to
724the entry block of a function). Because the block can have no
725predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
726
727LLVM allows an explicit section to be specified for functions. If the
728target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000729Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000730
731An explicit alignment may be specified for a function. If not present,
732or if the alignment is set to zero, the alignment of the function is set
733by the target to whatever it feels convenient. If an explicit alignment
734is specified, the function is forced to have at least that much
735alignment. All alignments must be a power of 2.
736
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000737If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000738be significant and two identical functions can be merged.
739
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000740If the ``local_unnamed_addr`` attribute is given, the address is known to
741not be significant within the module.
742
Sean Silvab084af42012-12-07 10:36:55 +0000743Syntax::
744
Nico Rieck7157bb72014-01-14 15:22:47 +0000745 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000746 [cconv] [ret attrs]
747 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000748 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
749 [comdat [($name)]] [align N] [gc] [prefix Constant]
750 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000751
Sean Silva706fba52015-08-06 22:56:24 +0000752The argument list is a comma separated sequence of arguments where each
753argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000754
755Syntax::
756
757 <type> [parameter Attrs] [name]
758
759
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000760.. _langref_aliases:
761
Sean Silvab084af42012-12-07 10:36:55 +0000762Aliases
763-------
764
Rafael Espindola64c1e182014-06-03 02:41:57 +0000765Aliases, unlike function or variables, don't create any new data. They
766are just a new symbol and metadata for an existing position.
767
768Aliases have a name and an aliasee that is either a global value or a
769constant expression.
770
Nico Rieck7157bb72014-01-14 15:22:47 +0000771Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000772:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
773<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000774
775Syntax::
776
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000777 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000778
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000779The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000780``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000781might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000782
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000783Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000784the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
785to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000786
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000787If the ``local_unnamed_addr`` attribute is given, the address is known to
788not be significant within the module.
789
Rafael Espindola64c1e182014-06-03 02:41:57 +0000790Since aliases are only a second name, some restrictions apply, of which
791some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000792
Rafael Espindola64c1e182014-06-03 02:41:57 +0000793* The expression defining the aliasee must be computable at assembly
794 time. Since it is just a name, no relocations can be used.
795
796* No alias in the expression can be weak as the possibility of the
797 intermediate alias being overridden cannot be represented in an
798 object file.
799
800* No global value in the expression can be a declaration, since that
801 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000802
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000803.. _langref_ifunc:
804
805IFuncs
806-------
807
808IFuncs, like as aliases, don't create any new data or func. They are just a new
809symbol that dynamic linker resolves at runtime by calling a resolver function.
810
811IFuncs have a name and a resolver that is a function called by dynamic linker
812that returns address of another function associated with the name.
813
814IFunc may have an optional :ref:`linkage type <linkage>` and an optional
815:ref:`visibility style <visibility>`.
816
817Syntax::
818
819 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
820
821
David Majnemerdad0a642014-06-27 18:19:56 +0000822.. _langref_comdats:
823
824Comdats
825-------
826
827Comdat IR provides access to COFF and ELF object file COMDAT functionality.
828
Sean Silvaa1190322015-08-06 22:56:48 +0000829Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000830specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000831that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000832aliasee computes to, if any.
833
834Comdats have a selection kind to provide input on how the linker should
835choose between keys in two different object files.
836
837Syntax::
838
839 $<Name> = comdat SelectionKind
840
841The selection kind must be one of the following:
842
843``any``
844 The linker may choose any COMDAT key, the choice is arbitrary.
845``exactmatch``
846 The linker may choose any COMDAT key but the sections must contain the
847 same data.
848``largest``
849 The linker will choose the section containing the largest COMDAT key.
850``noduplicates``
851 The linker requires that only section with this COMDAT key exist.
852``samesize``
853 The linker may choose any COMDAT key but the sections must contain the
854 same amount of data.
855
856Note that the Mach-O platform doesn't support COMDATs and ELF only supports
857``any`` as a selection kind.
858
859Here is an example of a COMDAT group where a function will only be selected if
860the COMDAT key's section is the largest:
861
Renato Golin124f2592016-07-20 12:16:38 +0000862.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000863
864 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000865 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000866
Rafael Espindola83a362c2015-01-06 22:55:16 +0000867 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000868 ret void
869 }
870
Rafael Espindola83a362c2015-01-06 22:55:16 +0000871As a syntactic sugar the ``$name`` can be omitted if the name is the same as
872the global name:
873
Renato Golin124f2592016-07-20 12:16:38 +0000874.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000875
876 $foo = comdat any
877 @foo = global i32 2, comdat
878
879
David Majnemerdad0a642014-06-27 18:19:56 +0000880In a COFF object file, this will create a COMDAT section with selection kind
881``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
882and another COMDAT section with selection kind
883``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000884section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000885
886There are some restrictions on the properties of the global object.
887It, or an alias to it, must have the same name as the COMDAT group when
888targeting COFF.
889The contents and size of this object may be used during link-time to determine
890which COMDAT groups get selected depending on the selection kind.
891Because the name of the object must match the name of the COMDAT group, the
892linkage of the global object must not be local; local symbols can get renamed
893if a collision occurs in the symbol table.
894
895The combined use of COMDATS and section attributes may yield surprising results.
896For example:
897
Renato Golin124f2592016-07-20 12:16:38 +0000898.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000899
900 $foo = comdat any
901 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000902 @g1 = global i32 42, section "sec", comdat($foo)
903 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000904
905From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000906with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000907COMDAT groups and COMDATs, at the object file level, are represented by
908sections.
909
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000910Note that certain IR constructs like global variables and functions may
911create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000912COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000913in individual sections (e.g. when `-data-sections` or `-function-sections`
914is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000915
Sean Silvab084af42012-12-07 10:36:55 +0000916.. _namedmetadatastructure:
917
918Named Metadata
919--------------
920
921Named metadata is a collection of metadata. :ref:`Metadata
922nodes <metadata>` (but not metadata strings) are the only valid
923operands for a named metadata.
924
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000925#. Named metadata are represented as a string of characters with the
926 metadata prefix. The rules for metadata names are the same as for
927 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
928 are still valid, which allows any character to be part of a name.
929
Sean Silvab084af42012-12-07 10:36:55 +0000930Syntax::
931
932 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000933 !0 = !{!"zero"}
934 !1 = !{!"one"}
935 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000936 ; A named metadata.
937 !name = !{!0, !1, !2}
938
939.. _paramattrs:
940
941Parameter Attributes
942--------------------
943
944The return type and each parameter of a function type may have a set of
945*parameter attributes* associated with them. Parameter attributes are
946used to communicate additional information about the result or
947parameters of a function. Parameter attributes are considered to be part
948of the function, not of the function type, so functions with different
949parameter attributes can have the same function type.
950
951Parameter attributes are simple keywords that follow the type specified.
952If multiple parameter attributes are needed, they are space separated.
953For example:
954
955.. code-block:: llvm
956
957 declare i32 @printf(i8* noalias nocapture, ...)
958 declare i32 @atoi(i8 zeroext)
959 declare signext i8 @returns_signed_char()
960
961Note that any attributes for the function result (``nounwind``,
962``readonly``) come immediately after the argument list.
963
964Currently, only the following parameter attributes are defined:
965
966``zeroext``
967 This indicates to the code generator that the parameter or return
968 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000969 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000970``signext``
971 This indicates to the code generator that the parameter or return
972 value should be sign-extended to the extent required by the target's
973 ABI (which is usually 32-bits) by the caller (for a parameter) or
974 the callee (for a return value).
975``inreg``
976 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000977 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000978 a function call or return (usually, by putting it in a register as
979 opposed to memory, though some targets use it to distinguish between
980 two different kinds of registers). Use of this attribute is
981 target-specific.
982``byval``
983 This indicates that the pointer parameter should really be passed by
984 value to the function. The attribute implies that a hidden copy of
985 the pointee is made between the caller and the callee, so the callee
986 is unable to modify the value in the caller. This attribute is only
987 valid on LLVM pointer arguments. It is generally used to pass
988 structs and arrays by value, but is also valid on pointers to
989 scalars. The copy is considered to belong to the caller not the
990 callee (for example, ``readonly`` functions should not write to
991 ``byval`` parameters). This is not a valid attribute for return
992 values.
993
994 The byval attribute also supports specifying an alignment with the
995 align attribute. It indicates the alignment of the stack slot to
996 form and the known alignment of the pointer specified to the call
997 site. If the alignment is not specified, then the code generator
998 makes a target-specific assumption.
999
Reid Klecknera534a382013-12-19 02:14:12 +00001000.. _attr_inalloca:
1001
1002``inalloca``
1003
Reid Kleckner60d3a832014-01-16 22:59:24 +00001004 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001005 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001006 be a pointer to stack memory produced by an ``alloca`` instruction.
1007 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001008 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001009 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001010
Reid Kleckner436c42e2014-01-17 23:58:17 +00001011 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001012 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001013 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001014 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001015 ``inalloca`` attribute also disables LLVM's implicit lowering of
1016 large aggregate return values, which means that frontend authors
1017 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001018
Reid Kleckner60d3a832014-01-16 22:59:24 +00001019 When the call site is reached, the argument allocation must have
1020 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001021 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001022 space after an argument allocation and before its call site, but it
1023 must be cleared off with :ref:`llvm.stackrestore
1024 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001025
1026 See :doc:`InAlloca` for more information on how to use this
1027 attribute.
1028
Sean Silvab084af42012-12-07 10:36:55 +00001029``sret``
1030 This indicates that the pointer parameter specifies the address of a
1031 structure that is the return value of the function in the source
1032 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001033 loads and stores to the structure may be assumed by the callee not
1034 to trap and to be properly aligned. This is not a valid attribute
1035 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001036
Hal Finkelccc70902014-07-22 16:58:55 +00001037``align <n>``
1038 This indicates that the pointer value may be assumed by the optimizer to
1039 have the specified alignment.
1040
1041 Note that this attribute has additional semantics when combined with the
1042 ``byval`` attribute.
1043
Sean Silva1703e702014-04-08 21:06:22 +00001044.. _noalias:
1045
Sean Silvab084af42012-12-07 10:36:55 +00001046``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001047 This indicates that objects accessed via pointer values
1048 :ref:`based <pointeraliasing>` on the argument or return value are not also
1049 accessed, during the execution of the function, via pointer values not
1050 *based* on the argument or return value. The attribute on a return value
1051 also has additional semantics described below. The caller shares the
1052 responsibility with the callee for ensuring that these requirements are met.
1053 For further details, please see the discussion of the NoAlias response in
1054 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001055
1056 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001057 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001058
1059 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001060 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1061 attribute on return values are stronger than the semantics of the attribute
1062 when used on function arguments. On function return values, the ``noalias``
1063 attribute indicates that the function acts like a system memory allocation
1064 function, returning a pointer to allocated storage disjoint from the
1065 storage for any other object accessible to the caller.
1066
Sean Silvab084af42012-12-07 10:36:55 +00001067``nocapture``
1068 This indicates that the callee does not make any copies of the
1069 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001070 attribute for return values. Addresses used in volatile operations
1071 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001072
1073.. _nest:
1074
1075``nest``
1076 This indicates that the pointer parameter can be excised using the
1077 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001078 attribute for return values and can only be applied to one parameter.
1079
1080``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001081 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001082 value. This is a hint to the optimizer and code generator used when
1083 generating the caller, allowing value propagation, tail call optimization,
1084 and omission of register saves and restores in some cases; it is not
1085 checked or enforced when generating the callee. The parameter and the
1086 function return type must be valid operands for the
1087 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1088 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001089
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001090``nonnull``
1091 This indicates that the parameter or return pointer is not null. This
1092 attribute may only be applied to pointer typed parameters. This is not
1093 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001094 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001095 is non-null.
1096
Hal Finkelb0407ba2014-07-18 15:51:28 +00001097``dereferenceable(<n>)``
1098 This indicates that the parameter or return pointer is dereferenceable. This
1099 attribute may only be applied to pointer typed parameters. A pointer that
1100 is dereferenceable can be loaded from speculatively without a risk of
1101 trapping. The number of bytes known to be dereferenceable must be provided
1102 in parentheses. It is legal for the number of bytes to be less than the
1103 size of the pointee type. The ``nonnull`` attribute does not imply
1104 dereferenceability (consider a pointer to one element past the end of an
1105 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1106 ``addrspace(0)`` (which is the default address space).
1107
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001108``dereferenceable_or_null(<n>)``
1109 This indicates that the parameter or return value isn't both
1110 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001111 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001112 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1113 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1114 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1115 and in other address spaces ``dereferenceable_or_null(<n>)``
1116 implies that a pointer is at least one of ``dereferenceable(<n>)``
1117 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001118 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001119 pointer typed parameters.
1120
Manman Renf46262e2016-03-29 17:37:21 +00001121``swiftself``
1122 This indicates that the parameter is the self/context parameter. This is not
1123 a valid attribute for return values and can only be applied to one
1124 parameter.
1125
Manman Ren9bfd0d02016-04-01 21:41:15 +00001126``swifterror``
1127 This attribute is motivated to model and optimize Swift error handling. It
1128 can be applied to a parameter with pointer to pointer type or a
1129 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001130 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1131 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1132 the parameter or the alloca) can only be loaded and stored from, or used as
1133 a ``swifterror`` argument. This is not a valid attribute for return values
1134 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001135
1136 These constraints allow the calling convention to optimize access to
1137 ``swifterror`` variables by associating them with a specific register at
1138 call boundaries rather than placing them in memory. Since this does change
1139 the calling convention, a function which uses the ``swifterror`` attribute
1140 on a parameter is not ABI-compatible with one which does not.
1141
1142 These constraints also allow LLVM to assume that a ``swifterror`` argument
1143 does not alias any other memory visible within a function and that a
1144 ``swifterror`` alloca passed as an argument does not escape.
1145
Sean Silvab084af42012-12-07 10:36:55 +00001146.. _gc:
1147
Philip Reamesf80bbff2015-02-25 23:45:20 +00001148Garbage Collector Strategy Names
1149--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001150
Philip Reamesf80bbff2015-02-25 23:45:20 +00001151Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001152string:
1153
1154.. code-block:: llvm
1155
1156 define void @f() gc "name" { ... }
1157
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001158The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001159<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001160strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001161named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001162garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001163which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001164
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001165.. _prefixdata:
1166
1167Prefix Data
1168-----------
1169
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001170Prefix data is data associated with a function which the code
1171generator will emit immediately before the function's entrypoint.
1172The purpose of this feature is to allow frontends to associate
1173language-specific runtime metadata with specific functions and make it
1174available through the function pointer while still allowing the
1175function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001176
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001177To access the data for a given function, a program may bitcast the
1178function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001179index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001180the prefix data. For instance, take the example of a function annotated
1181with a single ``i32``,
1182
1183.. code-block:: llvm
1184
1185 define void @f() prefix i32 123 { ... }
1186
1187The prefix data can be referenced as,
1188
1189.. code-block:: llvm
1190
David Blaikie16a97eb2015-03-04 22:02:58 +00001191 %0 = bitcast void* () @f to i32*
1192 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001193 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001194
1195Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001196of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001197beginning of the prefix data is aligned. This means that if the size
1198of the prefix data is not a multiple of the alignment size, the
1199function's entrypoint will not be aligned. If alignment of the
1200function's entrypoint is desired, padding must be added to the prefix
1201data.
1202
Sean Silvaa1190322015-08-06 22:56:48 +00001203A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001204to the ``available_externally`` linkage in that the data may be used by the
1205optimizers but will not be emitted in the object file.
1206
1207.. _prologuedata:
1208
1209Prologue Data
1210-------------
1211
1212The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1213be inserted prior to the function body. This can be used for enabling
1214function hot-patching and instrumentation.
1215
1216To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001217have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001218bytes which decode to a sequence of machine instructions, valid for the
1219module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001220the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001221the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001222definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001223makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001224
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001225A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001226which encodes the ``nop`` instruction:
1227
Renato Golin124f2592016-07-20 12:16:38 +00001228.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001229
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001230 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001231
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001232Generally prologue data can be formed by encoding a relative branch instruction
1233which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001234x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1235
Renato Golin124f2592016-07-20 12:16:38 +00001236.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001237
1238 %0 = type <{ i8, i8, i8* }>
1239
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001240 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001241
Sean Silvaa1190322015-08-06 22:56:48 +00001242A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001243to the ``available_externally`` linkage in that the data may be used by the
1244optimizers but will not be emitted in the object file.
1245
David Majnemer7fddecc2015-06-17 20:52:32 +00001246.. _personalityfn:
1247
1248Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001249--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001250
1251The ``personality`` attribute permits functions to specify what function
1252to use for exception handling.
1253
Bill Wendling63b88192013-02-06 06:52:58 +00001254.. _attrgrp:
1255
1256Attribute Groups
1257----------------
1258
1259Attribute groups are groups of attributes that are referenced by objects within
1260the IR. They are important for keeping ``.ll`` files readable, because a lot of
1261functions will use the same set of attributes. In the degenerative case of a
1262``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1263group will capture the important command line flags used to build that file.
1264
1265An attribute group is a module-level object. To use an attribute group, an
1266object references the attribute group's ID (e.g. ``#37``). An object may refer
1267to more than one attribute group. In that situation, the attributes from the
1268different groups are merged.
1269
1270Here is an example of attribute groups for a function that should always be
1271inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1272
1273.. code-block:: llvm
1274
1275 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001276 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001277
1278 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001279 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001280
1281 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1282 define void @f() #0 #1 { ... }
1283
Sean Silvab084af42012-12-07 10:36:55 +00001284.. _fnattrs:
1285
1286Function Attributes
1287-------------------
1288
1289Function attributes are set to communicate additional information about
1290a function. Function attributes are considered to be part of the
1291function, not of the function type, so functions with different function
1292attributes can have the same function type.
1293
1294Function attributes are simple keywords that follow the type specified.
1295If multiple attributes are needed, they are space separated. For
1296example:
1297
1298.. code-block:: llvm
1299
1300 define void @f() noinline { ... }
1301 define void @f() alwaysinline { ... }
1302 define void @f() alwaysinline optsize { ... }
1303 define void @f() optsize { ... }
1304
Sean Silvab084af42012-12-07 10:36:55 +00001305``alignstack(<n>)``
1306 This attribute indicates that, when emitting the prologue and
1307 epilogue, the backend should forcibly align the stack pointer.
1308 Specify the desired alignment, which must be a power of two, in
1309 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001310``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1311 This attribute indicates that the annotated function will always return at
1312 least a given number of bytes (or null). Its arguments are zero-indexed
1313 parameter numbers; if one argument is provided, then it's assumed that at
1314 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1315 returned pointer. If two are provided, then it's assumed that
1316 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1317 available. The referenced parameters must be integer types. No assumptions
1318 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001319``alwaysinline``
1320 This attribute indicates that the inliner should attempt to inline
1321 this function into callers whenever possible, ignoring any active
1322 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001323``builtin``
1324 This indicates that the callee function at a call site should be
1325 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001326 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001327 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001328 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001329``cold``
1330 This attribute indicates that this function is rarely called. When
1331 computing edge weights, basic blocks post-dominated by a cold
1332 function call are also considered to be cold; and, thus, given low
1333 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001334``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001335 In some parallel execution models, there exist operations that cannot be
1336 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001337 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001338
Justin Lebar58535b12016-02-17 17:46:41 +00001339 The ``convergent`` attribute may appear on functions or call/invoke
1340 instructions. When it appears on a function, it indicates that calls to
1341 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001342 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001343 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001344 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001345
Justin Lebar58535b12016-02-17 17:46:41 +00001346 When it appears on a call/invoke, the ``convergent`` attribute indicates
1347 that we should treat the call as though we're calling a convergent
1348 function. This is particularly useful on indirect calls; without this we
1349 may treat such calls as though the target is non-convergent.
1350
1351 The optimizer may remove the ``convergent`` attribute on functions when it
1352 can prove that the function does not execute any convergent operations.
1353 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1354 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001355``inaccessiblememonly``
1356 This attribute indicates that the function may only access memory that
1357 is not accessible by the module being compiled. This is a weaker form
1358 of ``readnone``.
1359``inaccessiblemem_or_argmemonly``
1360 This attribute indicates that the function may only access memory that is
1361 either not accessible by the module being compiled, or is pointed to
1362 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001363``inlinehint``
1364 This attribute indicates that the source code contained a hint that
1365 inlining this function is desirable (such as the "inline" keyword in
1366 C/C++). It is just a hint; it imposes no requirements on the
1367 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001368``jumptable``
1369 This attribute indicates that the function should be added to a
1370 jump-instruction table at code-generation time, and that all address-taken
1371 references to this function should be replaced with a reference to the
1372 appropriate jump-instruction-table function pointer. Note that this creates
1373 a new pointer for the original function, which means that code that depends
1374 on function-pointer identity can break. So, any function annotated with
1375 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001376``minsize``
1377 This attribute suggests that optimization passes and code generator
1378 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001379 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001380 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001381``naked``
1382 This attribute disables prologue / epilogue emission for the
1383 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001384``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001385 This indicates that the callee function at a call site is not recognized as
1386 a built-in function. LLVM will retain the original call and not replace it
1387 with equivalent code based on the semantics of the built-in function, unless
1388 the call site uses the ``builtin`` attribute. This is valid at call sites
1389 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001390``noduplicate``
1391 This attribute indicates that calls to the function cannot be
1392 duplicated. A call to a ``noduplicate`` function may be moved
1393 within its parent function, but may not be duplicated within
1394 its parent function.
1395
1396 A function containing a ``noduplicate`` call may still
1397 be an inlining candidate, provided that the call is not
1398 duplicated by inlining. That implies that the function has
1399 internal linkage and only has one call site, so the original
1400 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001401``noimplicitfloat``
1402 This attributes disables implicit floating point instructions.
1403``noinline``
1404 This attribute indicates that the inliner should never inline this
1405 function in any situation. This attribute may not be used together
1406 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001407``nonlazybind``
1408 This attribute suppresses lazy symbol binding for the function. This
1409 may make calls to the function faster, at the cost of extra program
1410 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001411``noredzone``
1412 This attribute indicates that the code generator should not use a
1413 red zone, even if the target-specific ABI normally permits it.
1414``noreturn``
1415 This function attribute indicates that the function never returns
1416 normally. This produces undefined behavior at runtime if the
1417 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001418``norecurse``
1419 This function attribute indicates that the function does not call itself
1420 either directly or indirectly down any possible call path. This produces
1421 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001422``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001423 This function attribute indicates that the function never raises an
1424 exception. If the function does raise an exception, its runtime
1425 behavior is undefined. However, functions marked nounwind may still
1426 trap or generate asynchronous exceptions. Exception handling schemes
1427 that are recognized by LLVM to handle asynchronous exceptions, such
1428 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001429``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001430 This function attribute indicates that most optimization passes will skip
1431 this function, with the exception of interprocedural optimization passes.
1432 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001433 This attribute cannot be used together with the ``alwaysinline``
1434 attribute; this attribute is also incompatible
1435 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001436
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001437 This attribute requires the ``noinline`` attribute to be specified on
1438 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001439 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001440 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001441``optsize``
1442 This attribute suggests that optimization passes and code generator
1443 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001444 and otherwise do optimizations specifically to reduce code size as
1445 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001446``"patchable-function"``
1447 This attribute tells the code generator that the code
1448 generated for this function needs to follow certain conventions that
1449 make it possible for a runtime function to patch over it later.
1450 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001451 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001452
1453 * ``"prologue-short-redirect"`` - This style of patchable
1454 function is intended to support patching a function prologue to
1455 redirect control away from the function in a thread safe
1456 manner. It guarantees that the first instruction of the
1457 function will be large enough to accommodate a short jump
1458 instruction, and will be sufficiently aligned to allow being
1459 fully changed via an atomic compare-and-swap instruction.
1460 While the first requirement can be satisfied by inserting large
1461 enough NOP, LLVM can and will try to re-purpose an existing
1462 instruction (i.e. one that would have to be emitted anyway) as
1463 the patchable instruction larger than a short jump.
1464
1465 ``"prologue-short-redirect"`` is currently only supported on
1466 x86-64.
1467
1468 This attribute by itself does not imply restrictions on
1469 inter-procedural optimizations. All of the semantic effects the
1470 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001471``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001472 On a function, this attribute indicates that the function computes its
1473 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001474 without dereferencing any pointer arguments or otherwise accessing
1475 any mutable state (e.g. memory, control registers, etc) visible to
1476 caller functions. It does not write through any pointer arguments
1477 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das5be2e842017-02-13 23:19:07 +00001478 to callers. This means while it cannot unwind exceptions by calling
1479 the ``C++`` exception throwing methods (since they write to memory), there may
1480 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1481 visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001482
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001483 On an argument, this attribute indicates that the function does not
1484 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001485 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001486``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001487 On a function, this attribute indicates that the function does not write
1488 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001489 modify any state (e.g. memory, control registers, etc) visible to
1490 caller functions. It may dereference pointer arguments and read
1491 state that may be set in the caller. A readonly function always
1492 returns the same value (or unwinds an exception identically) when
Sanjoy Das5be2e842017-02-13 23:19:07 +00001493 called with the same set of arguments and global state. This means while it
1494 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1495 (since they write to memory), there may be non-``C++`` mechanisms that throw
1496 exceptions without writing to LLVM visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001497
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001498 On an argument, this attribute indicates that the function does not write
1499 through this pointer argument, even though it may write to the memory that
1500 the pointer points to.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001501``writeonly``
1502 On a function, this attribute indicates that the function may write to but
1503 does not read from memory.
1504
1505 On an argument, this attribute indicates that the function may write to but
1506 does not read through this pointer argument (even though it may read from
1507 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001508``argmemonly``
1509 This attribute indicates that the only memory accesses inside function are
1510 loads and stores from objects pointed to by its pointer-typed arguments,
1511 with arbitrary offsets. Or in other words, all memory operations in the
1512 function can refer to memory only using pointers based on its function
1513 arguments.
1514 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1515 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001516``returns_twice``
1517 This attribute indicates that this function can return twice. The C
1518 ``setjmp`` is an example of such a function. The compiler disables
1519 some optimizations (like tail calls) in the caller of these
1520 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001521``safestack``
1522 This attribute indicates that
1523 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1524 protection is enabled for this function.
1525
1526 If a function that has a ``safestack`` attribute is inlined into a
1527 function that doesn't have a ``safestack`` attribute or which has an
1528 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1529 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001530``sanitize_address``
1531 This attribute indicates that AddressSanitizer checks
1532 (dynamic address safety analysis) are enabled for this function.
1533``sanitize_memory``
1534 This attribute indicates that MemorySanitizer checks (dynamic detection
1535 of accesses to uninitialized memory) are enabled for this function.
1536``sanitize_thread``
1537 This attribute indicates that ThreadSanitizer checks
1538 (dynamic thread safety analysis) are enabled for this function.
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001539``speculatable``
1540 This function attribute indicates that the function does not have any
1541 effects besides calculating its result and does not have undefined behavior.
1542 Note that ``speculatable`` is not enough to conclude that along any
Xin Tongc7180202017-05-02 23:24:12 +00001543 particular execution path the number of calls to this function will not be
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001544 externally observable. This attribute is only valid on functions
1545 and declarations, not on individual call sites. If a function is
1546 incorrectly marked as speculatable and really does exhibit
1547 undefined behavior, the undefined behavior may be observed even
1548 if the call site is dead code.
1549
Sean Silvab084af42012-12-07 10:36:55 +00001550``ssp``
1551 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001552 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001553 placed on the stack before the local variables that's checked upon
1554 return from the function to see if it has been overwritten. A
1555 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001556 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001557
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001558 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1559 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1560 - Calls to alloca() with variable sizes or constant sizes greater than
1561 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001562
Josh Magee24c7f062014-02-01 01:36:16 +00001563 Variables that are identified as requiring a protector will be arranged
1564 on the stack such that they are adjacent to the stack protector guard.
1565
Sean Silvab084af42012-12-07 10:36:55 +00001566 If a function that has an ``ssp`` attribute is inlined into a
1567 function that doesn't have an ``ssp`` attribute, then the resulting
1568 function will have an ``ssp`` attribute.
1569``sspreq``
1570 This attribute indicates that the function should *always* emit a
1571 stack smashing protector. This overrides the ``ssp`` function
1572 attribute.
1573
Josh Magee24c7f062014-02-01 01:36:16 +00001574 Variables that are identified as requiring a protector will be arranged
1575 on the stack such that they are adjacent to the stack protector guard.
1576 The specific layout rules are:
1577
1578 #. Large arrays and structures containing large arrays
1579 (``>= ssp-buffer-size``) are closest to the stack protector.
1580 #. Small arrays and structures containing small arrays
1581 (``< ssp-buffer-size``) are 2nd closest to the protector.
1582 #. Variables that have had their address taken are 3rd closest to the
1583 protector.
1584
Sean Silvab084af42012-12-07 10:36:55 +00001585 If a function that has an ``sspreq`` attribute is inlined into a
1586 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001587 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1588 an ``sspreq`` attribute.
1589``sspstrong``
1590 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001591 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001592 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001593 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001594
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001595 - Arrays of any size and type
1596 - Aggregates containing an array of any size and type.
1597 - Calls to alloca().
1598 - Local variables that have had their address taken.
1599
Josh Magee24c7f062014-02-01 01:36:16 +00001600 Variables that are identified as requiring a protector will be arranged
1601 on the stack such that they are adjacent to the stack protector guard.
1602 The specific layout rules are:
1603
1604 #. Large arrays and structures containing large arrays
1605 (``>= ssp-buffer-size``) are closest to the stack protector.
1606 #. Small arrays and structures containing small arrays
1607 (``< ssp-buffer-size``) are 2nd closest to the protector.
1608 #. Variables that have had their address taken are 3rd closest to the
1609 protector.
1610
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001611 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001612
1613 If a function that has an ``sspstrong`` attribute is inlined into a
1614 function that doesn't have an ``sspstrong`` attribute, then the
1615 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001616``"thunk"``
1617 This attribute indicates that the function will delegate to some other
1618 function with a tail call. The prototype of a thunk should not be used for
1619 optimization purposes. The caller is expected to cast the thunk prototype to
1620 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001621``uwtable``
1622 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001623 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001624 show that no exceptions passes by it. This is normally the case for
1625 the ELF x86-64 abi, but it can be disabled for some compilation
1626 units.
Sean Silvab084af42012-12-07 10:36:55 +00001627
Javed Absarf3d79042017-05-11 12:28:08 +00001628.. _glattrs:
1629
1630Global Attributes
1631-----------------
1632
1633Attributes may be set to communicate additional information about a global variable.
1634Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
1635are grouped into a single :ref:`attribute group <attrgrp>`.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001636
1637.. _opbundles:
1638
1639Operand Bundles
1640---------------
1641
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001642Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001643with certain LLVM instructions (currently only ``call`` s and
1644``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001645incorrect and will change program semantics.
1646
1647Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001648
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001649 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001650 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1651 bundle operand ::= SSA value
1652 tag ::= string constant
1653
1654Operand bundles are **not** part of a function's signature, and a
1655given function may be called from multiple places with different kinds
1656of operand bundles. This reflects the fact that the operand bundles
1657are conceptually a part of the ``call`` (or ``invoke``), not the
1658callee being dispatched to.
1659
1660Operand bundles are a generic mechanism intended to support
1661runtime-introspection-like functionality for managed languages. While
1662the exact semantics of an operand bundle depend on the bundle tag,
1663there are certain limitations to how much the presence of an operand
1664bundle can influence the semantics of a program. These restrictions
1665are described as the semantics of an "unknown" operand bundle. As
1666long as the behavior of an operand bundle is describable within these
1667restrictions, LLVM does not need to have special knowledge of the
1668operand bundle to not miscompile programs containing it.
1669
David Majnemer34cacb42015-10-22 01:46:38 +00001670- The bundle operands for an unknown operand bundle escape in unknown
1671 ways before control is transferred to the callee or invokee.
1672- Calls and invokes with operand bundles have unknown read / write
1673 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001674 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001675 callsite specific attributes.
1676- An operand bundle at a call site cannot change the implementation
1677 of the called function. Inter-procedural optimizations work as
1678 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001679
Sanjoy Dascdafd842015-11-11 21:38:02 +00001680More specific types of operand bundles are described below.
1681
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001682.. _deopt_opbundles:
1683
Sanjoy Dascdafd842015-11-11 21:38:02 +00001684Deoptimization Operand Bundles
1685^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1686
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001687Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001688operand bundle tag. These operand bundles represent an alternate
1689"safe" continuation for the call site they're attached to, and can be
1690used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001691specified call site. There can be at most one ``"deopt"`` operand
1692bundle attached to a call site. Exact details of deoptimization is
1693out of scope for the language reference, but it usually involves
1694rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001695
1696From the compiler's perspective, deoptimization operand bundles make
1697the call sites they're attached to at least ``readonly``. They read
1698through all of their pointer typed operands (even if they're not
1699otherwise escaped) and the entire visible heap. Deoptimization
1700operand bundles do not capture their operands except during
1701deoptimization, in which case control will not be returned to the
1702compiled frame.
1703
Sanjoy Das2d161452015-11-18 06:23:38 +00001704The inliner knows how to inline through calls that have deoptimization
1705operand bundles. Just like inlining through a normal call site
1706involves composing the normal and exceptional continuations, inlining
1707through a call site with a deoptimization operand bundle needs to
1708appropriately compose the "safe" deoptimization continuation. The
1709inliner does this by prepending the parent's deoptimization
1710continuation to every deoptimization continuation in the inlined body.
1711E.g. inlining ``@f`` into ``@g`` in the following example
1712
1713.. code-block:: llvm
1714
1715 define void @f() {
1716 call void @x() ;; no deopt state
1717 call void @y() [ "deopt"(i32 10) ]
1718 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1719 ret void
1720 }
1721
1722 define void @g() {
1723 call void @f() [ "deopt"(i32 20) ]
1724 ret void
1725 }
1726
1727will result in
1728
1729.. code-block:: llvm
1730
1731 define void @g() {
1732 call void @x() ;; still no deopt state
1733 call void @y() [ "deopt"(i32 20, i32 10) ]
1734 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1735 ret void
1736 }
1737
1738It is the frontend's responsibility to structure or encode the
1739deoptimization state in a way that syntactically prepending the
1740caller's deoptimization state to the callee's deoptimization state is
1741semantically equivalent to composing the caller's deoptimization
1742continuation after the callee's deoptimization continuation.
1743
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001744.. _ob_funclet:
1745
David Majnemer3bb88c02015-12-15 21:27:27 +00001746Funclet Operand Bundles
1747^^^^^^^^^^^^^^^^^^^^^^^
1748
1749Funclet operand bundles are characterized by the ``"funclet"``
1750operand bundle tag. These operand bundles indicate that a call site
1751is within a particular funclet. There can be at most one
1752``"funclet"`` operand bundle attached to a call site and it must have
1753exactly one bundle operand.
1754
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001755If any funclet EH pads have been "entered" but not "exited" (per the
1756`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1757it is undefined behavior to execute a ``call`` or ``invoke`` which:
1758
1759* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1760 intrinsic, or
1761* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1762 not-yet-exited funclet EH pad.
1763
1764Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1765executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1766
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001767GC Transition Operand Bundles
1768^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1769
1770GC transition operand bundles are characterized by the
1771``"gc-transition"`` operand bundle tag. These operand bundles mark a
1772call as a transition between a function with one GC strategy to a
1773function with a different GC strategy. If coordinating the transition
1774between GC strategies requires additional code generation at the call
1775site, these bundles may contain any values that are needed by the
1776generated code. For more details, see :ref:`GC Transitions
1777<gc_transition_args>`.
1778
Sean Silvab084af42012-12-07 10:36:55 +00001779.. _moduleasm:
1780
1781Module-Level Inline Assembly
1782----------------------------
1783
1784Modules may contain "module-level inline asm" blocks, which corresponds
1785to the GCC "file scope inline asm" blocks. These blocks are internally
1786concatenated by LLVM and treated as a single unit, but may be separated
1787in the ``.ll`` file if desired. The syntax is very simple:
1788
1789.. code-block:: llvm
1790
1791 module asm "inline asm code goes here"
1792 module asm "more can go here"
1793
1794The strings can contain any character by escaping non-printable
1795characters. The escape sequence used is simply "\\xx" where "xx" is the
1796two digit hex code for the number.
1797
James Y Knightbc832ed2015-07-08 18:08:36 +00001798Note that the assembly string *must* be parseable by LLVM's integrated assembler
1799(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001800
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001801.. _langref_datalayout:
1802
Sean Silvab084af42012-12-07 10:36:55 +00001803Data Layout
1804-----------
1805
1806A module may specify a target specific data layout string that specifies
1807how data is to be laid out in memory. The syntax for the data layout is
1808simply:
1809
1810.. code-block:: llvm
1811
1812 target datalayout = "layout specification"
1813
1814The *layout specification* consists of a list of specifications
1815separated by the minus sign character ('-'). Each specification starts
1816with a letter and may include other information after the letter to
1817define some aspect of the data layout. The specifications accepted are
1818as follows:
1819
1820``E``
1821 Specifies that the target lays out data in big-endian form. That is,
1822 the bits with the most significance have the lowest address
1823 location.
1824``e``
1825 Specifies that the target lays out data in little-endian form. That
1826 is, the bits with the least significance have the lowest address
1827 location.
1828``S<size>``
1829 Specifies the natural alignment of the stack in bits. Alignment
1830 promotion of stack variables is limited to the natural stack
1831 alignment to avoid dynamic stack realignment. The stack alignment
1832 must be a multiple of 8-bits. If omitted, the natural stack
1833 alignment defaults to "unspecified", which does not prevent any
1834 alignment promotions.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001835``A<address space>``
1836 Specifies the address space of objects created by '``alloca``'.
1837 Defaults to the default address space of 0.
Sean Silvab084af42012-12-07 10:36:55 +00001838``p[n]:<size>:<abi>:<pref>``
1839 This specifies the *size* of a pointer and its ``<abi>`` and
1840 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001841 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001842 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001843 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001844``i<size>:<abi>:<pref>``
1845 This specifies the alignment for an integer type of a given bit
1846 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1847``v<size>:<abi>:<pref>``
1848 This specifies the alignment for a vector type of a given bit
1849 ``<size>``.
1850``f<size>:<abi>:<pref>``
1851 This specifies the alignment for a floating point type of a given bit
1852 ``<size>``. Only values of ``<size>`` that are supported by the target
1853 will work. 32 (float) and 64 (double) are supported on all targets; 80
1854 or 128 (different flavors of long double) are also supported on some
1855 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001856``a:<abi>:<pref>``
1857 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001858``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001859 If present, specifies that llvm names are mangled in the output. The
1860 options are
1861
1862 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1863 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1864 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1865 symbols get a ``_`` prefix.
1866 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1867 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001868 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1869 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001870``n<size1>:<size2>:<size3>...``
1871 This specifies a set of native integer widths for the target CPU in
1872 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1873 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1874 this set are considered to support most general arithmetic operations
1875 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001876``ni:<address space0>:<address space1>:<address space2>...``
1877 This specifies pointer types with the specified address spaces
1878 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1879 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001880
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001881On every specification that takes a ``<abi>:<pref>``, specifying the
1882``<pref>`` alignment is optional. If omitted, the preceding ``:``
1883should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1884
Sean Silvab084af42012-12-07 10:36:55 +00001885When constructing the data layout for a given target, LLVM starts with a
1886default set of specifications which are then (possibly) overridden by
1887the specifications in the ``datalayout`` keyword. The default
1888specifications are given in this list:
1889
1890- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001891- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1892- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1893 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001894- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001895- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1896- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1897- ``i16:16:16`` - i16 is 16-bit aligned
1898- ``i32:32:32`` - i32 is 32-bit aligned
1899- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1900 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001901- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001902- ``f32:32:32`` - float is 32-bit aligned
1903- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001904- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001905- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1906- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001907- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001908
1909When LLVM is determining the alignment for a given type, it uses the
1910following rules:
1911
1912#. If the type sought is an exact match for one of the specifications,
1913 that specification is used.
1914#. If no match is found, and the type sought is an integer type, then
1915 the smallest integer type that is larger than the bitwidth of the
1916 sought type is used. If none of the specifications are larger than
1917 the bitwidth then the largest integer type is used. For example,
1918 given the default specifications above, the i7 type will use the
1919 alignment of i8 (next largest) while both i65 and i256 will use the
1920 alignment of i64 (largest specified).
1921#. If no match is found, and the type sought is a vector type, then the
1922 largest vector type that is smaller than the sought vector type will
1923 be used as a fall back. This happens because <128 x double> can be
1924 implemented in terms of 64 <2 x double>, for example.
1925
1926The function of the data layout string may not be what you expect.
1927Notably, this is not a specification from the frontend of what alignment
1928the code generator should use.
1929
1930Instead, if specified, the target data layout is required to match what
1931the ultimate *code generator* expects. This string is used by the
1932mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001933what the ultimate code generator uses. There is no way to generate IR
1934that does not embed this target-specific detail into the IR. If you
1935don't specify the string, the default specifications will be used to
1936generate a Data Layout and the optimization phases will operate
1937accordingly and introduce target specificity into the IR with respect to
1938these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001939
Bill Wendling5cc90842013-10-18 23:41:25 +00001940.. _langref_triple:
1941
1942Target Triple
1943-------------
1944
1945A module may specify a target triple string that describes the target
1946host. The syntax for the target triple is simply:
1947
1948.. code-block:: llvm
1949
1950 target triple = "x86_64-apple-macosx10.7.0"
1951
1952The *target triple* string consists of a series of identifiers delimited
1953by the minus sign character ('-'). The canonical forms are:
1954
1955::
1956
1957 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1958 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1959
1960This information is passed along to the backend so that it generates
1961code for the proper architecture. It's possible to override this on the
1962command line with the ``-mtriple`` command line option.
1963
Sean Silvab084af42012-12-07 10:36:55 +00001964.. _pointeraliasing:
1965
1966Pointer Aliasing Rules
1967----------------------
1968
1969Any memory access must be done through a pointer value associated with
1970an address range of the memory access, otherwise the behavior is
1971undefined. Pointer values are associated with address ranges according
1972to the following rules:
1973
1974- A pointer value is associated with the addresses associated with any
1975 value it is *based* on.
1976- An address of a global variable is associated with the address range
1977 of the variable's storage.
1978- The result value of an allocation instruction is associated with the
1979 address range of the allocated storage.
1980- A null pointer in the default address-space is associated with no
1981 address.
1982- An integer constant other than zero or a pointer value returned from
1983 a function not defined within LLVM may be associated with address
1984 ranges allocated through mechanisms other than those provided by
1985 LLVM. Such ranges shall not overlap with any ranges of addresses
1986 allocated by mechanisms provided by LLVM.
1987
1988A pointer value is *based* on another pointer value according to the
1989following rules:
1990
1991- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001992 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001993- The result value of a ``bitcast`` is *based* on the operand of the
1994 ``bitcast``.
1995- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1996 values that contribute (directly or indirectly) to the computation of
1997 the pointer's value.
1998- The "*based* on" relationship is transitive.
1999
2000Note that this definition of *"based"* is intentionally similar to the
2001definition of *"based"* in C99, though it is slightly weaker.
2002
2003LLVM IR does not associate types with memory. The result type of a
2004``load`` merely indicates the size and alignment of the memory from
2005which to load, as well as the interpretation of the value. The first
2006operand type of a ``store`` similarly only indicates the size and
2007alignment of the store.
2008
2009Consequently, type-based alias analysis, aka TBAA, aka
2010``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2011:ref:`Metadata <metadata>` may be used to encode additional information
2012which specialized optimization passes may use to implement type-based
2013alias analysis.
2014
2015.. _volatile:
2016
2017Volatile Memory Accesses
2018------------------------
2019
2020Certain memory accesses, such as :ref:`load <i_load>`'s,
2021:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2022marked ``volatile``. The optimizers must not change the number of
2023volatile operations or change their order of execution relative to other
2024volatile operations. The optimizers *may* change the order of volatile
2025operations relative to non-volatile operations. This is not Java's
2026"volatile" and has no cross-thread synchronization behavior.
2027
Andrew Trick89fc5a62013-01-30 21:19:35 +00002028IR-level volatile loads and stores cannot safely be optimized into
2029llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2030flagged volatile. Likewise, the backend should never split or merge
2031target-legal volatile load/store instructions.
2032
Andrew Trick7e6f9282013-01-31 00:49:39 +00002033.. admonition:: Rationale
2034
2035 Platforms may rely on volatile loads and stores of natively supported
2036 data width to be executed as single instruction. For example, in C
2037 this holds for an l-value of volatile primitive type with native
2038 hardware support, but not necessarily for aggregate types. The
2039 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002040 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002041 do not violate the frontend's contract with the language.
2042
Sean Silvab084af42012-12-07 10:36:55 +00002043.. _memmodel:
2044
2045Memory Model for Concurrent Operations
2046--------------------------------------
2047
2048The LLVM IR does not define any way to start parallel threads of
2049execution or to register signal handlers. Nonetheless, there are
2050platform-specific ways to create them, and we define LLVM IR's behavior
2051in their presence. This model is inspired by the C++0x memory model.
2052
2053For a more informal introduction to this model, see the :doc:`Atomics`.
2054
2055We define a *happens-before* partial order as the least partial order
2056that
2057
2058- Is a superset of single-thread program order, and
2059- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2060 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2061 techniques, like pthread locks, thread creation, thread joining,
2062 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2063 Constraints <ordering>`).
2064
2065Note that program order does not introduce *happens-before* edges
2066between a thread and signals executing inside that thread.
2067
2068Every (defined) read operation (load instructions, memcpy, atomic
2069loads/read-modify-writes, etc.) R reads a series of bytes written by
2070(defined) write operations (store instructions, atomic
2071stores/read-modify-writes, memcpy, etc.). For the purposes of this
2072section, initialized globals are considered to have a write of the
2073initializer which is atomic and happens before any other read or write
2074of the memory in question. For each byte of a read R, R\ :sub:`byte`
2075may see any write to the same byte, except:
2076
2077- If write\ :sub:`1` happens before write\ :sub:`2`, and
2078 write\ :sub:`2` happens before R\ :sub:`byte`, then
2079 R\ :sub:`byte` does not see write\ :sub:`1`.
2080- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2081 R\ :sub:`byte` does not see write\ :sub:`3`.
2082
2083Given that definition, R\ :sub:`byte` is defined as follows:
2084
2085- If R is volatile, the result is target-dependent. (Volatile is
2086 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002087 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002088 like normal memory. It does not generally provide cross-thread
2089 synchronization.)
2090- Otherwise, if there is no write to the same byte that happens before
2091 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2092- Otherwise, if R\ :sub:`byte` may see exactly one write,
2093 R\ :sub:`byte` returns the value written by that write.
2094- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2095 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2096 Memory Ordering Constraints <ordering>` section for additional
2097 constraints on how the choice is made.
2098- Otherwise R\ :sub:`byte` returns ``undef``.
2099
2100R returns the value composed of the series of bytes it read. This
2101implies that some bytes within the value may be ``undef`` **without**
2102the entire value being ``undef``. Note that this only defines the
2103semantics of the operation; it doesn't mean that targets will emit more
2104than one instruction to read the series of bytes.
2105
2106Note that in cases where none of the atomic intrinsics are used, this
2107model places only one restriction on IR transformations on top of what
2108is required for single-threaded execution: introducing a store to a byte
2109which might not otherwise be stored is not allowed in general.
2110(Specifically, in the case where another thread might write to and read
2111from an address, introducing a store can change a load that may see
2112exactly one write into a load that may see multiple writes.)
2113
2114.. _ordering:
2115
2116Atomic Memory Ordering Constraints
2117----------------------------------
2118
2119Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2120:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2121:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002122ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002123the same address they *synchronize with*. These semantics are borrowed
2124from Java and C++0x, but are somewhat more colloquial. If these
2125descriptions aren't precise enough, check those specs (see spec
2126references in the :doc:`atomics guide <Atomics>`).
2127:ref:`fence <i_fence>` instructions treat these orderings somewhat
2128differently since they don't take an address. See that instruction's
2129documentation for details.
2130
2131For a simpler introduction to the ordering constraints, see the
2132:doc:`Atomics`.
2133
2134``unordered``
2135 The set of values that can be read is governed by the happens-before
2136 partial order. A value cannot be read unless some operation wrote
2137 it. This is intended to provide a guarantee strong enough to model
2138 Java's non-volatile shared variables. This ordering cannot be
2139 specified for read-modify-write operations; it is not strong enough
2140 to make them atomic in any interesting way.
2141``monotonic``
2142 In addition to the guarantees of ``unordered``, there is a single
2143 total order for modifications by ``monotonic`` operations on each
2144 address. All modification orders must be compatible with the
2145 happens-before order. There is no guarantee that the modification
2146 orders can be combined to a global total order for the whole program
2147 (and this often will not be possible). The read in an atomic
2148 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2149 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2150 order immediately before the value it writes. If one atomic read
2151 happens before another atomic read of the same address, the later
2152 read must see the same value or a later value in the address's
2153 modification order. This disallows reordering of ``monotonic`` (or
2154 stronger) operations on the same address. If an address is written
2155 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2156 read that address repeatedly, the other threads must eventually see
2157 the write. This corresponds to the C++0x/C1x
2158 ``memory_order_relaxed``.
2159``acquire``
2160 In addition to the guarantees of ``monotonic``, a
2161 *synchronizes-with* edge may be formed with a ``release`` operation.
2162 This is intended to model C++'s ``memory_order_acquire``.
2163``release``
2164 In addition to the guarantees of ``monotonic``, if this operation
2165 writes a value which is subsequently read by an ``acquire``
2166 operation, it *synchronizes-with* that operation. (This isn't a
2167 complete description; see the C++0x definition of a release
2168 sequence.) This corresponds to the C++0x/C1x
2169 ``memory_order_release``.
2170``acq_rel`` (acquire+release)
2171 Acts as both an ``acquire`` and ``release`` operation on its
2172 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2173``seq_cst`` (sequentially consistent)
2174 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002175 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002176 writes), there is a global total order on all
2177 sequentially-consistent operations on all addresses, which is
2178 consistent with the *happens-before* partial order and with the
2179 modification orders of all the affected addresses. Each
2180 sequentially-consistent read sees the last preceding write to the
2181 same address in this global order. This corresponds to the C++0x/C1x
2182 ``memory_order_seq_cst`` and Java volatile.
2183
2184.. _singlethread:
2185
2186If an atomic operation is marked ``singlethread``, it only *synchronizes
2187with* or participates in modification and seq\_cst total orderings with
2188other operations running in the same thread (for example, in signal
2189handlers).
2190
2191.. _fastmath:
2192
2193Fast-Math Flags
2194---------------
2195
2196LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2197:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002198:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
2199instructions have the following flags that can be set to enable
2200otherwise unsafe floating point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002201
2202``nnan``
2203 No NaNs - Allow optimizations to assume the arguments and result are not
2204 NaN. Such optimizations are required to retain defined behavior over
2205 NaNs, but the value of the result is undefined.
2206
2207``ninf``
2208 No Infs - Allow optimizations to assume the arguments and result are not
2209 +/-Inf. Such optimizations are required to retain defined behavior over
2210 +/-Inf, but the value of the result is undefined.
2211
2212``nsz``
2213 No Signed Zeros - Allow optimizations to treat the sign of a zero
2214 argument or result as insignificant.
2215
2216``arcp``
2217 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2218 argument rather than perform division.
2219
Adam Nemetcd847a82017-03-28 20:11:52 +00002220``contract``
2221 Allow floating-point contraction (e.g. fusing a multiply followed by an
2222 addition into a fused multiply-and-add).
2223
Sean Silvab084af42012-12-07 10:36:55 +00002224``fast``
2225 Fast - Allow algebraically equivalent transformations that may
2226 dramatically change results in floating point (e.g. reassociate). This
2227 flag implies all the others.
2228
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002229.. _uselistorder:
2230
2231Use-list Order Directives
2232-------------------------
2233
2234Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002235order to be recreated. ``<order-indexes>`` is a comma-separated list of
2236indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002237value's use-list is immediately sorted by these indexes.
2238
Sean Silvaa1190322015-08-06 22:56:48 +00002239Use-list directives may appear at function scope or global scope. They are not
2240instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002241function scope, they must appear after the terminator of the final basic block.
2242
2243If basic blocks have their address taken via ``blockaddress()`` expressions,
2244``uselistorder_bb`` can be used to reorder their use-lists from outside their
2245function's scope.
2246
2247:Syntax:
2248
2249::
2250
2251 uselistorder <ty> <value>, { <order-indexes> }
2252 uselistorder_bb @function, %block { <order-indexes> }
2253
2254:Examples:
2255
2256::
2257
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002258 define void @foo(i32 %arg1, i32 %arg2) {
2259 entry:
2260 ; ... instructions ...
2261 bb:
2262 ; ... instructions ...
2263
2264 ; At function scope.
2265 uselistorder i32 %arg1, { 1, 0, 2 }
2266 uselistorder label %bb, { 1, 0 }
2267 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002268
2269 ; At global scope.
2270 uselistorder i32* @global, { 1, 2, 0 }
2271 uselistorder i32 7, { 1, 0 }
2272 uselistorder i32 (i32) @bar, { 1, 0 }
2273 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2274
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002275.. _source_filename:
2276
2277Source Filename
2278---------------
2279
2280The *source filename* string is set to the original module identifier,
2281which will be the name of the compiled source file when compiling from
2282source through the clang front end, for example. It is then preserved through
2283the IR and bitcode.
2284
2285This is currently necessary to generate a consistent unique global
2286identifier for local functions used in profile data, which prepends the
2287source file name to the local function name.
2288
2289The syntax for the source file name is simply:
2290
Renato Golin124f2592016-07-20 12:16:38 +00002291.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002292
2293 source_filename = "/path/to/source.c"
2294
Sean Silvab084af42012-12-07 10:36:55 +00002295.. _typesystem:
2296
2297Type System
2298===========
2299
2300The LLVM type system is one of the most important features of the
2301intermediate representation. Being typed enables a number of
2302optimizations to be performed on the intermediate representation
2303directly, without having to do extra analyses on the side before the
2304transformation. A strong type system makes it easier to read the
2305generated code and enables novel analyses and transformations that are
2306not feasible to perform on normal three address code representations.
2307
Rafael Espindola08013342013-12-07 19:34:20 +00002308.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002309
Rafael Espindola08013342013-12-07 19:34:20 +00002310Void Type
2311---------
Sean Silvab084af42012-12-07 10:36:55 +00002312
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002313:Overview:
2314
Rafael Espindola08013342013-12-07 19:34:20 +00002315
2316The void type does not represent any value and has no size.
2317
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002318:Syntax:
2319
Rafael Espindola08013342013-12-07 19:34:20 +00002320
2321::
2322
2323 void
Sean Silvab084af42012-12-07 10:36:55 +00002324
2325
Rafael Espindola08013342013-12-07 19:34:20 +00002326.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002327
Rafael Espindola08013342013-12-07 19:34:20 +00002328Function Type
2329-------------
Sean Silvab084af42012-12-07 10:36:55 +00002330
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002331:Overview:
2332
Sean Silvab084af42012-12-07 10:36:55 +00002333
Rafael Espindola08013342013-12-07 19:34:20 +00002334The function type can be thought of as a function signature. It consists of a
2335return type and a list of formal parameter types. The return type of a function
2336type is a void type or first class type --- except for :ref:`label <t_label>`
2337and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002338
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002339:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002340
Rafael Espindola08013342013-12-07 19:34:20 +00002341::
Sean Silvab084af42012-12-07 10:36:55 +00002342
Rafael Espindola08013342013-12-07 19:34:20 +00002343 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002344
Rafael Espindola08013342013-12-07 19:34:20 +00002345...where '``<parameter list>``' is a comma-separated list of type
2346specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002347indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002348argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002349handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002350except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002351
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002352:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002353
Rafael Espindola08013342013-12-07 19:34:20 +00002354+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2355| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2356+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2357| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2358+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2359| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2360+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2361| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2362+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2363
2364.. _t_firstclass:
2365
2366First Class Types
2367-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002368
2369The :ref:`first class <t_firstclass>` types are perhaps the most important.
2370Values of these types are the only ones which can be produced by
2371instructions.
2372
Rafael Espindola08013342013-12-07 19:34:20 +00002373.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002374
Rafael Espindola08013342013-12-07 19:34:20 +00002375Single Value Types
2376^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002377
Rafael Espindola08013342013-12-07 19:34:20 +00002378These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002379
2380.. _t_integer:
2381
2382Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002383""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002384
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002385:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002386
2387The integer type is a very simple type that simply specifies an
2388arbitrary bit width for the integer type desired. Any bit width from 1
2389bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2390
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002391:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002392
2393::
2394
2395 iN
2396
2397The number of bits the integer will occupy is specified by the ``N``
2398value.
2399
2400Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002401*********
Sean Silvab084af42012-12-07 10:36:55 +00002402
2403+----------------+------------------------------------------------+
2404| ``i1`` | a single-bit integer. |
2405+----------------+------------------------------------------------+
2406| ``i32`` | a 32-bit integer. |
2407+----------------+------------------------------------------------+
2408| ``i1942652`` | a really big integer of over 1 million bits. |
2409+----------------+------------------------------------------------+
2410
2411.. _t_floating:
2412
2413Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002414""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002415
2416.. list-table::
2417 :header-rows: 1
2418
2419 * - Type
2420 - Description
2421
2422 * - ``half``
2423 - 16-bit floating point value
2424
2425 * - ``float``
2426 - 32-bit floating point value
2427
2428 * - ``double``
2429 - 64-bit floating point value
2430
2431 * - ``fp128``
2432 - 128-bit floating point value (112-bit mantissa)
2433
2434 * - ``x86_fp80``
2435 - 80-bit floating point value (X87)
2436
2437 * - ``ppc_fp128``
2438 - 128-bit floating point value (two 64-bits)
2439
Reid Kleckner9a16d082014-03-05 02:41:37 +00002440X86_mmx Type
2441""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002442
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002443:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002444
Reid Kleckner9a16d082014-03-05 02:41:37 +00002445The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002446machine. The operations allowed on it are quite limited: parameters and
2447return values, load and store, and bitcast. User-specified MMX
2448instructions are represented as intrinsic or asm calls with arguments
2449and/or results of this type. There are no arrays, vectors or constants
2450of this type.
2451
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002452:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002453
2454::
2455
Reid Kleckner9a16d082014-03-05 02:41:37 +00002456 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002457
Sean Silvab084af42012-12-07 10:36:55 +00002458
Rafael Espindola08013342013-12-07 19:34:20 +00002459.. _t_pointer:
2460
2461Pointer Type
2462""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002463
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002464:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002465
Rafael Espindola08013342013-12-07 19:34:20 +00002466The pointer type is used to specify memory locations. Pointers are
2467commonly used to reference objects in memory.
2468
2469Pointer types may have an optional address space attribute defining the
2470numbered address space where the pointed-to object resides. The default
2471address space is number zero. The semantics of non-zero address spaces
2472are target-specific.
2473
2474Note that LLVM does not permit pointers to void (``void*``) nor does it
2475permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002476
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002477:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002478
2479::
2480
Rafael Espindola08013342013-12-07 19:34:20 +00002481 <type> *
2482
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002483:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002484
2485+-------------------------+--------------------------------------------------------------------------------------------------------------+
2486| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2487+-------------------------+--------------------------------------------------------------------------------------------------------------+
2488| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2489+-------------------------+--------------------------------------------------------------------------------------------------------------+
2490| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2491+-------------------------+--------------------------------------------------------------------------------------------------------------+
2492
2493.. _t_vector:
2494
2495Vector Type
2496"""""""""""
2497
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002498:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002499
2500A vector type is a simple derived type that represents a vector of
2501elements. Vector types are used when multiple primitive data are
2502operated in parallel using a single instruction (SIMD). A vector type
2503requires a size (number of elements) and an underlying primitive data
2504type. Vector types are considered :ref:`first class <t_firstclass>`.
2505
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002506:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002507
2508::
2509
2510 < <# elements> x <elementtype> >
2511
2512The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002513elementtype may be any integer, floating point or pointer type. Vectors
2514of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002515
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002516:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002517
2518+-------------------+--------------------------------------------------+
2519| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2520+-------------------+--------------------------------------------------+
2521| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2522+-------------------+--------------------------------------------------+
2523| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2524+-------------------+--------------------------------------------------+
2525| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2526+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002527
2528.. _t_label:
2529
2530Label Type
2531^^^^^^^^^^
2532
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002533:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002534
2535The label type represents code labels.
2536
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002537:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002538
2539::
2540
2541 label
2542
David Majnemerb611e3f2015-08-14 05:09:07 +00002543.. _t_token:
2544
2545Token Type
2546^^^^^^^^^^
2547
2548:Overview:
2549
2550The token type is used when a value is associated with an instruction
2551but all uses of the value must not attempt to introspect or obscure it.
2552As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2553:ref:`select <i_select>` of type token.
2554
2555:Syntax:
2556
2557::
2558
2559 token
2560
2561
2562
Sean Silvab084af42012-12-07 10:36:55 +00002563.. _t_metadata:
2564
2565Metadata Type
2566^^^^^^^^^^^^^
2567
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002568:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002569
2570The metadata type represents embedded metadata. No derived types may be
2571created from metadata except for :ref:`function <t_function>` arguments.
2572
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002573:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002574
2575::
2576
2577 metadata
2578
Sean Silvab084af42012-12-07 10:36:55 +00002579.. _t_aggregate:
2580
2581Aggregate Types
2582^^^^^^^^^^^^^^^
2583
2584Aggregate Types are a subset of derived types that can contain multiple
2585member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2586aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2587aggregate types.
2588
2589.. _t_array:
2590
2591Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002592""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002593
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002594:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002595
2596The array type is a very simple derived type that arranges elements
2597sequentially in memory. The array type requires a size (number of
2598elements) and an underlying data type.
2599
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002600:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002601
2602::
2603
2604 [<# elements> x <elementtype>]
2605
2606The number of elements is a constant integer value; ``elementtype`` may
2607be any type with a size.
2608
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002609:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002610
2611+------------------+--------------------------------------+
2612| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2613+------------------+--------------------------------------+
2614| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2615+------------------+--------------------------------------+
2616| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2617+------------------+--------------------------------------+
2618
2619Here are some examples of multidimensional arrays:
2620
2621+-----------------------------+----------------------------------------------------------+
2622| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2623+-----------------------------+----------------------------------------------------------+
2624| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2625+-----------------------------+----------------------------------------------------------+
2626| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2627+-----------------------------+----------------------------------------------------------+
2628
2629There is no restriction on indexing beyond the end of the array implied
2630by a static type (though there are restrictions on indexing beyond the
2631bounds of an allocated object in some cases). This means that
2632single-dimension 'variable sized array' addressing can be implemented in
2633LLVM with a zero length array type. An implementation of 'pascal style
2634arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2635example.
2636
Sean Silvab084af42012-12-07 10:36:55 +00002637.. _t_struct:
2638
2639Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002640""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002641
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002642:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002643
2644The structure type is used to represent a collection of data members
2645together in memory. The elements of a structure may be any type that has
2646a size.
2647
2648Structures in memory are accessed using '``load``' and '``store``' by
2649getting a pointer to a field with the '``getelementptr``' instruction.
2650Structures in registers are accessed using the '``extractvalue``' and
2651'``insertvalue``' instructions.
2652
2653Structures may optionally be "packed" structures, which indicate that
2654the alignment of the struct is one byte, and that there is no padding
2655between the elements. In non-packed structs, padding between field types
2656is inserted as defined by the DataLayout string in the module, which is
2657required to match what the underlying code generator expects.
2658
2659Structures can either be "literal" or "identified". A literal structure
2660is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2661identified types are always defined at the top level with a name.
2662Literal types are uniqued by their contents and can never be recursive
2663or opaque since there is no way to write one. Identified types can be
2664recursive, can be opaqued, and are never uniqued.
2665
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002666:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002667
2668::
2669
2670 %T1 = type { <type list> } ; Identified normal struct type
2671 %T2 = type <{ <type list> }> ; Identified packed struct type
2672
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002673:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002674
2675+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2676| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2677+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002678| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002679+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2680| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2681+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2682
2683.. _t_opaque:
2684
2685Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002686""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002687
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002688:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002689
2690Opaque structure types are used to represent named structure types that
2691do not have a body specified. This corresponds (for example) to the C
2692notion of a forward declared structure.
2693
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002694:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002695
2696::
2697
2698 %X = type opaque
2699 %52 = type opaque
2700
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002701:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002702
2703+--------------+-------------------+
2704| ``opaque`` | An opaque type. |
2705+--------------+-------------------+
2706
Sean Silva1703e702014-04-08 21:06:22 +00002707.. _constants:
2708
Sean Silvab084af42012-12-07 10:36:55 +00002709Constants
2710=========
2711
2712LLVM has several different basic types of constants. This section
2713describes them all and their syntax.
2714
2715Simple Constants
2716----------------
2717
2718**Boolean constants**
2719 The two strings '``true``' and '``false``' are both valid constants
2720 of the ``i1`` type.
2721**Integer constants**
2722 Standard integers (such as '4') are constants of the
2723 :ref:`integer <t_integer>` type. Negative numbers may be used with
2724 integer types.
2725**Floating point constants**
2726 Floating point constants use standard decimal notation (e.g.
2727 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2728 hexadecimal notation (see below). The assembler requires the exact
2729 decimal value of a floating-point constant. For example, the
2730 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2731 decimal in binary. Floating point constants must have a :ref:`floating
2732 point <t_floating>` type.
2733**Null pointer constants**
2734 The identifier '``null``' is recognized as a null pointer constant
2735 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002736**Token constants**
2737 The identifier '``none``' is recognized as an empty token constant
2738 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002739
2740The one non-intuitive notation for constants is the hexadecimal form of
2741floating point constants. For example, the form
2742'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2743than) '``double 4.5e+15``'. The only time hexadecimal floating point
2744constants are required (and the only time that they are generated by the
2745disassembler) is when a floating point constant must be emitted but it
2746cannot be represented as a decimal floating point number in a reasonable
2747number of digits. For example, NaN's, infinities, and other special
2748values are represented in their IEEE hexadecimal format so that assembly
2749and disassembly do not cause any bits to change in the constants.
2750
2751When using the hexadecimal form, constants of types half, float, and
2752double are represented using the 16-digit form shown above (which
2753matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002754must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002755precision, respectively. Hexadecimal format is always used for long
2756double, and there are three forms of long double. The 80-bit format used
2757by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2758128-bit format used by PowerPC (two adjacent doubles) is represented by
2759``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002760represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2761will only work if they match the long double format on your target.
2762The IEEE 16-bit format (half precision) is represented by ``0xH``
2763followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2764(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002765
Reid Kleckner9a16d082014-03-05 02:41:37 +00002766There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002767
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002768.. _complexconstants:
2769
Sean Silvab084af42012-12-07 10:36:55 +00002770Complex Constants
2771-----------------
2772
2773Complex constants are a (potentially recursive) combination of simple
2774constants and smaller complex constants.
2775
2776**Structure constants**
2777 Structure constants are represented with notation similar to
2778 structure type definitions (a comma separated list of elements,
2779 surrounded by braces (``{}``)). For example:
2780 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2781 "``@G = external global i32``". Structure constants must have
2782 :ref:`structure type <t_struct>`, and the number and types of elements
2783 must match those specified by the type.
2784**Array constants**
2785 Array constants are represented with notation similar to array type
2786 definitions (a comma separated list of elements, surrounded by
2787 square brackets (``[]``)). For example:
2788 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2789 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002790 match those specified by the type. As a special case, character array
2791 constants may also be represented as a double-quoted string using the ``c``
2792 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002793**Vector constants**
2794 Vector constants are represented with notation similar to vector
2795 type definitions (a comma separated list of elements, surrounded by
2796 less-than/greater-than's (``<>``)). For example:
2797 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2798 must have :ref:`vector type <t_vector>`, and the number and types of
2799 elements must match those specified by the type.
2800**Zero initialization**
2801 The string '``zeroinitializer``' can be used to zero initialize a
2802 value to zero of *any* type, including scalar and
2803 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2804 having to print large zero initializers (e.g. for large arrays) and
2805 is always exactly equivalent to using explicit zero initializers.
2806**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002807 A metadata node is a constant tuple without types. For example:
2808 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002809 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2810 Unlike other typed constants that are meant to be interpreted as part of
2811 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002812 information such as debug info.
2813
2814Global Variable and Function Addresses
2815--------------------------------------
2816
2817The addresses of :ref:`global variables <globalvars>` and
2818:ref:`functions <functionstructure>` are always implicitly valid
2819(link-time) constants. These constants are explicitly referenced when
2820the :ref:`identifier for the global <identifiers>` is used and always have
2821:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2822file:
2823
2824.. code-block:: llvm
2825
2826 @X = global i32 17
2827 @Y = global i32 42
2828 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2829
2830.. _undefvalues:
2831
2832Undefined Values
2833----------------
2834
2835The string '``undef``' can be used anywhere a constant is expected, and
2836indicates that the user of the value may receive an unspecified
2837bit-pattern. Undefined values may be of any type (other than '``label``'
2838or '``void``') and be used anywhere a constant is permitted.
2839
2840Undefined values are useful because they indicate to the compiler that
2841the program is well defined no matter what value is used. This gives the
2842compiler more freedom to optimize. Here are some examples of
2843(potentially surprising) transformations that are valid (in pseudo IR):
2844
2845.. code-block:: llvm
2846
2847 %A = add %X, undef
2848 %B = sub %X, undef
2849 %C = xor %X, undef
2850 Safe:
2851 %A = undef
2852 %B = undef
2853 %C = undef
2854
2855This is safe because all of the output bits are affected by the undef
2856bits. Any output bit can have a zero or one depending on the input bits.
2857
2858.. code-block:: llvm
2859
2860 %A = or %X, undef
2861 %B = and %X, undef
2862 Safe:
2863 %A = -1
2864 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00002865 Safe:
2866 %A = %X ;; By choosing undef as 0
2867 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00002868 Unsafe:
2869 %A = undef
2870 %B = undef
2871
2872These logical operations have bits that are not always affected by the
2873input. For example, if ``%X`` has a zero bit, then the output of the
2874'``and``' operation will always be a zero for that bit, no matter what
2875the corresponding bit from the '``undef``' is. As such, it is unsafe to
2876optimize or assume that the result of the '``and``' is '``undef``'.
2877However, it is safe to assume that all bits of the '``undef``' could be
28780, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2879all the bits of the '``undef``' operand to the '``or``' could be set,
2880allowing the '``or``' to be folded to -1.
2881
2882.. code-block:: llvm
2883
2884 %A = select undef, %X, %Y
2885 %B = select undef, 42, %Y
2886 %C = select %X, %Y, undef
2887 Safe:
2888 %A = %X (or %Y)
2889 %B = 42 (or %Y)
2890 %C = %Y
2891 Unsafe:
2892 %A = undef
2893 %B = undef
2894 %C = undef
2895
2896This set of examples shows that undefined '``select``' (and conditional
2897branch) conditions can go *either way*, but they have to come from one
2898of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2899both known to have a clear low bit, then ``%A`` would have to have a
2900cleared low bit. However, in the ``%C`` example, the optimizer is
2901allowed to assume that the '``undef``' operand could be the same as
2902``%Y``, allowing the whole '``select``' to be eliminated.
2903
Renato Golin124f2592016-07-20 12:16:38 +00002904.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002905
2906 %A = xor undef, undef
2907
2908 %B = undef
2909 %C = xor %B, %B
2910
2911 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002912 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002913 %F = icmp gte %D, 4
2914
2915 Safe:
2916 %A = undef
2917 %B = undef
2918 %C = undef
2919 %D = undef
2920 %E = undef
2921 %F = undef
2922
2923This example points out that two '``undef``' operands are not
2924necessarily the same. This can be surprising to people (and also matches
2925C semantics) where they assume that "``X^X``" is always zero, even if
2926``X`` is undefined. This isn't true for a number of reasons, but the
2927short answer is that an '``undef``' "variable" can arbitrarily change
2928its value over its "live range". This is true because the variable
2929doesn't actually *have a live range*. Instead, the value is logically
2930read from arbitrary registers that happen to be around when needed, so
2931the value is not necessarily consistent over time. In fact, ``%A`` and
2932``%C`` need to have the same semantics or the core LLVM "replace all
2933uses with" concept would not hold.
2934
2935.. code-block:: llvm
2936
2937 %A = fdiv undef, %X
2938 %B = fdiv %X, undef
2939 Safe:
2940 %A = undef
2941 b: unreachable
2942
2943These examples show the crucial difference between an *undefined value*
2944and *undefined behavior*. An undefined value (like '``undef``') is
2945allowed to have an arbitrary bit-pattern. This means that the ``%A``
2946operation can be constant folded to '``undef``', because the '``undef``'
2947could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2948However, in the second example, we can make a more aggressive
2949assumption: because the ``undef`` is allowed to be an arbitrary value,
2950we are allowed to assume that it could be zero. Since a divide by zero
2951has *undefined behavior*, we are allowed to assume that the operation
2952does not execute at all. This allows us to delete the divide and all
2953code after it. Because the undefined operation "can't happen", the
2954optimizer can assume that it occurs in dead code.
2955
Renato Golin124f2592016-07-20 12:16:38 +00002956.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002957
2958 a: store undef -> %X
2959 b: store %X -> undef
2960 Safe:
2961 a: <deleted>
2962 b: unreachable
2963
2964These examples reiterate the ``fdiv`` example: a store *of* an undefined
2965value can be assumed to not have any effect; we can assume that the
2966value is overwritten with bits that happen to match what was already
2967there. However, a store *to* an undefined location could clobber
2968arbitrary memory, therefore, it has undefined behavior.
2969
2970.. _poisonvalues:
2971
2972Poison Values
2973-------------
2974
2975Poison values are similar to :ref:`undef values <undefvalues>`, however
2976they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002977that cannot evoke side effects has nevertheless detected a condition
2978that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002979
2980There is currently no way of representing a poison value in the IR; they
2981only exist when produced by operations such as :ref:`add <i_add>` with
2982the ``nsw`` flag.
2983
2984Poison value behavior is defined in terms of value *dependence*:
2985
2986- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2987- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2988 their dynamic predecessor basic block.
2989- Function arguments depend on the corresponding actual argument values
2990 in the dynamic callers of their functions.
2991- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2992 instructions that dynamically transfer control back to them.
2993- :ref:`Invoke <i_invoke>` instructions depend on the
2994 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2995 call instructions that dynamically transfer control back to them.
2996- Non-volatile loads and stores depend on the most recent stores to all
2997 of the referenced memory addresses, following the order in the IR
2998 (including loads and stores implied by intrinsics such as
2999 :ref:`@llvm.memcpy <int_memcpy>`.)
3000- An instruction with externally visible side effects depends on the
3001 most recent preceding instruction with externally visible side
3002 effects, following the order in the IR. (This includes :ref:`volatile
3003 operations <volatile>`.)
3004- An instruction *control-depends* on a :ref:`terminator
3005 instruction <terminators>` if the terminator instruction has
3006 multiple successors and the instruction is always executed when
3007 control transfers to one of the successors, and may not be executed
3008 when control is transferred to another.
3009- Additionally, an instruction also *control-depends* on a terminator
3010 instruction if the set of instructions it otherwise depends on would
3011 be different if the terminator had transferred control to a different
3012 successor.
3013- Dependence is transitive.
3014
Richard Smith32dbdf62014-07-31 04:25:36 +00003015Poison values have the same behavior as :ref:`undef values <undefvalues>`,
3016with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00003017on a poison value has undefined behavior.
3018
3019Here are some examples:
3020
3021.. code-block:: llvm
3022
3023 entry:
3024 %poison = sub nuw i32 0, 1 ; Results in a poison value.
3025 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00003026 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00003027 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3028
3029 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003030 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003031
3032 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3033
3034 %narrowaddr = bitcast i32* @g to i16*
3035 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003036 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3037 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003038
3039 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3040 br i1 %cmp, label %true, label %end ; Branch to either destination.
3041
3042 true:
3043 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3044 ; it has undefined behavior.
3045 br label %end
3046
3047 end:
3048 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3049 ; Both edges into this PHI are
3050 ; control-dependent on %cmp, so this
3051 ; always results in a poison value.
3052
3053 store volatile i32 0, i32* @g ; This would depend on the store in %true
3054 ; if %cmp is true, or the store in %entry
3055 ; otherwise, so this is undefined behavior.
3056
3057 br i1 %cmp, label %second_true, label %second_end
3058 ; The same branch again, but this time the
3059 ; true block doesn't have side effects.
3060
3061 second_true:
3062 ; No side effects!
3063 ret void
3064
3065 second_end:
3066 store volatile i32 0, i32* @g ; This time, the instruction always depends
3067 ; on the store in %end. Also, it is
3068 ; control-equivalent to %end, so this is
3069 ; well-defined (ignoring earlier undefined
3070 ; behavior in this example).
3071
3072.. _blockaddress:
3073
3074Addresses of Basic Blocks
3075-------------------------
3076
3077``blockaddress(@function, %block)``
3078
3079The '``blockaddress``' constant computes the address of the specified
3080basic block in the specified function, and always has an ``i8*`` type.
3081Taking the address of the entry block is illegal.
3082
3083This value only has defined behavior when used as an operand to the
3084':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3085against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003086undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003087no label is equal to the null pointer. This may be passed around as an
3088opaque pointer sized value as long as the bits are not inspected. This
3089allows ``ptrtoint`` and arithmetic to be performed on these values so
3090long as the original value is reconstituted before the ``indirectbr``
3091instruction.
3092
3093Finally, some targets may provide defined semantics when using the value
3094as the operand to an inline assembly, but that is target specific.
3095
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003096.. _constantexprs:
3097
Sean Silvab084af42012-12-07 10:36:55 +00003098Constant Expressions
3099--------------------
3100
3101Constant expressions are used to allow expressions involving other
3102constants to be used as constants. Constant expressions may be of any
3103:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3104that does not have side effects (e.g. load and call are not supported).
3105The following is the syntax for constant expressions:
3106
3107``trunc (CST to TYPE)``
3108 Truncate a constant to another type. The bit size of CST must be
3109 larger than the bit size of TYPE. Both types must be integers.
3110``zext (CST to TYPE)``
3111 Zero extend a constant to another type. The bit size of CST must be
3112 smaller than the bit size of TYPE. Both types must be integers.
3113``sext (CST to TYPE)``
3114 Sign extend a constant to another type. The bit size of CST must be
3115 smaller than the bit size of TYPE. Both types must be integers.
3116``fptrunc (CST to TYPE)``
3117 Truncate a floating point constant to another floating point type.
3118 The size of CST must be larger than the size of TYPE. Both types
3119 must be floating point.
3120``fpext (CST to TYPE)``
3121 Floating point extend a constant to another type. The size of CST
3122 must be smaller or equal to the size of TYPE. Both types must be
3123 floating point.
3124``fptoui (CST to TYPE)``
3125 Convert a floating point constant to the corresponding unsigned
3126 integer constant. TYPE must be a scalar or vector integer type. CST
3127 must be of scalar or vector floating point type. Both CST and TYPE
3128 must be scalars, or vectors of the same number of elements. If the
3129 value won't fit in the integer type, the results are undefined.
3130``fptosi (CST to TYPE)``
3131 Convert a floating point constant to the corresponding signed
3132 integer constant. TYPE must be a scalar or vector integer type. CST
3133 must be of scalar or vector floating point type. Both CST and TYPE
3134 must be scalars, or vectors of the same number of elements. If the
3135 value won't fit in the integer type, the results are undefined.
3136``uitofp (CST to TYPE)``
3137 Convert an unsigned integer constant to the corresponding floating
3138 point constant. TYPE must be a scalar or vector floating point type.
3139 CST must be of scalar or vector integer type. Both CST and TYPE must
3140 be scalars, or vectors of the same number of elements. If the value
3141 won't fit in the floating point type, the results are undefined.
3142``sitofp (CST to TYPE)``
3143 Convert a signed integer constant to the corresponding floating
3144 point constant. TYPE must be a scalar or vector floating point type.
3145 CST must be of scalar or vector integer type. Both CST and TYPE must
3146 be scalars, or vectors of the same number of elements. If the value
3147 won't fit in the floating point type, the results are undefined.
3148``ptrtoint (CST to TYPE)``
3149 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003150 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003151 pointer type. The ``CST`` value is zero extended, truncated, or
3152 unchanged to make it fit in ``TYPE``.
3153``inttoptr (CST to TYPE)``
3154 Convert an integer constant to a pointer constant. TYPE must be a
3155 pointer type. CST must be of integer type. The CST value is zero
3156 extended, truncated, or unchanged to make it fit in a pointer size.
3157 This one is *really* dangerous!
3158``bitcast (CST to TYPE)``
3159 Convert a constant, CST, to another TYPE. The constraints of the
3160 operands are the same as those for the :ref:`bitcast
3161 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003162``addrspacecast (CST to TYPE)``
3163 Convert a constant pointer or constant vector of pointer, CST, to another
3164 TYPE in a different address space. The constraints of the operands are the
3165 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003166``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003167 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3168 constants. As with the :ref:`getelementptr <i_getelementptr>`
3169 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003170 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003171``select (COND, VAL1, VAL2)``
3172 Perform the :ref:`select operation <i_select>` on constants.
3173``icmp COND (VAL1, VAL2)``
3174 Performs the :ref:`icmp operation <i_icmp>` on constants.
3175``fcmp COND (VAL1, VAL2)``
3176 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3177``extractelement (VAL, IDX)``
3178 Perform the :ref:`extractelement operation <i_extractelement>` on
3179 constants.
3180``insertelement (VAL, ELT, IDX)``
3181 Perform the :ref:`insertelement operation <i_insertelement>` on
3182 constants.
3183``shufflevector (VEC1, VEC2, IDXMASK)``
3184 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3185 constants.
3186``extractvalue (VAL, IDX0, IDX1, ...)``
3187 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3188 constants. The index list is interpreted in a similar manner as
3189 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3190 least one index value must be specified.
3191``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3192 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3193 The index list is interpreted in a similar manner as indices in a
3194 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3195 value must be specified.
3196``OPCODE (LHS, RHS)``
3197 Perform the specified operation of the LHS and RHS constants. OPCODE
3198 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3199 binary <bitwiseops>` operations. The constraints on operands are
3200 the same as those for the corresponding instruction (e.g. no bitwise
3201 operations on floating point values are allowed).
3202
3203Other Values
3204============
3205
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003206.. _inlineasmexprs:
3207
Sean Silvab084af42012-12-07 10:36:55 +00003208Inline Assembler Expressions
3209----------------------------
3210
3211LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003212Inline Assembly <moduleasm>`) through the use of a special value. This value
3213represents the inline assembler as a template string (containing the
3214instructions to emit), a list of operand constraints (stored as a string), a
3215flag that indicates whether or not the inline asm expression has side effects,
3216and a flag indicating whether the function containing the asm needs to align its
3217stack conservatively.
3218
3219The template string supports argument substitution of the operands using "``$``"
3220followed by a number, to indicate substitution of the given register/memory
3221location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3222be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3223operand (See :ref:`inline-asm-modifiers`).
3224
3225A literal "``$``" may be included by using "``$$``" in the template. To include
3226other special characters into the output, the usual "``\XX``" escapes may be
3227used, just as in other strings. Note that after template substitution, the
3228resulting assembly string is parsed by LLVM's integrated assembler unless it is
3229disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3230syntax known to LLVM.
3231
Reid Kleckner71cb1642017-02-06 18:08:45 +00003232LLVM also supports a few more substitions useful for writing inline assembly:
3233
3234- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3235 This substitution is useful when declaring a local label. Many standard
3236 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3237 Adding a blob-unique identifier ensures that the two labels will not conflict
3238 during assembly. This is used to implement `GCC's %= special format
3239 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3240- ``${:comment}``: Expands to the comment character of the current target's
3241 assembly dialect. This is usually ``#``, but many targets use other strings,
3242 such as ``;``, ``//``, or ``!``.
3243- ``${:private}``: Expands to the assembler private label prefix. Labels with
3244 this prefix will not appear in the symbol table of the assembled object.
3245 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3246 relatively popular.
3247
James Y Knightbc832ed2015-07-08 18:08:36 +00003248LLVM's support for inline asm is modeled closely on the requirements of Clang's
3249GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3250modifier codes listed here are similar or identical to those in GCC's inline asm
3251support. However, to be clear, the syntax of the template and constraint strings
3252described here is *not* the same as the syntax accepted by GCC and Clang, and,
3253while most constraint letters are passed through as-is by Clang, some get
3254translated to other codes when converting from the C source to the LLVM
3255assembly.
3256
3257An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003258
3259.. code-block:: llvm
3260
3261 i32 (i32) asm "bswap $0", "=r,r"
3262
3263Inline assembler expressions may **only** be used as the callee operand
3264of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3265Thus, typically we have:
3266
3267.. code-block:: llvm
3268
3269 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3270
3271Inline asms with side effects not visible in the constraint list must be
3272marked as having side effects. This is done through the use of the
3273'``sideeffect``' keyword, like so:
3274
3275.. code-block:: llvm
3276
3277 call void asm sideeffect "eieio", ""()
3278
3279In some cases inline asms will contain code that will not work unless
3280the stack is aligned in some way, such as calls or SSE instructions on
3281x86, yet will not contain code that does that alignment within the asm.
3282The compiler should make conservative assumptions about what the asm
3283might contain and should generate its usual stack alignment code in the
3284prologue if the '``alignstack``' keyword is present:
3285
3286.. code-block:: llvm
3287
3288 call void asm alignstack "eieio", ""()
3289
3290Inline asms also support using non-standard assembly dialects. The
3291assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3292the inline asm is using the Intel dialect. Currently, ATT and Intel are
3293the only supported dialects. An example is:
3294
3295.. code-block:: llvm
3296
3297 call void asm inteldialect "eieio", ""()
3298
3299If multiple keywords appear the '``sideeffect``' keyword must come
3300first, the '``alignstack``' keyword second and the '``inteldialect``'
3301keyword last.
3302
James Y Knightbc832ed2015-07-08 18:08:36 +00003303Inline Asm Constraint String
3304^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3305
3306The constraint list is a comma-separated string, each element containing one or
3307more constraint codes.
3308
3309For each element in the constraint list an appropriate register or memory
3310operand will be chosen, and it will be made available to assembly template
3311string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3312second, etc.
3313
3314There are three different types of constraints, which are distinguished by a
3315prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3316constraints must always be given in that order: outputs first, then inputs, then
3317clobbers. They cannot be intermingled.
3318
3319There are also three different categories of constraint codes:
3320
3321- Register constraint. This is either a register class, or a fixed physical
3322 register. This kind of constraint will allocate a register, and if necessary,
3323 bitcast the argument or result to the appropriate type.
3324- Memory constraint. This kind of constraint is for use with an instruction
3325 taking a memory operand. Different constraints allow for different addressing
3326 modes used by the target.
3327- Immediate value constraint. This kind of constraint is for an integer or other
3328 immediate value which can be rendered directly into an instruction. The
3329 various target-specific constraints allow the selection of a value in the
3330 proper range for the instruction you wish to use it with.
3331
3332Output constraints
3333""""""""""""""""""
3334
3335Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3336indicates that the assembly will write to this operand, and the operand will
3337then be made available as a return value of the ``asm`` expression. Output
3338constraints do not consume an argument from the call instruction. (Except, see
3339below about indirect outputs).
3340
3341Normally, it is expected that no output locations are written to by the assembly
3342expression until *all* of the inputs have been read. As such, LLVM may assign
3343the same register to an output and an input. If this is not safe (e.g. if the
3344assembly contains two instructions, where the first writes to one output, and
3345the second reads an input and writes to a second output), then the "``&``"
3346modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003347"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003348will not use the same register for any inputs (other than an input tied to this
3349output).
3350
3351Input constraints
3352"""""""""""""""""
3353
3354Input constraints do not have a prefix -- just the constraint codes. Each input
3355constraint will consume one argument from the call instruction. It is not
3356permitted for the asm to write to any input register or memory location (unless
3357that input is tied to an output). Note also that multiple inputs may all be
3358assigned to the same register, if LLVM can determine that they necessarily all
3359contain the same value.
3360
3361Instead of providing a Constraint Code, input constraints may also "tie"
3362themselves to an output constraint, by providing an integer as the constraint
3363string. Tied inputs still consume an argument from the call instruction, and
3364take up a position in the asm template numbering as is usual -- they will simply
3365be constrained to always use the same register as the output they've been tied
3366to. For example, a constraint string of "``=r,0``" says to assign a register for
3367output, and use that register as an input as well (it being the 0'th
3368constraint).
3369
3370It is permitted to tie an input to an "early-clobber" output. In that case, no
3371*other* input may share the same register as the input tied to the early-clobber
3372(even when the other input has the same value).
3373
3374You may only tie an input to an output which has a register constraint, not a
3375memory constraint. Only a single input may be tied to an output.
3376
3377There is also an "interesting" feature which deserves a bit of explanation: if a
3378register class constraint allocates a register which is too small for the value
3379type operand provided as input, the input value will be split into multiple
3380registers, and all of them passed to the inline asm.
3381
3382However, this feature is often not as useful as you might think.
3383
3384Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3385architectures that have instructions which operate on multiple consecutive
3386instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3387SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3388hardware then loads into both the named register, and the next register. This
3389feature of inline asm would not be useful to support that.)
3390
3391A few of the targets provide a template string modifier allowing explicit access
3392to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3393``D``). On such an architecture, you can actually access the second allocated
3394register (yet, still, not any subsequent ones). But, in that case, you're still
3395probably better off simply splitting the value into two separate operands, for
3396clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3397despite existing only for use with this feature, is not really a good idea to
3398use)
3399
3400Indirect inputs and outputs
3401"""""""""""""""""""""""""""
3402
3403Indirect output or input constraints can be specified by the "``*``" modifier
3404(which goes after the "``=``" in case of an output). This indicates that the asm
3405will write to or read from the contents of an *address* provided as an input
3406argument. (Note that in this way, indirect outputs act more like an *input* than
3407an output: just like an input, they consume an argument of the call expression,
3408rather than producing a return value. An indirect output constraint is an
3409"output" only in that the asm is expected to write to the contents of the input
3410memory location, instead of just read from it).
3411
3412This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3413address of a variable as a value.
3414
3415It is also possible to use an indirect *register* constraint, but only on output
3416(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3417value normally, and then, separately emit a store to the address provided as
3418input, after the provided inline asm. (It's not clear what value this
3419functionality provides, compared to writing the store explicitly after the asm
3420statement, and it can only produce worse code, since it bypasses many
3421optimization passes. I would recommend not using it.)
3422
3423
3424Clobber constraints
3425"""""""""""""""""""
3426
3427A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3428consume an input operand, nor generate an output. Clobbers cannot use any of the
3429general constraint code letters -- they may use only explicit register
3430constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3431"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3432memory locations -- not only the memory pointed to by a declared indirect
3433output.
3434
Peter Zotov00257232016-08-30 10:48:31 +00003435Note that clobbering named registers that are also present in output
3436constraints is not legal.
3437
James Y Knightbc832ed2015-07-08 18:08:36 +00003438
3439Constraint Codes
3440""""""""""""""""
3441After a potential prefix comes constraint code, or codes.
3442
3443A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3444followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3445(e.g. "``{eax}``").
3446
3447The one and two letter constraint codes are typically chosen to be the same as
3448GCC's constraint codes.
3449
3450A single constraint may include one or more than constraint code in it, leaving
3451it up to LLVM to choose which one to use. This is included mainly for
3452compatibility with the translation of GCC inline asm coming from clang.
3453
3454There are two ways to specify alternatives, and either or both may be used in an
3455inline asm constraint list:
3456
34571) Append the codes to each other, making a constraint code set. E.g. "``im``"
3458 or "``{eax}m``". This means "choose any of the options in the set". The
3459 choice of constraint is made independently for each constraint in the
3460 constraint list.
3461
34622) Use "``|``" between constraint code sets, creating alternatives. Every
3463 constraint in the constraint list must have the same number of alternative
3464 sets. With this syntax, the same alternative in *all* of the items in the
3465 constraint list will be chosen together.
3466
3467Putting those together, you might have a two operand constraint string like
3468``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3469operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3470may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3471
3472However, the use of either of the alternatives features is *NOT* recommended, as
3473LLVM is not able to make an intelligent choice about which one to use. (At the
3474point it currently needs to choose, not enough information is available to do so
3475in a smart way.) Thus, it simply tries to make a choice that's most likely to
3476compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3477always choose to use memory, not registers). And, if given multiple registers,
3478or multiple register classes, it will simply choose the first one. (In fact, it
3479doesn't currently even ensure explicitly specified physical registers are
3480unique, so specifying multiple physical registers as alternatives, like
3481``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3482intended.)
3483
3484Supported Constraint Code List
3485""""""""""""""""""""""""""""""
3486
3487The constraint codes are, in general, expected to behave the same way they do in
3488GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3489inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3490and GCC likely indicates a bug in LLVM.
3491
3492Some constraint codes are typically supported by all targets:
3493
3494- ``r``: A register in the target's general purpose register class.
3495- ``m``: A memory address operand. It is target-specific what addressing modes
3496 are supported, typical examples are register, or register + register offset,
3497 or register + immediate offset (of some target-specific size).
3498- ``i``: An integer constant (of target-specific width). Allows either a simple
3499 immediate, or a relocatable value.
3500- ``n``: An integer constant -- *not* including relocatable values.
3501- ``s``: An integer constant, but allowing *only* relocatable values.
3502- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3503 useful to pass a label for an asm branch or call.
3504
3505 .. FIXME: but that surely isn't actually okay to jump out of an asm
3506 block without telling llvm about the control transfer???)
3507
3508- ``{register-name}``: Requires exactly the named physical register.
3509
3510Other constraints are target-specific:
3511
3512AArch64:
3513
3514- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3515- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3516 i.e. 0 to 4095 with optional shift by 12.
3517- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3518 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3519- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3520 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3521- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3522 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3523- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3524 32-bit register. This is a superset of ``K``: in addition to the bitmask
3525 immediate, also allows immediate integers which can be loaded with a single
3526 ``MOVZ`` or ``MOVL`` instruction.
3527- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3528 64-bit register. This is a superset of ``L``.
3529- ``Q``: Memory address operand must be in a single register (no
3530 offsets). (However, LLVM currently does this for the ``m`` constraint as
3531 well.)
3532- ``r``: A 32 or 64-bit integer register (W* or X*).
3533- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3534- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3535
3536AMDGPU:
3537
3538- ``r``: A 32 or 64-bit integer register.
3539- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3540- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3541
3542
3543All ARM modes:
3544
3545- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3546 operand. Treated the same as operand ``m``, at the moment.
3547
3548ARM and ARM's Thumb2 mode:
3549
3550- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3551- ``I``: An immediate integer valid for a data-processing instruction.
3552- ``J``: An immediate integer between -4095 and 4095.
3553- ``K``: An immediate integer whose bitwise inverse is valid for a
3554 data-processing instruction. (Can be used with template modifier "``B``" to
3555 print the inverted value).
3556- ``L``: An immediate integer whose negation is valid for a data-processing
3557 instruction. (Can be used with template modifier "``n``" to print the negated
3558 value).
3559- ``M``: A power of two or a integer between 0 and 32.
3560- ``N``: Invalid immediate constraint.
3561- ``O``: Invalid immediate constraint.
3562- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3563- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3564 as ``r``.
3565- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3566 invalid.
3567- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3568 ``d0-d31``, or ``q0-q15``.
3569- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3570 ``d0-d7``, or ``q0-q3``.
3571- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3572 ``s0-s31``.
3573
3574ARM's Thumb1 mode:
3575
3576- ``I``: An immediate integer between 0 and 255.
3577- ``J``: An immediate integer between -255 and -1.
3578- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3579 some amount.
3580- ``L``: An immediate integer between -7 and 7.
3581- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3582- ``N``: An immediate integer between 0 and 31.
3583- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3584- ``r``: A low 32-bit GPR register (``r0-r7``).
3585- ``l``: A low 32-bit GPR register (``r0-r7``).
3586- ``h``: A high GPR register (``r0-r7``).
3587- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3588 ``d0-d31``, or ``q0-q15``.
3589- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3590 ``d0-d7``, or ``q0-q3``.
3591- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3592 ``s0-s31``.
3593
3594
3595Hexagon:
3596
3597- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3598 at the moment.
3599- ``r``: A 32 or 64-bit register.
3600
3601MSP430:
3602
3603- ``r``: An 8 or 16-bit register.
3604
3605MIPS:
3606
3607- ``I``: An immediate signed 16-bit integer.
3608- ``J``: An immediate integer zero.
3609- ``K``: An immediate unsigned 16-bit integer.
3610- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3611- ``N``: An immediate integer between -65535 and -1.
3612- ``O``: An immediate signed 15-bit integer.
3613- ``P``: An immediate integer between 1 and 65535.
3614- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3615 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3616- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3617 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3618 ``m``.
3619- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3620 ``sc`` instruction on the given subtarget (details vary).
3621- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3622- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003623 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3624 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003625- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3626 ``25``).
3627- ``l``: The ``lo`` register, 32 or 64-bit.
3628- ``x``: Invalid.
3629
3630NVPTX:
3631
3632- ``b``: A 1-bit integer register.
3633- ``c`` or ``h``: A 16-bit integer register.
3634- ``r``: A 32-bit integer register.
3635- ``l`` or ``N``: A 64-bit integer register.
3636- ``f``: A 32-bit float register.
3637- ``d``: A 64-bit float register.
3638
3639
3640PowerPC:
3641
3642- ``I``: An immediate signed 16-bit integer.
3643- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3644- ``K``: An immediate unsigned 16-bit integer.
3645- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3646- ``M``: An immediate integer greater than 31.
3647- ``N``: An immediate integer that is an exact power of 2.
3648- ``O``: The immediate integer constant 0.
3649- ``P``: An immediate integer constant whose negation is a signed 16-bit
3650 constant.
3651- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3652 treated the same as ``m``.
3653- ``r``: A 32 or 64-bit integer register.
3654- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3655 ``R1-R31``).
3656- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3657 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3658- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3659 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3660 altivec vector register (``V0-V31``).
3661
3662 .. FIXME: is this a bug that v accepts QPX registers? I think this
3663 is supposed to only use the altivec vector registers?
3664
3665- ``y``: Condition register (``CR0-CR7``).
3666- ``wc``: An individual CR bit in a CR register.
3667- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3668 register set (overlapping both the floating-point and vector register files).
3669- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3670 set.
3671
3672Sparc:
3673
3674- ``I``: An immediate 13-bit signed integer.
3675- ``r``: A 32-bit integer register.
James Y Knightd4e1b002017-05-12 15:59:10 +00003676- ``f``: Any floating-point register on SparcV8, or a floating point
3677 register in the "low" half of the registers on SparcV9.
3678- ``e``: Any floating point register. (Same as ``f`` on SparcV8.)
James Y Knightbc832ed2015-07-08 18:08:36 +00003679
3680SystemZ:
3681
3682- ``I``: An immediate unsigned 8-bit integer.
3683- ``J``: An immediate unsigned 12-bit integer.
3684- ``K``: An immediate signed 16-bit integer.
3685- ``L``: An immediate signed 20-bit integer.
3686- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003687- ``Q``: A memory address operand with a base address and a 12-bit immediate
3688 unsigned displacement.
3689- ``R``: A memory address operand with a base address, a 12-bit immediate
3690 unsigned displacement, and an index register.
3691- ``S``: A memory address operand with a base address and a 20-bit immediate
3692 signed displacement.
3693- ``T``: A memory address operand with a base address, a 20-bit immediate
3694 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003695- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3696- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3697 address context evaluates as zero).
3698- ``h``: A 32-bit value in the high part of a 64bit data register
3699 (LLVM-specific)
3700- ``f``: A 32, 64, or 128-bit floating point register.
3701
3702X86:
3703
3704- ``I``: An immediate integer between 0 and 31.
3705- ``J``: An immediate integer between 0 and 64.
3706- ``K``: An immediate signed 8-bit integer.
3707- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3708 0xffffffff.
3709- ``M``: An immediate integer between 0 and 3.
3710- ``N``: An immediate unsigned 8-bit integer.
3711- ``O``: An immediate integer between 0 and 127.
3712- ``e``: An immediate 32-bit signed integer.
3713- ``Z``: An immediate 32-bit unsigned integer.
3714- ``o``, ``v``: Treated the same as ``m``, at the moment.
3715- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3716 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3717 registers, and on X86-64, it is all of the integer registers.
3718- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3719 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3720- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3721- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3722 existed since i386, and can be accessed without the REX prefix.
3723- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3724- ``y``: A 64-bit MMX register, if MMX is enabled.
3725- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3726 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3727 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3728 512-bit vector operand in an AVX512 register, Otherwise, an error.
3729- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3730- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3731 32-bit mode, a 64-bit integer operand will get split into two registers). It
3732 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3733 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3734 you're better off splitting it yourself, before passing it to the asm
3735 statement.
3736
3737XCore:
3738
3739- ``r``: A 32-bit integer register.
3740
3741
3742.. _inline-asm-modifiers:
3743
3744Asm template argument modifiers
3745^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3746
3747In the asm template string, modifiers can be used on the operand reference, like
3748"``${0:n}``".
3749
3750The modifiers are, in general, expected to behave the same way they do in
3751GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3752inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3753and GCC likely indicates a bug in LLVM.
3754
3755Target-independent:
3756
Sean Silvaa1190322015-08-06 22:56:48 +00003757- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003758 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3759- ``n``: Negate and print immediate integer constant unadorned, without the
3760 target-specific immediate punctuation (e.g. no ``$`` prefix).
3761- ``l``: Print as an unadorned label, without the target-specific label
3762 punctuation (e.g. no ``$`` prefix).
3763
3764AArch64:
3765
3766- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3767 instead of ``x30``, print ``w30``.
3768- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3769- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3770 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3771 ``v*``.
3772
3773AMDGPU:
3774
3775- ``r``: No effect.
3776
3777ARM:
3778
3779- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3780 register).
3781- ``P``: No effect.
3782- ``q``: No effect.
3783- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3784 as ``d4[1]`` instead of ``s9``)
3785- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3786 prefix.
3787- ``L``: Print the low 16-bits of an immediate integer constant.
3788- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3789 register operands subsequent to the specified one (!), so use carefully.
3790- ``Q``: Print the low-order register of a register-pair, or the low-order
3791 register of a two-register operand.
3792- ``R``: Print the high-order register of a register-pair, or the high-order
3793 register of a two-register operand.
3794- ``H``: Print the second register of a register-pair. (On a big-endian system,
3795 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3796 to ``R``.)
3797
3798 .. FIXME: H doesn't currently support printing the second register
3799 of a two-register operand.
3800
3801- ``e``: Print the low doubleword register of a NEON quad register.
3802- ``f``: Print the high doubleword register of a NEON quad register.
3803- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3804 adornment.
3805
3806Hexagon:
3807
3808- ``L``: Print the second register of a two-register operand. Requires that it
3809 has been allocated consecutively to the first.
3810
3811 .. FIXME: why is it restricted to consecutive ones? And there's
3812 nothing that ensures that happens, is there?
3813
3814- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3815 nothing. Used to print 'addi' vs 'add' instructions.
3816
3817MSP430:
3818
3819No additional modifiers.
3820
3821MIPS:
3822
3823- ``X``: Print an immediate integer as hexadecimal
3824- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3825- ``d``: Print an immediate integer as decimal.
3826- ``m``: Subtract one and print an immediate integer as decimal.
3827- ``z``: Print $0 if an immediate zero, otherwise print normally.
3828- ``L``: Print the low-order register of a two-register operand, or prints the
3829 address of the low-order word of a double-word memory operand.
3830
3831 .. FIXME: L seems to be missing memory operand support.
3832
3833- ``M``: Print the high-order register of a two-register operand, or prints the
3834 address of the high-order word of a double-word memory operand.
3835
3836 .. FIXME: M seems to be missing memory operand support.
3837
3838- ``D``: Print the second register of a two-register operand, or prints the
3839 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3840 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3841 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003842- ``w``: No effect. Provided for compatibility with GCC which requires this
3843 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3844 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003845
3846NVPTX:
3847
3848- ``r``: No effect.
3849
3850PowerPC:
3851
3852- ``L``: Print the second register of a two-register operand. Requires that it
3853 has been allocated consecutively to the first.
3854
3855 .. FIXME: why is it restricted to consecutive ones? And there's
3856 nothing that ensures that happens, is there?
3857
3858- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3859 nothing. Used to print 'addi' vs 'add' instructions.
3860- ``y``: For a memory operand, prints formatter for a two-register X-form
3861 instruction. (Currently always prints ``r0,OPERAND``).
3862- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3863 otherwise. (NOTE: LLVM does not support update form, so this will currently
3864 always print nothing)
3865- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3866 not support indexed form, so this will currently always print nothing)
3867
3868Sparc:
3869
3870- ``r``: No effect.
3871
3872SystemZ:
3873
3874SystemZ implements only ``n``, and does *not* support any of the other
3875target-independent modifiers.
3876
3877X86:
3878
3879- ``c``: Print an unadorned integer or symbol name. (The latter is
3880 target-specific behavior for this typically target-independent modifier).
3881- ``A``: Print a register name with a '``*``' before it.
3882- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3883 operand.
3884- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3885 memory operand.
3886- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3887 operand.
3888- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3889 operand.
3890- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3891 available, otherwise the 32-bit register name; do nothing on a memory operand.
3892- ``n``: Negate and print an unadorned integer, or, for operands other than an
3893 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3894 the operand. (The behavior for relocatable symbol expressions is a
3895 target-specific behavior for this typically target-independent modifier)
3896- ``H``: Print a memory reference with additional offset +8.
3897- ``P``: Print a memory reference or operand for use as the argument of a call
3898 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3899
3900XCore:
3901
3902No additional modifiers.
3903
3904
Sean Silvab084af42012-12-07 10:36:55 +00003905Inline Asm Metadata
3906^^^^^^^^^^^^^^^^^^^
3907
3908The call instructions that wrap inline asm nodes may have a
3909"``!srcloc``" MDNode attached to it that contains a list of constant
3910integers. If present, the code generator will use the integer as the
3911location cookie value when report errors through the ``LLVMContext``
3912error reporting mechanisms. This allows a front-end to correlate backend
3913errors that occur with inline asm back to the source code that produced
3914it. For example:
3915
3916.. code-block:: llvm
3917
3918 call void asm sideeffect "something bad", ""(), !srcloc !42
3919 ...
3920 !42 = !{ i32 1234567 }
3921
3922It is up to the front-end to make sense of the magic numbers it places
3923in the IR. If the MDNode contains multiple constants, the code generator
3924will use the one that corresponds to the line of the asm that the error
3925occurs on.
3926
3927.. _metadata:
3928
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003929Metadata
3930========
Sean Silvab084af42012-12-07 10:36:55 +00003931
3932LLVM IR allows metadata to be attached to instructions in the program
3933that can convey extra information about the code to the optimizers and
3934code generator. One example application of metadata is source-level
3935debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003936
Sean Silvaa1190322015-08-06 22:56:48 +00003937Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003938``call`` instruction, it uses the ``metadata`` type.
3939
3940All metadata are identified in syntax by a exclamation point ('``!``').
3941
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003942.. _metadata-string:
3943
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003944Metadata Nodes and Metadata Strings
3945-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003946
3947A metadata string is a string surrounded by double quotes. It can
3948contain any character by escaping non-printable characters with
3949"``\xx``" where "``xx``" is the two digit hex code. For example:
3950"``!"test\00"``".
3951
3952Metadata nodes are represented with notation similar to structure
3953constants (a comma separated list of elements, surrounded by braces and
3954preceded by an exclamation point). Metadata nodes can have any values as
3955their operand. For example:
3956
3957.. code-block:: llvm
3958
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003959 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003960
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003961Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3962
Renato Golin124f2592016-07-20 12:16:38 +00003963.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003964
3965 !0 = distinct !{!"test\00", i32 10}
3966
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003967``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003968content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003969when metadata operands change.
3970
Sean Silvab084af42012-12-07 10:36:55 +00003971A :ref:`named metadata <namedmetadatastructure>` is a collection of
3972metadata nodes, which can be looked up in the module symbol table. For
3973example:
3974
3975.. code-block:: llvm
3976
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003977 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003978
3979Metadata can be used as function arguments. Here ``llvm.dbg.value``
3980function is using two metadata arguments:
3981
3982.. code-block:: llvm
3983
3984 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3985
Peter Collingbourne50108682015-11-06 02:41:02 +00003986Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3987to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003988
3989.. code-block:: llvm
3990
3991 %indvar.next = add i64 %indvar, 1, !dbg !21
3992
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003993Metadata can also be attached to a function or a global variable. Here metadata
3994``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
3995and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00003996
3997.. code-block:: llvm
3998
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003999 declare !dbg !22 void @f1()
4000 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00004001 ret void
4002 }
4003
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004004 @g1 = global i32 0, !dbg !22
4005 @g2 = external global i32, !dbg !22
4006
4007A transformation is required to drop any metadata attachment that it does not
4008know or know it can't preserve. Currently there is an exception for metadata
4009attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
4010unconditionally dropped unless the global is itself deleted.
4011
4012Metadata attached to a module using named metadata may not be dropped, with
4013the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
4014
Sean Silvab084af42012-12-07 10:36:55 +00004015More information about specific metadata nodes recognized by the
4016optimizers and code generator is found below.
4017
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004018.. _specialized-metadata:
4019
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004020Specialized Metadata Nodes
4021^^^^^^^^^^^^^^^^^^^^^^^^^^
4022
4023Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00004024to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004025order.
4026
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004027These aren't inherently debug info centric, but currently all the specialized
4028metadata nodes are related to debug info.
4029
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004030.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004031
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004032DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004033"""""""""""""
4034
Sean Silvaa1190322015-08-06 22:56:48 +00004035``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00004036``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
4037fields are tuples containing the debug info to be emitted along with the compile
4038unit, regardless of code optimizations (some nodes are only emitted if there are
Dehao Chenfb02f712017-02-10 21:09:07 +00004039references to them from instructions). The ``debugInfoForProfiling:`` field is a
4040boolean indicating whether or not line-table discriminators are updated to
4041provide more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004042
Renato Golin124f2592016-07-20 12:16:38 +00004043.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004044
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004045 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004046 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004047 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004048 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00004049 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004050
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004051Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00004052specific compilation unit. File descriptors are defined using this scope.
4053These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004054keep track of subprograms, global variables, type information, and imported
4055entities (declarations and namespaces).
4056
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004057.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004058
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004059DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004060""""""
4061
Sean Silvaa1190322015-08-06 22:56:48 +00004062``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004063
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004064.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004065
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004066 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4067 checksumkind: CSK_MD5,
4068 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004069
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004070Files are sometimes used in ``scope:`` fields, and are the only valid target
4071for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004072Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004073
Michael Kuperstein605308a2015-05-14 10:58:59 +00004074.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004075
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004076DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004077"""""""""""
4078
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004079``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004080``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004081
Renato Golin124f2592016-07-20 12:16:38 +00004082.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004083
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004084 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004085 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004086 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004087
Sean Silvaa1190322015-08-06 22:56:48 +00004088The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004089following:
4090
Renato Golin124f2592016-07-20 12:16:38 +00004091.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004092
4093 DW_ATE_address = 1
4094 DW_ATE_boolean = 2
4095 DW_ATE_float = 4
4096 DW_ATE_signed = 5
4097 DW_ATE_signed_char = 6
4098 DW_ATE_unsigned = 7
4099 DW_ATE_unsigned_char = 8
4100
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004101.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004102
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004103DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004104""""""""""""""""
4105
Sean Silvaa1190322015-08-06 22:56:48 +00004106``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004107refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004108types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004109represents a function with no return value (such as ``void foo() {}`` in C++).
4110
Renato Golin124f2592016-07-20 12:16:38 +00004111.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004112
4113 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4114 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004115 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004116
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004117.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004118
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004119DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004120"""""""""""""
4121
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004122``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004123qualified types.
4124
Renato Golin124f2592016-07-20 12:16:38 +00004125.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004126
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004127 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004128 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004129 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004130 align: 32)
4131
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004132The following ``tag:`` values are valid:
4133
Renato Golin124f2592016-07-20 12:16:38 +00004134.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004135
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004136 DW_TAG_member = 13
4137 DW_TAG_pointer_type = 15
4138 DW_TAG_reference_type = 16
4139 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004140 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004141 DW_TAG_ptr_to_member_type = 31
4142 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004143 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004144 DW_TAG_volatile_type = 53
4145 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004146 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004147
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004148.. _DIDerivedTypeMember:
4149
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004150``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004151<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004152``offset:`` is the member's bit offset. If the composite type has an ODR
4153``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4154uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004155
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004156``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4157field of :ref:`composite types <DICompositeType>` to describe parents and
4158friends.
4159
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004160``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4161
4162``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004163``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4164are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004165
4166Note that the ``void *`` type is expressed as a type derived from NULL.
4167
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004168.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004169
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004170DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004171"""""""""""""""
4172
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004173``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004174structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004175
4176If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004177identifier used for type merging between modules. When specified,
4178:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4179derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4180``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004181
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004182For a given ``identifier:``, there should only be a single composite type that
4183does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4184together will unique such definitions at parse time via the ``identifier:``
4185field, even if the nodes are ``distinct``.
4186
Renato Golin124f2592016-07-20 12:16:38 +00004187.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004188
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004189 !0 = !DIEnumerator(name: "SixKind", value: 7)
4190 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4191 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4192 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004193 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4194 elements: !{!0, !1, !2})
4195
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004196The following ``tag:`` values are valid:
4197
Renato Golin124f2592016-07-20 12:16:38 +00004198.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004199
4200 DW_TAG_array_type = 1
4201 DW_TAG_class_type = 2
4202 DW_TAG_enumeration_type = 4
4203 DW_TAG_structure_type = 19
4204 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004205
4206For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004207descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004208level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004209array type is a native packed vector.
4210
4211For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004212descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004213value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004214``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004215
4216For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4217``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004218<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4219``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4220``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004221
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004222.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004223
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004224DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004225""""""""""
4226
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004227``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004228:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004229
4230.. code-block:: llvm
4231
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004232 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4233 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4234 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004235
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004236.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004237
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004238DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004239""""""""""""
4240
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004241``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4242variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004243
4244.. code-block:: llvm
4245
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004246 !0 = !DIEnumerator(name: "SixKind", value: 7)
4247 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4248 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004249
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004250DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004251"""""""""""""""""""""""
4252
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004253``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004254language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004255:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004256
4257.. code-block:: llvm
4258
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004259 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004260
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004261DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004262""""""""""""""""""""""""
4263
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004264``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004265language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004266but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004267``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004268:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004269
4270.. code-block:: llvm
4271
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004272 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004273
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004274DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004275"""""""""""
4276
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004277``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004278
4279.. code-block:: llvm
4280
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004281 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004282
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004283DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004284""""""""""""""""
4285
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004286``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004287
4288.. code-block:: llvm
4289
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004290 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004291 file: !2, line: 7, type: !3, isLocal: true,
4292 isDefinition: false, variable: i32* @foo,
4293 declaration: !4)
4294
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004295All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004296:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004297
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004298.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004299
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004300DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004301""""""""""""
4302
Peter Collingbourne50108682015-11-06 02:41:02 +00004303``DISubprogram`` nodes represent functions from the source language. A
4304``DISubprogram`` may be attached to a function definition using ``!dbg``
4305metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4306that must be retained, even if their IR counterparts are optimized out of
4307the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004308
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004309.. _DISubprogramDeclaration:
4310
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004311When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004312tree as opposed to a definition of a function. If the scope is a composite
4313type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4314then the subprogram declaration is uniqued based only on its ``linkageName:``
4315and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004316
Renato Golin124f2592016-07-20 12:16:38 +00004317.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004318
Peter Collingbourne50108682015-11-06 02:41:02 +00004319 define void @_Z3foov() !dbg !0 {
4320 ...
4321 }
4322
4323 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4324 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004325 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004326 containingType: !4,
4327 virtuality: DW_VIRTUALITY_pure_virtual,
4328 virtualIndex: 10, flags: DIFlagPrototyped,
4329 isOptimized: true, templateParams: !5,
4330 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004331
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004332.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004333
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004334DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004335""""""""""""""
4336
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004337``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004338<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004339two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004340fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004341
Renato Golin124f2592016-07-20 12:16:38 +00004342.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004343
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004344 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004345
4346Usually lexical blocks are ``distinct`` to prevent node merging based on
4347operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004348
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004349.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004350
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004351DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004352""""""""""""""""""
4353
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004354``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004355:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004356indicate textual inclusion, or the ``discriminator:`` field can be used to
4357discriminate between control flow within a single block in the source language.
4358
4359.. code-block:: llvm
4360
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004361 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4362 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4363 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004364
Michael Kuperstein605308a2015-05-14 10:58:59 +00004365.. _DILocation:
4366
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004367DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004368""""""""""
4369
Sean Silvaa1190322015-08-06 22:56:48 +00004370``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004371mandatory, and points at an :ref:`DILexicalBlockFile`, an
4372:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004373
4374.. code-block:: llvm
4375
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004376 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004377
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004378.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004379
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004380DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004381"""""""""""""""
4382
Sean Silvaa1190322015-08-06 22:56:48 +00004383``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004384the ``arg:`` field is set to non-zero, then this variable is a subprogram
4385parameter, and it will be included in the ``variables:`` field of its
4386:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004387
Renato Golin124f2592016-07-20 12:16:38 +00004388.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004389
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004390 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4391 type: !3, flags: DIFlagArtificial)
4392 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4393 type: !3)
4394 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004395
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004396DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004397""""""""""""
4398
Adrian Prantlb44c7762017-03-22 18:01:01 +00004399``DIExpression`` nodes represent expressions that are inspired by the DWARF
4400expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
4401(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
4402referenced LLVM variable relates to the source language variable.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004403
4404The current supported vocabulary is limited:
4405
Adrian Prantl6825fb62017-04-18 01:21:53 +00004406- ``DW_OP_deref`` dereferences the top of the expression stack.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004407- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004408- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
4409 here, respectively) of the variable fragment from the working expression. Note
4410 that contrary to DW_OP_bit_piece, the offset is describing the the location
4411 within the described source variable.
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004412- ``DW_OP_swap`` swaps top two stack entries.
4413- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
4414 of the stack is treated as an address. The second stack entry is treated as an
4415 address space identifier.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004416- ``DW_OP_stack_value`` marks a constant value.
4417
Adrian Prantl6825fb62017-04-18 01:21:53 +00004418DWARF specifies three kinds of simple location descriptions: Register, memory,
4419and implicit location descriptions. Register and memory location descriptions
4420describe the *location* of a source variable (in the sense that a debugger might
4421modify its value), whereas implicit locations describe merely the *value* of a
4422source variable. DIExpressions also follow this model: A DIExpression that
4423doesn't have a trailing ``DW_OP_stack_value`` will describe an *address* when
4424combined with a concrete location.
4425
4426.. code-block:: llvm
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004427
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004428 !0 = !DIExpression(DW_OP_deref)
4429 !1 = !DIExpression(DW_OP_plus, 3)
4430 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004431 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_LLVM_fragment, 3, 7)
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004432 !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004433 !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004434
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004435DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004436""""""""""""""
4437
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004438``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004439
4440.. code-block:: llvm
4441
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004442 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004443 getter: "getFoo", attributes: 7, type: !2)
4444
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004445DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004446""""""""""""""""
4447
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004448``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004449compile unit.
4450
Renato Golin124f2592016-07-20 12:16:38 +00004451.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004452
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004453 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004454 entity: !1, line: 7)
4455
Amjad Abouda9bcf162015-12-10 12:56:35 +00004456DIMacro
4457"""""""
4458
4459``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4460The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004461defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004462used to expand the macro identifier.
4463
Renato Golin124f2592016-07-20 12:16:38 +00004464.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004465
4466 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4467 value: "((x) + 1)")
4468 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4469
4470DIMacroFile
4471"""""""""""
4472
4473``DIMacroFile`` nodes represent inclusion of source files.
4474The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4475appear in the included source file.
4476
Renato Golin124f2592016-07-20 12:16:38 +00004477.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004478
4479 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4480 nodes: !3)
4481
Sean Silvab084af42012-12-07 10:36:55 +00004482'``tbaa``' Metadata
4483^^^^^^^^^^^^^^^^^^^
4484
4485In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004486suitable for doing type based alias analysis (TBAA). Instead, metadata is
4487added to the IR to describe a type system of a higher level language. This
4488can be used to implement C/C++ strict type aliasing rules, but it can also
4489be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004490
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004491This description of LLVM's TBAA system is broken into two parts:
4492:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4493:ref:`Representation<tbaa_node_representation>` talks about the metadata
4494encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004495
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004496It is always possible to trace any TBAA node to a "root" TBAA node (details
4497in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4498nodes with different roots have an unknown aliasing relationship, and LLVM
4499conservatively infers ``MayAlias`` between them. The rules mentioned in
4500this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004501
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004502.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004503
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004504Semantics
4505"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004506
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004507The TBAA metadata system, referred to as "struct path TBAA" (not to be
4508confused with ``tbaa.struct``), consists of the following high level
4509concepts: *Type Descriptors*, further subdivided into scalar type
4510descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004511
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004512**Type descriptors** describe the type system of the higher level language
4513being compiled. **Scalar type descriptors** describe types that do not
4514contain other types. Each scalar type has a parent type, which must also
4515be a scalar type or the TBAA root. Via this parent relation, scalar types
4516within a TBAA root form a tree. **Struct type descriptors** denote types
4517that contain a sequence of other type descriptors, at known offsets. These
4518contained type descriptors can either be struct type descriptors themselves
4519or scalar type descriptors.
4520
4521**Access tags** are metadata nodes attached to load and store instructions.
4522Access tags use type descriptors to describe the *location* being accessed
4523in terms of the type system of the higher level language. Access tags are
4524tuples consisting of a base type, an access type and an offset. The base
4525type is a scalar type descriptor or a struct type descriptor, the access
4526type is a scalar type descriptor, and the offset is a constant integer.
4527
4528The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4529things:
4530
4531 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4532 or store) of a value of type ``AccessTy`` contained in the struct type
4533 ``BaseTy`` at offset ``Offset``.
4534
4535 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4536 ``AccessTy`` must be the same; and the access tag describes a scalar
4537 access with scalar type ``AccessTy``.
4538
4539We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4540tuples this way:
4541
4542 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4543 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4544 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4545 undefined if ``Offset`` is non-zero.
4546
4547 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4548 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4549 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4550 to be relative within that inner type.
4551
4552A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4553aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4554Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4555Offset2)`` via the ``Parent`` relation or vice versa.
4556
4557As a concrete example, the type descriptor graph for the following program
4558
4559.. code-block:: c
4560
4561 struct Inner {
4562 int i; // offset 0
4563 float f; // offset 4
4564 };
4565
4566 struct Outer {
4567 float f; // offset 0
4568 double d; // offset 4
4569 struct Inner inner_a; // offset 12
4570 };
4571
4572 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4573 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4574 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
4575 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, IntScalarTy, 16)
4576 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4577 }
4578
4579is (note that in C and C++, ``char`` can be used to access any arbitrary
4580type):
4581
4582.. code-block:: text
4583
4584 Root = "TBAA Root"
4585 CharScalarTy = ("char", Root, 0)
4586 FloatScalarTy = ("float", CharScalarTy, 0)
4587 DoubleScalarTy = ("double", CharScalarTy, 0)
4588 IntScalarTy = ("int", CharScalarTy, 0)
4589 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4590 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4591 (InnerStructTy, 12)}
4592
4593
4594with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
45950)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4596``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4597
4598.. _tbaa_node_representation:
4599
4600Representation
4601""""""""""""""
4602
4603The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4604with exactly one ``MDString`` operand.
4605
4606Scalar type descriptors are represented as an ``MDNode`` s with two
4607operands. The first operand is an ``MDString`` denoting the name of the
4608struct type. LLVM does not assign meaning to the value of this operand, it
4609only cares about it being an ``MDString``. The second operand is an
4610``MDNode`` which points to the parent for said scalar type descriptor,
4611which is either another scalar type descriptor or the TBAA root. Scalar
4612type descriptors can have an optional third argument, but that must be the
4613constant integer zero.
4614
4615Struct type descriptors are represented as ``MDNode`` s with an odd number
4616of operands greater than 1. The first operand is an ``MDString`` denoting
4617the name of the struct type. Like in scalar type descriptors the actual
4618value of this name operand is irrelevant to LLVM. After the name operand,
4619the struct type descriptors have a sequence of alternating ``MDNode`` and
4620``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4621an ``MDNode``, denotes a contained field, and the 2N th operand, a
4622``ConstantInt``, is the offset of the said contained field. The offsets
4623must be in non-decreasing order.
4624
4625Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4626The first operand is an ``MDNode`` pointing to the node representing the
4627base type. The second operand is an ``MDNode`` pointing to the node
4628representing the access type. The third operand is a ``ConstantInt`` that
4629states the offset of the access. If a fourth field is present, it must be
4630a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4631that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004632``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004633AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4634the access type and the base type of an access tag must be the same, and
4635that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004636
4637'``tbaa.struct``' Metadata
4638^^^^^^^^^^^^^^^^^^^^^^^^^^
4639
4640The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4641aggregate assignment operations in C and similar languages, however it
4642is defined to copy a contiguous region of memory, which is more than
4643strictly necessary for aggregate types which contain holes due to
4644padding. Also, it doesn't contain any TBAA information about the fields
4645of the aggregate.
4646
4647``!tbaa.struct`` metadata can describe which memory subregions in a
4648memcpy are padding and what the TBAA tags of the struct are.
4649
4650The current metadata format is very simple. ``!tbaa.struct`` metadata
4651nodes are a list of operands which are in conceptual groups of three.
4652For each group of three, the first operand gives the byte offset of a
4653field in bytes, the second gives its size in bytes, and the third gives
4654its tbaa tag. e.g.:
4655
4656.. code-block:: llvm
4657
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004658 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004659
4660This describes a struct with two fields. The first is at offset 0 bytes
4661with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4662and has size 4 bytes and has tbaa tag !2.
4663
4664Note that the fields need not be contiguous. In this example, there is a
46654 byte gap between the two fields. This gap represents padding which
4666does not carry useful data and need not be preserved.
4667
Hal Finkel94146652014-07-24 14:25:39 +00004668'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004669^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004670
4671``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4672noalias memory-access sets. This means that some collection of memory access
4673instructions (loads, stores, memory-accessing calls, etc.) that carry
4674``noalias`` metadata can specifically be specified not to alias with some other
4675collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004676Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004677a domain.
4678
4679When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004680of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004681subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004682instruction's ``noalias`` list, then the two memory accesses are assumed not to
4683alias.
Hal Finkel94146652014-07-24 14:25:39 +00004684
Adam Nemet569a5b32016-04-27 00:52:48 +00004685Because scopes in one domain don't affect scopes in other domains, separate
4686domains can be used to compose multiple independent noalias sets. This is
4687used for example during inlining. As the noalias function parameters are
4688turned into noalias scope metadata, a new domain is used every time the
4689function is inlined.
4690
Hal Finkel029cde62014-07-25 15:50:02 +00004691The metadata identifying each domain is itself a list containing one or two
4692entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004693string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004694self-reference can be used to create globally unique domain names. A
4695descriptive string may optionally be provided as a second list entry.
4696
4697The metadata identifying each scope is also itself a list containing two or
4698three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004699is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004700self-reference can be used to create globally unique scope names. A metadata
4701reference to the scope's domain is the second entry. A descriptive string may
4702optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004703
4704For example,
4705
4706.. code-block:: llvm
4707
Hal Finkel029cde62014-07-25 15:50:02 +00004708 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004709 !0 = !{!0}
4710 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004711
Hal Finkel029cde62014-07-25 15:50:02 +00004712 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004713 !2 = !{!2, !0}
4714 !3 = !{!3, !0}
4715 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004716
Hal Finkel029cde62014-07-25 15:50:02 +00004717 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004718 !5 = !{!4} ; A list containing only scope !4
4719 !6 = !{!4, !3, !2}
4720 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004721
4722 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004723 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004724 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004725
Hal Finkel029cde62014-07-25 15:50:02 +00004726 ; These two instructions also don't alias (for domain !1, the set of scopes
4727 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004728 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004729 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004730
Adam Nemet0a8416f2015-05-11 08:30:28 +00004731 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004732 ; the !noalias list is not a superset of, or equal to, the scopes in the
4733 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004734 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004735 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004736
Sean Silvab084af42012-12-07 10:36:55 +00004737'``fpmath``' Metadata
4738^^^^^^^^^^^^^^^^^^^^^
4739
4740``fpmath`` metadata may be attached to any instruction of floating point
4741type. It can be used to express the maximum acceptable error in the
4742result of that instruction, in ULPs, thus potentially allowing the
4743compiler to use a more efficient but less accurate method of computing
4744it. ULP is defined as follows:
4745
4746 If ``x`` is a real number that lies between two finite consecutive
4747 floating-point numbers ``a`` and ``b``, without being equal to one
4748 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4749 distance between the two non-equal finite floating-point numbers
4750 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4751
Matt Arsenault82f41512016-06-27 19:43:15 +00004752The metadata node shall consist of a single positive float type number
4753representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004754
4755.. code-block:: llvm
4756
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004757 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004758
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004759.. _range-metadata:
4760
Sean Silvab084af42012-12-07 10:36:55 +00004761'``range``' Metadata
4762^^^^^^^^^^^^^^^^^^^^
4763
Jingyue Wu37fcb592014-06-19 16:50:16 +00004764``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4765integer types. It expresses the possible ranges the loaded value or the value
4766returned by the called function at this call site is in. The ranges are
4767represented with a flattened list of integers. The loaded value or the value
4768returned is known to be in the union of the ranges defined by each consecutive
4769pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004770
4771- The type must match the type loaded by the instruction.
4772- The pair ``a,b`` represents the range ``[a,b)``.
4773- Both ``a`` and ``b`` are constants.
4774- The range is allowed to wrap.
4775- The range should not represent the full or empty set. That is,
4776 ``a!=b``.
4777
4778In addition, the pairs must be in signed order of the lower bound and
4779they must be non-contiguous.
4780
4781Examples:
4782
4783.. code-block:: llvm
4784
David Blaikiec7aabbb2015-03-04 22:06:14 +00004785 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4786 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004787 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4788 %d = invoke i8 @bar() to label %cont
4789 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004790 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004791 !0 = !{ i8 0, i8 2 }
4792 !1 = !{ i8 255, i8 2 }
4793 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4794 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004795
Peter Collingbourne235c2752016-12-08 19:01:00 +00004796'``absolute_symbol``' Metadata
4797^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4798
4799``absolute_symbol`` metadata may be attached to a global variable
4800declaration. It marks the declaration as a reference to an absolute symbol,
4801which causes the backend to use absolute relocations for the symbol even
4802in position independent code, and expresses the possible ranges that the
4803global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00004804``range`` metadata, with the extension that the pair ``all-ones,all-ones``
4805may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00004806
Peter Collingbourned88f9282017-01-20 21:56:37 +00004807Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00004808
4809.. code-block:: llvm
4810
4811 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00004812 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00004813
4814 ...
4815 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00004816 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00004817
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004818'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004819^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004820
4821``unpredictable`` metadata may be attached to any branch or switch
4822instruction. It can be used to express the unpredictability of control
4823flow. Similar to the llvm.expect intrinsic, it may be used to alter
4824optimizations related to compare and branch instructions. The metadata
4825is treated as a boolean value; if it exists, it signals that the branch
4826or switch that it is attached to is completely unpredictable.
4827
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004828'``llvm.loop``'
4829^^^^^^^^^^^^^^^
4830
4831It is sometimes useful to attach information to loop constructs. Currently,
4832loop metadata is implemented as metadata attached to the branch instruction
4833in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004834guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004835specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004836
4837The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004838itself to avoid merging it with any other identifier metadata, e.g.,
4839during module linkage or function inlining. That is, each loop should refer
4840to their own identification metadata even if they reside in separate functions.
4841The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004842constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004843
4844.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004845
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004846 !0 = !{!0}
4847 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004848
Mark Heffernan893752a2014-07-18 19:24:51 +00004849The loop identifier metadata can be used to specify additional
4850per-loop metadata. Any operands after the first operand can be treated
4851as user-defined metadata. For example the ``llvm.loop.unroll.count``
4852suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004853
Paul Redmond5fdf8362013-05-28 20:00:34 +00004854.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004855
Paul Redmond5fdf8362013-05-28 20:00:34 +00004856 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4857 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004858 !0 = !{!0, !1}
4859 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004860
Mark Heffernan9d20e422014-07-21 23:11:03 +00004861'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4862^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004863
Mark Heffernan9d20e422014-07-21 23:11:03 +00004864Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4865used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004866vectorization width and interleave count. These metadata should be used in
4867conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004868``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4869optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004870it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004871which contains information about loop-carried memory dependencies can be helpful
4872in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004873
Mark Heffernan9d20e422014-07-21 23:11:03 +00004874'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004875^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4876
Mark Heffernan9d20e422014-07-21 23:11:03 +00004877This metadata suggests an interleave count to the loop interleaver.
4878The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004879second operand is an integer specifying the interleave count. For
4880example:
4881
4882.. code-block:: llvm
4883
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004884 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004885
Mark Heffernan9d20e422014-07-21 23:11:03 +00004886Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004887multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004888then the interleave count will be determined automatically.
4889
4890'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004891^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004892
4893This metadata selectively enables or disables vectorization for the loop. The
4894first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004895is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000048960 disables vectorization:
4897
4898.. code-block:: llvm
4899
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004900 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4901 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004902
4903'``llvm.loop.vectorize.width``' Metadata
4904^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4905
4906This metadata sets the target width of the vectorizer. The first
4907operand is the string ``llvm.loop.vectorize.width`` and the second
4908operand is an integer specifying the width. For example:
4909
4910.. code-block:: llvm
4911
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004912 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004913
4914Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004915vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000049160 or if the loop does not have this metadata the width will be
4917determined automatically.
4918
4919'``llvm.loop.unroll``'
4920^^^^^^^^^^^^^^^^^^^^^^
4921
4922Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4923optimization hints such as the unroll factor. ``llvm.loop.unroll``
4924metadata should be used in conjunction with ``llvm.loop`` loop
4925identification metadata. The ``llvm.loop.unroll`` metadata are only
4926optimization hints and the unrolling will only be performed if the
4927optimizer believes it is safe to do so.
4928
Mark Heffernan893752a2014-07-18 19:24:51 +00004929'``llvm.loop.unroll.count``' Metadata
4930^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4931
4932This metadata suggests an unroll factor to the loop unroller. The
4933first operand is the string ``llvm.loop.unroll.count`` and the second
4934operand is a positive integer specifying the unroll factor. For
4935example:
4936
4937.. code-block:: llvm
4938
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004939 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004940
4941If the trip count of the loop is less than the unroll count the loop
4942will be partially unrolled.
4943
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004944'``llvm.loop.unroll.disable``' Metadata
4945^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4946
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004947This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004948which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004949
4950.. code-block:: llvm
4951
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004952 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004953
Kevin Qin715b01e2015-03-09 06:14:18 +00004954'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004955^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004956
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004957This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004958operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004959
4960.. code-block:: llvm
4961
4962 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4963
Mark Heffernan89391542015-08-10 17:28:08 +00004964'``llvm.loop.unroll.enable``' Metadata
4965^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4966
4967This metadata suggests that the loop should be fully unrolled if the trip count
4968is known at compile time and partially unrolled if the trip count is not known
4969at compile time. The metadata has a single operand which is the string
4970``llvm.loop.unroll.enable``. For example:
4971
4972.. code-block:: llvm
4973
4974 !0 = !{!"llvm.loop.unroll.enable"}
4975
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004976'``llvm.loop.unroll.full``' Metadata
4977^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4978
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004979This metadata suggests that the loop should be unrolled fully. The
4980metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004981For example:
4982
4983.. code-block:: llvm
4984
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004985 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004986
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004987'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004988^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004989
4990This metadata indicates that the loop should not be versioned for the purpose
4991of enabling loop-invariant code motion (LICM). The metadata has a single operand
4992which is the string ``llvm.loop.licm_versioning.disable``. For example:
4993
4994.. code-block:: llvm
4995
4996 !0 = !{!"llvm.loop.licm_versioning.disable"}
4997
Adam Nemetd2fa4142016-04-27 05:28:18 +00004998'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00004999^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00005000
5001Loop distribution allows splitting a loop into multiple loops. Currently,
5002this is only performed if the entire loop cannot be vectorized due to unsafe
5003memory dependencies. The transformation will atempt to isolate the unsafe
5004dependencies into their own loop.
5005
5006This metadata can be used to selectively enable or disable distribution of the
5007loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
5008second operand is a bit. If the bit operand value is 1 distribution is
5009enabled. A value of 0 disables distribution:
5010
5011.. code-block:: llvm
5012
5013 !0 = !{!"llvm.loop.distribute.enable", i1 0}
5014 !1 = !{!"llvm.loop.distribute.enable", i1 1}
5015
5016This metadata should be used in conjunction with ``llvm.loop`` loop
5017identification metadata.
5018
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005019'``llvm.mem``'
5020^^^^^^^^^^^^^^^
5021
5022Metadata types used to annotate memory accesses with information helpful
5023for optimizations are prefixed with ``llvm.mem``.
5024
5025'``llvm.mem.parallel_loop_access``' Metadata
5026^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5027
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005028The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
5029or metadata containing a list of loop identifiers for nested loops.
5030The metadata is attached to memory accessing instructions and denotes that
5031no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00005032with the same loop identifier. The metadata on memory reads also implies that
5033if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005034
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005035Precisely, given two instructions ``m1`` and ``m2`` that both have the
5036``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
5037set of loops associated with that metadata, respectively, then there is no loop
5038carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005039``L2``.
5040
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005041As a special case, if all memory accessing instructions in a loop have
5042``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
5043loop has no loop carried memory dependences and is considered to be a parallel
5044loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005045
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005046Note that if not all memory access instructions have such metadata referring to
5047the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00005048memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005049safe mechanism, this causes loops that were originally parallel to be considered
5050sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005051insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005052
5053Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00005054both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005055metadata types that refer to the same loop identifier metadata.
5056
5057.. code-block:: llvm
5058
5059 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005060 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005061 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005062 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005063 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005064 ...
5065 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005066
5067 for.end:
5068 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005069 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005070
5071It is also possible to have nested parallel loops. In that case the
5072memory accesses refer to a list of loop identifier metadata nodes instead of
5073the loop identifier metadata node directly:
5074
5075.. code-block:: llvm
5076
5077 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005078 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005079 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005080 ...
5081 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005082
5083 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005084 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005085 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005086 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005087 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005088 ...
5089 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005090
5091 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005092 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005093 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00005094 ...
5095 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005096
5097 outer.for.end: ; preds = %for.body
5098 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005099 !0 = !{!1, !2} ; a list of loop identifiers
5100 !1 = !{!1} ; an identifier for the inner loop
5101 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005102
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005103'``invariant.group``' Metadata
5104^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5105
5106The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
5107The existence of the ``invariant.group`` metadata on the instruction tells
5108the optimizer that every ``load`` and ``store`` to the same pointer operand
5109within the same invariant group can be assumed to load or store the same
5110value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005111when two pointers are considered the same). Pointers returned by bitcast or
5112getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005113
5114Examples:
5115
5116.. code-block:: llvm
5117
5118 @unknownPtr = external global i8
5119 ...
5120 %ptr = alloca i8
5121 store i8 42, i8* %ptr, !invariant.group !0
5122 call void @foo(i8* %ptr)
5123
5124 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5125 call void @foo(i8* %ptr)
5126 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
5127
5128 %newPtr = call i8* @getPointer(i8* %ptr)
5129 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
5130
5131 %unknownValue = load i8, i8* @unknownPtr
5132 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
5133
5134 call void @foo(i8* %ptr)
5135 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
5136 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
5137
5138 ...
5139 declare void @foo(i8*)
5140 declare i8* @getPointer(i8*)
5141 declare i8* @llvm.invariant.group.barrier(i8*)
5142
5143 !0 = !{!"magic ptr"}
5144 !1 = !{!"other ptr"}
5145
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005146The invariant.group metadata must be dropped when replacing one pointer by
5147another based on aliasing information. This is because invariant.group is tied
5148to the SSA value of the pointer operand.
5149
5150.. code-block:: llvm
Piotr Padlewskiaa1b2412017-04-12 11:18:19 +00005151
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005152 %v = load i8, i8* %x, !invariant.group !0
5153 ; if %x mustalias %y then we can replace the above instruction with
5154 %v = load i8, i8* %y
5155
5156
Peter Collingbournea333db82016-07-26 22:31:30 +00005157'``type``' Metadata
5158^^^^^^^^^^^^^^^^^^^
5159
5160See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005161
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005162'``associated``' Metadata
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005163^^^^^^^^^^^^^^^^^^^^^^^^^
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005164
5165The ``associated`` metadata may be attached to a global object
5166declaration with a single argument that references another global object.
5167
5168This metadata prevents discarding of the global object in linker GC
5169unless the referenced object is also discarded. The linker support for
5170this feature is spotty. For best compatibility, globals carrying this
5171metadata may also:
5172
5173- Be in a comdat with the referenced global.
5174- Be in @llvm.compiler.used.
5175- Have an explicit section with a name which is a valid C identifier.
5176
5177It does not have any effect on non-ELF targets.
5178
5179Example:
5180
5181.. code-block:: llvm
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005182
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005183 $a = comdat any
5184 @a = global i32 1, comdat $a
5185 @b = internal global i32 2, comdat $a, section "abc", !associated !0
5186 !0 = !{i32* @a}
5187
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005188
Sean Silvab084af42012-12-07 10:36:55 +00005189Module Flags Metadata
5190=====================
5191
5192Information about the module as a whole is difficult to convey to LLVM's
5193subsystems. The LLVM IR isn't sufficient to transmit this information.
5194The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005195this. These flags are in the form of key / value pairs --- much like a
5196dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005197look it up.
5198
5199The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5200Each triplet has the following form:
5201
5202- The first element is a *behavior* flag, which specifies the behavior
5203 when two (or more) modules are merged together, and it encounters two
5204 (or more) metadata with the same ID. The supported behaviors are
5205 described below.
5206- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005207 metadata. Each module may only have one flag entry for each unique ID (not
5208 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005209- The third element is the value of the flag.
5210
5211When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005212``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5213each unique metadata ID string, there will be exactly one entry in the merged
5214modules ``llvm.module.flags`` metadata table, and the value for that entry will
5215be determined by the merge behavior flag, as described below. The only exception
5216is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005217
5218The following behaviors are supported:
5219
5220.. list-table::
5221 :header-rows: 1
5222 :widths: 10 90
5223
5224 * - Value
5225 - Behavior
5226
5227 * - 1
5228 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005229 Emits an error if two values disagree, otherwise the resulting value
5230 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005231
5232 * - 2
5233 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005234 Emits a warning if two values disagree. The result value will be the
5235 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005236
5237 * - 3
5238 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005239 Adds a requirement that another module flag be present and have a
5240 specified value after linking is performed. The value must be a
5241 metadata pair, where the first element of the pair is the ID of the
5242 module flag to be restricted, and the second element of the pair is
5243 the value the module flag should be restricted to. This behavior can
5244 be used to restrict the allowable results (via triggering of an
5245 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005246
5247 * - 4
5248 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005249 Uses the specified value, regardless of the behavior or value of the
5250 other module. If both modules specify **Override**, but the values
5251 differ, an error will be emitted.
5252
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005253 * - 5
5254 - **Append**
5255 Appends the two values, which are required to be metadata nodes.
5256
5257 * - 6
5258 - **AppendUnique**
5259 Appends the two values, which are required to be metadata
5260 nodes. However, duplicate entries in the second list are dropped
5261 during the append operation.
5262
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005263It is an error for a particular unique flag ID to have multiple behaviors,
5264except in the case of **Require** (which adds restrictions on another metadata
5265value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005266
5267An example of module flags:
5268
5269.. code-block:: llvm
5270
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005271 !0 = !{ i32 1, !"foo", i32 1 }
5272 !1 = !{ i32 4, !"bar", i32 37 }
5273 !2 = !{ i32 2, !"qux", i32 42 }
5274 !3 = !{ i32 3, !"qux",
5275 !{
5276 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005277 }
5278 }
5279 !llvm.module.flags = !{ !0, !1, !2, !3 }
5280
5281- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5282 if two or more ``!"foo"`` flags are seen is to emit an error if their
5283 values are not equal.
5284
5285- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5286 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005287 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005288
5289- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5290 behavior if two or more ``!"qux"`` flags are seen is to emit a
5291 warning if their values are not equal.
5292
5293- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5294
5295 ::
5296
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005297 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005298
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005299 The behavior is to emit an error if the ``llvm.module.flags`` does not
5300 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5301 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005302
5303Objective-C Garbage Collection Module Flags Metadata
5304----------------------------------------------------
5305
5306On the Mach-O platform, Objective-C stores metadata about garbage
5307collection in a special section called "image info". The metadata
5308consists of a version number and a bitmask specifying what types of
5309garbage collection are supported (if any) by the file. If two or more
5310modules are linked together their garbage collection metadata needs to
5311be merged rather than appended together.
5312
5313The Objective-C garbage collection module flags metadata consists of the
5314following key-value pairs:
5315
5316.. list-table::
5317 :header-rows: 1
5318 :widths: 30 70
5319
5320 * - Key
5321 - Value
5322
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005323 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005324 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005325
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005326 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005327 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005328 always 0.
5329
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005330 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005331 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005332 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5333 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5334 Objective-C ABI version 2.
5335
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005336 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005337 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005338 not. Valid values are 0, for no garbage collection, and 2, for garbage
5339 collection supported.
5340
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005341 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005342 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005343 If present, its value must be 6. This flag requires that the
5344 ``Objective-C Garbage Collection`` flag have the value 2.
5345
5346Some important flag interactions:
5347
5348- If a module with ``Objective-C Garbage Collection`` set to 0 is
5349 merged with a module with ``Objective-C Garbage Collection`` set to
5350 2, then the resulting module has the
5351 ``Objective-C Garbage Collection`` flag set to 0.
5352- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5353 merged with a module with ``Objective-C GC Only`` set to 6.
5354
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005355Automatic Linker Flags Module Flags Metadata
5356--------------------------------------------
5357
5358Some targets support embedding flags to the linker inside individual object
5359files. Typically this is used in conjunction with language extensions which
5360allow source files to explicitly declare the libraries they depend on, and have
5361these automatically be transmitted to the linker via object files.
5362
5363These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005364using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005365to be ``AppendUnique``, and the value for the key is expected to be a metadata
5366node which should be a list of other metadata nodes, each of which should be a
5367list of metadata strings defining linker options.
5368
5369For example, the following metadata section specifies two separate sets of
5370linker options, presumably to link against ``libz`` and the ``Cocoa``
5371framework::
5372
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005373 !0 = !{ i32 6, !"Linker Options",
5374 !{
5375 !{ !"-lz" },
5376 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005377 !llvm.module.flags = !{ !0 }
5378
5379The metadata encoding as lists of lists of options, as opposed to a collapsed
5380list of options, is chosen so that the IR encoding can use multiple option
5381strings to specify e.g., a single library, while still having that specifier be
5382preserved as an atomic element that can be recognized by a target specific
5383assembly writer or object file emitter.
5384
5385Each individual option is required to be either a valid option for the target's
5386linker, or an option that is reserved by the target specific assembly writer or
5387object file emitter. No other aspect of these options is defined by the IR.
5388
Oliver Stannard5dc29342014-06-20 10:08:11 +00005389C type width Module Flags Metadata
5390----------------------------------
5391
5392The ARM backend emits a section into each generated object file describing the
5393options that it was compiled with (in a compiler-independent way) to prevent
5394linking incompatible objects, and to allow automatic library selection. Some
5395of these options are not visible at the IR level, namely wchar_t width and enum
5396width.
5397
5398To pass this information to the backend, these options are encoded in module
5399flags metadata, using the following key-value pairs:
5400
5401.. list-table::
5402 :header-rows: 1
5403 :widths: 30 70
5404
5405 * - Key
5406 - Value
5407
5408 * - short_wchar
5409 - * 0 --- sizeof(wchar_t) == 4
5410 * 1 --- sizeof(wchar_t) == 2
5411
5412 * - short_enum
5413 - * 0 --- Enums are at least as large as an ``int``.
5414 * 1 --- Enums are stored in the smallest integer type which can
5415 represent all of its values.
5416
5417For example, the following metadata section specifies that the module was
5418compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5419enum is the smallest type which can represent all of its values::
5420
5421 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005422 !0 = !{i32 1, !"short_wchar", i32 1}
5423 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005424
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005425.. _intrinsicglobalvariables:
5426
Sean Silvab084af42012-12-07 10:36:55 +00005427Intrinsic Global Variables
5428==========================
5429
5430LLVM has a number of "magic" global variables that contain data that
5431affect code generation or other IR semantics. These are documented here.
5432All globals of this sort should have a section specified as
5433"``llvm.metadata``". This section and all globals that start with
5434"``llvm.``" are reserved for use by LLVM.
5435
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005436.. _gv_llvmused:
5437
Sean Silvab084af42012-12-07 10:36:55 +00005438The '``llvm.used``' Global Variable
5439-----------------------------------
5440
Rafael Espindola74f2e462013-04-22 14:58:02 +00005441The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005442:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005443pointers to named global variables, functions and aliases which may optionally
5444have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005445use of it is:
5446
5447.. code-block:: llvm
5448
5449 @X = global i8 4
5450 @Y = global i32 123
5451
5452 @llvm.used = appending global [2 x i8*] [
5453 i8* @X,
5454 i8* bitcast (i32* @Y to i8*)
5455 ], section "llvm.metadata"
5456
Rafael Espindola74f2e462013-04-22 14:58:02 +00005457If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5458and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005459symbol that it cannot see (which is why they have to be named). For example, if
5460a variable has internal linkage and no references other than that from the
5461``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5462references from inline asms and other things the compiler cannot "see", and
5463corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005464
5465On some targets, the code generator must emit a directive to the
5466assembler or object file to prevent the assembler and linker from
5467molesting the symbol.
5468
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005469.. _gv_llvmcompilerused:
5470
Sean Silvab084af42012-12-07 10:36:55 +00005471The '``llvm.compiler.used``' Global Variable
5472--------------------------------------------
5473
5474The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5475directive, except that it only prevents the compiler from touching the
5476symbol. On targets that support it, this allows an intelligent linker to
5477optimize references to the symbol without being impeded as it would be
5478by ``@llvm.used``.
5479
5480This is a rare construct that should only be used in rare circumstances,
5481and should not be exposed to source languages.
5482
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005483.. _gv_llvmglobalctors:
5484
Sean Silvab084af42012-12-07 10:36:55 +00005485The '``llvm.global_ctors``' Global Variable
5486-------------------------------------------
5487
5488.. code-block:: llvm
5489
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005490 %0 = type { i32, void ()*, i8* }
5491 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005492
5493The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005494functions, priorities, and an optional associated global or function.
5495The functions referenced by this array will be called in ascending order
5496of priority (i.e. lowest first) when the module is loaded. The order of
5497functions with the same priority is not defined.
5498
5499If the third field is present, non-null, and points to a global variable
5500or function, the initializer function will only run if the associated
5501data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005502
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005503.. _llvmglobaldtors:
5504
Sean Silvab084af42012-12-07 10:36:55 +00005505The '``llvm.global_dtors``' Global Variable
5506-------------------------------------------
5507
5508.. code-block:: llvm
5509
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005510 %0 = type { i32, void ()*, i8* }
5511 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005512
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005513The ``@llvm.global_dtors`` array contains a list of destructor
5514functions, priorities, and an optional associated global or function.
5515The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005516order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005517order of functions with the same priority is not defined.
5518
5519If the third field is present, non-null, and points to a global variable
5520or function, the destructor function will only run if the associated
5521data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005522
5523Instruction Reference
5524=====================
5525
5526The LLVM instruction set consists of several different classifications
5527of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5528instructions <binaryops>`, :ref:`bitwise binary
5529instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5530:ref:`other instructions <otherops>`.
5531
5532.. _terminators:
5533
5534Terminator Instructions
5535-----------------------
5536
5537As mentioned :ref:`previously <functionstructure>`, every basic block in a
5538program ends with a "Terminator" instruction, which indicates which
5539block should be executed after the current block is finished. These
5540terminator instructions typically yield a '``void``' value: they produce
5541control flow, not values (the one exception being the
5542':ref:`invoke <i_invoke>`' instruction).
5543
5544The terminator instructions are: ':ref:`ret <i_ret>`',
5545':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5546':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005547':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005548':ref:`catchret <i_catchret>`',
5549':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005550and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005551
5552.. _i_ret:
5553
5554'``ret``' Instruction
5555^^^^^^^^^^^^^^^^^^^^^
5556
5557Syntax:
5558"""""""
5559
5560::
5561
5562 ret <type> <value> ; Return a value from a non-void function
5563 ret void ; Return from void function
5564
5565Overview:
5566"""""""""
5567
5568The '``ret``' instruction is used to return control flow (and optionally
5569a value) from a function back to the caller.
5570
5571There are two forms of the '``ret``' instruction: one that returns a
5572value and then causes control flow, and one that just causes control
5573flow to occur.
5574
5575Arguments:
5576""""""""""
5577
5578The '``ret``' instruction optionally accepts a single argument, the
5579return value. The type of the return value must be a ':ref:`first
5580class <t_firstclass>`' type.
5581
5582A function is not :ref:`well formed <wellformed>` if it it has a non-void
5583return type and contains a '``ret``' instruction with no return value or
5584a return value with a type that does not match its type, or if it has a
5585void return type and contains a '``ret``' instruction with a return
5586value.
5587
5588Semantics:
5589""""""""""
5590
5591When the '``ret``' instruction is executed, control flow returns back to
5592the calling function's context. If the caller is a
5593":ref:`call <i_call>`" instruction, execution continues at the
5594instruction after the call. If the caller was an
5595":ref:`invoke <i_invoke>`" instruction, execution continues at the
5596beginning of the "normal" destination block. If the instruction returns
5597a value, that value shall set the call or invoke instruction's return
5598value.
5599
5600Example:
5601""""""""
5602
5603.. code-block:: llvm
5604
5605 ret i32 5 ; Return an integer value of 5
5606 ret void ; Return from a void function
5607 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5608
5609.. _i_br:
5610
5611'``br``' Instruction
5612^^^^^^^^^^^^^^^^^^^^
5613
5614Syntax:
5615"""""""
5616
5617::
5618
5619 br i1 <cond>, label <iftrue>, label <iffalse>
5620 br label <dest> ; Unconditional branch
5621
5622Overview:
5623"""""""""
5624
5625The '``br``' instruction is used to cause control flow to transfer to a
5626different basic block in the current function. There are two forms of
5627this instruction, corresponding to a conditional branch and an
5628unconditional branch.
5629
5630Arguments:
5631""""""""""
5632
5633The conditional branch form of the '``br``' instruction takes a single
5634'``i1``' value and two '``label``' values. The unconditional form of the
5635'``br``' instruction takes a single '``label``' value as a target.
5636
5637Semantics:
5638""""""""""
5639
5640Upon execution of a conditional '``br``' instruction, the '``i1``'
5641argument is evaluated. If the value is ``true``, control flows to the
5642'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5643to the '``iffalse``' ``label`` argument.
5644
5645Example:
5646""""""""
5647
5648.. code-block:: llvm
5649
5650 Test:
5651 %cond = icmp eq i32 %a, %b
5652 br i1 %cond, label %IfEqual, label %IfUnequal
5653 IfEqual:
5654 ret i32 1
5655 IfUnequal:
5656 ret i32 0
5657
5658.. _i_switch:
5659
5660'``switch``' Instruction
5661^^^^^^^^^^^^^^^^^^^^^^^^
5662
5663Syntax:
5664"""""""
5665
5666::
5667
5668 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5669
5670Overview:
5671"""""""""
5672
5673The '``switch``' instruction is used to transfer control flow to one of
5674several different places. It is a generalization of the '``br``'
5675instruction, allowing a branch to occur to one of many possible
5676destinations.
5677
5678Arguments:
5679""""""""""
5680
5681The '``switch``' instruction uses three parameters: an integer
5682comparison value '``value``', a default '``label``' destination, and an
5683array of pairs of comparison value constants and '``label``'s. The table
5684is not allowed to contain duplicate constant entries.
5685
5686Semantics:
5687""""""""""
5688
5689The ``switch`` instruction specifies a table of values and destinations.
5690When the '``switch``' instruction is executed, this table is searched
5691for the given value. If the value is found, control flow is transferred
5692to the corresponding destination; otherwise, control flow is transferred
5693to the default destination.
5694
5695Implementation:
5696"""""""""""""""
5697
5698Depending on properties of the target machine and the particular
5699``switch`` instruction, this instruction may be code generated in
5700different ways. For example, it could be generated as a series of
5701chained conditional branches or with a lookup table.
5702
5703Example:
5704""""""""
5705
5706.. code-block:: llvm
5707
5708 ; Emulate a conditional br instruction
5709 %Val = zext i1 %value to i32
5710 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5711
5712 ; Emulate an unconditional br instruction
5713 switch i32 0, label %dest [ ]
5714
5715 ; Implement a jump table:
5716 switch i32 %val, label %otherwise [ i32 0, label %onzero
5717 i32 1, label %onone
5718 i32 2, label %ontwo ]
5719
5720.. _i_indirectbr:
5721
5722'``indirectbr``' Instruction
5723^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5724
5725Syntax:
5726"""""""
5727
5728::
5729
5730 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5731
5732Overview:
5733"""""""""
5734
5735The '``indirectbr``' instruction implements an indirect branch to a
5736label within the current function, whose address is specified by
5737"``address``". Address must be derived from a
5738:ref:`blockaddress <blockaddress>` constant.
5739
5740Arguments:
5741""""""""""
5742
5743The '``address``' argument is the address of the label to jump to. The
5744rest of the arguments indicate the full set of possible destinations
5745that the address may point to. Blocks are allowed to occur multiple
5746times in the destination list, though this isn't particularly useful.
5747
5748This destination list is required so that dataflow analysis has an
5749accurate understanding of the CFG.
5750
5751Semantics:
5752""""""""""
5753
5754Control transfers to the block specified in the address argument. All
5755possible destination blocks must be listed in the label list, otherwise
5756this instruction has undefined behavior. This implies that jumps to
5757labels defined in other functions have undefined behavior as well.
5758
5759Implementation:
5760"""""""""""""""
5761
5762This is typically implemented with a jump through a register.
5763
5764Example:
5765""""""""
5766
5767.. code-block:: llvm
5768
5769 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5770
5771.. _i_invoke:
5772
5773'``invoke``' Instruction
5774^^^^^^^^^^^^^^^^^^^^^^^^
5775
5776Syntax:
5777"""""""
5778
5779::
5780
David Blaikieb83cf102016-07-13 17:21:34 +00005781 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005782 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005783
5784Overview:
5785"""""""""
5786
5787The '``invoke``' instruction causes control to transfer to a specified
5788function, with the possibility of control flow transfer to either the
5789'``normal``' label or the '``exception``' label. If the callee function
5790returns with the "``ret``" instruction, control flow will return to the
5791"normal" label. If the callee (or any indirect callees) returns via the
5792":ref:`resume <i_resume>`" instruction or other exception handling
5793mechanism, control is interrupted and continued at the dynamically
5794nearest "exception" label.
5795
5796The '``exception``' label is a `landing
5797pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5798'``exception``' label is required to have the
5799":ref:`landingpad <i_landingpad>`" instruction, which contains the
5800information about the behavior of the program after unwinding happens,
5801as its first non-PHI instruction. The restrictions on the
5802"``landingpad``" instruction's tightly couples it to the "``invoke``"
5803instruction, so that the important information contained within the
5804"``landingpad``" instruction can't be lost through normal code motion.
5805
5806Arguments:
5807""""""""""
5808
5809This instruction requires several arguments:
5810
5811#. The optional "cconv" marker indicates which :ref:`calling
5812 convention <callingconv>` the call should use. If none is
5813 specified, the call defaults to using C calling conventions.
5814#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5815 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5816 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00005817#. '``ty``': the type of the call instruction itself which is also the
5818 type of the return value. Functions that return no value are marked
5819 ``void``.
5820#. '``fnty``': shall be the signature of the function being invoked. The
5821 argument types must match the types implied by this signature. This
5822 type can be omitted if the function is not varargs.
5823#. '``fnptrval``': An LLVM value containing a pointer to a function to
5824 be invoked. In most cases, this is a direct function invocation, but
5825 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
5826 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00005827#. '``function args``': argument list whose types match the function
5828 signature argument types and parameter attributes. All arguments must
5829 be of :ref:`first class <t_firstclass>` type. If the function signature
5830 indicates the function accepts a variable number of arguments, the
5831 extra arguments can be specified.
5832#. '``normal label``': the label reached when the called function
5833 executes a '``ret``' instruction.
5834#. '``exception label``': the label reached when a callee returns via
5835 the :ref:`resume <i_resume>` instruction or other exception handling
5836 mechanism.
George Burgess IV8a464a72017-04-13 05:00:31 +00005837#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005838#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005839
5840Semantics:
5841""""""""""
5842
5843This instruction is designed to operate as a standard '``call``'
5844instruction in most regards. The primary difference is that it
5845establishes an association with a label, which is used by the runtime
5846library to unwind the stack.
5847
5848This instruction is used in languages with destructors to ensure that
5849proper cleanup is performed in the case of either a ``longjmp`` or a
5850thrown exception. Additionally, this is important for implementation of
5851'``catch``' clauses in high-level languages that support them.
5852
5853For the purposes of the SSA form, the definition of the value returned
5854by the '``invoke``' instruction is deemed to occur on the edge from the
5855current block to the "normal" label. If the callee unwinds then no
5856return value is available.
5857
5858Example:
5859""""""""
5860
5861.. code-block:: llvm
5862
5863 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005864 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005865 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005866 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005867
5868.. _i_resume:
5869
5870'``resume``' Instruction
5871^^^^^^^^^^^^^^^^^^^^^^^^
5872
5873Syntax:
5874"""""""
5875
5876::
5877
5878 resume <type> <value>
5879
5880Overview:
5881"""""""""
5882
5883The '``resume``' instruction is a terminator instruction that has no
5884successors.
5885
5886Arguments:
5887""""""""""
5888
5889The '``resume``' instruction requires one argument, which must have the
5890same type as the result of any '``landingpad``' instruction in the same
5891function.
5892
5893Semantics:
5894""""""""""
5895
5896The '``resume``' instruction resumes propagation of an existing
5897(in-flight) exception whose unwinding was interrupted with a
5898:ref:`landingpad <i_landingpad>` instruction.
5899
5900Example:
5901""""""""
5902
5903.. code-block:: llvm
5904
5905 resume { i8*, i32 } %exn
5906
David Majnemer8a1c45d2015-12-12 05:38:55 +00005907.. _i_catchswitch:
5908
5909'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005910^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005911
5912Syntax:
5913"""""""
5914
5915::
5916
5917 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5918 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5919
5920Overview:
5921"""""""""
5922
5923The '``catchswitch``' instruction is used by `LLVM's exception handling system
5924<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5925that may be executed by the :ref:`EH personality routine <personalityfn>`.
5926
5927Arguments:
5928""""""""""
5929
5930The ``parent`` argument is the token of the funclet that contains the
5931``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5932this operand may be the token ``none``.
5933
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005934The ``default`` argument is the label of another basic block beginning with
5935either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5936must be a legal target with respect to the ``parent`` links, as described in
5937the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005938
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005939The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005940:ref:`catchpad <i_catchpad>` instruction.
5941
5942Semantics:
5943""""""""""
5944
5945Executing this instruction transfers control to one of the successors in
5946``handlers``, if appropriate, or continues to unwind via the unwind label if
5947present.
5948
5949The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5950it must be both the first non-phi instruction and last instruction in the basic
5951block. Therefore, it must be the only non-phi instruction in the block.
5952
5953Example:
5954""""""""
5955
Renato Golin124f2592016-07-20 12:16:38 +00005956.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00005957
5958 dispatch1:
5959 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5960 dispatch2:
5961 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5962
David Majnemer654e1302015-07-31 17:58:14 +00005963.. _i_catchret:
5964
5965'``catchret``' Instruction
5966^^^^^^^^^^^^^^^^^^^^^^^^^^
5967
5968Syntax:
5969"""""""
5970
5971::
5972
David Majnemer8a1c45d2015-12-12 05:38:55 +00005973 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005974
5975Overview:
5976"""""""""
5977
5978The '``catchret``' instruction is a terminator instruction that has a
5979single successor.
5980
5981
5982Arguments:
5983""""""""""
5984
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005985The first argument to a '``catchret``' indicates which ``catchpad`` it
5986exits. It must be a :ref:`catchpad <i_catchpad>`.
5987The second argument to a '``catchret``' specifies where control will
5988transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005989
5990Semantics:
5991""""""""""
5992
David Majnemer8a1c45d2015-12-12 05:38:55 +00005993The '``catchret``' instruction ends an existing (in-flight) exception whose
5994unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5995:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5996code to, for example, destroy the active exception. Control then transfers to
5997``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005998
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005999The ``token`` argument must be a token produced by a ``catchpad`` instruction.
6000If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
6001funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6002the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00006003
6004Example:
6005""""""""
6006
Renato Golin124f2592016-07-20 12:16:38 +00006007.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006008
David Majnemer8a1c45d2015-12-12 05:38:55 +00006009 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006010
David Majnemer654e1302015-07-31 17:58:14 +00006011.. _i_cleanupret:
6012
6013'``cleanupret``' Instruction
6014^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6015
6016Syntax:
6017"""""""
6018
6019::
6020
David Majnemer8a1c45d2015-12-12 05:38:55 +00006021 cleanupret from <value> unwind label <continue>
6022 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00006023
6024Overview:
6025"""""""""
6026
6027The '``cleanupret``' instruction is a terminator instruction that has
6028an optional successor.
6029
6030
6031Arguments:
6032""""""""""
6033
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006034The '``cleanupret``' instruction requires one argument, which indicates
6035which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006036If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
6037funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6038the ``cleanupret``'s behavior is undefined.
6039
6040The '``cleanupret``' instruction also has an optional successor, ``continue``,
6041which must be the label of another basic block beginning with either a
6042``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
6043be a legal target with respect to the ``parent`` links, as described in the
6044`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00006045
6046Semantics:
6047""""""""""
6048
6049The '``cleanupret``' instruction indicates to the
6050:ref:`personality function <personalityfn>` that one
6051:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
6052It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006053
David Majnemer654e1302015-07-31 17:58:14 +00006054Example:
6055""""""""
6056
Renato Golin124f2592016-07-20 12:16:38 +00006057.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006058
David Majnemer8a1c45d2015-12-12 05:38:55 +00006059 cleanupret from %cleanup unwind to caller
6060 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00006061
Sean Silvab084af42012-12-07 10:36:55 +00006062.. _i_unreachable:
6063
6064'``unreachable``' Instruction
6065^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6066
6067Syntax:
6068"""""""
6069
6070::
6071
6072 unreachable
6073
6074Overview:
6075"""""""""
6076
6077The '``unreachable``' instruction has no defined semantics. This
6078instruction is used to inform the optimizer that a particular portion of
6079the code is not reachable. This can be used to indicate that the code
6080after a no-return function cannot be reached, and other facts.
6081
6082Semantics:
6083""""""""""
6084
6085The '``unreachable``' instruction has no defined semantics.
6086
6087.. _binaryops:
6088
6089Binary Operations
6090-----------------
6091
6092Binary operators are used to do most of the computation in a program.
6093They require two operands of the same type, execute an operation on
6094them, and produce a single value. The operands might represent multiple
6095data, as is the case with the :ref:`vector <t_vector>` data type. The
6096result value has the same type as its operands.
6097
6098There are several different binary operators:
6099
6100.. _i_add:
6101
6102'``add``' Instruction
6103^^^^^^^^^^^^^^^^^^^^^
6104
6105Syntax:
6106"""""""
6107
6108::
6109
Tim Northover675a0962014-06-13 14:24:23 +00006110 <result> = add <ty> <op1>, <op2> ; yields ty:result
6111 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
6112 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
6113 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006114
6115Overview:
6116"""""""""
6117
6118The '``add``' instruction returns the sum of its two operands.
6119
6120Arguments:
6121""""""""""
6122
6123The two arguments to the '``add``' instruction must be
6124:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6125arguments must have identical types.
6126
6127Semantics:
6128""""""""""
6129
6130The value produced is the integer sum of the two operands.
6131
6132If the sum has unsigned overflow, the result returned is the
6133mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6134the result.
6135
6136Because LLVM integers use a two's complement representation, this
6137instruction is appropriate for both signed and unsigned integers.
6138
6139``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6140respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6141result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
6142unsigned and/or signed overflow, respectively, occurs.
6143
6144Example:
6145""""""""
6146
Renato Golin124f2592016-07-20 12:16:38 +00006147.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006148
Tim Northover675a0962014-06-13 14:24:23 +00006149 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006150
6151.. _i_fadd:
6152
6153'``fadd``' Instruction
6154^^^^^^^^^^^^^^^^^^^^^^
6155
6156Syntax:
6157"""""""
6158
6159::
6160
Tim Northover675a0962014-06-13 14:24:23 +00006161 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006162
6163Overview:
6164"""""""""
6165
6166The '``fadd``' instruction returns the sum of its two operands.
6167
6168Arguments:
6169""""""""""
6170
6171The two arguments to the '``fadd``' instruction must be :ref:`floating
6172point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6173Both arguments must have identical types.
6174
6175Semantics:
6176""""""""""
6177
6178The value produced is the floating point sum of the two operands. This
6179instruction can also take any number of :ref:`fast-math flags <fastmath>`,
6180which are optimization hints to enable otherwise unsafe floating point
6181optimizations:
6182
6183Example:
6184""""""""
6185
Renato Golin124f2592016-07-20 12:16:38 +00006186.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006187
Tim Northover675a0962014-06-13 14:24:23 +00006188 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006189
6190'``sub``' Instruction
6191^^^^^^^^^^^^^^^^^^^^^
6192
6193Syntax:
6194"""""""
6195
6196::
6197
Tim Northover675a0962014-06-13 14:24:23 +00006198 <result> = sub <ty> <op1>, <op2> ; yields ty:result
6199 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
6200 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
6201 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006202
6203Overview:
6204"""""""""
6205
6206The '``sub``' instruction returns the difference of its two operands.
6207
6208Note that the '``sub``' instruction is used to represent the '``neg``'
6209instruction present in most other intermediate representations.
6210
6211Arguments:
6212""""""""""
6213
6214The two arguments to the '``sub``' instruction must be
6215:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6216arguments must have identical types.
6217
6218Semantics:
6219""""""""""
6220
6221The value produced is the integer difference of the two operands.
6222
6223If the difference has unsigned overflow, the result returned is the
6224mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6225the result.
6226
6227Because LLVM integers use a two's complement representation, this
6228instruction is appropriate for both signed and unsigned integers.
6229
6230``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6231respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6232result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
6233unsigned and/or signed overflow, respectively, occurs.
6234
6235Example:
6236""""""""
6237
Renato Golin124f2592016-07-20 12:16:38 +00006238.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006239
Tim Northover675a0962014-06-13 14:24:23 +00006240 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6241 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006242
6243.. _i_fsub:
6244
6245'``fsub``' Instruction
6246^^^^^^^^^^^^^^^^^^^^^^
6247
6248Syntax:
6249"""""""
6250
6251::
6252
Tim Northover675a0962014-06-13 14:24:23 +00006253 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006254
6255Overview:
6256"""""""""
6257
6258The '``fsub``' instruction returns the difference of its two operands.
6259
6260Note that the '``fsub``' instruction is used to represent the '``fneg``'
6261instruction present in most other intermediate representations.
6262
6263Arguments:
6264""""""""""
6265
6266The two arguments to the '``fsub``' instruction must be :ref:`floating
6267point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6268Both arguments must have identical types.
6269
6270Semantics:
6271""""""""""
6272
6273The value produced is the floating point difference of the two operands.
6274This instruction can also take any number of :ref:`fast-math
6275flags <fastmath>`, which are optimization hints to enable otherwise
6276unsafe floating point optimizations:
6277
6278Example:
6279""""""""
6280
Renato Golin124f2592016-07-20 12:16:38 +00006281.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006282
Tim Northover675a0962014-06-13 14:24:23 +00006283 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6284 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006285
6286'``mul``' Instruction
6287^^^^^^^^^^^^^^^^^^^^^
6288
6289Syntax:
6290"""""""
6291
6292::
6293
Tim Northover675a0962014-06-13 14:24:23 +00006294 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6295 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6296 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6297 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006298
6299Overview:
6300"""""""""
6301
6302The '``mul``' instruction returns the product of its two operands.
6303
6304Arguments:
6305""""""""""
6306
6307The two arguments to the '``mul``' instruction must be
6308:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6309arguments must have identical types.
6310
6311Semantics:
6312""""""""""
6313
6314The value produced is the integer product of the two operands.
6315
6316If the result of the multiplication has unsigned overflow, the result
6317returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6318bit width of the result.
6319
6320Because LLVM integers use a two's complement representation, and the
6321result is the same width as the operands, this instruction returns the
6322correct result for both signed and unsigned integers. If a full product
6323(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6324sign-extended or zero-extended as appropriate to the width of the full
6325product.
6326
6327``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6328respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6329result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6330unsigned and/or signed overflow, respectively, occurs.
6331
6332Example:
6333""""""""
6334
Renato Golin124f2592016-07-20 12:16:38 +00006335.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006336
Tim Northover675a0962014-06-13 14:24:23 +00006337 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006338
6339.. _i_fmul:
6340
6341'``fmul``' Instruction
6342^^^^^^^^^^^^^^^^^^^^^^
6343
6344Syntax:
6345"""""""
6346
6347::
6348
Tim Northover675a0962014-06-13 14:24:23 +00006349 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006350
6351Overview:
6352"""""""""
6353
6354The '``fmul``' instruction returns the product of its two operands.
6355
6356Arguments:
6357""""""""""
6358
6359The two arguments to the '``fmul``' instruction must be :ref:`floating
6360point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6361Both arguments must have identical types.
6362
6363Semantics:
6364""""""""""
6365
6366The value produced is the floating point product of the two operands.
6367This instruction can also take any number of :ref:`fast-math
6368flags <fastmath>`, which are optimization hints to enable otherwise
6369unsafe floating point optimizations:
6370
6371Example:
6372""""""""
6373
Renato Golin124f2592016-07-20 12:16:38 +00006374.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006375
Tim Northover675a0962014-06-13 14:24:23 +00006376 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006377
6378'``udiv``' Instruction
6379^^^^^^^^^^^^^^^^^^^^^^
6380
6381Syntax:
6382"""""""
6383
6384::
6385
Tim Northover675a0962014-06-13 14:24:23 +00006386 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6387 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006388
6389Overview:
6390"""""""""
6391
6392The '``udiv``' instruction returns the quotient of its two operands.
6393
6394Arguments:
6395""""""""""
6396
6397The two arguments to the '``udiv``' instruction must be
6398:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6399arguments must have identical types.
6400
6401Semantics:
6402""""""""""
6403
6404The value produced is the unsigned integer quotient of the two operands.
6405
6406Note that unsigned integer division and signed integer division are
6407distinct operations; for signed integer division, use '``sdiv``'.
6408
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006409Division by zero is undefined behavior. For vectors, if any element
6410of the divisor is zero, the operation has undefined behavior.
6411
Sean Silvab084af42012-12-07 10:36:55 +00006412
6413If the ``exact`` keyword is present, the result value of the ``udiv`` is
6414a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6415such, "((a udiv exact b) mul b) == a").
6416
6417Example:
6418""""""""
6419
Renato Golin124f2592016-07-20 12:16:38 +00006420.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006421
Tim Northover675a0962014-06-13 14:24:23 +00006422 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006423
6424'``sdiv``' Instruction
6425^^^^^^^^^^^^^^^^^^^^^^
6426
6427Syntax:
6428"""""""
6429
6430::
6431
Tim Northover675a0962014-06-13 14:24:23 +00006432 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6433 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006434
6435Overview:
6436"""""""""
6437
6438The '``sdiv``' instruction returns the quotient of its two operands.
6439
6440Arguments:
6441""""""""""
6442
6443The two arguments to the '``sdiv``' instruction must be
6444:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6445arguments must have identical types.
6446
6447Semantics:
6448""""""""""
6449
6450The value produced is the signed integer quotient of the two operands
6451rounded towards zero.
6452
6453Note that signed integer division and unsigned integer division are
6454distinct operations; for unsigned integer division, use '``udiv``'.
6455
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006456Division by zero is undefined behavior. For vectors, if any element
6457of the divisor is zero, the operation has undefined behavior.
6458Overflow also leads to undefined behavior; this is a rare case, but can
6459occur, for example, by doing a 32-bit division of -2147483648 by -1.
Sean Silvab084af42012-12-07 10:36:55 +00006460
6461If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6462a :ref:`poison value <poisonvalues>` if the result would be rounded.
6463
6464Example:
6465""""""""
6466
Renato Golin124f2592016-07-20 12:16:38 +00006467.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006468
Tim Northover675a0962014-06-13 14:24:23 +00006469 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006470
6471.. _i_fdiv:
6472
6473'``fdiv``' Instruction
6474^^^^^^^^^^^^^^^^^^^^^^
6475
6476Syntax:
6477"""""""
6478
6479::
6480
Tim Northover675a0962014-06-13 14:24:23 +00006481 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006482
6483Overview:
6484"""""""""
6485
6486The '``fdiv``' instruction returns the quotient of its two operands.
6487
6488Arguments:
6489""""""""""
6490
6491The two arguments to the '``fdiv``' instruction must be :ref:`floating
6492point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6493Both arguments must have identical types.
6494
6495Semantics:
6496""""""""""
6497
6498The value produced is the floating point quotient of the two operands.
6499This instruction can also take any number of :ref:`fast-math
6500flags <fastmath>`, which are optimization hints to enable otherwise
6501unsafe floating point optimizations:
6502
6503Example:
6504""""""""
6505
Renato Golin124f2592016-07-20 12:16:38 +00006506.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006507
Tim Northover675a0962014-06-13 14:24:23 +00006508 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006509
6510'``urem``' Instruction
6511^^^^^^^^^^^^^^^^^^^^^^
6512
6513Syntax:
6514"""""""
6515
6516::
6517
Tim Northover675a0962014-06-13 14:24:23 +00006518 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006519
6520Overview:
6521"""""""""
6522
6523The '``urem``' instruction returns the remainder from the unsigned
6524division of its two arguments.
6525
6526Arguments:
6527""""""""""
6528
6529The two arguments to the '``urem``' instruction must be
6530:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6531arguments must have identical types.
6532
6533Semantics:
6534""""""""""
6535
6536This instruction returns the unsigned integer *remainder* of a division.
6537This instruction always performs an unsigned division to get the
6538remainder.
6539
6540Note that unsigned integer remainder and signed integer remainder are
6541distinct operations; for signed integer remainder, use '``srem``'.
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006542
6543Taking the remainder of a division by zero is undefined behavior.
6544For vectors, if any element of the divisor is zero, the operation has
6545undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006546
6547Example:
6548""""""""
6549
Renato Golin124f2592016-07-20 12:16:38 +00006550.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006551
Tim Northover675a0962014-06-13 14:24:23 +00006552 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006553
6554'``srem``' Instruction
6555^^^^^^^^^^^^^^^^^^^^^^
6556
6557Syntax:
6558"""""""
6559
6560::
6561
Tim Northover675a0962014-06-13 14:24:23 +00006562 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006563
6564Overview:
6565"""""""""
6566
6567The '``srem``' instruction returns the remainder from the signed
6568division of its two operands. This instruction can also take
6569:ref:`vector <t_vector>` versions of the values in which case the elements
6570must be integers.
6571
6572Arguments:
6573""""""""""
6574
6575The two arguments to the '``srem``' instruction must be
6576:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6577arguments must have identical types.
6578
6579Semantics:
6580""""""""""
6581
6582This instruction returns the *remainder* of a division (where the result
6583is either zero or has the same sign as the dividend, ``op1``), not the
6584*modulo* operator (where the result is either zero or has the same sign
6585as the divisor, ``op2``) of a value. For more information about the
6586difference, see `The Math
6587Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6588table of how this is implemented in various languages, please see
6589`Wikipedia: modulo
6590operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6591
6592Note that signed integer remainder and unsigned integer remainder are
6593distinct operations; for unsigned integer remainder, use '``urem``'.
6594
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006595Taking the remainder of a division by zero is undefined behavior.
6596For vectors, if any element of the divisor is zero, the operation has
6597undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006598Overflow also leads to undefined behavior; this is a rare case, but can
6599occur, for example, by taking the remainder of a 32-bit division of
6600-2147483648 by -1. (The remainder doesn't actually overflow, but this
6601rule lets srem be implemented using instructions that return both the
6602result of the division and the remainder.)
6603
6604Example:
6605""""""""
6606
Renato Golin124f2592016-07-20 12:16:38 +00006607.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006608
Tim Northover675a0962014-06-13 14:24:23 +00006609 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006610
6611.. _i_frem:
6612
6613'``frem``' Instruction
6614^^^^^^^^^^^^^^^^^^^^^^
6615
6616Syntax:
6617"""""""
6618
6619::
6620
Tim Northover675a0962014-06-13 14:24:23 +00006621 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006622
6623Overview:
6624"""""""""
6625
6626The '``frem``' instruction returns the remainder from the division of
6627its two operands.
6628
6629Arguments:
6630""""""""""
6631
6632The two arguments to the '``frem``' instruction must be :ref:`floating
6633point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6634Both arguments must have identical types.
6635
6636Semantics:
6637""""""""""
6638
6639This instruction returns the *remainder* of a division. The remainder
6640has the same sign as the dividend. This instruction can also take any
6641number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6642to enable otherwise unsafe floating point optimizations:
6643
6644Example:
6645""""""""
6646
Renato Golin124f2592016-07-20 12:16:38 +00006647.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006648
Tim Northover675a0962014-06-13 14:24:23 +00006649 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006650
6651.. _bitwiseops:
6652
6653Bitwise Binary Operations
6654-------------------------
6655
6656Bitwise binary operators are used to do various forms of bit-twiddling
6657in a program. They are generally very efficient instructions and can
6658commonly be strength reduced from other instructions. They require two
6659operands of the same type, execute an operation on them, and produce a
6660single value. The resulting value is the same type as its operands.
6661
6662'``shl``' Instruction
6663^^^^^^^^^^^^^^^^^^^^^
6664
6665Syntax:
6666"""""""
6667
6668::
6669
Tim Northover675a0962014-06-13 14:24:23 +00006670 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6671 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6672 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6673 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006674
6675Overview:
6676"""""""""
6677
6678The '``shl``' instruction returns the first operand shifted to the left
6679a specified number of bits.
6680
6681Arguments:
6682""""""""""
6683
6684Both arguments to the '``shl``' instruction must be the same
6685:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6686'``op2``' is treated as an unsigned value.
6687
6688Semantics:
6689""""""""""
6690
6691The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6692where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006693dynamically) equal to or larger than the number of bits in
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006694``op1``, this instruction returns a :ref:`poison value <poisonvalues>`.
6695If the arguments are vectors, each vector element of ``op1`` is shifted
6696by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006697
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006698If the ``nuw`` keyword is present, then the shift produces a poison
6699value if it shifts out any non-zero bits.
6700If the ``nsw`` keyword is present, then the shift produces a poison
6701value it shifts out any bits that disagree with the resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00006702
6703Example:
6704""""""""
6705
Renato Golin124f2592016-07-20 12:16:38 +00006706.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006707
Tim Northover675a0962014-06-13 14:24:23 +00006708 <result> = shl i32 4, %var ; yields i32: 4 << %var
6709 <result> = shl i32 4, 2 ; yields i32: 16
6710 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006711 <result> = shl i32 1, 32 ; undefined
6712 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6713
6714'``lshr``' Instruction
6715^^^^^^^^^^^^^^^^^^^^^^
6716
6717Syntax:
6718"""""""
6719
6720::
6721
Tim Northover675a0962014-06-13 14:24:23 +00006722 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6723 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006724
6725Overview:
6726"""""""""
6727
6728The '``lshr``' instruction (logical shift right) returns the first
6729operand shifted to the right a specified number of bits with zero fill.
6730
6731Arguments:
6732""""""""""
6733
6734Both arguments to the '``lshr``' instruction must be the same
6735:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6736'``op2``' is treated as an unsigned value.
6737
6738Semantics:
6739""""""""""
6740
6741This instruction always performs a logical shift right operation. The
6742most significant bits of the result will be filled with zero bits after
6743the shift. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006744than the number of bits in ``op1``, this instruction returns a :ref:`poison
6745value <poisonvalues>`. If the arguments are vectors, each vector element
6746of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006747
6748If the ``exact`` keyword is present, the result value of the ``lshr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006749a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00006750
6751Example:
6752""""""""
6753
Renato Golin124f2592016-07-20 12:16:38 +00006754.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006755
Tim Northover675a0962014-06-13 14:24:23 +00006756 <result> = lshr i32 4, 1 ; yields i32:result = 2
6757 <result> = lshr i32 4, 2 ; yields i32:result = 1
6758 <result> = lshr i8 4, 3 ; yields i8:result = 0
6759 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006760 <result> = lshr i32 1, 32 ; undefined
6761 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6762
6763'``ashr``' Instruction
6764^^^^^^^^^^^^^^^^^^^^^^
6765
6766Syntax:
6767"""""""
6768
6769::
6770
Tim Northover675a0962014-06-13 14:24:23 +00006771 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6772 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006773
6774Overview:
6775"""""""""
6776
6777The '``ashr``' instruction (arithmetic shift right) returns the first
6778operand shifted to the right a specified number of bits with sign
6779extension.
6780
6781Arguments:
6782""""""""""
6783
6784Both arguments to the '``ashr``' instruction must be the same
6785:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6786'``op2``' is treated as an unsigned value.
6787
6788Semantics:
6789""""""""""
6790
6791This instruction always performs an arithmetic shift right operation,
6792The most significant bits of the result will be filled with the sign bit
6793of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006794than the number of bits in ``op1``, this instruction returns a :ref:`poison
6795value <poisonvalues>`. If the arguments are vectors, each vector element
6796of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006797
6798If the ``exact`` keyword is present, the result value of the ``ashr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006799a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00006800
6801Example:
6802""""""""
6803
Renato Golin124f2592016-07-20 12:16:38 +00006804.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006805
Tim Northover675a0962014-06-13 14:24:23 +00006806 <result> = ashr i32 4, 1 ; yields i32:result = 2
6807 <result> = ashr i32 4, 2 ; yields i32:result = 1
6808 <result> = ashr i8 4, 3 ; yields i8:result = 0
6809 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006810 <result> = ashr i32 1, 32 ; undefined
6811 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6812
6813'``and``' Instruction
6814^^^^^^^^^^^^^^^^^^^^^
6815
6816Syntax:
6817"""""""
6818
6819::
6820
Tim Northover675a0962014-06-13 14:24:23 +00006821 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006822
6823Overview:
6824"""""""""
6825
6826The '``and``' instruction returns the bitwise logical and of its two
6827operands.
6828
6829Arguments:
6830""""""""""
6831
6832The two arguments to the '``and``' instruction must be
6833:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6834arguments must have identical types.
6835
6836Semantics:
6837""""""""""
6838
6839The truth table used for the '``and``' instruction is:
6840
6841+-----+-----+-----+
6842| In0 | In1 | Out |
6843+-----+-----+-----+
6844| 0 | 0 | 0 |
6845+-----+-----+-----+
6846| 0 | 1 | 0 |
6847+-----+-----+-----+
6848| 1 | 0 | 0 |
6849+-----+-----+-----+
6850| 1 | 1 | 1 |
6851+-----+-----+-----+
6852
6853Example:
6854""""""""
6855
Renato Golin124f2592016-07-20 12:16:38 +00006856.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006857
Tim Northover675a0962014-06-13 14:24:23 +00006858 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6859 <result> = and i32 15, 40 ; yields i32:result = 8
6860 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006861
6862'``or``' Instruction
6863^^^^^^^^^^^^^^^^^^^^
6864
6865Syntax:
6866"""""""
6867
6868::
6869
Tim Northover675a0962014-06-13 14:24:23 +00006870 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006871
6872Overview:
6873"""""""""
6874
6875The '``or``' instruction returns the bitwise logical inclusive or of its
6876two operands.
6877
6878Arguments:
6879""""""""""
6880
6881The two arguments to the '``or``' instruction must be
6882:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6883arguments must have identical types.
6884
6885Semantics:
6886""""""""""
6887
6888The truth table used for the '``or``' instruction is:
6889
6890+-----+-----+-----+
6891| In0 | In1 | Out |
6892+-----+-----+-----+
6893| 0 | 0 | 0 |
6894+-----+-----+-----+
6895| 0 | 1 | 1 |
6896+-----+-----+-----+
6897| 1 | 0 | 1 |
6898+-----+-----+-----+
6899| 1 | 1 | 1 |
6900+-----+-----+-----+
6901
6902Example:
6903""""""""
6904
6905::
6906
Tim Northover675a0962014-06-13 14:24:23 +00006907 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6908 <result> = or i32 15, 40 ; yields i32:result = 47
6909 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006910
6911'``xor``' Instruction
6912^^^^^^^^^^^^^^^^^^^^^
6913
6914Syntax:
6915"""""""
6916
6917::
6918
Tim Northover675a0962014-06-13 14:24:23 +00006919 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006920
6921Overview:
6922"""""""""
6923
6924The '``xor``' instruction returns the bitwise logical exclusive or of
6925its two operands. The ``xor`` is used to implement the "one's
6926complement" operation, which is the "~" operator in C.
6927
6928Arguments:
6929""""""""""
6930
6931The two arguments to the '``xor``' instruction must be
6932:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6933arguments must have identical types.
6934
6935Semantics:
6936""""""""""
6937
6938The truth table used for the '``xor``' instruction is:
6939
6940+-----+-----+-----+
6941| In0 | In1 | Out |
6942+-----+-----+-----+
6943| 0 | 0 | 0 |
6944+-----+-----+-----+
6945| 0 | 1 | 1 |
6946+-----+-----+-----+
6947| 1 | 0 | 1 |
6948+-----+-----+-----+
6949| 1 | 1 | 0 |
6950+-----+-----+-----+
6951
6952Example:
6953""""""""
6954
Renato Golin124f2592016-07-20 12:16:38 +00006955.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006956
Tim Northover675a0962014-06-13 14:24:23 +00006957 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6958 <result> = xor i32 15, 40 ; yields i32:result = 39
6959 <result> = xor i32 4, 8 ; yields i32:result = 12
6960 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006961
6962Vector Operations
6963-----------------
6964
6965LLVM supports several instructions to represent vector operations in a
6966target-independent manner. These instructions cover the element-access
6967and vector-specific operations needed to process vectors effectively.
6968While LLVM does directly support these vector operations, many
6969sophisticated algorithms will want to use target-specific intrinsics to
6970take full advantage of a specific target.
6971
6972.. _i_extractelement:
6973
6974'``extractelement``' Instruction
6975^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6976
6977Syntax:
6978"""""""
6979
6980::
6981
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006982 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006983
6984Overview:
6985"""""""""
6986
6987The '``extractelement``' instruction extracts a single scalar element
6988from a vector at a specified index.
6989
6990Arguments:
6991""""""""""
6992
6993The first operand of an '``extractelement``' instruction is a value of
6994:ref:`vector <t_vector>` type. The second operand is an index indicating
6995the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006996variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006997
6998Semantics:
6999""""""""""
7000
7001The result is a scalar of the same type as the element type of ``val``.
7002Its value is the value at position ``idx`` of ``val``. If ``idx``
7003exceeds the length of ``val``, the results are undefined.
7004
7005Example:
7006""""""""
7007
Renato Golin124f2592016-07-20 12:16:38 +00007008.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007009
7010 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
7011
7012.. _i_insertelement:
7013
7014'``insertelement``' Instruction
7015^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7016
7017Syntax:
7018"""""""
7019
7020::
7021
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007022 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00007023
7024Overview:
7025"""""""""
7026
7027The '``insertelement``' instruction inserts a scalar element into a
7028vector at a specified index.
7029
7030Arguments:
7031""""""""""
7032
7033The first operand of an '``insertelement``' instruction is a value of
7034:ref:`vector <t_vector>` type. The second operand is a scalar value whose
7035type must equal the element type of the first operand. The third operand
7036is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007037index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007038
7039Semantics:
7040""""""""""
7041
7042The result is a vector of the same type as ``val``. Its element values
7043are those of ``val`` except at position ``idx``, where it gets the value
7044``elt``. If ``idx`` exceeds the length of ``val``, the results are
7045undefined.
7046
7047Example:
7048""""""""
7049
Renato Golin124f2592016-07-20 12:16:38 +00007050.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007051
7052 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
7053
7054.. _i_shufflevector:
7055
7056'``shufflevector``' Instruction
7057^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7058
7059Syntax:
7060"""""""
7061
7062::
7063
7064 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
7065
7066Overview:
7067"""""""""
7068
7069The '``shufflevector``' instruction constructs a permutation of elements
7070from two input vectors, returning a vector with the same element type as
7071the input and length that is the same as the shuffle mask.
7072
7073Arguments:
7074""""""""""
7075
7076The first two operands of a '``shufflevector``' instruction are vectors
7077with the same type. The third argument is a shuffle mask whose element
7078type is always 'i32'. The result of the instruction is a vector whose
7079length is the same as the shuffle mask and whose element type is the
7080same as the element type of the first two operands.
7081
7082The shuffle mask operand is required to be a constant vector with either
7083constant integer or undef values.
7084
7085Semantics:
7086""""""""""
7087
7088The elements of the two input vectors are numbered from left to right
7089across both of the vectors. The shuffle mask operand specifies, for each
7090element of the result vector, which element of the two input vectors the
Sanjay Patel6e410182017-04-12 18:39:53 +00007091result element gets. If the shuffle mask is undef, the result vector is
7092undef. If any element of the mask operand is undef, that element of the
7093result is undef. If the shuffle mask selects an undef element from one
7094of the input vectors, the resulting element is undef.
Sean Silvab084af42012-12-07 10:36:55 +00007095
7096Example:
7097""""""""
7098
Renato Golin124f2592016-07-20 12:16:38 +00007099.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007100
7101 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7102 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
7103 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
7104 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
7105 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
7106 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
7107 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7108 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
7109
7110Aggregate Operations
7111--------------------
7112
7113LLVM supports several instructions for working with
7114:ref:`aggregate <t_aggregate>` values.
7115
7116.. _i_extractvalue:
7117
7118'``extractvalue``' Instruction
7119^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7120
7121Syntax:
7122"""""""
7123
7124::
7125
7126 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
7127
7128Overview:
7129"""""""""
7130
7131The '``extractvalue``' instruction extracts the value of a member field
7132from an :ref:`aggregate <t_aggregate>` value.
7133
7134Arguments:
7135""""""""""
7136
7137The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00007138:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00007139constant indices to specify which value to extract in a similar manner
7140as indices in a '``getelementptr``' instruction.
7141
7142The major differences to ``getelementptr`` indexing are:
7143
7144- Since the value being indexed is not a pointer, the first index is
7145 omitted and assumed to be zero.
7146- At least one index must be specified.
7147- Not only struct indices but also array indices must be in bounds.
7148
7149Semantics:
7150""""""""""
7151
7152The result is the value at the position in the aggregate specified by
7153the index operands.
7154
7155Example:
7156""""""""
7157
Renato Golin124f2592016-07-20 12:16:38 +00007158.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007159
7160 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
7161
7162.. _i_insertvalue:
7163
7164'``insertvalue``' Instruction
7165^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7166
7167Syntax:
7168"""""""
7169
7170::
7171
7172 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
7173
7174Overview:
7175"""""""""
7176
7177The '``insertvalue``' instruction inserts a value into a member field in
7178an :ref:`aggregate <t_aggregate>` value.
7179
7180Arguments:
7181""""""""""
7182
7183The first operand of an '``insertvalue``' instruction is a value of
7184:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
7185a first-class value to insert. The following operands are constant
7186indices indicating the position at which to insert the value in a
7187similar manner as indices in a '``extractvalue``' instruction. The value
7188to insert must have the same type as the value identified by the
7189indices.
7190
7191Semantics:
7192""""""""""
7193
7194The result is an aggregate of the same type as ``val``. Its value is
7195that of ``val`` except that the value at the position specified by the
7196indices is that of ``elt``.
7197
7198Example:
7199""""""""
7200
7201.. code-block:: llvm
7202
7203 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
7204 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00007205 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00007206
7207.. _memoryops:
7208
7209Memory Access and Addressing Operations
7210---------------------------------------
7211
7212A key design point of an SSA-based representation is how it represents
7213memory. In LLVM, no memory locations are in SSA form, which makes things
7214very simple. This section describes how to read, write, and allocate
7215memory in LLVM.
7216
7217.. _i_alloca:
7218
7219'``alloca``' Instruction
7220^^^^^^^^^^^^^^^^^^^^^^^^
7221
7222Syntax:
7223"""""""
7224
7225::
7226
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007227 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result
Sean Silvab084af42012-12-07 10:36:55 +00007228
7229Overview:
7230"""""""""
7231
7232The '``alloca``' instruction allocates memory on the stack frame of the
7233currently executing function, to be automatically released when this
7234function returns to its caller. The object is always allocated in the
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007235address space for allocas indicated in the datalayout.
Sean Silvab084af42012-12-07 10:36:55 +00007236
7237Arguments:
7238""""""""""
7239
7240The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7241bytes of memory on the runtime stack, returning a pointer of the
7242appropriate type to the program. If "NumElements" is specified, it is
7243the number of elements allocated, otherwise "NumElements" is defaulted
7244to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007245allocation is guaranteed to be aligned to at least that boundary. The
7246alignment may not be greater than ``1 << 29``. If not specified, or if
7247zero, the target can choose to align the allocation on any convenient
7248boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007249
7250'``type``' may be any sized type.
7251
7252Semantics:
7253""""""""""
7254
7255Memory is allocated; a pointer is returned. The operation is undefined
7256if there is insufficient stack space for the allocation. '``alloca``'d
7257memory is automatically released when the function returns. The
7258'``alloca``' instruction is commonly used to represent automatic
7259variables that must have an address available. When the function returns
7260(either with the ``ret`` or ``resume`` instructions), the memory is
7261reclaimed. Allocating zero bytes is legal, but the result is undefined.
7262The order in which memory is allocated (ie., which way the stack grows)
7263is not specified.
7264
7265Example:
7266""""""""
7267
7268.. code-block:: llvm
7269
Tim Northover675a0962014-06-13 14:24:23 +00007270 %ptr = alloca i32 ; yields i32*:ptr
7271 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7272 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7273 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007274
7275.. _i_load:
7276
7277'``load``' Instruction
7278^^^^^^^^^^^^^^^^^^^^^^
7279
7280Syntax:
7281"""""""
7282
7283::
7284
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007285 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00007286 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007287 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007288 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007289 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007290
7291Overview:
7292"""""""""
7293
7294The '``load``' instruction is used to read from memory.
7295
7296Arguments:
7297""""""""""
7298
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007299The argument to the ``load`` instruction specifies the memory address from which
7300to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7301known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7302the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7303modify the number or order of execution of this ``load`` with other
7304:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007305
JF Bastiend1fb5852015-12-17 22:09:19 +00007306If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
7307<ordering>` and optional ``singlethread`` argument. The ``release`` and
7308``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
7309produce :ref:`defined <memmodel>` results when they may see multiple atomic
7310stores. The type of the pointee must be an integer, pointer, or floating-point
7311type whose bit width is a power of two greater than or equal to eight and less
7312than or equal to a target-specific size limit. ``align`` must be explicitly
7313specified on atomic loads, and the load has undefined behavior if the alignment
7314is not set to a value which is at least the size in bytes of the
7315pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007316
7317The optional constant ``align`` argument specifies the alignment of the
7318operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007319or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007320alignment for the target. It is the responsibility of the code emitter
7321to ensure that the alignment information is correct. Overestimating the
7322alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007323may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007324maximum possible alignment is ``1 << 29``. An alignment value higher
7325than the size of the loaded type implies memory up to the alignment
7326value bytes can be safely loaded without trapping in the default
7327address space. Access of the high bytes can interfere with debugging
7328tools, so should not be accessed if the function has the
7329``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007330
7331The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007332metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007333``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007334metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007335that this load is not expected to be reused in the cache. The code
7336generator may select special instructions to save cache bandwidth, such
7337as the ``MOVNT`` instruction on x86.
7338
7339The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007340metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007341entries. If a load instruction tagged with the ``!invariant.load``
7342metadata is executed, the optimizer may assume the memory location
7343referenced by the load contains the same value at all points in the
7344program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007345
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007346The optional ``!invariant.group`` metadata must reference a single metadata name
7347 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7348
Philip Reamescdb72f32014-10-20 22:40:55 +00007349The optional ``!nonnull`` metadata must reference a single
7350metadata name ``<index>`` corresponding to a metadata node with no
7351entries. The existence of the ``!nonnull`` metadata on the
7352instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007353never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007354on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007355to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007356
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007357The optional ``!dereferenceable`` metadata must reference a single metadata
7358name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007359entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007360tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007361The number of bytes known to be dereferenceable is specified by the integer
7362value in the metadata node. This is analogous to the ''dereferenceable''
7363attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007364to loads of a pointer type.
7365
7366The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007367metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7368``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007369instruction tells the optimizer that the value loaded is known to be either
7370dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007371The number of bytes known to be dereferenceable is specified by the integer
7372value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7373attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007374to loads of a pointer type.
7375
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007376The optional ``!align`` metadata must reference a single metadata name
7377``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7378The existence of the ``!align`` metadata on the instruction tells the
7379optimizer that the value loaded is known to be aligned to a boundary specified
7380by the integer value in the metadata node. The alignment must be a power of 2.
7381This is analogous to the ''align'' attribute on parameters and return values.
7382This metadata can only be applied to loads of a pointer type.
7383
Sean Silvab084af42012-12-07 10:36:55 +00007384Semantics:
7385""""""""""
7386
7387The location of memory pointed to is loaded. If the value being loaded
7388is of scalar type then the number of bytes read does not exceed the
7389minimum number of bytes needed to hold all bits of the type. For
7390example, loading an ``i24`` reads at most three bytes. When loading a
7391value of a type like ``i20`` with a size that is not an integral number
7392of bytes, the result is undefined if the value was not originally
7393written using a store of the same type.
7394
7395Examples:
7396"""""""""
7397
7398.. code-block:: llvm
7399
Tim Northover675a0962014-06-13 14:24:23 +00007400 %ptr = alloca i32 ; yields i32*:ptr
7401 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007402 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007403
7404.. _i_store:
7405
7406'``store``' Instruction
7407^^^^^^^^^^^^^^^^^^^^^^^
7408
7409Syntax:
7410"""""""
7411
7412::
7413
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007414 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7415 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007416
7417Overview:
7418"""""""""
7419
7420The '``store``' instruction is used to write to memory.
7421
7422Arguments:
7423""""""""""
7424
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007425There are two arguments to the ``store`` instruction: a value to store and an
7426address at which to store it. The type of the ``<pointer>`` operand must be a
7427pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7428operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7429allowed to modify the number or order of execution of this ``store`` with other
7430:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7431<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7432structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007433
JF Bastiend1fb5852015-12-17 22:09:19 +00007434If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7435<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7436``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7437produce :ref:`defined <memmodel>` results when they may see multiple atomic
7438stores. The type of the pointee must be an integer, pointer, or floating-point
7439type whose bit width is a power of two greater than or equal to eight and less
7440than or equal to a target-specific size limit. ``align`` must be explicitly
7441specified on atomic stores, and the store has undefined behavior if the
7442alignment is not set to a value which is at least the size in bytes of the
7443pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007444
Eli Benderskyca380842013-04-17 17:17:20 +00007445The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007446operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007447or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007448alignment for the target. It is the responsibility of the code emitter
7449to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007450alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007451alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007452safe. The maximum possible alignment is ``1 << 29``. An alignment
7453value higher than the size of the stored type implies memory up to the
7454alignment value bytes can be stored to without trapping in the default
7455address space. Storing to the higher bytes however may result in data
7456races if another thread can access the same address. Introducing a
7457data race is not allowed. Storing to the extra bytes is not allowed
7458even in situations where a data race is known to not exist if the
7459function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007460
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007461The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007462name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007463value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007464tells the optimizer and code generator that this load is not expected to
7465be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007466instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007467x86.
7468
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007469The optional ``!invariant.group`` metadata must reference a
7470single metadata name ``<index>``. See ``invariant.group`` metadata.
7471
Sean Silvab084af42012-12-07 10:36:55 +00007472Semantics:
7473""""""""""
7474
Eli Benderskyca380842013-04-17 17:17:20 +00007475The contents of memory are updated to contain ``<value>`` at the
7476location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007477of scalar type then the number of bytes written does not exceed the
7478minimum number of bytes needed to hold all bits of the type. For
7479example, storing an ``i24`` writes at most three bytes. When writing a
7480value of a type like ``i20`` with a size that is not an integral number
7481of bytes, it is unspecified what happens to the extra bits that do not
7482belong to the type, but they will typically be overwritten.
7483
7484Example:
7485""""""""
7486
7487.. code-block:: llvm
7488
Tim Northover675a0962014-06-13 14:24:23 +00007489 %ptr = alloca i32 ; yields i32*:ptr
7490 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007491 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007492
7493.. _i_fence:
7494
7495'``fence``' Instruction
7496^^^^^^^^^^^^^^^^^^^^^^^
7497
7498Syntax:
7499"""""""
7500
7501::
7502
Tim Northover675a0962014-06-13 14:24:23 +00007503 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007504
7505Overview:
7506"""""""""
7507
7508The '``fence``' instruction is used to introduce happens-before edges
7509between operations.
7510
7511Arguments:
7512""""""""""
7513
7514'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7515defines what *synchronizes-with* edges they add. They can only be given
7516``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7517
7518Semantics:
7519""""""""""
7520
7521A fence A which has (at least) ``release`` ordering semantics
7522*synchronizes with* a fence B with (at least) ``acquire`` ordering
7523semantics if and only if there exist atomic operations X and Y, both
7524operating on some atomic object M, such that A is sequenced before X, X
7525modifies M (either directly or through some side effect of a sequence
7526headed by X), Y is sequenced before B, and Y observes M. This provides a
7527*happens-before* dependency between A and B. Rather than an explicit
7528``fence``, one (but not both) of the atomic operations X or Y might
7529provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7530still *synchronize-with* the explicit ``fence`` and establish the
7531*happens-before* edge.
7532
7533A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7534``acquire`` and ``release`` semantics specified above, participates in
7535the global program order of other ``seq_cst`` operations and/or fences.
7536
7537The optional ":ref:`singlethread <singlethread>`" argument specifies
7538that the fence only synchronizes with other fences in the same thread.
7539(This is useful for interacting with signal handlers.)
7540
7541Example:
7542""""""""
7543
7544.. code-block:: llvm
7545
Tim Northover675a0962014-06-13 14:24:23 +00007546 fence acquire ; yields void
7547 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007548
7549.. _i_cmpxchg:
7550
7551'``cmpxchg``' Instruction
7552^^^^^^^^^^^^^^^^^^^^^^^^^
7553
7554Syntax:
7555"""""""
7556
7557::
7558
Tim Northover675a0962014-06-13 14:24:23 +00007559 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007560
7561Overview:
7562"""""""""
7563
7564The '``cmpxchg``' instruction is used to atomically modify memory. It
7565loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007566equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007567
7568Arguments:
7569""""""""""
7570
7571There are three arguments to the '``cmpxchg``' instruction: an address
7572to operate on, a value to compare to the value currently be at that
7573address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007574are equal. The type of '<cmp>' must be an integer or pointer type whose
7575bit width is a power of two greater than or equal to eight and less
7576than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7577have the same type, and the type of '<pointer>' must be a pointer to
7578that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7579optimizer is not allowed to modify the number or order of execution of
7580this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007581
Tim Northovere94a5182014-03-11 10:48:52 +00007582The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007583``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7584must be at least ``monotonic``, the ordering constraint on failure must be no
7585stronger than that on success, and the failure ordering cannot be either
7586``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007587
7588The optional "``singlethread``" argument declares that the ``cmpxchg``
7589is only atomic with respect to code (usually signal handlers) running in
7590the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7591respect to all other code in the system.
7592
7593The pointer passed into cmpxchg must have alignment greater than or
7594equal to the size in memory of the operand.
7595
7596Semantics:
7597""""""""""
7598
Tim Northover420a2162014-06-13 14:24:07 +00007599The contents of memory at the location specified by the '``<pointer>``' operand
7600is read and compared to '``<cmp>``'; if the read value is the equal, the
7601'``<new>``' is written. The original value at the location is returned, together
7602with a flag indicating success (true) or failure (false).
7603
7604If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7605permitted: the operation may not write ``<new>`` even if the comparison
7606matched.
7607
7608If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7609if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007610
Tim Northovere94a5182014-03-11 10:48:52 +00007611A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7612identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7613load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007614
7615Example:
7616""""""""
7617
7618.. code-block:: llvm
7619
7620 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007621 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007622 br label %loop
7623
7624 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007625 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007626 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007627 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007628 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7629 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007630 br i1 %success, label %done, label %loop
7631
7632 done:
7633 ...
7634
7635.. _i_atomicrmw:
7636
7637'``atomicrmw``' Instruction
7638^^^^^^^^^^^^^^^^^^^^^^^^^^^
7639
7640Syntax:
7641"""""""
7642
7643::
7644
Tim Northover675a0962014-06-13 14:24:23 +00007645 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007646
7647Overview:
7648"""""""""
7649
7650The '``atomicrmw``' instruction is used to atomically modify memory.
7651
7652Arguments:
7653""""""""""
7654
7655There are three arguments to the '``atomicrmw``' instruction: an
7656operation to apply, an address whose value to modify, an argument to the
7657operation. The operation must be one of the following keywords:
7658
7659- xchg
7660- add
7661- sub
7662- and
7663- nand
7664- or
7665- xor
7666- max
7667- min
7668- umax
7669- umin
7670
7671The type of '<value>' must be an integer type whose bit width is a power
7672of two greater than or equal to eight and less than or equal to a
7673target-specific size limit. The type of the '``<pointer>``' operand must
7674be a pointer to that type. If the ``atomicrmw`` is marked as
7675``volatile``, then the optimizer is not allowed to modify the number or
7676order of execution of this ``atomicrmw`` with other :ref:`volatile
7677operations <volatile>`.
7678
7679Semantics:
7680""""""""""
7681
7682The contents of memory at the location specified by the '``<pointer>``'
7683operand are atomically read, modified, and written back. The original
7684value at the location is returned. The modification is specified by the
7685operation argument:
7686
7687- xchg: ``*ptr = val``
7688- add: ``*ptr = *ptr + val``
7689- sub: ``*ptr = *ptr - val``
7690- and: ``*ptr = *ptr & val``
7691- nand: ``*ptr = ~(*ptr & val)``
7692- or: ``*ptr = *ptr | val``
7693- xor: ``*ptr = *ptr ^ val``
7694- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7695- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7696- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7697 comparison)
7698- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7699 comparison)
7700
7701Example:
7702""""""""
7703
7704.. code-block:: llvm
7705
Tim Northover675a0962014-06-13 14:24:23 +00007706 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007707
7708.. _i_getelementptr:
7709
7710'``getelementptr``' Instruction
7711^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7712
7713Syntax:
7714"""""""
7715
7716::
7717
Peter Collingbourned93620b2016-11-10 22:34:55 +00007718 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7719 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7720 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007721
7722Overview:
7723"""""""""
7724
7725The '``getelementptr``' instruction is used to get the address of a
7726subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007727address calculation only and does not access memory. The instruction can also
7728be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007729
7730Arguments:
7731""""""""""
7732
David Blaikie16a97eb2015-03-04 22:02:58 +00007733The first argument is always a type used as the basis for the calculations.
7734The second argument is always a pointer or a vector of pointers, and is the
7735base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007736that indicate which of the elements of the aggregate object are indexed.
7737The interpretation of each index is dependent on the type being indexed
7738into. The first index always indexes the pointer value given as the
7739first argument, the second index indexes a value of the type pointed to
7740(not necessarily the value directly pointed to, since the first index
7741can be non-zero), etc. The first type indexed into must be a pointer
7742value, subsequent types can be arrays, vectors, and structs. Note that
7743subsequent types being indexed into can never be pointers, since that
7744would require loading the pointer before continuing calculation.
7745
7746The type of each index argument depends on the type it is indexing into.
7747When indexing into a (optionally packed) structure, only ``i32`` integer
7748**constants** are allowed (when using a vector of indices they must all
7749be the **same** ``i32`` integer constant). When indexing into an array,
7750pointer or vector, integers of any width are allowed, and they are not
7751required to be constant. These integers are treated as signed values
7752where relevant.
7753
7754For example, let's consider a C code fragment and how it gets compiled
7755to LLVM:
7756
7757.. code-block:: c
7758
7759 struct RT {
7760 char A;
7761 int B[10][20];
7762 char C;
7763 };
7764 struct ST {
7765 int X;
7766 double Y;
7767 struct RT Z;
7768 };
7769
7770 int *foo(struct ST *s) {
7771 return &s[1].Z.B[5][13];
7772 }
7773
7774The LLVM code generated by Clang is:
7775
7776.. code-block:: llvm
7777
7778 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7779 %struct.ST = type { i32, double, %struct.RT }
7780
7781 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7782 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007783 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007784 ret i32* %arrayidx
7785 }
7786
7787Semantics:
7788""""""""""
7789
7790In the example above, the first index is indexing into the
7791'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7792= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7793indexes into the third element of the structure, yielding a
7794'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7795structure. The third index indexes into the second element of the
7796structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7797dimensions of the array are subscripted into, yielding an '``i32``'
7798type. The '``getelementptr``' instruction returns a pointer to this
7799element, thus computing a value of '``i32*``' type.
7800
7801Note that it is perfectly legal to index partially through a structure,
7802returning a pointer to an inner element. Because of this, the LLVM code
7803for the given testcase is equivalent to:
7804
7805.. code-block:: llvm
7806
7807 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007808 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7809 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7810 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7811 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7812 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007813 ret i32* %t5
7814 }
7815
7816If the ``inbounds`` keyword is present, the result value of the
7817``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7818pointer is not an *in bounds* address of an allocated object, or if any
7819of the addresses that would be formed by successive addition of the
7820offsets implied by the indices to the base address with infinitely
7821precise signed arithmetic are not an *in bounds* address of that
7822allocated object. The *in bounds* addresses for an allocated object are
7823all the addresses that point into the object, plus the address one byte
Eli Friedman13f2e352017-02-23 00:48:18 +00007824past the end. The only *in bounds* address for a null pointer in the
7825default address-space is the null pointer itself. In cases where the
7826base is a vector of pointers the ``inbounds`` keyword applies to each
7827of the computations element-wise.
Sean Silvab084af42012-12-07 10:36:55 +00007828
7829If the ``inbounds`` keyword is not present, the offsets are added to the
7830base address with silently-wrapping two's complement arithmetic. If the
7831offsets have a different width from the pointer, they are sign-extended
7832or truncated to the width of the pointer. The result value of the
7833``getelementptr`` may be outside the object pointed to by the base
7834pointer. The result value may not necessarily be used to access memory
7835though, even if it happens to point into allocated storage. See the
7836:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7837information.
7838
Peter Collingbourned93620b2016-11-10 22:34:55 +00007839If the ``inrange`` keyword is present before any index, loading from or
7840storing to any pointer derived from the ``getelementptr`` has undefined
7841behavior if the load or store would access memory outside of the bounds of
7842the element selected by the index marked as ``inrange``. The result of a
7843pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
7844involving memory) involving a pointer derived from a ``getelementptr`` with
7845the ``inrange`` keyword is undefined, with the exception of comparisons
7846in the case where both operands are in the range of the element selected
7847by the ``inrange`` keyword, inclusive of the address one past the end of
7848that element. Note that the ``inrange`` keyword is currently only allowed
7849in constant ``getelementptr`` expressions.
7850
Sean Silvab084af42012-12-07 10:36:55 +00007851The getelementptr instruction is often confusing. For some more insight
7852into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7853
7854Example:
7855""""""""
7856
7857.. code-block:: llvm
7858
7859 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007860 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007861 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007862 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007863 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007864 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007865 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007866 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007867
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007868Vector of pointers:
7869"""""""""""""""""""
7870
7871The ``getelementptr`` returns a vector of pointers, instead of a single address,
7872when one or more of its arguments is a vector. In such cases, all vector
7873arguments should have the same number of elements, and every scalar argument
7874will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007875
7876.. code-block:: llvm
7877
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007878 ; All arguments are vectors:
7879 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7880 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007881
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007882 ; Add the same scalar offset to each pointer of a vector:
7883 ; A[i] = ptrs[i] + offset*sizeof(i8)
7884 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007885
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007886 ; Add distinct offsets to the same pointer:
7887 ; A[i] = ptr + offsets[i]*sizeof(i8)
7888 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007889
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007890 ; In all cases described above the type of the result is <4 x i8*>
7891
7892The two following instructions are equivalent:
7893
7894.. code-block:: llvm
7895
7896 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7897 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7898 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7899 <4 x i32> %ind4,
7900 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007901
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007902 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7903 i32 2, i32 1, <4 x i32> %ind4, i64 13
7904
7905Let's look at the C code, where the vector version of ``getelementptr``
7906makes sense:
7907
7908.. code-block:: c
7909
7910 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00007911 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007912 for (int i = 0; i < size; ++i) {
7913 A[i] = B[C[i]];
7914 }
7915
7916.. code-block:: llvm
7917
7918 ; get pointers for 8 elements from array B
7919 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7920 ; load 8 elements from array B into A
Elad Cohenef5798a2017-05-03 12:28:54 +00007921 %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007922 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007923
7924Conversion Operations
7925---------------------
7926
7927The instructions in this category are the conversion instructions
7928(casting) which all take a single operand and a type. They perform
7929various bit conversions on the operand.
7930
7931'``trunc .. to``' Instruction
7932^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7933
7934Syntax:
7935"""""""
7936
7937::
7938
7939 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7940
7941Overview:
7942"""""""""
7943
7944The '``trunc``' instruction truncates its operand to the type ``ty2``.
7945
7946Arguments:
7947""""""""""
7948
7949The '``trunc``' instruction takes a value to trunc, and a type to trunc
7950it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7951of the same number of integers. The bit size of the ``value`` must be
7952larger than the bit size of the destination type, ``ty2``. Equal sized
7953types are not allowed.
7954
7955Semantics:
7956""""""""""
7957
7958The '``trunc``' instruction truncates the high order bits in ``value``
7959and converts the remaining bits to ``ty2``. Since the source size must
7960be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7961It will always truncate bits.
7962
7963Example:
7964""""""""
7965
7966.. code-block:: llvm
7967
7968 %X = trunc i32 257 to i8 ; yields i8:1
7969 %Y = trunc i32 123 to i1 ; yields i1:true
7970 %Z = trunc i32 122 to i1 ; yields i1:false
7971 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7972
7973'``zext .. to``' Instruction
7974^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7975
7976Syntax:
7977"""""""
7978
7979::
7980
7981 <result> = zext <ty> <value> to <ty2> ; yields ty2
7982
7983Overview:
7984"""""""""
7985
7986The '``zext``' instruction zero extends its operand to type ``ty2``.
7987
7988Arguments:
7989""""""""""
7990
7991The '``zext``' instruction takes a value to cast, and a type to cast it
7992to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7993the same number of integers. The bit size of the ``value`` must be
7994smaller than the bit size of the destination type, ``ty2``.
7995
7996Semantics:
7997""""""""""
7998
7999The ``zext`` fills the high order bits of the ``value`` with zero bits
8000until it reaches the size of the destination type, ``ty2``.
8001
8002When zero extending from i1, the result will always be either 0 or 1.
8003
8004Example:
8005""""""""
8006
8007.. code-block:: llvm
8008
8009 %X = zext i32 257 to i64 ; yields i64:257
8010 %Y = zext i1 true to i32 ; yields i32:1
8011 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8012
8013'``sext .. to``' Instruction
8014^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8015
8016Syntax:
8017"""""""
8018
8019::
8020
8021 <result> = sext <ty> <value> to <ty2> ; yields ty2
8022
8023Overview:
8024"""""""""
8025
8026The '``sext``' sign extends ``value`` to the type ``ty2``.
8027
8028Arguments:
8029""""""""""
8030
8031The '``sext``' instruction takes a value to cast, and a type to cast it
8032to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8033the same number of integers. The bit size of the ``value`` must be
8034smaller than the bit size of the destination type, ``ty2``.
8035
8036Semantics:
8037""""""""""
8038
8039The '``sext``' instruction performs a sign extension by copying the sign
8040bit (highest order bit) of the ``value`` until it reaches the bit size
8041of the type ``ty2``.
8042
8043When sign extending from i1, the extension always results in -1 or 0.
8044
8045Example:
8046""""""""
8047
8048.. code-block:: llvm
8049
8050 %X = sext i8 -1 to i16 ; yields i16 :65535
8051 %Y = sext i1 true to i32 ; yields i32:-1
8052 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8053
8054'``fptrunc .. to``' Instruction
8055^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8056
8057Syntax:
8058"""""""
8059
8060::
8061
8062 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
8063
8064Overview:
8065"""""""""
8066
8067The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
8068
8069Arguments:
8070""""""""""
8071
8072The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
8073value to cast and a :ref:`floating point <t_floating>` type to cast it to.
8074The size of ``value`` must be larger than the size of ``ty2``. This
8075implies that ``fptrunc`` cannot be used to make a *no-op cast*.
8076
8077Semantics:
8078""""""""""
8079
Dan Liew50456fb2015-09-03 18:43:56 +00008080The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00008081:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00008082point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
8083destination type, ``ty2``, then the results are undefined. If the cast produces
8084an inexact result, how rounding is performed (e.g. truncation, also known as
8085round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00008086
8087Example:
8088""""""""
8089
8090.. code-block:: llvm
8091
8092 %X = fptrunc double 123.0 to float ; yields float:123.0
8093 %Y = fptrunc double 1.0E+300 to float ; yields undefined
8094
8095'``fpext .. to``' Instruction
8096^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8097
8098Syntax:
8099"""""""
8100
8101::
8102
8103 <result> = fpext <ty> <value> to <ty2> ; yields ty2
8104
8105Overview:
8106"""""""""
8107
8108The '``fpext``' extends a floating point ``value`` to a larger floating
8109point value.
8110
8111Arguments:
8112""""""""""
8113
8114The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
8115``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
8116to. The source type must be smaller than the destination type.
8117
8118Semantics:
8119""""""""""
8120
8121The '``fpext``' instruction extends the ``value`` from a smaller
8122:ref:`floating point <t_floating>` type to a larger :ref:`floating
8123point <t_floating>` type. The ``fpext`` cannot be used to make a
8124*no-op cast* because it always changes bits. Use ``bitcast`` to make a
8125*no-op cast* for a floating point cast.
8126
8127Example:
8128""""""""
8129
8130.. code-block:: llvm
8131
8132 %X = fpext float 3.125 to double ; yields double:3.125000e+00
8133 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
8134
8135'``fptoui .. to``' Instruction
8136^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8137
8138Syntax:
8139"""""""
8140
8141::
8142
8143 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
8144
8145Overview:
8146"""""""""
8147
8148The '``fptoui``' converts a floating point ``value`` to its unsigned
8149integer equivalent of type ``ty2``.
8150
8151Arguments:
8152""""""""""
8153
8154The '``fptoui``' instruction takes a value to cast, which must be a
8155scalar or vector :ref:`floating point <t_floating>` value, and a type to
8156cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8157``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8158type with the same number of elements as ``ty``
8159
8160Semantics:
8161""""""""""
8162
8163The '``fptoui``' instruction converts its :ref:`floating
8164point <t_floating>` operand into the nearest (rounding towards zero)
8165unsigned integer value. If the value cannot fit in ``ty2``, the results
8166are undefined.
8167
8168Example:
8169""""""""
8170
8171.. code-block:: llvm
8172
8173 %X = fptoui double 123.0 to i32 ; yields i32:123
8174 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
8175 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
8176
8177'``fptosi .. to``' Instruction
8178^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8179
8180Syntax:
8181"""""""
8182
8183::
8184
8185 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
8186
8187Overview:
8188"""""""""
8189
8190The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
8191``value`` to type ``ty2``.
8192
8193Arguments:
8194""""""""""
8195
8196The '``fptosi``' instruction takes a value to cast, which must be a
8197scalar or vector :ref:`floating point <t_floating>` value, and a type to
8198cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8199``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8200type with the same number of elements as ``ty``
8201
8202Semantics:
8203""""""""""
8204
8205The '``fptosi``' instruction converts its :ref:`floating
8206point <t_floating>` operand into the nearest (rounding towards zero)
8207signed integer value. If the value cannot fit in ``ty2``, the results
8208are undefined.
8209
8210Example:
8211""""""""
8212
8213.. code-block:: llvm
8214
8215 %X = fptosi double -123.0 to i32 ; yields i32:-123
8216 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
8217 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
8218
8219'``uitofp .. to``' Instruction
8220^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8221
8222Syntax:
8223"""""""
8224
8225::
8226
8227 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
8228
8229Overview:
8230"""""""""
8231
8232The '``uitofp``' instruction regards ``value`` as an unsigned integer
8233and converts that value to the ``ty2`` type.
8234
8235Arguments:
8236""""""""""
8237
8238The '``uitofp``' instruction takes a value to cast, which must be a
8239scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8240``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8241``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8242type with the same number of elements as ``ty``
8243
8244Semantics:
8245""""""""""
8246
8247The '``uitofp``' instruction interprets its operand as an unsigned
8248integer quantity and converts it to the corresponding floating point
8249value. If the value cannot fit in the floating point value, the results
8250are undefined.
8251
8252Example:
8253""""""""
8254
8255.. code-block:: llvm
8256
8257 %X = uitofp i32 257 to float ; yields float:257.0
8258 %Y = uitofp i8 -1 to double ; yields double:255.0
8259
8260'``sitofp .. to``' Instruction
8261^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8262
8263Syntax:
8264"""""""
8265
8266::
8267
8268 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8269
8270Overview:
8271"""""""""
8272
8273The '``sitofp``' instruction regards ``value`` as a signed integer and
8274converts that value to the ``ty2`` type.
8275
8276Arguments:
8277""""""""""
8278
8279The '``sitofp``' instruction takes a value to cast, which must be a
8280scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8281``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8282``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8283type with the same number of elements as ``ty``
8284
8285Semantics:
8286""""""""""
8287
8288The '``sitofp``' instruction interprets its operand as a signed integer
8289quantity and converts it to the corresponding floating point value. If
8290the value cannot fit in the floating point value, the results are
8291undefined.
8292
8293Example:
8294""""""""
8295
8296.. code-block:: llvm
8297
8298 %X = sitofp i32 257 to float ; yields float:257.0
8299 %Y = sitofp i8 -1 to double ; yields double:-1.0
8300
8301.. _i_ptrtoint:
8302
8303'``ptrtoint .. to``' Instruction
8304^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8305
8306Syntax:
8307"""""""
8308
8309::
8310
8311 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8312
8313Overview:
8314"""""""""
8315
8316The '``ptrtoint``' instruction converts the pointer or a vector of
8317pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8318
8319Arguments:
8320""""""""""
8321
8322The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008323a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008324type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8325a vector of integers type.
8326
8327Semantics:
8328""""""""""
8329
8330The '``ptrtoint``' instruction converts ``value`` to integer type
8331``ty2`` by interpreting the pointer value as an integer and either
8332truncating or zero extending that value to the size of the integer type.
8333If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8334``value`` is larger than ``ty2`` then a truncation is done. If they are
8335the same size, then nothing is done (*no-op cast*) other than a type
8336change.
8337
8338Example:
8339""""""""
8340
8341.. code-block:: llvm
8342
8343 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8344 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8345 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8346
8347.. _i_inttoptr:
8348
8349'``inttoptr .. to``' Instruction
8350^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8351
8352Syntax:
8353"""""""
8354
8355::
8356
8357 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8358
8359Overview:
8360"""""""""
8361
8362The '``inttoptr``' instruction converts an integer ``value`` to a
8363pointer type, ``ty2``.
8364
8365Arguments:
8366""""""""""
8367
8368The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8369cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8370type.
8371
8372Semantics:
8373""""""""""
8374
8375The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8376applying either a zero extension or a truncation depending on the size
8377of the integer ``value``. If ``value`` is larger than the size of a
8378pointer then a truncation is done. If ``value`` is smaller than the size
8379of a pointer then a zero extension is done. If they are the same size,
8380nothing is done (*no-op cast*).
8381
8382Example:
8383""""""""
8384
8385.. code-block:: llvm
8386
8387 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8388 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8389 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8390 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8391
8392.. _i_bitcast:
8393
8394'``bitcast .. to``' Instruction
8395^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8396
8397Syntax:
8398"""""""
8399
8400::
8401
8402 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8403
8404Overview:
8405"""""""""
8406
8407The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8408changing any bits.
8409
8410Arguments:
8411""""""""""
8412
8413The '``bitcast``' instruction takes a value to cast, which must be a
8414non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008415also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8416bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008417identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008418also be a pointer of the same size. This instruction supports bitwise
8419conversion of vectors to integers and to vectors of other types (as
8420long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008421
8422Semantics:
8423""""""""""
8424
Matt Arsenault24b49c42013-07-31 17:49:08 +00008425The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8426is always a *no-op cast* because no bits change with this
8427conversion. The conversion is done as if the ``value`` had been stored
8428to memory and read back as type ``ty2``. Pointer (or vector of
8429pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008430pointers) types with the same address space through this instruction.
8431To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8432or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008433
8434Example:
8435""""""""
8436
Renato Golin124f2592016-07-20 12:16:38 +00008437.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008438
8439 %X = bitcast i8 255 to i8 ; yields i8 :-1
8440 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8441 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8442 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8443
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008444.. _i_addrspacecast:
8445
8446'``addrspacecast .. to``' Instruction
8447^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8448
8449Syntax:
8450"""""""
8451
8452::
8453
8454 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8455
8456Overview:
8457"""""""""
8458
8459The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8460address space ``n`` to type ``pty2`` in address space ``m``.
8461
8462Arguments:
8463""""""""""
8464
8465The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8466to cast and a pointer type to cast it to, which must have a different
8467address space.
8468
8469Semantics:
8470""""""""""
8471
8472The '``addrspacecast``' instruction converts the pointer value
8473``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008474value modification, depending on the target and the address space
8475pair. Pointer conversions within the same address space must be
8476performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008477conversion is legal then both result and operand refer to the same memory
8478location.
8479
8480Example:
8481""""""""
8482
8483.. code-block:: llvm
8484
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008485 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8486 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8487 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008488
Sean Silvab084af42012-12-07 10:36:55 +00008489.. _otherops:
8490
8491Other Operations
8492----------------
8493
8494The instructions in this category are the "miscellaneous" instructions,
8495which defy better classification.
8496
8497.. _i_icmp:
8498
8499'``icmp``' Instruction
8500^^^^^^^^^^^^^^^^^^^^^^
8501
8502Syntax:
8503"""""""
8504
8505::
8506
Tim Northover675a0962014-06-13 14:24:23 +00008507 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008508
8509Overview:
8510"""""""""
8511
8512The '``icmp``' instruction returns a boolean value or a vector of
8513boolean values based on comparison of its two integer, integer vector,
8514pointer, or pointer vector operands.
8515
8516Arguments:
8517""""""""""
8518
8519The '``icmp``' instruction takes three operands. The first operand is
8520the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008521not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008522
8523#. ``eq``: equal
8524#. ``ne``: not equal
8525#. ``ugt``: unsigned greater than
8526#. ``uge``: unsigned greater or equal
8527#. ``ult``: unsigned less than
8528#. ``ule``: unsigned less or equal
8529#. ``sgt``: signed greater than
8530#. ``sge``: signed greater or equal
8531#. ``slt``: signed less than
8532#. ``sle``: signed less or equal
8533
8534The remaining two arguments must be :ref:`integer <t_integer>` or
8535:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8536must also be identical types.
8537
8538Semantics:
8539""""""""""
8540
8541The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8542code given as ``cond``. The comparison performed always yields either an
8543:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8544
8545#. ``eq``: yields ``true`` if the operands are equal, ``false``
8546 otherwise. No sign interpretation is necessary or performed.
8547#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8548 otherwise. No sign interpretation is necessary or performed.
8549#. ``ugt``: interprets the operands as unsigned values and yields
8550 ``true`` if ``op1`` is greater than ``op2``.
8551#. ``uge``: interprets the operands as unsigned values and yields
8552 ``true`` if ``op1`` is greater than or equal to ``op2``.
8553#. ``ult``: interprets the operands as unsigned values and yields
8554 ``true`` if ``op1`` is less than ``op2``.
8555#. ``ule``: interprets the operands as unsigned values and yields
8556 ``true`` if ``op1`` is less than or equal to ``op2``.
8557#. ``sgt``: interprets the operands as signed values and yields ``true``
8558 if ``op1`` is greater than ``op2``.
8559#. ``sge``: interprets the operands as signed values and yields ``true``
8560 if ``op1`` is greater than or equal to ``op2``.
8561#. ``slt``: interprets the operands as signed values and yields ``true``
8562 if ``op1`` is less than ``op2``.
8563#. ``sle``: interprets the operands as signed values and yields ``true``
8564 if ``op1`` is less than or equal to ``op2``.
8565
8566If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8567are compared as if they were integers.
8568
8569If the operands are integer vectors, then they are compared element by
8570element. The result is an ``i1`` vector with the same number of elements
8571as the values being compared. Otherwise, the result is an ``i1``.
8572
8573Example:
8574""""""""
8575
Renato Golin124f2592016-07-20 12:16:38 +00008576.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008577
8578 <result> = icmp eq i32 4, 5 ; yields: result=false
8579 <result> = icmp ne float* %X, %X ; yields: result=false
8580 <result> = icmp ult i16 4, 5 ; yields: result=true
8581 <result> = icmp sgt i16 4, 5 ; yields: result=false
8582 <result> = icmp ule i16 -4, 5 ; yields: result=false
8583 <result> = icmp sge i16 4, 5 ; yields: result=false
8584
Sean Silvab084af42012-12-07 10:36:55 +00008585.. _i_fcmp:
8586
8587'``fcmp``' Instruction
8588^^^^^^^^^^^^^^^^^^^^^^
8589
8590Syntax:
8591"""""""
8592
8593::
8594
James Molloy88eb5352015-07-10 12:52:00 +00008595 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008596
8597Overview:
8598"""""""""
8599
8600The '``fcmp``' instruction returns a boolean value or vector of boolean
8601values based on comparison of its operands.
8602
8603If the operands are floating point scalars, then the result type is a
8604boolean (:ref:`i1 <t_integer>`).
8605
8606If the operands are floating point vectors, then the result type is a
8607vector of boolean with the same number of elements as the operands being
8608compared.
8609
8610Arguments:
8611""""""""""
8612
8613The '``fcmp``' instruction takes three operands. The first operand is
8614the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008615not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008616
8617#. ``false``: no comparison, always returns false
8618#. ``oeq``: ordered and equal
8619#. ``ogt``: ordered and greater than
8620#. ``oge``: ordered and greater than or equal
8621#. ``olt``: ordered and less than
8622#. ``ole``: ordered and less than or equal
8623#. ``one``: ordered and not equal
8624#. ``ord``: ordered (no nans)
8625#. ``ueq``: unordered or equal
8626#. ``ugt``: unordered or greater than
8627#. ``uge``: unordered or greater than or equal
8628#. ``ult``: unordered or less than
8629#. ``ule``: unordered or less than or equal
8630#. ``une``: unordered or not equal
8631#. ``uno``: unordered (either nans)
8632#. ``true``: no comparison, always returns true
8633
8634*Ordered* means that neither operand is a QNAN while *unordered* means
8635that either operand may be a QNAN.
8636
8637Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8638point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8639type. They must have identical types.
8640
8641Semantics:
8642""""""""""
8643
8644The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8645condition code given as ``cond``. If the operands are vectors, then the
8646vectors are compared element by element. Each comparison performed
8647always yields an :ref:`i1 <t_integer>` result, as follows:
8648
8649#. ``false``: always yields ``false``, regardless of operands.
8650#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8651 is equal to ``op2``.
8652#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8653 is greater than ``op2``.
8654#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8655 is greater than or equal to ``op2``.
8656#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8657 is less than ``op2``.
8658#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8659 is less than or equal to ``op2``.
8660#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8661 is not equal to ``op2``.
8662#. ``ord``: yields ``true`` if both operands are not a QNAN.
8663#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8664 equal to ``op2``.
8665#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8666 greater than ``op2``.
8667#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8668 greater than or equal to ``op2``.
8669#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8670 less than ``op2``.
8671#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8672 less than or equal to ``op2``.
8673#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8674 not equal to ``op2``.
8675#. ``uno``: yields ``true`` if either operand is a QNAN.
8676#. ``true``: always yields ``true``, regardless of operands.
8677
James Molloy88eb5352015-07-10 12:52:00 +00008678The ``fcmp`` instruction can also optionally take any number of
8679:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8680otherwise unsafe floating point optimizations.
8681
8682Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8683only flags that have any effect on its semantics are those that allow
8684assumptions to be made about the values of input arguments; namely
8685``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8686
Sean Silvab084af42012-12-07 10:36:55 +00008687Example:
8688""""""""
8689
Renato Golin124f2592016-07-20 12:16:38 +00008690.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008691
8692 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8693 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8694 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8695 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8696
Sean Silvab084af42012-12-07 10:36:55 +00008697.. _i_phi:
8698
8699'``phi``' Instruction
8700^^^^^^^^^^^^^^^^^^^^^
8701
8702Syntax:
8703"""""""
8704
8705::
8706
8707 <result> = phi <ty> [ <val0>, <label0>], ...
8708
8709Overview:
8710"""""""""
8711
8712The '``phi``' instruction is used to implement the φ node in the SSA
8713graph representing the function.
8714
8715Arguments:
8716""""""""""
8717
8718The type of the incoming values is specified with the first type field.
8719After this, the '``phi``' instruction takes a list of pairs as
8720arguments, with one pair for each predecessor basic block of the current
8721block. Only values of :ref:`first class <t_firstclass>` type may be used as
8722the value arguments to the PHI node. Only labels may be used as the
8723label arguments.
8724
8725There must be no non-phi instructions between the start of a basic block
8726and the PHI instructions: i.e. PHI instructions must be first in a basic
8727block.
8728
8729For the purposes of the SSA form, the use of each incoming value is
8730deemed to occur on the edge from the corresponding predecessor block to
8731the current block (but after any definition of an '``invoke``'
8732instruction's return value on the same edge).
8733
8734Semantics:
8735""""""""""
8736
8737At runtime, the '``phi``' instruction logically takes on the value
8738specified by the pair corresponding to the predecessor basic block that
8739executed just prior to the current block.
8740
8741Example:
8742""""""""
8743
8744.. code-block:: llvm
8745
8746 Loop: ; Infinite loop that counts from 0 on up...
8747 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8748 %nextindvar = add i32 %indvar, 1
8749 br label %Loop
8750
8751.. _i_select:
8752
8753'``select``' Instruction
8754^^^^^^^^^^^^^^^^^^^^^^^^
8755
8756Syntax:
8757"""""""
8758
8759::
8760
8761 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8762
8763 selty is either i1 or {<N x i1>}
8764
8765Overview:
8766"""""""""
8767
8768The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008769condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008770
8771Arguments:
8772""""""""""
8773
8774The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8775values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008776class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008777
8778Semantics:
8779""""""""""
8780
8781If the condition is an i1 and it evaluates to 1, the instruction returns
8782the first value argument; otherwise, it returns the second value
8783argument.
8784
8785If the condition is a vector of i1, then the value arguments must be
8786vectors of the same size, and the selection is done element by element.
8787
David Majnemer40a0b592015-03-03 22:45:47 +00008788If the condition is an i1 and the value arguments are vectors of the
8789same size, then an entire vector is selected.
8790
Sean Silvab084af42012-12-07 10:36:55 +00008791Example:
8792""""""""
8793
8794.. code-block:: llvm
8795
8796 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8797
8798.. _i_call:
8799
8800'``call``' Instruction
8801^^^^^^^^^^^^^^^^^^^^^^
8802
8803Syntax:
8804"""""""
8805
8806::
8807
David Blaikieb83cf102016-07-13 17:21:34 +00008808 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008809 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008810
8811Overview:
8812"""""""""
8813
8814The '``call``' instruction represents a simple function call.
8815
8816Arguments:
8817""""""""""
8818
8819This instruction requires several arguments:
8820
Reid Kleckner5772b772014-04-24 20:14:34 +00008821#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008822 should perform tail call optimization. The ``tail`` marker is a hint that
8823 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008824 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008825 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008826
8827 #. The call will not cause unbounded stack growth if it is part of a
8828 recursive cycle in the call graph.
8829 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8830 forwarded in place.
8831
8832 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008833 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008834 rules:
8835
8836 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8837 or a pointer bitcast followed by a ret instruction.
8838 - The ret instruction must return the (possibly bitcasted) value
8839 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008840 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008841 parameters or return types may differ in pointee type, but not
8842 in address space.
8843 - The calling conventions of the caller and callee must match.
8844 - All ABI-impacting function attributes, such as sret, byval, inreg,
8845 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008846 - The callee must be varargs iff the caller is varargs. Bitcasting a
8847 non-varargs function to the appropriate varargs type is legal so
8848 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008849
8850 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8851 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008852
8853 - Caller and callee both have the calling convention ``fastcc``.
8854 - The call is in tail position (ret immediately follows call and ret
8855 uses value of call or is void).
8856 - Option ``-tailcallopt`` is enabled, or
8857 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008858 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008859 met. <CodeGenerator.html#tailcallopt>`_
8860
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008861#. The optional ``notail`` marker indicates that the optimizers should not add
8862 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8863 call optimization from being performed on the call.
8864
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008865#. The optional ``fast-math flags`` marker indicates that the call has one or more
8866 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8867 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8868 for calls that return a floating-point scalar or vector type.
8869
Sean Silvab084af42012-12-07 10:36:55 +00008870#. The optional "cconv" marker indicates which :ref:`calling
8871 convention <callingconv>` the call should use. If none is
8872 specified, the call defaults to using C calling conventions. The
8873 calling convention of the call must match the calling convention of
8874 the target function, or else the behavior is undefined.
8875#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8876 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8877 are valid here.
8878#. '``ty``': the type of the call instruction itself which is also the
8879 type of the return value. Functions that return no value are marked
8880 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00008881#. '``fnty``': shall be the signature of the function being called. The
8882 argument types must match the types implied by this signature. This
8883 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00008884#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00008885 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00008886 indirect ``call``'s are just as possible, calling an arbitrary pointer
8887 to function value.
8888#. '``function args``': argument list whose types match the function
8889 signature argument types and parameter attributes. All arguments must
8890 be of :ref:`first class <t_firstclass>` type. If the function signature
8891 indicates the function accepts a variable number of arguments, the
8892 extra arguments can be specified.
George Burgess IV39c91052017-04-13 04:01:55 +00008893#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008894#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008895
8896Semantics:
8897""""""""""
8898
8899The '``call``' instruction is used to cause control flow to transfer to
8900a specified function, with its incoming arguments bound to the specified
8901values. Upon a '``ret``' instruction in the called function, control
8902flow continues with the instruction after the function call, and the
8903return value of the function is bound to the result argument.
8904
8905Example:
8906""""""""
8907
8908.. code-block:: llvm
8909
8910 %retval = call i32 @test(i32 %argc)
8911 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8912 %X = tail call i32 @foo() ; yields i32
8913 %Y = tail call fastcc i32 @foo() ; yields i32
8914 call void %foo(i8 97 signext)
8915
8916 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008917 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008918 %gr = extractvalue %struct.A %r, 0 ; yields i32
8919 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8920 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8921 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8922
8923llvm treats calls to some functions with names and arguments that match
8924the standard C99 library as being the C99 library functions, and may
8925perform optimizations or generate code for them under that assumption.
8926This is something we'd like to change in the future to provide better
8927support for freestanding environments and non-C-based languages.
8928
8929.. _i_va_arg:
8930
8931'``va_arg``' Instruction
8932^^^^^^^^^^^^^^^^^^^^^^^^
8933
8934Syntax:
8935"""""""
8936
8937::
8938
8939 <resultval> = va_arg <va_list*> <arglist>, <argty>
8940
8941Overview:
8942"""""""""
8943
8944The '``va_arg``' instruction is used to access arguments passed through
8945the "variable argument" area of a function call. It is used to implement
8946the ``va_arg`` macro in C.
8947
8948Arguments:
8949""""""""""
8950
8951This instruction takes a ``va_list*`` value and the type of the
8952argument. It returns a value of the specified argument type and
8953increments the ``va_list`` to point to the next argument. The actual
8954type of ``va_list`` is target specific.
8955
8956Semantics:
8957""""""""""
8958
8959The '``va_arg``' instruction loads an argument of the specified type
8960from the specified ``va_list`` and causes the ``va_list`` to point to
8961the next argument. For more information, see the variable argument
8962handling :ref:`Intrinsic Functions <int_varargs>`.
8963
8964It is legal for this instruction to be called in a function which does
8965not take a variable number of arguments, for example, the ``vfprintf``
8966function.
8967
8968``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8969function <intrinsics>` because it takes a type as an argument.
8970
8971Example:
8972""""""""
8973
8974See the :ref:`variable argument processing <int_varargs>` section.
8975
8976Note that the code generator does not yet fully support va\_arg on many
8977targets. Also, it does not currently support va\_arg with aggregate
8978types on any target.
8979
8980.. _i_landingpad:
8981
8982'``landingpad``' Instruction
8983^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8984
8985Syntax:
8986"""""""
8987
8988::
8989
David Majnemer7fddecc2015-06-17 20:52:32 +00008990 <resultval> = landingpad <resultty> <clause>+
8991 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008992
8993 <clause> := catch <type> <value>
8994 <clause> := filter <array constant type> <array constant>
8995
8996Overview:
8997"""""""""
8998
8999The '``landingpad``' instruction is used by `LLVM's exception handling
9000system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009001is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00009002code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00009003defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00009004re-entry to the function. The ``resultval`` has the type ``resultty``.
9005
9006Arguments:
9007""""""""""
9008
David Majnemer7fddecc2015-06-17 20:52:32 +00009009The optional
Sean Silvab084af42012-12-07 10:36:55 +00009010``cleanup`` flag indicates that the landing pad block is a cleanup.
9011
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009012A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00009013contains the global variable representing the "type" that may be caught
9014or filtered respectively. Unlike the ``catch`` clause, the ``filter``
9015clause takes an array constant as its argument. Use
9016"``[0 x i8**] undef``" for a filter which cannot throw. The
9017'``landingpad``' instruction must contain *at least* one ``clause`` or
9018the ``cleanup`` flag.
9019
9020Semantics:
9021""""""""""
9022
9023The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00009024:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00009025therefore the "result type" of the ``landingpad`` instruction. As with
9026calling conventions, how the personality function results are
9027represented in LLVM IR is target specific.
9028
9029The clauses are applied in order from top to bottom. If two
9030``landingpad`` instructions are merged together through inlining, the
9031clauses from the calling function are appended to the list of clauses.
9032When the call stack is being unwound due to an exception being thrown,
9033the exception is compared against each ``clause`` in turn. If it doesn't
9034match any of the clauses, and the ``cleanup`` flag is not set, then
9035unwinding continues further up the call stack.
9036
9037The ``landingpad`` instruction has several restrictions:
9038
9039- A landing pad block is a basic block which is the unwind destination
9040 of an '``invoke``' instruction.
9041- A landing pad block must have a '``landingpad``' instruction as its
9042 first non-PHI instruction.
9043- There can be only one '``landingpad``' instruction within the landing
9044 pad block.
9045- A basic block that is not a landing pad block may not include a
9046 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009047
9048Example:
9049""""""""
9050
9051.. code-block:: llvm
9052
9053 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00009054 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009055 catch i8** @_ZTIi
9056 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00009057 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009058 cleanup
9059 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00009060 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009061 catch i8** @_ZTIi
9062 filter [1 x i8**] [@_ZTId]
9063
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009064.. _i_catchpad:
9065
9066'``catchpad``' Instruction
9067^^^^^^^^^^^^^^^^^^^^^^^^^^
9068
9069Syntax:
9070"""""""
9071
9072::
9073
9074 <resultval> = catchpad within <catchswitch> [<args>*]
9075
9076Overview:
9077"""""""""
9078
9079The '``catchpad``' instruction is used by `LLVM's exception handling
9080system <ExceptionHandling.html#overview>`_ to specify that a basic block
9081begins a catch handler --- one where a personality routine attempts to transfer
9082control to catch an exception.
9083
9084Arguments:
9085""""""""""
9086
9087The ``catchswitch`` operand must always be a token produced by a
9088:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
9089ensures that each ``catchpad`` has exactly one predecessor block, and it always
9090terminates in a ``catchswitch``.
9091
9092The ``args`` correspond to whatever information the personality routine
9093requires to know if this is an appropriate handler for the exception. Control
9094will transfer to the ``catchpad`` if this is the first appropriate handler for
9095the exception.
9096
9097The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
9098``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
9099pads.
9100
9101Semantics:
9102""""""""""
9103
9104When the call stack is being unwound due to an exception being thrown, the
9105exception is compared against the ``args``. If it doesn't match, control will
9106not reach the ``catchpad`` instruction. The representation of ``args`` is
9107entirely target and personality function-specific.
9108
9109Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
9110instruction must be the first non-phi of its parent basic block.
9111
9112The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
9113instructions is described in the
9114`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
9115
9116When a ``catchpad`` has been "entered" but not yet "exited" (as
9117described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9118it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9119that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
9120
9121Example:
9122""""""""
9123
Renato Golin124f2592016-07-20 12:16:38 +00009124.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009125
9126 dispatch:
9127 %cs = catchswitch within none [label %handler0] unwind to caller
9128 ;; A catch block which can catch an integer.
9129 handler0:
9130 %tok = catchpad within %cs [i8** @_ZTIi]
9131
David Majnemer654e1302015-07-31 17:58:14 +00009132.. _i_cleanuppad:
9133
9134'``cleanuppad``' Instruction
9135^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9136
9137Syntax:
9138"""""""
9139
9140::
9141
David Majnemer8a1c45d2015-12-12 05:38:55 +00009142 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00009143
9144Overview:
9145"""""""""
9146
9147The '``cleanuppad``' instruction is used by `LLVM's exception handling
9148system <ExceptionHandling.html#overview>`_ to specify that a basic block
9149is a cleanup block --- one where a personality routine attempts to
9150transfer control to run cleanup actions.
9151The ``args`` correspond to whatever additional
9152information the :ref:`personality function <personalityfn>` requires to
9153execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00009154The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00009155match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
9156The ``parent`` argument is the token of the funclet that contains the
9157``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
9158this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00009159
9160Arguments:
9161""""""""""
9162
9163The instruction takes a list of arbitrary values which are interpreted
9164by the :ref:`personality function <personalityfn>`.
9165
9166Semantics:
9167""""""""""
9168
David Majnemer654e1302015-07-31 17:58:14 +00009169When the call stack is being unwound due to an exception being thrown,
9170the :ref:`personality function <personalityfn>` transfers control to the
9171``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00009172As with calling conventions, how the personality function results are
9173represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00009174
9175The ``cleanuppad`` instruction has several restrictions:
9176
9177- A cleanup block is a basic block which is the unwind destination of
9178 an exceptional instruction.
9179- A cleanup block must have a '``cleanuppad``' instruction as its
9180 first non-PHI instruction.
9181- There can be only one '``cleanuppad``' instruction within the
9182 cleanup block.
9183- A basic block that is not a cleanup block may not include a
9184 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009185
Joseph Tremoulete28885e2016-01-10 04:28:38 +00009186When a ``cleanuppad`` has been "entered" but not yet "exited" (as
9187described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9188it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9189that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009190
David Majnemer654e1302015-07-31 17:58:14 +00009191Example:
9192""""""""
9193
Renato Golin124f2592016-07-20 12:16:38 +00009194.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00009195
David Majnemer8a1c45d2015-12-12 05:38:55 +00009196 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00009197
Sean Silvab084af42012-12-07 10:36:55 +00009198.. _intrinsics:
9199
9200Intrinsic Functions
9201===================
9202
9203LLVM supports the notion of an "intrinsic function". These functions
9204have well known names and semantics and are required to follow certain
9205restrictions. Overall, these intrinsics represent an extension mechanism
9206for the LLVM language that does not require changing all of the
9207transformations in LLVM when adding to the language (or the bitcode
9208reader/writer, the parser, etc...).
9209
9210Intrinsic function names must all start with an "``llvm.``" prefix. This
9211prefix is reserved in LLVM for intrinsic names; thus, function names may
9212not begin with this prefix. Intrinsic functions must always be external
9213functions: you cannot define the body of intrinsic functions. Intrinsic
9214functions may only be used in call or invoke instructions: it is illegal
9215to take the address of an intrinsic function. Additionally, because
9216intrinsic functions are part of the LLVM language, it is required if any
9217are added that they be documented here.
9218
9219Some intrinsic functions can be overloaded, i.e., the intrinsic
9220represents a family of functions that perform the same operation but on
9221different data types. Because LLVM can represent over 8 million
9222different integer types, overloading is used commonly to allow an
9223intrinsic function to operate on any integer type. One or more of the
9224argument types or the result type can be overloaded to accept any
9225integer type. Argument types may also be defined as exactly matching a
9226previous argument's type or the result type. This allows an intrinsic
9227function which accepts multiple arguments, but needs all of them to be
9228of the same type, to only be overloaded with respect to a single
9229argument or the result.
9230
9231Overloaded intrinsics will have the names of its overloaded argument
9232types encoded into its function name, each preceded by a period. Only
9233those types which are overloaded result in a name suffix. Arguments
9234whose type is matched against another type do not. For example, the
9235``llvm.ctpop`` function can take an integer of any width and returns an
9236integer of exactly the same integer width. This leads to a family of
9237functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
9238``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
9239overloaded, and only one type suffix is required. Because the argument's
9240type is matched against the return type, it does not require its own
9241name suffix.
9242
9243To learn how to add an intrinsic function, please see the `Extending
9244LLVM Guide <ExtendingLLVM.html>`_.
9245
9246.. _int_varargs:
9247
9248Variable Argument Handling Intrinsics
9249-------------------------------------
9250
9251Variable argument support is defined in LLVM with the
9252:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9253functions. These functions are related to the similarly named macros
9254defined in the ``<stdarg.h>`` header file.
9255
9256All of these functions operate on arguments that use a target-specific
9257value type "``va_list``". The LLVM assembly language reference manual
9258does not define what this type is, so all transformations should be
9259prepared to handle these functions regardless of the type used.
9260
9261This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9262variable argument handling intrinsic functions are used.
9263
9264.. code-block:: llvm
9265
Tim Northoverab60bb92014-11-02 01:21:51 +00009266 ; This struct is different for every platform. For most platforms,
9267 ; it is merely an i8*.
9268 %struct.va_list = type { i8* }
9269
9270 ; For Unix x86_64 platforms, va_list is the following struct:
9271 ; %struct.va_list = type { i32, i32, i8*, i8* }
9272
Sean Silvab084af42012-12-07 10:36:55 +00009273 define i32 @test(i32 %X, ...) {
9274 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009275 %ap = alloca %struct.va_list
9276 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009277 call void @llvm.va_start(i8* %ap2)
9278
9279 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009280 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009281
9282 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9283 %aq = alloca i8*
9284 %aq2 = bitcast i8** %aq to i8*
9285 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9286 call void @llvm.va_end(i8* %aq2)
9287
9288 ; Stop processing of arguments.
9289 call void @llvm.va_end(i8* %ap2)
9290 ret i32 %tmp
9291 }
9292
9293 declare void @llvm.va_start(i8*)
9294 declare void @llvm.va_copy(i8*, i8*)
9295 declare void @llvm.va_end(i8*)
9296
9297.. _int_va_start:
9298
9299'``llvm.va_start``' Intrinsic
9300^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9301
9302Syntax:
9303"""""""
9304
9305::
9306
Nick Lewycky04f6de02013-09-11 22:04:52 +00009307 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009308
9309Overview:
9310"""""""""
9311
9312The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9313subsequent use by ``va_arg``.
9314
9315Arguments:
9316""""""""""
9317
9318The argument is a pointer to a ``va_list`` element to initialize.
9319
9320Semantics:
9321""""""""""
9322
9323The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9324available in C. In a target-dependent way, it initializes the
9325``va_list`` element to which the argument points, so that the next call
9326to ``va_arg`` will produce the first variable argument passed to the
9327function. Unlike the C ``va_start`` macro, this intrinsic does not need
9328to know the last argument of the function as the compiler can figure
9329that out.
9330
9331'``llvm.va_end``' Intrinsic
9332^^^^^^^^^^^^^^^^^^^^^^^^^^^
9333
9334Syntax:
9335"""""""
9336
9337::
9338
9339 declare void @llvm.va_end(i8* <arglist>)
9340
9341Overview:
9342"""""""""
9343
9344The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9345initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9346
9347Arguments:
9348""""""""""
9349
9350The argument is a pointer to a ``va_list`` to destroy.
9351
9352Semantics:
9353""""""""""
9354
9355The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9356available in C. In a target-dependent way, it destroys the ``va_list``
9357element to which the argument points. Calls to
9358:ref:`llvm.va_start <int_va_start>` and
9359:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9360``llvm.va_end``.
9361
9362.. _int_va_copy:
9363
9364'``llvm.va_copy``' Intrinsic
9365^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9366
9367Syntax:
9368"""""""
9369
9370::
9371
9372 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9373
9374Overview:
9375"""""""""
9376
9377The '``llvm.va_copy``' intrinsic copies the current argument position
9378from the source argument list to the destination argument list.
9379
9380Arguments:
9381""""""""""
9382
9383The first argument is a pointer to a ``va_list`` element to initialize.
9384The second argument is a pointer to a ``va_list`` element to copy from.
9385
9386Semantics:
9387""""""""""
9388
9389The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9390available in C. In a target-dependent way, it copies the source
9391``va_list`` element into the destination ``va_list`` element. This
9392intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9393arbitrarily complex and require, for example, memory allocation.
9394
9395Accurate Garbage Collection Intrinsics
9396--------------------------------------
9397
Philip Reamesc5b0f562015-02-25 23:52:06 +00009398LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009399(GC) requires the frontend to generate code containing appropriate intrinsic
9400calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009401intrinsics in a manner which is appropriate for the target collector.
9402
Sean Silvab084af42012-12-07 10:36:55 +00009403These intrinsics allow identification of :ref:`GC roots on the
9404stack <int_gcroot>`, as well as garbage collector implementations that
9405require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009406Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009407these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009408details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009409
Philip Reamesf80bbff2015-02-25 23:45:20 +00009410Experimental Statepoint Intrinsics
9411^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9412
9413LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009414collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009415to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009416:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009417differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009418<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009419described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009420
9421.. _int_gcroot:
9422
9423'``llvm.gcroot``' Intrinsic
9424^^^^^^^^^^^^^^^^^^^^^^^^^^^
9425
9426Syntax:
9427"""""""
9428
9429::
9430
9431 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9432
9433Overview:
9434"""""""""
9435
9436The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9437the code generator, and allows some metadata to be associated with it.
9438
9439Arguments:
9440""""""""""
9441
9442The first argument specifies the address of a stack object that contains
9443the root pointer. The second pointer (which must be either a constant or
9444a global value address) contains the meta-data to be associated with the
9445root.
9446
9447Semantics:
9448""""""""""
9449
9450At runtime, a call to this intrinsic stores a null pointer into the
9451"ptrloc" location. At compile-time, the code generator generates
9452information to allow the runtime to find the pointer at GC safe points.
9453The '``llvm.gcroot``' intrinsic may only be used in a function which
9454:ref:`specifies a GC algorithm <gc>`.
9455
9456.. _int_gcread:
9457
9458'``llvm.gcread``' Intrinsic
9459^^^^^^^^^^^^^^^^^^^^^^^^^^^
9460
9461Syntax:
9462"""""""
9463
9464::
9465
9466 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9467
9468Overview:
9469"""""""""
9470
9471The '``llvm.gcread``' intrinsic identifies reads of references from heap
9472locations, allowing garbage collector implementations that require read
9473barriers.
9474
9475Arguments:
9476""""""""""
9477
9478The second argument is the address to read from, which should be an
9479address allocated from the garbage collector. The first object is a
9480pointer to the start of the referenced object, if needed by the language
9481runtime (otherwise null).
9482
9483Semantics:
9484""""""""""
9485
9486The '``llvm.gcread``' intrinsic has the same semantics as a load
9487instruction, but may be replaced with substantially more complex code by
9488the garbage collector runtime, as needed. The '``llvm.gcread``'
9489intrinsic may only be used in a function which :ref:`specifies a GC
9490algorithm <gc>`.
9491
9492.. _int_gcwrite:
9493
9494'``llvm.gcwrite``' Intrinsic
9495^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9496
9497Syntax:
9498"""""""
9499
9500::
9501
9502 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9503
9504Overview:
9505"""""""""
9506
9507The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9508locations, allowing garbage collector implementations that require write
9509barriers (such as generational or reference counting collectors).
9510
9511Arguments:
9512""""""""""
9513
9514The first argument is the reference to store, the second is the start of
9515the object to store it to, and the third is the address of the field of
9516Obj to store to. If the runtime does not require a pointer to the
9517object, Obj may be null.
9518
9519Semantics:
9520""""""""""
9521
9522The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9523instruction, but may be replaced with substantially more complex code by
9524the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9525intrinsic may only be used in a function which :ref:`specifies a GC
9526algorithm <gc>`.
9527
9528Code Generator Intrinsics
9529-------------------------
9530
9531These intrinsics are provided by LLVM to expose special features that
9532may only be implemented with code generator support.
9533
9534'``llvm.returnaddress``' Intrinsic
9535^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9536
9537Syntax:
9538"""""""
9539
9540::
9541
George Burgess IVfbc34982017-05-20 04:52:29 +00009542 declare i8* @llvm.returnaddress(i32 <level>)
Sean Silvab084af42012-12-07 10:36:55 +00009543
9544Overview:
9545"""""""""
9546
9547The '``llvm.returnaddress``' intrinsic attempts to compute a
9548target-specific value indicating the return address of the current
9549function or one of its callers.
9550
9551Arguments:
9552""""""""""
9553
9554The argument to this intrinsic indicates which function to return the
9555address for. Zero indicates the calling function, one indicates its
9556caller, etc. The argument is **required** to be a constant integer
9557value.
9558
9559Semantics:
9560""""""""""
9561
9562The '``llvm.returnaddress``' intrinsic either returns a pointer
9563indicating the return address of the specified call frame, or zero if it
9564cannot be identified. The value returned by this intrinsic is likely to
9565be incorrect or 0 for arguments other than zero, so it should only be
9566used for debugging purposes.
9567
9568Note that calling this intrinsic does not prevent function inlining or
9569other aggressive transformations, so the value returned may not be that
9570of the obvious source-language caller.
9571
Albert Gutowski795d7d62016-10-12 22:13:19 +00009572'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +00009573^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +00009574
9575Syntax:
9576"""""""
9577
9578::
9579
George Burgess IVfbc34982017-05-20 04:52:29 +00009580 declare i8* @llvm.addressofreturnaddress()
Albert Gutowski795d7d62016-10-12 22:13:19 +00009581
9582Overview:
9583"""""""""
9584
9585The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
9586pointer to the place in the stack frame where the return address of the
9587current function is stored.
9588
9589Semantics:
9590""""""""""
9591
9592Note that calling this intrinsic does not prevent function inlining or
9593other aggressive transformations, so the value returned may not be that
9594of the obvious source-language caller.
9595
9596This intrinsic is only implemented for x86.
9597
Sean Silvab084af42012-12-07 10:36:55 +00009598'``llvm.frameaddress``' Intrinsic
9599^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9600
9601Syntax:
9602"""""""
9603
9604::
9605
9606 declare i8* @llvm.frameaddress(i32 <level>)
9607
9608Overview:
9609"""""""""
9610
9611The '``llvm.frameaddress``' intrinsic attempts to return the
9612target-specific frame pointer value for the specified stack frame.
9613
9614Arguments:
9615""""""""""
9616
9617The argument to this intrinsic indicates which function to return the
9618frame pointer for. Zero indicates the calling function, one indicates
9619its caller, etc. The argument is **required** to be a constant integer
9620value.
9621
9622Semantics:
9623""""""""""
9624
9625The '``llvm.frameaddress``' intrinsic either returns a pointer
9626indicating the frame address of the specified call frame, or zero if it
9627cannot be identified. The value returned by this intrinsic is likely to
9628be incorrect or 0 for arguments other than zero, so it should only be
9629used for debugging purposes.
9630
9631Note that calling this intrinsic does not prevent function inlining or
9632other aggressive transformations, so the value returned may not be that
9633of the obvious source-language caller.
9634
Reid Kleckner60381792015-07-07 22:25:32 +00009635'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009636^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9637
9638Syntax:
9639"""""""
9640
9641::
9642
Reid Kleckner60381792015-07-07 22:25:32 +00009643 declare void @llvm.localescape(...)
9644 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009645
9646Overview:
9647"""""""""
9648
Reid Kleckner60381792015-07-07 22:25:32 +00009649The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9650allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009651live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009652computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009653
9654Arguments:
9655""""""""""
9656
Reid Kleckner60381792015-07-07 22:25:32 +00009657All arguments to '``llvm.localescape``' must be pointers to static allocas or
9658casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009659once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009660
Reid Kleckner60381792015-07-07 22:25:32 +00009661The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009662bitcasted pointer to a function defined in the current module. The code
9663generator cannot determine the frame allocation offset of functions defined in
9664other modules.
9665
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009666The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9667call frame that is currently live. The return value of '``llvm.localaddress``'
9668is one way to produce such a value, but various runtimes also expose a suitable
9669pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009670
Reid Kleckner60381792015-07-07 22:25:32 +00009671The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9672'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009673
Reid Klecknere9b89312015-01-13 00:48:10 +00009674Semantics:
9675""""""""""
9676
Reid Kleckner60381792015-07-07 22:25:32 +00009677These intrinsics allow a group of functions to share access to a set of local
9678stack allocations of a one parent function. The parent function may call the
9679'``llvm.localescape``' intrinsic once from the function entry block, and the
9680child functions can use '``llvm.localrecover``' to access the escaped allocas.
9681The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9682the escaped allocas are allocated, which would break attempts to use
9683'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009684
Renato Golinc7aea402014-05-06 16:51:25 +00009685.. _int_read_register:
9686.. _int_write_register:
9687
9688'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9689^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9690
9691Syntax:
9692"""""""
9693
9694::
9695
9696 declare i32 @llvm.read_register.i32(metadata)
9697 declare i64 @llvm.read_register.i64(metadata)
9698 declare void @llvm.write_register.i32(metadata, i32 @value)
9699 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009700 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009701
9702Overview:
9703"""""""""
9704
9705The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9706provides access to the named register. The register must be valid on
9707the architecture being compiled to. The type needs to be compatible
9708with the register being read.
9709
9710Semantics:
9711""""""""""
9712
9713The '``llvm.read_register``' intrinsic returns the current value of the
9714register, where possible. The '``llvm.write_register``' intrinsic sets
9715the current value of the register, where possible.
9716
9717This is useful to implement named register global variables that need
9718to always be mapped to a specific register, as is common practice on
9719bare-metal programs including OS kernels.
9720
9721The compiler doesn't check for register availability or use of the used
9722register in surrounding code, including inline assembly. Because of that,
9723allocatable registers are not supported.
9724
9725Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009726architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009727work is needed to support other registers and even more so, allocatable
9728registers.
9729
Sean Silvab084af42012-12-07 10:36:55 +00009730.. _int_stacksave:
9731
9732'``llvm.stacksave``' Intrinsic
9733^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9734
9735Syntax:
9736"""""""
9737
9738::
9739
9740 declare i8* @llvm.stacksave()
9741
9742Overview:
9743"""""""""
9744
9745The '``llvm.stacksave``' intrinsic is used to remember the current state
9746of the function stack, for use with
9747:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9748implementing language features like scoped automatic variable sized
9749arrays in C99.
9750
9751Semantics:
9752""""""""""
9753
9754This intrinsic returns a opaque pointer value that can be passed to
9755:ref:`llvm.stackrestore <int_stackrestore>`. When an
9756``llvm.stackrestore`` intrinsic is executed with a value saved from
9757``llvm.stacksave``, it effectively restores the state of the stack to
9758the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9759practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9760were allocated after the ``llvm.stacksave`` was executed.
9761
9762.. _int_stackrestore:
9763
9764'``llvm.stackrestore``' Intrinsic
9765^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9766
9767Syntax:
9768"""""""
9769
9770::
9771
9772 declare void @llvm.stackrestore(i8* %ptr)
9773
9774Overview:
9775"""""""""
9776
9777The '``llvm.stackrestore``' intrinsic is used to restore the state of
9778the function stack to the state it was in when the corresponding
9779:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9780useful for implementing language features like scoped automatic variable
9781sized arrays in C99.
9782
9783Semantics:
9784""""""""""
9785
9786See the description for :ref:`llvm.stacksave <int_stacksave>`.
9787
Yury Gribovd7dbb662015-12-01 11:40:55 +00009788.. _int_get_dynamic_area_offset:
9789
9790'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009791^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009792
9793Syntax:
9794"""""""
9795
9796::
9797
9798 declare i32 @llvm.get.dynamic.area.offset.i32()
9799 declare i64 @llvm.get.dynamic.area.offset.i64()
9800
Lang Hames10239932016-10-08 00:20:42 +00009801Overview:
9802"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +00009803
9804 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9805 get the offset from native stack pointer to the address of the most
9806 recent dynamic alloca on the caller's stack. These intrinsics are
9807 intendend for use in combination with
9808 :ref:`llvm.stacksave <int_stacksave>` to get a
9809 pointer to the most recent dynamic alloca. This is useful, for example,
9810 for AddressSanitizer's stack unpoisoning routines.
9811
9812Semantics:
9813""""""""""
9814
9815 These intrinsics return a non-negative integer value that can be used to
9816 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9817 on the caller's stack. In particular, for targets where stack grows downwards,
9818 adding this offset to the native stack pointer would get the address of the most
9819 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +00009820 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +00009821 one past the end of the most recent dynamic alloca.
9822
9823 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9824 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9825 compile-time-known constant value.
9826
9827 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
Matt Arsenaultc749bdc2017-03-30 23:36:47 +00009828 must match the target's default address space's (address space 0) pointer type.
Yury Gribovd7dbb662015-12-01 11:40:55 +00009829
Sean Silvab084af42012-12-07 10:36:55 +00009830'``llvm.prefetch``' Intrinsic
9831^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9832
9833Syntax:
9834"""""""
9835
9836::
9837
9838 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9839
9840Overview:
9841"""""""""
9842
9843The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9844insert a prefetch instruction if supported; otherwise, it is a noop.
9845Prefetches have no effect on the behavior of the program but can change
9846its performance characteristics.
9847
9848Arguments:
9849""""""""""
9850
9851``address`` is the address to be prefetched, ``rw`` is the specifier
9852determining if the fetch should be for a read (0) or write (1), and
9853``locality`` is a temporal locality specifier ranging from (0) - no
9854locality, to (3) - extremely local keep in cache. The ``cache type``
9855specifies whether the prefetch is performed on the data (1) or
9856instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9857arguments must be constant integers.
9858
9859Semantics:
9860""""""""""
9861
9862This intrinsic does not modify the behavior of the program. In
9863particular, prefetches cannot trap and do not produce a value. On
9864targets that support this intrinsic, the prefetch can provide hints to
9865the processor cache for better performance.
9866
9867'``llvm.pcmarker``' Intrinsic
9868^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9869
9870Syntax:
9871"""""""
9872
9873::
9874
9875 declare void @llvm.pcmarker(i32 <id>)
9876
9877Overview:
9878"""""""""
9879
9880The '``llvm.pcmarker``' intrinsic is a method to export a Program
9881Counter (PC) in a region of code to simulators and other tools. The
9882method is target specific, but it is expected that the marker will use
9883exported symbols to transmit the PC of the marker. The marker makes no
9884guarantees that it will remain with any specific instruction after
9885optimizations. It is possible that the presence of a marker will inhibit
9886optimizations. The intended use is to be inserted after optimizations to
9887allow correlations of simulation runs.
9888
9889Arguments:
9890""""""""""
9891
9892``id`` is a numerical id identifying the marker.
9893
9894Semantics:
9895""""""""""
9896
9897This intrinsic does not modify the behavior of the program. Backends
9898that do not support this intrinsic may ignore it.
9899
9900'``llvm.readcyclecounter``' Intrinsic
9901^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9902
9903Syntax:
9904"""""""
9905
9906::
9907
9908 declare i64 @llvm.readcyclecounter()
9909
9910Overview:
9911"""""""""
9912
9913The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9914counter register (or similar low latency, high accuracy clocks) on those
9915targets that support it. On X86, it should map to RDTSC. On Alpha, it
9916should map to RPCC. As the backing counters overflow quickly (on the
9917order of 9 seconds on alpha), this should only be used for small
9918timings.
9919
9920Semantics:
9921""""""""""
9922
9923When directly supported, reading the cycle counter should not modify any
9924memory. Implementations are allowed to either return a application
9925specific value or a system wide value. On backends without support, this
9926is lowered to a constant 0.
9927
Tim Northoverbc933082013-05-23 19:11:20 +00009928Note that runtime support may be conditional on the privilege-level code is
9929running at and the host platform.
9930
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009931'``llvm.clear_cache``' Intrinsic
9932^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9933
9934Syntax:
9935"""""""
9936
9937::
9938
9939 declare void @llvm.clear_cache(i8*, i8*)
9940
9941Overview:
9942"""""""""
9943
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009944The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9945in the specified range to the execution unit of the processor. On
9946targets with non-unified instruction and data cache, the implementation
9947flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009948
9949Semantics:
9950""""""""""
9951
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009952On platforms with coherent instruction and data caches (e.g. x86), this
9953intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009954cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009955instructions or a system call, if cache flushing requires special
9956privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009957
Sean Silvad02bf3e2014-04-07 22:29:53 +00009958The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009959time library.
Renato Golin93010e62014-03-26 14:01:32 +00009960
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009961This instrinsic does *not* empty the instruction pipeline. Modifications
9962of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009963
Justin Bogner61ba2e32014-12-08 18:02:35 +00009964'``llvm.instrprof_increment``' Intrinsic
9965^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9966
9967Syntax:
9968"""""""
9969
9970::
9971
9972 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9973 i32 <num-counters>, i32 <index>)
9974
9975Overview:
9976"""""""""
9977
9978The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9979frontend for use with instrumentation based profiling. These will be
9980lowered by the ``-instrprof`` pass to generate execution counts of a
9981program at runtime.
9982
9983Arguments:
9984""""""""""
9985
9986The first argument is a pointer to a global variable containing the
9987name of the entity being instrumented. This should generally be the
9988(mangled) function name for a set of counters.
9989
9990The second argument is a hash value that can be used by the consumer
9991of the profile data to detect changes to the instrumented source, and
9992the third is the number of counters associated with ``name``. It is an
9993error if ``hash`` or ``num-counters`` differ between two instances of
9994``instrprof_increment`` that refer to the same name.
9995
9996The last argument refers to which of the counters for ``name`` should
9997be incremented. It should be a value between 0 and ``num-counters``.
9998
9999Semantics:
10000""""""""""
10001
10002This intrinsic represents an increment of a profiling counter. It will
10003cause the ``-instrprof`` pass to generate the appropriate data
10004structures and the code to increment the appropriate value, in a
10005format that can be written out by a compiler runtime and consumed via
10006the ``llvm-profdata`` tool.
10007
Xinliang David Li4ca17332016-09-18 18:34:07 +000010008'``llvm.instrprof_increment_step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +000010009^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +000010010
10011Syntax:
10012"""""""
10013
10014::
10015
10016 declare void @llvm.instrprof_increment_step(i8* <name>, i64 <hash>,
10017 i32 <num-counters>,
10018 i32 <index>, i64 <step>)
10019
10020Overview:
10021"""""""""
10022
10023The '``llvm.instrprof_increment_step``' intrinsic is an extension to
10024the '``llvm.instrprof_increment``' intrinsic with an additional fifth
10025argument to specify the step of the increment.
10026
10027Arguments:
10028""""""""""
10029The first four arguments are the same as '``llvm.instrprof_increment``'
10030instrinsic.
10031
10032The last argument specifies the value of the increment of the counter variable.
10033
10034Semantics:
10035""""""""""
10036See description of '``llvm.instrprof_increment``' instrinsic.
10037
10038
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010039'``llvm.instrprof_value_profile``' Intrinsic
10040^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10041
10042Syntax:
10043"""""""
10044
10045::
10046
10047 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
10048 i64 <value>, i32 <value_kind>,
10049 i32 <index>)
10050
10051Overview:
10052"""""""""
10053
10054The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
10055frontend for use with instrumentation based profiling. This will be
10056lowered by the ``-instrprof`` pass to find out the target values,
10057instrumented expressions take in a program at runtime.
10058
10059Arguments:
10060""""""""""
10061
10062The first argument is a pointer to a global variable containing the
10063name of the entity being instrumented. ``name`` should generally be the
10064(mangled) function name for a set of counters.
10065
10066The second argument is a hash value that can be used by the consumer
10067of the profile data to detect changes to the instrumented source. It
10068is an error if ``hash`` differs between two instances of
10069``llvm.instrprof_*`` that refer to the same name.
10070
10071The third argument is the value of the expression being profiled. The profiled
10072expression's value should be representable as an unsigned 64-bit value. The
10073fourth argument represents the kind of value profiling that is being done. The
10074supported value profiling kinds are enumerated through the
10075``InstrProfValueKind`` type declared in the
10076``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
10077index of the instrumented expression within ``name``. It should be >= 0.
10078
10079Semantics:
10080""""""""""
10081
10082This intrinsic represents the point where a call to a runtime routine
10083should be inserted for value profiling of target expressions. ``-instrprof``
10084pass will generate the appropriate data structures and replace the
10085``llvm.instrprof_value_profile`` intrinsic with the call to the profile
10086runtime library with proper arguments.
10087
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000010088'``llvm.thread.pointer``' Intrinsic
10089^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10090
10091Syntax:
10092"""""""
10093
10094::
10095
10096 declare i8* @llvm.thread.pointer()
10097
10098Overview:
10099"""""""""
10100
10101The '``llvm.thread.pointer``' intrinsic returns the value of the thread
10102pointer.
10103
10104Semantics:
10105""""""""""
10106
10107The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
10108for the current thread. The exact semantics of this value are target
10109specific: it may point to the start of TLS area, to the end, or somewhere
10110in the middle. Depending on the target, this intrinsic may read a register,
10111call a helper function, read from an alternate memory space, or perform
10112other operations necessary to locate the TLS area. Not all targets support
10113this intrinsic.
10114
Sean Silvab084af42012-12-07 10:36:55 +000010115Standard C Library Intrinsics
10116-----------------------------
10117
10118LLVM provides intrinsics for a few important standard C library
10119functions. These intrinsics allow source-language front-ends to pass
10120information about the alignment of the pointer arguments to the code
10121generator, providing opportunity for more efficient code generation.
10122
10123.. _int_memcpy:
10124
10125'``llvm.memcpy``' Intrinsic
10126^^^^^^^^^^^^^^^^^^^^^^^^^^^
10127
10128Syntax:
10129"""""""
10130
10131This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
10132integer bit width and for different address spaces. Not all targets
10133support all bit widths however.
10134
10135::
10136
10137 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
10138 i32 <len>, i32 <align>, i1 <isvolatile>)
10139 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
10140 i64 <len>, i32 <align>, i1 <isvolatile>)
10141
10142Overview:
10143"""""""""
10144
10145The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10146source location to the destination location.
10147
10148Note that, unlike the standard libc function, the ``llvm.memcpy.*``
10149intrinsics do not return a value, takes extra alignment/isvolatile
10150arguments and the pointers can be in specified address spaces.
10151
10152Arguments:
10153""""""""""
10154
10155The first argument is a pointer to the destination, the second is a
10156pointer to the source. The third argument is an integer argument
10157specifying the number of bytes to copy, the fourth argument is the
10158alignment of the source and destination locations, and the fifth is a
10159boolean indicating a volatile access.
10160
10161If the call to this intrinsic has an alignment value that is not 0 or 1,
10162then the caller guarantees that both the source and destination pointers
10163are aligned to that boundary.
10164
10165If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
10166a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10167very cleanly specified and it is unwise to depend on it.
10168
10169Semantics:
10170""""""""""
10171
10172The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10173source location to the destination location, which are not allowed to
10174overlap. It copies "len" bytes of memory over. If the argument is known
10175to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +000010176argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010177
10178'``llvm.memmove``' Intrinsic
10179^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10180
10181Syntax:
10182"""""""
10183
10184This is an overloaded intrinsic. You can use llvm.memmove on any integer
10185bit width and for different address space. Not all targets support all
10186bit widths however.
10187
10188::
10189
10190 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
10191 i32 <len>, i32 <align>, i1 <isvolatile>)
10192 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
10193 i64 <len>, i32 <align>, i1 <isvolatile>)
10194
10195Overview:
10196"""""""""
10197
10198The '``llvm.memmove.*``' intrinsics move a block of memory from the
10199source location to the destination location. It is similar to the
10200'``llvm.memcpy``' intrinsic but allows the two memory locations to
10201overlap.
10202
10203Note that, unlike the standard libc function, the ``llvm.memmove.*``
10204intrinsics do not return a value, takes extra alignment/isvolatile
10205arguments and the pointers can be in specified address spaces.
10206
10207Arguments:
10208""""""""""
10209
10210The first argument is a pointer to the destination, the second is a
10211pointer to the source. The third argument is an integer argument
10212specifying the number of bytes to copy, the fourth argument is the
10213alignment of the source and destination locations, and the fifth is a
10214boolean indicating a volatile access.
10215
10216If the call to this intrinsic has an alignment value that is not 0 or 1,
10217then the caller guarantees that the source and destination pointers are
10218aligned to that boundary.
10219
10220If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
10221is a :ref:`volatile operation <volatile>`. The detailed access behavior is
10222not very cleanly specified and it is unwise to depend on it.
10223
10224Semantics:
10225""""""""""
10226
10227The '``llvm.memmove.*``' intrinsics copy a block of memory from the
10228source location to the destination location, which may overlap. It
10229copies "len" bytes of memory over. If the argument is known to be
10230aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000010231otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010232
10233'``llvm.memset.*``' Intrinsics
10234^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10235
10236Syntax:
10237"""""""
10238
10239This is an overloaded intrinsic. You can use llvm.memset on any integer
10240bit width and for different address spaces. However, not all targets
10241support all bit widths.
10242
10243::
10244
10245 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
10246 i32 <len>, i32 <align>, i1 <isvolatile>)
10247 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
10248 i64 <len>, i32 <align>, i1 <isvolatile>)
10249
10250Overview:
10251"""""""""
10252
10253The '``llvm.memset.*``' intrinsics fill a block of memory with a
10254particular byte value.
10255
10256Note that, unlike the standard libc function, the ``llvm.memset``
10257intrinsic does not return a value and takes extra alignment/volatile
10258arguments. Also, the destination can be in an arbitrary address space.
10259
10260Arguments:
10261""""""""""
10262
10263The first argument is a pointer to the destination to fill, the second
10264is the byte value with which to fill it, the third argument is an
10265integer argument specifying the number of bytes to fill, and the fourth
10266argument is the known alignment of the destination location.
10267
10268If the call to this intrinsic has an alignment value that is not 0 or 1,
10269then the caller guarantees that the destination pointer is aligned to
10270that boundary.
10271
10272If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10273a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10274very cleanly specified and it is unwise to depend on it.
10275
10276Semantics:
10277""""""""""
10278
10279The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
10280at the destination location. If the argument is known to be aligned to
10281some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +000010282it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010283
10284'``llvm.sqrt.*``' Intrinsic
10285^^^^^^^^^^^^^^^^^^^^^^^^^^^
10286
10287Syntax:
10288"""""""
10289
10290This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
10291floating point or vector of floating point type. Not all targets support
10292all types however.
10293
10294::
10295
10296 declare float @llvm.sqrt.f32(float %Val)
10297 declare double @llvm.sqrt.f64(double %Val)
10298 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10299 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10300 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10301
10302Overview:
10303"""""""""
10304
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010305The '``llvm.sqrt``' intrinsics return the square root of the specified value,
Justin Lebarcb9b41d2017-01-27 00:58:03 +000010306returning the same value as the libm '``sqrt``' functions would, but without
10307trapping or setting ``errno``.
Sean Silvab084af42012-12-07 10:36:55 +000010308
10309Arguments:
10310""""""""""
10311
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010312The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010313
10314Semantics:
10315""""""""""
10316
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010317This function returns the square root of the operand if it is a nonnegative
10318floating point number.
Sean Silvab084af42012-12-07 10:36:55 +000010319
10320'``llvm.powi.*``' Intrinsic
10321^^^^^^^^^^^^^^^^^^^^^^^^^^^
10322
10323Syntax:
10324"""""""
10325
10326This is an overloaded intrinsic. You can use ``llvm.powi`` on any
10327floating point or vector of floating point type. Not all targets support
10328all types however.
10329
10330::
10331
10332 declare float @llvm.powi.f32(float %Val, i32 %power)
10333 declare double @llvm.powi.f64(double %Val, i32 %power)
10334 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10335 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10336 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10337
10338Overview:
10339"""""""""
10340
10341The '``llvm.powi.*``' intrinsics return the first operand raised to the
10342specified (positive or negative) power. The order of evaluation of
10343multiplications is not defined. When a vector of floating point type is
10344used, the second argument remains a scalar integer value.
10345
10346Arguments:
10347""""""""""
10348
10349The second argument is an integer power, and the first is a value to
10350raise to that power.
10351
10352Semantics:
10353""""""""""
10354
10355This function returns the first value raised to the second power with an
10356unspecified sequence of rounding operations.
10357
10358'``llvm.sin.*``' Intrinsic
10359^^^^^^^^^^^^^^^^^^^^^^^^^^
10360
10361Syntax:
10362"""""""
10363
10364This is an overloaded intrinsic. You can use ``llvm.sin`` on any
10365floating point or vector of floating point type. Not all targets support
10366all types however.
10367
10368::
10369
10370 declare float @llvm.sin.f32(float %Val)
10371 declare double @llvm.sin.f64(double %Val)
10372 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10373 declare fp128 @llvm.sin.f128(fp128 %Val)
10374 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10375
10376Overview:
10377"""""""""
10378
10379The '``llvm.sin.*``' intrinsics return the sine of the operand.
10380
10381Arguments:
10382""""""""""
10383
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010384The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010385
10386Semantics:
10387""""""""""
10388
10389This function returns the sine of the specified operand, returning the
10390same values as the libm ``sin`` functions would, and handles error
10391conditions in the same way.
10392
10393'``llvm.cos.*``' Intrinsic
10394^^^^^^^^^^^^^^^^^^^^^^^^^^
10395
10396Syntax:
10397"""""""
10398
10399This is an overloaded intrinsic. You can use ``llvm.cos`` on any
10400floating point or vector of floating point type. Not all targets support
10401all types however.
10402
10403::
10404
10405 declare float @llvm.cos.f32(float %Val)
10406 declare double @llvm.cos.f64(double %Val)
10407 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10408 declare fp128 @llvm.cos.f128(fp128 %Val)
10409 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10410
10411Overview:
10412"""""""""
10413
10414The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10415
10416Arguments:
10417""""""""""
10418
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010419The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010420
10421Semantics:
10422""""""""""
10423
10424This function returns the cosine of the specified operand, returning the
10425same values as the libm ``cos`` functions would, and handles error
10426conditions in the same way.
10427
10428'``llvm.pow.*``' Intrinsic
10429^^^^^^^^^^^^^^^^^^^^^^^^^^
10430
10431Syntax:
10432"""""""
10433
10434This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10435floating point or vector of floating point type. Not all targets support
10436all types however.
10437
10438::
10439
10440 declare float @llvm.pow.f32(float %Val, float %Power)
10441 declare double @llvm.pow.f64(double %Val, double %Power)
10442 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10443 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10444 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10445
10446Overview:
10447"""""""""
10448
10449The '``llvm.pow.*``' intrinsics return the first operand raised to the
10450specified (positive or negative) power.
10451
10452Arguments:
10453""""""""""
10454
10455The second argument is a floating point power, and the first is a value
10456to raise to that power.
10457
10458Semantics:
10459""""""""""
10460
10461This function returns the first value raised to the second power,
10462returning the same values as the libm ``pow`` functions would, and
10463handles error conditions in the same way.
10464
10465'``llvm.exp.*``' Intrinsic
10466^^^^^^^^^^^^^^^^^^^^^^^^^^
10467
10468Syntax:
10469"""""""
10470
10471This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10472floating point or vector of floating point type. Not all targets support
10473all types however.
10474
10475::
10476
10477 declare float @llvm.exp.f32(float %Val)
10478 declare double @llvm.exp.f64(double %Val)
10479 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10480 declare fp128 @llvm.exp.f128(fp128 %Val)
10481 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10482
10483Overview:
10484"""""""""
10485
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010486The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
10487value.
Sean Silvab084af42012-12-07 10:36:55 +000010488
10489Arguments:
10490""""""""""
10491
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010492The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010493
10494Semantics:
10495""""""""""
10496
10497This function returns the same values as the libm ``exp`` functions
10498would, and handles error conditions in the same way.
10499
10500'``llvm.exp2.*``' Intrinsic
10501^^^^^^^^^^^^^^^^^^^^^^^^^^^
10502
10503Syntax:
10504"""""""
10505
10506This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10507floating point or vector of floating point type. Not all targets support
10508all types however.
10509
10510::
10511
10512 declare float @llvm.exp2.f32(float %Val)
10513 declare double @llvm.exp2.f64(double %Val)
10514 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10515 declare fp128 @llvm.exp2.f128(fp128 %Val)
10516 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10517
10518Overview:
10519"""""""""
10520
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010521The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
10522specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010523
10524Arguments:
10525""""""""""
10526
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010527The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010528
10529Semantics:
10530""""""""""
10531
10532This function returns the same values as the libm ``exp2`` functions
10533would, and handles error conditions in the same way.
10534
10535'``llvm.log.*``' Intrinsic
10536^^^^^^^^^^^^^^^^^^^^^^^^^^
10537
10538Syntax:
10539"""""""
10540
10541This is an overloaded intrinsic. You can use ``llvm.log`` on any
10542floating point or vector of floating point type. Not all targets support
10543all types however.
10544
10545::
10546
10547 declare float @llvm.log.f32(float %Val)
10548 declare double @llvm.log.f64(double %Val)
10549 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10550 declare fp128 @llvm.log.f128(fp128 %Val)
10551 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10552
10553Overview:
10554"""""""""
10555
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010556The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
10557value.
Sean Silvab084af42012-12-07 10:36:55 +000010558
10559Arguments:
10560""""""""""
10561
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010562The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010563
10564Semantics:
10565""""""""""
10566
10567This function returns the same values as the libm ``log`` functions
10568would, and handles error conditions in the same way.
10569
10570'``llvm.log10.*``' Intrinsic
10571^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10572
10573Syntax:
10574"""""""
10575
10576This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10577floating point or vector of floating point type. Not all targets support
10578all types however.
10579
10580::
10581
10582 declare float @llvm.log10.f32(float %Val)
10583 declare double @llvm.log10.f64(double %Val)
10584 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10585 declare fp128 @llvm.log10.f128(fp128 %Val)
10586 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10587
10588Overview:
10589"""""""""
10590
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010591The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
10592specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010593
10594Arguments:
10595""""""""""
10596
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010597The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010598
10599Semantics:
10600""""""""""
10601
10602This function returns the same values as the libm ``log10`` functions
10603would, and handles error conditions in the same way.
10604
10605'``llvm.log2.*``' Intrinsic
10606^^^^^^^^^^^^^^^^^^^^^^^^^^^
10607
10608Syntax:
10609"""""""
10610
10611This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10612floating point or vector of floating point type. Not all targets support
10613all types however.
10614
10615::
10616
10617 declare float @llvm.log2.f32(float %Val)
10618 declare double @llvm.log2.f64(double %Val)
10619 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10620 declare fp128 @llvm.log2.f128(fp128 %Val)
10621 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10622
10623Overview:
10624"""""""""
10625
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010626The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
10627value.
Sean Silvab084af42012-12-07 10:36:55 +000010628
10629Arguments:
10630""""""""""
10631
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010632The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010633
10634Semantics:
10635""""""""""
10636
10637This function returns the same values as the libm ``log2`` functions
10638would, and handles error conditions in the same way.
10639
10640'``llvm.fma.*``' Intrinsic
10641^^^^^^^^^^^^^^^^^^^^^^^^^^
10642
10643Syntax:
10644"""""""
10645
10646This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10647floating point or vector of floating point type. Not all targets support
10648all types however.
10649
10650::
10651
10652 declare float @llvm.fma.f32(float %a, float %b, float %c)
10653 declare double @llvm.fma.f64(double %a, double %b, double %c)
10654 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10655 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10656 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10657
10658Overview:
10659"""""""""
10660
10661The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10662operation.
10663
10664Arguments:
10665""""""""""
10666
10667The argument and return value are floating point numbers of the same
10668type.
10669
10670Semantics:
10671""""""""""
10672
10673This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010674would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010675
10676'``llvm.fabs.*``' Intrinsic
10677^^^^^^^^^^^^^^^^^^^^^^^^^^^
10678
10679Syntax:
10680"""""""
10681
10682This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10683floating point or vector of floating point type. Not all targets support
10684all types however.
10685
10686::
10687
10688 declare float @llvm.fabs.f32(float %Val)
10689 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010690 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010691 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010692 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010693
10694Overview:
10695"""""""""
10696
10697The '``llvm.fabs.*``' intrinsics return the absolute value of the
10698operand.
10699
10700Arguments:
10701""""""""""
10702
10703The argument and return value are floating point numbers of the same
10704type.
10705
10706Semantics:
10707""""""""""
10708
10709This function returns the same values as the libm ``fabs`` functions
10710would, and handles error conditions in the same way.
10711
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010712'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010713^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010714
10715Syntax:
10716"""""""
10717
10718This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10719floating point or vector of floating point type. Not all targets support
10720all types however.
10721
10722::
10723
Matt Arsenault64313c92014-10-22 18:25:02 +000010724 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10725 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10726 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10727 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10728 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010729
10730Overview:
10731"""""""""
10732
10733The '``llvm.minnum.*``' intrinsics return the minimum of the two
10734arguments.
10735
10736
10737Arguments:
10738""""""""""
10739
10740The arguments and return value are floating point numbers of the same
10741type.
10742
10743Semantics:
10744""""""""""
10745
10746Follows the IEEE-754 semantics for minNum, which also match for libm's
10747fmin.
10748
10749If either operand is a NaN, returns the other non-NaN operand. Returns
10750NaN only if both operands are NaN. If the operands compare equal,
10751returns a value that compares equal to both operands. This means that
10752fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10753
10754'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010755^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010756
10757Syntax:
10758"""""""
10759
10760This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10761floating point or vector of floating point type. Not all targets support
10762all types however.
10763
10764::
10765
Matt Arsenault64313c92014-10-22 18:25:02 +000010766 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10767 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10768 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10769 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10770 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010771
10772Overview:
10773"""""""""
10774
10775The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10776arguments.
10777
10778
10779Arguments:
10780""""""""""
10781
10782The arguments and return value are floating point numbers of the same
10783type.
10784
10785Semantics:
10786""""""""""
10787Follows the IEEE-754 semantics for maxNum, which also match for libm's
10788fmax.
10789
10790If either operand is a NaN, returns the other non-NaN operand. Returns
10791NaN only if both operands are NaN. If the operands compare equal,
10792returns a value that compares equal to both operands. This means that
10793fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10794
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010795'``llvm.copysign.*``' Intrinsic
10796^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10797
10798Syntax:
10799"""""""
10800
10801This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10802floating point or vector of floating point type. Not all targets support
10803all types however.
10804
10805::
10806
10807 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10808 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10809 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10810 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10811 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10812
10813Overview:
10814"""""""""
10815
10816The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10817first operand and the sign of the second operand.
10818
10819Arguments:
10820""""""""""
10821
10822The arguments and return value are floating point numbers of the same
10823type.
10824
10825Semantics:
10826""""""""""
10827
10828This function returns the same values as the libm ``copysign``
10829functions would, and handles error conditions in the same way.
10830
Sean Silvab084af42012-12-07 10:36:55 +000010831'``llvm.floor.*``' Intrinsic
10832^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10833
10834Syntax:
10835"""""""
10836
10837This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10838floating point or vector of floating point type. Not all targets support
10839all types however.
10840
10841::
10842
10843 declare float @llvm.floor.f32(float %Val)
10844 declare double @llvm.floor.f64(double %Val)
10845 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10846 declare fp128 @llvm.floor.f128(fp128 %Val)
10847 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10848
10849Overview:
10850"""""""""
10851
10852The '``llvm.floor.*``' intrinsics return the floor of the operand.
10853
10854Arguments:
10855""""""""""
10856
10857The argument and return value are floating point numbers of the same
10858type.
10859
10860Semantics:
10861""""""""""
10862
10863This function returns the same values as the libm ``floor`` functions
10864would, and handles error conditions in the same way.
10865
10866'``llvm.ceil.*``' Intrinsic
10867^^^^^^^^^^^^^^^^^^^^^^^^^^^
10868
10869Syntax:
10870"""""""
10871
10872This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10873floating point or vector of floating point type. Not all targets support
10874all types however.
10875
10876::
10877
10878 declare float @llvm.ceil.f32(float %Val)
10879 declare double @llvm.ceil.f64(double %Val)
10880 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10881 declare fp128 @llvm.ceil.f128(fp128 %Val)
10882 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10883
10884Overview:
10885"""""""""
10886
10887The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10888
10889Arguments:
10890""""""""""
10891
10892The argument and return value are floating point numbers of the same
10893type.
10894
10895Semantics:
10896""""""""""
10897
10898This function returns the same values as the libm ``ceil`` functions
10899would, and handles error conditions in the same way.
10900
10901'``llvm.trunc.*``' Intrinsic
10902^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10903
10904Syntax:
10905"""""""
10906
10907This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10908floating point or vector of floating point type. Not all targets support
10909all types however.
10910
10911::
10912
10913 declare float @llvm.trunc.f32(float %Val)
10914 declare double @llvm.trunc.f64(double %Val)
10915 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10916 declare fp128 @llvm.trunc.f128(fp128 %Val)
10917 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10918
10919Overview:
10920"""""""""
10921
10922The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10923nearest integer not larger in magnitude than the operand.
10924
10925Arguments:
10926""""""""""
10927
10928The argument and return value are floating point numbers of the same
10929type.
10930
10931Semantics:
10932""""""""""
10933
10934This function returns the same values as the libm ``trunc`` functions
10935would, and handles error conditions in the same way.
10936
10937'``llvm.rint.*``' Intrinsic
10938^^^^^^^^^^^^^^^^^^^^^^^^^^^
10939
10940Syntax:
10941"""""""
10942
10943This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10944floating point or vector of floating point type. Not all targets support
10945all types however.
10946
10947::
10948
10949 declare float @llvm.rint.f32(float %Val)
10950 declare double @llvm.rint.f64(double %Val)
10951 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10952 declare fp128 @llvm.rint.f128(fp128 %Val)
10953 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10954
10955Overview:
10956"""""""""
10957
10958The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10959nearest integer. It may raise an inexact floating-point exception if the
10960operand isn't an integer.
10961
10962Arguments:
10963""""""""""
10964
10965The argument and return value are floating point numbers of the same
10966type.
10967
10968Semantics:
10969""""""""""
10970
10971This function returns the same values as the libm ``rint`` functions
10972would, and handles error conditions in the same way.
10973
10974'``llvm.nearbyint.*``' Intrinsic
10975^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10976
10977Syntax:
10978"""""""
10979
10980This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10981floating point or vector of floating point type. Not all targets support
10982all types however.
10983
10984::
10985
10986 declare float @llvm.nearbyint.f32(float %Val)
10987 declare double @llvm.nearbyint.f64(double %Val)
10988 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10989 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10990 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10991
10992Overview:
10993"""""""""
10994
10995The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10996nearest integer.
10997
10998Arguments:
10999""""""""""
11000
11001The argument and return value are floating point numbers of the same
11002type.
11003
11004Semantics:
11005""""""""""
11006
11007This function returns the same values as the libm ``nearbyint``
11008functions would, and handles error conditions in the same way.
11009
Hal Finkel171817e2013-08-07 22:49:12 +000011010'``llvm.round.*``' Intrinsic
11011^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11012
11013Syntax:
11014"""""""
11015
11016This is an overloaded intrinsic. You can use ``llvm.round`` on any
11017floating point or vector of floating point type. Not all targets support
11018all types however.
11019
11020::
11021
11022 declare float @llvm.round.f32(float %Val)
11023 declare double @llvm.round.f64(double %Val)
11024 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
11025 declare fp128 @llvm.round.f128(fp128 %Val)
11026 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
11027
11028Overview:
11029"""""""""
11030
11031The '``llvm.round.*``' intrinsics returns the operand rounded to the
11032nearest integer.
11033
11034Arguments:
11035""""""""""
11036
11037The argument and return value are floating point numbers of the same
11038type.
11039
11040Semantics:
11041""""""""""
11042
11043This function returns the same values as the libm ``round``
11044functions would, and handles error conditions in the same way.
11045
Sean Silvab084af42012-12-07 10:36:55 +000011046Bit Manipulation Intrinsics
11047---------------------------
11048
11049LLVM provides intrinsics for a few important bit manipulation
11050operations. These allow efficient code generation for some algorithms.
11051
James Molloy90111f72015-11-12 12:29:09 +000011052'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000011053^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000011054
11055Syntax:
11056"""""""
11057
11058This is an overloaded intrinsic function. You can use bitreverse on any
11059integer type.
11060
11061::
11062
11063 declare i16 @llvm.bitreverse.i16(i16 <id>)
11064 declare i32 @llvm.bitreverse.i32(i32 <id>)
11065 declare i64 @llvm.bitreverse.i64(i64 <id>)
11066
11067Overview:
11068"""""""""
11069
11070The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000011071bitpattern of an integer value; for example ``0b10110110`` becomes
11072``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000011073
11074Semantics:
11075""""""""""
11076
Yichao Yu5abf14b2016-11-23 16:25:31 +000011077The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000011078``M`` in the input moved to bit ``N-M`` in the output.
11079
Sean Silvab084af42012-12-07 10:36:55 +000011080'``llvm.bswap.*``' Intrinsics
11081^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11082
11083Syntax:
11084"""""""
11085
11086This is an overloaded intrinsic function. You can use bswap on any
11087integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
11088
11089::
11090
11091 declare i16 @llvm.bswap.i16(i16 <id>)
11092 declare i32 @llvm.bswap.i32(i32 <id>)
11093 declare i64 @llvm.bswap.i64(i64 <id>)
11094
11095Overview:
11096"""""""""
11097
11098The '``llvm.bswap``' family of intrinsics is used to byte swap integer
11099values with an even number of bytes (positive multiple of 16 bits).
11100These are useful for performing operations on data that is not in the
11101target's native byte order.
11102
11103Semantics:
11104""""""""""
11105
11106The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
11107and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
11108intrinsic returns an i32 value that has the four bytes of the input i32
11109swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
11110returned i32 will have its bytes in 3, 2, 1, 0 order. The
11111``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
11112concept to additional even-byte lengths (6 bytes, 8 bytes and more,
11113respectively).
11114
11115'``llvm.ctpop.*``' Intrinsic
11116^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11117
11118Syntax:
11119"""""""
11120
11121This is an overloaded intrinsic. You can use llvm.ctpop on any integer
11122bit width, or on any vector with integer elements. Not all targets
11123support all bit widths or vector types, however.
11124
11125::
11126
11127 declare i8 @llvm.ctpop.i8(i8 <src>)
11128 declare i16 @llvm.ctpop.i16(i16 <src>)
11129 declare i32 @llvm.ctpop.i32(i32 <src>)
11130 declare i64 @llvm.ctpop.i64(i64 <src>)
11131 declare i256 @llvm.ctpop.i256(i256 <src>)
11132 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
11133
11134Overview:
11135"""""""""
11136
11137The '``llvm.ctpop``' family of intrinsics counts the number of bits set
11138in a value.
11139
11140Arguments:
11141""""""""""
11142
11143The only argument is the value to be counted. The argument may be of any
11144integer type, or a vector with integer elements. The return type must
11145match the argument type.
11146
11147Semantics:
11148""""""""""
11149
11150The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
11151each element of a vector.
11152
11153'``llvm.ctlz.*``' Intrinsic
11154^^^^^^^^^^^^^^^^^^^^^^^^^^^
11155
11156Syntax:
11157"""""""
11158
11159This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
11160integer bit width, or any vector whose elements are integers. Not all
11161targets support all bit widths or vector types, however.
11162
11163::
11164
11165 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
11166 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
11167 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
11168 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
11169 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011170 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011171
11172Overview:
11173"""""""""
11174
11175The '``llvm.ctlz``' family of intrinsic functions counts the number of
11176leading zeros in a variable.
11177
11178Arguments:
11179""""""""""
11180
11181The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011182any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011183type must match the first argument type.
11184
11185The second argument must be a constant and is a flag to indicate whether
11186the intrinsic should ensure that a zero as the first argument produces a
11187defined result. Historically some architectures did not provide a
11188defined result for zero values as efficiently, and many algorithms are
11189now predicated on avoiding zero-value inputs.
11190
11191Semantics:
11192""""""""""
11193
11194The '``llvm.ctlz``' intrinsic counts the leading (most significant)
11195zeros in a variable, or within each element of the vector. If
11196``src == 0`` then the result is the size in bits of the type of ``src``
11197if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11198``llvm.ctlz(i32 2) = 30``.
11199
11200'``llvm.cttz.*``' Intrinsic
11201^^^^^^^^^^^^^^^^^^^^^^^^^^^
11202
11203Syntax:
11204"""""""
11205
11206This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
11207integer bit width, or any vector of integer elements. Not all targets
11208support all bit widths or vector types, however.
11209
11210::
11211
11212 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
11213 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
11214 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
11215 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
11216 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011217 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011218
11219Overview:
11220"""""""""
11221
11222The '``llvm.cttz``' family of intrinsic functions counts the number of
11223trailing zeros.
11224
11225Arguments:
11226""""""""""
11227
11228The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011229any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011230type must match the first argument type.
11231
11232The second argument must be a constant and is a flag to indicate whether
11233the intrinsic should ensure that a zero as the first argument produces a
11234defined result. Historically some architectures did not provide a
11235defined result for zero values as efficiently, and many algorithms are
11236now predicated on avoiding zero-value inputs.
11237
11238Semantics:
11239""""""""""
11240
11241The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11242zeros in a variable, or within each element of a vector. If ``src == 0``
11243then the result is the size in bits of the type of ``src`` if
11244``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11245``llvm.cttz(2) = 1``.
11246
Philip Reames34843ae2015-03-05 05:55:55 +000011247.. _int_overflow:
11248
Sean Silvab084af42012-12-07 10:36:55 +000011249Arithmetic with Overflow Intrinsics
11250-----------------------------------
11251
John Regehr6a493f22016-05-12 20:55:09 +000011252LLVM provides intrinsics for fast arithmetic overflow checking.
11253
11254Each of these intrinsics returns a two-element struct. The first
11255element of this struct contains the result of the corresponding
11256arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
11257the result. Therefore, for example, the first element of the struct
11258returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
11259result of a 32-bit ``add`` instruction with the same operands, where
11260the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
11261
11262The second element of the result is an ``i1`` that is 1 if the
11263arithmetic operation overflowed and 0 otherwise. An operation
11264overflows if, for any values of its operands ``A`` and ``B`` and for
11265any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
11266not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
11267``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11268``op`` is the underlying arithmetic operation.
11269
11270The behavior of these intrinsics is well-defined for all argument
11271values.
Sean Silvab084af42012-12-07 10:36:55 +000011272
11273'``llvm.sadd.with.overflow.*``' Intrinsics
11274^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11275
11276Syntax:
11277"""""""
11278
11279This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11280on any integer bit width.
11281
11282::
11283
11284 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11285 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11286 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11287
11288Overview:
11289"""""""""
11290
11291The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11292a signed addition of the two arguments, and indicate whether an overflow
11293occurred during the signed summation.
11294
11295Arguments:
11296""""""""""
11297
11298The arguments (%a and %b) and the first element of the result structure
11299may be of integer types of any bit width, but they must have the same
11300bit width. The second element of the result structure must be of type
11301``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11302addition.
11303
11304Semantics:
11305""""""""""
11306
11307The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011308a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011309first element of which is the signed summation, and the second element
11310of which is a bit specifying if the signed summation resulted in an
11311overflow.
11312
11313Examples:
11314"""""""""
11315
11316.. code-block:: llvm
11317
11318 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11319 %sum = extractvalue {i32, i1} %res, 0
11320 %obit = extractvalue {i32, i1} %res, 1
11321 br i1 %obit, label %overflow, label %normal
11322
11323'``llvm.uadd.with.overflow.*``' Intrinsics
11324^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11325
11326Syntax:
11327"""""""
11328
11329This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11330on any integer bit width.
11331
11332::
11333
11334 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11335 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11336 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11337
11338Overview:
11339"""""""""
11340
11341The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11342an unsigned addition of the two arguments, and indicate whether a carry
11343occurred during the unsigned summation.
11344
11345Arguments:
11346""""""""""
11347
11348The arguments (%a and %b) and the first element of the result structure
11349may be of integer types of any bit width, but they must have the same
11350bit width. The second element of the result structure must be of type
11351``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11352addition.
11353
11354Semantics:
11355""""""""""
11356
11357The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011358an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011359first element of which is the sum, and the second element of which is a
11360bit specifying if the unsigned summation resulted in a carry.
11361
11362Examples:
11363"""""""""
11364
11365.. code-block:: llvm
11366
11367 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11368 %sum = extractvalue {i32, i1} %res, 0
11369 %obit = extractvalue {i32, i1} %res, 1
11370 br i1 %obit, label %carry, label %normal
11371
11372'``llvm.ssub.with.overflow.*``' Intrinsics
11373^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11374
11375Syntax:
11376"""""""
11377
11378This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11379on any integer bit width.
11380
11381::
11382
11383 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11384 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11385 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11386
11387Overview:
11388"""""""""
11389
11390The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11391a signed subtraction of the two arguments, and indicate whether an
11392overflow occurred during the signed subtraction.
11393
11394Arguments:
11395""""""""""
11396
11397The arguments (%a and %b) and the first element of the result structure
11398may be of integer types of any bit width, but they must have the same
11399bit width. The second element of the result structure must be of type
11400``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11401subtraction.
11402
11403Semantics:
11404""""""""""
11405
11406The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011407a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011408first element of which is the subtraction, and the second element of
11409which is a bit specifying if the signed subtraction resulted in an
11410overflow.
11411
11412Examples:
11413"""""""""
11414
11415.. code-block:: llvm
11416
11417 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11418 %sum = extractvalue {i32, i1} %res, 0
11419 %obit = extractvalue {i32, i1} %res, 1
11420 br i1 %obit, label %overflow, label %normal
11421
11422'``llvm.usub.with.overflow.*``' Intrinsics
11423^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11424
11425Syntax:
11426"""""""
11427
11428This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11429on any integer bit width.
11430
11431::
11432
11433 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11434 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11435 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11436
11437Overview:
11438"""""""""
11439
11440The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11441an unsigned subtraction of the two arguments, and indicate whether an
11442overflow occurred during the unsigned subtraction.
11443
11444Arguments:
11445""""""""""
11446
11447The arguments (%a and %b) and the first element of the result structure
11448may be of integer types of any bit width, but they must have the same
11449bit width. The second element of the result structure must be of type
11450``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11451subtraction.
11452
11453Semantics:
11454""""""""""
11455
11456The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011457an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011458the first element of which is the subtraction, and the second element of
11459which is a bit specifying if the unsigned subtraction resulted in an
11460overflow.
11461
11462Examples:
11463"""""""""
11464
11465.. code-block:: llvm
11466
11467 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11468 %sum = extractvalue {i32, i1} %res, 0
11469 %obit = extractvalue {i32, i1} %res, 1
11470 br i1 %obit, label %overflow, label %normal
11471
11472'``llvm.smul.with.overflow.*``' Intrinsics
11473^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11474
11475Syntax:
11476"""""""
11477
11478This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11479on any integer bit width.
11480
11481::
11482
11483 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11484 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11485 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11486
11487Overview:
11488"""""""""
11489
11490The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11491a signed multiplication of the two arguments, and indicate whether an
11492overflow occurred during the signed multiplication.
11493
11494Arguments:
11495""""""""""
11496
11497The arguments (%a and %b) and the first element of the result structure
11498may be of integer types of any bit width, but they must have the same
11499bit width. The second element of the result structure must be of type
11500``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11501multiplication.
11502
11503Semantics:
11504""""""""""
11505
11506The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011507a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011508the first element of which is the multiplication, and the second element
11509of which is a bit specifying if the signed multiplication resulted in an
11510overflow.
11511
11512Examples:
11513"""""""""
11514
11515.. code-block:: llvm
11516
11517 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11518 %sum = extractvalue {i32, i1} %res, 0
11519 %obit = extractvalue {i32, i1} %res, 1
11520 br i1 %obit, label %overflow, label %normal
11521
11522'``llvm.umul.with.overflow.*``' Intrinsics
11523^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11524
11525Syntax:
11526"""""""
11527
11528This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11529on any integer bit width.
11530
11531::
11532
11533 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11534 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11535 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11536
11537Overview:
11538"""""""""
11539
11540The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11541a unsigned multiplication of the two arguments, and indicate whether an
11542overflow occurred during the unsigned multiplication.
11543
11544Arguments:
11545""""""""""
11546
11547The arguments (%a and %b) and the first element of the result structure
11548may be of integer types of any bit width, but they must have the same
11549bit width. The second element of the result structure must be of type
11550``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11551multiplication.
11552
11553Semantics:
11554""""""""""
11555
11556The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011557an unsigned multiplication of the two arguments. They return a structure ---
11558the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011559element of which is a bit specifying if the unsigned multiplication
11560resulted in an overflow.
11561
11562Examples:
11563"""""""""
11564
11565.. code-block:: llvm
11566
11567 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11568 %sum = extractvalue {i32, i1} %res, 0
11569 %obit = extractvalue {i32, i1} %res, 1
11570 br i1 %obit, label %overflow, label %normal
11571
11572Specialised Arithmetic Intrinsics
11573---------------------------------
11574
Owen Anderson1056a922015-07-11 07:01:27 +000011575'``llvm.canonicalize.*``' Intrinsic
11576^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11577
11578Syntax:
11579"""""""
11580
11581::
11582
11583 declare float @llvm.canonicalize.f32(float %a)
11584 declare double @llvm.canonicalize.f64(double %b)
11585
11586Overview:
11587"""""""""
11588
11589The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011590encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011591implementing certain numeric primitives such as frexp. The canonical encoding is
11592defined by IEEE-754-2008 to be:
11593
11594::
11595
11596 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011597 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011598 numbers, infinities, and NaNs, especially in decimal formats.
11599
11600This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011601conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011602according to section 6.2.
11603
11604Examples of non-canonical encodings:
11605
Sean Silvaa1190322015-08-06 22:56:48 +000011606- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011607 converted to a canonical representation per hardware-specific protocol.
11608- Many normal decimal floating point numbers have non-canonical alternative
11609 encodings.
11610- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011611 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011612 a zero of the same sign by this operation.
11613
11614Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11615default exception handling must signal an invalid exception, and produce a
11616quiet NaN result.
11617
11618This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011619that the compiler does not constant fold the operation. Likewise, division by
116201.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011621-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11622
Sean Silvaa1190322015-08-06 22:56:48 +000011623``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011624
11625- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11626- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11627 to ``(x == y)``
11628
11629Additionally, the sign of zero must be conserved:
11630``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11631
11632The payload bits of a NaN must be conserved, with two exceptions.
11633First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011634must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011635usual methods.
11636
11637The canonicalization operation may be optimized away if:
11638
Sean Silvaa1190322015-08-06 22:56:48 +000011639- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011640 floating-point operation that is required by the standard to be canonical.
11641- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011642 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011643
Sean Silvab084af42012-12-07 10:36:55 +000011644'``llvm.fmuladd.*``' Intrinsic
11645^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11646
11647Syntax:
11648"""""""
11649
11650::
11651
11652 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11653 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11654
11655Overview:
11656"""""""""
11657
11658The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011659expressions that can be fused if the code generator determines that (a) the
11660target instruction set has support for a fused operation, and (b) that the
11661fused operation is more efficient than the equivalent, separate pair of mul
11662and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011663
11664Arguments:
11665""""""""""
11666
11667The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11668multiplicands, a and b, and an addend c.
11669
11670Semantics:
11671""""""""""
11672
11673The expression:
11674
11675::
11676
11677 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11678
11679is equivalent to the expression a \* b + c, except that rounding will
11680not be performed between the multiplication and addition steps if the
11681code generator fuses the operations. Fusion is not guaranteed, even if
11682the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011683corresponding llvm.fma.\* intrinsic function should be used
11684instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011685
11686Examples:
11687"""""""""
11688
11689.. code-block:: llvm
11690
Tim Northover675a0962014-06-13 14:24:23 +000011691 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011692
Amara Emersoncf9daa32017-05-09 10:43:25 +000011693
11694Experimental Vector Reduction Intrinsics
11695----------------------------------------
11696
11697Horizontal reductions of vectors can be expressed using the following
11698intrinsics. Each one takes a vector operand as an input and applies its
11699respective operation across all elements of the vector, returning a single
11700scalar result of the same element type.
11701
11702
11703'``llvm.experimental.vector.reduce.add.*``' Intrinsic
11704^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11705
11706Syntax:
11707"""""""
11708
11709::
11710
11711 declare i32 @llvm.experimental.vector.reduce.add.i32.v4i32(<4 x i32> %a)
11712 declare i64 @llvm.experimental.vector.reduce.add.i64.v2i64(<2 x i64> %a)
11713
11714Overview:
11715"""""""""
11716
11717The '``llvm.experimental.vector.reduce.add.*``' intrinsics do an integer ``ADD``
11718reduction of a vector, returning the result as a scalar. The return type matches
11719the element-type of the vector input.
11720
11721Arguments:
11722""""""""""
11723The argument to this intrinsic must be a vector of integer values.
11724
11725'``llvm.experimental.vector.reduce.fadd.*``' Intrinsic
11726^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11727
11728Syntax:
11729"""""""
11730
11731::
11732
11733 declare float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %a)
11734 declare double @llvm.experimental.vector.reduce.fadd.f64.v2f64(double %acc, <2 x double> %a)
11735
11736Overview:
11737"""""""""
11738
11739The '``llvm.experimental.vector.reduce.fadd.*``' intrinsics do a floating point
11740``ADD`` reduction of a vector, returning the result as a scalar. The return type
11741matches the element-type of the vector input.
11742
11743If the intrinsic call has fast-math flags, then the reduction will not preserve
11744the associativity of an equivalent scalarized counterpart. If it does not have
11745fast-math flags, then the reduction will be *ordered*, implying that the
11746operation respects the associativity of a scalarized reduction.
11747
11748
11749Arguments:
11750""""""""""
11751The first argument to this intrinsic is a scalar accumulator value, which is
11752only used when there are no fast-math flags attached. This argument may be undef
11753when fast-math flags are used.
11754
11755The second argument must be a vector of floating point values.
11756
11757Examples:
11758"""""""""
11759
11760.. code-block:: llvm
11761
11762 %fast = call fast float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
11763 %ord = call float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
11764
11765
11766'``llvm.experimental.vector.reduce.mul.*``' Intrinsic
11767^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11768
11769Syntax:
11770"""""""
11771
11772::
11773
11774 declare i32 @llvm.experimental.vector.reduce.mul.i32.v4i32(<4 x i32> %a)
11775 declare i64 @llvm.experimental.vector.reduce.mul.i64.v2i64(<2 x i64> %a)
11776
11777Overview:
11778"""""""""
11779
11780The '``llvm.experimental.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
11781reduction of a vector, returning the result as a scalar. The return type matches
11782the element-type of the vector input.
11783
11784Arguments:
11785""""""""""
11786The argument to this intrinsic must be a vector of integer values.
11787
11788'``llvm.experimental.vector.reduce.fmul.*``' Intrinsic
11789^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11790
11791Syntax:
11792"""""""
11793
11794::
11795
11796 declare float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %a)
11797 declare double @llvm.experimental.vector.reduce.fmul.f64.v2f64(double %acc, <2 x double> %a)
11798
11799Overview:
11800"""""""""
11801
11802The '``llvm.experimental.vector.reduce.fmul.*``' intrinsics do a floating point
11803``MUL`` reduction of a vector, returning the result as a scalar. The return type
11804matches the element-type of the vector input.
11805
11806If the intrinsic call has fast-math flags, then the reduction will not preserve
11807the associativity of an equivalent scalarized counterpart. If it does not have
11808fast-math flags, then the reduction will be *ordered*, implying that the
11809operation respects the associativity of a scalarized reduction.
11810
11811
11812Arguments:
11813""""""""""
11814The first argument to this intrinsic is a scalar accumulator value, which is
11815only used when there are no fast-math flags attached. This argument may be undef
11816when fast-math flags are used.
11817
11818The second argument must be a vector of floating point values.
11819
11820Examples:
11821"""""""""
11822
11823.. code-block:: llvm
11824
11825 %fast = call fast float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
11826 %ord = call float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
11827
11828'``llvm.experimental.vector.reduce.and.*``' Intrinsic
11829^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11830
11831Syntax:
11832"""""""
11833
11834::
11835
11836 declare i32 @llvm.experimental.vector.reduce.and.i32.v4i32(<4 x i32> %a)
11837
11838Overview:
11839"""""""""
11840
11841The '``llvm.experimental.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
11842reduction of a vector, returning the result as a scalar. The return type matches
11843the element-type of the vector input.
11844
11845Arguments:
11846""""""""""
11847The argument to this intrinsic must be a vector of integer values.
11848
11849'``llvm.experimental.vector.reduce.or.*``' Intrinsic
11850^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11851
11852Syntax:
11853"""""""
11854
11855::
11856
11857 declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
11858
11859Overview:
11860"""""""""
11861
11862The '``llvm.experimental.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
11863of a vector, returning the result as a scalar. The return type matches the
11864element-type of the vector input.
11865
11866Arguments:
11867""""""""""
11868The argument to this intrinsic must be a vector of integer values.
11869
11870'``llvm.experimental.vector.reduce.xor.*``' Intrinsic
11871^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11872
11873Syntax:
11874"""""""
11875
11876::
11877
11878 declare i32 @llvm.experimental.vector.reduce.xor.i32.v4i32(<4 x i32> %a)
11879
11880Overview:
11881"""""""""
11882
11883The '``llvm.experimental.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
11884reduction of a vector, returning the result as a scalar. The return type matches
11885the element-type of the vector input.
11886
11887Arguments:
11888""""""""""
11889The argument to this intrinsic must be a vector of integer values.
11890
11891'``llvm.experimental.vector.reduce.smax.*``' Intrinsic
11892^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11893
11894Syntax:
11895"""""""
11896
11897::
11898
11899 declare i32 @llvm.experimental.vector.reduce.smax.i32.v4i32(<4 x i32> %a)
11900
11901Overview:
11902"""""""""
11903
11904The '``llvm.experimental.vector.reduce.smax.*``' intrinsics do a signed integer
11905``MAX`` reduction of a vector, returning the result as a scalar. The return type
11906matches the element-type of the vector input.
11907
11908Arguments:
11909""""""""""
11910The argument to this intrinsic must be a vector of integer values.
11911
11912'``llvm.experimental.vector.reduce.smin.*``' Intrinsic
11913^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11914
11915Syntax:
11916"""""""
11917
11918::
11919
11920 declare i32 @llvm.experimental.vector.reduce.smin.i32.v4i32(<4 x i32> %a)
11921
11922Overview:
11923"""""""""
11924
11925The '``llvm.experimental.vector.reduce.smin.*``' intrinsics do a signed integer
11926``MIN`` reduction of a vector, returning the result as a scalar. The return type
11927matches the element-type of the vector input.
11928
11929Arguments:
11930""""""""""
11931The argument to this intrinsic must be a vector of integer values.
11932
11933'``llvm.experimental.vector.reduce.umax.*``' Intrinsic
11934^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11935
11936Syntax:
11937"""""""
11938
11939::
11940
11941 declare i32 @llvm.experimental.vector.reduce.umax.i32.v4i32(<4 x i32> %a)
11942
11943Overview:
11944"""""""""
11945
11946The '``llvm.experimental.vector.reduce.umax.*``' intrinsics do an unsigned
11947integer ``MAX`` reduction of a vector, returning the result as a scalar. The
11948return type matches the element-type of the vector input.
11949
11950Arguments:
11951""""""""""
11952The argument to this intrinsic must be a vector of integer values.
11953
11954'``llvm.experimental.vector.reduce.umin.*``' Intrinsic
11955^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11956
11957Syntax:
11958"""""""
11959
11960::
11961
11962 declare i32 @llvm.experimental.vector.reduce.umin.i32.v4i32(<4 x i32> %a)
11963
11964Overview:
11965"""""""""
11966
11967The '``llvm.experimental.vector.reduce.umin.*``' intrinsics do an unsigned
11968integer ``MIN`` reduction of a vector, returning the result as a scalar. The
11969return type matches the element-type of the vector input.
11970
11971Arguments:
11972""""""""""
11973The argument to this intrinsic must be a vector of integer values.
11974
11975'``llvm.experimental.vector.reduce.fmax.*``' Intrinsic
11976^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11977
11978Syntax:
11979"""""""
11980
11981::
11982
11983 declare float @llvm.experimental.vector.reduce.fmax.f32.v4f32(<4 x float> %a)
11984 declare double @llvm.experimental.vector.reduce.fmax.f64.v2f64(<2 x double> %a)
11985
11986Overview:
11987"""""""""
11988
11989The '``llvm.experimental.vector.reduce.fmax.*``' intrinsics do a floating point
11990``MAX`` reduction of a vector, returning the result as a scalar. The return type
11991matches the element-type of the vector input.
11992
11993If the intrinsic call has the ``nnan`` fast-math flag then the operation can
11994assume that NaNs are not present in the input vector.
11995
11996Arguments:
11997""""""""""
11998The argument to this intrinsic must be a vector of floating point values.
11999
12000'``llvm.experimental.vector.reduce.fmin.*``' Intrinsic
12001^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12002
12003Syntax:
12004"""""""
12005
12006::
12007
12008 declare float @llvm.experimental.vector.reduce.fmin.f32.v4f32(<4 x float> %a)
12009 declare double @llvm.experimental.vector.reduce.fmin.f64.v2f64(<2 x double> %a)
12010
12011Overview:
12012"""""""""
12013
12014The '``llvm.experimental.vector.reduce.fmin.*``' intrinsics do a floating point
12015``MIN`` reduction of a vector, returning the result as a scalar. The return type
12016matches the element-type of the vector input.
12017
12018If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12019assume that NaNs are not present in the input vector.
12020
12021Arguments:
12022""""""""""
12023The argument to this intrinsic must be a vector of floating point values.
12024
Sean Silvab084af42012-12-07 10:36:55 +000012025Half Precision Floating Point Intrinsics
12026----------------------------------------
12027
12028For most target platforms, half precision floating point is a
12029storage-only format. This means that it is a dense encoding (in memory)
12030but does not support computation in the format.
12031
12032This means that code must first load the half-precision floating point
12033value as an i16, then convert it to float with
12034:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
12035then be performed on the float value (including extending to double
12036etc). To store the value back to memory, it is first converted to float
12037if needed, then converted to i16 with
12038:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
12039i16 value.
12040
12041.. _int_convert_to_fp16:
12042
12043'``llvm.convert.to.fp16``' Intrinsic
12044^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12045
12046Syntax:
12047"""""""
12048
12049::
12050
Tim Northoverfd7e4242014-07-17 10:51:23 +000012051 declare i16 @llvm.convert.to.fp16.f32(float %a)
12052 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000012053
12054Overview:
12055"""""""""
12056
Tim Northoverfd7e4242014-07-17 10:51:23 +000012057The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
12058conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000012059
12060Arguments:
12061""""""""""
12062
12063The intrinsic function contains single argument - the value to be
12064converted.
12065
12066Semantics:
12067""""""""""
12068
Tim Northoverfd7e4242014-07-17 10:51:23 +000012069The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
12070conventional floating point format to half precision floating point format. The
12071return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000012072
12073Examples:
12074"""""""""
12075
12076.. code-block:: llvm
12077
Tim Northoverfd7e4242014-07-17 10:51:23 +000012078 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000012079 store i16 %res, i16* @x, align 2
12080
12081.. _int_convert_from_fp16:
12082
12083'``llvm.convert.from.fp16``' Intrinsic
12084^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12085
12086Syntax:
12087"""""""
12088
12089::
12090
Tim Northoverfd7e4242014-07-17 10:51:23 +000012091 declare float @llvm.convert.from.fp16.f32(i16 %a)
12092 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012093
12094Overview:
12095"""""""""
12096
12097The '``llvm.convert.from.fp16``' intrinsic function performs a
12098conversion from half precision floating point format to single precision
12099floating point format.
12100
12101Arguments:
12102""""""""""
12103
12104The intrinsic function contains single argument - the value to be
12105converted.
12106
12107Semantics:
12108""""""""""
12109
12110The '``llvm.convert.from.fp16``' intrinsic function performs a
12111conversion from half single precision floating point format to single
12112precision floating point format. The input half-float value is
12113represented by an ``i16`` value.
12114
12115Examples:
12116"""""""""
12117
12118.. code-block:: llvm
12119
David Blaikiec7aabbb2015-03-04 22:06:14 +000012120 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000012121 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012122
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000012123.. _dbg_intrinsics:
12124
Sean Silvab084af42012-12-07 10:36:55 +000012125Debugger Intrinsics
12126-------------------
12127
12128The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
12129prefix), are described in the `LLVM Source Level
12130Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
12131document.
12132
12133Exception Handling Intrinsics
12134-----------------------------
12135
12136The LLVM exception handling intrinsics (which all start with
12137``llvm.eh.`` prefix), are described in the `LLVM Exception
12138Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
12139
12140.. _int_trampoline:
12141
12142Trampoline Intrinsics
12143---------------------
12144
12145These intrinsics make it possible to excise one parameter, marked with
12146the :ref:`nest <nest>` attribute, from a function. The result is a
12147callable function pointer lacking the nest parameter - the caller does
12148not need to provide a value for it. Instead, the value to use is stored
12149in advance in a "trampoline", a block of memory usually allocated on the
12150stack, which also contains code to splice the nest value into the
12151argument list. This is used to implement the GCC nested function address
12152extension.
12153
12154For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
12155then the resulting function pointer has signature ``i32 (i32, i32)*``.
12156It can be created as follows:
12157
12158.. code-block:: llvm
12159
12160 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000012161 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000012162 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
12163 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
12164 %fp = bitcast i8* %p to i32 (i32, i32)*
12165
12166The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
12167``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
12168
12169.. _int_it:
12170
12171'``llvm.init.trampoline``' Intrinsic
12172^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12173
12174Syntax:
12175"""""""
12176
12177::
12178
12179 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
12180
12181Overview:
12182"""""""""
12183
12184This fills the memory pointed to by ``tramp`` with executable code,
12185turning it into a trampoline.
12186
12187Arguments:
12188""""""""""
12189
12190The ``llvm.init.trampoline`` intrinsic takes three arguments, all
12191pointers. The ``tramp`` argument must point to a sufficiently large and
12192sufficiently aligned block of memory; this memory is written to by the
12193intrinsic. Note that the size and the alignment are target-specific -
12194LLVM currently provides no portable way of determining them, so a
12195front-end that generates this intrinsic needs to have some
12196target-specific knowledge. The ``func`` argument must hold a function
12197bitcast to an ``i8*``.
12198
12199Semantics:
12200""""""""""
12201
12202The block of memory pointed to by ``tramp`` is filled with target
12203dependent code, turning it into a function. Then ``tramp`` needs to be
12204passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
12205be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
12206function's signature is the same as that of ``func`` with any arguments
12207marked with the ``nest`` attribute removed. At most one such ``nest``
12208argument is allowed, and it must be of pointer type. Calling the new
12209function is equivalent to calling ``func`` with the same argument list,
12210but with ``nval`` used for the missing ``nest`` argument. If, after
12211calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
12212modified, then the effect of any later call to the returned function
12213pointer is undefined.
12214
12215.. _int_at:
12216
12217'``llvm.adjust.trampoline``' Intrinsic
12218^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12219
12220Syntax:
12221"""""""
12222
12223::
12224
12225 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
12226
12227Overview:
12228"""""""""
12229
12230This performs any required machine-specific adjustment to the address of
12231a trampoline (passed as ``tramp``).
12232
12233Arguments:
12234""""""""""
12235
12236``tramp`` must point to a block of memory which already has trampoline
12237code filled in by a previous call to
12238:ref:`llvm.init.trampoline <int_it>`.
12239
12240Semantics:
12241""""""""""
12242
12243On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012244different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000012245intrinsic returns the executable address corresponding to ``tramp``
12246after performing the required machine specific adjustments. The pointer
12247returned can then be :ref:`bitcast and executed <int_trampoline>`.
12248
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012249.. _int_mload_mstore:
12250
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012251Masked Vector Load and Store Intrinsics
12252---------------------------------------
12253
12254LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
12255
12256.. _int_mload:
12257
12258'``llvm.masked.load.*``' Intrinsics
12259^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12260
12261Syntax:
12262"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012263This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012264
12265::
12266
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012267 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12268 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012269 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012270 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012271 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012272 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012273
12274Overview:
12275"""""""""
12276
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012277Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012278
12279
12280Arguments:
12281""""""""""
12282
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012283The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012284
12285
12286Semantics:
12287""""""""""
12288
12289The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
12290The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
12291
12292
12293::
12294
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012295 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012296
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012297 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000012298 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012299 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012300
12301.. _int_mstore:
12302
12303'``llvm.masked.store.*``' Intrinsics
12304^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12305
12306Syntax:
12307"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012308This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012309
12310::
12311
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012312 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
12313 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012314 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012315 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012316 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012317 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012318
12319Overview:
12320"""""""""
12321
12322Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12323
12324Arguments:
12325""""""""""
12326
12327The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12328
12329
12330Semantics:
12331""""""""""
12332
12333The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
12334The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
12335
12336::
12337
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012338 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012339
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012340 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000012341 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012342 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
12343 store <16 x float> %res, <16 x float>* %ptr, align 4
12344
12345
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012346Masked Vector Gather and Scatter Intrinsics
12347-------------------------------------------
12348
12349LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
12350
12351.. _int_mgather:
12352
12353'``llvm.masked.gather.*``' Intrinsics
12354^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12355
12356Syntax:
12357"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012358This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012359
12360::
12361
Elad Cohenef5798a2017-05-03 12:28:54 +000012362 declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12363 declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64 (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
12364 declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012365
12366Overview:
12367"""""""""
12368
12369Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
12370
12371
12372Arguments:
12373""""""""""
12374
12375The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
12376
12377
12378Semantics:
12379""""""""""
12380
12381The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
12382The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
12383
12384
12385::
12386
Elad Cohenef5798a2017-05-03 12:28:54 +000012387 %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012388
12389 ;; The gather with all-true mask is equivalent to the following instruction sequence
12390 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
12391 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
12392 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
12393 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
12394
12395 %val0 = load double, double* %ptr0, align 8
12396 %val1 = load double, double* %ptr1, align 8
12397 %val2 = load double, double* %ptr2, align 8
12398 %val3 = load double, double* %ptr3, align 8
12399
12400 %vec0 = insertelement <4 x double>undef, %val0, 0
12401 %vec01 = insertelement <4 x double>%vec0, %val1, 1
12402 %vec012 = insertelement <4 x double>%vec01, %val2, 2
12403 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
12404
12405.. _int_mscatter:
12406
12407'``llvm.masked.scatter.*``' Intrinsics
12408^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12409
12410Syntax:
12411"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012412This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012413
12414::
12415
Elad Cohenef5798a2017-05-03 12:28:54 +000012416 declare void @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
12417 declare void @llvm.masked.scatter.v16f32.v16p1f32 (<16 x float> <value>, <16 x float addrspace(1)*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
12418 declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012419
12420Overview:
12421"""""""""
12422
12423Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12424
12425Arguments:
12426""""""""""
12427
12428The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12429
12430
12431Semantics:
12432""""""""""
12433
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000012434The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012435
12436::
12437
Sylvestre Ledru84666a12016-02-14 20:16:22 +000012438 ;; This instruction unconditionally stores data vector in multiple addresses
Elad Cohenef5798a2017-05-03 12:28:54 +000012439 call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012440
12441 ;; It is equivalent to a list of scalar stores
12442 %val0 = extractelement <8 x i32> %value, i32 0
12443 %val1 = extractelement <8 x i32> %value, i32 1
12444 ..
12445 %val7 = extractelement <8 x i32> %value, i32 7
12446 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
12447 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
12448 ..
12449 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
12450 ;; Note: the order of the following stores is important when they overlap:
12451 store i32 %val0, i32* %ptr0, align 4
12452 store i32 %val1, i32* %ptr1, align 4
12453 ..
12454 store i32 %val7, i32* %ptr7, align 4
12455
12456
Sean Silvab084af42012-12-07 10:36:55 +000012457Memory Use Markers
12458------------------
12459
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012460This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000012461memory objects and ranges where variables are immutable.
12462
Reid Klecknera534a382013-12-19 02:14:12 +000012463.. _int_lifestart:
12464
Sean Silvab084af42012-12-07 10:36:55 +000012465'``llvm.lifetime.start``' Intrinsic
12466^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12467
12468Syntax:
12469"""""""
12470
12471::
12472
12473 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
12474
12475Overview:
12476"""""""""
12477
12478The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
12479object's lifetime.
12480
12481Arguments:
12482""""""""""
12483
12484The first argument is a constant integer representing the size of the
12485object, or -1 if it is variable sized. The second argument is a pointer
12486to the object.
12487
12488Semantics:
12489""""""""""
12490
12491This intrinsic indicates that before this point in the code, the value
12492of the memory pointed to by ``ptr`` is dead. This means that it is known
12493to never be used and has an undefined value. A load from the pointer
12494that precedes this intrinsic can be replaced with ``'undef'``.
12495
Reid Klecknera534a382013-12-19 02:14:12 +000012496.. _int_lifeend:
12497
Sean Silvab084af42012-12-07 10:36:55 +000012498'``llvm.lifetime.end``' Intrinsic
12499^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12500
12501Syntax:
12502"""""""
12503
12504::
12505
12506 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
12507
12508Overview:
12509"""""""""
12510
12511The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
12512object's lifetime.
12513
12514Arguments:
12515""""""""""
12516
12517The first argument is a constant integer representing the size of the
12518object, or -1 if it is variable sized. The second argument is a pointer
12519to the object.
12520
12521Semantics:
12522""""""""""
12523
12524This intrinsic indicates that after this point in the code, the value of
12525the memory pointed to by ``ptr`` is dead. This means that it is known to
12526never be used and has an undefined value. Any stores into the memory
12527object following this intrinsic may be removed as dead.
12528
12529'``llvm.invariant.start``' Intrinsic
12530^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12531
12532Syntax:
12533"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012534This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012535
12536::
12537
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012538 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012539
12540Overview:
12541"""""""""
12542
12543The '``llvm.invariant.start``' intrinsic specifies that the contents of
12544a memory object will not change.
12545
12546Arguments:
12547""""""""""
12548
12549The first argument is a constant integer representing the size of the
12550object, or -1 if it is variable sized. The second argument is a pointer
12551to the object.
12552
12553Semantics:
12554""""""""""
12555
12556This intrinsic indicates that until an ``llvm.invariant.end`` that uses
12557the return value, the referenced memory location is constant and
12558unchanging.
12559
12560'``llvm.invariant.end``' Intrinsic
12561^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12562
12563Syntax:
12564"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012565This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012566
12567::
12568
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012569 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012570
12571Overview:
12572"""""""""
12573
12574The '``llvm.invariant.end``' intrinsic specifies that the contents of a
12575memory object are mutable.
12576
12577Arguments:
12578""""""""""
12579
12580The first argument is the matching ``llvm.invariant.start`` intrinsic.
12581The second argument is a constant integer representing the size of the
12582object, or -1 if it is variable sized and the third argument is a
12583pointer to the object.
12584
12585Semantics:
12586""""""""""
12587
12588This intrinsic indicates that the memory is mutable again.
12589
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012590'``llvm.invariant.group.barrier``' Intrinsic
12591^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12592
12593Syntax:
12594"""""""
12595
12596::
12597
12598 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
12599
12600Overview:
12601"""""""""
12602
12603The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
12604established by invariant.group metadata no longer holds, to obtain a new pointer
12605value that does not carry the invariant information.
12606
12607
12608Arguments:
12609""""""""""
12610
12611The ``llvm.invariant.group.barrier`` takes only one argument, which is
12612the pointer to the memory for which the ``invariant.group`` no longer holds.
12613
12614Semantics:
12615""""""""""
12616
12617Returns another pointer that aliases its argument but which is considered different
12618for the purposes of ``load``/``store`` ``invariant.group`` metadata.
12619
Andrew Kaylora0a11642017-01-26 23:27:59 +000012620Constrained Floating Point Intrinsics
12621-------------------------------------
12622
12623These intrinsics are used to provide special handling of floating point
12624operations when specific rounding mode or floating point exception behavior is
12625required. By default, LLVM optimization passes assume that the rounding mode is
12626round-to-nearest and that floating point exceptions will not be monitored.
12627Constrained FP intrinsics are used to support non-default rounding modes and
12628accurately preserve exception behavior without compromising LLVM's ability to
12629optimize FP code when the default behavior is used.
12630
12631Each of these intrinsics corresponds to a normal floating point operation. The
12632first two arguments and the return value are the same as the corresponding FP
12633operation.
12634
12635The third argument is a metadata argument specifying the rounding mode to be
12636assumed. This argument must be one of the following strings:
12637
12638::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012639
Andrew Kaylora0a11642017-01-26 23:27:59 +000012640 "round.dynamic"
12641 "round.tonearest"
12642 "round.downward"
12643 "round.upward"
12644 "round.towardzero"
12645
12646If this argument is "round.dynamic" optimization passes must assume that the
12647rounding mode is unknown and may change at runtime. No transformations that
12648depend on rounding mode may be performed in this case.
12649
12650The other possible values for the rounding mode argument correspond to the
12651similarly named IEEE rounding modes. If the argument is any of these values
12652optimization passes may perform transformations as long as they are consistent
12653with the specified rounding mode.
12654
12655For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
12656"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
12657'x-0' should evaluate to '-0' when rounding downward. However, this
12658transformation is legal for all other rounding modes.
12659
12660For values other than "round.dynamic" optimization passes may assume that the
12661actual runtime rounding mode (as defined in a target-specific manner) matches
12662the specified rounding mode, but this is not guaranteed. Using a specific
12663non-dynamic rounding mode which does not match the actual rounding mode at
12664runtime results in undefined behavior.
12665
12666The fourth argument to the constrained floating point intrinsics specifies the
12667required exception behavior. This argument must be one of the following
12668strings:
12669
12670::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012671
Andrew Kaylora0a11642017-01-26 23:27:59 +000012672 "fpexcept.ignore"
12673 "fpexcept.maytrap"
12674 "fpexcept.strict"
12675
12676If this argument is "fpexcept.ignore" optimization passes may assume that the
12677exception status flags will not be read and that floating point exceptions will
12678be masked. This allows transformations to be performed that may change the
12679exception semantics of the original code. For example, FP operations may be
12680speculatively executed in this case whereas they must not be for either of the
12681other possible values of this argument.
12682
12683If the exception behavior argument is "fpexcept.maytrap" optimization passes
12684must avoid transformations that may raise exceptions that would not have been
12685raised by the original code (such as speculatively executing FP operations), but
12686passes are not required to preserve all exceptions that are implied by the
12687original code. For example, exceptions may be potentially hidden by constant
12688folding.
12689
12690If the exception behavior argument is "fpexcept.strict" all transformations must
12691strictly preserve the floating point exception semantics of the original code.
12692Any FP exception that would have been raised by the original code must be raised
12693by the transformed code, and the transformed code must not raise any FP
12694exceptions that would not have been raised by the original code. This is the
12695exception behavior argument that will be used if the code being compiled reads
12696the FP exception status flags, but this mode can also be used with code that
12697unmasks FP exceptions.
12698
12699The number and order of floating point exceptions is NOT guaranteed. For
12700example, a series of FP operations that each may raise exceptions may be
12701vectorized into a single instruction that raises each unique exception a single
12702time.
12703
12704
12705'``llvm.experimental.constrained.fadd``' Intrinsic
12706^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12707
12708Syntax:
12709"""""""
12710
12711::
12712
12713 declare <type>
12714 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
12715 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012716 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012717
12718Overview:
12719"""""""""
12720
12721The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
12722two operands.
12723
12724
12725Arguments:
12726""""""""""
12727
12728The first two arguments to the '``llvm.experimental.constrained.fadd``'
12729intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12730of floating point values. Both arguments must have identical types.
12731
12732The third and fourth arguments specify the rounding mode and exception
12733behavior as described above.
12734
12735Semantics:
12736""""""""""
12737
12738The value produced is the floating point sum of the two value operands and has
12739the same type as the operands.
12740
12741
12742'``llvm.experimental.constrained.fsub``' Intrinsic
12743^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12744
12745Syntax:
12746"""""""
12747
12748::
12749
12750 declare <type>
12751 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
12752 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012753 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012754
12755Overview:
12756"""""""""
12757
12758The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
12759of its two operands.
12760
12761
12762Arguments:
12763""""""""""
12764
12765The first two arguments to the '``llvm.experimental.constrained.fsub``'
12766intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12767of floating point values. Both arguments must have identical types.
12768
12769The third and fourth arguments specify the rounding mode and exception
12770behavior as described above.
12771
12772Semantics:
12773""""""""""
12774
12775The value produced is the floating point difference of the two value operands
12776and has the same type as the operands.
12777
12778
12779'``llvm.experimental.constrained.fmul``' Intrinsic
12780^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12781
12782Syntax:
12783"""""""
12784
12785::
12786
12787 declare <type>
12788 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
12789 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012790 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012791
12792Overview:
12793"""""""""
12794
12795The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
12796its two operands.
12797
12798
12799Arguments:
12800""""""""""
12801
12802The first two arguments to the '``llvm.experimental.constrained.fmul``'
12803intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12804of floating point values. Both arguments must have identical types.
12805
12806The third and fourth arguments specify the rounding mode and exception
12807behavior as described above.
12808
12809Semantics:
12810""""""""""
12811
12812The value produced is the floating point product of the two value operands and
12813has the same type as the operands.
12814
12815
12816'``llvm.experimental.constrained.fdiv``' Intrinsic
12817^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12818
12819Syntax:
12820"""""""
12821
12822::
12823
12824 declare <type>
12825 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
12826 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012827 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012828
12829Overview:
12830"""""""""
12831
12832The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
12833its two operands.
12834
12835
12836Arguments:
12837""""""""""
12838
12839The first two arguments to the '``llvm.experimental.constrained.fdiv``'
12840intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12841of floating point values. Both arguments must have identical types.
12842
12843The third and fourth arguments specify the rounding mode and exception
12844behavior as described above.
12845
12846Semantics:
12847""""""""""
12848
12849The value produced is the floating point quotient of the two value operands and
12850has the same type as the operands.
12851
12852
12853'``llvm.experimental.constrained.frem``' Intrinsic
12854^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12855
12856Syntax:
12857"""""""
12858
12859::
12860
12861 declare <type>
12862 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
12863 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012864 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012865
12866Overview:
12867"""""""""
12868
12869The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
12870from the division of its two operands.
12871
12872
12873Arguments:
12874""""""""""
12875
12876The first two arguments to the '``llvm.experimental.constrained.frem``'
12877intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12878of floating point values. Both arguments must have identical types.
12879
12880The third and fourth arguments specify the rounding mode and exception
12881behavior as described above. The rounding mode argument has no effect, since
12882the result of frem is never rounded, but the argument is included for
12883consistency with the other constrained floating point intrinsics.
12884
12885Semantics:
12886""""""""""
12887
12888The value produced is the floating point remainder from the division of the two
12889value operands and has the same type as the operands. The remainder has the
12890same sign as the dividend.
12891
12892
Andrew Kaylorf4660012017-05-25 21:31:00 +000012893Constrained libm-equivalent Intrinsics
12894--------------------------------------
12895
12896In addition to the basic floating point operations for which constrained
12897intrinsics are described above, there are constrained versions of various
12898operations which provide equivalent behavior to a corresponding libm function.
12899These intrinsics allow the precise behavior of these operations with respect to
12900rounding mode and exception behavior to be controlled.
12901
12902As with the basic constrained floating point intrinsics, the rounding mode
12903and exception behavior arguments only control the behavior of the optimizer.
12904They do not change the runtime floating point environment.
12905
12906
12907'``llvm.experimental.constrained.sqrt``' Intrinsic
12908^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12909
12910Syntax:
12911"""""""
12912
12913::
12914
12915 declare <type>
12916 @llvm.experimental.constrained.sqrt(<type> <op1>,
12917 metadata <rounding mode>,
12918 metadata <exception behavior>)
12919
12920Overview:
12921"""""""""
12922
12923The '``llvm.experimental.constrained.sqrt``' intrinsic returns the square root
12924of the specified value, returning the same value as the libm '``sqrt``'
12925functions would, but without setting ``errno``.
12926
12927Arguments:
12928""""""""""
12929
12930The first argument and the return type are floating point numbers of the same
12931type.
12932
12933The second and third arguments specify the rounding mode and exception
12934behavior as described above.
12935
12936Semantics:
12937""""""""""
12938
12939This function returns the nonnegative square root of the specified value.
12940If the value is less than negative zero, a floating point exception occurs
12941and the the return value is architecture specific.
12942
12943
12944'``llvm.experimental.constrained.pow``' Intrinsic
12945^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12946
12947Syntax:
12948"""""""
12949
12950::
12951
12952 declare <type>
12953 @llvm.experimental.constrained.pow(<type> <op1>, <type> <op2>,
12954 metadata <rounding mode>,
12955 metadata <exception behavior>)
12956
12957Overview:
12958"""""""""
12959
12960The '``llvm.experimental.constrained.pow``' intrinsic returns the first operand
12961raised to the (positive or negative) power specified by the second operand.
12962
12963Arguments:
12964""""""""""
12965
12966The first two arguments and the return value are floating point numbers of the
12967same type. The second argument specifies the power to which the first argument
12968should be raised.
12969
12970The third and fourth arguments specify the rounding mode and exception
12971behavior as described above.
12972
12973Semantics:
12974""""""""""
12975
12976This function returns the first value raised to the second power,
12977returning the same values as the libm ``pow`` functions would, and
12978handles error conditions in the same way.
12979
12980
12981'``llvm.experimental.constrained.powi``' Intrinsic
12982^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12983
12984Syntax:
12985"""""""
12986
12987::
12988
12989 declare <type>
12990 @llvm.experimental.constrained.powi(<type> <op1>, i32 <op2>,
12991 metadata <rounding mode>,
12992 metadata <exception behavior>)
12993
12994Overview:
12995"""""""""
12996
12997The '``llvm.experimental.constrained.powi``' intrinsic returns the first operand
12998raised to the (positive or negative) power specified by the second operand. The
12999order of evaluation of multiplications is not defined. When a vector of floating
13000point type is used, the second argument remains a scalar integer value.
13001
13002
13003Arguments:
13004""""""""""
13005
13006The first argument and the return value are floating point numbers of the same
13007type. The second argument is a 32-bit signed integer specifying the power to
13008which the first argument should be raised.
13009
13010The third and fourth arguments specify the rounding mode and exception
13011behavior as described above.
13012
13013Semantics:
13014""""""""""
13015
13016This function returns the first value raised to the second power with an
13017unspecified sequence of rounding operations.
13018
13019
13020'``llvm.experimental.constrained.sin``' Intrinsic
13021^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13022
13023Syntax:
13024"""""""
13025
13026::
13027
13028 declare <type>
13029 @llvm.experimental.constrained.sin(<type> <op1>,
13030 metadata <rounding mode>,
13031 metadata <exception behavior>)
13032
13033Overview:
13034"""""""""
13035
13036The '``llvm.experimental.constrained.sin``' intrinsic returns the sine of the
13037first operand.
13038
13039Arguments:
13040""""""""""
13041
13042The first argument and the return type are floating point numbers of the same
13043type.
13044
13045The second and third arguments specify the rounding mode and exception
13046behavior as described above.
13047
13048Semantics:
13049""""""""""
13050
13051This function returns the sine of the specified operand, returning the
13052same values as the libm ``sin`` functions would, and handles error
13053conditions in the same way.
13054
13055
13056'``llvm.experimental.constrained.cos``' Intrinsic
13057^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13058
13059Syntax:
13060"""""""
13061
13062::
13063
13064 declare <type>
13065 @llvm.experimental.constrained.cos(<type> <op1>,
13066 metadata <rounding mode>,
13067 metadata <exception behavior>)
13068
13069Overview:
13070"""""""""
13071
13072The '``llvm.experimental.constrained.cos``' intrinsic returns the cosine of the
13073first operand.
13074
13075Arguments:
13076""""""""""
13077
13078The first argument and the return type are floating point numbers of the same
13079type.
13080
13081The second and third arguments specify the rounding mode and exception
13082behavior as described above.
13083
13084Semantics:
13085""""""""""
13086
13087This function returns the cosine of the specified operand, returning the
13088same values as the libm ``cos`` functions would, and handles error
13089conditions in the same way.
13090
13091
13092'``llvm.experimental.constrained.exp``' Intrinsic
13093^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13094
13095Syntax:
13096"""""""
13097
13098::
13099
13100 declare <type>
13101 @llvm.experimental.constrained.exp(<type> <op1>,
13102 metadata <rounding mode>,
13103 metadata <exception behavior>)
13104
13105Overview:
13106"""""""""
13107
13108The '``llvm.experimental.constrained.exp``' intrinsic computes the base-e
13109exponential of the specified value.
13110
13111Arguments:
13112""""""""""
13113
13114The first argument and the return value are floating point numbers of the same
13115type.
13116
13117The second and third arguments specify the rounding mode and exception
13118behavior as described above.
13119
13120Semantics:
13121""""""""""
13122
13123This function returns the same values as the libm ``exp`` functions
13124would, and handles error conditions in the same way.
13125
13126
13127'``llvm.experimental.constrained.exp2``' Intrinsic
13128^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13129
13130Syntax:
13131"""""""
13132
13133::
13134
13135 declare <type>
13136 @llvm.experimental.constrained.exp2(<type> <op1>,
13137 metadata <rounding mode>,
13138 metadata <exception behavior>)
13139
13140Overview:
13141"""""""""
13142
13143The '``llvm.experimental.constrained.exp2``' intrinsic computes the base-2
13144exponential of the specified value.
13145
13146
13147Arguments:
13148""""""""""
13149
13150The first argument and the return value are floating point numbers of the same
13151type.
13152
13153The second and third arguments specify the rounding mode and exception
13154behavior as described above.
13155
13156Semantics:
13157""""""""""
13158
13159This function returns the same values as the libm ``exp2`` functions
13160would, and handles error conditions in the same way.
13161
13162
13163'``llvm.experimental.constrained.log``' Intrinsic
13164^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13165
13166Syntax:
13167"""""""
13168
13169::
13170
13171 declare <type>
13172 @llvm.experimental.constrained.log(<type> <op1>,
13173 metadata <rounding mode>,
13174 metadata <exception behavior>)
13175
13176Overview:
13177"""""""""
13178
13179The '``llvm.experimental.constrained.log``' intrinsic computes the base-e
13180logarithm of the specified value.
13181
13182Arguments:
13183""""""""""
13184
13185The first argument and the return value are floating point numbers of the same
13186type.
13187
13188The second and third arguments specify the rounding mode and exception
13189behavior as described above.
13190
13191
13192Semantics:
13193""""""""""
13194
13195This function returns the same values as the libm ``log`` functions
13196would, and handles error conditions in the same way.
13197
13198
13199'``llvm.experimental.constrained.log10``' Intrinsic
13200^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13201
13202Syntax:
13203"""""""
13204
13205::
13206
13207 declare <type>
13208 @llvm.experimental.constrained.log10(<type> <op1>,
13209 metadata <rounding mode>,
13210 metadata <exception behavior>)
13211
13212Overview:
13213"""""""""
13214
13215The '``llvm.experimental.constrained.log10``' intrinsic computes the base-10
13216logarithm of the specified value.
13217
13218Arguments:
13219""""""""""
13220
13221The first argument and the return value are floating point numbers of the same
13222type.
13223
13224The second and third arguments specify the rounding mode and exception
13225behavior as described above.
13226
13227Semantics:
13228""""""""""
13229
13230This function returns the same values as the libm ``log10`` functions
13231would, and handles error conditions in the same way.
13232
13233
13234'``llvm.experimental.constrained.log2``' Intrinsic
13235^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13236
13237Syntax:
13238"""""""
13239
13240::
13241
13242 declare <type>
13243 @llvm.experimental.constrained.log2(<type> <op1>,
13244 metadata <rounding mode>,
13245 metadata <exception behavior>)
13246
13247Overview:
13248"""""""""
13249
13250The '``llvm.experimental.constrained.log2``' intrinsic computes the base-2
13251logarithm of the specified value.
13252
13253Arguments:
13254""""""""""
13255
13256The first argument and the return value are floating point numbers of the same
13257type.
13258
13259The second and third arguments specify the rounding mode and exception
13260behavior as described above.
13261
13262Semantics:
13263""""""""""
13264
13265This function returns the same values as the libm ``log2`` functions
13266would, and handles error conditions in the same way.
13267
13268
13269'``llvm.experimental.constrained.rint``' Intrinsic
13270^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13271
13272Syntax:
13273"""""""
13274
13275::
13276
13277 declare <type>
13278 @llvm.experimental.constrained.rint(<type> <op1>,
13279 metadata <rounding mode>,
13280 metadata <exception behavior>)
13281
13282Overview:
13283"""""""""
13284
13285The '``llvm.experimental.constrained.rint``' intrinsic returns the first
13286operand rounded to the nearest integer. It may raise an inexact floating point
13287exception if the operand is not an integer.
13288
13289Arguments:
13290""""""""""
13291
13292The first argument and the return value are floating point numbers of the same
13293type.
13294
13295The second and third arguments specify the rounding mode and exception
13296behavior as described above.
13297
13298Semantics:
13299""""""""""
13300
13301This function returns the same values as the libm ``rint`` functions
13302would, and handles error conditions in the same way. The rounding mode is
13303described, not determined, by the rounding mode argument. The actual rounding
13304mode is determined by the runtime floating point environment. The rounding
13305mode argument is only intended as information to the compiler.
13306
13307
13308'``llvm.experimental.constrained.nearbyint``' Intrinsic
13309^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13310
13311Syntax:
13312"""""""
13313
13314::
13315
13316 declare <type>
13317 @llvm.experimental.constrained.nearbyint(<type> <op1>,
13318 metadata <rounding mode>,
13319 metadata <exception behavior>)
13320
13321Overview:
13322"""""""""
13323
13324The '``llvm.experimental.constrained.nearbyint``' intrinsic returns the first
13325operand rounded to the nearest integer. It will not raise an inexact floating
13326point exception if the operand is not an integer.
13327
13328
13329Arguments:
13330""""""""""
13331
13332The first argument and the return value are floating point numbers of the same
13333type.
13334
13335The second and third arguments specify the rounding mode and exception
13336behavior as described above.
13337
13338Semantics:
13339""""""""""
13340
13341This function returns the same values as the libm ``nearbyint`` functions
13342would, and handles error conditions in the same way. The rounding mode is
13343described, not determined, by the rounding mode argument. The actual rounding
13344mode is determined by the runtime floating point environment. The rounding
13345mode argument is only intended as information to the compiler.
13346
13347
Sean Silvab084af42012-12-07 10:36:55 +000013348General Intrinsics
13349------------------
13350
13351This class of intrinsics is designed to be generic and has no specific
13352purpose.
13353
13354'``llvm.var.annotation``' Intrinsic
13355^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13356
13357Syntax:
13358"""""""
13359
13360::
13361
13362 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
13363
13364Overview:
13365"""""""""
13366
13367The '``llvm.var.annotation``' intrinsic.
13368
13369Arguments:
13370""""""""""
13371
13372The first argument is a pointer to a value, the second is a pointer to a
13373global string, the third is a pointer to a global string which is the
13374source file name, and the last argument is the line number.
13375
13376Semantics:
13377""""""""""
13378
13379This intrinsic allows annotation of local variables with arbitrary
13380strings. This can be useful for special purpose optimizations that want
13381to look for these annotations. These have no other defined use; they are
13382ignored by code generation and optimization.
13383
Michael Gottesman88d18832013-03-26 00:34:27 +000013384'``llvm.ptr.annotation.*``' Intrinsic
13385^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13386
13387Syntax:
13388"""""""
13389
13390This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
13391pointer to an integer of any width. *NOTE* you must specify an address space for
13392the pointer. The identifier for the default address space is the integer
13393'``0``'.
13394
13395::
13396
13397 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
13398 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
13399 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
13400 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
13401 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
13402
13403Overview:
13404"""""""""
13405
13406The '``llvm.ptr.annotation``' intrinsic.
13407
13408Arguments:
13409""""""""""
13410
13411The first argument is a pointer to an integer value of arbitrary bitwidth
13412(result of some expression), the second is a pointer to a global string, the
13413third is a pointer to a global string which is the source file name, and the
13414last argument is the line number. It returns the value of the first argument.
13415
13416Semantics:
13417""""""""""
13418
13419This intrinsic allows annotation of a pointer to an integer with arbitrary
13420strings. This can be useful for special purpose optimizations that want to look
13421for these annotations. These have no other defined use; they are ignored by code
13422generation and optimization.
13423
Sean Silvab084af42012-12-07 10:36:55 +000013424'``llvm.annotation.*``' Intrinsic
13425^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13426
13427Syntax:
13428"""""""
13429
13430This is an overloaded intrinsic. You can use '``llvm.annotation``' on
13431any integer bit width.
13432
13433::
13434
13435 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
13436 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
13437 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
13438 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
13439 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
13440
13441Overview:
13442"""""""""
13443
13444The '``llvm.annotation``' intrinsic.
13445
13446Arguments:
13447""""""""""
13448
13449The first argument is an integer value (result of some expression), the
13450second is a pointer to a global string, the third is a pointer to a
13451global string which is the source file name, and the last argument is
13452the line number. It returns the value of the first argument.
13453
13454Semantics:
13455""""""""""
13456
13457This intrinsic allows annotations to be put on arbitrary expressions
13458with arbitrary strings. This can be useful for special purpose
13459optimizations that want to look for these annotations. These have no
13460other defined use; they are ignored by code generation and optimization.
13461
13462'``llvm.trap``' Intrinsic
13463^^^^^^^^^^^^^^^^^^^^^^^^^
13464
13465Syntax:
13466"""""""
13467
13468::
13469
13470 declare void @llvm.trap() noreturn nounwind
13471
13472Overview:
13473"""""""""
13474
13475The '``llvm.trap``' intrinsic.
13476
13477Arguments:
13478""""""""""
13479
13480None.
13481
13482Semantics:
13483""""""""""
13484
13485This intrinsic is lowered to the target dependent trap instruction. If
13486the target does not have a trap instruction, this intrinsic will be
13487lowered to a call of the ``abort()`` function.
13488
13489'``llvm.debugtrap``' Intrinsic
13490^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13491
13492Syntax:
13493"""""""
13494
13495::
13496
13497 declare void @llvm.debugtrap() nounwind
13498
13499Overview:
13500"""""""""
13501
13502The '``llvm.debugtrap``' intrinsic.
13503
13504Arguments:
13505""""""""""
13506
13507None.
13508
13509Semantics:
13510""""""""""
13511
13512This intrinsic is lowered to code which is intended to cause an
13513execution trap with the intention of requesting the attention of a
13514debugger.
13515
13516'``llvm.stackprotector``' Intrinsic
13517^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13518
13519Syntax:
13520"""""""
13521
13522::
13523
13524 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
13525
13526Overview:
13527"""""""""
13528
13529The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
13530onto the stack at ``slot``. The stack slot is adjusted to ensure that it
13531is placed on the stack before local variables.
13532
13533Arguments:
13534""""""""""
13535
13536The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
13537The first argument is the value loaded from the stack guard
13538``@__stack_chk_guard``. The second variable is an ``alloca`` that has
13539enough space to hold the value of the guard.
13540
13541Semantics:
13542""""""""""
13543
Michael Gottesmandafc7d92013-08-12 18:35:32 +000013544This intrinsic causes the prologue/epilogue inserter to force the position of
13545the ``AllocaInst`` stack slot to be before local variables on the stack. This is
13546to ensure that if a local variable on the stack is overwritten, it will destroy
13547the value of the guard. When the function exits, the guard on the stack is
13548checked against the original guard by ``llvm.stackprotectorcheck``. If they are
13549different, then ``llvm.stackprotectorcheck`` causes the program to abort by
13550calling the ``__stack_chk_fail()`` function.
13551
Tim Shene885d5e2016-04-19 19:40:37 +000013552'``llvm.stackguard``' Intrinsic
13553^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13554
13555Syntax:
13556"""""""
13557
13558::
13559
13560 declare i8* @llvm.stackguard()
13561
13562Overview:
13563"""""""""
13564
13565The ``llvm.stackguard`` intrinsic returns the system stack guard value.
13566
13567It should not be generated by frontends, since it is only for internal usage.
13568The reason why we create this intrinsic is that we still support IR form Stack
13569Protector in FastISel.
13570
13571Arguments:
13572""""""""""
13573
13574None.
13575
13576Semantics:
13577""""""""""
13578
13579On some platforms, the value returned by this intrinsic remains unchanged
13580between loads in the same thread. On other platforms, it returns the same
13581global variable value, if any, e.g. ``@__stack_chk_guard``.
13582
13583Currently some platforms have IR-level customized stack guard loading (e.g.
13584X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
13585in the future.
13586
Sean Silvab084af42012-12-07 10:36:55 +000013587'``llvm.objectsize``' Intrinsic
13588^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13589
13590Syntax:
13591"""""""
13592
13593::
13594
George Burgess IV56c7e882017-03-21 20:08:59 +000013595 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>)
13596 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>)
Sean Silvab084af42012-12-07 10:36:55 +000013597
13598Overview:
13599"""""""""
13600
13601The ``llvm.objectsize`` intrinsic is designed to provide information to
13602the optimizers to determine at compile time whether a) an operation
13603(like memcpy) will overflow a buffer that corresponds to an object, or
13604b) that a runtime check for overflow isn't necessary. An object in this
13605context means an allocation of a specific class, structure, array, or
13606other object.
13607
13608Arguments:
13609""""""""""
13610
George Burgess IV56c7e882017-03-21 20:08:59 +000013611The ``llvm.objectsize`` intrinsic takes three arguments. The first argument is
13612a pointer to or into the ``object``. The second argument determines whether
13613``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size
13614is unknown. The third argument controls how ``llvm.objectsize`` acts when
13615``null`` is used as its pointer argument. If it's true and the pointer is in
13616address space 0, ``null`` is treated as an opaque value with an unknown number
13617of bytes. Otherwise, ``llvm.objectsize`` reports 0 bytes available when given
13618``null``.
13619
13620The second and third arguments only accept constants.
Sean Silvab084af42012-12-07 10:36:55 +000013621
13622Semantics:
13623""""""""""
13624
13625The ``llvm.objectsize`` intrinsic is lowered to a constant representing
13626the size of the object concerned. If the size cannot be determined at
13627compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
13628on the ``min`` argument).
13629
13630'``llvm.expect``' Intrinsic
13631^^^^^^^^^^^^^^^^^^^^^^^^^^^
13632
13633Syntax:
13634"""""""
13635
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000013636This is an overloaded intrinsic. You can use ``llvm.expect`` on any
13637integer bit width.
13638
Sean Silvab084af42012-12-07 10:36:55 +000013639::
13640
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000013641 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000013642 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
13643 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
13644
13645Overview:
13646"""""""""
13647
13648The ``llvm.expect`` intrinsic provides information about expected (the
13649most probable) value of ``val``, which can be used by optimizers.
13650
13651Arguments:
13652""""""""""
13653
13654The ``llvm.expect`` intrinsic takes two arguments. The first argument is
13655a value. The second argument is an expected value, this needs to be a
13656constant value, variables are not allowed.
13657
13658Semantics:
13659""""""""""
13660
13661This intrinsic is lowered to the ``val``.
13662
Philip Reamese0e90832015-04-26 22:23:12 +000013663.. _int_assume:
13664
Hal Finkel93046912014-07-25 21:13:35 +000013665'``llvm.assume``' Intrinsic
13666^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13667
13668Syntax:
13669"""""""
13670
13671::
13672
13673 declare void @llvm.assume(i1 %cond)
13674
13675Overview:
13676"""""""""
13677
13678The ``llvm.assume`` allows the optimizer to assume that the provided
13679condition is true. This information can then be used in simplifying other parts
13680of the code.
13681
13682Arguments:
13683""""""""""
13684
13685The condition which the optimizer may assume is always true.
13686
13687Semantics:
13688""""""""""
13689
13690The intrinsic allows the optimizer to assume that the provided condition is
13691always true whenever the control flow reaches the intrinsic call. No code is
13692generated for this intrinsic, and instructions that contribute only to the
13693provided condition are not used for code generation. If the condition is
13694violated during execution, the behavior is undefined.
13695
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000013696Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000013697used by the ``llvm.assume`` intrinsic in order to preserve the instructions
13698only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000013699if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000013700sufficient overall improvement in code quality. For this reason,
13701``llvm.assume`` should not be used to document basic mathematical invariants
13702that the optimizer can otherwise deduce or facts that are of little use to the
13703optimizer.
13704
Daniel Berlin2c438a32017-02-07 19:29:25 +000013705.. _int_ssa_copy:
13706
13707'``llvm.ssa_copy``' Intrinsic
13708^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13709
13710Syntax:
13711"""""""
13712
13713::
13714
13715 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
13716
13717Arguments:
13718""""""""""
13719
13720The first argument is an operand which is used as the returned value.
13721
13722Overview:
13723""""""""""
13724
13725The ``llvm.ssa_copy`` intrinsic can be used to attach information to
13726operations by copying them and giving them new names. For example,
13727the PredicateInfo utility uses it to build Extended SSA form, and
13728attach various forms of information to operands that dominate specific
13729uses. It is not meant for general use, only for building temporary
13730renaming forms that require value splits at certain points.
13731
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013732.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000013733
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013734'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000013735^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13736
13737Syntax:
13738"""""""
13739
13740::
13741
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013742 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000013743
13744
13745Arguments:
13746""""""""""
13747
13748The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013749metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000013750
13751Overview:
13752"""""""""
13753
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013754The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
13755with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000013756
Peter Collingbourne0312f612016-06-25 00:23:04 +000013757'``llvm.type.checked.load``' Intrinsic
13758^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13759
13760Syntax:
13761"""""""
13762
13763::
13764
13765 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
13766
13767
13768Arguments:
13769""""""""""
13770
13771The first argument is a pointer from which to load a function pointer. The
13772second argument is the byte offset from which to load the function pointer. The
13773third argument is a metadata object representing a :doc:`type identifier
13774<TypeMetadata>`.
13775
13776Overview:
13777"""""""""
13778
13779The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
13780virtual table pointer using type metadata. This intrinsic is used to implement
13781control flow integrity in conjunction with virtual call optimization. The
13782virtual call optimization pass will optimize away ``llvm.type.checked.load``
13783intrinsics associated with devirtualized calls, thereby removing the type
13784check in cases where it is not needed to enforce the control flow integrity
13785constraint.
13786
13787If the given pointer is associated with a type metadata identifier, this
13788function returns true as the second element of its return value. (Note that
13789the function may also return true if the given pointer is not associated
13790with a type metadata identifier.) If the function's return value's second
13791element is true, the following rules apply to the first element:
13792
13793- If the given pointer is associated with the given type metadata identifier,
13794 it is the function pointer loaded from the given byte offset from the given
13795 pointer.
13796
13797- If the given pointer is not associated with the given type metadata
13798 identifier, it is one of the following (the choice of which is unspecified):
13799
13800 1. The function pointer that would have been loaded from an arbitrarily chosen
13801 (through an unspecified mechanism) pointer associated with the type
13802 metadata.
13803
13804 2. If the function has a non-void return type, a pointer to a function that
13805 returns an unspecified value without causing side effects.
13806
13807If the function's return value's second element is false, the value of the
13808first element is undefined.
13809
13810
Sean Silvab084af42012-12-07 10:36:55 +000013811'``llvm.donothing``' Intrinsic
13812^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13813
13814Syntax:
13815"""""""
13816
13817::
13818
13819 declare void @llvm.donothing() nounwind readnone
13820
13821Overview:
13822"""""""""
13823
Juergen Ributzkac9161192014-10-23 22:36:13 +000013824The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000013825three intrinsics (besides ``llvm.experimental.patchpoint`` and
13826``llvm.experimental.gc.statepoint``) that can be called with an invoke
13827instruction.
Sean Silvab084af42012-12-07 10:36:55 +000013828
13829Arguments:
13830""""""""""
13831
13832None.
13833
13834Semantics:
13835""""""""""
13836
13837This intrinsic does nothing, and it's removed by optimizers and ignored
13838by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000013839
Sanjoy Dasb51325d2016-03-11 19:08:34 +000013840'``llvm.experimental.deoptimize``' Intrinsic
13841^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13842
13843Syntax:
13844"""""""
13845
13846::
13847
13848 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
13849
13850Overview:
13851"""""""""
13852
13853This intrinsic, together with :ref:`deoptimization operand bundles
13854<deopt_opbundles>`, allow frontends to express transfer of control and
13855frame-local state from the currently executing (typically more specialized,
13856hence faster) version of a function into another (typically more generic, hence
13857slower) version.
13858
13859In languages with a fully integrated managed runtime like Java and JavaScript
13860this intrinsic can be used to implement "uncommon trap" or "side exit" like
13861functionality. In unmanaged languages like C and C++, this intrinsic can be
13862used to represent the slow paths of specialized functions.
13863
13864
13865Arguments:
13866""""""""""
13867
13868The intrinsic takes an arbitrary number of arguments, whose meaning is
13869decided by the :ref:`lowering strategy<deoptimize_lowering>`.
13870
13871Semantics:
13872""""""""""
13873
13874The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
13875deoptimization continuation (denoted using a :ref:`deoptimization
13876operand bundle <deopt_opbundles>`) and returns the value returned by
13877the deoptimization continuation. Defining the semantic properties of
13878the continuation itself is out of scope of the language reference --
13879as far as LLVM is concerned, the deoptimization continuation can
13880invoke arbitrary side effects, including reading from and writing to
13881the entire heap.
13882
13883Deoptimization continuations expressed using ``"deopt"`` operand bundles always
13884continue execution to the end of the physical frame containing them, so all
13885calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
13886
13887 - ``@llvm.experimental.deoptimize`` cannot be invoked.
13888 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
13889 - The ``ret`` instruction must return the value produced by the
13890 ``@llvm.experimental.deoptimize`` call if there is one, or void.
13891
13892Note that the above restrictions imply that the return type for a call to
13893``@llvm.experimental.deoptimize`` will match the return type of its immediate
13894caller.
13895
13896The inliner composes the ``"deopt"`` continuations of the caller into the
13897``"deopt"`` continuations present in the inlinee, and also updates calls to this
13898intrinsic to return directly from the frame of the function it inlined into.
13899
Sanjoy Dase0aa4142016-05-12 01:17:38 +000013900All declarations of ``@llvm.experimental.deoptimize`` must share the
13901same calling convention.
13902
Sanjoy Dasb51325d2016-03-11 19:08:34 +000013903.. _deoptimize_lowering:
13904
13905Lowering:
13906"""""""""
13907
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000013908Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
13909symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
13910ensure that this symbol is defined). The call arguments to
13911``@llvm.experimental.deoptimize`` are lowered as if they were formal
13912arguments of the specified types, and not as varargs.
13913
Sanjoy Dasb51325d2016-03-11 19:08:34 +000013914
Sanjoy Das021de052016-03-31 00:18:46 +000013915'``llvm.experimental.guard``' Intrinsic
13916^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13917
13918Syntax:
13919"""""""
13920
13921::
13922
13923 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
13924
13925Overview:
13926"""""""""
13927
13928This intrinsic, together with :ref:`deoptimization operand bundles
13929<deopt_opbundles>`, allows frontends to express guards or checks on
13930optimistic assumptions made during compilation. The semantics of
13931``@llvm.experimental.guard`` is defined in terms of
13932``@llvm.experimental.deoptimize`` -- its body is defined to be
13933equivalent to:
13934
Renato Golin124f2592016-07-20 12:16:38 +000013935.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000013936
Renato Golin124f2592016-07-20 12:16:38 +000013937 define void @llvm.experimental.guard(i1 %pred, <args...>) {
13938 %realPred = and i1 %pred, undef
13939 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000013940
Renato Golin124f2592016-07-20 12:16:38 +000013941 leave:
13942 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
13943 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000013944
Renato Golin124f2592016-07-20 12:16:38 +000013945 continue:
13946 ret void
13947 }
Sanjoy Das021de052016-03-31 00:18:46 +000013948
Sanjoy Das47cf2af2016-04-30 00:55:59 +000013949
13950with the optional ``[, !make.implicit !{}]`` present if and only if it
13951is present on the call site. For more details on ``!make.implicit``,
13952see :doc:`FaultMaps`.
13953
Sanjoy Das021de052016-03-31 00:18:46 +000013954In words, ``@llvm.experimental.guard`` executes the attached
13955``"deopt"`` continuation if (but **not** only if) its first argument
13956is ``false``. Since the optimizer is allowed to replace the ``undef``
13957with an arbitrary value, it can optimize guard to fail "spuriously",
13958i.e. without the original condition being false (hence the "not only
13959if"); and this allows for "check widening" type optimizations.
13960
13961``@llvm.experimental.guard`` cannot be invoked.
13962
13963
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000013964'``llvm.load.relative``' Intrinsic
13965^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13966
13967Syntax:
13968"""""""
13969
13970::
13971
13972 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
13973
13974Overview:
13975"""""""""
13976
13977This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
13978adds ``%ptr`` to that value and returns it. The constant folder specifically
13979recognizes the form of this intrinsic and the constant initializers it may
13980load from; if a loaded constant initializer is known to have the form
13981``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
13982
13983LLVM provides that the calculation of such a constant initializer will
13984not overflow at link time under the medium code model if ``x`` is an
13985``unnamed_addr`` function. However, it does not provide this guarantee for
13986a constant initializer folded into a function body. This intrinsic can be
13987used to avoid the possibility of overflows when loading from such a constant.
13988
Andrew Trick5e029ce2013-12-24 02:57:25 +000013989Stack Map Intrinsics
13990--------------------
13991
13992LLVM provides experimental intrinsics to support runtime patching
13993mechanisms commonly desired in dynamic language JITs. These intrinsics
13994are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000013995
13996Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000013997-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000013998
13999These intrinsics are similar to the standard library memory intrinsics except
14000that they perform memory transfer as a sequence of atomic memory accesses.
14001
14002.. _int_memcpy_element_atomic:
14003
14004'``llvm.memcpy.element.atomic``' Intrinsic
Igor Laevskyfedab152016-12-29 15:08:57 +000014005^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000014006
14007Syntax:
14008"""""""
14009
14010This is an overloaded intrinsic. You can use ``llvm.memcpy.element.atomic`` on
14011any integer bit width and for different address spaces. Not all targets
14012support all bit widths however.
14013
14014::
14015
14016 declare void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* <dest>, i8* <src>,
14017 i64 <num_elements>, i32 <element_size>)
14018
14019Overview:
14020"""""""""
14021
14022The '``llvm.memcpy.element.atomic.*``' intrinsic performs copy of a block of
14023memory from the source location to the destination location as a sequence of
14024unordered atomic memory accesses where each access is a multiple of
14025``element_size`` bytes wide and aligned at an element size boundary. For example
14026each element is accessed atomically in source and destination buffers.
14027
14028Arguments:
14029""""""""""
14030
14031The first argument is a pointer to the destination, the second is a
14032pointer to the source. The third argument is an integer argument
14033specifying the number of elements to copy, the fourth argument is size of
14034the single element in bytes.
14035
14036``element_size`` should be a power of two, greater than zero and less than
14037a target-specific atomic access size limit.
14038
14039For each of the input pointers ``align`` parameter attribute must be specified.
14040It must be a power of two and greater than or equal to the ``element_size``.
14041Caller guarantees that both the source and destination pointers are aligned to
14042that boundary.
14043
14044Semantics:
14045""""""""""
14046
14047The '``llvm.memcpy.element.atomic.*``' intrinsic copies
14048'``num_elements`` * ``element_size``' bytes of memory from the source location to
14049the destination location. These locations are not allowed to overlap. Memory copy
14050is performed as a sequence of unordered atomic memory accesses where each access
14051is guaranteed to be a multiple of ``element_size`` bytes wide and aligned at an
14052element size boundary.
14053
14054The order of the copy is unspecified. The same value may be read from the source
14055buffer many times, but only one write is issued to the destination buffer per
14056element. It is well defined to have concurrent reads and writes to both source
14057and destination provided those reads and writes are at least unordered atomic.
14058
14059This intrinsic does not provide any additional ordering guarantees over those
14060provided by a set of unordered loads from the source location and stores to the
14061destination.
14062
14063Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000014064"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000014065
14066In the most general case call to the '``llvm.memcpy.element.atomic.*``' is lowered
14067to a call to the symbol ``__llvm_memcpy_element_atomic_*``. Where '*' is replaced
14068with an actual element size.
14069
14070Optimizer is allowed to inline memory copy when it's profitable to do so.