blob: 78150bcac618c6a98c69e6e8c3cfdf9fb7ab144b [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
George Burgess IVfbc34982017-05-20 04:52:29 +0000164 ; Convert [13 x i8]* to i8*...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledru0604c5c2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvab084af42012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000530.. _namedtypes:
531
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000532Structure Types
533---------------
Sean Silvab084af42012-12-07 10:36:55 +0000534
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000535LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000536types <t_struct>`. Literal types are uniqued structurally, but identified types
537are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000538to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000539
Sean Silva706fba52015-08-06 22:56:24 +0000540An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000541
542.. code-block:: llvm
543
544 %mytype = type { %mytype*, i32 }
545
Sean Silvaa1190322015-08-06 22:56:48 +0000546Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000547literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000548
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000549.. _nointptrtype:
550
551Non-Integral Pointer Type
552-------------------------
553
554Note: non-integral pointer types are a work in progress, and they should be
555considered experimental at this time.
556
557LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000558spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
559Non-integral pointer types represent pointers that have an *unspecified* bitwise
560representation; that is, the integral representation may be target dependent or
561unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000562
563``inttoptr`` instructions converting integers to non-integral pointer types are
564ill-typed, and so are ``ptrtoint`` instructions converting values of
565non-integral pointer types to integers. Vector versions of said instructions
566are ill-typed as well.
567
Sean Silvab084af42012-12-07 10:36:55 +0000568.. _globalvars:
569
570Global Variables
571----------------
572
573Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000574instead of run-time.
575
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000576Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000577
578Global variables in other translation units can also be declared, in which
579case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000580
Bob Wilson85b24f22014-06-12 20:40:33 +0000581Either global variable definitions or declarations may have an explicit section
582to be placed in and may have an optional explicit alignment specified.
583
Michael Gottesman006039c2013-01-31 05:48:48 +0000584A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000585the contents of the variable will **never** be modified (enabling better
586optimization, allowing the global data to be placed in the read-only
587section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000588initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000589variable.
590
591LLVM explicitly allows *declarations* of global variables to be marked
592constant, even if the final definition of the global is not. This
593capability can be used to enable slightly better optimization of the
594program, but requires the language definition to guarantee that
595optimizations based on the 'constantness' are valid for the translation
596units that do not include the definition.
597
598As SSA values, global variables define pointer values that are in scope
599(i.e. they dominate) all basic blocks in the program. Global variables
600always define a pointer to their "content" type because they describe a
601region of memory, and all memory objects in LLVM are accessed through
602pointers.
603
604Global variables can be marked with ``unnamed_addr`` which indicates
605that the address is not significant, only the content. Constants marked
606like this can be merged with other constants if they have the same
607initializer. Note that a constant with significant address *can* be
608merged with a ``unnamed_addr`` constant, the result being a constant
609whose address is significant.
610
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000611If the ``local_unnamed_addr`` attribute is given, the address is known to
612not be significant within the module.
613
Sean Silvab084af42012-12-07 10:36:55 +0000614A global variable may be declared to reside in a target-specific
615numbered address space. For targets that support them, address spaces
616may affect how optimizations are performed and/or what target
617instructions are used to access the variable. The default address space
618is zero. The address space qualifier must precede any other attributes.
619
620LLVM allows an explicit section to be specified for globals. If the
621target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000622Additionally, the global can placed in a comdat if the target has the necessary
623support.
Sean Silvab084af42012-12-07 10:36:55 +0000624
Michael Gottesmane743a302013-02-04 03:22:00 +0000625By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000626variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000627initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000628true even for variables potentially accessible from outside the
629module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000630``@llvm.used`` or dllexported variables. This assumption may be suppressed
631by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000632
Sean Silvab084af42012-12-07 10:36:55 +0000633An explicit alignment may be specified for a global, which must be a
634power of 2. If not present, or if the alignment is set to zero, the
635alignment of the global is set by the target to whatever it feels
636convenient. If an explicit alignment is specified, the global is forced
637to have exactly that alignment. Targets and optimizers are not allowed
638to over-align the global if the global has an assigned section. In this
639case, the extra alignment could be observable: for example, code could
640assume that the globals are densely packed in their section and try to
641iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000642iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000643
Javed Absarf3d79042017-05-11 12:28:08 +0000644Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
645an optional :ref:`global attributes <glattrs>` and
646an optional list of attached :ref:`metadata <metadata>`.
Nico Rieck7157bb72014-01-14 15:22:47 +0000647
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000648Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000649:ref:`Thread Local Storage Model <tls_model>`.
650
Nico Rieck7157bb72014-01-14 15:22:47 +0000651Syntax::
652
Rafael Espindola32483a72016-05-10 18:22:45 +0000653 @<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000654 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
655 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000656 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000657 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000658 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000659
Sean Silvab084af42012-12-07 10:36:55 +0000660For example, the following defines a global in a numbered address space
661with an initializer, section, and alignment:
662
663.. code-block:: llvm
664
665 @G = addrspace(5) constant float 1.0, section "foo", align 4
666
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000667The following example just declares a global variable
668
669.. code-block:: llvm
670
671 @G = external global i32
672
Sean Silvab084af42012-12-07 10:36:55 +0000673The following example defines a thread-local global with the
674``initialexec`` TLS model:
675
676.. code-block:: llvm
677
678 @G = thread_local(initialexec) global i32 0, align 4
679
680.. _functionstructure:
681
682Functions
683---------
684
685LLVM function definitions consist of the "``define``" keyword, an
686optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000687style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
688an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000689an optional ``unnamed_addr`` attribute, a return type, an optional
690:ref:`parameter attribute <paramattrs>` for the return type, a function
691name, a (possibly empty) argument list (each with optional :ref:`parameter
692attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000693an optional section, an optional alignment,
694an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000695an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000696an optional :ref:`prologue <prologuedata>`,
697an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000698an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000699an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000700
701LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000702optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
703<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
704optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
705or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
706attribute <paramattrs>` for the return type, a function name, a possibly
707empty list of arguments, an optional alignment, an optional :ref:`garbage
708collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
709:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000710
Bill Wendling6822ecb2013-10-27 05:09:12 +0000711A function definition contains a list of basic blocks, forming the CFG (Control
712Flow Graph) for the function. Each basic block may optionally start with a label
713(giving the basic block a symbol table entry), contains a list of instructions,
714and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
715function return). If an explicit label is not provided, a block is assigned an
716implicit numbered label, using the next value from the same counter as used for
717unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
718entry block does not have an explicit label, it will be assigned label "%0",
719then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000720
721The first basic block in a function is special in two ways: it is
722immediately executed on entrance to the function, and it is not allowed
723to have predecessor basic blocks (i.e. there can not be any branches to
724the entry block of a function). Because the block can have no
725predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
726
727LLVM allows an explicit section to be specified for functions. If the
728target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000729Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000730
731An explicit alignment may be specified for a function. If not present,
732or if the alignment is set to zero, the alignment of the function is set
733by the target to whatever it feels convenient. If an explicit alignment
734is specified, the function is forced to have at least that much
735alignment. All alignments must be a power of 2.
736
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000737If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000738be significant and two identical functions can be merged.
739
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000740If the ``local_unnamed_addr`` attribute is given, the address is known to
741not be significant within the module.
742
Sean Silvab084af42012-12-07 10:36:55 +0000743Syntax::
744
Nico Rieck7157bb72014-01-14 15:22:47 +0000745 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000746 [cconv] [ret attrs]
747 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000748 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
749 [comdat [($name)]] [align N] [gc] [prefix Constant]
750 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000751
Sean Silva706fba52015-08-06 22:56:24 +0000752The argument list is a comma separated sequence of arguments where each
753argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000754
755Syntax::
756
757 <type> [parameter Attrs] [name]
758
759
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000760.. _langref_aliases:
761
Sean Silvab084af42012-12-07 10:36:55 +0000762Aliases
763-------
764
Rafael Espindola64c1e182014-06-03 02:41:57 +0000765Aliases, unlike function or variables, don't create any new data. They
766are just a new symbol and metadata for an existing position.
767
768Aliases have a name and an aliasee that is either a global value or a
769constant expression.
770
Nico Rieck7157bb72014-01-14 15:22:47 +0000771Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000772:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
773<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000774
775Syntax::
776
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000777 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000778
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000779The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000780``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000781might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000782
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000783Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000784the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
785to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000786
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000787If the ``local_unnamed_addr`` attribute is given, the address is known to
788not be significant within the module.
789
Rafael Espindola64c1e182014-06-03 02:41:57 +0000790Since aliases are only a second name, some restrictions apply, of which
791some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000792
Rafael Espindola64c1e182014-06-03 02:41:57 +0000793* The expression defining the aliasee must be computable at assembly
794 time. Since it is just a name, no relocations can be used.
795
796* No alias in the expression can be weak as the possibility of the
797 intermediate alias being overridden cannot be represented in an
798 object file.
799
800* No global value in the expression can be a declaration, since that
801 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000802
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000803.. _langref_ifunc:
804
805IFuncs
806-------
807
808IFuncs, like as aliases, don't create any new data or func. They are just a new
809symbol that dynamic linker resolves at runtime by calling a resolver function.
810
811IFuncs have a name and a resolver that is a function called by dynamic linker
812that returns address of another function associated with the name.
813
814IFunc may have an optional :ref:`linkage type <linkage>` and an optional
815:ref:`visibility style <visibility>`.
816
817Syntax::
818
819 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
820
821
David Majnemerdad0a642014-06-27 18:19:56 +0000822.. _langref_comdats:
823
824Comdats
825-------
826
827Comdat IR provides access to COFF and ELF object file COMDAT functionality.
828
Sean Silvaa1190322015-08-06 22:56:48 +0000829Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000830specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000831that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000832aliasee computes to, if any.
833
834Comdats have a selection kind to provide input on how the linker should
835choose between keys in two different object files.
836
837Syntax::
838
839 $<Name> = comdat SelectionKind
840
841The selection kind must be one of the following:
842
843``any``
844 The linker may choose any COMDAT key, the choice is arbitrary.
845``exactmatch``
846 The linker may choose any COMDAT key but the sections must contain the
847 same data.
848``largest``
849 The linker will choose the section containing the largest COMDAT key.
850``noduplicates``
851 The linker requires that only section with this COMDAT key exist.
852``samesize``
853 The linker may choose any COMDAT key but the sections must contain the
854 same amount of data.
855
856Note that the Mach-O platform doesn't support COMDATs and ELF only supports
857``any`` as a selection kind.
858
859Here is an example of a COMDAT group where a function will only be selected if
860the COMDAT key's section is the largest:
861
Renato Golin124f2592016-07-20 12:16:38 +0000862.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000863
864 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000865 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000866
Rafael Espindola83a362c2015-01-06 22:55:16 +0000867 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000868 ret void
869 }
870
Rafael Espindola83a362c2015-01-06 22:55:16 +0000871As a syntactic sugar the ``$name`` can be omitted if the name is the same as
872the global name:
873
Renato Golin124f2592016-07-20 12:16:38 +0000874.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000875
876 $foo = comdat any
877 @foo = global i32 2, comdat
878
879
David Majnemerdad0a642014-06-27 18:19:56 +0000880In a COFF object file, this will create a COMDAT section with selection kind
881``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
882and another COMDAT section with selection kind
883``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000884section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000885
886There are some restrictions on the properties of the global object.
887It, or an alias to it, must have the same name as the COMDAT group when
888targeting COFF.
889The contents and size of this object may be used during link-time to determine
890which COMDAT groups get selected depending on the selection kind.
891Because the name of the object must match the name of the COMDAT group, the
892linkage of the global object must not be local; local symbols can get renamed
893if a collision occurs in the symbol table.
894
895The combined use of COMDATS and section attributes may yield surprising results.
896For example:
897
Renato Golin124f2592016-07-20 12:16:38 +0000898.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000899
900 $foo = comdat any
901 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000902 @g1 = global i32 42, section "sec", comdat($foo)
903 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000904
905From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000906with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000907COMDAT groups and COMDATs, at the object file level, are represented by
908sections.
909
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000910Note that certain IR constructs like global variables and functions may
911create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000912COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000913in individual sections (e.g. when `-data-sections` or `-function-sections`
914is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000915
Sean Silvab084af42012-12-07 10:36:55 +0000916.. _namedmetadatastructure:
917
918Named Metadata
919--------------
920
921Named metadata is a collection of metadata. :ref:`Metadata
922nodes <metadata>` (but not metadata strings) are the only valid
923operands for a named metadata.
924
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000925#. Named metadata are represented as a string of characters with the
926 metadata prefix. The rules for metadata names are the same as for
927 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
928 are still valid, which allows any character to be part of a name.
929
Sean Silvab084af42012-12-07 10:36:55 +0000930Syntax::
931
932 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000933 !0 = !{!"zero"}
934 !1 = !{!"one"}
935 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000936 ; A named metadata.
937 !name = !{!0, !1, !2}
938
939.. _paramattrs:
940
941Parameter Attributes
942--------------------
943
944The return type and each parameter of a function type may have a set of
945*parameter attributes* associated with them. Parameter attributes are
946used to communicate additional information about the result or
947parameters of a function. Parameter attributes are considered to be part
948of the function, not of the function type, so functions with different
949parameter attributes can have the same function type.
950
951Parameter attributes are simple keywords that follow the type specified.
952If multiple parameter attributes are needed, they are space separated.
953For example:
954
955.. code-block:: llvm
956
957 declare i32 @printf(i8* noalias nocapture, ...)
958 declare i32 @atoi(i8 zeroext)
959 declare signext i8 @returns_signed_char()
960
961Note that any attributes for the function result (``nounwind``,
962``readonly``) come immediately after the argument list.
963
964Currently, only the following parameter attributes are defined:
965
966``zeroext``
967 This indicates to the code generator that the parameter or return
968 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000969 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000970``signext``
971 This indicates to the code generator that the parameter or return
972 value should be sign-extended to the extent required by the target's
973 ABI (which is usually 32-bits) by the caller (for a parameter) or
974 the callee (for a return value).
975``inreg``
976 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000977 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000978 a function call or return (usually, by putting it in a register as
979 opposed to memory, though some targets use it to distinguish between
980 two different kinds of registers). Use of this attribute is
981 target-specific.
982``byval``
983 This indicates that the pointer parameter should really be passed by
984 value to the function. The attribute implies that a hidden copy of
985 the pointee is made between the caller and the callee, so the callee
986 is unable to modify the value in the caller. This attribute is only
987 valid on LLVM pointer arguments. It is generally used to pass
988 structs and arrays by value, but is also valid on pointers to
989 scalars. The copy is considered to belong to the caller not the
990 callee (for example, ``readonly`` functions should not write to
991 ``byval`` parameters). This is not a valid attribute for return
992 values.
993
994 The byval attribute also supports specifying an alignment with the
995 align attribute. It indicates the alignment of the stack slot to
996 form and the known alignment of the pointer specified to the call
997 site. If the alignment is not specified, then the code generator
998 makes a target-specific assumption.
999
Reid Klecknera534a382013-12-19 02:14:12 +00001000.. _attr_inalloca:
1001
1002``inalloca``
1003
Reid Kleckner60d3a832014-01-16 22:59:24 +00001004 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001005 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001006 be a pointer to stack memory produced by an ``alloca`` instruction.
1007 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001008 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001009 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001010
Reid Kleckner436c42e2014-01-17 23:58:17 +00001011 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001012 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001013 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001014 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001015 ``inalloca`` attribute also disables LLVM's implicit lowering of
1016 large aggregate return values, which means that frontend authors
1017 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001018
Reid Kleckner60d3a832014-01-16 22:59:24 +00001019 When the call site is reached, the argument allocation must have
1020 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001021 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001022 space after an argument allocation and before its call site, but it
1023 must be cleared off with :ref:`llvm.stackrestore
1024 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001025
1026 See :doc:`InAlloca` for more information on how to use this
1027 attribute.
1028
Sean Silvab084af42012-12-07 10:36:55 +00001029``sret``
1030 This indicates that the pointer parameter specifies the address of a
1031 structure that is the return value of the function in the source
1032 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001033 loads and stores to the structure may be assumed by the callee not
1034 to trap and to be properly aligned. This is not a valid attribute
1035 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001036
Hal Finkelccc70902014-07-22 16:58:55 +00001037``align <n>``
1038 This indicates that the pointer value may be assumed by the optimizer to
1039 have the specified alignment.
1040
1041 Note that this attribute has additional semantics when combined with the
1042 ``byval`` attribute.
1043
Sean Silva1703e702014-04-08 21:06:22 +00001044.. _noalias:
1045
Sean Silvab084af42012-12-07 10:36:55 +00001046``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001047 This indicates that objects accessed via pointer values
1048 :ref:`based <pointeraliasing>` on the argument or return value are not also
1049 accessed, during the execution of the function, via pointer values not
1050 *based* on the argument or return value. The attribute on a return value
1051 also has additional semantics described below. The caller shares the
1052 responsibility with the callee for ensuring that these requirements are met.
1053 For further details, please see the discussion of the NoAlias response in
1054 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001055
1056 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001057 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001058
1059 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001060 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1061 attribute on return values are stronger than the semantics of the attribute
1062 when used on function arguments. On function return values, the ``noalias``
1063 attribute indicates that the function acts like a system memory allocation
1064 function, returning a pointer to allocated storage disjoint from the
1065 storage for any other object accessible to the caller.
1066
Sean Silvab084af42012-12-07 10:36:55 +00001067``nocapture``
1068 This indicates that the callee does not make any copies of the
1069 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001070 attribute for return values. Addresses used in volatile operations
1071 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001072
1073.. _nest:
1074
1075``nest``
1076 This indicates that the pointer parameter can be excised using the
1077 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001078 attribute for return values and can only be applied to one parameter.
1079
1080``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001081 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001082 value. This is a hint to the optimizer and code generator used when
1083 generating the caller, allowing value propagation, tail call optimization,
1084 and omission of register saves and restores in some cases; it is not
1085 checked or enforced when generating the callee. The parameter and the
1086 function return type must be valid operands for the
1087 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1088 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001089
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001090``nonnull``
1091 This indicates that the parameter or return pointer is not null. This
1092 attribute may only be applied to pointer typed parameters. This is not
1093 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001094 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001095 is non-null.
1096
Hal Finkelb0407ba2014-07-18 15:51:28 +00001097``dereferenceable(<n>)``
1098 This indicates that the parameter or return pointer is dereferenceable. This
1099 attribute may only be applied to pointer typed parameters. A pointer that
1100 is dereferenceable can be loaded from speculatively without a risk of
1101 trapping. The number of bytes known to be dereferenceable must be provided
1102 in parentheses. It is legal for the number of bytes to be less than the
1103 size of the pointee type. The ``nonnull`` attribute does not imply
1104 dereferenceability (consider a pointer to one element past the end of an
1105 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1106 ``addrspace(0)`` (which is the default address space).
1107
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001108``dereferenceable_or_null(<n>)``
1109 This indicates that the parameter or return value isn't both
1110 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001111 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001112 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1113 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1114 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1115 and in other address spaces ``dereferenceable_or_null(<n>)``
1116 implies that a pointer is at least one of ``dereferenceable(<n>)``
1117 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001118 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001119 pointer typed parameters.
1120
Manman Renf46262e2016-03-29 17:37:21 +00001121``swiftself``
1122 This indicates that the parameter is the self/context parameter. This is not
1123 a valid attribute for return values and can only be applied to one
1124 parameter.
1125
Manman Ren9bfd0d02016-04-01 21:41:15 +00001126``swifterror``
1127 This attribute is motivated to model and optimize Swift error handling. It
1128 can be applied to a parameter with pointer to pointer type or a
1129 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001130 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1131 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1132 the parameter or the alloca) can only be loaded and stored from, or used as
1133 a ``swifterror`` argument. This is not a valid attribute for return values
1134 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001135
1136 These constraints allow the calling convention to optimize access to
1137 ``swifterror`` variables by associating them with a specific register at
1138 call boundaries rather than placing them in memory. Since this does change
1139 the calling convention, a function which uses the ``swifterror`` attribute
1140 on a parameter is not ABI-compatible with one which does not.
1141
1142 These constraints also allow LLVM to assume that a ``swifterror`` argument
1143 does not alias any other memory visible within a function and that a
1144 ``swifterror`` alloca passed as an argument does not escape.
1145
Sean Silvab084af42012-12-07 10:36:55 +00001146.. _gc:
1147
Philip Reamesf80bbff2015-02-25 23:45:20 +00001148Garbage Collector Strategy Names
1149--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001150
Philip Reamesf80bbff2015-02-25 23:45:20 +00001151Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001152string:
1153
1154.. code-block:: llvm
1155
1156 define void @f() gc "name" { ... }
1157
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001158The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001159<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001160strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001161named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001162garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001163which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001164
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001165.. _prefixdata:
1166
1167Prefix Data
1168-----------
1169
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001170Prefix data is data associated with a function which the code
1171generator will emit immediately before the function's entrypoint.
1172The purpose of this feature is to allow frontends to associate
1173language-specific runtime metadata with specific functions and make it
1174available through the function pointer while still allowing the
1175function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001176
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001177To access the data for a given function, a program may bitcast the
1178function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001179index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001180the prefix data. For instance, take the example of a function annotated
1181with a single ``i32``,
1182
1183.. code-block:: llvm
1184
1185 define void @f() prefix i32 123 { ... }
1186
1187The prefix data can be referenced as,
1188
1189.. code-block:: llvm
1190
David Blaikie16a97eb2015-03-04 22:02:58 +00001191 %0 = bitcast void* () @f to i32*
1192 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001193 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001194
1195Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001196of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001197beginning of the prefix data is aligned. This means that if the size
1198of the prefix data is not a multiple of the alignment size, the
1199function's entrypoint will not be aligned. If alignment of the
1200function's entrypoint is desired, padding must be added to the prefix
1201data.
1202
Sean Silvaa1190322015-08-06 22:56:48 +00001203A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001204to the ``available_externally`` linkage in that the data may be used by the
1205optimizers but will not be emitted in the object file.
1206
1207.. _prologuedata:
1208
1209Prologue Data
1210-------------
1211
1212The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1213be inserted prior to the function body. This can be used for enabling
1214function hot-patching and instrumentation.
1215
1216To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001217have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001218bytes which decode to a sequence of machine instructions, valid for the
1219module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001220the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001221the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001222definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001223makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001224
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001225A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001226which encodes the ``nop`` instruction:
1227
Renato Golin124f2592016-07-20 12:16:38 +00001228.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001229
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001230 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001231
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001232Generally prologue data can be formed by encoding a relative branch instruction
1233which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001234x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1235
Renato Golin124f2592016-07-20 12:16:38 +00001236.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001237
1238 %0 = type <{ i8, i8, i8* }>
1239
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001240 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001241
Sean Silvaa1190322015-08-06 22:56:48 +00001242A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001243to the ``available_externally`` linkage in that the data may be used by the
1244optimizers but will not be emitted in the object file.
1245
David Majnemer7fddecc2015-06-17 20:52:32 +00001246.. _personalityfn:
1247
1248Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001249--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001250
1251The ``personality`` attribute permits functions to specify what function
1252to use for exception handling.
1253
Bill Wendling63b88192013-02-06 06:52:58 +00001254.. _attrgrp:
1255
1256Attribute Groups
1257----------------
1258
1259Attribute groups are groups of attributes that are referenced by objects within
1260the IR. They are important for keeping ``.ll`` files readable, because a lot of
1261functions will use the same set of attributes. In the degenerative case of a
1262``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1263group will capture the important command line flags used to build that file.
1264
1265An attribute group is a module-level object. To use an attribute group, an
1266object references the attribute group's ID (e.g. ``#37``). An object may refer
1267to more than one attribute group. In that situation, the attributes from the
1268different groups are merged.
1269
1270Here is an example of attribute groups for a function that should always be
1271inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1272
1273.. code-block:: llvm
1274
1275 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001276 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001277
1278 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001279 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001280
1281 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1282 define void @f() #0 #1 { ... }
1283
Sean Silvab084af42012-12-07 10:36:55 +00001284.. _fnattrs:
1285
1286Function Attributes
1287-------------------
1288
1289Function attributes are set to communicate additional information about
1290a function. Function attributes are considered to be part of the
1291function, not of the function type, so functions with different function
1292attributes can have the same function type.
1293
1294Function attributes are simple keywords that follow the type specified.
1295If multiple attributes are needed, they are space separated. For
1296example:
1297
1298.. code-block:: llvm
1299
1300 define void @f() noinline { ... }
1301 define void @f() alwaysinline { ... }
1302 define void @f() alwaysinline optsize { ... }
1303 define void @f() optsize { ... }
1304
Sean Silvab084af42012-12-07 10:36:55 +00001305``alignstack(<n>)``
1306 This attribute indicates that, when emitting the prologue and
1307 epilogue, the backend should forcibly align the stack pointer.
1308 Specify the desired alignment, which must be a power of two, in
1309 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001310``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1311 This attribute indicates that the annotated function will always return at
1312 least a given number of bytes (or null). Its arguments are zero-indexed
1313 parameter numbers; if one argument is provided, then it's assumed that at
1314 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1315 returned pointer. If two are provided, then it's assumed that
1316 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1317 available. The referenced parameters must be integer types. No assumptions
1318 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001319``alwaysinline``
1320 This attribute indicates that the inliner should attempt to inline
1321 this function into callers whenever possible, ignoring any active
1322 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001323``builtin``
1324 This indicates that the callee function at a call site should be
1325 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001326 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001327 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001328 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001329``cold``
1330 This attribute indicates that this function is rarely called. When
1331 computing edge weights, basic blocks post-dominated by a cold
1332 function call are also considered to be cold; and, thus, given low
1333 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001334``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001335 In some parallel execution models, there exist operations that cannot be
1336 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001337 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001338
Justin Lebar58535b12016-02-17 17:46:41 +00001339 The ``convergent`` attribute may appear on functions or call/invoke
1340 instructions. When it appears on a function, it indicates that calls to
1341 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001342 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001343 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001344 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001345
Justin Lebar58535b12016-02-17 17:46:41 +00001346 When it appears on a call/invoke, the ``convergent`` attribute indicates
1347 that we should treat the call as though we're calling a convergent
1348 function. This is particularly useful on indirect calls; without this we
1349 may treat such calls as though the target is non-convergent.
1350
1351 The optimizer may remove the ``convergent`` attribute on functions when it
1352 can prove that the function does not execute any convergent operations.
1353 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1354 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001355``inaccessiblememonly``
1356 This attribute indicates that the function may only access memory that
1357 is not accessible by the module being compiled. This is a weaker form
1358 of ``readnone``.
1359``inaccessiblemem_or_argmemonly``
1360 This attribute indicates that the function may only access memory that is
1361 either not accessible by the module being compiled, or is pointed to
1362 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001363``inlinehint``
1364 This attribute indicates that the source code contained a hint that
1365 inlining this function is desirable (such as the "inline" keyword in
1366 C/C++). It is just a hint; it imposes no requirements on the
1367 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001368``jumptable``
1369 This attribute indicates that the function should be added to a
1370 jump-instruction table at code-generation time, and that all address-taken
1371 references to this function should be replaced with a reference to the
1372 appropriate jump-instruction-table function pointer. Note that this creates
1373 a new pointer for the original function, which means that code that depends
1374 on function-pointer identity can break. So, any function annotated with
1375 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001376``minsize``
1377 This attribute suggests that optimization passes and code generator
1378 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001379 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001380 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001381``naked``
1382 This attribute disables prologue / epilogue emission for the
1383 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001384``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001385 This indicates that the callee function at a call site is not recognized as
1386 a built-in function. LLVM will retain the original call and not replace it
1387 with equivalent code based on the semantics of the built-in function, unless
1388 the call site uses the ``builtin`` attribute. This is valid at call sites
1389 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001390``noduplicate``
1391 This attribute indicates that calls to the function cannot be
1392 duplicated. A call to a ``noduplicate`` function may be moved
1393 within its parent function, but may not be duplicated within
1394 its parent function.
1395
1396 A function containing a ``noduplicate`` call may still
1397 be an inlining candidate, provided that the call is not
1398 duplicated by inlining. That implies that the function has
1399 internal linkage and only has one call site, so the original
1400 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001401``noimplicitfloat``
1402 This attributes disables implicit floating point instructions.
1403``noinline``
1404 This attribute indicates that the inliner should never inline this
1405 function in any situation. This attribute may not be used together
1406 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001407``nonlazybind``
1408 This attribute suppresses lazy symbol binding for the function. This
1409 may make calls to the function faster, at the cost of extra program
1410 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001411``noredzone``
1412 This attribute indicates that the code generator should not use a
1413 red zone, even if the target-specific ABI normally permits it.
1414``noreturn``
1415 This function attribute indicates that the function never returns
1416 normally. This produces undefined behavior at runtime if the
1417 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001418``norecurse``
1419 This function attribute indicates that the function does not call itself
1420 either directly or indirectly down any possible call path. This produces
1421 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001422``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001423 This function attribute indicates that the function never raises an
1424 exception. If the function does raise an exception, its runtime
1425 behavior is undefined. However, functions marked nounwind may still
1426 trap or generate asynchronous exceptions. Exception handling schemes
1427 that are recognized by LLVM to handle asynchronous exceptions, such
1428 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001429``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001430 This function attribute indicates that most optimization passes will skip
1431 this function, with the exception of interprocedural optimization passes.
1432 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001433 This attribute cannot be used together with the ``alwaysinline``
1434 attribute; this attribute is also incompatible
1435 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001436
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001437 This attribute requires the ``noinline`` attribute to be specified on
1438 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001439 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001440 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001441``optsize``
1442 This attribute suggests that optimization passes and code generator
1443 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001444 and otherwise do optimizations specifically to reduce code size as
1445 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001446``"patchable-function"``
1447 This attribute tells the code generator that the code
1448 generated for this function needs to follow certain conventions that
1449 make it possible for a runtime function to patch over it later.
1450 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001451 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001452
1453 * ``"prologue-short-redirect"`` - This style of patchable
1454 function is intended to support patching a function prologue to
1455 redirect control away from the function in a thread safe
1456 manner. It guarantees that the first instruction of the
1457 function will be large enough to accommodate a short jump
1458 instruction, and will be sufficiently aligned to allow being
1459 fully changed via an atomic compare-and-swap instruction.
1460 While the first requirement can be satisfied by inserting large
1461 enough NOP, LLVM can and will try to re-purpose an existing
1462 instruction (i.e. one that would have to be emitted anyway) as
1463 the patchable instruction larger than a short jump.
1464
1465 ``"prologue-short-redirect"`` is currently only supported on
1466 x86-64.
1467
1468 This attribute by itself does not imply restrictions on
1469 inter-procedural optimizations. All of the semantic effects the
1470 patching may have to be separately conveyed via the linkage type.
whitequarked54b4a2017-06-21 18:46:50 +00001471``"probe-stack"``
1472 This attribute indicates that the function will trigger a guard region
1473 in the end of the stack. It ensures that accesses to the stack must be
1474 no further apart than the size of the guard region to a previous
1475 access of the stack. It takes one required string value, the name of
1476 the stack probing function that will be called.
1477
1478 If a function that has a ``"probe-stack"`` attribute is inlined into
1479 a function with another ``"probe-stack"`` attribute, the resulting
1480 function has the ``"probe-stack"`` attribute of the caller. If a
1481 function that has a ``"probe-stack"`` attribute is inlined into a
1482 function that has no ``"probe-stack"`` attribute at all, the resulting
1483 function has the ``"probe-stack"`` attribute of the callee.
Sean Silvab084af42012-12-07 10:36:55 +00001484``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001485 On a function, this attribute indicates that the function computes its
1486 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001487 without dereferencing any pointer arguments or otherwise accessing
1488 any mutable state (e.g. memory, control registers, etc) visible to
1489 caller functions. It does not write through any pointer arguments
1490 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das5be2e842017-02-13 23:19:07 +00001491 to callers. This means while it cannot unwind exceptions by calling
1492 the ``C++`` exception throwing methods (since they write to memory), there may
1493 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1494 visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001495
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001496 On an argument, this attribute indicates that the function does not
1497 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001498 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001499``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001500 On a function, this attribute indicates that the function does not write
1501 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001502 modify any state (e.g. memory, control registers, etc) visible to
1503 caller functions. It may dereference pointer arguments and read
1504 state that may be set in the caller. A readonly function always
1505 returns the same value (or unwinds an exception identically) when
Sanjoy Das5be2e842017-02-13 23:19:07 +00001506 called with the same set of arguments and global state. This means while it
1507 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1508 (since they write to memory), there may be non-``C++`` mechanisms that throw
1509 exceptions without writing to LLVM visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001510
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001511 On an argument, this attribute indicates that the function does not write
1512 through this pointer argument, even though it may write to the memory that
1513 the pointer points to.
whitequark08b20352017-06-22 23:22:36 +00001514``"stack-probe-size"``
1515 This attribute controls the behavior of stack probes: either
1516 the ``"probe-stack"`` attribute, or ABI-required stack probes, if any.
1517 It defines the size of the guard region. It ensures that if the function
1518 may use more stack space than the size of the guard region, stack probing
1519 sequence will be emitted. It takes one required integer value, which
1520 is 4096 by default.
1521
1522 If a function that has a ``"stack-probe-size"`` attribute is inlined into
1523 a function with another ``"stack-probe-size"`` attribute, the resulting
1524 function has the ``"stack-probe-size"`` attribute that has the lower
1525 numeric value. If a function that has a ``"stack-probe-size"`` attribute is
1526 inlined into a function that has no ``"stack-probe-size"`` attribute
1527 at all, the resulting function has the ``"stack-probe-size"`` attribute
1528 of the callee.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001529``writeonly``
1530 On a function, this attribute indicates that the function may write to but
1531 does not read from memory.
1532
1533 On an argument, this attribute indicates that the function may write to but
1534 does not read through this pointer argument (even though it may read from
1535 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001536``argmemonly``
1537 This attribute indicates that the only memory accesses inside function are
1538 loads and stores from objects pointed to by its pointer-typed arguments,
1539 with arbitrary offsets. Or in other words, all memory operations in the
1540 function can refer to memory only using pointers based on its function
1541 arguments.
1542 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1543 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001544``returns_twice``
1545 This attribute indicates that this function can return twice. The C
1546 ``setjmp`` is an example of such a function. The compiler disables
1547 some optimizations (like tail calls) in the caller of these
1548 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001549``safestack``
1550 This attribute indicates that
1551 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1552 protection is enabled for this function.
1553
1554 If a function that has a ``safestack`` attribute is inlined into a
1555 function that doesn't have a ``safestack`` attribute or which has an
1556 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1557 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001558``sanitize_address``
1559 This attribute indicates that AddressSanitizer checks
1560 (dynamic address safety analysis) are enabled for this function.
1561``sanitize_memory``
1562 This attribute indicates that MemorySanitizer checks (dynamic detection
1563 of accesses to uninitialized memory) are enabled for this function.
1564``sanitize_thread``
1565 This attribute indicates that ThreadSanitizer checks
1566 (dynamic thread safety analysis) are enabled for this function.
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001567``speculatable``
1568 This function attribute indicates that the function does not have any
1569 effects besides calculating its result and does not have undefined behavior.
1570 Note that ``speculatable`` is not enough to conclude that along any
Xin Tongc7180202017-05-02 23:24:12 +00001571 particular execution path the number of calls to this function will not be
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001572 externally observable. This attribute is only valid on functions
1573 and declarations, not on individual call sites. If a function is
1574 incorrectly marked as speculatable and really does exhibit
1575 undefined behavior, the undefined behavior may be observed even
1576 if the call site is dead code.
1577
Sean Silvab084af42012-12-07 10:36:55 +00001578``ssp``
1579 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001580 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001581 placed on the stack before the local variables that's checked upon
1582 return from the function to see if it has been overwritten. A
1583 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001584 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001585
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001586 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1587 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1588 - Calls to alloca() with variable sizes or constant sizes greater than
1589 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001590
Josh Magee24c7f062014-02-01 01:36:16 +00001591 Variables that are identified as requiring a protector will be arranged
1592 on the stack such that they are adjacent to the stack protector guard.
1593
Sean Silvab084af42012-12-07 10:36:55 +00001594 If a function that has an ``ssp`` attribute is inlined into a
1595 function that doesn't have an ``ssp`` attribute, then the resulting
1596 function will have an ``ssp`` attribute.
1597``sspreq``
1598 This attribute indicates that the function should *always* emit a
1599 stack smashing protector. This overrides the ``ssp`` function
1600 attribute.
1601
Josh Magee24c7f062014-02-01 01:36:16 +00001602 Variables that are identified as requiring a protector will be arranged
1603 on the stack such that they are adjacent to the stack protector guard.
1604 The specific layout rules are:
1605
1606 #. Large arrays and structures containing large arrays
1607 (``>= ssp-buffer-size``) are closest to the stack protector.
1608 #. Small arrays and structures containing small arrays
1609 (``< ssp-buffer-size``) are 2nd closest to the protector.
1610 #. Variables that have had their address taken are 3rd closest to the
1611 protector.
1612
Sean Silvab084af42012-12-07 10:36:55 +00001613 If a function that has an ``sspreq`` attribute is inlined into a
1614 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001615 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1616 an ``sspreq`` attribute.
1617``sspstrong``
1618 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001619 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001620 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001621 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001622
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001623 - Arrays of any size and type
1624 - Aggregates containing an array of any size and type.
1625 - Calls to alloca().
1626 - Local variables that have had their address taken.
1627
Josh Magee24c7f062014-02-01 01:36:16 +00001628 Variables that are identified as requiring a protector will be arranged
1629 on the stack such that they are adjacent to the stack protector guard.
1630 The specific layout rules are:
1631
1632 #. Large arrays and structures containing large arrays
1633 (``>= ssp-buffer-size``) are closest to the stack protector.
1634 #. Small arrays and structures containing small arrays
1635 (``< ssp-buffer-size``) are 2nd closest to the protector.
1636 #. Variables that have had their address taken are 3rd closest to the
1637 protector.
1638
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001639 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001640
1641 If a function that has an ``sspstrong`` attribute is inlined into a
1642 function that doesn't have an ``sspstrong`` attribute, then the
1643 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001644``"thunk"``
1645 This attribute indicates that the function will delegate to some other
1646 function with a tail call. The prototype of a thunk should not be used for
1647 optimization purposes. The caller is expected to cast the thunk prototype to
1648 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001649``uwtable``
1650 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001651 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001652 show that no exceptions passes by it. This is normally the case for
1653 the ELF x86-64 abi, but it can be disabled for some compilation
1654 units.
Sean Silvab084af42012-12-07 10:36:55 +00001655
Javed Absarf3d79042017-05-11 12:28:08 +00001656.. _glattrs:
1657
1658Global Attributes
1659-----------------
1660
1661Attributes may be set to communicate additional information about a global variable.
1662Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
1663are grouped into a single :ref:`attribute group <attrgrp>`.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001664
1665.. _opbundles:
1666
1667Operand Bundles
1668---------------
1669
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001670Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001671with certain LLVM instructions (currently only ``call`` s and
1672``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001673incorrect and will change program semantics.
1674
1675Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001676
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001677 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001678 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1679 bundle operand ::= SSA value
1680 tag ::= string constant
1681
1682Operand bundles are **not** part of a function's signature, and a
1683given function may be called from multiple places with different kinds
1684of operand bundles. This reflects the fact that the operand bundles
1685are conceptually a part of the ``call`` (or ``invoke``), not the
1686callee being dispatched to.
1687
1688Operand bundles are a generic mechanism intended to support
1689runtime-introspection-like functionality for managed languages. While
1690the exact semantics of an operand bundle depend on the bundle tag,
1691there are certain limitations to how much the presence of an operand
1692bundle can influence the semantics of a program. These restrictions
1693are described as the semantics of an "unknown" operand bundle. As
1694long as the behavior of an operand bundle is describable within these
1695restrictions, LLVM does not need to have special knowledge of the
1696operand bundle to not miscompile programs containing it.
1697
David Majnemer34cacb42015-10-22 01:46:38 +00001698- The bundle operands for an unknown operand bundle escape in unknown
1699 ways before control is transferred to the callee or invokee.
1700- Calls and invokes with operand bundles have unknown read / write
1701 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001702 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001703 callsite specific attributes.
1704- An operand bundle at a call site cannot change the implementation
1705 of the called function. Inter-procedural optimizations work as
1706 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001707
Sanjoy Dascdafd842015-11-11 21:38:02 +00001708More specific types of operand bundles are described below.
1709
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001710.. _deopt_opbundles:
1711
Sanjoy Dascdafd842015-11-11 21:38:02 +00001712Deoptimization Operand Bundles
1713^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1714
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001715Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001716operand bundle tag. These operand bundles represent an alternate
1717"safe" continuation for the call site they're attached to, and can be
1718used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001719specified call site. There can be at most one ``"deopt"`` operand
1720bundle attached to a call site. Exact details of deoptimization is
1721out of scope for the language reference, but it usually involves
1722rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001723
1724From the compiler's perspective, deoptimization operand bundles make
1725the call sites they're attached to at least ``readonly``. They read
1726through all of their pointer typed operands (even if they're not
1727otherwise escaped) and the entire visible heap. Deoptimization
1728operand bundles do not capture their operands except during
1729deoptimization, in which case control will not be returned to the
1730compiled frame.
1731
Sanjoy Das2d161452015-11-18 06:23:38 +00001732The inliner knows how to inline through calls that have deoptimization
1733operand bundles. Just like inlining through a normal call site
1734involves composing the normal and exceptional continuations, inlining
1735through a call site with a deoptimization operand bundle needs to
1736appropriately compose the "safe" deoptimization continuation. The
1737inliner does this by prepending the parent's deoptimization
1738continuation to every deoptimization continuation in the inlined body.
1739E.g. inlining ``@f`` into ``@g`` in the following example
1740
1741.. code-block:: llvm
1742
1743 define void @f() {
1744 call void @x() ;; no deopt state
1745 call void @y() [ "deopt"(i32 10) ]
1746 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1747 ret void
1748 }
1749
1750 define void @g() {
1751 call void @f() [ "deopt"(i32 20) ]
1752 ret void
1753 }
1754
1755will result in
1756
1757.. code-block:: llvm
1758
1759 define void @g() {
1760 call void @x() ;; still no deopt state
1761 call void @y() [ "deopt"(i32 20, i32 10) ]
1762 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1763 ret void
1764 }
1765
1766It is the frontend's responsibility to structure or encode the
1767deoptimization state in a way that syntactically prepending the
1768caller's deoptimization state to the callee's deoptimization state is
1769semantically equivalent to composing the caller's deoptimization
1770continuation after the callee's deoptimization continuation.
1771
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001772.. _ob_funclet:
1773
David Majnemer3bb88c02015-12-15 21:27:27 +00001774Funclet Operand Bundles
1775^^^^^^^^^^^^^^^^^^^^^^^
1776
1777Funclet operand bundles are characterized by the ``"funclet"``
1778operand bundle tag. These operand bundles indicate that a call site
1779is within a particular funclet. There can be at most one
1780``"funclet"`` operand bundle attached to a call site and it must have
1781exactly one bundle operand.
1782
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001783If any funclet EH pads have been "entered" but not "exited" (per the
1784`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1785it is undefined behavior to execute a ``call`` or ``invoke`` which:
1786
1787* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1788 intrinsic, or
1789* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1790 not-yet-exited funclet EH pad.
1791
1792Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1793executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1794
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001795GC Transition Operand Bundles
1796^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1797
1798GC transition operand bundles are characterized by the
1799``"gc-transition"`` operand bundle tag. These operand bundles mark a
1800call as a transition between a function with one GC strategy to a
1801function with a different GC strategy. If coordinating the transition
1802between GC strategies requires additional code generation at the call
1803site, these bundles may contain any values that are needed by the
1804generated code. For more details, see :ref:`GC Transitions
1805<gc_transition_args>`.
1806
Sean Silvab084af42012-12-07 10:36:55 +00001807.. _moduleasm:
1808
1809Module-Level Inline Assembly
1810----------------------------
1811
1812Modules may contain "module-level inline asm" blocks, which corresponds
1813to the GCC "file scope inline asm" blocks. These blocks are internally
1814concatenated by LLVM and treated as a single unit, but may be separated
1815in the ``.ll`` file if desired. The syntax is very simple:
1816
1817.. code-block:: llvm
1818
1819 module asm "inline asm code goes here"
1820 module asm "more can go here"
1821
1822The strings can contain any character by escaping non-printable
1823characters. The escape sequence used is simply "\\xx" where "xx" is the
1824two digit hex code for the number.
1825
James Y Knightbc832ed2015-07-08 18:08:36 +00001826Note that the assembly string *must* be parseable by LLVM's integrated assembler
1827(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001828
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001829.. _langref_datalayout:
1830
Sean Silvab084af42012-12-07 10:36:55 +00001831Data Layout
1832-----------
1833
1834A module may specify a target specific data layout string that specifies
1835how data is to be laid out in memory. The syntax for the data layout is
1836simply:
1837
1838.. code-block:: llvm
1839
1840 target datalayout = "layout specification"
1841
1842The *layout specification* consists of a list of specifications
1843separated by the minus sign character ('-'). Each specification starts
1844with a letter and may include other information after the letter to
1845define some aspect of the data layout. The specifications accepted are
1846as follows:
1847
1848``E``
1849 Specifies that the target lays out data in big-endian form. That is,
1850 the bits with the most significance have the lowest address
1851 location.
1852``e``
1853 Specifies that the target lays out data in little-endian form. That
1854 is, the bits with the least significance have the lowest address
1855 location.
1856``S<size>``
1857 Specifies the natural alignment of the stack in bits. Alignment
1858 promotion of stack variables is limited to the natural stack
1859 alignment to avoid dynamic stack realignment. The stack alignment
1860 must be a multiple of 8-bits. If omitted, the natural stack
1861 alignment defaults to "unspecified", which does not prevent any
1862 alignment promotions.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001863``A<address space>``
1864 Specifies the address space of objects created by '``alloca``'.
1865 Defaults to the default address space of 0.
Sean Silvab084af42012-12-07 10:36:55 +00001866``p[n]:<size>:<abi>:<pref>``
1867 This specifies the *size* of a pointer and its ``<abi>`` and
1868 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001869 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001870 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001871 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001872``i<size>:<abi>:<pref>``
1873 This specifies the alignment for an integer type of a given bit
1874 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1875``v<size>:<abi>:<pref>``
1876 This specifies the alignment for a vector type of a given bit
1877 ``<size>``.
1878``f<size>:<abi>:<pref>``
1879 This specifies the alignment for a floating point type of a given bit
1880 ``<size>``. Only values of ``<size>`` that are supported by the target
1881 will work. 32 (float) and 64 (double) are supported on all targets; 80
1882 or 128 (different flavors of long double) are also supported on some
1883 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001884``a:<abi>:<pref>``
1885 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001886``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001887 If present, specifies that llvm names are mangled in the output. The
1888 options are
1889
1890 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1891 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1892 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1893 symbols get a ``_`` prefix.
1894 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1895 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001896 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1897 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001898``n<size1>:<size2>:<size3>...``
1899 This specifies a set of native integer widths for the target CPU in
1900 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1901 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1902 this set are considered to support most general arithmetic operations
1903 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001904``ni:<address space0>:<address space1>:<address space2>...``
1905 This specifies pointer types with the specified address spaces
1906 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1907 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001908
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001909On every specification that takes a ``<abi>:<pref>``, specifying the
1910``<pref>`` alignment is optional. If omitted, the preceding ``:``
1911should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1912
Sean Silvab084af42012-12-07 10:36:55 +00001913When constructing the data layout for a given target, LLVM starts with a
1914default set of specifications which are then (possibly) overridden by
1915the specifications in the ``datalayout`` keyword. The default
1916specifications are given in this list:
1917
1918- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001919- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1920- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1921 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001922- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001923- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1924- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1925- ``i16:16:16`` - i16 is 16-bit aligned
1926- ``i32:32:32`` - i32 is 32-bit aligned
1927- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1928 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001929- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001930- ``f32:32:32`` - float is 32-bit aligned
1931- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001932- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001933- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1934- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001935- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001936
1937When LLVM is determining the alignment for a given type, it uses the
1938following rules:
1939
1940#. If the type sought is an exact match for one of the specifications,
1941 that specification is used.
1942#. If no match is found, and the type sought is an integer type, then
1943 the smallest integer type that is larger than the bitwidth of the
1944 sought type is used. If none of the specifications are larger than
1945 the bitwidth then the largest integer type is used. For example,
1946 given the default specifications above, the i7 type will use the
1947 alignment of i8 (next largest) while both i65 and i256 will use the
1948 alignment of i64 (largest specified).
1949#. If no match is found, and the type sought is a vector type, then the
1950 largest vector type that is smaller than the sought vector type will
1951 be used as a fall back. This happens because <128 x double> can be
1952 implemented in terms of 64 <2 x double>, for example.
1953
1954The function of the data layout string may not be what you expect.
1955Notably, this is not a specification from the frontend of what alignment
1956the code generator should use.
1957
1958Instead, if specified, the target data layout is required to match what
1959the ultimate *code generator* expects. This string is used by the
1960mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001961what the ultimate code generator uses. There is no way to generate IR
1962that does not embed this target-specific detail into the IR. If you
1963don't specify the string, the default specifications will be used to
1964generate a Data Layout and the optimization phases will operate
1965accordingly and introduce target specificity into the IR with respect to
1966these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001967
Bill Wendling5cc90842013-10-18 23:41:25 +00001968.. _langref_triple:
1969
1970Target Triple
1971-------------
1972
1973A module may specify a target triple string that describes the target
1974host. The syntax for the target triple is simply:
1975
1976.. code-block:: llvm
1977
1978 target triple = "x86_64-apple-macosx10.7.0"
1979
1980The *target triple* string consists of a series of identifiers delimited
1981by the minus sign character ('-'). The canonical forms are:
1982
1983::
1984
1985 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1986 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1987
1988This information is passed along to the backend so that it generates
1989code for the proper architecture. It's possible to override this on the
1990command line with the ``-mtriple`` command line option.
1991
Sean Silvab084af42012-12-07 10:36:55 +00001992.. _pointeraliasing:
1993
1994Pointer Aliasing Rules
1995----------------------
1996
1997Any memory access must be done through a pointer value associated with
1998an address range of the memory access, otherwise the behavior is
1999undefined. Pointer values are associated with address ranges according
2000to the following rules:
2001
2002- A pointer value is associated with the addresses associated with any
2003 value it is *based* on.
2004- An address of a global variable is associated with the address range
2005 of the variable's storage.
2006- The result value of an allocation instruction is associated with the
2007 address range of the allocated storage.
2008- A null pointer in the default address-space is associated with no
2009 address.
2010- An integer constant other than zero or a pointer value returned from
2011 a function not defined within LLVM may be associated with address
2012 ranges allocated through mechanisms other than those provided by
2013 LLVM. Such ranges shall not overlap with any ranges of addresses
2014 allocated by mechanisms provided by LLVM.
2015
2016A pointer value is *based* on another pointer value according to the
2017following rules:
2018
2019- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikief91b0302017-06-19 05:34:21 +00002020 on the second value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00002021- The result value of a ``bitcast`` is *based* on the operand of the
2022 ``bitcast``.
2023- A pointer value formed by an ``inttoptr`` is *based* on all pointer
2024 values that contribute (directly or indirectly) to the computation of
2025 the pointer's value.
2026- The "*based* on" relationship is transitive.
2027
2028Note that this definition of *"based"* is intentionally similar to the
2029definition of *"based"* in C99, though it is slightly weaker.
2030
2031LLVM IR does not associate types with memory. The result type of a
2032``load`` merely indicates the size and alignment of the memory from
2033which to load, as well as the interpretation of the value. The first
2034operand type of a ``store`` similarly only indicates the size and
2035alignment of the store.
2036
2037Consequently, type-based alias analysis, aka TBAA, aka
2038``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2039:ref:`Metadata <metadata>` may be used to encode additional information
2040which specialized optimization passes may use to implement type-based
2041alias analysis.
2042
2043.. _volatile:
2044
2045Volatile Memory Accesses
2046------------------------
2047
2048Certain memory accesses, such as :ref:`load <i_load>`'s,
2049:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2050marked ``volatile``. The optimizers must not change the number of
2051volatile operations or change their order of execution relative to other
2052volatile operations. The optimizers *may* change the order of volatile
2053operations relative to non-volatile operations. This is not Java's
2054"volatile" and has no cross-thread synchronization behavior.
2055
Andrew Trick89fc5a62013-01-30 21:19:35 +00002056IR-level volatile loads and stores cannot safely be optimized into
2057llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2058flagged volatile. Likewise, the backend should never split or merge
2059target-legal volatile load/store instructions.
2060
Andrew Trick7e6f9282013-01-31 00:49:39 +00002061.. admonition:: Rationale
2062
2063 Platforms may rely on volatile loads and stores of natively supported
2064 data width to be executed as single instruction. For example, in C
2065 this holds for an l-value of volatile primitive type with native
2066 hardware support, but not necessarily for aggregate types. The
2067 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002068 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002069 do not violate the frontend's contract with the language.
2070
Sean Silvab084af42012-12-07 10:36:55 +00002071.. _memmodel:
2072
2073Memory Model for Concurrent Operations
2074--------------------------------------
2075
2076The LLVM IR does not define any way to start parallel threads of
2077execution or to register signal handlers. Nonetheless, there are
2078platform-specific ways to create them, and we define LLVM IR's behavior
2079in their presence. This model is inspired by the C++0x memory model.
2080
2081For a more informal introduction to this model, see the :doc:`Atomics`.
2082
2083We define a *happens-before* partial order as the least partial order
2084that
2085
2086- Is a superset of single-thread program order, and
2087- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2088 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2089 techniques, like pthread locks, thread creation, thread joining,
2090 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2091 Constraints <ordering>`).
2092
2093Note that program order does not introduce *happens-before* edges
2094between a thread and signals executing inside that thread.
2095
2096Every (defined) read operation (load instructions, memcpy, atomic
2097loads/read-modify-writes, etc.) R reads a series of bytes written by
2098(defined) write operations (store instructions, atomic
2099stores/read-modify-writes, memcpy, etc.). For the purposes of this
2100section, initialized globals are considered to have a write of the
2101initializer which is atomic and happens before any other read or write
2102of the memory in question. For each byte of a read R, R\ :sub:`byte`
2103may see any write to the same byte, except:
2104
2105- If write\ :sub:`1` happens before write\ :sub:`2`, and
2106 write\ :sub:`2` happens before R\ :sub:`byte`, then
2107 R\ :sub:`byte` does not see write\ :sub:`1`.
2108- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2109 R\ :sub:`byte` does not see write\ :sub:`3`.
2110
2111Given that definition, R\ :sub:`byte` is defined as follows:
2112
2113- If R is volatile, the result is target-dependent. (Volatile is
2114 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002115 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002116 like normal memory. It does not generally provide cross-thread
2117 synchronization.)
2118- Otherwise, if there is no write to the same byte that happens before
2119 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2120- Otherwise, if R\ :sub:`byte` may see exactly one write,
2121 R\ :sub:`byte` returns the value written by that write.
2122- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2123 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2124 Memory Ordering Constraints <ordering>` section for additional
2125 constraints on how the choice is made.
2126- Otherwise R\ :sub:`byte` returns ``undef``.
2127
2128R returns the value composed of the series of bytes it read. This
2129implies that some bytes within the value may be ``undef`` **without**
2130the entire value being ``undef``. Note that this only defines the
2131semantics of the operation; it doesn't mean that targets will emit more
2132than one instruction to read the series of bytes.
2133
2134Note that in cases where none of the atomic intrinsics are used, this
2135model places only one restriction on IR transformations on top of what
2136is required for single-threaded execution: introducing a store to a byte
2137which might not otherwise be stored is not allowed in general.
2138(Specifically, in the case where another thread might write to and read
2139from an address, introducing a store can change a load that may see
2140exactly one write into a load that may see multiple writes.)
2141
2142.. _ordering:
2143
2144Atomic Memory Ordering Constraints
2145----------------------------------
2146
2147Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2148:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2149:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002150ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002151the same address they *synchronize with*. These semantics are borrowed
2152from Java and C++0x, but are somewhat more colloquial. If these
2153descriptions aren't precise enough, check those specs (see spec
2154references in the :doc:`atomics guide <Atomics>`).
2155:ref:`fence <i_fence>` instructions treat these orderings somewhat
2156differently since they don't take an address. See that instruction's
2157documentation for details.
2158
2159For a simpler introduction to the ordering constraints, see the
2160:doc:`Atomics`.
2161
2162``unordered``
2163 The set of values that can be read is governed by the happens-before
2164 partial order. A value cannot be read unless some operation wrote
2165 it. This is intended to provide a guarantee strong enough to model
2166 Java's non-volatile shared variables. This ordering cannot be
2167 specified for read-modify-write operations; it is not strong enough
2168 to make them atomic in any interesting way.
2169``monotonic``
2170 In addition to the guarantees of ``unordered``, there is a single
2171 total order for modifications by ``monotonic`` operations on each
2172 address. All modification orders must be compatible with the
2173 happens-before order. There is no guarantee that the modification
2174 orders can be combined to a global total order for the whole program
2175 (and this often will not be possible). The read in an atomic
2176 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2177 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2178 order immediately before the value it writes. If one atomic read
2179 happens before another atomic read of the same address, the later
2180 read must see the same value or a later value in the address's
2181 modification order. This disallows reordering of ``monotonic`` (or
2182 stronger) operations on the same address. If an address is written
2183 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2184 read that address repeatedly, the other threads must eventually see
2185 the write. This corresponds to the C++0x/C1x
2186 ``memory_order_relaxed``.
2187``acquire``
2188 In addition to the guarantees of ``monotonic``, a
2189 *synchronizes-with* edge may be formed with a ``release`` operation.
2190 This is intended to model C++'s ``memory_order_acquire``.
2191``release``
2192 In addition to the guarantees of ``monotonic``, if this operation
2193 writes a value which is subsequently read by an ``acquire``
2194 operation, it *synchronizes-with* that operation. (This isn't a
2195 complete description; see the C++0x definition of a release
2196 sequence.) This corresponds to the C++0x/C1x
2197 ``memory_order_release``.
2198``acq_rel`` (acquire+release)
2199 Acts as both an ``acquire`` and ``release`` operation on its
2200 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2201``seq_cst`` (sequentially consistent)
2202 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002203 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002204 writes), there is a global total order on all
2205 sequentially-consistent operations on all addresses, which is
2206 consistent with the *happens-before* partial order and with the
2207 modification orders of all the affected addresses. Each
2208 sequentially-consistent read sees the last preceding write to the
2209 same address in this global order. This corresponds to the C++0x/C1x
2210 ``memory_order_seq_cst`` and Java volatile.
2211
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002212.. _syncscope:
Sean Silvab084af42012-12-07 10:36:55 +00002213
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002214If an atomic operation is marked ``syncscope("singlethread")``, it only
2215*synchronizes with* and only participates in the seq\_cst total orderings of
2216other operations running in the same thread (for example, in signal handlers).
2217
2218If an atomic operation is marked ``syncscope("<target-scope>")``, where
2219``<target-scope>`` is a target specific synchronization scope, then it is target
2220dependent if it *synchronizes with* and participates in the seq\_cst total
2221orderings of other operations.
2222
2223Otherwise, an atomic operation that is not marked ``syncscope("singlethread")``
2224or ``syncscope("<target-scope>")`` *synchronizes with* and participates in the
2225seq\_cst total orderings of other operations that are not marked
2226``syncscope("singlethread")`` or ``syncscope("<target-scope>")``.
Sean Silvab084af42012-12-07 10:36:55 +00002227
2228.. _fastmath:
2229
2230Fast-Math Flags
2231---------------
2232
2233LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2234:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002235:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
2236instructions have the following flags that can be set to enable
2237otherwise unsafe floating point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002238
2239``nnan``
2240 No NaNs - Allow optimizations to assume the arguments and result are not
2241 NaN. Such optimizations are required to retain defined behavior over
2242 NaNs, but the value of the result is undefined.
2243
2244``ninf``
2245 No Infs - Allow optimizations to assume the arguments and result are not
2246 +/-Inf. Such optimizations are required to retain defined behavior over
2247 +/-Inf, but the value of the result is undefined.
2248
2249``nsz``
2250 No Signed Zeros - Allow optimizations to treat the sign of a zero
2251 argument or result as insignificant.
2252
2253``arcp``
2254 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2255 argument rather than perform division.
2256
Adam Nemetcd847a82017-03-28 20:11:52 +00002257``contract``
2258 Allow floating-point contraction (e.g. fusing a multiply followed by an
2259 addition into a fused multiply-and-add).
2260
Sean Silvab084af42012-12-07 10:36:55 +00002261``fast``
2262 Fast - Allow algebraically equivalent transformations that may
2263 dramatically change results in floating point (e.g. reassociate). This
2264 flag implies all the others.
2265
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002266.. _uselistorder:
2267
2268Use-list Order Directives
2269-------------------------
2270
2271Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002272order to be recreated. ``<order-indexes>`` is a comma-separated list of
2273indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002274value's use-list is immediately sorted by these indexes.
2275
Sean Silvaa1190322015-08-06 22:56:48 +00002276Use-list directives may appear at function scope or global scope. They are not
2277instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002278function scope, they must appear after the terminator of the final basic block.
2279
2280If basic blocks have their address taken via ``blockaddress()`` expressions,
2281``uselistorder_bb`` can be used to reorder their use-lists from outside their
2282function's scope.
2283
2284:Syntax:
2285
2286::
2287
2288 uselistorder <ty> <value>, { <order-indexes> }
2289 uselistorder_bb @function, %block { <order-indexes> }
2290
2291:Examples:
2292
2293::
2294
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002295 define void @foo(i32 %arg1, i32 %arg2) {
2296 entry:
2297 ; ... instructions ...
2298 bb:
2299 ; ... instructions ...
2300
2301 ; At function scope.
2302 uselistorder i32 %arg1, { 1, 0, 2 }
2303 uselistorder label %bb, { 1, 0 }
2304 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002305
2306 ; At global scope.
2307 uselistorder i32* @global, { 1, 2, 0 }
2308 uselistorder i32 7, { 1, 0 }
2309 uselistorder i32 (i32) @bar, { 1, 0 }
2310 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2311
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002312.. _source_filename:
2313
2314Source Filename
2315---------------
2316
2317The *source filename* string is set to the original module identifier,
2318which will be the name of the compiled source file when compiling from
2319source through the clang front end, for example. It is then preserved through
2320the IR and bitcode.
2321
2322This is currently necessary to generate a consistent unique global
2323identifier for local functions used in profile data, which prepends the
2324source file name to the local function name.
2325
2326The syntax for the source file name is simply:
2327
Renato Golin124f2592016-07-20 12:16:38 +00002328.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002329
2330 source_filename = "/path/to/source.c"
2331
Sean Silvab084af42012-12-07 10:36:55 +00002332.. _typesystem:
2333
2334Type System
2335===========
2336
2337The LLVM type system is one of the most important features of the
2338intermediate representation. Being typed enables a number of
2339optimizations to be performed on the intermediate representation
2340directly, without having to do extra analyses on the side before the
2341transformation. A strong type system makes it easier to read the
2342generated code and enables novel analyses and transformations that are
2343not feasible to perform on normal three address code representations.
2344
Rafael Espindola08013342013-12-07 19:34:20 +00002345.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002346
Rafael Espindola08013342013-12-07 19:34:20 +00002347Void Type
2348---------
Sean Silvab084af42012-12-07 10:36:55 +00002349
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002350:Overview:
2351
Rafael Espindola08013342013-12-07 19:34:20 +00002352
2353The void type does not represent any value and has no size.
2354
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002355:Syntax:
2356
Rafael Espindola08013342013-12-07 19:34:20 +00002357
2358::
2359
2360 void
Sean Silvab084af42012-12-07 10:36:55 +00002361
2362
Rafael Espindola08013342013-12-07 19:34:20 +00002363.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002364
Rafael Espindola08013342013-12-07 19:34:20 +00002365Function Type
2366-------------
Sean Silvab084af42012-12-07 10:36:55 +00002367
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002368:Overview:
2369
Sean Silvab084af42012-12-07 10:36:55 +00002370
Rafael Espindola08013342013-12-07 19:34:20 +00002371The function type can be thought of as a function signature. It consists of a
2372return type and a list of formal parameter types. The return type of a function
2373type is a void type or first class type --- except for :ref:`label <t_label>`
2374and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002375
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002376:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002377
Rafael Espindola08013342013-12-07 19:34:20 +00002378::
Sean Silvab084af42012-12-07 10:36:55 +00002379
Rafael Espindola08013342013-12-07 19:34:20 +00002380 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002381
Rafael Espindola08013342013-12-07 19:34:20 +00002382...where '``<parameter list>``' is a comma-separated list of type
2383specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002384indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002385argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002386handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002387except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002388
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002389:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002390
Rafael Espindola08013342013-12-07 19:34:20 +00002391+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2392| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2393+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2394| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2395+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2396| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2397+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2398| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2399+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2400
2401.. _t_firstclass:
2402
2403First Class Types
2404-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002405
2406The :ref:`first class <t_firstclass>` types are perhaps the most important.
2407Values of these types are the only ones which can be produced by
2408instructions.
2409
Rafael Espindola08013342013-12-07 19:34:20 +00002410.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002411
Rafael Espindola08013342013-12-07 19:34:20 +00002412Single Value Types
2413^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002414
Rafael Espindola08013342013-12-07 19:34:20 +00002415These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002416
2417.. _t_integer:
2418
2419Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002420""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002421
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002422:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002423
2424The integer type is a very simple type that simply specifies an
2425arbitrary bit width for the integer type desired. Any bit width from 1
2426bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2427
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002428:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002429
2430::
2431
2432 iN
2433
2434The number of bits the integer will occupy is specified by the ``N``
2435value.
2436
2437Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002438*********
Sean Silvab084af42012-12-07 10:36:55 +00002439
2440+----------------+------------------------------------------------+
2441| ``i1`` | a single-bit integer. |
2442+----------------+------------------------------------------------+
2443| ``i32`` | a 32-bit integer. |
2444+----------------+------------------------------------------------+
2445| ``i1942652`` | a really big integer of over 1 million bits. |
2446+----------------+------------------------------------------------+
2447
2448.. _t_floating:
2449
2450Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002451""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002452
2453.. list-table::
2454 :header-rows: 1
2455
2456 * - Type
2457 - Description
2458
2459 * - ``half``
2460 - 16-bit floating point value
2461
2462 * - ``float``
2463 - 32-bit floating point value
2464
2465 * - ``double``
2466 - 64-bit floating point value
2467
2468 * - ``fp128``
2469 - 128-bit floating point value (112-bit mantissa)
2470
2471 * - ``x86_fp80``
2472 - 80-bit floating point value (X87)
2473
2474 * - ``ppc_fp128``
2475 - 128-bit floating point value (two 64-bits)
2476
Reid Kleckner9a16d082014-03-05 02:41:37 +00002477X86_mmx Type
2478""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002479
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002480:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002481
Reid Kleckner9a16d082014-03-05 02:41:37 +00002482The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002483machine. The operations allowed on it are quite limited: parameters and
2484return values, load and store, and bitcast. User-specified MMX
2485instructions are represented as intrinsic or asm calls with arguments
2486and/or results of this type. There are no arrays, vectors or constants
2487of this type.
2488
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002489:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002490
2491::
2492
Reid Kleckner9a16d082014-03-05 02:41:37 +00002493 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002494
Sean Silvab084af42012-12-07 10:36:55 +00002495
Rafael Espindola08013342013-12-07 19:34:20 +00002496.. _t_pointer:
2497
2498Pointer Type
2499""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002500
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002501:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002502
Rafael Espindola08013342013-12-07 19:34:20 +00002503The pointer type is used to specify memory locations. Pointers are
2504commonly used to reference objects in memory.
2505
2506Pointer types may have an optional address space attribute defining the
2507numbered address space where the pointed-to object resides. The default
2508address space is number zero. The semantics of non-zero address spaces
2509are target-specific.
2510
2511Note that LLVM does not permit pointers to void (``void*``) nor does it
2512permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002513
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002514:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002515
2516::
2517
Rafael Espindola08013342013-12-07 19:34:20 +00002518 <type> *
2519
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002520:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002521
2522+-------------------------+--------------------------------------------------------------------------------------------------------------+
2523| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2524+-------------------------+--------------------------------------------------------------------------------------------------------------+
2525| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2526+-------------------------+--------------------------------------------------------------------------------------------------------------+
2527| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2528+-------------------------+--------------------------------------------------------------------------------------------------------------+
2529
2530.. _t_vector:
2531
2532Vector Type
2533"""""""""""
2534
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002535:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002536
2537A vector type is a simple derived type that represents a vector of
2538elements. Vector types are used when multiple primitive data are
2539operated in parallel using a single instruction (SIMD). A vector type
2540requires a size (number of elements) and an underlying primitive data
2541type. Vector types are considered :ref:`first class <t_firstclass>`.
2542
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002543:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002544
2545::
2546
2547 < <# elements> x <elementtype> >
2548
2549The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002550elementtype may be any integer, floating point or pointer type. Vectors
2551of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002552
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002553:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002554
2555+-------------------+--------------------------------------------------+
2556| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2557+-------------------+--------------------------------------------------+
2558| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2559+-------------------+--------------------------------------------------+
2560| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2561+-------------------+--------------------------------------------------+
2562| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2563+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002564
2565.. _t_label:
2566
2567Label Type
2568^^^^^^^^^^
2569
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002570:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002571
2572The label type represents code labels.
2573
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002574:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002575
2576::
2577
2578 label
2579
David Majnemerb611e3f2015-08-14 05:09:07 +00002580.. _t_token:
2581
2582Token Type
2583^^^^^^^^^^
2584
2585:Overview:
2586
2587The token type is used when a value is associated with an instruction
2588but all uses of the value must not attempt to introspect or obscure it.
2589As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2590:ref:`select <i_select>` of type token.
2591
2592:Syntax:
2593
2594::
2595
2596 token
2597
2598
2599
Sean Silvab084af42012-12-07 10:36:55 +00002600.. _t_metadata:
2601
2602Metadata Type
2603^^^^^^^^^^^^^
2604
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002605:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002606
2607The metadata type represents embedded metadata. No derived types may be
2608created from metadata except for :ref:`function <t_function>` arguments.
2609
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002610:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002611
2612::
2613
2614 metadata
2615
Sean Silvab084af42012-12-07 10:36:55 +00002616.. _t_aggregate:
2617
2618Aggregate Types
2619^^^^^^^^^^^^^^^
2620
2621Aggregate Types are a subset of derived types that can contain multiple
2622member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2623aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2624aggregate types.
2625
2626.. _t_array:
2627
2628Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002629""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002630
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002631:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002632
2633The array type is a very simple derived type that arranges elements
2634sequentially in memory. The array type requires a size (number of
2635elements) and an underlying data type.
2636
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002637:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002638
2639::
2640
2641 [<# elements> x <elementtype>]
2642
2643The number of elements is a constant integer value; ``elementtype`` may
2644be any type with a size.
2645
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002646:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002647
2648+------------------+--------------------------------------+
2649| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2650+------------------+--------------------------------------+
2651| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2652+------------------+--------------------------------------+
2653| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2654+------------------+--------------------------------------+
2655
2656Here are some examples of multidimensional arrays:
2657
2658+-----------------------------+----------------------------------------------------------+
2659| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2660+-----------------------------+----------------------------------------------------------+
2661| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2662+-----------------------------+----------------------------------------------------------+
2663| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2664+-----------------------------+----------------------------------------------------------+
2665
2666There is no restriction on indexing beyond the end of the array implied
2667by a static type (though there are restrictions on indexing beyond the
2668bounds of an allocated object in some cases). This means that
2669single-dimension 'variable sized array' addressing can be implemented in
2670LLVM with a zero length array type. An implementation of 'pascal style
2671arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2672example.
2673
Sean Silvab084af42012-12-07 10:36:55 +00002674.. _t_struct:
2675
2676Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002677""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002678
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002679:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002680
2681The structure type is used to represent a collection of data members
2682together in memory. The elements of a structure may be any type that has
2683a size.
2684
2685Structures in memory are accessed using '``load``' and '``store``' by
2686getting a pointer to a field with the '``getelementptr``' instruction.
2687Structures in registers are accessed using the '``extractvalue``' and
2688'``insertvalue``' instructions.
2689
2690Structures may optionally be "packed" structures, which indicate that
2691the alignment of the struct is one byte, and that there is no padding
2692between the elements. In non-packed structs, padding between field types
2693is inserted as defined by the DataLayout string in the module, which is
2694required to match what the underlying code generator expects.
2695
2696Structures can either be "literal" or "identified". A literal structure
2697is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2698identified types are always defined at the top level with a name.
2699Literal types are uniqued by their contents and can never be recursive
2700or opaque since there is no way to write one. Identified types can be
2701recursive, can be opaqued, and are never uniqued.
2702
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002703:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002704
2705::
2706
2707 %T1 = type { <type list> } ; Identified normal struct type
2708 %T2 = type <{ <type list> }> ; Identified packed struct type
2709
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002710:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002711
2712+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2713| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2714+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002715| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002716+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2717| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2718+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2719
2720.. _t_opaque:
2721
2722Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002723""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002724
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002725:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002726
2727Opaque structure types are used to represent named structure types that
2728do not have a body specified. This corresponds (for example) to the C
2729notion of a forward declared structure.
2730
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002731:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002732
2733::
2734
2735 %X = type opaque
2736 %52 = type opaque
2737
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002738:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002739
2740+--------------+-------------------+
2741| ``opaque`` | An opaque type. |
2742+--------------+-------------------+
2743
Sean Silva1703e702014-04-08 21:06:22 +00002744.. _constants:
2745
Sean Silvab084af42012-12-07 10:36:55 +00002746Constants
2747=========
2748
2749LLVM has several different basic types of constants. This section
2750describes them all and their syntax.
2751
2752Simple Constants
2753----------------
2754
2755**Boolean constants**
2756 The two strings '``true``' and '``false``' are both valid constants
2757 of the ``i1`` type.
2758**Integer constants**
2759 Standard integers (such as '4') are constants of the
2760 :ref:`integer <t_integer>` type. Negative numbers may be used with
2761 integer types.
2762**Floating point constants**
2763 Floating point constants use standard decimal notation (e.g.
2764 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2765 hexadecimal notation (see below). The assembler requires the exact
2766 decimal value of a floating-point constant. For example, the
2767 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2768 decimal in binary. Floating point constants must have a :ref:`floating
2769 point <t_floating>` type.
2770**Null pointer constants**
2771 The identifier '``null``' is recognized as a null pointer constant
2772 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002773**Token constants**
2774 The identifier '``none``' is recognized as an empty token constant
2775 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002776
2777The one non-intuitive notation for constants is the hexadecimal form of
2778floating point constants. For example, the form
2779'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2780than) '``double 4.5e+15``'. The only time hexadecimal floating point
2781constants are required (and the only time that they are generated by the
2782disassembler) is when a floating point constant must be emitted but it
2783cannot be represented as a decimal floating point number in a reasonable
2784number of digits. For example, NaN's, infinities, and other special
2785values are represented in their IEEE hexadecimal format so that assembly
2786and disassembly do not cause any bits to change in the constants.
2787
2788When using the hexadecimal form, constants of types half, float, and
2789double are represented using the 16-digit form shown above (which
2790matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002791must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002792precision, respectively. Hexadecimal format is always used for long
2793double, and there are three forms of long double. The 80-bit format used
2794by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2795128-bit format used by PowerPC (two adjacent doubles) is represented by
2796``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002797represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2798will only work if they match the long double format on your target.
2799The IEEE 16-bit format (half precision) is represented by ``0xH``
2800followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2801(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002802
Reid Kleckner9a16d082014-03-05 02:41:37 +00002803There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002804
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002805.. _complexconstants:
2806
Sean Silvab084af42012-12-07 10:36:55 +00002807Complex Constants
2808-----------------
2809
2810Complex constants are a (potentially recursive) combination of simple
2811constants and smaller complex constants.
2812
2813**Structure constants**
2814 Structure constants are represented with notation similar to
2815 structure type definitions (a comma separated list of elements,
2816 surrounded by braces (``{}``)). For example:
2817 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2818 "``@G = external global i32``". Structure constants must have
2819 :ref:`structure type <t_struct>`, and the number and types of elements
2820 must match those specified by the type.
2821**Array constants**
2822 Array constants are represented with notation similar to array type
2823 definitions (a comma separated list of elements, surrounded by
2824 square brackets (``[]``)). For example:
2825 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2826 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002827 match those specified by the type. As a special case, character array
2828 constants may also be represented as a double-quoted string using the ``c``
2829 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002830**Vector constants**
2831 Vector constants are represented with notation similar to vector
2832 type definitions (a comma separated list of elements, surrounded by
2833 less-than/greater-than's (``<>``)). For example:
2834 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2835 must have :ref:`vector type <t_vector>`, and the number and types of
2836 elements must match those specified by the type.
2837**Zero initialization**
2838 The string '``zeroinitializer``' can be used to zero initialize a
2839 value to zero of *any* type, including scalar and
2840 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2841 having to print large zero initializers (e.g. for large arrays) and
2842 is always exactly equivalent to using explicit zero initializers.
2843**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002844 A metadata node is a constant tuple without types. For example:
2845 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002846 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2847 Unlike other typed constants that are meant to be interpreted as part of
2848 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002849 information such as debug info.
2850
2851Global Variable and Function Addresses
2852--------------------------------------
2853
2854The addresses of :ref:`global variables <globalvars>` and
2855:ref:`functions <functionstructure>` are always implicitly valid
2856(link-time) constants. These constants are explicitly referenced when
2857the :ref:`identifier for the global <identifiers>` is used and always have
2858:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2859file:
2860
2861.. code-block:: llvm
2862
2863 @X = global i32 17
2864 @Y = global i32 42
2865 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2866
2867.. _undefvalues:
2868
2869Undefined Values
2870----------------
2871
2872The string '``undef``' can be used anywhere a constant is expected, and
2873indicates that the user of the value may receive an unspecified
2874bit-pattern. Undefined values may be of any type (other than '``label``'
2875or '``void``') and be used anywhere a constant is permitted.
2876
2877Undefined values are useful because they indicate to the compiler that
2878the program is well defined no matter what value is used. This gives the
2879compiler more freedom to optimize. Here are some examples of
2880(potentially surprising) transformations that are valid (in pseudo IR):
2881
2882.. code-block:: llvm
2883
2884 %A = add %X, undef
2885 %B = sub %X, undef
2886 %C = xor %X, undef
2887 Safe:
2888 %A = undef
2889 %B = undef
2890 %C = undef
2891
2892This is safe because all of the output bits are affected by the undef
2893bits. Any output bit can have a zero or one depending on the input bits.
2894
2895.. code-block:: llvm
2896
2897 %A = or %X, undef
2898 %B = and %X, undef
2899 Safe:
2900 %A = -1
2901 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00002902 Safe:
2903 %A = %X ;; By choosing undef as 0
2904 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00002905 Unsafe:
2906 %A = undef
2907 %B = undef
2908
2909These logical operations have bits that are not always affected by the
2910input. For example, if ``%X`` has a zero bit, then the output of the
2911'``and``' operation will always be a zero for that bit, no matter what
2912the corresponding bit from the '``undef``' is. As such, it is unsafe to
2913optimize or assume that the result of the '``and``' is '``undef``'.
2914However, it is safe to assume that all bits of the '``undef``' could be
29150, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2916all the bits of the '``undef``' operand to the '``or``' could be set,
2917allowing the '``or``' to be folded to -1.
2918
2919.. code-block:: llvm
2920
2921 %A = select undef, %X, %Y
2922 %B = select undef, 42, %Y
2923 %C = select %X, %Y, undef
2924 Safe:
2925 %A = %X (or %Y)
2926 %B = 42 (or %Y)
2927 %C = %Y
2928 Unsafe:
2929 %A = undef
2930 %B = undef
2931 %C = undef
2932
2933This set of examples shows that undefined '``select``' (and conditional
2934branch) conditions can go *either way*, but they have to come from one
2935of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2936both known to have a clear low bit, then ``%A`` would have to have a
2937cleared low bit. However, in the ``%C`` example, the optimizer is
2938allowed to assume that the '``undef``' operand could be the same as
2939``%Y``, allowing the whole '``select``' to be eliminated.
2940
Renato Golin124f2592016-07-20 12:16:38 +00002941.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002942
2943 %A = xor undef, undef
2944
2945 %B = undef
2946 %C = xor %B, %B
2947
2948 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002949 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002950 %F = icmp gte %D, 4
2951
2952 Safe:
2953 %A = undef
2954 %B = undef
2955 %C = undef
2956 %D = undef
2957 %E = undef
2958 %F = undef
2959
2960This example points out that two '``undef``' operands are not
2961necessarily the same. This can be surprising to people (and also matches
2962C semantics) where they assume that "``X^X``" is always zero, even if
2963``X`` is undefined. This isn't true for a number of reasons, but the
2964short answer is that an '``undef``' "variable" can arbitrarily change
2965its value over its "live range". This is true because the variable
2966doesn't actually *have a live range*. Instead, the value is logically
2967read from arbitrary registers that happen to be around when needed, so
2968the value is not necessarily consistent over time. In fact, ``%A`` and
2969``%C`` need to have the same semantics or the core LLVM "replace all
2970uses with" concept would not hold.
2971
2972.. code-block:: llvm
2973
2974 %A = fdiv undef, %X
2975 %B = fdiv %X, undef
2976 Safe:
2977 %A = undef
2978 b: unreachable
2979
2980These examples show the crucial difference between an *undefined value*
2981and *undefined behavior*. An undefined value (like '``undef``') is
2982allowed to have an arbitrary bit-pattern. This means that the ``%A``
2983operation can be constant folded to '``undef``', because the '``undef``'
2984could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2985However, in the second example, we can make a more aggressive
2986assumption: because the ``undef`` is allowed to be an arbitrary value,
2987we are allowed to assume that it could be zero. Since a divide by zero
2988has *undefined behavior*, we are allowed to assume that the operation
2989does not execute at all. This allows us to delete the divide and all
2990code after it. Because the undefined operation "can't happen", the
2991optimizer can assume that it occurs in dead code.
2992
Renato Golin124f2592016-07-20 12:16:38 +00002993.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002994
2995 a: store undef -> %X
2996 b: store %X -> undef
2997 Safe:
2998 a: <deleted>
2999 b: unreachable
3000
3001These examples reiterate the ``fdiv`` example: a store *of* an undefined
3002value can be assumed to not have any effect; we can assume that the
3003value is overwritten with bits that happen to match what was already
3004there. However, a store *to* an undefined location could clobber
3005arbitrary memory, therefore, it has undefined behavior.
3006
3007.. _poisonvalues:
3008
3009Poison Values
3010-------------
3011
3012Poison values are similar to :ref:`undef values <undefvalues>`, however
3013they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00003014that cannot evoke side effects has nevertheless detected a condition
3015that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003016
3017There is currently no way of representing a poison value in the IR; they
3018only exist when produced by operations such as :ref:`add <i_add>` with
3019the ``nsw`` flag.
3020
3021Poison value behavior is defined in terms of value *dependence*:
3022
3023- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
3024- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
3025 their dynamic predecessor basic block.
3026- Function arguments depend on the corresponding actual argument values
3027 in the dynamic callers of their functions.
3028- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
3029 instructions that dynamically transfer control back to them.
3030- :ref:`Invoke <i_invoke>` instructions depend on the
3031 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
3032 call instructions that dynamically transfer control back to them.
3033- Non-volatile loads and stores depend on the most recent stores to all
3034 of the referenced memory addresses, following the order in the IR
3035 (including loads and stores implied by intrinsics such as
3036 :ref:`@llvm.memcpy <int_memcpy>`.)
3037- An instruction with externally visible side effects depends on the
3038 most recent preceding instruction with externally visible side
3039 effects, following the order in the IR. (This includes :ref:`volatile
3040 operations <volatile>`.)
3041- An instruction *control-depends* on a :ref:`terminator
3042 instruction <terminators>` if the terminator instruction has
3043 multiple successors and the instruction is always executed when
3044 control transfers to one of the successors, and may not be executed
3045 when control is transferred to another.
3046- Additionally, an instruction also *control-depends* on a terminator
3047 instruction if the set of instructions it otherwise depends on would
3048 be different if the terminator had transferred control to a different
3049 successor.
3050- Dependence is transitive.
3051
Richard Smith32dbdf62014-07-31 04:25:36 +00003052Poison values have the same behavior as :ref:`undef values <undefvalues>`,
3053with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00003054on a poison value has undefined behavior.
3055
3056Here are some examples:
3057
3058.. code-block:: llvm
3059
3060 entry:
3061 %poison = sub nuw i32 0, 1 ; Results in a poison value.
3062 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00003063 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00003064 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3065
3066 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003067 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003068
3069 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3070
3071 %narrowaddr = bitcast i32* @g to i16*
3072 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003073 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3074 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003075
3076 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3077 br i1 %cmp, label %true, label %end ; Branch to either destination.
3078
3079 true:
3080 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3081 ; it has undefined behavior.
3082 br label %end
3083
3084 end:
3085 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3086 ; Both edges into this PHI are
3087 ; control-dependent on %cmp, so this
3088 ; always results in a poison value.
3089
3090 store volatile i32 0, i32* @g ; This would depend on the store in %true
3091 ; if %cmp is true, or the store in %entry
3092 ; otherwise, so this is undefined behavior.
3093
3094 br i1 %cmp, label %second_true, label %second_end
3095 ; The same branch again, but this time the
3096 ; true block doesn't have side effects.
3097
3098 second_true:
3099 ; No side effects!
3100 ret void
3101
3102 second_end:
3103 store volatile i32 0, i32* @g ; This time, the instruction always depends
3104 ; on the store in %end. Also, it is
3105 ; control-equivalent to %end, so this is
3106 ; well-defined (ignoring earlier undefined
3107 ; behavior in this example).
3108
3109.. _blockaddress:
3110
3111Addresses of Basic Blocks
3112-------------------------
3113
3114``blockaddress(@function, %block)``
3115
3116The '``blockaddress``' constant computes the address of the specified
3117basic block in the specified function, and always has an ``i8*`` type.
3118Taking the address of the entry block is illegal.
3119
3120This value only has defined behavior when used as an operand to the
3121':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3122against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003123undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003124no label is equal to the null pointer. This may be passed around as an
3125opaque pointer sized value as long as the bits are not inspected. This
3126allows ``ptrtoint`` and arithmetic to be performed on these values so
3127long as the original value is reconstituted before the ``indirectbr``
3128instruction.
3129
3130Finally, some targets may provide defined semantics when using the value
3131as the operand to an inline assembly, but that is target specific.
3132
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003133.. _constantexprs:
3134
Sean Silvab084af42012-12-07 10:36:55 +00003135Constant Expressions
3136--------------------
3137
3138Constant expressions are used to allow expressions involving other
3139constants to be used as constants. Constant expressions may be of any
3140:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3141that does not have side effects (e.g. load and call are not supported).
3142The following is the syntax for constant expressions:
3143
3144``trunc (CST to TYPE)``
3145 Truncate a constant to another type. The bit size of CST must be
3146 larger than the bit size of TYPE. Both types must be integers.
3147``zext (CST to TYPE)``
3148 Zero extend a constant to another type. The bit size of CST must be
3149 smaller than the bit size of TYPE. Both types must be integers.
3150``sext (CST to TYPE)``
3151 Sign extend a constant to another type. The bit size of CST must be
3152 smaller than the bit size of TYPE. Both types must be integers.
3153``fptrunc (CST to TYPE)``
3154 Truncate a floating point constant to another floating point type.
3155 The size of CST must be larger than the size of TYPE. Both types
3156 must be floating point.
3157``fpext (CST to TYPE)``
3158 Floating point extend a constant to another type. The size of CST
3159 must be smaller or equal to the size of TYPE. Both types must be
3160 floating point.
3161``fptoui (CST to TYPE)``
3162 Convert a floating point constant to the corresponding unsigned
3163 integer constant. TYPE must be a scalar or vector integer type. CST
3164 must be of scalar or vector floating point type. Both CST and TYPE
3165 must be scalars, or vectors of the same number of elements. If the
3166 value won't fit in the integer type, the results are undefined.
3167``fptosi (CST to TYPE)``
3168 Convert a floating point constant to the corresponding signed
3169 integer constant. TYPE must be a scalar or vector integer type. CST
3170 must be of scalar or vector floating point type. Both CST and TYPE
3171 must be scalars, or vectors of the same number of elements. If the
3172 value won't fit in the integer type, the results are undefined.
3173``uitofp (CST to TYPE)``
3174 Convert an unsigned integer constant to the corresponding floating
3175 point constant. TYPE must be a scalar or vector floating point type.
3176 CST must be of scalar or vector integer type. Both CST and TYPE must
3177 be scalars, or vectors of the same number of elements. If the value
3178 won't fit in the floating point type, the results are undefined.
3179``sitofp (CST to TYPE)``
3180 Convert a signed integer constant to the corresponding floating
3181 point constant. TYPE must be a scalar or vector floating point type.
3182 CST must be of scalar or vector integer type. Both CST and TYPE must
3183 be scalars, or vectors of the same number of elements. If the value
3184 won't fit in the floating point type, the results are undefined.
3185``ptrtoint (CST to TYPE)``
3186 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003187 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003188 pointer type. The ``CST`` value is zero extended, truncated, or
3189 unchanged to make it fit in ``TYPE``.
3190``inttoptr (CST to TYPE)``
3191 Convert an integer constant to a pointer constant. TYPE must be a
3192 pointer type. CST must be of integer type. The CST value is zero
3193 extended, truncated, or unchanged to make it fit in a pointer size.
3194 This one is *really* dangerous!
3195``bitcast (CST to TYPE)``
3196 Convert a constant, CST, to another TYPE. The constraints of the
3197 operands are the same as those for the :ref:`bitcast
3198 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003199``addrspacecast (CST to TYPE)``
3200 Convert a constant pointer or constant vector of pointer, CST, to another
3201 TYPE in a different address space. The constraints of the operands are the
3202 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003203``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003204 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3205 constants. As with the :ref:`getelementptr <i_getelementptr>`
David Blaikief91b0302017-06-19 05:34:21 +00003206 instruction, the index list may have one or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003207 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003208``select (COND, VAL1, VAL2)``
3209 Perform the :ref:`select operation <i_select>` on constants.
3210``icmp COND (VAL1, VAL2)``
3211 Performs the :ref:`icmp operation <i_icmp>` on constants.
3212``fcmp COND (VAL1, VAL2)``
3213 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3214``extractelement (VAL, IDX)``
3215 Perform the :ref:`extractelement operation <i_extractelement>` on
3216 constants.
3217``insertelement (VAL, ELT, IDX)``
3218 Perform the :ref:`insertelement operation <i_insertelement>` on
3219 constants.
3220``shufflevector (VEC1, VEC2, IDXMASK)``
3221 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3222 constants.
3223``extractvalue (VAL, IDX0, IDX1, ...)``
3224 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3225 constants. The index list is interpreted in a similar manner as
3226 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3227 least one index value must be specified.
3228``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3229 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3230 The index list is interpreted in a similar manner as indices in a
3231 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3232 value must be specified.
3233``OPCODE (LHS, RHS)``
3234 Perform the specified operation of the LHS and RHS constants. OPCODE
3235 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3236 binary <bitwiseops>` operations. The constraints on operands are
3237 the same as those for the corresponding instruction (e.g. no bitwise
3238 operations on floating point values are allowed).
3239
3240Other Values
3241============
3242
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003243.. _inlineasmexprs:
3244
Sean Silvab084af42012-12-07 10:36:55 +00003245Inline Assembler Expressions
3246----------------------------
3247
3248LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003249Inline Assembly <moduleasm>`) through the use of a special value. This value
3250represents the inline assembler as a template string (containing the
3251instructions to emit), a list of operand constraints (stored as a string), a
3252flag that indicates whether or not the inline asm expression has side effects,
3253and a flag indicating whether the function containing the asm needs to align its
3254stack conservatively.
3255
3256The template string supports argument substitution of the operands using "``$``"
3257followed by a number, to indicate substitution of the given register/memory
3258location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3259be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3260operand (See :ref:`inline-asm-modifiers`).
3261
3262A literal "``$``" may be included by using "``$$``" in the template. To include
3263other special characters into the output, the usual "``\XX``" escapes may be
3264used, just as in other strings. Note that after template substitution, the
3265resulting assembly string is parsed by LLVM's integrated assembler unless it is
3266disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3267syntax known to LLVM.
3268
Reid Kleckner71cb1642017-02-06 18:08:45 +00003269LLVM also supports a few more substitions useful for writing inline assembly:
3270
3271- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3272 This substitution is useful when declaring a local label. Many standard
3273 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3274 Adding a blob-unique identifier ensures that the two labels will not conflict
3275 during assembly. This is used to implement `GCC's %= special format
3276 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3277- ``${:comment}``: Expands to the comment character of the current target's
3278 assembly dialect. This is usually ``#``, but many targets use other strings,
3279 such as ``;``, ``//``, or ``!``.
3280- ``${:private}``: Expands to the assembler private label prefix. Labels with
3281 this prefix will not appear in the symbol table of the assembled object.
3282 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3283 relatively popular.
3284
James Y Knightbc832ed2015-07-08 18:08:36 +00003285LLVM's support for inline asm is modeled closely on the requirements of Clang's
3286GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3287modifier codes listed here are similar or identical to those in GCC's inline asm
3288support. However, to be clear, the syntax of the template and constraint strings
3289described here is *not* the same as the syntax accepted by GCC and Clang, and,
3290while most constraint letters are passed through as-is by Clang, some get
3291translated to other codes when converting from the C source to the LLVM
3292assembly.
3293
3294An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003295
3296.. code-block:: llvm
3297
3298 i32 (i32) asm "bswap $0", "=r,r"
3299
3300Inline assembler expressions may **only** be used as the callee operand
3301of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3302Thus, typically we have:
3303
3304.. code-block:: llvm
3305
3306 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3307
3308Inline asms with side effects not visible in the constraint list must be
3309marked as having side effects. This is done through the use of the
3310'``sideeffect``' keyword, like so:
3311
3312.. code-block:: llvm
3313
3314 call void asm sideeffect "eieio", ""()
3315
3316In some cases inline asms will contain code that will not work unless
3317the stack is aligned in some way, such as calls or SSE instructions on
3318x86, yet will not contain code that does that alignment within the asm.
3319The compiler should make conservative assumptions about what the asm
3320might contain and should generate its usual stack alignment code in the
3321prologue if the '``alignstack``' keyword is present:
3322
3323.. code-block:: llvm
3324
3325 call void asm alignstack "eieio", ""()
3326
3327Inline asms also support using non-standard assembly dialects. The
3328assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3329the inline asm is using the Intel dialect. Currently, ATT and Intel are
3330the only supported dialects. An example is:
3331
3332.. code-block:: llvm
3333
3334 call void asm inteldialect "eieio", ""()
3335
3336If multiple keywords appear the '``sideeffect``' keyword must come
3337first, the '``alignstack``' keyword second and the '``inteldialect``'
3338keyword last.
3339
James Y Knightbc832ed2015-07-08 18:08:36 +00003340Inline Asm Constraint String
3341^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3342
3343The constraint list is a comma-separated string, each element containing one or
3344more constraint codes.
3345
3346For each element in the constraint list an appropriate register or memory
3347operand will be chosen, and it will be made available to assembly template
3348string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3349second, etc.
3350
3351There are three different types of constraints, which are distinguished by a
3352prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3353constraints must always be given in that order: outputs first, then inputs, then
3354clobbers. They cannot be intermingled.
3355
3356There are also three different categories of constraint codes:
3357
3358- Register constraint. This is either a register class, or a fixed physical
3359 register. This kind of constraint will allocate a register, and if necessary,
3360 bitcast the argument or result to the appropriate type.
3361- Memory constraint. This kind of constraint is for use with an instruction
3362 taking a memory operand. Different constraints allow for different addressing
3363 modes used by the target.
3364- Immediate value constraint. This kind of constraint is for an integer or other
3365 immediate value which can be rendered directly into an instruction. The
3366 various target-specific constraints allow the selection of a value in the
3367 proper range for the instruction you wish to use it with.
3368
3369Output constraints
3370""""""""""""""""""
3371
3372Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3373indicates that the assembly will write to this operand, and the operand will
3374then be made available as a return value of the ``asm`` expression. Output
3375constraints do not consume an argument from the call instruction. (Except, see
3376below about indirect outputs).
3377
3378Normally, it is expected that no output locations are written to by the assembly
3379expression until *all* of the inputs have been read. As such, LLVM may assign
3380the same register to an output and an input. If this is not safe (e.g. if the
3381assembly contains two instructions, where the first writes to one output, and
3382the second reads an input and writes to a second output), then the "``&``"
3383modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003384"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003385will not use the same register for any inputs (other than an input tied to this
3386output).
3387
3388Input constraints
3389"""""""""""""""""
3390
3391Input constraints do not have a prefix -- just the constraint codes. Each input
3392constraint will consume one argument from the call instruction. It is not
3393permitted for the asm to write to any input register or memory location (unless
3394that input is tied to an output). Note also that multiple inputs may all be
3395assigned to the same register, if LLVM can determine that they necessarily all
3396contain the same value.
3397
3398Instead of providing a Constraint Code, input constraints may also "tie"
3399themselves to an output constraint, by providing an integer as the constraint
3400string. Tied inputs still consume an argument from the call instruction, and
3401take up a position in the asm template numbering as is usual -- they will simply
3402be constrained to always use the same register as the output they've been tied
3403to. For example, a constraint string of "``=r,0``" says to assign a register for
3404output, and use that register as an input as well (it being the 0'th
3405constraint).
3406
3407It is permitted to tie an input to an "early-clobber" output. In that case, no
3408*other* input may share the same register as the input tied to the early-clobber
3409(even when the other input has the same value).
3410
3411You may only tie an input to an output which has a register constraint, not a
3412memory constraint. Only a single input may be tied to an output.
3413
3414There is also an "interesting" feature which deserves a bit of explanation: if a
3415register class constraint allocates a register which is too small for the value
3416type operand provided as input, the input value will be split into multiple
3417registers, and all of them passed to the inline asm.
3418
3419However, this feature is often not as useful as you might think.
3420
3421Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3422architectures that have instructions which operate on multiple consecutive
3423instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3424SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3425hardware then loads into both the named register, and the next register. This
3426feature of inline asm would not be useful to support that.)
3427
3428A few of the targets provide a template string modifier allowing explicit access
3429to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3430``D``). On such an architecture, you can actually access the second allocated
3431register (yet, still, not any subsequent ones). But, in that case, you're still
3432probably better off simply splitting the value into two separate operands, for
3433clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3434despite existing only for use with this feature, is not really a good idea to
3435use)
3436
3437Indirect inputs and outputs
3438"""""""""""""""""""""""""""
3439
3440Indirect output or input constraints can be specified by the "``*``" modifier
3441(which goes after the "``=``" in case of an output). This indicates that the asm
3442will write to or read from the contents of an *address* provided as an input
3443argument. (Note that in this way, indirect outputs act more like an *input* than
3444an output: just like an input, they consume an argument of the call expression,
3445rather than producing a return value. An indirect output constraint is an
3446"output" only in that the asm is expected to write to the contents of the input
3447memory location, instead of just read from it).
3448
3449This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3450address of a variable as a value.
3451
3452It is also possible to use an indirect *register* constraint, but only on output
3453(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3454value normally, and then, separately emit a store to the address provided as
3455input, after the provided inline asm. (It's not clear what value this
3456functionality provides, compared to writing the store explicitly after the asm
3457statement, and it can only produce worse code, since it bypasses many
3458optimization passes. I would recommend not using it.)
3459
3460
3461Clobber constraints
3462"""""""""""""""""""
3463
3464A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3465consume an input operand, nor generate an output. Clobbers cannot use any of the
3466general constraint code letters -- they may use only explicit register
3467constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3468"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3469memory locations -- not only the memory pointed to by a declared indirect
3470output.
3471
Peter Zotov00257232016-08-30 10:48:31 +00003472Note that clobbering named registers that are also present in output
3473constraints is not legal.
3474
James Y Knightbc832ed2015-07-08 18:08:36 +00003475
3476Constraint Codes
3477""""""""""""""""
3478After a potential prefix comes constraint code, or codes.
3479
3480A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3481followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3482(e.g. "``{eax}``").
3483
3484The one and two letter constraint codes are typically chosen to be the same as
3485GCC's constraint codes.
3486
3487A single constraint may include one or more than constraint code in it, leaving
3488it up to LLVM to choose which one to use. This is included mainly for
3489compatibility with the translation of GCC inline asm coming from clang.
3490
3491There are two ways to specify alternatives, and either or both may be used in an
3492inline asm constraint list:
3493
34941) Append the codes to each other, making a constraint code set. E.g. "``im``"
3495 or "``{eax}m``". This means "choose any of the options in the set". The
3496 choice of constraint is made independently for each constraint in the
3497 constraint list.
3498
34992) Use "``|``" between constraint code sets, creating alternatives. Every
3500 constraint in the constraint list must have the same number of alternative
3501 sets. With this syntax, the same alternative in *all* of the items in the
3502 constraint list will be chosen together.
3503
3504Putting those together, you might have a two operand constraint string like
3505``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3506operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3507may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3508
3509However, the use of either of the alternatives features is *NOT* recommended, as
3510LLVM is not able to make an intelligent choice about which one to use. (At the
3511point it currently needs to choose, not enough information is available to do so
3512in a smart way.) Thus, it simply tries to make a choice that's most likely to
3513compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3514always choose to use memory, not registers). And, if given multiple registers,
3515or multiple register classes, it will simply choose the first one. (In fact, it
3516doesn't currently even ensure explicitly specified physical registers are
3517unique, so specifying multiple physical registers as alternatives, like
3518``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3519intended.)
3520
3521Supported Constraint Code List
3522""""""""""""""""""""""""""""""
3523
3524The constraint codes are, in general, expected to behave the same way they do in
3525GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3526inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3527and GCC likely indicates a bug in LLVM.
3528
3529Some constraint codes are typically supported by all targets:
3530
3531- ``r``: A register in the target's general purpose register class.
3532- ``m``: A memory address operand. It is target-specific what addressing modes
3533 are supported, typical examples are register, or register + register offset,
3534 or register + immediate offset (of some target-specific size).
3535- ``i``: An integer constant (of target-specific width). Allows either a simple
3536 immediate, or a relocatable value.
3537- ``n``: An integer constant -- *not* including relocatable values.
3538- ``s``: An integer constant, but allowing *only* relocatable values.
3539- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3540 useful to pass a label for an asm branch or call.
3541
3542 .. FIXME: but that surely isn't actually okay to jump out of an asm
3543 block without telling llvm about the control transfer???)
3544
3545- ``{register-name}``: Requires exactly the named physical register.
3546
3547Other constraints are target-specific:
3548
3549AArch64:
3550
3551- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3552- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3553 i.e. 0 to 4095 with optional shift by 12.
3554- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3555 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3556- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3557 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3558- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3559 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3560- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3561 32-bit register. This is a superset of ``K``: in addition to the bitmask
3562 immediate, also allows immediate integers which can be loaded with a single
3563 ``MOVZ`` or ``MOVL`` instruction.
3564- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3565 64-bit register. This is a superset of ``L``.
3566- ``Q``: Memory address operand must be in a single register (no
3567 offsets). (However, LLVM currently does this for the ``m`` constraint as
3568 well.)
3569- ``r``: A 32 or 64-bit integer register (W* or X*).
3570- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3571- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3572
3573AMDGPU:
3574
3575- ``r``: A 32 or 64-bit integer register.
3576- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3577- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3578
3579
3580All ARM modes:
3581
3582- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3583 operand. Treated the same as operand ``m``, at the moment.
3584
3585ARM and ARM's Thumb2 mode:
3586
3587- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3588- ``I``: An immediate integer valid for a data-processing instruction.
3589- ``J``: An immediate integer between -4095 and 4095.
3590- ``K``: An immediate integer whose bitwise inverse is valid for a
3591 data-processing instruction. (Can be used with template modifier "``B``" to
3592 print the inverted value).
3593- ``L``: An immediate integer whose negation is valid for a data-processing
3594 instruction. (Can be used with template modifier "``n``" to print the negated
3595 value).
3596- ``M``: A power of two or a integer between 0 and 32.
3597- ``N``: Invalid immediate constraint.
3598- ``O``: Invalid immediate constraint.
3599- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3600- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3601 as ``r``.
3602- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3603 invalid.
3604- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3605 ``d0-d31``, or ``q0-q15``.
3606- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3607 ``d0-d7``, or ``q0-q3``.
3608- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3609 ``s0-s31``.
3610
3611ARM's Thumb1 mode:
3612
3613- ``I``: An immediate integer between 0 and 255.
3614- ``J``: An immediate integer between -255 and -1.
3615- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3616 some amount.
3617- ``L``: An immediate integer between -7 and 7.
3618- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3619- ``N``: An immediate integer between 0 and 31.
3620- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3621- ``r``: A low 32-bit GPR register (``r0-r7``).
3622- ``l``: A low 32-bit GPR register (``r0-r7``).
3623- ``h``: A high GPR register (``r0-r7``).
3624- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3625 ``d0-d31``, or ``q0-q15``.
3626- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3627 ``d0-d7``, or ``q0-q3``.
3628- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3629 ``s0-s31``.
3630
3631
3632Hexagon:
3633
3634- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3635 at the moment.
3636- ``r``: A 32 or 64-bit register.
3637
3638MSP430:
3639
3640- ``r``: An 8 or 16-bit register.
3641
3642MIPS:
3643
3644- ``I``: An immediate signed 16-bit integer.
3645- ``J``: An immediate integer zero.
3646- ``K``: An immediate unsigned 16-bit integer.
3647- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3648- ``N``: An immediate integer between -65535 and -1.
3649- ``O``: An immediate signed 15-bit integer.
3650- ``P``: An immediate integer between 1 and 65535.
3651- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3652 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3653- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3654 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3655 ``m``.
3656- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3657 ``sc`` instruction on the given subtarget (details vary).
3658- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3659- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003660 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3661 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003662- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3663 ``25``).
3664- ``l``: The ``lo`` register, 32 or 64-bit.
3665- ``x``: Invalid.
3666
3667NVPTX:
3668
3669- ``b``: A 1-bit integer register.
3670- ``c`` or ``h``: A 16-bit integer register.
3671- ``r``: A 32-bit integer register.
3672- ``l`` or ``N``: A 64-bit integer register.
3673- ``f``: A 32-bit float register.
3674- ``d``: A 64-bit float register.
3675
3676
3677PowerPC:
3678
3679- ``I``: An immediate signed 16-bit integer.
3680- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3681- ``K``: An immediate unsigned 16-bit integer.
3682- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3683- ``M``: An immediate integer greater than 31.
3684- ``N``: An immediate integer that is an exact power of 2.
3685- ``O``: The immediate integer constant 0.
3686- ``P``: An immediate integer constant whose negation is a signed 16-bit
3687 constant.
3688- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3689 treated the same as ``m``.
3690- ``r``: A 32 or 64-bit integer register.
3691- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3692 ``R1-R31``).
3693- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3694 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3695- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3696 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3697 altivec vector register (``V0-V31``).
3698
3699 .. FIXME: is this a bug that v accepts QPX registers? I think this
3700 is supposed to only use the altivec vector registers?
3701
3702- ``y``: Condition register (``CR0-CR7``).
3703- ``wc``: An individual CR bit in a CR register.
3704- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3705 register set (overlapping both the floating-point and vector register files).
3706- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3707 set.
3708
3709Sparc:
3710
3711- ``I``: An immediate 13-bit signed integer.
3712- ``r``: A 32-bit integer register.
James Y Knightd4e1b002017-05-12 15:59:10 +00003713- ``f``: Any floating-point register on SparcV8, or a floating point
3714 register in the "low" half of the registers on SparcV9.
3715- ``e``: Any floating point register. (Same as ``f`` on SparcV8.)
James Y Knightbc832ed2015-07-08 18:08:36 +00003716
3717SystemZ:
3718
3719- ``I``: An immediate unsigned 8-bit integer.
3720- ``J``: An immediate unsigned 12-bit integer.
3721- ``K``: An immediate signed 16-bit integer.
3722- ``L``: An immediate signed 20-bit integer.
3723- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003724- ``Q``: A memory address operand with a base address and a 12-bit immediate
3725 unsigned displacement.
3726- ``R``: A memory address operand with a base address, a 12-bit immediate
3727 unsigned displacement, and an index register.
3728- ``S``: A memory address operand with a base address and a 20-bit immediate
3729 signed displacement.
3730- ``T``: A memory address operand with a base address, a 20-bit immediate
3731 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003732- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3733- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3734 address context evaluates as zero).
3735- ``h``: A 32-bit value in the high part of a 64bit data register
3736 (LLVM-specific)
3737- ``f``: A 32, 64, or 128-bit floating point register.
3738
3739X86:
3740
3741- ``I``: An immediate integer between 0 and 31.
3742- ``J``: An immediate integer between 0 and 64.
3743- ``K``: An immediate signed 8-bit integer.
3744- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3745 0xffffffff.
3746- ``M``: An immediate integer between 0 and 3.
3747- ``N``: An immediate unsigned 8-bit integer.
3748- ``O``: An immediate integer between 0 and 127.
3749- ``e``: An immediate 32-bit signed integer.
3750- ``Z``: An immediate 32-bit unsigned integer.
3751- ``o``, ``v``: Treated the same as ``m``, at the moment.
3752- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3753 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3754 registers, and on X86-64, it is all of the integer registers.
3755- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3756 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3757- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3758- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3759 existed since i386, and can be accessed without the REX prefix.
3760- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3761- ``y``: A 64-bit MMX register, if MMX is enabled.
3762- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3763 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3764 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3765 512-bit vector operand in an AVX512 register, Otherwise, an error.
3766- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3767- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3768 32-bit mode, a 64-bit integer operand will get split into two registers). It
3769 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3770 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3771 you're better off splitting it yourself, before passing it to the asm
3772 statement.
3773
3774XCore:
3775
3776- ``r``: A 32-bit integer register.
3777
3778
3779.. _inline-asm-modifiers:
3780
3781Asm template argument modifiers
3782^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3783
3784In the asm template string, modifiers can be used on the operand reference, like
3785"``${0:n}``".
3786
3787The modifiers are, in general, expected to behave the same way they do in
3788GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3789inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3790and GCC likely indicates a bug in LLVM.
3791
3792Target-independent:
3793
Sean Silvaa1190322015-08-06 22:56:48 +00003794- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003795 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3796- ``n``: Negate and print immediate integer constant unadorned, without the
3797 target-specific immediate punctuation (e.g. no ``$`` prefix).
3798- ``l``: Print as an unadorned label, without the target-specific label
3799 punctuation (e.g. no ``$`` prefix).
3800
3801AArch64:
3802
3803- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3804 instead of ``x30``, print ``w30``.
3805- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3806- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3807 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3808 ``v*``.
3809
3810AMDGPU:
3811
3812- ``r``: No effect.
3813
3814ARM:
3815
3816- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3817 register).
3818- ``P``: No effect.
3819- ``q``: No effect.
3820- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3821 as ``d4[1]`` instead of ``s9``)
3822- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3823 prefix.
3824- ``L``: Print the low 16-bits of an immediate integer constant.
3825- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3826 register operands subsequent to the specified one (!), so use carefully.
3827- ``Q``: Print the low-order register of a register-pair, or the low-order
3828 register of a two-register operand.
3829- ``R``: Print the high-order register of a register-pair, or the high-order
3830 register of a two-register operand.
3831- ``H``: Print the second register of a register-pair. (On a big-endian system,
3832 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3833 to ``R``.)
3834
3835 .. FIXME: H doesn't currently support printing the second register
3836 of a two-register operand.
3837
3838- ``e``: Print the low doubleword register of a NEON quad register.
3839- ``f``: Print the high doubleword register of a NEON quad register.
3840- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3841 adornment.
3842
3843Hexagon:
3844
3845- ``L``: Print the second register of a two-register operand. Requires that it
3846 has been allocated consecutively to the first.
3847
3848 .. FIXME: why is it restricted to consecutive ones? And there's
3849 nothing that ensures that happens, is there?
3850
3851- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3852 nothing. Used to print 'addi' vs 'add' instructions.
3853
3854MSP430:
3855
3856No additional modifiers.
3857
3858MIPS:
3859
3860- ``X``: Print an immediate integer as hexadecimal
3861- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3862- ``d``: Print an immediate integer as decimal.
3863- ``m``: Subtract one and print an immediate integer as decimal.
3864- ``z``: Print $0 if an immediate zero, otherwise print normally.
3865- ``L``: Print the low-order register of a two-register operand, or prints the
3866 address of the low-order word of a double-word memory operand.
3867
3868 .. FIXME: L seems to be missing memory operand support.
3869
3870- ``M``: Print the high-order register of a two-register operand, or prints the
3871 address of the high-order word of a double-word memory operand.
3872
3873 .. FIXME: M seems to be missing memory operand support.
3874
3875- ``D``: Print the second register of a two-register operand, or prints the
3876 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3877 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3878 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003879- ``w``: No effect. Provided for compatibility with GCC which requires this
3880 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3881 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003882
3883NVPTX:
3884
3885- ``r``: No effect.
3886
3887PowerPC:
3888
3889- ``L``: Print the second register of a two-register operand. Requires that it
3890 has been allocated consecutively to the first.
3891
3892 .. FIXME: why is it restricted to consecutive ones? And there's
3893 nothing that ensures that happens, is there?
3894
3895- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3896 nothing. Used to print 'addi' vs 'add' instructions.
3897- ``y``: For a memory operand, prints formatter for a two-register X-form
3898 instruction. (Currently always prints ``r0,OPERAND``).
3899- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3900 otherwise. (NOTE: LLVM does not support update form, so this will currently
3901 always print nothing)
3902- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3903 not support indexed form, so this will currently always print nothing)
3904
3905Sparc:
3906
3907- ``r``: No effect.
3908
3909SystemZ:
3910
3911SystemZ implements only ``n``, and does *not* support any of the other
3912target-independent modifiers.
3913
3914X86:
3915
3916- ``c``: Print an unadorned integer or symbol name. (The latter is
3917 target-specific behavior for this typically target-independent modifier).
3918- ``A``: Print a register name with a '``*``' before it.
3919- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3920 operand.
3921- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3922 memory operand.
3923- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3924 operand.
3925- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3926 operand.
3927- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3928 available, otherwise the 32-bit register name; do nothing on a memory operand.
3929- ``n``: Negate and print an unadorned integer, or, for operands other than an
3930 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3931 the operand. (The behavior for relocatable symbol expressions is a
3932 target-specific behavior for this typically target-independent modifier)
3933- ``H``: Print a memory reference with additional offset +8.
3934- ``P``: Print a memory reference or operand for use as the argument of a call
3935 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3936
3937XCore:
3938
3939No additional modifiers.
3940
3941
Sean Silvab084af42012-12-07 10:36:55 +00003942Inline Asm Metadata
3943^^^^^^^^^^^^^^^^^^^
3944
3945The call instructions that wrap inline asm nodes may have a
3946"``!srcloc``" MDNode attached to it that contains a list of constant
3947integers. If present, the code generator will use the integer as the
3948location cookie value when report errors through the ``LLVMContext``
3949error reporting mechanisms. This allows a front-end to correlate backend
3950errors that occur with inline asm back to the source code that produced
3951it. For example:
3952
3953.. code-block:: llvm
3954
3955 call void asm sideeffect "something bad", ""(), !srcloc !42
3956 ...
3957 !42 = !{ i32 1234567 }
3958
3959It is up to the front-end to make sense of the magic numbers it places
3960in the IR. If the MDNode contains multiple constants, the code generator
3961will use the one that corresponds to the line of the asm that the error
3962occurs on.
3963
3964.. _metadata:
3965
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003966Metadata
3967========
Sean Silvab084af42012-12-07 10:36:55 +00003968
3969LLVM IR allows metadata to be attached to instructions in the program
3970that can convey extra information about the code to the optimizers and
3971code generator. One example application of metadata is source-level
3972debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003973
Sean Silvaa1190322015-08-06 22:56:48 +00003974Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003975``call`` instruction, it uses the ``metadata`` type.
3976
3977All metadata are identified in syntax by a exclamation point ('``!``').
3978
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003979.. _metadata-string:
3980
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003981Metadata Nodes and Metadata Strings
3982-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003983
3984A metadata string is a string surrounded by double quotes. It can
3985contain any character by escaping non-printable characters with
3986"``\xx``" where "``xx``" is the two digit hex code. For example:
3987"``!"test\00"``".
3988
3989Metadata nodes are represented with notation similar to structure
3990constants (a comma separated list of elements, surrounded by braces and
3991preceded by an exclamation point). Metadata nodes can have any values as
3992their operand. For example:
3993
3994.. code-block:: llvm
3995
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003996 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003997
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003998Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3999
Renato Golin124f2592016-07-20 12:16:38 +00004000.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004001
4002 !0 = distinct !{!"test\00", i32 10}
4003
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004004``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00004005content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004006when metadata operands change.
4007
Sean Silvab084af42012-12-07 10:36:55 +00004008A :ref:`named metadata <namedmetadatastructure>` is a collection of
4009metadata nodes, which can be looked up in the module symbol table. For
4010example:
4011
4012.. code-block:: llvm
4013
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004014 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00004015
Adrian Prantl1b842da2017-07-28 20:44:29 +00004016Metadata can be used as function arguments. Here the ``llvm.dbg.value``
4017intrinsic is using three metadata arguments:
Sean Silvab084af42012-12-07 10:36:55 +00004018
4019.. code-block:: llvm
4020
Adrian Prantlabe04752017-07-28 20:21:02 +00004021 call void @llvm.dbg.value(metadata !24, metadata !25, metadata !26)
Sean Silvab084af42012-12-07 10:36:55 +00004022
Peter Collingbourne50108682015-11-06 02:41:02 +00004023Metadata can be attached to an instruction. Here metadata ``!21`` is attached
4024to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00004025
4026.. code-block:: llvm
4027
4028 %indvar.next = add i64 %indvar, 1, !dbg !21
4029
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004030Metadata can also be attached to a function or a global variable. Here metadata
4031``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
4032and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00004033
4034.. code-block:: llvm
4035
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004036 declare !dbg !22 void @f1()
4037 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00004038 ret void
4039 }
4040
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004041 @g1 = global i32 0, !dbg !22
4042 @g2 = external global i32, !dbg !22
4043
4044A transformation is required to drop any metadata attachment that it does not
4045know or know it can't preserve. Currently there is an exception for metadata
4046attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
4047unconditionally dropped unless the global is itself deleted.
4048
4049Metadata attached to a module using named metadata may not be dropped, with
4050the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
4051
Sean Silvab084af42012-12-07 10:36:55 +00004052More information about specific metadata nodes recognized by the
4053optimizers and code generator is found below.
4054
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004055.. _specialized-metadata:
4056
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004057Specialized Metadata Nodes
4058^^^^^^^^^^^^^^^^^^^^^^^^^^
4059
4060Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00004061to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004062order.
4063
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004064These aren't inherently debug info centric, but currently all the specialized
4065metadata nodes are related to debug info.
4066
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004067.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004068
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004069DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004070"""""""""""""
4071
Sean Silvaa1190322015-08-06 22:56:48 +00004072``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004073``retainedTypes:``, ``globals:``, ``imports:`` and ``macros:`` fields are tuples
4074containing the debug info to be emitted along with the compile unit, regardless
4075of code optimizations (some nodes are only emitted if there are references to
4076them from instructions). The ``debugInfoForProfiling:`` field is a boolean
4077indicating whether or not line-table discriminators are updated to provide
4078more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004079
Renato Golin124f2592016-07-20 12:16:38 +00004080.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004081
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004082 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004083 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004084 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004085 enums: !2, retainedTypes: !3, globals: !4, imports: !5,
4086 macros: !6, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004087
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004088Compile unit descriptors provide the root scope for objects declared in a
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004089specific compilation unit. File descriptors are defined using this scope. These
4090descriptors are collected by a named metadata node ``!llvm.dbg.cu``. They keep
4091track of global variables, type information, and imported entities (declarations
4092and namespaces).
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004093
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004094.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004095
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004096DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004097""""""
4098
Sean Silvaa1190322015-08-06 22:56:48 +00004099``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004100
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004101.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004102
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004103 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4104 checksumkind: CSK_MD5,
4105 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004106
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004107Files are sometimes used in ``scope:`` fields, and are the only valid target
4108for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004109Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004110
Michael Kuperstein605308a2015-05-14 10:58:59 +00004111.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004112
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004113DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004114"""""""""""
4115
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004116``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004117``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004118
Renato Golin124f2592016-07-20 12:16:38 +00004119.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004120
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004121 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004122 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004123 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004124
Sean Silvaa1190322015-08-06 22:56:48 +00004125The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004126following:
4127
Renato Golin124f2592016-07-20 12:16:38 +00004128.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004129
4130 DW_ATE_address = 1
4131 DW_ATE_boolean = 2
4132 DW_ATE_float = 4
4133 DW_ATE_signed = 5
4134 DW_ATE_signed_char = 6
4135 DW_ATE_unsigned = 7
4136 DW_ATE_unsigned_char = 8
4137
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004138.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004139
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004140DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004141""""""""""""""""
4142
Sean Silvaa1190322015-08-06 22:56:48 +00004143``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004144refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004145types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004146represents a function with no return value (such as ``void foo() {}`` in C++).
4147
Renato Golin124f2592016-07-20 12:16:38 +00004148.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004149
4150 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4151 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004152 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004153
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004154.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004155
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004156DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004157"""""""""""""
4158
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004159``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004160qualified types.
4161
Renato Golin124f2592016-07-20 12:16:38 +00004162.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004163
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004164 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004165 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004166 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004167 align: 32)
4168
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004169The following ``tag:`` values are valid:
4170
Renato Golin124f2592016-07-20 12:16:38 +00004171.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004172
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004173 DW_TAG_member = 13
4174 DW_TAG_pointer_type = 15
4175 DW_TAG_reference_type = 16
4176 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004177 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004178 DW_TAG_ptr_to_member_type = 31
4179 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004180 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004181 DW_TAG_volatile_type = 53
4182 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004183 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004184
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004185.. _DIDerivedTypeMember:
4186
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004187``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004188<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004189``offset:`` is the member's bit offset. If the composite type has an ODR
4190``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4191uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004192
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004193``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4194field of :ref:`composite types <DICompositeType>` to describe parents and
4195friends.
4196
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004197``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4198
4199``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004200``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4201are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004202
4203Note that the ``void *`` type is expressed as a type derived from NULL.
4204
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004205.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004206
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004207DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004208"""""""""""""""
4209
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004210``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004211structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004212
4213If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004214identifier used for type merging between modules. When specified,
4215:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4216derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4217``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004218
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004219For a given ``identifier:``, there should only be a single composite type that
4220does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4221together will unique such definitions at parse time via the ``identifier:``
4222field, even if the nodes are ``distinct``.
4223
Renato Golin124f2592016-07-20 12:16:38 +00004224.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004225
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004226 !0 = !DIEnumerator(name: "SixKind", value: 7)
4227 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4228 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4229 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004230 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4231 elements: !{!0, !1, !2})
4232
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004233The following ``tag:`` values are valid:
4234
Renato Golin124f2592016-07-20 12:16:38 +00004235.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004236
4237 DW_TAG_array_type = 1
4238 DW_TAG_class_type = 2
4239 DW_TAG_enumeration_type = 4
4240 DW_TAG_structure_type = 19
4241 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004242
4243For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004244descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004245level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004246array type is a native packed vector.
4247
4248For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004249descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004250value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004251``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004252
4253For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4254``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004255<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4256``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4257``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004258
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004259.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004260
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004261DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004262""""""""""
4263
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004264``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004265:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004266
4267.. code-block:: llvm
4268
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004269 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4270 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4271 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004272
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004273.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004274
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004275DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004276""""""""""""
4277
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004278``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4279variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004280
4281.. code-block:: llvm
4282
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004283 !0 = !DIEnumerator(name: "SixKind", value: 7)
4284 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4285 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004286
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004287DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004288"""""""""""""""""""""""
4289
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004290``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004291language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004292:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004293
4294.. code-block:: llvm
4295
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004296 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004297
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004298DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004299""""""""""""""""""""""""
4300
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004301``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004302language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004303but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004304``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004305:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004306
4307.. code-block:: llvm
4308
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004309 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004310
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004311DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004312"""""""""""
4313
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004314``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004315
4316.. code-block:: llvm
4317
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004318 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004319
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004320DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004321""""""""""""""""
4322
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004323``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004324
4325.. code-block:: llvm
4326
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004327 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004328 file: !2, line: 7, type: !3, isLocal: true,
4329 isDefinition: false, variable: i32* @foo,
4330 declaration: !4)
4331
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004332All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004333:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004334
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004335.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004336
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004337DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004338""""""""""""
4339
Peter Collingbourne50108682015-11-06 02:41:02 +00004340``DISubprogram`` nodes represent functions from the source language. A
4341``DISubprogram`` may be attached to a function definition using ``!dbg``
4342metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4343that must be retained, even if their IR counterparts are optimized out of
4344the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004345
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004346.. _DISubprogramDeclaration:
4347
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004348When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004349tree as opposed to a definition of a function. If the scope is a composite
4350type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4351then the subprogram declaration is uniqued based only on its ``linkageName:``
4352and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004353
Renato Golin124f2592016-07-20 12:16:38 +00004354.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004355
Peter Collingbourne50108682015-11-06 02:41:02 +00004356 define void @_Z3foov() !dbg !0 {
4357 ...
4358 }
4359
4360 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4361 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004362 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004363 containingType: !4,
4364 virtuality: DW_VIRTUALITY_pure_virtual,
4365 virtualIndex: 10, flags: DIFlagPrototyped,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004366 isOptimized: true, unit: !5, templateParams: !6,
4367 declaration: !7, variables: !8, thrownTypes: !9)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004368
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004369.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004370
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004371DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004372""""""""""""""
4373
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004374``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004375<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004376two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004377fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004378
Renato Golin124f2592016-07-20 12:16:38 +00004379.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004380
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004381 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004382
4383Usually lexical blocks are ``distinct`` to prevent node merging based on
4384operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004385
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004386.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004387
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004388DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004389""""""""""""""""""
4390
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004391``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004392:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004393indicate textual inclusion, or the ``discriminator:`` field can be used to
4394discriminate between control flow within a single block in the source language.
4395
4396.. code-block:: llvm
4397
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004398 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4399 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4400 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004401
Michael Kuperstein605308a2015-05-14 10:58:59 +00004402.. _DILocation:
4403
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004404DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004405""""""""""
4406
Sean Silvaa1190322015-08-06 22:56:48 +00004407``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004408mandatory, and points at an :ref:`DILexicalBlockFile`, an
4409:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004410
4411.. code-block:: llvm
4412
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004413 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004414
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004415.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004416
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004417DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004418"""""""""""""""
4419
Sean Silvaa1190322015-08-06 22:56:48 +00004420``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004421the ``arg:`` field is set to non-zero, then this variable is a subprogram
4422parameter, and it will be included in the ``variables:`` field of its
4423:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004424
Renato Golin124f2592016-07-20 12:16:38 +00004425.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004426
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004427 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4428 type: !3, flags: DIFlagArtificial)
4429 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4430 type: !3)
4431 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004432
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004433DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004434""""""""""""
4435
Adrian Prantlb44c7762017-03-22 18:01:01 +00004436``DIExpression`` nodes represent expressions that are inspired by the DWARF
4437expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
4438(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
4439referenced LLVM variable relates to the source language variable.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004440
4441The current supported vocabulary is limited:
4442
Adrian Prantl6825fb62017-04-18 01:21:53 +00004443- ``DW_OP_deref`` dereferences the top of the expression stack.
Florian Hahnffc498d2017-06-14 13:14:38 +00004444- ``DW_OP_plus`` pops the last two entries from the expression stack, adds
4445 them together and appends the result to the expression stack.
4446- ``DW_OP_minus`` pops the last two entries from the expression stack, subtracts
4447 the last entry from the second last entry and appends the result to the
4448 expression stack.
Florian Hahnc9c403c2017-06-13 16:54:44 +00004449- ``DW_OP_plus_uconst, 93`` adds ``93`` to the working expression.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004450- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
4451 here, respectively) of the variable fragment from the working expression. Note
4452 that contrary to DW_OP_bit_piece, the offset is describing the the location
4453 within the described source variable.
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004454- ``DW_OP_swap`` swaps top two stack entries.
4455- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
4456 of the stack is treated as an address. The second stack entry is treated as an
4457 address space identifier.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004458- ``DW_OP_stack_value`` marks a constant value.
4459
Adrian Prantl6825fb62017-04-18 01:21:53 +00004460DWARF specifies three kinds of simple location descriptions: Register, memory,
4461and implicit location descriptions. Register and memory location descriptions
4462describe the *location* of a source variable (in the sense that a debugger might
4463modify its value), whereas implicit locations describe merely the *value* of a
4464source variable. DIExpressions also follow this model: A DIExpression that
4465doesn't have a trailing ``DW_OP_stack_value`` will describe an *address* when
4466combined with a concrete location.
4467
4468.. code-block:: llvm
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004469
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004470 !0 = !DIExpression(DW_OP_deref)
Florian Hahnc9c403c2017-06-13 16:54:44 +00004471 !1 = !DIExpression(DW_OP_plus_uconst, 3)
Florian Hahnffc498d2017-06-14 13:14:38 +00004472 !1 = !DIExpression(DW_OP_constu, 3, DW_OP_plus)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004473 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
Florian Hahnffc498d2017-06-14 13:14:38 +00004474 !3 = !DIExpression(DW_OP_deref, DW_OP_constu, 3, DW_OP_plus, DW_OP_LLVM_fragment, 3, 7)
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004475 !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004476 !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004477
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004478DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004479""""""""""""""
4480
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004481``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004482
4483.. code-block:: llvm
4484
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004485 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004486 getter: "getFoo", attributes: 7, type: !2)
4487
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004488DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004489""""""""""""""""
4490
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004491``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004492compile unit.
4493
Renato Golin124f2592016-07-20 12:16:38 +00004494.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004495
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004496 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004497 entity: !1, line: 7)
4498
Amjad Abouda9bcf162015-12-10 12:56:35 +00004499DIMacro
4500"""""""
4501
4502``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4503The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004504defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004505used to expand the macro identifier.
4506
Renato Golin124f2592016-07-20 12:16:38 +00004507.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004508
4509 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4510 value: "((x) + 1)")
4511 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4512
4513DIMacroFile
4514"""""""""""
4515
4516``DIMacroFile`` nodes represent inclusion of source files.
4517The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4518appear in the included source file.
4519
Renato Golin124f2592016-07-20 12:16:38 +00004520.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004521
4522 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4523 nodes: !3)
4524
Sean Silvab084af42012-12-07 10:36:55 +00004525'``tbaa``' Metadata
4526^^^^^^^^^^^^^^^^^^^
4527
4528In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004529suitable for doing type based alias analysis (TBAA). Instead, metadata is
4530added to the IR to describe a type system of a higher level language. This
4531can be used to implement C/C++ strict type aliasing rules, but it can also
4532be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004533
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004534This description of LLVM's TBAA system is broken into two parts:
4535:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4536:ref:`Representation<tbaa_node_representation>` talks about the metadata
4537encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004538
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004539It is always possible to trace any TBAA node to a "root" TBAA node (details
4540in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4541nodes with different roots have an unknown aliasing relationship, and LLVM
4542conservatively infers ``MayAlias`` between them. The rules mentioned in
4543this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004544
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004545.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004546
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004547Semantics
4548"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004549
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004550The TBAA metadata system, referred to as "struct path TBAA" (not to be
4551confused with ``tbaa.struct``), consists of the following high level
4552concepts: *Type Descriptors*, further subdivided into scalar type
4553descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004554
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004555**Type descriptors** describe the type system of the higher level language
4556being compiled. **Scalar type descriptors** describe types that do not
4557contain other types. Each scalar type has a parent type, which must also
4558be a scalar type or the TBAA root. Via this parent relation, scalar types
4559within a TBAA root form a tree. **Struct type descriptors** denote types
4560that contain a sequence of other type descriptors, at known offsets. These
4561contained type descriptors can either be struct type descriptors themselves
4562or scalar type descriptors.
4563
4564**Access tags** are metadata nodes attached to load and store instructions.
4565Access tags use type descriptors to describe the *location* being accessed
4566in terms of the type system of the higher level language. Access tags are
4567tuples consisting of a base type, an access type and an offset. The base
4568type is a scalar type descriptor or a struct type descriptor, the access
4569type is a scalar type descriptor, and the offset is a constant integer.
4570
4571The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4572things:
4573
4574 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4575 or store) of a value of type ``AccessTy`` contained in the struct type
4576 ``BaseTy`` at offset ``Offset``.
4577
4578 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4579 ``AccessTy`` must be the same; and the access tag describes a scalar
4580 access with scalar type ``AccessTy``.
4581
4582We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4583tuples this way:
4584
4585 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4586 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4587 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4588 undefined if ``Offset`` is non-zero.
4589
4590 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4591 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4592 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4593 to be relative within that inner type.
4594
4595A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4596aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4597Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4598Offset2)`` via the ``Parent`` relation or vice versa.
4599
4600As a concrete example, the type descriptor graph for the following program
4601
4602.. code-block:: c
4603
4604 struct Inner {
4605 int i; // offset 0
4606 float f; // offset 4
4607 };
4608
4609 struct Outer {
4610 float f; // offset 0
4611 double d; // offset 4
4612 struct Inner inner_a; // offset 12
4613 };
4614
4615 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4616 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4617 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
4618 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, IntScalarTy, 16)
4619 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4620 }
4621
4622is (note that in C and C++, ``char`` can be used to access any arbitrary
4623type):
4624
4625.. code-block:: text
4626
4627 Root = "TBAA Root"
4628 CharScalarTy = ("char", Root, 0)
4629 FloatScalarTy = ("float", CharScalarTy, 0)
4630 DoubleScalarTy = ("double", CharScalarTy, 0)
4631 IntScalarTy = ("int", CharScalarTy, 0)
4632 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4633 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4634 (InnerStructTy, 12)}
4635
4636
4637with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
46380)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4639``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4640
4641.. _tbaa_node_representation:
4642
4643Representation
4644""""""""""""""
4645
4646The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4647with exactly one ``MDString`` operand.
4648
4649Scalar type descriptors are represented as an ``MDNode`` s with two
4650operands. The first operand is an ``MDString`` denoting the name of the
4651struct type. LLVM does not assign meaning to the value of this operand, it
4652only cares about it being an ``MDString``. The second operand is an
4653``MDNode`` which points to the parent for said scalar type descriptor,
4654which is either another scalar type descriptor or the TBAA root. Scalar
4655type descriptors can have an optional third argument, but that must be the
4656constant integer zero.
4657
4658Struct type descriptors are represented as ``MDNode`` s with an odd number
4659of operands greater than 1. The first operand is an ``MDString`` denoting
4660the name of the struct type. Like in scalar type descriptors the actual
4661value of this name operand is irrelevant to LLVM. After the name operand,
4662the struct type descriptors have a sequence of alternating ``MDNode`` and
4663``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4664an ``MDNode``, denotes a contained field, and the 2N th operand, a
4665``ConstantInt``, is the offset of the said contained field. The offsets
4666must be in non-decreasing order.
4667
4668Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4669The first operand is an ``MDNode`` pointing to the node representing the
4670base type. The second operand is an ``MDNode`` pointing to the node
4671representing the access type. The third operand is a ``ConstantInt`` that
4672states the offset of the access. If a fourth field is present, it must be
4673a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4674that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004675``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004676AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4677the access type and the base type of an access tag must be the same, and
4678that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004679
4680'``tbaa.struct``' Metadata
4681^^^^^^^^^^^^^^^^^^^^^^^^^^
4682
4683The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4684aggregate assignment operations in C and similar languages, however it
4685is defined to copy a contiguous region of memory, which is more than
4686strictly necessary for aggregate types which contain holes due to
4687padding. Also, it doesn't contain any TBAA information about the fields
4688of the aggregate.
4689
4690``!tbaa.struct`` metadata can describe which memory subregions in a
4691memcpy are padding and what the TBAA tags of the struct are.
4692
4693The current metadata format is very simple. ``!tbaa.struct`` metadata
4694nodes are a list of operands which are in conceptual groups of three.
4695For each group of three, the first operand gives the byte offset of a
4696field in bytes, the second gives its size in bytes, and the third gives
4697its tbaa tag. e.g.:
4698
4699.. code-block:: llvm
4700
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004701 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004702
4703This describes a struct with two fields. The first is at offset 0 bytes
4704with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4705and has size 4 bytes and has tbaa tag !2.
4706
4707Note that the fields need not be contiguous. In this example, there is a
47084 byte gap between the two fields. This gap represents padding which
4709does not carry useful data and need not be preserved.
4710
Hal Finkel94146652014-07-24 14:25:39 +00004711'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004712^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004713
4714``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4715noalias memory-access sets. This means that some collection of memory access
4716instructions (loads, stores, memory-accessing calls, etc.) that carry
4717``noalias`` metadata can specifically be specified not to alias with some other
4718collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004719Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004720a domain.
4721
4722When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004723of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004724subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004725instruction's ``noalias`` list, then the two memory accesses are assumed not to
4726alias.
Hal Finkel94146652014-07-24 14:25:39 +00004727
Adam Nemet569a5b32016-04-27 00:52:48 +00004728Because scopes in one domain don't affect scopes in other domains, separate
4729domains can be used to compose multiple independent noalias sets. This is
4730used for example during inlining. As the noalias function parameters are
4731turned into noalias scope metadata, a new domain is used every time the
4732function is inlined.
4733
Hal Finkel029cde62014-07-25 15:50:02 +00004734The metadata identifying each domain is itself a list containing one or two
4735entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004736string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004737self-reference can be used to create globally unique domain names. A
4738descriptive string may optionally be provided as a second list entry.
4739
4740The metadata identifying each scope is also itself a list containing two or
4741three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004742is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004743self-reference can be used to create globally unique scope names. A metadata
4744reference to the scope's domain is the second entry. A descriptive string may
4745optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004746
4747For example,
4748
4749.. code-block:: llvm
4750
Hal Finkel029cde62014-07-25 15:50:02 +00004751 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004752 !0 = !{!0}
4753 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004754
Hal Finkel029cde62014-07-25 15:50:02 +00004755 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004756 !2 = !{!2, !0}
4757 !3 = !{!3, !0}
4758 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004759
Hal Finkel029cde62014-07-25 15:50:02 +00004760 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004761 !5 = !{!4} ; A list containing only scope !4
4762 !6 = !{!4, !3, !2}
4763 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004764
4765 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004766 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004767 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004768
Hal Finkel029cde62014-07-25 15:50:02 +00004769 ; These two instructions also don't alias (for domain !1, the set of scopes
4770 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004771 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004772 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004773
Adam Nemet0a8416f2015-05-11 08:30:28 +00004774 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004775 ; the !noalias list is not a superset of, or equal to, the scopes in the
4776 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004777 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004778 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004779
Sean Silvab084af42012-12-07 10:36:55 +00004780'``fpmath``' Metadata
4781^^^^^^^^^^^^^^^^^^^^^
4782
4783``fpmath`` metadata may be attached to any instruction of floating point
4784type. It can be used to express the maximum acceptable error in the
4785result of that instruction, in ULPs, thus potentially allowing the
4786compiler to use a more efficient but less accurate method of computing
4787it. ULP is defined as follows:
4788
4789 If ``x`` is a real number that lies between two finite consecutive
4790 floating-point numbers ``a`` and ``b``, without being equal to one
4791 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4792 distance between the two non-equal finite floating-point numbers
4793 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4794
Matt Arsenault82f41512016-06-27 19:43:15 +00004795The metadata node shall consist of a single positive float type number
4796representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004797
4798.. code-block:: llvm
4799
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004800 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004801
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004802.. _range-metadata:
4803
Sean Silvab084af42012-12-07 10:36:55 +00004804'``range``' Metadata
4805^^^^^^^^^^^^^^^^^^^^
4806
Jingyue Wu37fcb592014-06-19 16:50:16 +00004807``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4808integer types. It expresses the possible ranges the loaded value or the value
4809returned by the called function at this call site is in. The ranges are
4810represented with a flattened list of integers. The loaded value or the value
4811returned is known to be in the union of the ranges defined by each consecutive
4812pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004813
4814- The type must match the type loaded by the instruction.
4815- The pair ``a,b`` represents the range ``[a,b)``.
4816- Both ``a`` and ``b`` are constants.
4817- The range is allowed to wrap.
4818- The range should not represent the full or empty set. That is,
4819 ``a!=b``.
4820
4821In addition, the pairs must be in signed order of the lower bound and
4822they must be non-contiguous.
4823
4824Examples:
4825
4826.. code-block:: llvm
4827
David Blaikiec7aabbb2015-03-04 22:06:14 +00004828 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4829 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004830 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4831 %d = invoke i8 @bar() to label %cont
4832 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004833 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004834 !0 = !{ i8 0, i8 2 }
4835 !1 = !{ i8 255, i8 2 }
4836 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4837 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004838
Peter Collingbourne235c2752016-12-08 19:01:00 +00004839'``absolute_symbol``' Metadata
4840^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4841
4842``absolute_symbol`` metadata may be attached to a global variable
4843declaration. It marks the declaration as a reference to an absolute symbol,
4844which causes the backend to use absolute relocations for the symbol even
4845in position independent code, and expresses the possible ranges that the
4846global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00004847``range`` metadata, with the extension that the pair ``all-ones,all-ones``
4848may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00004849
Peter Collingbourned88f9282017-01-20 21:56:37 +00004850Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00004851
4852.. code-block:: llvm
4853
4854 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00004855 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00004856
4857 ...
4858 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00004859 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00004860
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004861'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004862^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004863
4864``unpredictable`` metadata may be attached to any branch or switch
4865instruction. It can be used to express the unpredictability of control
4866flow. Similar to the llvm.expect intrinsic, it may be used to alter
4867optimizations related to compare and branch instructions. The metadata
4868is treated as a boolean value; if it exists, it signals that the branch
4869or switch that it is attached to is completely unpredictable.
4870
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004871'``llvm.loop``'
4872^^^^^^^^^^^^^^^
4873
4874It is sometimes useful to attach information to loop constructs. Currently,
4875loop metadata is implemented as metadata attached to the branch instruction
4876in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004877guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004878specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004879
4880The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004881itself to avoid merging it with any other identifier metadata, e.g.,
4882during module linkage or function inlining. That is, each loop should refer
4883to their own identification metadata even if they reside in separate functions.
4884The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004885constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004886
4887.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004888
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004889 !0 = !{!0}
4890 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004891
Mark Heffernan893752a2014-07-18 19:24:51 +00004892The loop identifier metadata can be used to specify additional
4893per-loop metadata. Any operands after the first operand can be treated
4894as user-defined metadata. For example the ``llvm.loop.unroll.count``
4895suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004896
Paul Redmond5fdf8362013-05-28 20:00:34 +00004897.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004898
Paul Redmond5fdf8362013-05-28 20:00:34 +00004899 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4900 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004901 !0 = !{!0, !1}
4902 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004903
Mark Heffernan9d20e422014-07-21 23:11:03 +00004904'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4905^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004906
Mark Heffernan9d20e422014-07-21 23:11:03 +00004907Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4908used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004909vectorization width and interleave count. These metadata should be used in
4910conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004911``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4912optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004913it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004914which contains information about loop-carried memory dependencies can be helpful
4915in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004916
Mark Heffernan9d20e422014-07-21 23:11:03 +00004917'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004918^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4919
Mark Heffernan9d20e422014-07-21 23:11:03 +00004920This metadata suggests an interleave count to the loop interleaver.
4921The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004922second operand is an integer specifying the interleave count. For
4923example:
4924
4925.. code-block:: llvm
4926
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004927 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004928
Mark Heffernan9d20e422014-07-21 23:11:03 +00004929Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004930multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004931then the interleave count will be determined automatically.
4932
4933'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004934^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004935
4936This metadata selectively enables or disables vectorization for the loop. The
4937first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004938is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000049390 disables vectorization:
4940
4941.. code-block:: llvm
4942
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004943 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4944 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004945
4946'``llvm.loop.vectorize.width``' Metadata
4947^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4948
4949This metadata sets the target width of the vectorizer. The first
4950operand is the string ``llvm.loop.vectorize.width`` and the second
4951operand is an integer specifying the width. For example:
4952
4953.. code-block:: llvm
4954
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004955 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004956
4957Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004958vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000049590 or if the loop does not have this metadata the width will be
4960determined automatically.
4961
4962'``llvm.loop.unroll``'
4963^^^^^^^^^^^^^^^^^^^^^^
4964
4965Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4966optimization hints such as the unroll factor. ``llvm.loop.unroll``
4967metadata should be used in conjunction with ``llvm.loop`` loop
4968identification metadata. The ``llvm.loop.unroll`` metadata are only
4969optimization hints and the unrolling will only be performed if the
4970optimizer believes it is safe to do so.
4971
Mark Heffernan893752a2014-07-18 19:24:51 +00004972'``llvm.loop.unroll.count``' Metadata
4973^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4974
4975This metadata suggests an unroll factor to the loop unroller. The
4976first operand is the string ``llvm.loop.unroll.count`` and the second
4977operand is a positive integer specifying the unroll factor. For
4978example:
4979
4980.. code-block:: llvm
4981
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004982 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004983
4984If the trip count of the loop is less than the unroll count the loop
4985will be partially unrolled.
4986
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004987'``llvm.loop.unroll.disable``' Metadata
4988^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4989
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004990This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004991which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004992
4993.. code-block:: llvm
4994
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004995 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004996
Kevin Qin715b01e2015-03-09 06:14:18 +00004997'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004998^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004999
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005000This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00005001operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00005002
5003.. code-block:: llvm
5004
5005 !0 = !{!"llvm.loop.unroll.runtime.disable"}
5006
Mark Heffernan89391542015-08-10 17:28:08 +00005007'``llvm.loop.unroll.enable``' Metadata
5008^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5009
5010This metadata suggests that the loop should be fully unrolled if the trip count
5011is known at compile time and partially unrolled if the trip count is not known
5012at compile time. The metadata has a single operand which is the string
5013``llvm.loop.unroll.enable``. For example:
5014
5015.. code-block:: llvm
5016
5017 !0 = !{!"llvm.loop.unroll.enable"}
5018
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005019'``llvm.loop.unroll.full``' Metadata
5020^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5021
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005022This metadata suggests that the loop should be unrolled fully. The
5023metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005024For example:
5025
5026.. code-block:: llvm
5027
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005028 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005029
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005030'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00005031^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005032
5033This metadata indicates that the loop should not be versioned for the purpose
5034of enabling loop-invariant code motion (LICM). The metadata has a single operand
5035which is the string ``llvm.loop.licm_versioning.disable``. For example:
5036
5037.. code-block:: llvm
5038
5039 !0 = !{!"llvm.loop.licm_versioning.disable"}
5040
Adam Nemetd2fa4142016-04-27 05:28:18 +00005041'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00005042^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00005043
5044Loop distribution allows splitting a loop into multiple loops. Currently,
5045this is only performed if the entire loop cannot be vectorized due to unsafe
Hiroshi Inoueb93daec2017-07-02 12:44:27 +00005046memory dependencies. The transformation will attempt to isolate the unsafe
Adam Nemetd2fa4142016-04-27 05:28:18 +00005047dependencies into their own loop.
5048
5049This metadata can be used to selectively enable or disable distribution of the
5050loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
5051second operand is a bit. If the bit operand value is 1 distribution is
5052enabled. A value of 0 disables distribution:
5053
5054.. code-block:: llvm
5055
5056 !0 = !{!"llvm.loop.distribute.enable", i1 0}
5057 !1 = !{!"llvm.loop.distribute.enable", i1 1}
5058
5059This metadata should be used in conjunction with ``llvm.loop`` loop
5060identification metadata.
5061
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005062'``llvm.mem``'
5063^^^^^^^^^^^^^^^
5064
5065Metadata types used to annotate memory accesses with information helpful
5066for optimizations are prefixed with ``llvm.mem``.
5067
5068'``llvm.mem.parallel_loop_access``' Metadata
5069^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5070
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005071The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
5072or metadata containing a list of loop identifiers for nested loops.
5073The metadata is attached to memory accessing instructions and denotes that
5074no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00005075with the same loop identifier. The metadata on memory reads also implies that
5076if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005077
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005078Precisely, given two instructions ``m1`` and ``m2`` that both have the
5079``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
5080set of loops associated with that metadata, respectively, then there is no loop
5081carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005082``L2``.
5083
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005084As a special case, if all memory accessing instructions in a loop have
5085``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
5086loop has no loop carried memory dependences and is considered to be a parallel
5087loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005088
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005089Note that if not all memory access instructions have such metadata referring to
5090the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00005091memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005092safe mechanism, this causes loops that were originally parallel to be considered
5093sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005094insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005095
5096Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00005097both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005098metadata types that refer to the same loop identifier metadata.
5099
5100.. code-block:: llvm
5101
5102 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005103 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005104 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005105 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005106 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005107 ...
5108 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005109
5110 for.end:
5111 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005112 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005113
5114It is also possible to have nested parallel loops. In that case the
5115memory accesses refer to a list of loop identifier metadata nodes instead of
5116the loop identifier metadata node directly:
5117
5118.. code-block:: llvm
5119
5120 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005121 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005122 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005123 ...
5124 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005125
5126 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005127 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005128 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005129 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005130 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005131 ...
5132 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005133
5134 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005135 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005136 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00005137 ...
5138 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005139
5140 outer.for.end: ; preds = %for.body
5141 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005142 !0 = !{!1, !2} ; a list of loop identifiers
5143 !1 = !{!1} ; an identifier for the inner loop
5144 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005145
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005146'``invariant.group``' Metadata
5147^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5148
5149The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
5150The existence of the ``invariant.group`` metadata on the instruction tells
5151the optimizer that every ``load`` and ``store`` to the same pointer operand
5152within the same invariant group can be assumed to load or store the same
5153value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005154when two pointers are considered the same). Pointers returned by bitcast or
5155getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005156
5157Examples:
5158
5159.. code-block:: llvm
5160
5161 @unknownPtr = external global i8
5162 ...
5163 %ptr = alloca i8
5164 store i8 42, i8* %ptr, !invariant.group !0
5165 call void @foo(i8* %ptr)
5166
5167 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5168 call void @foo(i8* %ptr)
5169 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
5170
5171 %newPtr = call i8* @getPointer(i8* %ptr)
5172 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
5173
5174 %unknownValue = load i8, i8* @unknownPtr
5175 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
5176
5177 call void @foo(i8* %ptr)
5178 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
5179 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
5180
5181 ...
5182 declare void @foo(i8*)
5183 declare i8* @getPointer(i8*)
5184 declare i8* @llvm.invariant.group.barrier(i8*)
5185
5186 !0 = !{!"magic ptr"}
5187 !1 = !{!"other ptr"}
5188
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005189The invariant.group metadata must be dropped when replacing one pointer by
5190another based on aliasing information. This is because invariant.group is tied
5191to the SSA value of the pointer operand.
5192
5193.. code-block:: llvm
Piotr Padlewskiaa1b2412017-04-12 11:18:19 +00005194
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005195 %v = load i8, i8* %x, !invariant.group !0
5196 ; if %x mustalias %y then we can replace the above instruction with
5197 %v = load i8, i8* %y
5198
5199
Peter Collingbournea333db82016-07-26 22:31:30 +00005200'``type``' Metadata
5201^^^^^^^^^^^^^^^^^^^
5202
5203See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005204
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005205'``associated``' Metadata
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005206^^^^^^^^^^^^^^^^^^^^^^^^^
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005207
5208The ``associated`` metadata may be attached to a global object
5209declaration with a single argument that references another global object.
5210
5211This metadata prevents discarding of the global object in linker GC
5212unless the referenced object is also discarded. The linker support for
5213this feature is spotty. For best compatibility, globals carrying this
5214metadata may also:
5215
5216- Be in a comdat with the referenced global.
5217- Be in @llvm.compiler.used.
5218- Have an explicit section with a name which is a valid C identifier.
5219
5220It does not have any effect on non-ELF targets.
5221
5222Example:
5223
5224.. code-block:: llvm
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005225
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005226 $a = comdat any
5227 @a = global i32 1, comdat $a
5228 @b = internal global i32 2, comdat $a, section "abc", !associated !0
5229 !0 = !{i32* @a}
5230
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005231
Teresa Johnsond72f51c2017-06-15 15:57:12 +00005232'``prof``' Metadata
5233^^^^^^^^^^^^^^^^^^^
5234
5235The ``prof`` metadata is used to record profile data in the IR.
5236The first operand of the metadata node indicates the profile metadata
5237type. There are currently 3 types:
5238:ref:`branch_weights<prof_node_branch_weights>`,
5239:ref:`function_entry_count<prof_node_function_entry_count>`, and
5240:ref:`VP<prof_node_VP>`.
5241
5242.. _prof_node_branch_weights:
5243
5244branch_weights
5245""""""""""""""
5246
5247Branch weight metadata attached to a branch, select, switch or call instruction
5248represents the likeliness of the associated branch being taken.
5249For more information, see :doc:`BranchWeightMetadata`.
5250
5251.. _prof_node_function_entry_count:
5252
5253function_entry_count
5254""""""""""""""""""""
5255
5256Function entry count metadata can be attached to function definitions
5257to record the number of times the function is called. Used with BFI
5258information, it is also used to derive the basic block profile count.
5259For more information, see :doc:`BranchWeightMetadata`.
5260
5261.. _prof_node_VP:
5262
5263VP
5264""
5265
5266VP (value profile) metadata can be attached to instructions that have
5267value profile information. Currently this is indirect calls (where it
5268records the hottest callees) and calls to memory intrinsics such as memcpy,
5269memmove, and memset (where it records the hottest byte lengths).
5270
5271Each VP metadata node contains "VP" string, then a uint32_t value for the value
5272profiling kind, a uint64_t value for the total number of times the instruction
5273is executed, followed by uint64_t value and execution count pairs.
5274The value profiling kind is 0 for indirect call targets and 1 for memory
5275operations. For indirect call targets, each profile value is a hash
5276of the callee function name, and for memory operations each value is the
5277byte length.
5278
5279Note that the value counts do not need to add up to the total count
5280listed in the third operand (in practice only the top hottest values
5281are tracked and reported).
5282
5283Indirect call example:
5284
5285.. code-block:: llvm
5286
5287 call void %f(), !prof !1
5288 !1 = !{!"VP", i32 0, i64 1600, i64 7651369219802541373, i64 1030, i64 -4377547752858689819, i64 410}
5289
5290Note that the VP type is 0 (the second operand), which indicates this is
5291an indirect call value profile data. The third operand indicates that the
5292indirect call executed 1600 times. The 4th and 6th operands give the
5293hashes of the 2 hottest target functions' names (this is the same hash used
5294to represent function names in the profile database), and the 5th and 7th
5295operands give the execution count that each of the respective prior target
5296functions was called.
5297
Sean Silvab084af42012-12-07 10:36:55 +00005298Module Flags Metadata
5299=====================
5300
5301Information about the module as a whole is difficult to convey to LLVM's
5302subsystems. The LLVM IR isn't sufficient to transmit this information.
5303The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005304this. These flags are in the form of key / value pairs --- much like a
5305dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005306look it up.
5307
5308The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5309Each triplet has the following form:
5310
5311- The first element is a *behavior* flag, which specifies the behavior
5312 when two (or more) modules are merged together, and it encounters two
5313 (or more) metadata with the same ID. The supported behaviors are
5314 described below.
5315- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005316 metadata. Each module may only have one flag entry for each unique ID (not
5317 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005318- The third element is the value of the flag.
5319
5320When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005321``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5322each unique metadata ID string, there will be exactly one entry in the merged
5323modules ``llvm.module.flags`` metadata table, and the value for that entry will
5324be determined by the merge behavior flag, as described below. The only exception
5325is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005326
5327The following behaviors are supported:
5328
5329.. list-table::
5330 :header-rows: 1
5331 :widths: 10 90
5332
5333 * - Value
5334 - Behavior
5335
5336 * - 1
5337 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005338 Emits an error if two values disagree, otherwise the resulting value
5339 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005340
5341 * - 2
5342 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005343 Emits a warning if two values disagree. The result value will be the
5344 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005345
5346 * - 3
5347 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005348 Adds a requirement that another module flag be present and have a
5349 specified value after linking is performed. The value must be a
5350 metadata pair, where the first element of the pair is the ID of the
5351 module flag to be restricted, and the second element of the pair is
5352 the value the module flag should be restricted to. This behavior can
5353 be used to restrict the allowable results (via triggering of an
5354 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005355
5356 * - 4
5357 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005358 Uses the specified value, regardless of the behavior or value of the
5359 other module. If both modules specify **Override**, but the values
5360 differ, an error will be emitted.
5361
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005362 * - 5
5363 - **Append**
5364 Appends the two values, which are required to be metadata nodes.
5365
5366 * - 6
5367 - **AppendUnique**
5368 Appends the two values, which are required to be metadata
5369 nodes. However, duplicate entries in the second list are dropped
5370 during the append operation.
5371
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005372It is an error for a particular unique flag ID to have multiple behaviors,
5373except in the case of **Require** (which adds restrictions on another metadata
5374value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005375
5376An example of module flags:
5377
5378.. code-block:: llvm
5379
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005380 !0 = !{ i32 1, !"foo", i32 1 }
5381 !1 = !{ i32 4, !"bar", i32 37 }
5382 !2 = !{ i32 2, !"qux", i32 42 }
5383 !3 = !{ i32 3, !"qux",
5384 !{
5385 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005386 }
5387 }
5388 !llvm.module.flags = !{ !0, !1, !2, !3 }
5389
5390- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5391 if two or more ``!"foo"`` flags are seen is to emit an error if their
5392 values are not equal.
5393
5394- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5395 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005396 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005397
5398- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5399 behavior if two or more ``!"qux"`` flags are seen is to emit a
5400 warning if their values are not equal.
5401
5402- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5403
5404 ::
5405
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005406 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005407
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005408 The behavior is to emit an error if the ``llvm.module.flags`` does not
5409 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5410 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005411
5412Objective-C Garbage Collection Module Flags Metadata
5413----------------------------------------------------
5414
5415On the Mach-O platform, Objective-C stores metadata about garbage
5416collection in a special section called "image info". The metadata
5417consists of a version number and a bitmask specifying what types of
5418garbage collection are supported (if any) by the file. If two or more
5419modules are linked together their garbage collection metadata needs to
5420be merged rather than appended together.
5421
5422The Objective-C garbage collection module flags metadata consists of the
5423following key-value pairs:
5424
5425.. list-table::
5426 :header-rows: 1
5427 :widths: 30 70
5428
5429 * - Key
5430 - Value
5431
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005432 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005433 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005434
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005435 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005436 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005437 always 0.
5438
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005439 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005440 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005441 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5442 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5443 Objective-C ABI version 2.
5444
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005445 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005446 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005447 not. Valid values are 0, for no garbage collection, and 2, for garbage
5448 collection supported.
5449
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005450 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005451 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005452 If present, its value must be 6. This flag requires that the
5453 ``Objective-C Garbage Collection`` flag have the value 2.
5454
5455Some important flag interactions:
5456
5457- If a module with ``Objective-C Garbage Collection`` set to 0 is
5458 merged with a module with ``Objective-C Garbage Collection`` set to
5459 2, then the resulting module has the
5460 ``Objective-C Garbage Collection`` flag set to 0.
5461- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5462 merged with a module with ``Objective-C GC Only`` set to 6.
5463
Oliver Stannard5dc29342014-06-20 10:08:11 +00005464C type width Module Flags Metadata
5465----------------------------------
5466
5467The ARM backend emits a section into each generated object file describing the
5468options that it was compiled with (in a compiler-independent way) to prevent
5469linking incompatible objects, and to allow automatic library selection. Some
5470of these options are not visible at the IR level, namely wchar_t width and enum
5471width.
5472
5473To pass this information to the backend, these options are encoded in module
5474flags metadata, using the following key-value pairs:
5475
5476.. list-table::
5477 :header-rows: 1
5478 :widths: 30 70
5479
5480 * - Key
5481 - Value
5482
5483 * - short_wchar
5484 - * 0 --- sizeof(wchar_t) == 4
5485 * 1 --- sizeof(wchar_t) == 2
5486
5487 * - short_enum
5488 - * 0 --- Enums are at least as large as an ``int``.
5489 * 1 --- Enums are stored in the smallest integer type which can
5490 represent all of its values.
5491
5492For example, the following metadata section specifies that the module was
5493compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5494enum is the smallest type which can represent all of its values::
5495
5496 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005497 !0 = !{i32 1, !"short_wchar", i32 1}
5498 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005499
Peter Collingbourne89061b22017-06-12 20:10:48 +00005500Automatic Linker Flags Named Metadata
5501=====================================
5502
5503Some targets support embedding flags to the linker inside individual object
5504files. Typically this is used in conjunction with language extensions which
5505allow source files to explicitly declare the libraries they depend on, and have
5506these automatically be transmitted to the linker via object files.
5507
5508These flags are encoded in the IR using named metadata with the name
5509``!llvm.linker.options``. Each operand is expected to be a metadata node
5510which should be a list of other metadata nodes, each of which should be a
5511list of metadata strings defining linker options.
5512
5513For example, the following metadata section specifies two separate sets of
5514linker options, presumably to link against ``libz`` and the ``Cocoa``
5515framework::
5516
5517 !0 = !{ !"-lz" },
5518 !1 = !{ !"-framework", !"Cocoa" } } }
5519 !llvm.linker.options = !{ !0, !1 }
5520
5521The metadata encoding as lists of lists of options, as opposed to a collapsed
5522list of options, is chosen so that the IR encoding can use multiple option
5523strings to specify e.g., a single library, while still having that specifier be
5524preserved as an atomic element that can be recognized by a target specific
5525assembly writer or object file emitter.
5526
5527Each individual option is required to be either a valid option for the target's
5528linker, or an option that is reserved by the target specific assembly writer or
5529object file emitter. No other aspect of these options is defined by the IR.
5530
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005531.. _intrinsicglobalvariables:
5532
Sean Silvab084af42012-12-07 10:36:55 +00005533Intrinsic Global Variables
5534==========================
5535
5536LLVM has a number of "magic" global variables that contain data that
5537affect code generation or other IR semantics. These are documented here.
5538All globals of this sort should have a section specified as
5539"``llvm.metadata``". This section and all globals that start with
5540"``llvm.``" are reserved for use by LLVM.
5541
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005542.. _gv_llvmused:
5543
Sean Silvab084af42012-12-07 10:36:55 +00005544The '``llvm.used``' Global Variable
5545-----------------------------------
5546
Rafael Espindola74f2e462013-04-22 14:58:02 +00005547The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005548:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005549pointers to named global variables, functions and aliases which may optionally
5550have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005551use of it is:
5552
5553.. code-block:: llvm
5554
5555 @X = global i8 4
5556 @Y = global i32 123
5557
5558 @llvm.used = appending global [2 x i8*] [
5559 i8* @X,
5560 i8* bitcast (i32* @Y to i8*)
5561 ], section "llvm.metadata"
5562
Rafael Espindola74f2e462013-04-22 14:58:02 +00005563If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5564and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005565symbol that it cannot see (which is why they have to be named). For example, if
5566a variable has internal linkage and no references other than that from the
5567``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5568references from inline asms and other things the compiler cannot "see", and
5569corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005570
5571On some targets, the code generator must emit a directive to the
5572assembler or object file to prevent the assembler and linker from
5573molesting the symbol.
5574
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005575.. _gv_llvmcompilerused:
5576
Sean Silvab084af42012-12-07 10:36:55 +00005577The '``llvm.compiler.used``' Global Variable
5578--------------------------------------------
5579
5580The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5581directive, except that it only prevents the compiler from touching the
5582symbol. On targets that support it, this allows an intelligent linker to
5583optimize references to the symbol without being impeded as it would be
5584by ``@llvm.used``.
5585
5586This is a rare construct that should only be used in rare circumstances,
5587and should not be exposed to source languages.
5588
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005589.. _gv_llvmglobalctors:
5590
Sean Silvab084af42012-12-07 10:36:55 +00005591The '``llvm.global_ctors``' Global Variable
5592-------------------------------------------
5593
5594.. code-block:: llvm
5595
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005596 %0 = type { i32, void ()*, i8* }
5597 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005598
5599The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005600functions, priorities, and an optional associated global or function.
5601The functions referenced by this array will be called in ascending order
5602of priority (i.e. lowest first) when the module is loaded. The order of
5603functions with the same priority is not defined.
5604
5605If the third field is present, non-null, and points to a global variable
5606or function, the initializer function will only run if the associated
5607data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005608
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005609.. _llvmglobaldtors:
5610
Sean Silvab084af42012-12-07 10:36:55 +00005611The '``llvm.global_dtors``' Global Variable
5612-------------------------------------------
5613
5614.. code-block:: llvm
5615
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005616 %0 = type { i32, void ()*, i8* }
5617 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005618
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005619The ``@llvm.global_dtors`` array contains a list of destructor
5620functions, priorities, and an optional associated global or function.
5621The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005622order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005623order of functions with the same priority is not defined.
5624
5625If the third field is present, non-null, and points to a global variable
5626or function, the destructor function will only run if the associated
5627data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005628
5629Instruction Reference
5630=====================
5631
5632The LLVM instruction set consists of several different classifications
5633of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5634instructions <binaryops>`, :ref:`bitwise binary
5635instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5636:ref:`other instructions <otherops>`.
5637
5638.. _terminators:
5639
5640Terminator Instructions
5641-----------------------
5642
5643As mentioned :ref:`previously <functionstructure>`, every basic block in a
5644program ends with a "Terminator" instruction, which indicates which
5645block should be executed after the current block is finished. These
5646terminator instructions typically yield a '``void``' value: they produce
5647control flow, not values (the one exception being the
5648':ref:`invoke <i_invoke>`' instruction).
5649
5650The terminator instructions are: ':ref:`ret <i_ret>`',
5651':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5652':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005653':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005654':ref:`catchret <i_catchret>`',
5655':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005656and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005657
5658.. _i_ret:
5659
5660'``ret``' Instruction
5661^^^^^^^^^^^^^^^^^^^^^
5662
5663Syntax:
5664"""""""
5665
5666::
5667
5668 ret <type> <value> ; Return a value from a non-void function
5669 ret void ; Return from void function
5670
5671Overview:
5672"""""""""
5673
5674The '``ret``' instruction is used to return control flow (and optionally
5675a value) from a function back to the caller.
5676
5677There are two forms of the '``ret``' instruction: one that returns a
5678value and then causes control flow, and one that just causes control
5679flow to occur.
5680
5681Arguments:
5682""""""""""
5683
5684The '``ret``' instruction optionally accepts a single argument, the
5685return value. The type of the return value must be a ':ref:`first
5686class <t_firstclass>`' type.
5687
5688A function is not :ref:`well formed <wellformed>` if it it has a non-void
5689return type and contains a '``ret``' instruction with no return value or
5690a return value with a type that does not match its type, or if it has a
5691void return type and contains a '``ret``' instruction with a return
5692value.
5693
5694Semantics:
5695""""""""""
5696
5697When the '``ret``' instruction is executed, control flow returns back to
5698the calling function's context. If the caller is a
5699":ref:`call <i_call>`" instruction, execution continues at the
5700instruction after the call. If the caller was an
5701":ref:`invoke <i_invoke>`" instruction, execution continues at the
5702beginning of the "normal" destination block. If the instruction returns
5703a value, that value shall set the call or invoke instruction's return
5704value.
5705
5706Example:
5707""""""""
5708
5709.. code-block:: llvm
5710
5711 ret i32 5 ; Return an integer value of 5
5712 ret void ; Return from a void function
5713 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5714
5715.. _i_br:
5716
5717'``br``' Instruction
5718^^^^^^^^^^^^^^^^^^^^
5719
5720Syntax:
5721"""""""
5722
5723::
5724
5725 br i1 <cond>, label <iftrue>, label <iffalse>
5726 br label <dest> ; Unconditional branch
5727
5728Overview:
5729"""""""""
5730
5731The '``br``' instruction is used to cause control flow to transfer to a
5732different basic block in the current function. There are two forms of
5733this instruction, corresponding to a conditional branch and an
5734unconditional branch.
5735
5736Arguments:
5737""""""""""
5738
5739The conditional branch form of the '``br``' instruction takes a single
5740'``i1``' value and two '``label``' values. The unconditional form of the
5741'``br``' instruction takes a single '``label``' value as a target.
5742
5743Semantics:
5744""""""""""
5745
5746Upon execution of a conditional '``br``' instruction, the '``i1``'
5747argument is evaluated. If the value is ``true``, control flows to the
5748'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5749to the '``iffalse``' ``label`` argument.
5750
5751Example:
5752""""""""
5753
5754.. code-block:: llvm
5755
5756 Test:
5757 %cond = icmp eq i32 %a, %b
5758 br i1 %cond, label %IfEqual, label %IfUnequal
5759 IfEqual:
5760 ret i32 1
5761 IfUnequal:
5762 ret i32 0
5763
5764.. _i_switch:
5765
5766'``switch``' Instruction
5767^^^^^^^^^^^^^^^^^^^^^^^^
5768
5769Syntax:
5770"""""""
5771
5772::
5773
5774 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5775
5776Overview:
5777"""""""""
5778
5779The '``switch``' instruction is used to transfer control flow to one of
5780several different places. It is a generalization of the '``br``'
5781instruction, allowing a branch to occur to one of many possible
5782destinations.
5783
5784Arguments:
5785""""""""""
5786
5787The '``switch``' instruction uses three parameters: an integer
5788comparison value '``value``', a default '``label``' destination, and an
5789array of pairs of comparison value constants and '``label``'s. The table
5790is not allowed to contain duplicate constant entries.
5791
5792Semantics:
5793""""""""""
5794
5795The ``switch`` instruction specifies a table of values and destinations.
5796When the '``switch``' instruction is executed, this table is searched
5797for the given value. If the value is found, control flow is transferred
5798to the corresponding destination; otherwise, control flow is transferred
5799to the default destination.
5800
5801Implementation:
5802"""""""""""""""
5803
5804Depending on properties of the target machine and the particular
5805``switch`` instruction, this instruction may be code generated in
5806different ways. For example, it could be generated as a series of
5807chained conditional branches or with a lookup table.
5808
5809Example:
5810""""""""
5811
5812.. code-block:: llvm
5813
5814 ; Emulate a conditional br instruction
5815 %Val = zext i1 %value to i32
5816 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5817
5818 ; Emulate an unconditional br instruction
5819 switch i32 0, label %dest [ ]
5820
5821 ; Implement a jump table:
5822 switch i32 %val, label %otherwise [ i32 0, label %onzero
5823 i32 1, label %onone
5824 i32 2, label %ontwo ]
5825
5826.. _i_indirectbr:
5827
5828'``indirectbr``' Instruction
5829^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5830
5831Syntax:
5832"""""""
5833
5834::
5835
5836 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5837
5838Overview:
5839"""""""""
5840
5841The '``indirectbr``' instruction implements an indirect branch to a
5842label within the current function, whose address is specified by
5843"``address``". Address must be derived from a
5844:ref:`blockaddress <blockaddress>` constant.
5845
5846Arguments:
5847""""""""""
5848
5849The '``address``' argument is the address of the label to jump to. The
5850rest of the arguments indicate the full set of possible destinations
5851that the address may point to. Blocks are allowed to occur multiple
5852times in the destination list, though this isn't particularly useful.
5853
5854This destination list is required so that dataflow analysis has an
5855accurate understanding of the CFG.
5856
5857Semantics:
5858""""""""""
5859
5860Control transfers to the block specified in the address argument. All
5861possible destination blocks must be listed in the label list, otherwise
5862this instruction has undefined behavior. This implies that jumps to
5863labels defined in other functions have undefined behavior as well.
5864
5865Implementation:
5866"""""""""""""""
5867
5868This is typically implemented with a jump through a register.
5869
5870Example:
5871""""""""
5872
5873.. code-block:: llvm
5874
5875 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5876
5877.. _i_invoke:
5878
5879'``invoke``' Instruction
5880^^^^^^^^^^^^^^^^^^^^^^^^
5881
5882Syntax:
5883"""""""
5884
5885::
5886
David Blaikieb83cf102016-07-13 17:21:34 +00005887 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005888 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005889
5890Overview:
5891"""""""""
5892
5893The '``invoke``' instruction causes control to transfer to a specified
5894function, with the possibility of control flow transfer to either the
5895'``normal``' label or the '``exception``' label. If the callee function
5896returns with the "``ret``" instruction, control flow will return to the
5897"normal" label. If the callee (or any indirect callees) returns via the
5898":ref:`resume <i_resume>`" instruction or other exception handling
5899mechanism, control is interrupted and continued at the dynamically
5900nearest "exception" label.
5901
5902The '``exception``' label is a `landing
5903pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5904'``exception``' label is required to have the
5905":ref:`landingpad <i_landingpad>`" instruction, which contains the
5906information about the behavior of the program after unwinding happens,
5907as its first non-PHI instruction. The restrictions on the
5908"``landingpad``" instruction's tightly couples it to the "``invoke``"
5909instruction, so that the important information contained within the
5910"``landingpad``" instruction can't be lost through normal code motion.
5911
5912Arguments:
5913""""""""""
5914
5915This instruction requires several arguments:
5916
5917#. The optional "cconv" marker indicates which :ref:`calling
5918 convention <callingconv>` the call should use. If none is
5919 specified, the call defaults to using C calling conventions.
5920#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5921 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5922 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00005923#. '``ty``': the type of the call instruction itself which is also the
5924 type of the return value. Functions that return no value are marked
5925 ``void``.
5926#. '``fnty``': shall be the signature of the function being invoked. The
5927 argument types must match the types implied by this signature. This
5928 type can be omitted if the function is not varargs.
5929#. '``fnptrval``': An LLVM value containing a pointer to a function to
5930 be invoked. In most cases, this is a direct function invocation, but
5931 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
5932 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00005933#. '``function args``': argument list whose types match the function
5934 signature argument types and parameter attributes. All arguments must
5935 be of :ref:`first class <t_firstclass>` type. If the function signature
5936 indicates the function accepts a variable number of arguments, the
5937 extra arguments can be specified.
5938#. '``normal label``': the label reached when the called function
5939 executes a '``ret``' instruction.
5940#. '``exception label``': the label reached when a callee returns via
5941 the :ref:`resume <i_resume>` instruction or other exception handling
5942 mechanism.
George Burgess IV8a464a72017-04-13 05:00:31 +00005943#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005944#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005945
5946Semantics:
5947""""""""""
5948
5949This instruction is designed to operate as a standard '``call``'
5950instruction in most regards. The primary difference is that it
5951establishes an association with a label, which is used by the runtime
5952library to unwind the stack.
5953
5954This instruction is used in languages with destructors to ensure that
5955proper cleanup is performed in the case of either a ``longjmp`` or a
5956thrown exception. Additionally, this is important for implementation of
5957'``catch``' clauses in high-level languages that support them.
5958
5959For the purposes of the SSA form, the definition of the value returned
5960by the '``invoke``' instruction is deemed to occur on the edge from the
5961current block to the "normal" label. If the callee unwinds then no
5962return value is available.
5963
5964Example:
5965""""""""
5966
5967.. code-block:: llvm
5968
5969 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005970 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005971 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005972 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005973
5974.. _i_resume:
5975
5976'``resume``' Instruction
5977^^^^^^^^^^^^^^^^^^^^^^^^
5978
5979Syntax:
5980"""""""
5981
5982::
5983
5984 resume <type> <value>
5985
5986Overview:
5987"""""""""
5988
5989The '``resume``' instruction is a terminator instruction that has no
5990successors.
5991
5992Arguments:
5993""""""""""
5994
5995The '``resume``' instruction requires one argument, which must have the
5996same type as the result of any '``landingpad``' instruction in the same
5997function.
5998
5999Semantics:
6000""""""""""
6001
6002The '``resume``' instruction resumes propagation of an existing
6003(in-flight) exception whose unwinding was interrupted with a
6004:ref:`landingpad <i_landingpad>` instruction.
6005
6006Example:
6007""""""""
6008
6009.. code-block:: llvm
6010
6011 resume { i8*, i32 } %exn
6012
David Majnemer8a1c45d2015-12-12 05:38:55 +00006013.. _i_catchswitch:
6014
6015'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00006016^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00006017
6018Syntax:
6019"""""""
6020
6021::
6022
6023 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
6024 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
6025
6026Overview:
6027"""""""""
6028
6029The '``catchswitch``' instruction is used by `LLVM's exception handling system
6030<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
6031that may be executed by the :ref:`EH personality routine <personalityfn>`.
6032
6033Arguments:
6034""""""""""
6035
6036The ``parent`` argument is the token of the funclet that contains the
6037``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
6038this operand may be the token ``none``.
6039
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006040The ``default`` argument is the label of another basic block beginning with
6041either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
6042must be a legal target with respect to the ``parent`` links, as described in
6043the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00006044
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006045The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00006046:ref:`catchpad <i_catchpad>` instruction.
6047
6048Semantics:
6049""""""""""
6050
6051Executing this instruction transfers control to one of the successors in
6052``handlers``, if appropriate, or continues to unwind via the unwind label if
6053present.
6054
6055The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
6056it must be both the first non-phi instruction and last instruction in the basic
6057block. Therefore, it must be the only non-phi instruction in the block.
6058
6059Example:
6060""""""""
6061
Renato Golin124f2592016-07-20 12:16:38 +00006062.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00006063
6064 dispatch1:
6065 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
6066 dispatch2:
6067 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
6068
David Majnemer654e1302015-07-31 17:58:14 +00006069.. _i_catchret:
6070
6071'``catchret``' Instruction
6072^^^^^^^^^^^^^^^^^^^^^^^^^^
6073
6074Syntax:
6075"""""""
6076
6077::
6078
David Majnemer8a1c45d2015-12-12 05:38:55 +00006079 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00006080
6081Overview:
6082"""""""""
6083
6084The '``catchret``' instruction is a terminator instruction that has a
6085single successor.
6086
6087
6088Arguments:
6089""""""""""
6090
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006091The first argument to a '``catchret``' indicates which ``catchpad`` it
6092exits. It must be a :ref:`catchpad <i_catchpad>`.
6093The second argument to a '``catchret``' specifies where control will
6094transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00006095
6096Semantics:
6097""""""""""
6098
David Majnemer8a1c45d2015-12-12 05:38:55 +00006099The '``catchret``' instruction ends an existing (in-flight) exception whose
6100unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
6101:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
6102code to, for example, destroy the active exception. Control then transfers to
6103``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006104
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006105The ``token`` argument must be a token produced by a ``catchpad`` instruction.
6106If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
6107funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6108the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00006109
6110Example:
6111""""""""
6112
Renato Golin124f2592016-07-20 12:16:38 +00006113.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006114
David Majnemer8a1c45d2015-12-12 05:38:55 +00006115 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006116
David Majnemer654e1302015-07-31 17:58:14 +00006117.. _i_cleanupret:
6118
6119'``cleanupret``' Instruction
6120^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6121
6122Syntax:
6123"""""""
6124
6125::
6126
David Majnemer8a1c45d2015-12-12 05:38:55 +00006127 cleanupret from <value> unwind label <continue>
6128 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00006129
6130Overview:
6131"""""""""
6132
6133The '``cleanupret``' instruction is a terminator instruction that has
6134an optional successor.
6135
6136
6137Arguments:
6138""""""""""
6139
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006140The '``cleanupret``' instruction requires one argument, which indicates
6141which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006142If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
6143funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6144the ``cleanupret``'s behavior is undefined.
6145
6146The '``cleanupret``' instruction also has an optional successor, ``continue``,
6147which must be the label of another basic block beginning with either a
6148``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
6149be a legal target with respect to the ``parent`` links, as described in the
6150`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00006151
6152Semantics:
6153""""""""""
6154
6155The '``cleanupret``' instruction indicates to the
6156:ref:`personality function <personalityfn>` that one
6157:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
6158It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006159
David Majnemer654e1302015-07-31 17:58:14 +00006160Example:
6161""""""""
6162
Renato Golin124f2592016-07-20 12:16:38 +00006163.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006164
David Majnemer8a1c45d2015-12-12 05:38:55 +00006165 cleanupret from %cleanup unwind to caller
6166 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00006167
Sean Silvab084af42012-12-07 10:36:55 +00006168.. _i_unreachable:
6169
6170'``unreachable``' Instruction
6171^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6172
6173Syntax:
6174"""""""
6175
6176::
6177
6178 unreachable
6179
6180Overview:
6181"""""""""
6182
6183The '``unreachable``' instruction has no defined semantics. This
6184instruction is used to inform the optimizer that a particular portion of
6185the code is not reachable. This can be used to indicate that the code
6186after a no-return function cannot be reached, and other facts.
6187
6188Semantics:
6189""""""""""
6190
6191The '``unreachable``' instruction has no defined semantics.
6192
6193.. _binaryops:
6194
6195Binary Operations
6196-----------------
6197
6198Binary operators are used to do most of the computation in a program.
6199They require two operands of the same type, execute an operation on
6200them, and produce a single value. The operands might represent multiple
6201data, as is the case with the :ref:`vector <t_vector>` data type. The
6202result value has the same type as its operands.
6203
6204There are several different binary operators:
6205
6206.. _i_add:
6207
6208'``add``' Instruction
6209^^^^^^^^^^^^^^^^^^^^^
6210
6211Syntax:
6212"""""""
6213
6214::
6215
Tim Northover675a0962014-06-13 14:24:23 +00006216 <result> = add <ty> <op1>, <op2> ; yields ty:result
6217 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
6218 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
6219 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006220
6221Overview:
6222"""""""""
6223
6224The '``add``' instruction returns the sum of its two operands.
6225
6226Arguments:
6227""""""""""
6228
6229The two arguments to the '``add``' instruction must be
6230:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6231arguments must have identical types.
6232
6233Semantics:
6234""""""""""
6235
6236The value produced is the integer sum of the two operands.
6237
6238If the sum has unsigned overflow, the result returned is the
6239mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6240the result.
6241
6242Because LLVM integers use a two's complement representation, this
6243instruction is appropriate for both signed and unsigned integers.
6244
6245``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6246respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6247result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
6248unsigned and/or signed overflow, respectively, occurs.
6249
6250Example:
6251""""""""
6252
Renato Golin124f2592016-07-20 12:16:38 +00006253.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006254
Tim Northover675a0962014-06-13 14:24:23 +00006255 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006256
6257.. _i_fadd:
6258
6259'``fadd``' Instruction
6260^^^^^^^^^^^^^^^^^^^^^^
6261
6262Syntax:
6263"""""""
6264
6265::
6266
Tim Northover675a0962014-06-13 14:24:23 +00006267 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006268
6269Overview:
6270"""""""""
6271
6272The '``fadd``' instruction returns the sum of its two operands.
6273
6274Arguments:
6275""""""""""
6276
6277The two arguments to the '``fadd``' instruction must be :ref:`floating
6278point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6279Both arguments must have identical types.
6280
6281Semantics:
6282""""""""""
6283
6284The value produced is the floating point sum of the two operands. This
6285instruction can also take any number of :ref:`fast-math flags <fastmath>`,
6286which are optimization hints to enable otherwise unsafe floating point
6287optimizations:
6288
6289Example:
6290""""""""
6291
Renato Golin124f2592016-07-20 12:16:38 +00006292.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006293
Tim Northover675a0962014-06-13 14:24:23 +00006294 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006295
6296'``sub``' Instruction
6297^^^^^^^^^^^^^^^^^^^^^
6298
6299Syntax:
6300"""""""
6301
6302::
6303
Tim Northover675a0962014-06-13 14:24:23 +00006304 <result> = sub <ty> <op1>, <op2> ; yields ty:result
6305 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
6306 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
6307 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006308
6309Overview:
6310"""""""""
6311
6312The '``sub``' instruction returns the difference of its two operands.
6313
6314Note that the '``sub``' instruction is used to represent the '``neg``'
6315instruction present in most other intermediate representations.
6316
6317Arguments:
6318""""""""""
6319
6320The two arguments to the '``sub``' instruction must be
6321:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6322arguments must have identical types.
6323
6324Semantics:
6325""""""""""
6326
6327The value produced is the integer difference of the two operands.
6328
6329If the difference has unsigned overflow, the result returned is the
6330mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6331the result.
6332
6333Because LLVM integers use a two's complement representation, this
6334instruction is appropriate for both signed and unsigned integers.
6335
6336``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6337respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6338result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
6339unsigned and/or signed overflow, respectively, occurs.
6340
6341Example:
6342""""""""
6343
Renato Golin124f2592016-07-20 12:16:38 +00006344.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006345
Tim Northover675a0962014-06-13 14:24:23 +00006346 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6347 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006348
6349.. _i_fsub:
6350
6351'``fsub``' Instruction
6352^^^^^^^^^^^^^^^^^^^^^^
6353
6354Syntax:
6355"""""""
6356
6357::
6358
Tim Northover675a0962014-06-13 14:24:23 +00006359 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006360
6361Overview:
6362"""""""""
6363
6364The '``fsub``' instruction returns the difference of its two operands.
6365
6366Note that the '``fsub``' instruction is used to represent the '``fneg``'
6367instruction present in most other intermediate representations.
6368
6369Arguments:
6370""""""""""
6371
6372The two arguments to the '``fsub``' instruction must be :ref:`floating
6373point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6374Both arguments must have identical types.
6375
6376Semantics:
6377""""""""""
6378
6379The value produced is the floating point difference of the two operands.
6380This instruction can also take any number of :ref:`fast-math
6381flags <fastmath>`, which are optimization hints to enable otherwise
6382unsafe floating point optimizations:
6383
6384Example:
6385""""""""
6386
Renato Golin124f2592016-07-20 12:16:38 +00006387.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006388
Tim Northover675a0962014-06-13 14:24:23 +00006389 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6390 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006391
6392'``mul``' Instruction
6393^^^^^^^^^^^^^^^^^^^^^
6394
6395Syntax:
6396"""""""
6397
6398::
6399
Tim Northover675a0962014-06-13 14:24:23 +00006400 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6401 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6402 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6403 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006404
6405Overview:
6406"""""""""
6407
6408The '``mul``' instruction returns the product of its two operands.
6409
6410Arguments:
6411""""""""""
6412
6413The two arguments to the '``mul``' instruction must be
6414:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6415arguments must have identical types.
6416
6417Semantics:
6418""""""""""
6419
6420The value produced is the integer product of the two operands.
6421
6422If the result of the multiplication has unsigned overflow, the result
6423returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6424bit width of the result.
6425
6426Because LLVM integers use a two's complement representation, and the
6427result is the same width as the operands, this instruction returns the
6428correct result for both signed and unsigned integers. If a full product
6429(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6430sign-extended or zero-extended as appropriate to the width of the full
6431product.
6432
6433``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6434respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6435result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6436unsigned and/or signed overflow, respectively, occurs.
6437
6438Example:
6439""""""""
6440
Renato Golin124f2592016-07-20 12:16:38 +00006441.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006442
Tim Northover675a0962014-06-13 14:24:23 +00006443 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006444
6445.. _i_fmul:
6446
6447'``fmul``' Instruction
6448^^^^^^^^^^^^^^^^^^^^^^
6449
6450Syntax:
6451"""""""
6452
6453::
6454
Tim Northover675a0962014-06-13 14:24:23 +00006455 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006456
6457Overview:
6458"""""""""
6459
6460The '``fmul``' instruction returns the product of its two operands.
6461
6462Arguments:
6463""""""""""
6464
6465The two arguments to the '``fmul``' instruction must be :ref:`floating
6466point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6467Both arguments must have identical types.
6468
6469Semantics:
6470""""""""""
6471
6472The value produced is the floating point product of the two operands.
6473This instruction can also take any number of :ref:`fast-math
6474flags <fastmath>`, which are optimization hints to enable otherwise
6475unsafe floating point optimizations:
6476
6477Example:
6478""""""""
6479
Renato Golin124f2592016-07-20 12:16:38 +00006480.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006481
Tim Northover675a0962014-06-13 14:24:23 +00006482 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006483
6484'``udiv``' Instruction
6485^^^^^^^^^^^^^^^^^^^^^^
6486
6487Syntax:
6488"""""""
6489
6490::
6491
Tim Northover675a0962014-06-13 14:24:23 +00006492 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6493 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006494
6495Overview:
6496"""""""""
6497
6498The '``udiv``' instruction returns the quotient of its two operands.
6499
6500Arguments:
6501""""""""""
6502
6503The two arguments to the '``udiv``' instruction must be
6504:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6505arguments must have identical types.
6506
6507Semantics:
6508""""""""""
6509
6510The value produced is the unsigned integer quotient of the two operands.
6511
6512Note that unsigned integer division and signed integer division are
6513distinct operations; for signed integer division, use '``sdiv``'.
6514
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006515Division by zero is undefined behavior. For vectors, if any element
6516of the divisor is zero, the operation has undefined behavior.
6517
Sean Silvab084af42012-12-07 10:36:55 +00006518
6519If the ``exact`` keyword is present, the result value of the ``udiv`` is
6520a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6521such, "((a udiv exact b) mul b) == a").
6522
6523Example:
6524""""""""
6525
Renato Golin124f2592016-07-20 12:16:38 +00006526.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006527
Tim Northover675a0962014-06-13 14:24:23 +00006528 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006529
6530'``sdiv``' Instruction
6531^^^^^^^^^^^^^^^^^^^^^^
6532
6533Syntax:
6534"""""""
6535
6536::
6537
Tim Northover675a0962014-06-13 14:24:23 +00006538 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6539 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006540
6541Overview:
6542"""""""""
6543
6544The '``sdiv``' instruction returns the quotient of its two operands.
6545
6546Arguments:
6547""""""""""
6548
6549The two arguments to the '``sdiv``' instruction must be
6550:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6551arguments must have identical types.
6552
6553Semantics:
6554""""""""""
6555
6556The value produced is the signed integer quotient of the two operands
6557rounded towards zero.
6558
6559Note that signed integer division and unsigned integer division are
6560distinct operations; for unsigned integer division, use '``udiv``'.
6561
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006562Division by zero is undefined behavior. For vectors, if any element
6563of the divisor is zero, the operation has undefined behavior.
6564Overflow also leads to undefined behavior; this is a rare case, but can
6565occur, for example, by doing a 32-bit division of -2147483648 by -1.
Sean Silvab084af42012-12-07 10:36:55 +00006566
6567If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6568a :ref:`poison value <poisonvalues>` if the result would be rounded.
6569
6570Example:
6571""""""""
6572
Renato Golin124f2592016-07-20 12:16:38 +00006573.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006574
Tim Northover675a0962014-06-13 14:24:23 +00006575 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006576
6577.. _i_fdiv:
6578
6579'``fdiv``' Instruction
6580^^^^^^^^^^^^^^^^^^^^^^
6581
6582Syntax:
6583"""""""
6584
6585::
6586
Tim Northover675a0962014-06-13 14:24:23 +00006587 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006588
6589Overview:
6590"""""""""
6591
6592The '``fdiv``' instruction returns the quotient of its two operands.
6593
6594Arguments:
6595""""""""""
6596
6597The two arguments to the '``fdiv``' instruction must be :ref:`floating
6598point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6599Both arguments must have identical types.
6600
6601Semantics:
6602""""""""""
6603
6604The value produced is the floating point quotient of the two operands.
6605This instruction can also take any number of :ref:`fast-math
6606flags <fastmath>`, which are optimization hints to enable otherwise
6607unsafe floating point optimizations:
6608
6609Example:
6610""""""""
6611
Renato Golin124f2592016-07-20 12:16:38 +00006612.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006613
Tim Northover675a0962014-06-13 14:24:23 +00006614 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006615
6616'``urem``' Instruction
6617^^^^^^^^^^^^^^^^^^^^^^
6618
6619Syntax:
6620"""""""
6621
6622::
6623
Tim Northover675a0962014-06-13 14:24:23 +00006624 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006625
6626Overview:
6627"""""""""
6628
6629The '``urem``' instruction returns the remainder from the unsigned
6630division of its two arguments.
6631
6632Arguments:
6633""""""""""
6634
6635The two arguments to the '``urem``' instruction must be
6636:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6637arguments must have identical types.
6638
6639Semantics:
6640""""""""""
6641
6642This instruction returns the unsigned integer *remainder* of a division.
6643This instruction always performs an unsigned division to get the
6644remainder.
6645
6646Note that unsigned integer remainder and signed integer remainder are
6647distinct operations; for signed integer remainder, use '``srem``'.
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006648
6649Taking the remainder of a division by zero is undefined behavior.
6650For vectors, if any element of the divisor is zero, the operation has
6651undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006652
6653Example:
6654""""""""
6655
Renato Golin124f2592016-07-20 12:16:38 +00006656.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006657
Tim Northover675a0962014-06-13 14:24:23 +00006658 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006659
6660'``srem``' Instruction
6661^^^^^^^^^^^^^^^^^^^^^^
6662
6663Syntax:
6664"""""""
6665
6666::
6667
Tim Northover675a0962014-06-13 14:24:23 +00006668 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006669
6670Overview:
6671"""""""""
6672
6673The '``srem``' instruction returns the remainder from the signed
6674division of its two operands. This instruction can also take
6675:ref:`vector <t_vector>` versions of the values in which case the elements
6676must be integers.
6677
6678Arguments:
6679""""""""""
6680
6681The two arguments to the '``srem``' instruction must be
6682:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6683arguments must have identical types.
6684
6685Semantics:
6686""""""""""
6687
6688This instruction returns the *remainder* of a division (where the result
6689is either zero or has the same sign as the dividend, ``op1``), not the
6690*modulo* operator (where the result is either zero or has the same sign
6691as the divisor, ``op2``) of a value. For more information about the
6692difference, see `The Math
6693Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6694table of how this is implemented in various languages, please see
6695`Wikipedia: modulo
6696operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6697
6698Note that signed integer remainder and unsigned integer remainder are
6699distinct operations; for unsigned integer remainder, use '``urem``'.
6700
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006701Taking the remainder of a division by zero is undefined behavior.
6702For vectors, if any element of the divisor is zero, the operation has
6703undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006704Overflow also leads to undefined behavior; this is a rare case, but can
6705occur, for example, by taking the remainder of a 32-bit division of
6706-2147483648 by -1. (The remainder doesn't actually overflow, but this
6707rule lets srem be implemented using instructions that return both the
6708result of the division and the remainder.)
6709
6710Example:
6711""""""""
6712
Renato Golin124f2592016-07-20 12:16:38 +00006713.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006714
Tim Northover675a0962014-06-13 14:24:23 +00006715 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006716
6717.. _i_frem:
6718
6719'``frem``' Instruction
6720^^^^^^^^^^^^^^^^^^^^^^
6721
6722Syntax:
6723"""""""
6724
6725::
6726
Tim Northover675a0962014-06-13 14:24:23 +00006727 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006728
6729Overview:
6730"""""""""
6731
6732The '``frem``' instruction returns the remainder from the division of
6733its two operands.
6734
6735Arguments:
6736""""""""""
6737
6738The two arguments to the '``frem``' instruction must be :ref:`floating
6739point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6740Both arguments must have identical types.
6741
6742Semantics:
6743""""""""""
6744
6745This instruction returns the *remainder* of a division. The remainder
6746has the same sign as the dividend. This instruction can also take any
6747number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6748to enable otherwise unsafe floating point optimizations:
6749
6750Example:
6751""""""""
6752
Renato Golin124f2592016-07-20 12:16:38 +00006753.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006754
Tim Northover675a0962014-06-13 14:24:23 +00006755 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006756
6757.. _bitwiseops:
6758
6759Bitwise Binary Operations
6760-------------------------
6761
6762Bitwise binary operators are used to do various forms of bit-twiddling
6763in a program. They are generally very efficient instructions and can
6764commonly be strength reduced from other instructions. They require two
6765operands of the same type, execute an operation on them, and produce a
6766single value. The resulting value is the same type as its operands.
6767
6768'``shl``' Instruction
6769^^^^^^^^^^^^^^^^^^^^^
6770
6771Syntax:
6772"""""""
6773
6774::
6775
Tim Northover675a0962014-06-13 14:24:23 +00006776 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6777 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6778 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6779 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006780
6781Overview:
6782"""""""""
6783
6784The '``shl``' instruction returns the first operand shifted to the left
6785a specified number of bits.
6786
6787Arguments:
6788""""""""""
6789
6790Both arguments to the '``shl``' instruction must be the same
6791:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6792'``op2``' is treated as an unsigned value.
6793
6794Semantics:
6795""""""""""
6796
6797The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6798where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006799dynamically) equal to or larger than the number of bits in
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006800``op1``, this instruction returns a :ref:`poison value <poisonvalues>`.
6801If the arguments are vectors, each vector element of ``op1`` is shifted
6802by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006803
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006804If the ``nuw`` keyword is present, then the shift produces a poison
6805value if it shifts out any non-zero bits.
6806If the ``nsw`` keyword is present, then the shift produces a poison
6807value it shifts out any bits that disagree with the resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00006808
6809Example:
6810""""""""
6811
Renato Golin124f2592016-07-20 12:16:38 +00006812.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006813
Tim Northover675a0962014-06-13 14:24:23 +00006814 <result> = shl i32 4, %var ; yields i32: 4 << %var
6815 <result> = shl i32 4, 2 ; yields i32: 16
6816 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006817 <result> = shl i32 1, 32 ; undefined
6818 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6819
6820'``lshr``' Instruction
6821^^^^^^^^^^^^^^^^^^^^^^
6822
6823Syntax:
6824"""""""
6825
6826::
6827
Tim Northover675a0962014-06-13 14:24:23 +00006828 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6829 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006830
6831Overview:
6832"""""""""
6833
6834The '``lshr``' instruction (logical shift right) returns the first
6835operand shifted to the right a specified number of bits with zero fill.
6836
6837Arguments:
6838""""""""""
6839
6840Both arguments to the '``lshr``' instruction must be the same
6841:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6842'``op2``' is treated as an unsigned value.
6843
6844Semantics:
6845""""""""""
6846
6847This instruction always performs a logical shift right operation. The
6848most significant bits of the result will be filled with zero bits after
6849the shift. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006850than the number of bits in ``op1``, this instruction returns a :ref:`poison
6851value <poisonvalues>`. If the arguments are vectors, each vector element
6852of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006853
6854If the ``exact`` keyword is present, the result value of the ``lshr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006855a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00006856
6857Example:
6858""""""""
6859
Renato Golin124f2592016-07-20 12:16:38 +00006860.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006861
Tim Northover675a0962014-06-13 14:24:23 +00006862 <result> = lshr i32 4, 1 ; yields i32:result = 2
6863 <result> = lshr i32 4, 2 ; yields i32:result = 1
6864 <result> = lshr i8 4, 3 ; yields i8:result = 0
6865 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006866 <result> = lshr i32 1, 32 ; undefined
6867 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6868
6869'``ashr``' Instruction
6870^^^^^^^^^^^^^^^^^^^^^^
6871
6872Syntax:
6873"""""""
6874
6875::
6876
Tim Northover675a0962014-06-13 14:24:23 +00006877 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6878 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006879
6880Overview:
6881"""""""""
6882
6883The '``ashr``' instruction (arithmetic shift right) returns the first
6884operand shifted to the right a specified number of bits with sign
6885extension.
6886
6887Arguments:
6888""""""""""
6889
6890Both arguments to the '``ashr``' instruction must be the same
6891:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6892'``op2``' is treated as an unsigned value.
6893
6894Semantics:
6895""""""""""
6896
6897This instruction always performs an arithmetic shift right operation,
6898The most significant bits of the result will be filled with the sign bit
6899of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006900than the number of bits in ``op1``, this instruction returns a :ref:`poison
6901value <poisonvalues>`. If the arguments are vectors, each vector element
6902of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006903
6904If the ``exact`` keyword is present, the result value of the ``ashr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006905a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00006906
6907Example:
6908""""""""
6909
Renato Golin124f2592016-07-20 12:16:38 +00006910.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006911
Tim Northover675a0962014-06-13 14:24:23 +00006912 <result> = ashr i32 4, 1 ; yields i32:result = 2
6913 <result> = ashr i32 4, 2 ; yields i32:result = 1
6914 <result> = ashr i8 4, 3 ; yields i8:result = 0
6915 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006916 <result> = ashr i32 1, 32 ; undefined
6917 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6918
6919'``and``' Instruction
6920^^^^^^^^^^^^^^^^^^^^^
6921
6922Syntax:
6923"""""""
6924
6925::
6926
Tim Northover675a0962014-06-13 14:24:23 +00006927 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006928
6929Overview:
6930"""""""""
6931
6932The '``and``' instruction returns the bitwise logical and of its two
6933operands.
6934
6935Arguments:
6936""""""""""
6937
6938The two arguments to the '``and``' instruction must be
6939:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6940arguments must have identical types.
6941
6942Semantics:
6943""""""""""
6944
6945The truth table used for the '``and``' instruction is:
6946
6947+-----+-----+-----+
6948| In0 | In1 | Out |
6949+-----+-----+-----+
6950| 0 | 0 | 0 |
6951+-----+-----+-----+
6952| 0 | 1 | 0 |
6953+-----+-----+-----+
6954| 1 | 0 | 0 |
6955+-----+-----+-----+
6956| 1 | 1 | 1 |
6957+-----+-----+-----+
6958
6959Example:
6960""""""""
6961
Renato Golin124f2592016-07-20 12:16:38 +00006962.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006963
Tim Northover675a0962014-06-13 14:24:23 +00006964 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6965 <result> = and i32 15, 40 ; yields i32:result = 8
6966 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006967
6968'``or``' Instruction
6969^^^^^^^^^^^^^^^^^^^^
6970
6971Syntax:
6972"""""""
6973
6974::
6975
Tim Northover675a0962014-06-13 14:24:23 +00006976 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006977
6978Overview:
6979"""""""""
6980
6981The '``or``' instruction returns the bitwise logical inclusive or of its
6982two operands.
6983
6984Arguments:
6985""""""""""
6986
6987The two arguments to the '``or``' instruction must be
6988:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6989arguments must have identical types.
6990
6991Semantics:
6992""""""""""
6993
6994The truth table used for the '``or``' instruction is:
6995
6996+-----+-----+-----+
6997| In0 | In1 | Out |
6998+-----+-----+-----+
6999| 0 | 0 | 0 |
7000+-----+-----+-----+
7001| 0 | 1 | 1 |
7002+-----+-----+-----+
7003| 1 | 0 | 1 |
7004+-----+-----+-----+
7005| 1 | 1 | 1 |
7006+-----+-----+-----+
7007
7008Example:
7009""""""""
7010
7011::
7012
Tim Northover675a0962014-06-13 14:24:23 +00007013 <result> = or i32 4, %var ; yields i32:result = 4 | %var
7014 <result> = or i32 15, 40 ; yields i32:result = 47
7015 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00007016
7017'``xor``' Instruction
7018^^^^^^^^^^^^^^^^^^^^^
7019
7020Syntax:
7021"""""""
7022
7023::
7024
Tim Northover675a0962014-06-13 14:24:23 +00007025 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007026
7027Overview:
7028"""""""""
7029
7030The '``xor``' instruction returns the bitwise logical exclusive or of
7031its two operands. The ``xor`` is used to implement the "one's
7032complement" operation, which is the "~" operator in C.
7033
7034Arguments:
7035""""""""""
7036
7037The two arguments to the '``xor``' instruction must be
7038:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7039arguments must have identical types.
7040
7041Semantics:
7042""""""""""
7043
7044The truth table used for the '``xor``' instruction is:
7045
7046+-----+-----+-----+
7047| In0 | In1 | Out |
7048+-----+-----+-----+
7049| 0 | 0 | 0 |
7050+-----+-----+-----+
7051| 0 | 1 | 1 |
7052+-----+-----+-----+
7053| 1 | 0 | 1 |
7054+-----+-----+-----+
7055| 1 | 1 | 0 |
7056+-----+-----+-----+
7057
7058Example:
7059""""""""
7060
Renato Golin124f2592016-07-20 12:16:38 +00007061.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007062
Tim Northover675a0962014-06-13 14:24:23 +00007063 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
7064 <result> = xor i32 15, 40 ; yields i32:result = 39
7065 <result> = xor i32 4, 8 ; yields i32:result = 12
7066 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00007067
7068Vector Operations
7069-----------------
7070
7071LLVM supports several instructions to represent vector operations in a
7072target-independent manner. These instructions cover the element-access
7073and vector-specific operations needed to process vectors effectively.
7074While LLVM does directly support these vector operations, many
7075sophisticated algorithms will want to use target-specific intrinsics to
7076take full advantage of a specific target.
7077
7078.. _i_extractelement:
7079
7080'``extractelement``' Instruction
7081^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7082
7083Syntax:
7084"""""""
7085
7086::
7087
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007088 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00007089
7090Overview:
7091"""""""""
7092
7093The '``extractelement``' instruction extracts a single scalar element
7094from a vector at a specified index.
7095
7096Arguments:
7097""""""""""
7098
7099The first operand of an '``extractelement``' instruction is a value of
7100:ref:`vector <t_vector>` type. The second operand is an index indicating
7101the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007102variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007103
7104Semantics:
7105""""""""""
7106
7107The result is a scalar of the same type as the element type of ``val``.
7108Its value is the value at position ``idx`` of ``val``. If ``idx``
7109exceeds the length of ``val``, the results are undefined.
7110
7111Example:
7112""""""""
7113
Renato Golin124f2592016-07-20 12:16:38 +00007114.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007115
7116 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
7117
7118.. _i_insertelement:
7119
7120'``insertelement``' Instruction
7121^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7122
7123Syntax:
7124"""""""
7125
7126::
7127
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007128 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00007129
7130Overview:
7131"""""""""
7132
7133The '``insertelement``' instruction inserts a scalar element into a
7134vector at a specified index.
7135
7136Arguments:
7137""""""""""
7138
7139The first operand of an '``insertelement``' instruction is a value of
7140:ref:`vector <t_vector>` type. The second operand is a scalar value whose
7141type must equal the element type of the first operand. The third operand
7142is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007143index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007144
7145Semantics:
7146""""""""""
7147
7148The result is a vector of the same type as ``val``. Its element values
7149are those of ``val`` except at position ``idx``, where it gets the value
7150``elt``. If ``idx`` exceeds the length of ``val``, the results are
7151undefined.
7152
7153Example:
7154""""""""
7155
Renato Golin124f2592016-07-20 12:16:38 +00007156.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007157
7158 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
7159
7160.. _i_shufflevector:
7161
7162'``shufflevector``' Instruction
7163^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7164
7165Syntax:
7166"""""""
7167
7168::
7169
7170 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
7171
7172Overview:
7173"""""""""
7174
7175The '``shufflevector``' instruction constructs a permutation of elements
7176from two input vectors, returning a vector with the same element type as
7177the input and length that is the same as the shuffle mask.
7178
7179Arguments:
7180""""""""""
7181
7182The first two operands of a '``shufflevector``' instruction are vectors
7183with the same type. The third argument is a shuffle mask whose element
7184type is always 'i32'. The result of the instruction is a vector whose
7185length is the same as the shuffle mask and whose element type is the
7186same as the element type of the first two operands.
7187
7188The shuffle mask operand is required to be a constant vector with either
7189constant integer or undef values.
7190
7191Semantics:
7192""""""""""
7193
7194The elements of the two input vectors are numbered from left to right
7195across both of the vectors. The shuffle mask operand specifies, for each
7196element of the result vector, which element of the two input vectors the
Sanjay Patel6e410182017-04-12 18:39:53 +00007197result element gets. If the shuffle mask is undef, the result vector is
7198undef. If any element of the mask operand is undef, that element of the
7199result is undef. If the shuffle mask selects an undef element from one
7200of the input vectors, the resulting element is undef.
Sean Silvab084af42012-12-07 10:36:55 +00007201
7202Example:
7203""""""""
7204
Renato Golin124f2592016-07-20 12:16:38 +00007205.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007206
7207 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7208 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
7209 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
7210 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
7211 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
7212 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
7213 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7214 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
7215
7216Aggregate Operations
7217--------------------
7218
7219LLVM supports several instructions for working with
7220:ref:`aggregate <t_aggregate>` values.
7221
7222.. _i_extractvalue:
7223
7224'``extractvalue``' Instruction
7225^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7226
7227Syntax:
7228"""""""
7229
7230::
7231
7232 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
7233
7234Overview:
7235"""""""""
7236
7237The '``extractvalue``' instruction extracts the value of a member field
7238from an :ref:`aggregate <t_aggregate>` value.
7239
7240Arguments:
7241""""""""""
7242
7243The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00007244:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00007245constant indices to specify which value to extract in a similar manner
7246as indices in a '``getelementptr``' instruction.
7247
7248The major differences to ``getelementptr`` indexing are:
7249
7250- Since the value being indexed is not a pointer, the first index is
7251 omitted and assumed to be zero.
7252- At least one index must be specified.
7253- Not only struct indices but also array indices must be in bounds.
7254
7255Semantics:
7256""""""""""
7257
7258The result is the value at the position in the aggregate specified by
7259the index operands.
7260
7261Example:
7262""""""""
7263
Renato Golin124f2592016-07-20 12:16:38 +00007264.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007265
7266 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
7267
7268.. _i_insertvalue:
7269
7270'``insertvalue``' Instruction
7271^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7272
7273Syntax:
7274"""""""
7275
7276::
7277
7278 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
7279
7280Overview:
7281"""""""""
7282
7283The '``insertvalue``' instruction inserts a value into a member field in
7284an :ref:`aggregate <t_aggregate>` value.
7285
7286Arguments:
7287""""""""""
7288
7289The first operand of an '``insertvalue``' instruction is a value of
7290:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
7291a first-class value to insert. The following operands are constant
7292indices indicating the position at which to insert the value in a
7293similar manner as indices in a '``extractvalue``' instruction. The value
7294to insert must have the same type as the value identified by the
7295indices.
7296
7297Semantics:
7298""""""""""
7299
7300The result is an aggregate of the same type as ``val``. Its value is
7301that of ``val`` except that the value at the position specified by the
7302indices is that of ``elt``.
7303
7304Example:
7305""""""""
7306
7307.. code-block:: llvm
7308
7309 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
7310 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00007311 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00007312
7313.. _memoryops:
7314
7315Memory Access and Addressing Operations
7316---------------------------------------
7317
7318A key design point of an SSA-based representation is how it represents
7319memory. In LLVM, no memory locations are in SSA form, which makes things
7320very simple. This section describes how to read, write, and allocate
7321memory in LLVM.
7322
7323.. _i_alloca:
7324
7325'``alloca``' Instruction
7326^^^^^^^^^^^^^^^^^^^^^^^^
7327
7328Syntax:
7329"""""""
7330
7331::
7332
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007333 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result
Sean Silvab084af42012-12-07 10:36:55 +00007334
7335Overview:
7336"""""""""
7337
7338The '``alloca``' instruction allocates memory on the stack frame of the
7339currently executing function, to be automatically released when this
7340function returns to its caller. The object is always allocated in the
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007341address space for allocas indicated in the datalayout.
Sean Silvab084af42012-12-07 10:36:55 +00007342
7343Arguments:
7344""""""""""
7345
7346The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7347bytes of memory on the runtime stack, returning a pointer of the
7348appropriate type to the program. If "NumElements" is specified, it is
7349the number of elements allocated, otherwise "NumElements" is defaulted
7350to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007351allocation is guaranteed to be aligned to at least that boundary. The
7352alignment may not be greater than ``1 << 29``. If not specified, or if
7353zero, the target can choose to align the allocation on any convenient
7354boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007355
7356'``type``' may be any sized type.
7357
7358Semantics:
7359""""""""""
7360
7361Memory is allocated; a pointer is returned. The operation is undefined
7362if there is insufficient stack space for the allocation. '``alloca``'d
7363memory is automatically released when the function returns. The
7364'``alloca``' instruction is commonly used to represent automatic
7365variables that must have an address available. When the function returns
7366(either with the ``ret`` or ``resume`` instructions), the memory is
7367reclaimed. Allocating zero bytes is legal, but the result is undefined.
7368The order in which memory is allocated (ie., which way the stack grows)
7369is not specified.
7370
7371Example:
7372""""""""
7373
7374.. code-block:: llvm
7375
Tim Northover675a0962014-06-13 14:24:23 +00007376 %ptr = alloca i32 ; yields i32*:ptr
7377 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7378 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7379 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007380
7381.. _i_load:
7382
7383'``load``' Instruction
7384^^^^^^^^^^^^^^^^^^^^^^
7385
7386Syntax:
7387"""""""
7388
7389::
7390
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007391 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007392 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007393 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007394 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007395 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007396
7397Overview:
7398"""""""""
7399
7400The '``load``' instruction is used to read from memory.
7401
7402Arguments:
7403""""""""""
7404
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007405The argument to the ``load`` instruction specifies the memory address from which
7406to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7407known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7408the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7409modify the number or order of execution of this ``load`` with other
7410:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007411
JF Bastiend1fb5852015-12-17 22:09:19 +00007412If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007413<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
7414``release`` and ``acq_rel`` orderings are not valid on ``load`` instructions.
7415Atomic loads produce :ref:`defined <memmodel>` results when they may see
7416multiple atomic stores. The type of the pointee must be an integer, pointer, or
7417floating-point type whose bit width is a power of two greater than or equal to
7418eight and less than or equal to a target-specific size limit. ``align`` must be
7419explicitly specified on atomic loads, and the load has undefined behavior if the
7420alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00007421pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007422
7423The optional constant ``align`` argument specifies the alignment of the
7424operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007425or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007426alignment for the target. It is the responsibility of the code emitter
7427to ensure that the alignment information is correct. Overestimating the
7428alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007429may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007430maximum possible alignment is ``1 << 29``. An alignment value higher
7431than the size of the loaded type implies memory up to the alignment
7432value bytes can be safely loaded without trapping in the default
7433address space. Access of the high bytes can interfere with debugging
7434tools, so should not be accessed if the function has the
7435``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007436
7437The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007438metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007439``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007440metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007441that this load is not expected to be reused in the cache. The code
7442generator may select special instructions to save cache bandwidth, such
7443as the ``MOVNT`` instruction on x86.
7444
7445The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007446metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007447entries. If a load instruction tagged with the ``!invariant.load``
7448metadata is executed, the optimizer may assume the memory location
7449referenced by the load contains the same value at all points in the
7450program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007451
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007452The optional ``!invariant.group`` metadata must reference a single metadata name
7453 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7454
Philip Reamescdb72f32014-10-20 22:40:55 +00007455The optional ``!nonnull`` metadata must reference a single
7456metadata name ``<index>`` corresponding to a metadata node with no
7457entries. The existence of the ``!nonnull`` metadata on the
7458instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007459never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007460on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007461to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007462
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007463The optional ``!dereferenceable`` metadata must reference a single metadata
7464name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007465entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007466tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007467The number of bytes known to be dereferenceable is specified by the integer
7468value in the metadata node. This is analogous to the ''dereferenceable''
7469attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007470to loads of a pointer type.
7471
7472The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007473metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7474``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007475instruction tells the optimizer that the value loaded is known to be either
7476dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007477The number of bytes known to be dereferenceable is specified by the integer
7478value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7479attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007480to loads of a pointer type.
7481
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007482The optional ``!align`` metadata must reference a single metadata name
7483``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7484The existence of the ``!align`` metadata on the instruction tells the
7485optimizer that the value loaded is known to be aligned to a boundary specified
7486by the integer value in the metadata node. The alignment must be a power of 2.
7487This is analogous to the ''align'' attribute on parameters and return values.
7488This metadata can only be applied to loads of a pointer type.
7489
Sean Silvab084af42012-12-07 10:36:55 +00007490Semantics:
7491""""""""""
7492
7493The location of memory pointed to is loaded. If the value being loaded
7494is of scalar type then the number of bytes read does not exceed the
7495minimum number of bytes needed to hold all bits of the type. For
7496example, loading an ``i24`` reads at most three bytes. When loading a
7497value of a type like ``i20`` with a size that is not an integral number
7498of bytes, the result is undefined if the value was not originally
7499written using a store of the same type.
7500
7501Examples:
7502"""""""""
7503
7504.. code-block:: llvm
7505
Tim Northover675a0962014-06-13 14:24:23 +00007506 %ptr = alloca i32 ; yields i32*:ptr
7507 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007508 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007509
7510.. _i_store:
7511
7512'``store``' Instruction
7513^^^^^^^^^^^^^^^^^^^^^^^
7514
7515Syntax:
7516"""""""
7517
7518::
7519
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007520 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007521 store atomic [volatile] <ty> <value>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007522
7523Overview:
7524"""""""""
7525
7526The '``store``' instruction is used to write to memory.
7527
7528Arguments:
7529""""""""""
7530
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007531There are two arguments to the ``store`` instruction: a value to store and an
7532address at which to store it. The type of the ``<pointer>`` operand must be a
7533pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7534operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7535allowed to modify the number or order of execution of this ``store`` with other
7536:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7537<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7538structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007539
JF Bastiend1fb5852015-12-17 22:09:19 +00007540If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007541<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
7542``acquire`` and ``acq_rel`` orderings aren't valid on ``store`` instructions.
7543Atomic loads produce :ref:`defined <memmodel>` results when they may see
7544multiple atomic stores. The type of the pointee must be an integer, pointer, or
7545floating-point type whose bit width is a power of two greater than or equal to
7546eight and less than or equal to a target-specific size limit. ``align`` must be
7547explicitly specified on atomic stores, and the store has undefined behavior if
7548the alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00007549pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007550
Eli Benderskyca380842013-04-17 17:17:20 +00007551The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007552operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007553or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007554alignment for the target. It is the responsibility of the code emitter
7555to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007556alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007557alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007558safe. The maximum possible alignment is ``1 << 29``. An alignment
7559value higher than the size of the stored type implies memory up to the
7560alignment value bytes can be stored to without trapping in the default
7561address space. Storing to the higher bytes however may result in data
7562races if another thread can access the same address. Introducing a
7563data race is not allowed. Storing to the extra bytes is not allowed
7564even in situations where a data race is known to not exist if the
7565function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007566
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007567The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007568name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007569value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007570tells the optimizer and code generator that this load is not expected to
7571be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007572instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007573x86.
7574
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007575The optional ``!invariant.group`` metadata must reference a
7576single metadata name ``<index>``. See ``invariant.group`` metadata.
7577
Sean Silvab084af42012-12-07 10:36:55 +00007578Semantics:
7579""""""""""
7580
Eli Benderskyca380842013-04-17 17:17:20 +00007581The contents of memory are updated to contain ``<value>`` at the
7582location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007583of scalar type then the number of bytes written does not exceed the
7584minimum number of bytes needed to hold all bits of the type. For
7585example, storing an ``i24`` writes at most three bytes. When writing a
7586value of a type like ``i20`` with a size that is not an integral number
7587of bytes, it is unspecified what happens to the extra bits that do not
7588belong to the type, but they will typically be overwritten.
7589
7590Example:
7591""""""""
7592
7593.. code-block:: llvm
7594
Tim Northover675a0962014-06-13 14:24:23 +00007595 %ptr = alloca i32 ; yields i32*:ptr
7596 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007597 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007598
7599.. _i_fence:
7600
7601'``fence``' Instruction
7602^^^^^^^^^^^^^^^^^^^^^^^
7603
7604Syntax:
7605"""""""
7606
7607::
7608
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007609 fence [syncscope("<target-scope>")] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007610
7611Overview:
7612"""""""""
7613
7614The '``fence``' instruction is used to introduce happens-before edges
7615between operations.
7616
7617Arguments:
7618""""""""""
7619
7620'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7621defines what *synchronizes-with* edges they add. They can only be given
7622``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7623
7624Semantics:
7625""""""""""
7626
7627A fence A which has (at least) ``release`` ordering semantics
7628*synchronizes with* a fence B with (at least) ``acquire`` ordering
7629semantics if and only if there exist atomic operations X and Y, both
7630operating on some atomic object M, such that A is sequenced before X, X
7631modifies M (either directly or through some side effect of a sequence
7632headed by X), Y is sequenced before B, and Y observes M. This provides a
7633*happens-before* dependency between A and B. Rather than an explicit
7634``fence``, one (but not both) of the atomic operations X or Y might
7635provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7636still *synchronize-with* the explicit ``fence`` and establish the
7637*happens-before* edge.
7638
7639A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7640``acquire`` and ``release`` semantics specified above, participates in
7641the global program order of other ``seq_cst`` operations and/or fences.
7642
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007643A ``fence`` instruction can also take an optional
7644":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00007645
7646Example:
7647""""""""
7648
7649.. code-block:: llvm
7650
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007651 fence acquire ; yields void
7652 fence syncscope("singlethread") seq_cst ; yields void
7653 fence syncscope("agent") seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007654
7655.. _i_cmpxchg:
7656
7657'``cmpxchg``' Instruction
7658^^^^^^^^^^^^^^^^^^^^^^^^^
7659
7660Syntax:
7661"""""""
7662
7663::
7664
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007665 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [syncscope("<target-scope>")] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007666
7667Overview:
7668"""""""""
7669
7670The '``cmpxchg``' instruction is used to atomically modify memory. It
7671loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007672equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007673
7674Arguments:
7675""""""""""
7676
7677There are three arguments to the '``cmpxchg``' instruction: an address
7678to operate on, a value to compare to the value currently be at that
7679address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007680are equal. The type of '<cmp>' must be an integer or pointer type whose
7681bit width is a power of two greater than or equal to eight and less
7682than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7683have the same type, and the type of '<pointer>' must be a pointer to
7684that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7685optimizer is not allowed to modify the number or order of execution of
7686this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007687
Tim Northovere94a5182014-03-11 10:48:52 +00007688The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007689``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7690must be at least ``monotonic``, the ordering constraint on failure must be no
7691stronger than that on success, and the failure ordering cannot be either
7692``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007693
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007694A ``cmpxchg`` instruction can also take an optional
7695":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00007696
7697The pointer passed into cmpxchg must have alignment greater than or
7698equal to the size in memory of the operand.
7699
7700Semantics:
7701""""""""""
7702
Tim Northover420a2162014-06-13 14:24:07 +00007703The contents of memory at the location specified by the '``<pointer>``' operand
7704is read and compared to '``<cmp>``'; if the read value is the equal, the
7705'``<new>``' is written. The original value at the location is returned, together
7706with a flag indicating success (true) or failure (false).
7707
7708If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7709permitted: the operation may not write ``<new>`` even if the comparison
7710matched.
7711
7712If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7713if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007714
Tim Northovere94a5182014-03-11 10:48:52 +00007715A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7716identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7717load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007718
7719Example:
7720""""""""
7721
7722.. code-block:: llvm
7723
7724 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007725 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007726 br label %loop
7727
7728 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007729 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007730 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007731 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007732 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7733 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007734 br i1 %success, label %done, label %loop
7735
7736 done:
7737 ...
7738
7739.. _i_atomicrmw:
7740
7741'``atomicrmw``' Instruction
7742^^^^^^^^^^^^^^^^^^^^^^^^^^^
7743
7744Syntax:
7745"""""""
7746
7747::
7748
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007749 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [syncscope("<target-scope>")] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007750
7751Overview:
7752"""""""""
7753
7754The '``atomicrmw``' instruction is used to atomically modify memory.
7755
7756Arguments:
7757""""""""""
7758
7759There are three arguments to the '``atomicrmw``' instruction: an
7760operation to apply, an address whose value to modify, an argument to the
7761operation. The operation must be one of the following keywords:
7762
7763- xchg
7764- add
7765- sub
7766- and
7767- nand
7768- or
7769- xor
7770- max
7771- min
7772- umax
7773- umin
7774
7775The type of '<value>' must be an integer type whose bit width is a power
7776of two greater than or equal to eight and less than or equal to a
7777target-specific size limit. The type of the '``<pointer>``' operand must
7778be a pointer to that type. If the ``atomicrmw`` is marked as
7779``volatile``, then the optimizer is not allowed to modify the number or
7780order of execution of this ``atomicrmw`` with other :ref:`volatile
7781operations <volatile>`.
7782
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007783A ``atomicrmw`` instruction can also take an optional
7784":ref:`syncscope <syncscope>`" argument.
7785
Sean Silvab084af42012-12-07 10:36:55 +00007786Semantics:
7787""""""""""
7788
7789The contents of memory at the location specified by the '``<pointer>``'
7790operand are atomically read, modified, and written back. The original
7791value at the location is returned. The modification is specified by the
7792operation argument:
7793
7794- xchg: ``*ptr = val``
7795- add: ``*ptr = *ptr + val``
7796- sub: ``*ptr = *ptr - val``
7797- and: ``*ptr = *ptr & val``
7798- nand: ``*ptr = ~(*ptr & val)``
7799- or: ``*ptr = *ptr | val``
7800- xor: ``*ptr = *ptr ^ val``
7801- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7802- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7803- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7804 comparison)
7805- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7806 comparison)
7807
7808Example:
7809""""""""
7810
7811.. code-block:: llvm
7812
Tim Northover675a0962014-06-13 14:24:23 +00007813 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007814
7815.. _i_getelementptr:
7816
7817'``getelementptr``' Instruction
7818^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7819
7820Syntax:
7821"""""""
7822
7823::
7824
Peter Collingbourned93620b2016-11-10 22:34:55 +00007825 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7826 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7827 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007828
7829Overview:
7830"""""""""
7831
7832The '``getelementptr``' instruction is used to get the address of a
7833subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007834address calculation only and does not access memory. The instruction can also
7835be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007836
7837Arguments:
7838""""""""""
7839
David Blaikie16a97eb2015-03-04 22:02:58 +00007840The first argument is always a type used as the basis for the calculations.
7841The second argument is always a pointer or a vector of pointers, and is the
7842base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007843that indicate which of the elements of the aggregate object are indexed.
7844The interpretation of each index is dependent on the type being indexed
7845into. The first index always indexes the pointer value given as the
David Blaikief91b0302017-06-19 05:34:21 +00007846second argument, the second index indexes a value of the type pointed to
Sean Silvab084af42012-12-07 10:36:55 +00007847(not necessarily the value directly pointed to, since the first index
7848can be non-zero), etc. The first type indexed into must be a pointer
7849value, subsequent types can be arrays, vectors, and structs. Note that
7850subsequent types being indexed into can never be pointers, since that
7851would require loading the pointer before continuing calculation.
7852
7853The type of each index argument depends on the type it is indexing into.
7854When indexing into a (optionally packed) structure, only ``i32`` integer
7855**constants** are allowed (when using a vector of indices they must all
7856be the **same** ``i32`` integer constant). When indexing into an array,
7857pointer or vector, integers of any width are allowed, and they are not
7858required to be constant. These integers are treated as signed values
7859where relevant.
7860
7861For example, let's consider a C code fragment and how it gets compiled
7862to LLVM:
7863
7864.. code-block:: c
7865
7866 struct RT {
7867 char A;
7868 int B[10][20];
7869 char C;
7870 };
7871 struct ST {
7872 int X;
7873 double Y;
7874 struct RT Z;
7875 };
7876
7877 int *foo(struct ST *s) {
7878 return &s[1].Z.B[5][13];
7879 }
7880
7881The LLVM code generated by Clang is:
7882
7883.. code-block:: llvm
7884
7885 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7886 %struct.ST = type { i32, double, %struct.RT }
7887
7888 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7889 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007890 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007891 ret i32* %arrayidx
7892 }
7893
7894Semantics:
7895""""""""""
7896
7897In the example above, the first index is indexing into the
7898'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7899= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7900indexes into the third element of the structure, yielding a
7901'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7902structure. The third index indexes into the second element of the
7903structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7904dimensions of the array are subscripted into, yielding an '``i32``'
7905type. The '``getelementptr``' instruction returns a pointer to this
7906element, thus computing a value of '``i32*``' type.
7907
7908Note that it is perfectly legal to index partially through a structure,
7909returning a pointer to an inner element. Because of this, the LLVM code
7910for the given testcase is equivalent to:
7911
7912.. code-block:: llvm
7913
7914 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007915 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7916 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7917 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7918 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7919 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007920 ret i32* %t5
7921 }
7922
7923If the ``inbounds`` keyword is present, the result value of the
7924``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7925pointer is not an *in bounds* address of an allocated object, or if any
7926of the addresses that would be formed by successive addition of the
7927offsets implied by the indices to the base address with infinitely
7928precise signed arithmetic are not an *in bounds* address of that
7929allocated object. The *in bounds* addresses for an allocated object are
7930all the addresses that point into the object, plus the address one byte
Eli Friedman13f2e352017-02-23 00:48:18 +00007931past the end. The only *in bounds* address for a null pointer in the
7932default address-space is the null pointer itself. In cases where the
7933base is a vector of pointers the ``inbounds`` keyword applies to each
7934of the computations element-wise.
Sean Silvab084af42012-12-07 10:36:55 +00007935
7936If the ``inbounds`` keyword is not present, the offsets are added to the
7937base address with silently-wrapping two's complement arithmetic. If the
7938offsets have a different width from the pointer, they are sign-extended
7939or truncated to the width of the pointer. The result value of the
7940``getelementptr`` may be outside the object pointed to by the base
7941pointer. The result value may not necessarily be used to access memory
7942though, even if it happens to point into allocated storage. See the
7943:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7944information.
7945
Peter Collingbourned93620b2016-11-10 22:34:55 +00007946If the ``inrange`` keyword is present before any index, loading from or
7947storing to any pointer derived from the ``getelementptr`` has undefined
7948behavior if the load or store would access memory outside of the bounds of
7949the element selected by the index marked as ``inrange``. The result of a
7950pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
7951involving memory) involving a pointer derived from a ``getelementptr`` with
7952the ``inrange`` keyword is undefined, with the exception of comparisons
7953in the case where both operands are in the range of the element selected
7954by the ``inrange`` keyword, inclusive of the address one past the end of
7955that element. Note that the ``inrange`` keyword is currently only allowed
7956in constant ``getelementptr`` expressions.
7957
Sean Silvab084af42012-12-07 10:36:55 +00007958The getelementptr instruction is often confusing. For some more insight
7959into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7960
7961Example:
7962""""""""
7963
7964.. code-block:: llvm
7965
7966 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007967 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007968 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007969 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007970 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007971 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007972 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007973 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007974
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007975Vector of pointers:
7976"""""""""""""""""""
7977
7978The ``getelementptr`` returns a vector of pointers, instead of a single address,
7979when one or more of its arguments is a vector. In such cases, all vector
7980arguments should have the same number of elements, and every scalar argument
7981will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007982
7983.. code-block:: llvm
7984
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007985 ; All arguments are vectors:
7986 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7987 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007988
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007989 ; Add the same scalar offset to each pointer of a vector:
7990 ; A[i] = ptrs[i] + offset*sizeof(i8)
7991 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007992
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007993 ; Add distinct offsets to the same pointer:
7994 ; A[i] = ptr + offsets[i]*sizeof(i8)
7995 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007996
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007997 ; In all cases described above the type of the result is <4 x i8*>
7998
7999The two following instructions are equivalent:
8000
8001.. code-block:: llvm
8002
8003 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8004 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
8005 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
8006 <4 x i32> %ind4,
8007 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00008008
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008009 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8010 i32 2, i32 1, <4 x i32> %ind4, i64 13
8011
8012Let's look at the C code, where the vector version of ``getelementptr``
8013makes sense:
8014
8015.. code-block:: c
8016
8017 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00008018 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008019 for (int i = 0; i < size; ++i) {
8020 A[i] = B[C[i]];
8021 }
8022
8023.. code-block:: llvm
8024
8025 ; get pointers for 8 elements from array B
8026 %ptrs = getelementptr double, double* %B, <8 x i32> %C
8027 ; load 8 elements from array B into A
Elad Cohenef5798a2017-05-03 12:28:54 +00008028 %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008029 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00008030
8031Conversion Operations
8032---------------------
8033
8034The instructions in this category are the conversion instructions
8035(casting) which all take a single operand and a type. They perform
8036various bit conversions on the operand.
8037
8038'``trunc .. to``' Instruction
8039^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8040
8041Syntax:
8042"""""""
8043
8044::
8045
8046 <result> = trunc <ty> <value> to <ty2> ; yields ty2
8047
8048Overview:
8049"""""""""
8050
8051The '``trunc``' instruction truncates its operand to the type ``ty2``.
8052
8053Arguments:
8054""""""""""
8055
8056The '``trunc``' instruction takes a value to trunc, and a type to trunc
8057it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
8058of the same number of integers. The bit size of the ``value`` must be
8059larger than the bit size of the destination type, ``ty2``. Equal sized
8060types are not allowed.
8061
8062Semantics:
8063""""""""""
8064
8065The '``trunc``' instruction truncates the high order bits in ``value``
8066and converts the remaining bits to ``ty2``. Since the source size must
8067be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
8068It will always truncate bits.
8069
8070Example:
8071""""""""
8072
8073.. code-block:: llvm
8074
8075 %X = trunc i32 257 to i8 ; yields i8:1
8076 %Y = trunc i32 123 to i1 ; yields i1:true
8077 %Z = trunc i32 122 to i1 ; yields i1:false
8078 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
8079
8080'``zext .. to``' Instruction
8081^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8082
8083Syntax:
8084"""""""
8085
8086::
8087
8088 <result> = zext <ty> <value> to <ty2> ; yields ty2
8089
8090Overview:
8091"""""""""
8092
8093The '``zext``' instruction zero extends its operand to type ``ty2``.
8094
8095Arguments:
8096""""""""""
8097
8098The '``zext``' instruction takes a value to cast, and a type to cast it
8099to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8100the same number of integers. The bit size of the ``value`` must be
8101smaller than the bit size of the destination type, ``ty2``.
8102
8103Semantics:
8104""""""""""
8105
8106The ``zext`` fills the high order bits of the ``value`` with zero bits
8107until it reaches the size of the destination type, ``ty2``.
8108
8109When zero extending from i1, the result will always be either 0 or 1.
8110
8111Example:
8112""""""""
8113
8114.. code-block:: llvm
8115
8116 %X = zext i32 257 to i64 ; yields i64:257
8117 %Y = zext i1 true to i32 ; yields i32:1
8118 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8119
8120'``sext .. to``' Instruction
8121^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8122
8123Syntax:
8124"""""""
8125
8126::
8127
8128 <result> = sext <ty> <value> to <ty2> ; yields ty2
8129
8130Overview:
8131"""""""""
8132
8133The '``sext``' sign extends ``value`` to the type ``ty2``.
8134
8135Arguments:
8136""""""""""
8137
8138The '``sext``' instruction takes a value to cast, and a type to cast it
8139to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8140the same number of integers. The bit size of the ``value`` must be
8141smaller than the bit size of the destination type, ``ty2``.
8142
8143Semantics:
8144""""""""""
8145
8146The '``sext``' instruction performs a sign extension by copying the sign
8147bit (highest order bit) of the ``value`` until it reaches the bit size
8148of the type ``ty2``.
8149
8150When sign extending from i1, the extension always results in -1 or 0.
8151
8152Example:
8153""""""""
8154
8155.. code-block:: llvm
8156
8157 %X = sext i8 -1 to i16 ; yields i16 :65535
8158 %Y = sext i1 true to i32 ; yields i32:-1
8159 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8160
8161'``fptrunc .. to``' Instruction
8162^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8163
8164Syntax:
8165"""""""
8166
8167::
8168
8169 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
8170
8171Overview:
8172"""""""""
8173
8174The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
8175
8176Arguments:
8177""""""""""
8178
8179The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
8180value to cast and a :ref:`floating point <t_floating>` type to cast it to.
8181The size of ``value`` must be larger than the size of ``ty2``. This
8182implies that ``fptrunc`` cannot be used to make a *no-op cast*.
8183
8184Semantics:
8185""""""""""
8186
Dan Liew50456fb2015-09-03 18:43:56 +00008187The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00008188:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00008189point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
8190destination type, ``ty2``, then the results are undefined. If the cast produces
8191an inexact result, how rounding is performed (e.g. truncation, also known as
8192round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00008193
8194Example:
8195""""""""
8196
8197.. code-block:: llvm
8198
8199 %X = fptrunc double 123.0 to float ; yields float:123.0
8200 %Y = fptrunc double 1.0E+300 to float ; yields undefined
8201
8202'``fpext .. to``' Instruction
8203^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8204
8205Syntax:
8206"""""""
8207
8208::
8209
8210 <result> = fpext <ty> <value> to <ty2> ; yields ty2
8211
8212Overview:
8213"""""""""
8214
8215The '``fpext``' extends a floating point ``value`` to a larger floating
8216point value.
8217
8218Arguments:
8219""""""""""
8220
8221The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
8222``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
8223to. The source type must be smaller than the destination type.
8224
8225Semantics:
8226""""""""""
8227
8228The '``fpext``' instruction extends the ``value`` from a smaller
8229:ref:`floating point <t_floating>` type to a larger :ref:`floating
8230point <t_floating>` type. The ``fpext`` cannot be used to make a
8231*no-op cast* because it always changes bits. Use ``bitcast`` to make a
8232*no-op cast* for a floating point cast.
8233
8234Example:
8235""""""""
8236
8237.. code-block:: llvm
8238
8239 %X = fpext float 3.125 to double ; yields double:3.125000e+00
8240 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
8241
8242'``fptoui .. to``' Instruction
8243^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8244
8245Syntax:
8246"""""""
8247
8248::
8249
8250 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
8251
8252Overview:
8253"""""""""
8254
8255The '``fptoui``' converts a floating point ``value`` to its unsigned
8256integer equivalent of type ``ty2``.
8257
8258Arguments:
8259""""""""""
8260
8261The '``fptoui``' instruction takes a value to cast, which must be a
8262scalar or vector :ref:`floating point <t_floating>` value, and a type to
8263cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8264``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8265type with the same number of elements as ``ty``
8266
8267Semantics:
8268""""""""""
8269
8270The '``fptoui``' instruction converts its :ref:`floating
8271point <t_floating>` operand into the nearest (rounding towards zero)
8272unsigned integer value. If the value cannot fit in ``ty2``, the results
8273are undefined.
8274
8275Example:
8276""""""""
8277
8278.. code-block:: llvm
8279
8280 %X = fptoui double 123.0 to i32 ; yields i32:123
8281 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
8282 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
8283
8284'``fptosi .. to``' Instruction
8285^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8286
8287Syntax:
8288"""""""
8289
8290::
8291
8292 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
8293
8294Overview:
8295"""""""""
8296
8297The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
8298``value`` to type ``ty2``.
8299
8300Arguments:
8301""""""""""
8302
8303The '``fptosi``' instruction takes a value to cast, which must be a
8304scalar or vector :ref:`floating point <t_floating>` value, and a type to
8305cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8306``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8307type with the same number of elements as ``ty``
8308
8309Semantics:
8310""""""""""
8311
8312The '``fptosi``' instruction converts its :ref:`floating
8313point <t_floating>` operand into the nearest (rounding towards zero)
8314signed integer value. If the value cannot fit in ``ty2``, the results
8315are undefined.
8316
8317Example:
8318""""""""
8319
8320.. code-block:: llvm
8321
8322 %X = fptosi double -123.0 to i32 ; yields i32:-123
8323 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
8324 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
8325
8326'``uitofp .. to``' Instruction
8327^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8328
8329Syntax:
8330"""""""
8331
8332::
8333
8334 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
8335
8336Overview:
8337"""""""""
8338
8339The '``uitofp``' instruction regards ``value`` as an unsigned integer
8340and converts that value to the ``ty2`` type.
8341
8342Arguments:
8343""""""""""
8344
8345The '``uitofp``' instruction takes a value to cast, which must be a
8346scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8347``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8348``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8349type with the same number of elements as ``ty``
8350
8351Semantics:
8352""""""""""
8353
8354The '``uitofp``' instruction interprets its operand as an unsigned
8355integer quantity and converts it to the corresponding floating point
8356value. If the value cannot fit in the floating point value, the results
8357are undefined.
8358
8359Example:
8360""""""""
8361
8362.. code-block:: llvm
8363
8364 %X = uitofp i32 257 to float ; yields float:257.0
8365 %Y = uitofp i8 -1 to double ; yields double:255.0
8366
8367'``sitofp .. to``' Instruction
8368^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8369
8370Syntax:
8371"""""""
8372
8373::
8374
8375 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8376
8377Overview:
8378"""""""""
8379
8380The '``sitofp``' instruction regards ``value`` as a signed integer and
8381converts that value to the ``ty2`` type.
8382
8383Arguments:
8384""""""""""
8385
8386The '``sitofp``' instruction takes a value to cast, which must be a
8387scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8388``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8389``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8390type with the same number of elements as ``ty``
8391
8392Semantics:
8393""""""""""
8394
8395The '``sitofp``' instruction interprets its operand as a signed integer
8396quantity and converts it to the corresponding floating point value. If
8397the value cannot fit in the floating point value, the results are
8398undefined.
8399
8400Example:
8401""""""""
8402
8403.. code-block:: llvm
8404
8405 %X = sitofp i32 257 to float ; yields float:257.0
8406 %Y = sitofp i8 -1 to double ; yields double:-1.0
8407
8408.. _i_ptrtoint:
8409
8410'``ptrtoint .. to``' Instruction
8411^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8412
8413Syntax:
8414"""""""
8415
8416::
8417
8418 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8419
8420Overview:
8421"""""""""
8422
8423The '``ptrtoint``' instruction converts the pointer or a vector of
8424pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8425
8426Arguments:
8427""""""""""
8428
8429The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008430a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008431type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8432a vector of integers type.
8433
8434Semantics:
8435""""""""""
8436
8437The '``ptrtoint``' instruction converts ``value`` to integer type
8438``ty2`` by interpreting the pointer value as an integer and either
8439truncating or zero extending that value to the size of the integer type.
8440If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8441``value`` is larger than ``ty2`` then a truncation is done. If they are
8442the same size, then nothing is done (*no-op cast*) other than a type
8443change.
8444
8445Example:
8446""""""""
8447
8448.. code-block:: llvm
8449
8450 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8451 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8452 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8453
8454.. _i_inttoptr:
8455
8456'``inttoptr .. to``' Instruction
8457^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8458
8459Syntax:
8460"""""""
8461
8462::
8463
8464 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8465
8466Overview:
8467"""""""""
8468
8469The '``inttoptr``' instruction converts an integer ``value`` to a
8470pointer type, ``ty2``.
8471
8472Arguments:
8473""""""""""
8474
8475The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8476cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8477type.
8478
8479Semantics:
8480""""""""""
8481
8482The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8483applying either a zero extension or a truncation depending on the size
8484of the integer ``value``. If ``value`` is larger than the size of a
8485pointer then a truncation is done. If ``value`` is smaller than the size
8486of a pointer then a zero extension is done. If they are the same size,
8487nothing is done (*no-op cast*).
8488
8489Example:
8490""""""""
8491
8492.. code-block:: llvm
8493
8494 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8495 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8496 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8497 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8498
8499.. _i_bitcast:
8500
8501'``bitcast .. to``' Instruction
8502^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8503
8504Syntax:
8505"""""""
8506
8507::
8508
8509 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8510
8511Overview:
8512"""""""""
8513
8514The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8515changing any bits.
8516
8517Arguments:
8518""""""""""
8519
8520The '``bitcast``' instruction takes a value to cast, which must be a
8521non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008522also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8523bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008524identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008525also be a pointer of the same size. This instruction supports bitwise
8526conversion of vectors to integers and to vectors of other types (as
8527long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008528
8529Semantics:
8530""""""""""
8531
Matt Arsenault24b49c42013-07-31 17:49:08 +00008532The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8533is always a *no-op cast* because no bits change with this
8534conversion. The conversion is done as if the ``value`` had been stored
8535to memory and read back as type ``ty2``. Pointer (or vector of
8536pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008537pointers) types with the same address space through this instruction.
8538To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8539or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008540
8541Example:
8542""""""""
8543
Renato Golin124f2592016-07-20 12:16:38 +00008544.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008545
8546 %X = bitcast i8 255 to i8 ; yields i8 :-1
8547 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8548 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8549 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8550
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008551.. _i_addrspacecast:
8552
8553'``addrspacecast .. to``' Instruction
8554^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8555
8556Syntax:
8557"""""""
8558
8559::
8560
8561 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8562
8563Overview:
8564"""""""""
8565
8566The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8567address space ``n`` to type ``pty2`` in address space ``m``.
8568
8569Arguments:
8570""""""""""
8571
8572The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8573to cast and a pointer type to cast it to, which must have a different
8574address space.
8575
8576Semantics:
8577""""""""""
8578
8579The '``addrspacecast``' instruction converts the pointer value
8580``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008581value modification, depending on the target and the address space
8582pair. Pointer conversions within the same address space must be
8583performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008584conversion is legal then both result and operand refer to the same memory
8585location.
8586
8587Example:
8588""""""""
8589
8590.. code-block:: llvm
8591
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008592 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8593 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8594 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008595
Sean Silvab084af42012-12-07 10:36:55 +00008596.. _otherops:
8597
8598Other Operations
8599----------------
8600
8601The instructions in this category are the "miscellaneous" instructions,
8602which defy better classification.
8603
8604.. _i_icmp:
8605
8606'``icmp``' Instruction
8607^^^^^^^^^^^^^^^^^^^^^^
8608
8609Syntax:
8610"""""""
8611
8612::
8613
Tim Northover675a0962014-06-13 14:24:23 +00008614 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008615
8616Overview:
8617"""""""""
8618
8619The '``icmp``' instruction returns a boolean value or a vector of
8620boolean values based on comparison of its two integer, integer vector,
8621pointer, or pointer vector operands.
8622
8623Arguments:
8624""""""""""
8625
8626The '``icmp``' instruction takes three operands. The first operand is
8627the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008628not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008629
8630#. ``eq``: equal
8631#. ``ne``: not equal
8632#. ``ugt``: unsigned greater than
8633#. ``uge``: unsigned greater or equal
8634#. ``ult``: unsigned less than
8635#. ``ule``: unsigned less or equal
8636#. ``sgt``: signed greater than
8637#. ``sge``: signed greater or equal
8638#. ``slt``: signed less than
8639#. ``sle``: signed less or equal
8640
8641The remaining two arguments must be :ref:`integer <t_integer>` or
8642:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8643must also be identical types.
8644
8645Semantics:
8646""""""""""
8647
8648The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8649code given as ``cond``. The comparison performed always yields either an
8650:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8651
8652#. ``eq``: yields ``true`` if the operands are equal, ``false``
8653 otherwise. No sign interpretation is necessary or performed.
8654#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8655 otherwise. No sign interpretation is necessary or performed.
8656#. ``ugt``: interprets the operands as unsigned values and yields
8657 ``true`` if ``op1`` is greater than ``op2``.
8658#. ``uge``: interprets the operands as unsigned values and yields
8659 ``true`` if ``op1`` is greater than or equal to ``op2``.
8660#. ``ult``: interprets the operands as unsigned values and yields
8661 ``true`` if ``op1`` is less than ``op2``.
8662#. ``ule``: interprets the operands as unsigned values and yields
8663 ``true`` if ``op1`` is less than or equal to ``op2``.
8664#. ``sgt``: interprets the operands as signed values and yields ``true``
8665 if ``op1`` is greater than ``op2``.
8666#. ``sge``: interprets the operands as signed values and yields ``true``
8667 if ``op1`` is greater than or equal to ``op2``.
8668#. ``slt``: interprets the operands as signed values and yields ``true``
8669 if ``op1`` is less than ``op2``.
8670#. ``sle``: interprets the operands as signed values and yields ``true``
8671 if ``op1`` is less than or equal to ``op2``.
8672
8673If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8674are compared as if they were integers.
8675
8676If the operands are integer vectors, then they are compared element by
8677element. The result is an ``i1`` vector with the same number of elements
8678as the values being compared. Otherwise, the result is an ``i1``.
8679
8680Example:
8681""""""""
8682
Renato Golin124f2592016-07-20 12:16:38 +00008683.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008684
8685 <result> = icmp eq i32 4, 5 ; yields: result=false
8686 <result> = icmp ne float* %X, %X ; yields: result=false
8687 <result> = icmp ult i16 4, 5 ; yields: result=true
8688 <result> = icmp sgt i16 4, 5 ; yields: result=false
8689 <result> = icmp ule i16 -4, 5 ; yields: result=false
8690 <result> = icmp sge i16 4, 5 ; yields: result=false
8691
Sean Silvab084af42012-12-07 10:36:55 +00008692.. _i_fcmp:
8693
8694'``fcmp``' Instruction
8695^^^^^^^^^^^^^^^^^^^^^^
8696
8697Syntax:
8698"""""""
8699
8700::
8701
James Molloy88eb5352015-07-10 12:52:00 +00008702 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008703
8704Overview:
8705"""""""""
8706
8707The '``fcmp``' instruction returns a boolean value or vector of boolean
8708values based on comparison of its operands.
8709
8710If the operands are floating point scalars, then the result type is a
8711boolean (:ref:`i1 <t_integer>`).
8712
8713If the operands are floating point vectors, then the result type is a
8714vector of boolean with the same number of elements as the operands being
8715compared.
8716
8717Arguments:
8718""""""""""
8719
8720The '``fcmp``' instruction takes three operands. The first operand is
8721the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008722not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008723
8724#. ``false``: no comparison, always returns false
8725#. ``oeq``: ordered and equal
8726#. ``ogt``: ordered and greater than
8727#. ``oge``: ordered and greater than or equal
8728#. ``olt``: ordered and less than
8729#. ``ole``: ordered and less than or equal
8730#. ``one``: ordered and not equal
8731#. ``ord``: ordered (no nans)
8732#. ``ueq``: unordered or equal
8733#. ``ugt``: unordered or greater than
8734#. ``uge``: unordered or greater than or equal
8735#. ``ult``: unordered or less than
8736#. ``ule``: unordered or less than or equal
8737#. ``une``: unordered or not equal
8738#. ``uno``: unordered (either nans)
8739#. ``true``: no comparison, always returns true
8740
8741*Ordered* means that neither operand is a QNAN while *unordered* means
8742that either operand may be a QNAN.
8743
8744Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8745point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8746type. They must have identical types.
8747
8748Semantics:
8749""""""""""
8750
8751The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8752condition code given as ``cond``. If the operands are vectors, then the
8753vectors are compared element by element. Each comparison performed
8754always yields an :ref:`i1 <t_integer>` result, as follows:
8755
8756#. ``false``: always yields ``false``, regardless of operands.
8757#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8758 is equal to ``op2``.
8759#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8760 is greater than ``op2``.
8761#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8762 is greater than or equal to ``op2``.
8763#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8764 is less than ``op2``.
8765#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8766 is less than or equal to ``op2``.
8767#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8768 is not equal to ``op2``.
8769#. ``ord``: yields ``true`` if both operands are not a QNAN.
8770#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8771 equal to ``op2``.
8772#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8773 greater than ``op2``.
8774#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8775 greater than or equal to ``op2``.
8776#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8777 less than ``op2``.
8778#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8779 less than or equal to ``op2``.
8780#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8781 not equal to ``op2``.
8782#. ``uno``: yields ``true`` if either operand is a QNAN.
8783#. ``true``: always yields ``true``, regardless of operands.
8784
James Molloy88eb5352015-07-10 12:52:00 +00008785The ``fcmp`` instruction can also optionally take any number of
8786:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8787otherwise unsafe floating point optimizations.
8788
8789Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8790only flags that have any effect on its semantics are those that allow
8791assumptions to be made about the values of input arguments; namely
8792``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8793
Sean Silvab084af42012-12-07 10:36:55 +00008794Example:
8795""""""""
8796
Renato Golin124f2592016-07-20 12:16:38 +00008797.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008798
8799 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8800 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8801 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8802 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8803
Sean Silvab084af42012-12-07 10:36:55 +00008804.. _i_phi:
8805
8806'``phi``' Instruction
8807^^^^^^^^^^^^^^^^^^^^^
8808
8809Syntax:
8810"""""""
8811
8812::
8813
8814 <result> = phi <ty> [ <val0>, <label0>], ...
8815
8816Overview:
8817"""""""""
8818
8819The '``phi``' instruction is used to implement the φ node in the SSA
8820graph representing the function.
8821
8822Arguments:
8823""""""""""
8824
8825The type of the incoming values is specified with the first type field.
8826After this, the '``phi``' instruction takes a list of pairs as
8827arguments, with one pair for each predecessor basic block of the current
8828block. Only values of :ref:`first class <t_firstclass>` type may be used as
8829the value arguments to the PHI node. Only labels may be used as the
8830label arguments.
8831
8832There must be no non-phi instructions between the start of a basic block
8833and the PHI instructions: i.e. PHI instructions must be first in a basic
8834block.
8835
8836For the purposes of the SSA form, the use of each incoming value is
8837deemed to occur on the edge from the corresponding predecessor block to
8838the current block (but after any definition of an '``invoke``'
8839instruction's return value on the same edge).
8840
8841Semantics:
8842""""""""""
8843
8844At runtime, the '``phi``' instruction logically takes on the value
8845specified by the pair corresponding to the predecessor basic block that
8846executed just prior to the current block.
8847
8848Example:
8849""""""""
8850
8851.. code-block:: llvm
8852
8853 Loop: ; Infinite loop that counts from 0 on up...
8854 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8855 %nextindvar = add i32 %indvar, 1
8856 br label %Loop
8857
8858.. _i_select:
8859
8860'``select``' Instruction
8861^^^^^^^^^^^^^^^^^^^^^^^^
8862
8863Syntax:
8864"""""""
8865
8866::
8867
8868 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8869
8870 selty is either i1 or {<N x i1>}
8871
8872Overview:
8873"""""""""
8874
8875The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008876condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008877
8878Arguments:
8879""""""""""
8880
8881The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8882values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008883class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008884
8885Semantics:
8886""""""""""
8887
8888If the condition is an i1 and it evaluates to 1, the instruction returns
8889the first value argument; otherwise, it returns the second value
8890argument.
8891
8892If the condition is a vector of i1, then the value arguments must be
8893vectors of the same size, and the selection is done element by element.
8894
David Majnemer40a0b592015-03-03 22:45:47 +00008895If the condition is an i1 and the value arguments are vectors of the
8896same size, then an entire vector is selected.
8897
Sean Silvab084af42012-12-07 10:36:55 +00008898Example:
8899""""""""
8900
8901.. code-block:: llvm
8902
8903 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8904
8905.. _i_call:
8906
8907'``call``' Instruction
8908^^^^^^^^^^^^^^^^^^^^^^
8909
8910Syntax:
8911"""""""
8912
8913::
8914
David Blaikieb83cf102016-07-13 17:21:34 +00008915 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008916 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008917
8918Overview:
8919"""""""""
8920
8921The '``call``' instruction represents a simple function call.
8922
8923Arguments:
8924""""""""""
8925
8926This instruction requires several arguments:
8927
Reid Kleckner5772b772014-04-24 20:14:34 +00008928#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008929 should perform tail call optimization. The ``tail`` marker is a hint that
8930 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008931 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008932 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008933
8934 #. The call will not cause unbounded stack growth if it is part of a
8935 recursive cycle in the call graph.
8936 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8937 forwarded in place.
8938
8939 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008940 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008941 rules:
8942
8943 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8944 or a pointer bitcast followed by a ret instruction.
8945 - The ret instruction must return the (possibly bitcasted) value
8946 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008947 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008948 parameters or return types may differ in pointee type, but not
8949 in address space.
8950 - The calling conventions of the caller and callee must match.
8951 - All ABI-impacting function attributes, such as sret, byval, inreg,
8952 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008953 - The callee must be varargs iff the caller is varargs. Bitcasting a
8954 non-varargs function to the appropriate varargs type is legal so
8955 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008956
8957 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8958 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008959
8960 - Caller and callee both have the calling convention ``fastcc``.
8961 - The call is in tail position (ret immediately follows call and ret
8962 uses value of call or is void).
8963 - Option ``-tailcallopt`` is enabled, or
8964 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008965 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008966 met. <CodeGenerator.html#tailcallopt>`_
8967
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008968#. The optional ``notail`` marker indicates that the optimizers should not add
8969 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8970 call optimization from being performed on the call.
8971
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008972#. The optional ``fast-math flags`` marker indicates that the call has one or more
8973 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8974 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8975 for calls that return a floating-point scalar or vector type.
8976
Sean Silvab084af42012-12-07 10:36:55 +00008977#. The optional "cconv" marker indicates which :ref:`calling
8978 convention <callingconv>` the call should use. If none is
8979 specified, the call defaults to using C calling conventions. The
8980 calling convention of the call must match the calling convention of
8981 the target function, or else the behavior is undefined.
8982#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8983 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8984 are valid here.
8985#. '``ty``': the type of the call instruction itself which is also the
8986 type of the return value. Functions that return no value are marked
8987 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00008988#. '``fnty``': shall be the signature of the function being called. The
8989 argument types must match the types implied by this signature. This
8990 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00008991#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00008992 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00008993 indirect ``call``'s are just as possible, calling an arbitrary pointer
8994 to function value.
8995#. '``function args``': argument list whose types match the function
8996 signature argument types and parameter attributes. All arguments must
8997 be of :ref:`first class <t_firstclass>` type. If the function signature
8998 indicates the function accepts a variable number of arguments, the
8999 extra arguments can be specified.
George Burgess IV39c91052017-04-13 04:01:55 +00009000#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00009001#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00009002
9003Semantics:
9004""""""""""
9005
9006The '``call``' instruction is used to cause control flow to transfer to
9007a specified function, with its incoming arguments bound to the specified
9008values. Upon a '``ret``' instruction in the called function, control
9009flow continues with the instruction after the function call, and the
9010return value of the function is bound to the result argument.
9011
9012Example:
9013""""""""
9014
9015.. code-block:: llvm
9016
9017 %retval = call i32 @test(i32 %argc)
9018 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
9019 %X = tail call i32 @foo() ; yields i32
9020 %Y = tail call fastcc i32 @foo() ; yields i32
9021 call void %foo(i8 97 signext)
9022
9023 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00009024 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00009025 %gr = extractvalue %struct.A %r, 0 ; yields i32
9026 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
9027 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
9028 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
9029
9030llvm treats calls to some functions with names and arguments that match
9031the standard C99 library as being the C99 library functions, and may
9032perform optimizations or generate code for them under that assumption.
9033This is something we'd like to change in the future to provide better
9034support for freestanding environments and non-C-based languages.
9035
9036.. _i_va_arg:
9037
9038'``va_arg``' Instruction
9039^^^^^^^^^^^^^^^^^^^^^^^^
9040
9041Syntax:
9042"""""""
9043
9044::
9045
9046 <resultval> = va_arg <va_list*> <arglist>, <argty>
9047
9048Overview:
9049"""""""""
9050
9051The '``va_arg``' instruction is used to access arguments passed through
9052the "variable argument" area of a function call. It is used to implement
9053the ``va_arg`` macro in C.
9054
9055Arguments:
9056""""""""""
9057
9058This instruction takes a ``va_list*`` value and the type of the
9059argument. It returns a value of the specified argument type and
9060increments the ``va_list`` to point to the next argument. The actual
9061type of ``va_list`` is target specific.
9062
9063Semantics:
9064""""""""""
9065
9066The '``va_arg``' instruction loads an argument of the specified type
9067from the specified ``va_list`` and causes the ``va_list`` to point to
9068the next argument. For more information, see the variable argument
9069handling :ref:`Intrinsic Functions <int_varargs>`.
9070
9071It is legal for this instruction to be called in a function which does
9072not take a variable number of arguments, for example, the ``vfprintf``
9073function.
9074
9075``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
9076function <intrinsics>` because it takes a type as an argument.
9077
9078Example:
9079""""""""
9080
9081See the :ref:`variable argument processing <int_varargs>` section.
9082
9083Note that the code generator does not yet fully support va\_arg on many
9084targets. Also, it does not currently support va\_arg with aggregate
9085types on any target.
9086
9087.. _i_landingpad:
9088
9089'``landingpad``' Instruction
9090^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9091
9092Syntax:
9093"""""""
9094
9095::
9096
David Majnemer7fddecc2015-06-17 20:52:32 +00009097 <resultval> = landingpad <resultty> <clause>+
9098 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00009099
9100 <clause> := catch <type> <value>
9101 <clause> := filter <array constant type> <array constant>
9102
9103Overview:
9104"""""""""
9105
9106The '``landingpad``' instruction is used by `LLVM's exception handling
9107system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009108is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00009109code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00009110defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00009111re-entry to the function. The ``resultval`` has the type ``resultty``.
9112
9113Arguments:
9114""""""""""
9115
David Majnemer7fddecc2015-06-17 20:52:32 +00009116The optional
Sean Silvab084af42012-12-07 10:36:55 +00009117``cleanup`` flag indicates that the landing pad block is a cleanup.
9118
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009119A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00009120contains the global variable representing the "type" that may be caught
9121or filtered respectively. Unlike the ``catch`` clause, the ``filter``
9122clause takes an array constant as its argument. Use
9123"``[0 x i8**] undef``" for a filter which cannot throw. The
9124'``landingpad``' instruction must contain *at least* one ``clause`` or
9125the ``cleanup`` flag.
9126
9127Semantics:
9128""""""""""
9129
9130The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00009131:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00009132therefore the "result type" of the ``landingpad`` instruction. As with
9133calling conventions, how the personality function results are
9134represented in LLVM IR is target specific.
9135
9136The clauses are applied in order from top to bottom. If two
9137``landingpad`` instructions are merged together through inlining, the
9138clauses from the calling function are appended to the list of clauses.
9139When the call stack is being unwound due to an exception being thrown,
9140the exception is compared against each ``clause`` in turn. If it doesn't
9141match any of the clauses, and the ``cleanup`` flag is not set, then
9142unwinding continues further up the call stack.
9143
9144The ``landingpad`` instruction has several restrictions:
9145
9146- A landing pad block is a basic block which is the unwind destination
9147 of an '``invoke``' instruction.
9148- A landing pad block must have a '``landingpad``' instruction as its
9149 first non-PHI instruction.
9150- There can be only one '``landingpad``' instruction within the landing
9151 pad block.
9152- A basic block that is not a landing pad block may not include a
9153 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009154
9155Example:
9156""""""""
9157
9158.. code-block:: llvm
9159
9160 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00009161 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009162 catch i8** @_ZTIi
9163 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00009164 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009165 cleanup
9166 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00009167 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009168 catch i8** @_ZTIi
9169 filter [1 x i8**] [@_ZTId]
9170
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009171.. _i_catchpad:
9172
9173'``catchpad``' Instruction
9174^^^^^^^^^^^^^^^^^^^^^^^^^^
9175
9176Syntax:
9177"""""""
9178
9179::
9180
9181 <resultval> = catchpad within <catchswitch> [<args>*]
9182
9183Overview:
9184"""""""""
9185
9186The '``catchpad``' instruction is used by `LLVM's exception handling
9187system <ExceptionHandling.html#overview>`_ to specify that a basic block
9188begins a catch handler --- one where a personality routine attempts to transfer
9189control to catch an exception.
9190
9191Arguments:
9192""""""""""
9193
9194The ``catchswitch`` operand must always be a token produced by a
9195:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
9196ensures that each ``catchpad`` has exactly one predecessor block, and it always
9197terminates in a ``catchswitch``.
9198
9199The ``args`` correspond to whatever information the personality routine
9200requires to know if this is an appropriate handler for the exception. Control
9201will transfer to the ``catchpad`` if this is the first appropriate handler for
9202the exception.
9203
9204The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
9205``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
9206pads.
9207
9208Semantics:
9209""""""""""
9210
9211When the call stack is being unwound due to an exception being thrown, the
9212exception is compared against the ``args``. If it doesn't match, control will
9213not reach the ``catchpad`` instruction. The representation of ``args`` is
9214entirely target and personality function-specific.
9215
9216Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
9217instruction must be the first non-phi of its parent basic block.
9218
9219The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
9220instructions is described in the
9221`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
9222
9223When a ``catchpad`` has been "entered" but not yet "exited" (as
9224described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9225it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9226that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
9227
9228Example:
9229""""""""
9230
Renato Golin124f2592016-07-20 12:16:38 +00009231.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009232
9233 dispatch:
9234 %cs = catchswitch within none [label %handler0] unwind to caller
9235 ;; A catch block which can catch an integer.
9236 handler0:
9237 %tok = catchpad within %cs [i8** @_ZTIi]
9238
David Majnemer654e1302015-07-31 17:58:14 +00009239.. _i_cleanuppad:
9240
9241'``cleanuppad``' Instruction
9242^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9243
9244Syntax:
9245"""""""
9246
9247::
9248
David Majnemer8a1c45d2015-12-12 05:38:55 +00009249 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00009250
9251Overview:
9252"""""""""
9253
9254The '``cleanuppad``' instruction is used by `LLVM's exception handling
9255system <ExceptionHandling.html#overview>`_ to specify that a basic block
9256is a cleanup block --- one where a personality routine attempts to
9257transfer control to run cleanup actions.
9258The ``args`` correspond to whatever additional
9259information the :ref:`personality function <personalityfn>` requires to
9260execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00009261The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00009262match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
9263The ``parent`` argument is the token of the funclet that contains the
9264``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
9265this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00009266
9267Arguments:
9268""""""""""
9269
9270The instruction takes a list of arbitrary values which are interpreted
9271by the :ref:`personality function <personalityfn>`.
9272
9273Semantics:
9274""""""""""
9275
David Majnemer654e1302015-07-31 17:58:14 +00009276When the call stack is being unwound due to an exception being thrown,
9277the :ref:`personality function <personalityfn>` transfers control to the
9278``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00009279As with calling conventions, how the personality function results are
9280represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00009281
9282The ``cleanuppad`` instruction has several restrictions:
9283
9284- A cleanup block is a basic block which is the unwind destination of
9285 an exceptional instruction.
9286- A cleanup block must have a '``cleanuppad``' instruction as its
9287 first non-PHI instruction.
9288- There can be only one '``cleanuppad``' instruction within the
9289 cleanup block.
9290- A basic block that is not a cleanup block may not include a
9291 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009292
Joseph Tremoulete28885e2016-01-10 04:28:38 +00009293When a ``cleanuppad`` has been "entered" but not yet "exited" (as
9294described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9295it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9296that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009297
David Majnemer654e1302015-07-31 17:58:14 +00009298Example:
9299""""""""
9300
Renato Golin124f2592016-07-20 12:16:38 +00009301.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00009302
David Majnemer8a1c45d2015-12-12 05:38:55 +00009303 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00009304
Sean Silvab084af42012-12-07 10:36:55 +00009305.. _intrinsics:
9306
9307Intrinsic Functions
9308===================
9309
9310LLVM supports the notion of an "intrinsic function". These functions
9311have well known names and semantics and are required to follow certain
9312restrictions. Overall, these intrinsics represent an extension mechanism
9313for the LLVM language that does not require changing all of the
9314transformations in LLVM when adding to the language (or the bitcode
9315reader/writer, the parser, etc...).
9316
9317Intrinsic function names must all start with an "``llvm.``" prefix. This
9318prefix is reserved in LLVM for intrinsic names; thus, function names may
9319not begin with this prefix. Intrinsic functions must always be external
9320functions: you cannot define the body of intrinsic functions. Intrinsic
9321functions may only be used in call or invoke instructions: it is illegal
9322to take the address of an intrinsic function. Additionally, because
9323intrinsic functions are part of the LLVM language, it is required if any
9324are added that they be documented here.
9325
9326Some intrinsic functions can be overloaded, i.e., the intrinsic
9327represents a family of functions that perform the same operation but on
9328different data types. Because LLVM can represent over 8 million
9329different integer types, overloading is used commonly to allow an
9330intrinsic function to operate on any integer type. One or more of the
9331argument types or the result type can be overloaded to accept any
9332integer type. Argument types may also be defined as exactly matching a
9333previous argument's type or the result type. This allows an intrinsic
9334function which accepts multiple arguments, but needs all of them to be
9335of the same type, to only be overloaded with respect to a single
9336argument or the result.
9337
9338Overloaded intrinsics will have the names of its overloaded argument
9339types encoded into its function name, each preceded by a period. Only
9340those types which are overloaded result in a name suffix. Arguments
9341whose type is matched against another type do not. For example, the
9342``llvm.ctpop`` function can take an integer of any width and returns an
9343integer of exactly the same integer width. This leads to a family of
9344functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
9345``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
9346overloaded, and only one type suffix is required. Because the argument's
9347type is matched against the return type, it does not require its own
9348name suffix.
9349
9350To learn how to add an intrinsic function, please see the `Extending
9351LLVM Guide <ExtendingLLVM.html>`_.
9352
9353.. _int_varargs:
9354
9355Variable Argument Handling Intrinsics
9356-------------------------------------
9357
9358Variable argument support is defined in LLVM with the
9359:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9360functions. These functions are related to the similarly named macros
9361defined in the ``<stdarg.h>`` header file.
9362
9363All of these functions operate on arguments that use a target-specific
9364value type "``va_list``". The LLVM assembly language reference manual
9365does not define what this type is, so all transformations should be
9366prepared to handle these functions regardless of the type used.
9367
9368This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9369variable argument handling intrinsic functions are used.
9370
9371.. code-block:: llvm
9372
Tim Northoverab60bb92014-11-02 01:21:51 +00009373 ; This struct is different for every platform. For most platforms,
9374 ; it is merely an i8*.
9375 %struct.va_list = type { i8* }
9376
9377 ; For Unix x86_64 platforms, va_list is the following struct:
9378 ; %struct.va_list = type { i32, i32, i8*, i8* }
9379
Sean Silvab084af42012-12-07 10:36:55 +00009380 define i32 @test(i32 %X, ...) {
9381 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009382 %ap = alloca %struct.va_list
9383 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009384 call void @llvm.va_start(i8* %ap2)
9385
9386 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009387 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009388
9389 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9390 %aq = alloca i8*
9391 %aq2 = bitcast i8** %aq to i8*
9392 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9393 call void @llvm.va_end(i8* %aq2)
9394
9395 ; Stop processing of arguments.
9396 call void @llvm.va_end(i8* %ap2)
9397 ret i32 %tmp
9398 }
9399
9400 declare void @llvm.va_start(i8*)
9401 declare void @llvm.va_copy(i8*, i8*)
9402 declare void @llvm.va_end(i8*)
9403
9404.. _int_va_start:
9405
9406'``llvm.va_start``' Intrinsic
9407^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9408
9409Syntax:
9410"""""""
9411
9412::
9413
Nick Lewycky04f6de02013-09-11 22:04:52 +00009414 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009415
9416Overview:
9417"""""""""
9418
9419The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9420subsequent use by ``va_arg``.
9421
9422Arguments:
9423""""""""""
9424
9425The argument is a pointer to a ``va_list`` element to initialize.
9426
9427Semantics:
9428""""""""""
9429
9430The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9431available in C. In a target-dependent way, it initializes the
9432``va_list`` element to which the argument points, so that the next call
9433to ``va_arg`` will produce the first variable argument passed to the
9434function. Unlike the C ``va_start`` macro, this intrinsic does not need
9435to know the last argument of the function as the compiler can figure
9436that out.
9437
9438'``llvm.va_end``' Intrinsic
9439^^^^^^^^^^^^^^^^^^^^^^^^^^^
9440
9441Syntax:
9442"""""""
9443
9444::
9445
9446 declare void @llvm.va_end(i8* <arglist>)
9447
9448Overview:
9449"""""""""
9450
9451The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9452initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9453
9454Arguments:
9455""""""""""
9456
9457The argument is a pointer to a ``va_list`` to destroy.
9458
9459Semantics:
9460""""""""""
9461
9462The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9463available in C. In a target-dependent way, it destroys the ``va_list``
9464element to which the argument points. Calls to
9465:ref:`llvm.va_start <int_va_start>` and
9466:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9467``llvm.va_end``.
9468
9469.. _int_va_copy:
9470
9471'``llvm.va_copy``' Intrinsic
9472^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9473
9474Syntax:
9475"""""""
9476
9477::
9478
9479 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9480
9481Overview:
9482"""""""""
9483
9484The '``llvm.va_copy``' intrinsic copies the current argument position
9485from the source argument list to the destination argument list.
9486
9487Arguments:
9488""""""""""
9489
9490The first argument is a pointer to a ``va_list`` element to initialize.
9491The second argument is a pointer to a ``va_list`` element to copy from.
9492
9493Semantics:
9494""""""""""
9495
9496The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9497available in C. In a target-dependent way, it copies the source
9498``va_list`` element into the destination ``va_list`` element. This
9499intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9500arbitrarily complex and require, for example, memory allocation.
9501
9502Accurate Garbage Collection Intrinsics
9503--------------------------------------
9504
Philip Reamesc5b0f562015-02-25 23:52:06 +00009505LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009506(GC) requires the frontend to generate code containing appropriate intrinsic
9507calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009508intrinsics in a manner which is appropriate for the target collector.
9509
Sean Silvab084af42012-12-07 10:36:55 +00009510These intrinsics allow identification of :ref:`GC roots on the
9511stack <int_gcroot>`, as well as garbage collector implementations that
9512require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009513Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009514these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009515details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009516
Philip Reamesf80bbff2015-02-25 23:45:20 +00009517Experimental Statepoint Intrinsics
9518^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9519
9520LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009521collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009522to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009523:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009524differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009525<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009526described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009527
9528.. _int_gcroot:
9529
9530'``llvm.gcroot``' Intrinsic
9531^^^^^^^^^^^^^^^^^^^^^^^^^^^
9532
9533Syntax:
9534"""""""
9535
9536::
9537
9538 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9539
9540Overview:
9541"""""""""
9542
9543The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9544the code generator, and allows some metadata to be associated with it.
9545
9546Arguments:
9547""""""""""
9548
9549The first argument specifies the address of a stack object that contains
9550the root pointer. The second pointer (which must be either a constant or
9551a global value address) contains the meta-data to be associated with the
9552root.
9553
9554Semantics:
9555""""""""""
9556
9557At runtime, a call to this intrinsic stores a null pointer into the
9558"ptrloc" location. At compile-time, the code generator generates
9559information to allow the runtime to find the pointer at GC safe points.
9560The '``llvm.gcroot``' intrinsic may only be used in a function which
9561:ref:`specifies a GC algorithm <gc>`.
9562
9563.. _int_gcread:
9564
9565'``llvm.gcread``' Intrinsic
9566^^^^^^^^^^^^^^^^^^^^^^^^^^^
9567
9568Syntax:
9569"""""""
9570
9571::
9572
9573 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9574
9575Overview:
9576"""""""""
9577
9578The '``llvm.gcread``' intrinsic identifies reads of references from heap
9579locations, allowing garbage collector implementations that require read
9580barriers.
9581
9582Arguments:
9583""""""""""
9584
9585The second argument is the address to read from, which should be an
9586address allocated from the garbage collector. The first object is a
9587pointer to the start of the referenced object, if needed by the language
9588runtime (otherwise null).
9589
9590Semantics:
9591""""""""""
9592
9593The '``llvm.gcread``' intrinsic has the same semantics as a load
9594instruction, but may be replaced with substantially more complex code by
9595the garbage collector runtime, as needed. The '``llvm.gcread``'
9596intrinsic may only be used in a function which :ref:`specifies a GC
9597algorithm <gc>`.
9598
9599.. _int_gcwrite:
9600
9601'``llvm.gcwrite``' Intrinsic
9602^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9603
9604Syntax:
9605"""""""
9606
9607::
9608
9609 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9610
9611Overview:
9612"""""""""
9613
9614The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9615locations, allowing garbage collector implementations that require write
9616barriers (such as generational or reference counting collectors).
9617
9618Arguments:
9619""""""""""
9620
9621The first argument is the reference to store, the second is the start of
9622the object to store it to, and the third is the address of the field of
9623Obj to store to. If the runtime does not require a pointer to the
9624object, Obj may be null.
9625
9626Semantics:
9627""""""""""
9628
9629The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9630instruction, but may be replaced with substantially more complex code by
9631the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9632intrinsic may only be used in a function which :ref:`specifies a GC
9633algorithm <gc>`.
9634
9635Code Generator Intrinsics
9636-------------------------
9637
9638These intrinsics are provided by LLVM to expose special features that
9639may only be implemented with code generator support.
9640
9641'``llvm.returnaddress``' Intrinsic
9642^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9643
9644Syntax:
9645"""""""
9646
9647::
9648
George Burgess IVfbc34982017-05-20 04:52:29 +00009649 declare i8* @llvm.returnaddress(i32 <level>)
Sean Silvab084af42012-12-07 10:36:55 +00009650
9651Overview:
9652"""""""""
9653
9654The '``llvm.returnaddress``' intrinsic attempts to compute a
9655target-specific value indicating the return address of the current
9656function or one of its callers.
9657
9658Arguments:
9659""""""""""
9660
9661The argument to this intrinsic indicates which function to return the
9662address for. Zero indicates the calling function, one indicates its
9663caller, etc. The argument is **required** to be a constant integer
9664value.
9665
9666Semantics:
9667""""""""""
9668
9669The '``llvm.returnaddress``' intrinsic either returns a pointer
9670indicating the return address of the specified call frame, or zero if it
9671cannot be identified. The value returned by this intrinsic is likely to
9672be incorrect or 0 for arguments other than zero, so it should only be
9673used for debugging purposes.
9674
9675Note that calling this intrinsic does not prevent function inlining or
9676other aggressive transformations, so the value returned may not be that
9677of the obvious source-language caller.
9678
Albert Gutowski795d7d62016-10-12 22:13:19 +00009679'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +00009680^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +00009681
9682Syntax:
9683"""""""
9684
9685::
9686
George Burgess IVfbc34982017-05-20 04:52:29 +00009687 declare i8* @llvm.addressofreturnaddress()
Albert Gutowski795d7d62016-10-12 22:13:19 +00009688
9689Overview:
9690"""""""""
9691
9692The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
9693pointer to the place in the stack frame where the return address of the
9694current function is stored.
9695
9696Semantics:
9697""""""""""
9698
9699Note that calling this intrinsic does not prevent function inlining or
9700other aggressive transformations, so the value returned may not be that
9701of the obvious source-language caller.
9702
9703This intrinsic is only implemented for x86.
9704
Sean Silvab084af42012-12-07 10:36:55 +00009705'``llvm.frameaddress``' Intrinsic
9706^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9707
9708Syntax:
9709"""""""
9710
9711::
9712
9713 declare i8* @llvm.frameaddress(i32 <level>)
9714
9715Overview:
9716"""""""""
9717
9718The '``llvm.frameaddress``' intrinsic attempts to return the
9719target-specific frame pointer value for the specified stack frame.
9720
9721Arguments:
9722""""""""""
9723
9724The argument to this intrinsic indicates which function to return the
9725frame pointer for. Zero indicates the calling function, one indicates
9726its caller, etc. The argument is **required** to be a constant integer
9727value.
9728
9729Semantics:
9730""""""""""
9731
9732The '``llvm.frameaddress``' intrinsic either returns a pointer
9733indicating the frame address of the specified call frame, or zero if it
9734cannot be identified. The value returned by this intrinsic is likely to
9735be incorrect or 0 for arguments other than zero, so it should only be
9736used for debugging purposes.
9737
9738Note that calling this intrinsic does not prevent function inlining or
9739other aggressive transformations, so the value returned may not be that
9740of the obvious source-language caller.
9741
Reid Kleckner60381792015-07-07 22:25:32 +00009742'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009743^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9744
9745Syntax:
9746"""""""
9747
9748::
9749
Reid Kleckner60381792015-07-07 22:25:32 +00009750 declare void @llvm.localescape(...)
9751 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009752
9753Overview:
9754"""""""""
9755
Reid Kleckner60381792015-07-07 22:25:32 +00009756The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9757allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009758live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009759computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009760
9761Arguments:
9762""""""""""
9763
Reid Kleckner60381792015-07-07 22:25:32 +00009764All arguments to '``llvm.localescape``' must be pointers to static allocas or
9765casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009766once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009767
Reid Kleckner60381792015-07-07 22:25:32 +00009768The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009769bitcasted pointer to a function defined in the current module. The code
9770generator cannot determine the frame allocation offset of functions defined in
9771other modules.
9772
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009773The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9774call frame that is currently live. The return value of '``llvm.localaddress``'
9775is one way to produce such a value, but various runtimes also expose a suitable
9776pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009777
Reid Kleckner60381792015-07-07 22:25:32 +00009778The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9779'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009780
Reid Klecknere9b89312015-01-13 00:48:10 +00009781Semantics:
9782""""""""""
9783
Reid Kleckner60381792015-07-07 22:25:32 +00009784These intrinsics allow a group of functions to share access to a set of local
9785stack allocations of a one parent function. The parent function may call the
9786'``llvm.localescape``' intrinsic once from the function entry block, and the
9787child functions can use '``llvm.localrecover``' to access the escaped allocas.
9788The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9789the escaped allocas are allocated, which would break attempts to use
9790'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009791
Renato Golinc7aea402014-05-06 16:51:25 +00009792.. _int_read_register:
9793.. _int_write_register:
9794
9795'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9796^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9797
9798Syntax:
9799"""""""
9800
9801::
9802
9803 declare i32 @llvm.read_register.i32(metadata)
9804 declare i64 @llvm.read_register.i64(metadata)
9805 declare void @llvm.write_register.i32(metadata, i32 @value)
9806 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009807 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009808
9809Overview:
9810"""""""""
9811
9812The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9813provides access to the named register. The register must be valid on
9814the architecture being compiled to. The type needs to be compatible
9815with the register being read.
9816
9817Semantics:
9818""""""""""
9819
9820The '``llvm.read_register``' intrinsic returns the current value of the
9821register, where possible. The '``llvm.write_register``' intrinsic sets
9822the current value of the register, where possible.
9823
9824This is useful to implement named register global variables that need
9825to always be mapped to a specific register, as is common practice on
9826bare-metal programs including OS kernels.
9827
9828The compiler doesn't check for register availability or use of the used
9829register in surrounding code, including inline assembly. Because of that,
9830allocatable registers are not supported.
9831
9832Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009833architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009834work is needed to support other registers and even more so, allocatable
9835registers.
9836
Sean Silvab084af42012-12-07 10:36:55 +00009837.. _int_stacksave:
9838
9839'``llvm.stacksave``' Intrinsic
9840^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9841
9842Syntax:
9843"""""""
9844
9845::
9846
9847 declare i8* @llvm.stacksave()
9848
9849Overview:
9850"""""""""
9851
9852The '``llvm.stacksave``' intrinsic is used to remember the current state
9853of the function stack, for use with
9854:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9855implementing language features like scoped automatic variable sized
9856arrays in C99.
9857
9858Semantics:
9859""""""""""
9860
9861This intrinsic returns a opaque pointer value that can be passed to
9862:ref:`llvm.stackrestore <int_stackrestore>`. When an
9863``llvm.stackrestore`` intrinsic is executed with a value saved from
9864``llvm.stacksave``, it effectively restores the state of the stack to
9865the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9866practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9867were allocated after the ``llvm.stacksave`` was executed.
9868
9869.. _int_stackrestore:
9870
9871'``llvm.stackrestore``' Intrinsic
9872^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9873
9874Syntax:
9875"""""""
9876
9877::
9878
9879 declare void @llvm.stackrestore(i8* %ptr)
9880
9881Overview:
9882"""""""""
9883
9884The '``llvm.stackrestore``' intrinsic is used to restore the state of
9885the function stack to the state it was in when the corresponding
9886:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9887useful for implementing language features like scoped automatic variable
9888sized arrays in C99.
9889
9890Semantics:
9891""""""""""
9892
9893See the description for :ref:`llvm.stacksave <int_stacksave>`.
9894
Yury Gribovd7dbb662015-12-01 11:40:55 +00009895.. _int_get_dynamic_area_offset:
9896
9897'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009898^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009899
9900Syntax:
9901"""""""
9902
9903::
9904
9905 declare i32 @llvm.get.dynamic.area.offset.i32()
9906 declare i64 @llvm.get.dynamic.area.offset.i64()
9907
Lang Hames10239932016-10-08 00:20:42 +00009908Overview:
9909"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +00009910
9911 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9912 get the offset from native stack pointer to the address of the most
9913 recent dynamic alloca on the caller's stack. These intrinsics are
9914 intendend for use in combination with
9915 :ref:`llvm.stacksave <int_stacksave>` to get a
9916 pointer to the most recent dynamic alloca. This is useful, for example,
9917 for AddressSanitizer's stack unpoisoning routines.
9918
9919Semantics:
9920""""""""""
9921
9922 These intrinsics return a non-negative integer value that can be used to
9923 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9924 on the caller's stack. In particular, for targets where stack grows downwards,
9925 adding this offset to the native stack pointer would get the address of the most
9926 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +00009927 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +00009928 one past the end of the most recent dynamic alloca.
9929
9930 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9931 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9932 compile-time-known constant value.
9933
9934 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
Matt Arsenaultc749bdc2017-03-30 23:36:47 +00009935 must match the target's default address space's (address space 0) pointer type.
Yury Gribovd7dbb662015-12-01 11:40:55 +00009936
Sean Silvab084af42012-12-07 10:36:55 +00009937'``llvm.prefetch``' Intrinsic
9938^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9939
9940Syntax:
9941"""""""
9942
9943::
9944
9945 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9946
9947Overview:
9948"""""""""
9949
9950The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9951insert a prefetch instruction if supported; otherwise, it is a noop.
9952Prefetches have no effect on the behavior of the program but can change
9953its performance characteristics.
9954
9955Arguments:
9956""""""""""
9957
9958``address`` is the address to be prefetched, ``rw`` is the specifier
9959determining if the fetch should be for a read (0) or write (1), and
9960``locality`` is a temporal locality specifier ranging from (0) - no
9961locality, to (3) - extremely local keep in cache. The ``cache type``
9962specifies whether the prefetch is performed on the data (1) or
9963instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9964arguments must be constant integers.
9965
9966Semantics:
9967""""""""""
9968
9969This intrinsic does not modify the behavior of the program. In
9970particular, prefetches cannot trap and do not produce a value. On
9971targets that support this intrinsic, the prefetch can provide hints to
9972the processor cache for better performance.
9973
9974'``llvm.pcmarker``' Intrinsic
9975^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9976
9977Syntax:
9978"""""""
9979
9980::
9981
9982 declare void @llvm.pcmarker(i32 <id>)
9983
9984Overview:
9985"""""""""
9986
9987The '``llvm.pcmarker``' intrinsic is a method to export a Program
9988Counter (PC) in a region of code to simulators and other tools. The
9989method is target specific, but it is expected that the marker will use
9990exported symbols to transmit the PC of the marker. The marker makes no
9991guarantees that it will remain with any specific instruction after
9992optimizations. It is possible that the presence of a marker will inhibit
9993optimizations. The intended use is to be inserted after optimizations to
9994allow correlations of simulation runs.
9995
9996Arguments:
9997""""""""""
9998
9999``id`` is a numerical id identifying the marker.
10000
10001Semantics:
10002""""""""""
10003
10004This intrinsic does not modify the behavior of the program. Backends
10005that do not support this intrinsic may ignore it.
10006
10007'``llvm.readcyclecounter``' Intrinsic
10008^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10009
10010Syntax:
10011"""""""
10012
10013::
10014
10015 declare i64 @llvm.readcyclecounter()
10016
10017Overview:
10018"""""""""
10019
10020The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
10021counter register (or similar low latency, high accuracy clocks) on those
10022targets that support it. On X86, it should map to RDTSC. On Alpha, it
10023should map to RPCC. As the backing counters overflow quickly (on the
10024order of 9 seconds on alpha), this should only be used for small
10025timings.
10026
10027Semantics:
10028""""""""""
10029
10030When directly supported, reading the cycle counter should not modify any
10031memory. Implementations are allowed to either return a application
10032specific value or a system wide value. On backends without support, this
10033is lowered to a constant 0.
10034
Tim Northoverbc933082013-05-23 19:11:20 +000010035Note that runtime support may be conditional on the privilege-level code is
10036running at and the host platform.
10037
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010038'``llvm.clear_cache``' Intrinsic
10039^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10040
10041Syntax:
10042"""""""
10043
10044::
10045
10046 declare void @llvm.clear_cache(i8*, i8*)
10047
10048Overview:
10049"""""""""
10050
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010051The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
10052in the specified range to the execution unit of the processor. On
10053targets with non-unified instruction and data cache, the implementation
10054flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010055
10056Semantics:
10057""""""""""
10058
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010059On platforms with coherent instruction and data caches (e.g. x86), this
10060intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +000010061cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010062instructions or a system call, if cache flushing requires special
10063privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010064
Sean Silvad02bf3e2014-04-07 22:29:53 +000010065The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010066time library.
Renato Golin93010e62014-03-26 14:01:32 +000010067
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010068This instrinsic does *not* empty the instruction pipeline. Modifications
10069of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010070
Justin Bogner61ba2e32014-12-08 18:02:35 +000010071'``llvm.instrprof_increment``' Intrinsic
10072^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10073
10074Syntax:
10075"""""""
10076
10077::
10078
10079 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
10080 i32 <num-counters>, i32 <index>)
10081
10082Overview:
10083"""""""""
10084
10085The '``llvm.instrprof_increment``' intrinsic can be emitted by a
10086frontend for use with instrumentation based profiling. These will be
10087lowered by the ``-instrprof`` pass to generate execution counts of a
10088program at runtime.
10089
10090Arguments:
10091""""""""""
10092
10093The first argument is a pointer to a global variable containing the
10094name of the entity being instrumented. This should generally be the
10095(mangled) function name for a set of counters.
10096
10097The second argument is a hash value that can be used by the consumer
10098of the profile data to detect changes to the instrumented source, and
10099the third is the number of counters associated with ``name``. It is an
10100error if ``hash`` or ``num-counters`` differ between two instances of
10101``instrprof_increment`` that refer to the same name.
10102
10103The last argument refers to which of the counters for ``name`` should
10104be incremented. It should be a value between 0 and ``num-counters``.
10105
10106Semantics:
10107""""""""""
10108
10109This intrinsic represents an increment of a profiling counter. It will
10110cause the ``-instrprof`` pass to generate the appropriate data
10111structures and the code to increment the appropriate value, in a
10112format that can be written out by a compiler runtime and consumed via
10113the ``llvm-profdata`` tool.
10114
Xinliang David Li4ca17332016-09-18 18:34:07 +000010115'``llvm.instrprof_increment_step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +000010116^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +000010117
10118Syntax:
10119"""""""
10120
10121::
10122
10123 declare void @llvm.instrprof_increment_step(i8* <name>, i64 <hash>,
10124 i32 <num-counters>,
10125 i32 <index>, i64 <step>)
10126
10127Overview:
10128"""""""""
10129
10130The '``llvm.instrprof_increment_step``' intrinsic is an extension to
10131the '``llvm.instrprof_increment``' intrinsic with an additional fifth
10132argument to specify the step of the increment.
10133
10134Arguments:
10135""""""""""
10136The first four arguments are the same as '``llvm.instrprof_increment``'
10137instrinsic.
10138
10139The last argument specifies the value of the increment of the counter variable.
10140
10141Semantics:
10142""""""""""
10143See description of '``llvm.instrprof_increment``' instrinsic.
10144
10145
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010146'``llvm.instrprof_value_profile``' Intrinsic
10147^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10148
10149Syntax:
10150"""""""
10151
10152::
10153
10154 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
10155 i64 <value>, i32 <value_kind>,
10156 i32 <index>)
10157
10158Overview:
10159"""""""""
10160
10161The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
10162frontend for use with instrumentation based profiling. This will be
10163lowered by the ``-instrprof`` pass to find out the target values,
10164instrumented expressions take in a program at runtime.
10165
10166Arguments:
10167""""""""""
10168
10169The first argument is a pointer to a global variable containing the
10170name of the entity being instrumented. ``name`` should generally be the
10171(mangled) function name for a set of counters.
10172
10173The second argument is a hash value that can be used by the consumer
10174of the profile data to detect changes to the instrumented source. It
10175is an error if ``hash`` differs between two instances of
10176``llvm.instrprof_*`` that refer to the same name.
10177
10178The third argument is the value of the expression being profiled. The profiled
10179expression's value should be representable as an unsigned 64-bit value. The
10180fourth argument represents the kind of value profiling that is being done. The
10181supported value profiling kinds are enumerated through the
10182``InstrProfValueKind`` type declared in the
10183``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
10184index of the instrumented expression within ``name``. It should be >= 0.
10185
10186Semantics:
10187""""""""""
10188
10189This intrinsic represents the point where a call to a runtime routine
10190should be inserted for value profiling of target expressions. ``-instrprof``
10191pass will generate the appropriate data structures and replace the
10192``llvm.instrprof_value_profile`` intrinsic with the call to the profile
10193runtime library with proper arguments.
10194
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000010195'``llvm.thread.pointer``' Intrinsic
10196^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10197
10198Syntax:
10199"""""""
10200
10201::
10202
10203 declare i8* @llvm.thread.pointer()
10204
10205Overview:
10206"""""""""
10207
10208The '``llvm.thread.pointer``' intrinsic returns the value of the thread
10209pointer.
10210
10211Semantics:
10212""""""""""
10213
10214The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
10215for the current thread. The exact semantics of this value are target
10216specific: it may point to the start of TLS area, to the end, or somewhere
10217in the middle. Depending on the target, this intrinsic may read a register,
10218call a helper function, read from an alternate memory space, or perform
10219other operations necessary to locate the TLS area. Not all targets support
10220this intrinsic.
10221
Sean Silvab084af42012-12-07 10:36:55 +000010222Standard C Library Intrinsics
10223-----------------------------
10224
10225LLVM provides intrinsics for a few important standard C library
10226functions. These intrinsics allow source-language front-ends to pass
10227information about the alignment of the pointer arguments to the code
10228generator, providing opportunity for more efficient code generation.
10229
10230.. _int_memcpy:
10231
10232'``llvm.memcpy``' Intrinsic
10233^^^^^^^^^^^^^^^^^^^^^^^^^^^
10234
10235Syntax:
10236"""""""
10237
10238This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
10239integer bit width and for different address spaces. Not all targets
10240support all bit widths however.
10241
10242::
10243
10244 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
10245 i32 <len>, i32 <align>, i1 <isvolatile>)
10246 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
10247 i64 <len>, i32 <align>, i1 <isvolatile>)
10248
10249Overview:
10250"""""""""
10251
10252The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10253source location to the destination location.
10254
10255Note that, unlike the standard libc function, the ``llvm.memcpy.*``
10256intrinsics do not return a value, takes extra alignment/isvolatile
10257arguments and the pointers can be in specified address spaces.
10258
10259Arguments:
10260""""""""""
10261
10262The first argument is a pointer to the destination, the second is a
10263pointer to the source. The third argument is an integer argument
10264specifying the number of bytes to copy, the fourth argument is the
10265alignment of the source and destination locations, and the fifth is a
10266boolean indicating a volatile access.
10267
10268If the call to this intrinsic has an alignment value that is not 0 or 1,
10269then the caller guarantees that both the source and destination pointers
10270are aligned to that boundary.
10271
10272If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
10273a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10274very cleanly specified and it is unwise to depend on it.
10275
10276Semantics:
10277""""""""""
10278
10279The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10280source location to the destination location, which are not allowed to
10281overlap. It copies "len" bytes of memory over. If the argument is known
10282to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +000010283argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010284
Daniel Neilson57226ef2017-07-12 15:25:26 +000010285.. _int_memmove:
10286
Sean Silvab084af42012-12-07 10:36:55 +000010287'``llvm.memmove``' Intrinsic
10288^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10289
10290Syntax:
10291"""""""
10292
10293This is an overloaded intrinsic. You can use llvm.memmove on any integer
10294bit width and for different address space. Not all targets support all
10295bit widths however.
10296
10297::
10298
10299 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
10300 i32 <len>, i32 <align>, i1 <isvolatile>)
10301 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
10302 i64 <len>, i32 <align>, i1 <isvolatile>)
10303
10304Overview:
10305"""""""""
10306
10307The '``llvm.memmove.*``' intrinsics move a block of memory from the
10308source location to the destination location. It is similar to the
10309'``llvm.memcpy``' intrinsic but allows the two memory locations to
10310overlap.
10311
10312Note that, unlike the standard libc function, the ``llvm.memmove.*``
10313intrinsics do not return a value, takes extra alignment/isvolatile
10314arguments and the pointers can be in specified address spaces.
10315
10316Arguments:
10317""""""""""
10318
10319The first argument is a pointer to the destination, the second is a
10320pointer to the source. The third argument is an integer argument
10321specifying the number of bytes to copy, the fourth argument is the
10322alignment of the source and destination locations, and the fifth is a
10323boolean indicating a volatile access.
10324
10325If the call to this intrinsic has an alignment value that is not 0 or 1,
10326then the caller guarantees that the source and destination pointers are
10327aligned to that boundary.
10328
10329If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
10330is a :ref:`volatile operation <volatile>`. The detailed access behavior is
10331not very cleanly specified and it is unwise to depend on it.
10332
10333Semantics:
10334""""""""""
10335
10336The '``llvm.memmove.*``' intrinsics copy a block of memory from the
10337source location to the destination location, which may overlap. It
10338copies "len" bytes of memory over. If the argument is known to be
10339aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000010340otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010341
Daniel Neilson965613e2017-07-12 21:57:23 +000010342.. _int_memset:
10343
Sean Silvab084af42012-12-07 10:36:55 +000010344'``llvm.memset.*``' Intrinsics
10345^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10346
10347Syntax:
10348"""""""
10349
10350This is an overloaded intrinsic. You can use llvm.memset on any integer
10351bit width and for different address spaces. However, not all targets
10352support all bit widths.
10353
10354::
10355
10356 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
10357 i32 <len>, i32 <align>, i1 <isvolatile>)
10358 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
10359 i64 <len>, i32 <align>, i1 <isvolatile>)
10360
10361Overview:
10362"""""""""
10363
10364The '``llvm.memset.*``' intrinsics fill a block of memory with a
10365particular byte value.
10366
10367Note that, unlike the standard libc function, the ``llvm.memset``
10368intrinsic does not return a value and takes extra alignment/volatile
10369arguments. Also, the destination can be in an arbitrary address space.
10370
10371Arguments:
10372""""""""""
10373
10374The first argument is a pointer to the destination to fill, the second
10375is the byte value with which to fill it, the third argument is an
10376integer argument specifying the number of bytes to fill, and the fourth
10377argument is the known alignment of the destination location.
10378
10379If the call to this intrinsic has an alignment value that is not 0 or 1,
10380then the caller guarantees that the destination pointer is aligned to
10381that boundary.
10382
10383If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10384a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10385very cleanly specified and it is unwise to depend on it.
10386
10387Semantics:
10388""""""""""
10389
10390The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
10391at the destination location. If the argument is known to be aligned to
10392some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +000010393it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010394
10395'``llvm.sqrt.*``' Intrinsic
10396^^^^^^^^^^^^^^^^^^^^^^^^^^^
10397
10398Syntax:
10399"""""""
10400
10401This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
10402floating point or vector of floating point type. Not all targets support
10403all types however.
10404
10405::
10406
10407 declare float @llvm.sqrt.f32(float %Val)
10408 declare double @llvm.sqrt.f64(double %Val)
10409 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10410 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10411 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10412
10413Overview:
10414"""""""""
10415
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010416The '``llvm.sqrt``' intrinsics return the square root of the specified value,
Justin Lebarcb9b41d2017-01-27 00:58:03 +000010417returning the same value as the libm '``sqrt``' functions would, but without
10418trapping or setting ``errno``.
Sean Silvab084af42012-12-07 10:36:55 +000010419
10420Arguments:
10421""""""""""
10422
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010423The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010424
10425Semantics:
10426""""""""""
10427
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010428This function returns the square root of the operand if it is a nonnegative
10429floating point number.
Sean Silvab084af42012-12-07 10:36:55 +000010430
10431'``llvm.powi.*``' Intrinsic
10432^^^^^^^^^^^^^^^^^^^^^^^^^^^
10433
10434Syntax:
10435"""""""
10436
10437This is an overloaded intrinsic. You can use ``llvm.powi`` on any
10438floating point or vector of floating point type. Not all targets support
10439all types however.
10440
10441::
10442
10443 declare float @llvm.powi.f32(float %Val, i32 %power)
10444 declare double @llvm.powi.f64(double %Val, i32 %power)
10445 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10446 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10447 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10448
10449Overview:
10450"""""""""
10451
10452The '``llvm.powi.*``' intrinsics return the first operand raised to the
10453specified (positive or negative) power. The order of evaluation of
10454multiplications is not defined. When a vector of floating point type is
10455used, the second argument remains a scalar integer value.
10456
10457Arguments:
10458""""""""""
10459
10460The second argument is an integer power, and the first is a value to
10461raise to that power.
10462
10463Semantics:
10464""""""""""
10465
10466This function returns the first value raised to the second power with an
10467unspecified sequence of rounding operations.
10468
10469'``llvm.sin.*``' Intrinsic
10470^^^^^^^^^^^^^^^^^^^^^^^^^^
10471
10472Syntax:
10473"""""""
10474
10475This is an overloaded intrinsic. You can use ``llvm.sin`` on any
10476floating point or vector of floating point type. Not all targets support
10477all types however.
10478
10479::
10480
10481 declare float @llvm.sin.f32(float %Val)
10482 declare double @llvm.sin.f64(double %Val)
10483 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10484 declare fp128 @llvm.sin.f128(fp128 %Val)
10485 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10486
10487Overview:
10488"""""""""
10489
10490The '``llvm.sin.*``' intrinsics return the sine of the operand.
10491
10492Arguments:
10493""""""""""
10494
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010495The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010496
10497Semantics:
10498""""""""""
10499
10500This function returns the sine of the specified operand, returning the
10501same values as the libm ``sin`` functions would, and handles error
10502conditions in the same way.
10503
10504'``llvm.cos.*``' Intrinsic
10505^^^^^^^^^^^^^^^^^^^^^^^^^^
10506
10507Syntax:
10508"""""""
10509
10510This is an overloaded intrinsic. You can use ``llvm.cos`` on any
10511floating point or vector of floating point type. Not all targets support
10512all types however.
10513
10514::
10515
10516 declare float @llvm.cos.f32(float %Val)
10517 declare double @llvm.cos.f64(double %Val)
10518 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10519 declare fp128 @llvm.cos.f128(fp128 %Val)
10520 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10521
10522Overview:
10523"""""""""
10524
10525The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10526
10527Arguments:
10528""""""""""
10529
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010530The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010531
10532Semantics:
10533""""""""""
10534
10535This function returns the cosine of the specified operand, returning the
10536same values as the libm ``cos`` functions would, and handles error
10537conditions in the same way.
10538
10539'``llvm.pow.*``' Intrinsic
10540^^^^^^^^^^^^^^^^^^^^^^^^^^
10541
10542Syntax:
10543"""""""
10544
10545This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10546floating point or vector of floating point type. Not all targets support
10547all types however.
10548
10549::
10550
10551 declare float @llvm.pow.f32(float %Val, float %Power)
10552 declare double @llvm.pow.f64(double %Val, double %Power)
10553 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10554 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10555 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10556
10557Overview:
10558"""""""""
10559
10560The '``llvm.pow.*``' intrinsics return the first operand raised to the
10561specified (positive or negative) power.
10562
10563Arguments:
10564""""""""""
10565
10566The second argument is a floating point power, and the first is a value
10567to raise to that power.
10568
10569Semantics:
10570""""""""""
10571
10572This function returns the first value raised to the second power,
10573returning the same values as the libm ``pow`` functions would, and
10574handles error conditions in the same way.
10575
10576'``llvm.exp.*``' Intrinsic
10577^^^^^^^^^^^^^^^^^^^^^^^^^^
10578
10579Syntax:
10580"""""""
10581
10582This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10583floating point or vector of floating point type. Not all targets support
10584all types however.
10585
10586::
10587
10588 declare float @llvm.exp.f32(float %Val)
10589 declare double @llvm.exp.f64(double %Val)
10590 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10591 declare fp128 @llvm.exp.f128(fp128 %Val)
10592 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10593
10594Overview:
10595"""""""""
10596
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010597The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
10598value.
Sean Silvab084af42012-12-07 10:36:55 +000010599
10600Arguments:
10601""""""""""
10602
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010603The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010604
10605Semantics:
10606""""""""""
10607
10608This function returns the same values as the libm ``exp`` functions
10609would, and handles error conditions in the same way.
10610
10611'``llvm.exp2.*``' Intrinsic
10612^^^^^^^^^^^^^^^^^^^^^^^^^^^
10613
10614Syntax:
10615"""""""
10616
10617This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10618floating point or vector of floating point type. Not all targets support
10619all types however.
10620
10621::
10622
10623 declare float @llvm.exp2.f32(float %Val)
10624 declare double @llvm.exp2.f64(double %Val)
10625 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10626 declare fp128 @llvm.exp2.f128(fp128 %Val)
10627 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10628
10629Overview:
10630"""""""""
10631
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010632The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
10633specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010634
10635Arguments:
10636""""""""""
10637
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010638The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010639
10640Semantics:
10641""""""""""
10642
10643This function returns the same values as the libm ``exp2`` functions
10644would, and handles error conditions in the same way.
10645
10646'``llvm.log.*``' Intrinsic
10647^^^^^^^^^^^^^^^^^^^^^^^^^^
10648
10649Syntax:
10650"""""""
10651
10652This is an overloaded intrinsic. You can use ``llvm.log`` on any
10653floating point or vector of floating point type. Not all targets support
10654all types however.
10655
10656::
10657
10658 declare float @llvm.log.f32(float %Val)
10659 declare double @llvm.log.f64(double %Val)
10660 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10661 declare fp128 @llvm.log.f128(fp128 %Val)
10662 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10663
10664Overview:
10665"""""""""
10666
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010667The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
10668value.
Sean Silvab084af42012-12-07 10:36:55 +000010669
10670Arguments:
10671""""""""""
10672
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010673The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010674
10675Semantics:
10676""""""""""
10677
10678This function returns the same values as the libm ``log`` functions
10679would, and handles error conditions in the same way.
10680
10681'``llvm.log10.*``' Intrinsic
10682^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10683
10684Syntax:
10685"""""""
10686
10687This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10688floating point or vector of floating point type. Not all targets support
10689all types however.
10690
10691::
10692
10693 declare float @llvm.log10.f32(float %Val)
10694 declare double @llvm.log10.f64(double %Val)
10695 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10696 declare fp128 @llvm.log10.f128(fp128 %Val)
10697 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10698
10699Overview:
10700"""""""""
10701
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010702The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
10703specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010704
10705Arguments:
10706""""""""""
10707
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010708The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010709
10710Semantics:
10711""""""""""
10712
10713This function returns the same values as the libm ``log10`` functions
10714would, and handles error conditions in the same way.
10715
10716'``llvm.log2.*``' Intrinsic
10717^^^^^^^^^^^^^^^^^^^^^^^^^^^
10718
10719Syntax:
10720"""""""
10721
10722This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10723floating point or vector of floating point type. Not all targets support
10724all types however.
10725
10726::
10727
10728 declare float @llvm.log2.f32(float %Val)
10729 declare double @llvm.log2.f64(double %Val)
10730 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10731 declare fp128 @llvm.log2.f128(fp128 %Val)
10732 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10733
10734Overview:
10735"""""""""
10736
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010737The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
10738value.
Sean Silvab084af42012-12-07 10:36:55 +000010739
10740Arguments:
10741""""""""""
10742
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010743The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010744
10745Semantics:
10746""""""""""
10747
10748This function returns the same values as the libm ``log2`` functions
10749would, and handles error conditions in the same way.
10750
10751'``llvm.fma.*``' Intrinsic
10752^^^^^^^^^^^^^^^^^^^^^^^^^^
10753
10754Syntax:
10755"""""""
10756
10757This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10758floating point or vector of floating point type. Not all targets support
10759all types however.
10760
10761::
10762
10763 declare float @llvm.fma.f32(float %a, float %b, float %c)
10764 declare double @llvm.fma.f64(double %a, double %b, double %c)
10765 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10766 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10767 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10768
10769Overview:
10770"""""""""
10771
10772The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10773operation.
10774
10775Arguments:
10776""""""""""
10777
10778The argument and return value are floating point numbers of the same
10779type.
10780
10781Semantics:
10782""""""""""
10783
10784This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010785would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010786
10787'``llvm.fabs.*``' Intrinsic
10788^^^^^^^^^^^^^^^^^^^^^^^^^^^
10789
10790Syntax:
10791"""""""
10792
10793This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10794floating point or vector of floating point type. Not all targets support
10795all types however.
10796
10797::
10798
10799 declare float @llvm.fabs.f32(float %Val)
10800 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010801 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010802 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010803 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010804
10805Overview:
10806"""""""""
10807
10808The '``llvm.fabs.*``' intrinsics return the absolute value of the
10809operand.
10810
10811Arguments:
10812""""""""""
10813
10814The argument and return value are floating point numbers of the same
10815type.
10816
10817Semantics:
10818""""""""""
10819
10820This function returns the same values as the libm ``fabs`` functions
10821would, and handles error conditions in the same way.
10822
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010823'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010824^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010825
10826Syntax:
10827"""""""
10828
10829This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10830floating point or vector of floating point type. Not all targets support
10831all types however.
10832
10833::
10834
Matt Arsenault64313c92014-10-22 18:25:02 +000010835 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10836 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10837 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10838 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10839 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010840
10841Overview:
10842"""""""""
10843
10844The '``llvm.minnum.*``' intrinsics return the minimum of the two
10845arguments.
10846
10847
10848Arguments:
10849""""""""""
10850
10851The arguments and return value are floating point numbers of the same
10852type.
10853
10854Semantics:
10855""""""""""
10856
10857Follows the IEEE-754 semantics for minNum, which also match for libm's
10858fmin.
10859
10860If either operand is a NaN, returns the other non-NaN operand. Returns
10861NaN only if both operands are NaN. If the operands compare equal,
10862returns a value that compares equal to both operands. This means that
10863fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10864
10865'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010866^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010867
10868Syntax:
10869"""""""
10870
10871This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10872floating point or vector of floating point type. Not all targets support
10873all types however.
10874
10875::
10876
Matt Arsenault64313c92014-10-22 18:25:02 +000010877 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10878 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10879 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10880 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10881 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010882
10883Overview:
10884"""""""""
10885
10886The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10887arguments.
10888
10889
10890Arguments:
10891""""""""""
10892
10893The arguments and return value are floating point numbers of the same
10894type.
10895
10896Semantics:
10897""""""""""
10898Follows the IEEE-754 semantics for maxNum, which also match for libm's
10899fmax.
10900
10901If either operand is a NaN, returns the other non-NaN operand. Returns
10902NaN only if both operands are NaN. If the operands compare equal,
10903returns a value that compares equal to both operands. This means that
10904fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10905
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010906'``llvm.copysign.*``' Intrinsic
10907^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10908
10909Syntax:
10910"""""""
10911
10912This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10913floating point or vector of floating point type. Not all targets support
10914all types however.
10915
10916::
10917
10918 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10919 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10920 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10921 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10922 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10923
10924Overview:
10925"""""""""
10926
10927The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10928first operand and the sign of the second operand.
10929
10930Arguments:
10931""""""""""
10932
10933The arguments and return value are floating point numbers of the same
10934type.
10935
10936Semantics:
10937""""""""""
10938
10939This function returns the same values as the libm ``copysign``
10940functions would, and handles error conditions in the same way.
10941
Sean Silvab084af42012-12-07 10:36:55 +000010942'``llvm.floor.*``' Intrinsic
10943^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10944
10945Syntax:
10946"""""""
10947
10948This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10949floating point or vector of floating point type. Not all targets support
10950all types however.
10951
10952::
10953
10954 declare float @llvm.floor.f32(float %Val)
10955 declare double @llvm.floor.f64(double %Val)
10956 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10957 declare fp128 @llvm.floor.f128(fp128 %Val)
10958 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10959
10960Overview:
10961"""""""""
10962
10963The '``llvm.floor.*``' intrinsics return the floor of the operand.
10964
10965Arguments:
10966""""""""""
10967
10968The argument and return value are floating point numbers of the same
10969type.
10970
10971Semantics:
10972""""""""""
10973
10974This function returns the same values as the libm ``floor`` functions
10975would, and handles error conditions in the same way.
10976
10977'``llvm.ceil.*``' Intrinsic
10978^^^^^^^^^^^^^^^^^^^^^^^^^^^
10979
10980Syntax:
10981"""""""
10982
10983This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10984floating point or vector of floating point type. Not all targets support
10985all types however.
10986
10987::
10988
10989 declare float @llvm.ceil.f32(float %Val)
10990 declare double @llvm.ceil.f64(double %Val)
10991 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10992 declare fp128 @llvm.ceil.f128(fp128 %Val)
10993 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10994
10995Overview:
10996"""""""""
10997
10998The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10999
11000Arguments:
11001""""""""""
11002
11003The argument and return value are floating point numbers of the same
11004type.
11005
11006Semantics:
11007""""""""""
11008
11009This function returns the same values as the libm ``ceil`` functions
11010would, and handles error conditions in the same way.
11011
11012'``llvm.trunc.*``' Intrinsic
11013^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11014
11015Syntax:
11016"""""""
11017
11018This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
11019floating point or vector of floating point type. Not all targets support
11020all types however.
11021
11022::
11023
11024 declare float @llvm.trunc.f32(float %Val)
11025 declare double @llvm.trunc.f64(double %Val)
11026 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
11027 declare fp128 @llvm.trunc.f128(fp128 %Val)
11028 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
11029
11030Overview:
11031"""""""""
11032
11033The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
11034nearest integer not larger in magnitude than the operand.
11035
11036Arguments:
11037""""""""""
11038
11039The argument and return value are floating point numbers of the same
11040type.
11041
11042Semantics:
11043""""""""""
11044
11045This function returns the same values as the libm ``trunc`` functions
11046would, and handles error conditions in the same way.
11047
11048'``llvm.rint.*``' Intrinsic
11049^^^^^^^^^^^^^^^^^^^^^^^^^^^
11050
11051Syntax:
11052"""""""
11053
11054This is an overloaded intrinsic. You can use ``llvm.rint`` on any
11055floating point or vector of floating point type. Not all targets support
11056all types however.
11057
11058::
11059
11060 declare float @llvm.rint.f32(float %Val)
11061 declare double @llvm.rint.f64(double %Val)
11062 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
11063 declare fp128 @llvm.rint.f128(fp128 %Val)
11064 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
11065
11066Overview:
11067"""""""""
11068
11069The '``llvm.rint.*``' intrinsics returns the operand rounded to the
11070nearest integer. It may raise an inexact floating-point exception if the
11071operand isn't an integer.
11072
11073Arguments:
11074""""""""""
11075
11076The argument and return value are floating point numbers of the same
11077type.
11078
11079Semantics:
11080""""""""""
11081
11082This function returns the same values as the libm ``rint`` functions
11083would, and handles error conditions in the same way.
11084
11085'``llvm.nearbyint.*``' Intrinsic
11086^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11087
11088Syntax:
11089"""""""
11090
11091This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
11092floating point or vector of floating point type. Not all targets support
11093all types however.
11094
11095::
11096
11097 declare float @llvm.nearbyint.f32(float %Val)
11098 declare double @llvm.nearbyint.f64(double %Val)
11099 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
11100 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
11101 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
11102
11103Overview:
11104"""""""""
11105
11106The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
11107nearest integer.
11108
11109Arguments:
11110""""""""""
11111
11112The argument and return value are floating point numbers of the same
11113type.
11114
11115Semantics:
11116""""""""""
11117
11118This function returns the same values as the libm ``nearbyint``
11119functions would, and handles error conditions in the same way.
11120
Hal Finkel171817e2013-08-07 22:49:12 +000011121'``llvm.round.*``' Intrinsic
11122^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11123
11124Syntax:
11125"""""""
11126
11127This is an overloaded intrinsic. You can use ``llvm.round`` on any
11128floating point or vector of floating point type. Not all targets support
11129all types however.
11130
11131::
11132
11133 declare float @llvm.round.f32(float %Val)
11134 declare double @llvm.round.f64(double %Val)
11135 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
11136 declare fp128 @llvm.round.f128(fp128 %Val)
11137 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
11138
11139Overview:
11140"""""""""
11141
11142The '``llvm.round.*``' intrinsics returns the operand rounded to the
11143nearest integer.
11144
11145Arguments:
11146""""""""""
11147
11148The argument and return value are floating point numbers of the same
11149type.
11150
11151Semantics:
11152""""""""""
11153
11154This function returns the same values as the libm ``round``
11155functions would, and handles error conditions in the same way.
11156
Sean Silvab084af42012-12-07 10:36:55 +000011157Bit Manipulation Intrinsics
11158---------------------------
11159
11160LLVM provides intrinsics for a few important bit manipulation
11161operations. These allow efficient code generation for some algorithms.
11162
James Molloy90111f72015-11-12 12:29:09 +000011163'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000011164^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000011165
11166Syntax:
11167"""""""
11168
11169This is an overloaded intrinsic function. You can use bitreverse on any
11170integer type.
11171
11172::
11173
11174 declare i16 @llvm.bitreverse.i16(i16 <id>)
11175 declare i32 @llvm.bitreverse.i32(i32 <id>)
11176 declare i64 @llvm.bitreverse.i64(i64 <id>)
11177
11178Overview:
11179"""""""""
11180
11181The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000011182bitpattern of an integer value; for example ``0b10110110`` becomes
11183``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000011184
11185Semantics:
11186""""""""""
11187
Yichao Yu5abf14b2016-11-23 16:25:31 +000011188The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000011189``M`` in the input moved to bit ``N-M`` in the output.
11190
Sean Silvab084af42012-12-07 10:36:55 +000011191'``llvm.bswap.*``' Intrinsics
11192^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11193
11194Syntax:
11195"""""""
11196
11197This is an overloaded intrinsic function. You can use bswap on any
11198integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
11199
11200::
11201
11202 declare i16 @llvm.bswap.i16(i16 <id>)
11203 declare i32 @llvm.bswap.i32(i32 <id>)
11204 declare i64 @llvm.bswap.i64(i64 <id>)
11205
11206Overview:
11207"""""""""
11208
11209The '``llvm.bswap``' family of intrinsics is used to byte swap integer
11210values with an even number of bytes (positive multiple of 16 bits).
11211These are useful for performing operations on data that is not in the
11212target's native byte order.
11213
11214Semantics:
11215""""""""""
11216
11217The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
11218and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
11219intrinsic returns an i32 value that has the four bytes of the input i32
11220swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
11221returned i32 will have its bytes in 3, 2, 1, 0 order. The
11222``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
11223concept to additional even-byte lengths (6 bytes, 8 bytes and more,
11224respectively).
11225
11226'``llvm.ctpop.*``' Intrinsic
11227^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11228
11229Syntax:
11230"""""""
11231
11232This is an overloaded intrinsic. You can use llvm.ctpop on any integer
11233bit width, or on any vector with integer elements. Not all targets
11234support all bit widths or vector types, however.
11235
11236::
11237
11238 declare i8 @llvm.ctpop.i8(i8 <src>)
11239 declare i16 @llvm.ctpop.i16(i16 <src>)
11240 declare i32 @llvm.ctpop.i32(i32 <src>)
11241 declare i64 @llvm.ctpop.i64(i64 <src>)
11242 declare i256 @llvm.ctpop.i256(i256 <src>)
11243 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
11244
11245Overview:
11246"""""""""
11247
11248The '``llvm.ctpop``' family of intrinsics counts the number of bits set
11249in a value.
11250
11251Arguments:
11252""""""""""
11253
11254The only argument is the value to be counted. The argument may be of any
11255integer type, or a vector with integer elements. The return type must
11256match the argument type.
11257
11258Semantics:
11259""""""""""
11260
11261The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
11262each element of a vector.
11263
11264'``llvm.ctlz.*``' Intrinsic
11265^^^^^^^^^^^^^^^^^^^^^^^^^^^
11266
11267Syntax:
11268"""""""
11269
11270This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
11271integer bit width, or any vector whose elements are integers. Not all
11272targets support all bit widths or vector types, however.
11273
11274::
11275
11276 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
11277 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
11278 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
11279 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
11280 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011281 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011282
11283Overview:
11284"""""""""
11285
11286The '``llvm.ctlz``' family of intrinsic functions counts the number of
11287leading zeros in a variable.
11288
11289Arguments:
11290""""""""""
11291
11292The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011293any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011294type must match the first argument type.
11295
11296The second argument must be a constant and is a flag to indicate whether
11297the intrinsic should ensure that a zero as the first argument produces a
11298defined result. Historically some architectures did not provide a
11299defined result for zero values as efficiently, and many algorithms are
11300now predicated on avoiding zero-value inputs.
11301
11302Semantics:
11303""""""""""
11304
11305The '``llvm.ctlz``' intrinsic counts the leading (most significant)
11306zeros in a variable, or within each element of the vector. If
11307``src == 0`` then the result is the size in bits of the type of ``src``
11308if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11309``llvm.ctlz(i32 2) = 30``.
11310
11311'``llvm.cttz.*``' Intrinsic
11312^^^^^^^^^^^^^^^^^^^^^^^^^^^
11313
11314Syntax:
11315"""""""
11316
11317This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
11318integer bit width, or any vector of integer elements. Not all targets
11319support all bit widths or vector types, however.
11320
11321::
11322
11323 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
11324 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
11325 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
11326 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
11327 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011328 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011329
11330Overview:
11331"""""""""
11332
11333The '``llvm.cttz``' family of intrinsic functions counts the number of
11334trailing zeros.
11335
11336Arguments:
11337""""""""""
11338
11339The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011340any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011341type must match the first argument type.
11342
11343The second argument must be a constant and is a flag to indicate whether
11344the intrinsic should ensure that a zero as the first argument produces a
11345defined result. Historically some architectures did not provide a
11346defined result for zero values as efficiently, and many algorithms are
11347now predicated on avoiding zero-value inputs.
11348
11349Semantics:
11350""""""""""
11351
11352The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11353zeros in a variable, or within each element of a vector. If ``src == 0``
11354then the result is the size in bits of the type of ``src`` if
11355``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11356``llvm.cttz(2) = 1``.
11357
Philip Reames34843ae2015-03-05 05:55:55 +000011358.. _int_overflow:
11359
Sean Silvab084af42012-12-07 10:36:55 +000011360Arithmetic with Overflow Intrinsics
11361-----------------------------------
11362
John Regehr6a493f22016-05-12 20:55:09 +000011363LLVM provides intrinsics for fast arithmetic overflow checking.
11364
11365Each of these intrinsics returns a two-element struct. The first
11366element of this struct contains the result of the corresponding
11367arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
11368the result. Therefore, for example, the first element of the struct
11369returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
11370result of a 32-bit ``add`` instruction with the same operands, where
11371the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
11372
11373The second element of the result is an ``i1`` that is 1 if the
11374arithmetic operation overflowed and 0 otherwise. An operation
11375overflows if, for any values of its operands ``A`` and ``B`` and for
11376any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
11377not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
11378``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11379``op`` is the underlying arithmetic operation.
11380
11381The behavior of these intrinsics is well-defined for all argument
11382values.
Sean Silvab084af42012-12-07 10:36:55 +000011383
11384'``llvm.sadd.with.overflow.*``' Intrinsics
11385^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11386
11387Syntax:
11388"""""""
11389
11390This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11391on any integer bit width.
11392
11393::
11394
11395 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11396 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11397 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11398
11399Overview:
11400"""""""""
11401
11402The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11403a signed addition of the two arguments, and indicate whether an overflow
11404occurred during the signed summation.
11405
11406Arguments:
11407""""""""""
11408
11409The arguments (%a and %b) and the first element of the result structure
11410may be of integer types of any bit width, but they must have the same
11411bit width. The second element of the result structure must be of type
11412``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11413addition.
11414
11415Semantics:
11416""""""""""
11417
11418The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011419a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011420first element of which is the signed summation, and the second element
11421of which is a bit specifying if the signed summation resulted in an
11422overflow.
11423
11424Examples:
11425"""""""""
11426
11427.. code-block:: llvm
11428
11429 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11430 %sum = extractvalue {i32, i1} %res, 0
11431 %obit = extractvalue {i32, i1} %res, 1
11432 br i1 %obit, label %overflow, label %normal
11433
11434'``llvm.uadd.with.overflow.*``' Intrinsics
11435^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11436
11437Syntax:
11438"""""""
11439
11440This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11441on any integer bit width.
11442
11443::
11444
11445 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11446 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11447 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11448
11449Overview:
11450"""""""""
11451
11452The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11453an unsigned addition of the two arguments, and indicate whether a carry
11454occurred during the unsigned summation.
11455
11456Arguments:
11457""""""""""
11458
11459The arguments (%a and %b) and the first element of the result structure
11460may be of integer types of any bit width, but they must have the same
11461bit width. The second element of the result structure must be of type
11462``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11463addition.
11464
11465Semantics:
11466""""""""""
11467
11468The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011469an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011470first element of which is the sum, and the second element of which is a
11471bit specifying if the unsigned summation resulted in a carry.
11472
11473Examples:
11474"""""""""
11475
11476.. code-block:: llvm
11477
11478 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11479 %sum = extractvalue {i32, i1} %res, 0
11480 %obit = extractvalue {i32, i1} %res, 1
11481 br i1 %obit, label %carry, label %normal
11482
11483'``llvm.ssub.with.overflow.*``' Intrinsics
11484^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11485
11486Syntax:
11487"""""""
11488
11489This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11490on any integer bit width.
11491
11492::
11493
11494 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11495 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11496 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11497
11498Overview:
11499"""""""""
11500
11501The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11502a signed subtraction of the two arguments, and indicate whether an
11503overflow occurred during the signed subtraction.
11504
11505Arguments:
11506""""""""""
11507
11508The arguments (%a and %b) and the first element of the result structure
11509may be of integer types of any bit width, but they must have the same
11510bit width. The second element of the result structure must be of type
11511``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11512subtraction.
11513
11514Semantics:
11515""""""""""
11516
11517The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011518a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011519first element of which is the subtraction, and the second element of
11520which is a bit specifying if the signed subtraction resulted in an
11521overflow.
11522
11523Examples:
11524"""""""""
11525
11526.. code-block:: llvm
11527
11528 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11529 %sum = extractvalue {i32, i1} %res, 0
11530 %obit = extractvalue {i32, i1} %res, 1
11531 br i1 %obit, label %overflow, label %normal
11532
11533'``llvm.usub.with.overflow.*``' Intrinsics
11534^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11535
11536Syntax:
11537"""""""
11538
11539This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11540on any integer bit width.
11541
11542::
11543
11544 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11545 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11546 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11547
11548Overview:
11549"""""""""
11550
11551The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11552an unsigned subtraction of the two arguments, and indicate whether an
11553overflow occurred during the unsigned subtraction.
11554
11555Arguments:
11556""""""""""
11557
11558The arguments (%a and %b) and the first element of the result structure
11559may be of integer types of any bit width, but they must have the same
11560bit width. The second element of the result structure must be of type
11561``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11562subtraction.
11563
11564Semantics:
11565""""""""""
11566
11567The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011568an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011569the first element of which is the subtraction, and the second element of
11570which is a bit specifying if the unsigned subtraction resulted in an
11571overflow.
11572
11573Examples:
11574"""""""""
11575
11576.. code-block:: llvm
11577
11578 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11579 %sum = extractvalue {i32, i1} %res, 0
11580 %obit = extractvalue {i32, i1} %res, 1
11581 br i1 %obit, label %overflow, label %normal
11582
11583'``llvm.smul.with.overflow.*``' Intrinsics
11584^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11585
11586Syntax:
11587"""""""
11588
11589This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11590on any integer bit width.
11591
11592::
11593
11594 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11595 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11596 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11597
11598Overview:
11599"""""""""
11600
11601The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11602a signed multiplication of the two arguments, and indicate whether an
11603overflow occurred during the signed multiplication.
11604
11605Arguments:
11606""""""""""
11607
11608The arguments (%a and %b) and the first element of the result structure
11609may be of integer types of any bit width, but they must have the same
11610bit width. The second element of the result structure must be of type
11611``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11612multiplication.
11613
11614Semantics:
11615""""""""""
11616
11617The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011618a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011619the first element of which is the multiplication, and the second element
11620of which is a bit specifying if the signed multiplication resulted in an
11621overflow.
11622
11623Examples:
11624"""""""""
11625
11626.. code-block:: llvm
11627
11628 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11629 %sum = extractvalue {i32, i1} %res, 0
11630 %obit = extractvalue {i32, i1} %res, 1
11631 br i1 %obit, label %overflow, label %normal
11632
11633'``llvm.umul.with.overflow.*``' Intrinsics
11634^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11635
11636Syntax:
11637"""""""
11638
11639This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11640on any integer bit width.
11641
11642::
11643
11644 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11645 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11646 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11647
11648Overview:
11649"""""""""
11650
11651The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11652a unsigned multiplication of the two arguments, and indicate whether an
11653overflow occurred during the unsigned multiplication.
11654
11655Arguments:
11656""""""""""
11657
11658The arguments (%a and %b) and the first element of the result structure
11659may be of integer types of any bit width, but they must have the same
11660bit width. The second element of the result structure must be of type
11661``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11662multiplication.
11663
11664Semantics:
11665""""""""""
11666
11667The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011668an unsigned multiplication of the two arguments. They return a structure ---
11669the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011670element of which is a bit specifying if the unsigned multiplication
11671resulted in an overflow.
11672
11673Examples:
11674"""""""""
11675
11676.. code-block:: llvm
11677
11678 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11679 %sum = extractvalue {i32, i1} %res, 0
11680 %obit = extractvalue {i32, i1} %res, 1
11681 br i1 %obit, label %overflow, label %normal
11682
11683Specialised Arithmetic Intrinsics
11684---------------------------------
11685
Owen Anderson1056a922015-07-11 07:01:27 +000011686'``llvm.canonicalize.*``' Intrinsic
11687^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11688
11689Syntax:
11690"""""""
11691
11692::
11693
11694 declare float @llvm.canonicalize.f32(float %a)
11695 declare double @llvm.canonicalize.f64(double %b)
11696
11697Overview:
11698"""""""""
11699
11700The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011701encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011702implementing certain numeric primitives such as frexp. The canonical encoding is
11703defined by IEEE-754-2008 to be:
11704
11705::
11706
11707 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011708 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011709 numbers, infinities, and NaNs, especially in decimal formats.
11710
11711This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011712conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011713according to section 6.2.
11714
11715Examples of non-canonical encodings:
11716
Sean Silvaa1190322015-08-06 22:56:48 +000011717- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011718 converted to a canonical representation per hardware-specific protocol.
11719- Many normal decimal floating point numbers have non-canonical alternative
11720 encodings.
11721- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011722 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011723 a zero of the same sign by this operation.
11724
11725Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11726default exception handling must signal an invalid exception, and produce a
11727quiet NaN result.
11728
11729This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011730that the compiler does not constant fold the operation. Likewise, division by
117311.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011732-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11733
Sean Silvaa1190322015-08-06 22:56:48 +000011734``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011735
11736- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11737- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11738 to ``(x == y)``
11739
11740Additionally, the sign of zero must be conserved:
11741``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11742
11743The payload bits of a NaN must be conserved, with two exceptions.
11744First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011745must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011746usual methods.
11747
11748The canonicalization operation may be optimized away if:
11749
Sean Silvaa1190322015-08-06 22:56:48 +000011750- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011751 floating-point operation that is required by the standard to be canonical.
11752- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011753 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011754
Sean Silvab084af42012-12-07 10:36:55 +000011755'``llvm.fmuladd.*``' Intrinsic
11756^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11757
11758Syntax:
11759"""""""
11760
11761::
11762
11763 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11764 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11765
11766Overview:
11767"""""""""
11768
11769The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011770expressions that can be fused if the code generator determines that (a) the
11771target instruction set has support for a fused operation, and (b) that the
11772fused operation is more efficient than the equivalent, separate pair of mul
11773and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011774
11775Arguments:
11776""""""""""
11777
11778The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11779multiplicands, a and b, and an addend c.
11780
11781Semantics:
11782""""""""""
11783
11784The expression:
11785
11786::
11787
11788 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11789
11790is equivalent to the expression a \* b + c, except that rounding will
11791not be performed between the multiplication and addition steps if the
11792code generator fuses the operations. Fusion is not guaranteed, even if
11793the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011794corresponding llvm.fma.\* intrinsic function should be used
11795instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011796
11797Examples:
11798"""""""""
11799
11800.. code-block:: llvm
11801
Tim Northover675a0962014-06-13 14:24:23 +000011802 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011803
Amara Emersoncf9daa32017-05-09 10:43:25 +000011804
11805Experimental Vector Reduction Intrinsics
11806----------------------------------------
11807
11808Horizontal reductions of vectors can be expressed using the following
11809intrinsics. Each one takes a vector operand as an input and applies its
11810respective operation across all elements of the vector, returning a single
11811scalar result of the same element type.
11812
11813
11814'``llvm.experimental.vector.reduce.add.*``' Intrinsic
11815^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11816
11817Syntax:
11818"""""""
11819
11820::
11821
11822 declare i32 @llvm.experimental.vector.reduce.add.i32.v4i32(<4 x i32> %a)
11823 declare i64 @llvm.experimental.vector.reduce.add.i64.v2i64(<2 x i64> %a)
11824
11825Overview:
11826"""""""""
11827
11828The '``llvm.experimental.vector.reduce.add.*``' intrinsics do an integer ``ADD``
11829reduction of a vector, returning the result as a scalar. The return type matches
11830the element-type of the vector input.
11831
11832Arguments:
11833""""""""""
11834The argument to this intrinsic must be a vector of integer values.
11835
11836'``llvm.experimental.vector.reduce.fadd.*``' Intrinsic
11837^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11838
11839Syntax:
11840"""""""
11841
11842::
11843
11844 declare float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %a)
11845 declare double @llvm.experimental.vector.reduce.fadd.f64.v2f64(double %acc, <2 x double> %a)
11846
11847Overview:
11848"""""""""
11849
11850The '``llvm.experimental.vector.reduce.fadd.*``' intrinsics do a floating point
11851``ADD`` reduction of a vector, returning the result as a scalar. The return type
11852matches the element-type of the vector input.
11853
11854If the intrinsic call has fast-math flags, then the reduction will not preserve
11855the associativity of an equivalent scalarized counterpart. If it does not have
11856fast-math flags, then the reduction will be *ordered*, implying that the
11857operation respects the associativity of a scalarized reduction.
11858
11859
11860Arguments:
11861""""""""""
11862The first argument to this intrinsic is a scalar accumulator value, which is
11863only used when there are no fast-math flags attached. This argument may be undef
11864when fast-math flags are used.
11865
11866The second argument must be a vector of floating point values.
11867
11868Examples:
11869"""""""""
11870
11871.. code-block:: llvm
11872
11873 %fast = call fast float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
11874 %ord = call float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
11875
11876
11877'``llvm.experimental.vector.reduce.mul.*``' Intrinsic
11878^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11879
11880Syntax:
11881"""""""
11882
11883::
11884
11885 declare i32 @llvm.experimental.vector.reduce.mul.i32.v4i32(<4 x i32> %a)
11886 declare i64 @llvm.experimental.vector.reduce.mul.i64.v2i64(<2 x i64> %a)
11887
11888Overview:
11889"""""""""
11890
11891The '``llvm.experimental.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
11892reduction of a vector, returning the result as a scalar. The return type matches
11893the element-type of the vector input.
11894
11895Arguments:
11896""""""""""
11897The argument to this intrinsic must be a vector of integer values.
11898
11899'``llvm.experimental.vector.reduce.fmul.*``' Intrinsic
11900^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11901
11902Syntax:
11903"""""""
11904
11905::
11906
11907 declare float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %a)
11908 declare double @llvm.experimental.vector.reduce.fmul.f64.v2f64(double %acc, <2 x double> %a)
11909
11910Overview:
11911"""""""""
11912
11913The '``llvm.experimental.vector.reduce.fmul.*``' intrinsics do a floating point
11914``MUL`` reduction of a vector, returning the result as a scalar. The return type
11915matches the element-type of the vector input.
11916
11917If the intrinsic call has fast-math flags, then the reduction will not preserve
11918the associativity of an equivalent scalarized counterpart. If it does not have
11919fast-math flags, then the reduction will be *ordered*, implying that the
11920operation respects the associativity of a scalarized reduction.
11921
11922
11923Arguments:
11924""""""""""
11925The first argument to this intrinsic is a scalar accumulator value, which is
11926only used when there are no fast-math flags attached. This argument may be undef
11927when fast-math flags are used.
11928
11929The second argument must be a vector of floating point values.
11930
11931Examples:
11932"""""""""
11933
11934.. code-block:: llvm
11935
11936 %fast = call fast float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
11937 %ord = call float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
11938
11939'``llvm.experimental.vector.reduce.and.*``' Intrinsic
11940^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11941
11942Syntax:
11943"""""""
11944
11945::
11946
11947 declare i32 @llvm.experimental.vector.reduce.and.i32.v4i32(<4 x i32> %a)
11948
11949Overview:
11950"""""""""
11951
11952The '``llvm.experimental.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
11953reduction of a vector, returning the result as a scalar. The return type matches
11954the element-type of the vector input.
11955
11956Arguments:
11957""""""""""
11958The argument to this intrinsic must be a vector of integer values.
11959
11960'``llvm.experimental.vector.reduce.or.*``' Intrinsic
11961^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11962
11963Syntax:
11964"""""""
11965
11966::
11967
11968 declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
11969
11970Overview:
11971"""""""""
11972
11973The '``llvm.experimental.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
11974of a vector, returning the result as a scalar. The return type matches the
11975element-type of the vector input.
11976
11977Arguments:
11978""""""""""
11979The argument to this intrinsic must be a vector of integer values.
11980
11981'``llvm.experimental.vector.reduce.xor.*``' Intrinsic
11982^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11983
11984Syntax:
11985"""""""
11986
11987::
11988
11989 declare i32 @llvm.experimental.vector.reduce.xor.i32.v4i32(<4 x i32> %a)
11990
11991Overview:
11992"""""""""
11993
11994The '``llvm.experimental.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
11995reduction of a vector, returning the result as a scalar. The return type matches
11996the element-type of the vector input.
11997
11998Arguments:
11999""""""""""
12000The argument to this intrinsic must be a vector of integer values.
12001
12002'``llvm.experimental.vector.reduce.smax.*``' Intrinsic
12003^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12004
12005Syntax:
12006"""""""
12007
12008::
12009
12010 declare i32 @llvm.experimental.vector.reduce.smax.i32.v4i32(<4 x i32> %a)
12011
12012Overview:
12013"""""""""
12014
12015The '``llvm.experimental.vector.reduce.smax.*``' intrinsics do a signed integer
12016``MAX`` reduction of a vector, returning the result as a scalar. The return type
12017matches the element-type of the vector input.
12018
12019Arguments:
12020""""""""""
12021The argument to this intrinsic must be a vector of integer values.
12022
12023'``llvm.experimental.vector.reduce.smin.*``' Intrinsic
12024^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12025
12026Syntax:
12027"""""""
12028
12029::
12030
12031 declare i32 @llvm.experimental.vector.reduce.smin.i32.v4i32(<4 x i32> %a)
12032
12033Overview:
12034"""""""""
12035
12036The '``llvm.experimental.vector.reduce.smin.*``' intrinsics do a signed integer
12037``MIN`` reduction of a vector, returning the result as a scalar. The return type
12038matches the element-type of the vector input.
12039
12040Arguments:
12041""""""""""
12042The argument to this intrinsic must be a vector of integer values.
12043
12044'``llvm.experimental.vector.reduce.umax.*``' Intrinsic
12045^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12046
12047Syntax:
12048"""""""
12049
12050::
12051
12052 declare i32 @llvm.experimental.vector.reduce.umax.i32.v4i32(<4 x i32> %a)
12053
12054Overview:
12055"""""""""
12056
12057The '``llvm.experimental.vector.reduce.umax.*``' intrinsics do an unsigned
12058integer ``MAX`` reduction of a vector, returning the result as a scalar. The
12059return type matches the element-type of the vector input.
12060
12061Arguments:
12062""""""""""
12063The argument to this intrinsic must be a vector of integer values.
12064
12065'``llvm.experimental.vector.reduce.umin.*``' Intrinsic
12066^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12067
12068Syntax:
12069"""""""
12070
12071::
12072
12073 declare i32 @llvm.experimental.vector.reduce.umin.i32.v4i32(<4 x i32> %a)
12074
12075Overview:
12076"""""""""
12077
12078The '``llvm.experimental.vector.reduce.umin.*``' intrinsics do an unsigned
12079integer ``MIN`` reduction of a vector, returning the result as a scalar. The
12080return type matches the element-type of the vector input.
12081
12082Arguments:
12083""""""""""
12084The argument to this intrinsic must be a vector of integer values.
12085
12086'``llvm.experimental.vector.reduce.fmax.*``' Intrinsic
12087^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12088
12089Syntax:
12090"""""""
12091
12092::
12093
12094 declare float @llvm.experimental.vector.reduce.fmax.f32.v4f32(<4 x float> %a)
12095 declare double @llvm.experimental.vector.reduce.fmax.f64.v2f64(<2 x double> %a)
12096
12097Overview:
12098"""""""""
12099
12100The '``llvm.experimental.vector.reduce.fmax.*``' intrinsics do a floating point
12101``MAX`` reduction of a vector, returning the result as a scalar. The return type
12102matches the element-type of the vector input.
12103
12104If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12105assume that NaNs are not present in the input vector.
12106
12107Arguments:
12108""""""""""
12109The argument to this intrinsic must be a vector of floating point values.
12110
12111'``llvm.experimental.vector.reduce.fmin.*``' Intrinsic
12112^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12113
12114Syntax:
12115"""""""
12116
12117::
12118
12119 declare float @llvm.experimental.vector.reduce.fmin.f32.v4f32(<4 x float> %a)
12120 declare double @llvm.experimental.vector.reduce.fmin.f64.v2f64(<2 x double> %a)
12121
12122Overview:
12123"""""""""
12124
12125The '``llvm.experimental.vector.reduce.fmin.*``' intrinsics do a floating point
12126``MIN`` reduction of a vector, returning the result as a scalar. The return type
12127matches the element-type of the vector input.
12128
12129If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12130assume that NaNs are not present in the input vector.
12131
12132Arguments:
12133""""""""""
12134The argument to this intrinsic must be a vector of floating point values.
12135
Sean Silvab084af42012-12-07 10:36:55 +000012136Half Precision Floating Point Intrinsics
12137----------------------------------------
12138
12139For most target platforms, half precision floating point is a
12140storage-only format. This means that it is a dense encoding (in memory)
12141but does not support computation in the format.
12142
12143This means that code must first load the half-precision floating point
12144value as an i16, then convert it to float with
12145:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
12146then be performed on the float value (including extending to double
12147etc). To store the value back to memory, it is first converted to float
12148if needed, then converted to i16 with
12149:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
12150i16 value.
12151
12152.. _int_convert_to_fp16:
12153
12154'``llvm.convert.to.fp16``' Intrinsic
12155^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12156
12157Syntax:
12158"""""""
12159
12160::
12161
Tim Northoverfd7e4242014-07-17 10:51:23 +000012162 declare i16 @llvm.convert.to.fp16.f32(float %a)
12163 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000012164
12165Overview:
12166"""""""""
12167
Tim Northoverfd7e4242014-07-17 10:51:23 +000012168The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
12169conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000012170
12171Arguments:
12172""""""""""
12173
12174The intrinsic function contains single argument - the value to be
12175converted.
12176
12177Semantics:
12178""""""""""
12179
Tim Northoverfd7e4242014-07-17 10:51:23 +000012180The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
12181conventional floating point format to half precision floating point format. The
12182return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000012183
12184Examples:
12185"""""""""
12186
12187.. code-block:: llvm
12188
Tim Northoverfd7e4242014-07-17 10:51:23 +000012189 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000012190 store i16 %res, i16* @x, align 2
12191
12192.. _int_convert_from_fp16:
12193
12194'``llvm.convert.from.fp16``' Intrinsic
12195^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12196
12197Syntax:
12198"""""""
12199
12200::
12201
Tim Northoverfd7e4242014-07-17 10:51:23 +000012202 declare float @llvm.convert.from.fp16.f32(i16 %a)
12203 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012204
12205Overview:
12206"""""""""
12207
12208The '``llvm.convert.from.fp16``' intrinsic function performs a
12209conversion from half precision floating point format to single precision
12210floating point format.
12211
12212Arguments:
12213""""""""""
12214
12215The intrinsic function contains single argument - the value to be
12216converted.
12217
12218Semantics:
12219""""""""""
12220
12221The '``llvm.convert.from.fp16``' intrinsic function performs a
12222conversion from half single precision floating point format to single
12223precision floating point format. The input half-float value is
12224represented by an ``i16`` value.
12225
12226Examples:
12227"""""""""
12228
12229.. code-block:: llvm
12230
David Blaikiec7aabbb2015-03-04 22:06:14 +000012231 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000012232 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012233
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000012234.. _dbg_intrinsics:
12235
Sean Silvab084af42012-12-07 10:36:55 +000012236Debugger Intrinsics
12237-------------------
12238
12239The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
12240prefix), are described in the `LLVM Source Level
12241Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
12242document.
12243
12244Exception Handling Intrinsics
12245-----------------------------
12246
12247The LLVM exception handling intrinsics (which all start with
12248``llvm.eh.`` prefix), are described in the `LLVM Exception
12249Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
12250
12251.. _int_trampoline:
12252
12253Trampoline Intrinsics
12254---------------------
12255
12256These intrinsics make it possible to excise one parameter, marked with
12257the :ref:`nest <nest>` attribute, from a function. The result is a
12258callable function pointer lacking the nest parameter - the caller does
12259not need to provide a value for it. Instead, the value to use is stored
12260in advance in a "trampoline", a block of memory usually allocated on the
12261stack, which also contains code to splice the nest value into the
12262argument list. This is used to implement the GCC nested function address
12263extension.
12264
12265For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
12266then the resulting function pointer has signature ``i32 (i32, i32)*``.
12267It can be created as follows:
12268
12269.. code-block:: llvm
12270
12271 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000012272 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000012273 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
12274 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
12275 %fp = bitcast i8* %p to i32 (i32, i32)*
12276
12277The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
12278``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
12279
12280.. _int_it:
12281
12282'``llvm.init.trampoline``' Intrinsic
12283^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12284
12285Syntax:
12286"""""""
12287
12288::
12289
12290 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
12291
12292Overview:
12293"""""""""
12294
12295This fills the memory pointed to by ``tramp`` with executable code,
12296turning it into a trampoline.
12297
12298Arguments:
12299""""""""""
12300
12301The ``llvm.init.trampoline`` intrinsic takes three arguments, all
12302pointers. The ``tramp`` argument must point to a sufficiently large and
12303sufficiently aligned block of memory; this memory is written to by the
12304intrinsic. Note that the size and the alignment are target-specific -
12305LLVM currently provides no portable way of determining them, so a
12306front-end that generates this intrinsic needs to have some
12307target-specific knowledge. The ``func`` argument must hold a function
12308bitcast to an ``i8*``.
12309
12310Semantics:
12311""""""""""
12312
12313The block of memory pointed to by ``tramp`` is filled with target
12314dependent code, turning it into a function. Then ``tramp`` needs to be
12315passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
12316be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
12317function's signature is the same as that of ``func`` with any arguments
12318marked with the ``nest`` attribute removed. At most one such ``nest``
12319argument is allowed, and it must be of pointer type. Calling the new
12320function is equivalent to calling ``func`` with the same argument list,
12321but with ``nval`` used for the missing ``nest`` argument. If, after
12322calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
12323modified, then the effect of any later call to the returned function
12324pointer is undefined.
12325
12326.. _int_at:
12327
12328'``llvm.adjust.trampoline``' Intrinsic
12329^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12330
12331Syntax:
12332"""""""
12333
12334::
12335
12336 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
12337
12338Overview:
12339"""""""""
12340
12341This performs any required machine-specific adjustment to the address of
12342a trampoline (passed as ``tramp``).
12343
12344Arguments:
12345""""""""""
12346
12347``tramp`` must point to a block of memory which already has trampoline
12348code filled in by a previous call to
12349:ref:`llvm.init.trampoline <int_it>`.
12350
12351Semantics:
12352""""""""""
12353
12354On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012355different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000012356intrinsic returns the executable address corresponding to ``tramp``
12357after performing the required machine specific adjustments. The pointer
12358returned can then be :ref:`bitcast and executed <int_trampoline>`.
12359
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012360.. _int_mload_mstore:
12361
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012362Masked Vector Load and Store Intrinsics
12363---------------------------------------
12364
12365LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
12366
12367.. _int_mload:
12368
12369'``llvm.masked.load.*``' Intrinsics
12370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12371
12372Syntax:
12373"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012374This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012375
12376::
12377
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012378 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12379 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012380 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012381 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012382 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012383 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012384
12385Overview:
12386"""""""""
12387
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012388Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012389
12390
12391Arguments:
12392""""""""""
12393
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012394The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012395
12396
12397Semantics:
12398""""""""""
12399
12400The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
12401The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
12402
12403
12404::
12405
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012406 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012407
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012408 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000012409 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012410 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012411
12412.. _int_mstore:
12413
12414'``llvm.masked.store.*``' Intrinsics
12415^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12416
12417Syntax:
12418"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012419This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012420
12421::
12422
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012423 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
12424 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012425 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012426 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012427 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012428 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012429
12430Overview:
12431"""""""""
12432
12433Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12434
12435Arguments:
12436""""""""""
12437
12438The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12439
12440
12441Semantics:
12442""""""""""
12443
12444The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
12445The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
12446
12447::
12448
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012449 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012450
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012451 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000012452 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012453 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
12454 store <16 x float> %res, <16 x float>* %ptr, align 4
12455
12456
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012457Masked Vector Gather and Scatter Intrinsics
12458-------------------------------------------
12459
12460LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
12461
12462.. _int_mgather:
12463
12464'``llvm.masked.gather.*``' Intrinsics
12465^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12466
12467Syntax:
12468"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012469This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012470
12471::
12472
Elad Cohenef5798a2017-05-03 12:28:54 +000012473 declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12474 declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64 (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
12475 declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012476
12477Overview:
12478"""""""""
12479
12480Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
12481
12482
12483Arguments:
12484""""""""""
12485
12486The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
12487
12488
12489Semantics:
12490""""""""""
12491
12492The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
12493The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
12494
12495
12496::
12497
Elad Cohenef5798a2017-05-03 12:28:54 +000012498 %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012499
12500 ;; The gather with all-true mask is equivalent to the following instruction sequence
12501 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
12502 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
12503 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
12504 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
12505
12506 %val0 = load double, double* %ptr0, align 8
12507 %val1 = load double, double* %ptr1, align 8
12508 %val2 = load double, double* %ptr2, align 8
12509 %val3 = load double, double* %ptr3, align 8
12510
12511 %vec0 = insertelement <4 x double>undef, %val0, 0
12512 %vec01 = insertelement <4 x double>%vec0, %val1, 1
12513 %vec012 = insertelement <4 x double>%vec01, %val2, 2
12514 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
12515
12516.. _int_mscatter:
12517
12518'``llvm.masked.scatter.*``' Intrinsics
12519^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12520
12521Syntax:
12522"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012523This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012524
12525::
12526
Elad Cohenef5798a2017-05-03 12:28:54 +000012527 declare void @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
12528 declare void @llvm.masked.scatter.v16f32.v16p1f32 (<16 x float> <value>, <16 x float addrspace(1)*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
12529 declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012530
12531Overview:
12532"""""""""
12533
12534Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12535
12536Arguments:
12537""""""""""
12538
12539The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12540
12541
12542Semantics:
12543""""""""""
12544
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000012545The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012546
12547::
12548
Sylvestre Ledru84666a12016-02-14 20:16:22 +000012549 ;; This instruction unconditionally stores data vector in multiple addresses
Elad Cohenef5798a2017-05-03 12:28:54 +000012550 call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012551
12552 ;; It is equivalent to a list of scalar stores
12553 %val0 = extractelement <8 x i32> %value, i32 0
12554 %val1 = extractelement <8 x i32> %value, i32 1
12555 ..
12556 %val7 = extractelement <8 x i32> %value, i32 7
12557 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
12558 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
12559 ..
12560 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
12561 ;; Note: the order of the following stores is important when they overlap:
12562 store i32 %val0, i32* %ptr0, align 4
12563 store i32 %val1, i32* %ptr1, align 4
12564 ..
12565 store i32 %val7, i32* %ptr7, align 4
12566
12567
Sean Silvab084af42012-12-07 10:36:55 +000012568Memory Use Markers
12569------------------
12570
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012571This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000012572memory objects and ranges where variables are immutable.
12573
Reid Klecknera534a382013-12-19 02:14:12 +000012574.. _int_lifestart:
12575
Sean Silvab084af42012-12-07 10:36:55 +000012576'``llvm.lifetime.start``' Intrinsic
12577^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12578
12579Syntax:
12580"""""""
12581
12582::
12583
12584 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
12585
12586Overview:
12587"""""""""
12588
12589The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
12590object's lifetime.
12591
12592Arguments:
12593""""""""""
12594
12595The first argument is a constant integer representing the size of the
12596object, or -1 if it is variable sized. The second argument is a pointer
12597to the object.
12598
12599Semantics:
12600""""""""""
12601
12602This intrinsic indicates that before this point in the code, the value
12603of the memory pointed to by ``ptr`` is dead. This means that it is known
12604to never be used and has an undefined value. A load from the pointer
12605that precedes this intrinsic can be replaced with ``'undef'``.
12606
Reid Klecknera534a382013-12-19 02:14:12 +000012607.. _int_lifeend:
12608
Sean Silvab084af42012-12-07 10:36:55 +000012609'``llvm.lifetime.end``' Intrinsic
12610^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12611
12612Syntax:
12613"""""""
12614
12615::
12616
12617 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
12618
12619Overview:
12620"""""""""
12621
12622The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
12623object's lifetime.
12624
12625Arguments:
12626""""""""""
12627
12628The first argument is a constant integer representing the size of the
12629object, or -1 if it is variable sized. The second argument is a pointer
12630to the object.
12631
12632Semantics:
12633""""""""""
12634
12635This intrinsic indicates that after this point in the code, the value of
12636the memory pointed to by ``ptr`` is dead. This means that it is known to
12637never be used and has an undefined value. Any stores into the memory
12638object following this intrinsic may be removed as dead.
12639
12640'``llvm.invariant.start``' Intrinsic
12641^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12642
12643Syntax:
12644"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012645This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012646
12647::
12648
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012649 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012650
12651Overview:
12652"""""""""
12653
12654The '``llvm.invariant.start``' intrinsic specifies that the contents of
12655a memory object will not change.
12656
12657Arguments:
12658""""""""""
12659
12660The first argument is a constant integer representing the size of the
12661object, or -1 if it is variable sized. The second argument is a pointer
12662to the object.
12663
12664Semantics:
12665""""""""""
12666
12667This intrinsic indicates that until an ``llvm.invariant.end`` that uses
12668the return value, the referenced memory location is constant and
12669unchanging.
12670
12671'``llvm.invariant.end``' Intrinsic
12672^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12673
12674Syntax:
12675"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012676This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012677
12678::
12679
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012680 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012681
12682Overview:
12683"""""""""
12684
12685The '``llvm.invariant.end``' intrinsic specifies that the contents of a
12686memory object are mutable.
12687
12688Arguments:
12689""""""""""
12690
12691The first argument is the matching ``llvm.invariant.start`` intrinsic.
12692The second argument is a constant integer representing the size of the
12693object, or -1 if it is variable sized and the third argument is a
12694pointer to the object.
12695
12696Semantics:
12697""""""""""
12698
12699This intrinsic indicates that the memory is mutable again.
12700
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012701'``llvm.invariant.group.barrier``' Intrinsic
12702^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12703
12704Syntax:
12705"""""""
12706
12707::
12708
12709 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
12710
12711Overview:
12712"""""""""
12713
12714The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
12715established by invariant.group metadata no longer holds, to obtain a new pointer
12716value that does not carry the invariant information.
12717
12718
12719Arguments:
12720""""""""""
12721
12722The ``llvm.invariant.group.barrier`` takes only one argument, which is
12723the pointer to the memory for which the ``invariant.group`` no longer holds.
12724
12725Semantics:
12726""""""""""
12727
12728Returns another pointer that aliases its argument but which is considered different
12729for the purposes of ``load``/``store`` ``invariant.group`` metadata.
12730
Andrew Kaylora0a11642017-01-26 23:27:59 +000012731Constrained Floating Point Intrinsics
12732-------------------------------------
12733
12734These intrinsics are used to provide special handling of floating point
12735operations when specific rounding mode or floating point exception behavior is
12736required. By default, LLVM optimization passes assume that the rounding mode is
12737round-to-nearest and that floating point exceptions will not be monitored.
12738Constrained FP intrinsics are used to support non-default rounding modes and
12739accurately preserve exception behavior without compromising LLVM's ability to
12740optimize FP code when the default behavior is used.
12741
12742Each of these intrinsics corresponds to a normal floating point operation. The
12743first two arguments and the return value are the same as the corresponding FP
12744operation.
12745
12746The third argument is a metadata argument specifying the rounding mode to be
12747assumed. This argument must be one of the following strings:
12748
12749::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012750
Andrew Kaylora0a11642017-01-26 23:27:59 +000012751 "round.dynamic"
12752 "round.tonearest"
12753 "round.downward"
12754 "round.upward"
12755 "round.towardzero"
12756
12757If this argument is "round.dynamic" optimization passes must assume that the
12758rounding mode is unknown and may change at runtime. No transformations that
12759depend on rounding mode may be performed in this case.
12760
12761The other possible values for the rounding mode argument correspond to the
12762similarly named IEEE rounding modes. If the argument is any of these values
12763optimization passes may perform transformations as long as they are consistent
12764with the specified rounding mode.
12765
12766For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
12767"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
12768'x-0' should evaluate to '-0' when rounding downward. However, this
12769transformation is legal for all other rounding modes.
12770
12771For values other than "round.dynamic" optimization passes may assume that the
12772actual runtime rounding mode (as defined in a target-specific manner) matches
12773the specified rounding mode, but this is not guaranteed. Using a specific
12774non-dynamic rounding mode which does not match the actual rounding mode at
12775runtime results in undefined behavior.
12776
12777The fourth argument to the constrained floating point intrinsics specifies the
12778required exception behavior. This argument must be one of the following
12779strings:
12780
12781::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012782
Andrew Kaylora0a11642017-01-26 23:27:59 +000012783 "fpexcept.ignore"
12784 "fpexcept.maytrap"
12785 "fpexcept.strict"
12786
12787If this argument is "fpexcept.ignore" optimization passes may assume that the
12788exception status flags will not be read and that floating point exceptions will
12789be masked. This allows transformations to be performed that may change the
12790exception semantics of the original code. For example, FP operations may be
12791speculatively executed in this case whereas they must not be for either of the
12792other possible values of this argument.
12793
12794If the exception behavior argument is "fpexcept.maytrap" optimization passes
12795must avoid transformations that may raise exceptions that would not have been
12796raised by the original code (such as speculatively executing FP operations), but
12797passes are not required to preserve all exceptions that are implied by the
12798original code. For example, exceptions may be potentially hidden by constant
12799folding.
12800
12801If the exception behavior argument is "fpexcept.strict" all transformations must
12802strictly preserve the floating point exception semantics of the original code.
12803Any FP exception that would have been raised by the original code must be raised
12804by the transformed code, and the transformed code must not raise any FP
12805exceptions that would not have been raised by the original code. This is the
12806exception behavior argument that will be used if the code being compiled reads
12807the FP exception status flags, but this mode can also be used with code that
12808unmasks FP exceptions.
12809
12810The number and order of floating point exceptions is NOT guaranteed. For
12811example, a series of FP operations that each may raise exceptions may be
12812vectorized into a single instruction that raises each unique exception a single
12813time.
12814
12815
12816'``llvm.experimental.constrained.fadd``' Intrinsic
12817^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12818
12819Syntax:
12820"""""""
12821
12822::
12823
12824 declare <type>
12825 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
12826 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012827 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012828
12829Overview:
12830"""""""""
12831
12832The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
12833two operands.
12834
12835
12836Arguments:
12837""""""""""
12838
12839The first two arguments to the '``llvm.experimental.constrained.fadd``'
12840intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12841of floating point values. Both arguments must have identical types.
12842
12843The third and fourth arguments specify the rounding mode and exception
12844behavior as described above.
12845
12846Semantics:
12847""""""""""
12848
12849The value produced is the floating point sum of the two value operands and has
12850the same type as the operands.
12851
12852
12853'``llvm.experimental.constrained.fsub``' Intrinsic
12854^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12855
12856Syntax:
12857"""""""
12858
12859::
12860
12861 declare <type>
12862 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
12863 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012864 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012865
12866Overview:
12867"""""""""
12868
12869The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
12870of its two operands.
12871
12872
12873Arguments:
12874""""""""""
12875
12876The first two arguments to the '``llvm.experimental.constrained.fsub``'
12877intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12878of floating point values. Both arguments must have identical types.
12879
12880The third and fourth arguments specify the rounding mode and exception
12881behavior as described above.
12882
12883Semantics:
12884""""""""""
12885
12886The value produced is the floating point difference of the two value operands
12887and has the same type as the operands.
12888
12889
12890'``llvm.experimental.constrained.fmul``' Intrinsic
12891^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12892
12893Syntax:
12894"""""""
12895
12896::
12897
12898 declare <type>
12899 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
12900 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012901 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012902
12903Overview:
12904"""""""""
12905
12906The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
12907its two operands.
12908
12909
12910Arguments:
12911""""""""""
12912
12913The first two arguments to the '``llvm.experimental.constrained.fmul``'
12914intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12915of floating point values. Both arguments must have identical types.
12916
12917The third and fourth arguments specify the rounding mode and exception
12918behavior as described above.
12919
12920Semantics:
12921""""""""""
12922
12923The value produced is the floating point product of the two value operands and
12924has the same type as the operands.
12925
12926
12927'``llvm.experimental.constrained.fdiv``' Intrinsic
12928^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12929
12930Syntax:
12931"""""""
12932
12933::
12934
12935 declare <type>
12936 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
12937 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012938 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012939
12940Overview:
12941"""""""""
12942
12943The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
12944its two operands.
12945
12946
12947Arguments:
12948""""""""""
12949
12950The first two arguments to the '``llvm.experimental.constrained.fdiv``'
12951intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12952of floating point values. Both arguments must have identical types.
12953
12954The third and fourth arguments specify the rounding mode and exception
12955behavior as described above.
12956
12957Semantics:
12958""""""""""
12959
12960The value produced is the floating point quotient of the two value operands and
12961has the same type as the operands.
12962
12963
12964'``llvm.experimental.constrained.frem``' Intrinsic
12965^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12966
12967Syntax:
12968"""""""
12969
12970::
12971
12972 declare <type>
12973 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
12974 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012975 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012976
12977Overview:
12978"""""""""
12979
12980The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
12981from the division of its two operands.
12982
12983
12984Arguments:
12985""""""""""
12986
12987The first two arguments to the '``llvm.experimental.constrained.frem``'
12988intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12989of floating point values. Both arguments must have identical types.
12990
12991The third and fourth arguments specify the rounding mode and exception
12992behavior as described above. The rounding mode argument has no effect, since
12993the result of frem is never rounded, but the argument is included for
12994consistency with the other constrained floating point intrinsics.
12995
12996Semantics:
12997""""""""""
12998
12999The value produced is the floating point remainder from the division of the two
13000value operands and has the same type as the operands. The remainder has the
13001same sign as the dividend.
13002
13003
Andrew Kaylorf4660012017-05-25 21:31:00 +000013004Constrained libm-equivalent Intrinsics
13005--------------------------------------
13006
13007In addition to the basic floating point operations for which constrained
13008intrinsics are described above, there are constrained versions of various
13009operations which provide equivalent behavior to a corresponding libm function.
13010These intrinsics allow the precise behavior of these operations with respect to
13011rounding mode and exception behavior to be controlled.
13012
13013As with the basic constrained floating point intrinsics, the rounding mode
13014and exception behavior arguments only control the behavior of the optimizer.
13015They do not change the runtime floating point environment.
13016
13017
13018'``llvm.experimental.constrained.sqrt``' Intrinsic
13019^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13020
13021Syntax:
13022"""""""
13023
13024::
13025
13026 declare <type>
13027 @llvm.experimental.constrained.sqrt(<type> <op1>,
13028 metadata <rounding mode>,
13029 metadata <exception behavior>)
13030
13031Overview:
13032"""""""""
13033
13034The '``llvm.experimental.constrained.sqrt``' intrinsic returns the square root
13035of the specified value, returning the same value as the libm '``sqrt``'
13036functions would, but without setting ``errno``.
13037
13038Arguments:
13039""""""""""
13040
13041The first argument and the return type are floating point numbers of the same
13042type.
13043
13044The second and third arguments specify the rounding mode and exception
13045behavior as described above.
13046
13047Semantics:
13048""""""""""
13049
13050This function returns the nonnegative square root of the specified value.
13051If the value is less than negative zero, a floating point exception occurs
13052and the the return value is architecture specific.
13053
13054
13055'``llvm.experimental.constrained.pow``' Intrinsic
13056^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13057
13058Syntax:
13059"""""""
13060
13061::
13062
13063 declare <type>
13064 @llvm.experimental.constrained.pow(<type> <op1>, <type> <op2>,
13065 metadata <rounding mode>,
13066 metadata <exception behavior>)
13067
13068Overview:
13069"""""""""
13070
13071The '``llvm.experimental.constrained.pow``' intrinsic returns the first operand
13072raised to the (positive or negative) power specified by the second operand.
13073
13074Arguments:
13075""""""""""
13076
13077The first two arguments and the return value are floating point numbers of the
13078same type. The second argument specifies the power to which the first argument
13079should be raised.
13080
13081The third and fourth arguments specify the rounding mode and exception
13082behavior as described above.
13083
13084Semantics:
13085""""""""""
13086
13087This function returns the first value raised to the second power,
13088returning the same values as the libm ``pow`` functions would, and
13089handles error conditions in the same way.
13090
13091
13092'``llvm.experimental.constrained.powi``' Intrinsic
13093^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13094
13095Syntax:
13096"""""""
13097
13098::
13099
13100 declare <type>
13101 @llvm.experimental.constrained.powi(<type> <op1>, i32 <op2>,
13102 metadata <rounding mode>,
13103 metadata <exception behavior>)
13104
13105Overview:
13106"""""""""
13107
13108The '``llvm.experimental.constrained.powi``' intrinsic returns the first operand
13109raised to the (positive or negative) power specified by the second operand. The
13110order of evaluation of multiplications is not defined. When a vector of floating
13111point type is used, the second argument remains a scalar integer value.
13112
13113
13114Arguments:
13115""""""""""
13116
13117The first argument and the return value are floating point numbers of the same
13118type. The second argument is a 32-bit signed integer specifying the power to
13119which the first argument should be raised.
13120
13121The third and fourth arguments specify the rounding mode and exception
13122behavior as described above.
13123
13124Semantics:
13125""""""""""
13126
13127This function returns the first value raised to the second power with an
13128unspecified sequence of rounding operations.
13129
13130
13131'``llvm.experimental.constrained.sin``' Intrinsic
13132^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13133
13134Syntax:
13135"""""""
13136
13137::
13138
13139 declare <type>
13140 @llvm.experimental.constrained.sin(<type> <op1>,
13141 metadata <rounding mode>,
13142 metadata <exception behavior>)
13143
13144Overview:
13145"""""""""
13146
13147The '``llvm.experimental.constrained.sin``' intrinsic returns the sine of the
13148first operand.
13149
13150Arguments:
13151""""""""""
13152
13153The first argument and the return type are floating point numbers of the same
13154type.
13155
13156The second and third arguments specify the rounding mode and exception
13157behavior as described above.
13158
13159Semantics:
13160""""""""""
13161
13162This function returns the sine of the specified operand, returning the
13163same values as the libm ``sin`` functions would, and handles error
13164conditions in the same way.
13165
13166
13167'``llvm.experimental.constrained.cos``' Intrinsic
13168^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13169
13170Syntax:
13171"""""""
13172
13173::
13174
13175 declare <type>
13176 @llvm.experimental.constrained.cos(<type> <op1>,
13177 metadata <rounding mode>,
13178 metadata <exception behavior>)
13179
13180Overview:
13181"""""""""
13182
13183The '``llvm.experimental.constrained.cos``' intrinsic returns the cosine of the
13184first operand.
13185
13186Arguments:
13187""""""""""
13188
13189The first argument and the return type are floating point numbers of the same
13190type.
13191
13192The second and third arguments specify the rounding mode and exception
13193behavior as described above.
13194
13195Semantics:
13196""""""""""
13197
13198This function returns the cosine of the specified operand, returning the
13199same values as the libm ``cos`` functions would, and handles error
13200conditions in the same way.
13201
13202
13203'``llvm.experimental.constrained.exp``' Intrinsic
13204^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13205
13206Syntax:
13207"""""""
13208
13209::
13210
13211 declare <type>
13212 @llvm.experimental.constrained.exp(<type> <op1>,
13213 metadata <rounding mode>,
13214 metadata <exception behavior>)
13215
13216Overview:
13217"""""""""
13218
13219The '``llvm.experimental.constrained.exp``' intrinsic computes the base-e
13220exponential of the specified value.
13221
13222Arguments:
13223""""""""""
13224
13225The first argument and the return value are floating point numbers of the same
13226type.
13227
13228The second and third arguments specify the rounding mode and exception
13229behavior as described above.
13230
13231Semantics:
13232""""""""""
13233
13234This function returns the same values as the libm ``exp`` functions
13235would, and handles error conditions in the same way.
13236
13237
13238'``llvm.experimental.constrained.exp2``' Intrinsic
13239^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13240
13241Syntax:
13242"""""""
13243
13244::
13245
13246 declare <type>
13247 @llvm.experimental.constrained.exp2(<type> <op1>,
13248 metadata <rounding mode>,
13249 metadata <exception behavior>)
13250
13251Overview:
13252"""""""""
13253
13254The '``llvm.experimental.constrained.exp2``' intrinsic computes the base-2
13255exponential of the specified value.
13256
13257
13258Arguments:
13259""""""""""
13260
13261The first argument and the return value are floating point numbers of the same
13262type.
13263
13264The second and third arguments specify the rounding mode and exception
13265behavior as described above.
13266
13267Semantics:
13268""""""""""
13269
13270This function returns the same values as the libm ``exp2`` functions
13271would, and handles error conditions in the same way.
13272
13273
13274'``llvm.experimental.constrained.log``' Intrinsic
13275^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13276
13277Syntax:
13278"""""""
13279
13280::
13281
13282 declare <type>
13283 @llvm.experimental.constrained.log(<type> <op1>,
13284 metadata <rounding mode>,
13285 metadata <exception behavior>)
13286
13287Overview:
13288"""""""""
13289
13290The '``llvm.experimental.constrained.log``' intrinsic computes the base-e
13291logarithm of the specified value.
13292
13293Arguments:
13294""""""""""
13295
13296The first argument and the return value are floating point numbers of the same
13297type.
13298
13299The second and third arguments specify the rounding mode and exception
13300behavior as described above.
13301
13302
13303Semantics:
13304""""""""""
13305
13306This function returns the same values as the libm ``log`` functions
13307would, and handles error conditions in the same way.
13308
13309
13310'``llvm.experimental.constrained.log10``' Intrinsic
13311^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13312
13313Syntax:
13314"""""""
13315
13316::
13317
13318 declare <type>
13319 @llvm.experimental.constrained.log10(<type> <op1>,
13320 metadata <rounding mode>,
13321 metadata <exception behavior>)
13322
13323Overview:
13324"""""""""
13325
13326The '``llvm.experimental.constrained.log10``' intrinsic computes the base-10
13327logarithm of the specified value.
13328
13329Arguments:
13330""""""""""
13331
13332The first argument and the return value are floating point numbers of the same
13333type.
13334
13335The second and third arguments specify the rounding mode and exception
13336behavior as described above.
13337
13338Semantics:
13339""""""""""
13340
13341This function returns the same values as the libm ``log10`` functions
13342would, and handles error conditions in the same way.
13343
13344
13345'``llvm.experimental.constrained.log2``' Intrinsic
13346^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13347
13348Syntax:
13349"""""""
13350
13351::
13352
13353 declare <type>
13354 @llvm.experimental.constrained.log2(<type> <op1>,
13355 metadata <rounding mode>,
13356 metadata <exception behavior>)
13357
13358Overview:
13359"""""""""
13360
13361The '``llvm.experimental.constrained.log2``' intrinsic computes the base-2
13362logarithm of the specified value.
13363
13364Arguments:
13365""""""""""
13366
13367The first argument and the return value are floating point numbers of the same
13368type.
13369
13370The second and third arguments specify the rounding mode and exception
13371behavior as described above.
13372
13373Semantics:
13374""""""""""
13375
13376This function returns the same values as the libm ``log2`` functions
13377would, and handles error conditions in the same way.
13378
13379
13380'``llvm.experimental.constrained.rint``' Intrinsic
13381^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13382
13383Syntax:
13384"""""""
13385
13386::
13387
13388 declare <type>
13389 @llvm.experimental.constrained.rint(<type> <op1>,
13390 metadata <rounding mode>,
13391 metadata <exception behavior>)
13392
13393Overview:
13394"""""""""
13395
13396The '``llvm.experimental.constrained.rint``' intrinsic returns the first
13397operand rounded to the nearest integer. It may raise an inexact floating point
13398exception if the operand is not an integer.
13399
13400Arguments:
13401""""""""""
13402
13403The first argument and the return value are floating point numbers of the same
13404type.
13405
13406The second and third arguments specify the rounding mode and exception
13407behavior as described above.
13408
13409Semantics:
13410""""""""""
13411
13412This function returns the same values as the libm ``rint`` functions
13413would, and handles error conditions in the same way. The rounding mode is
13414described, not determined, by the rounding mode argument. The actual rounding
13415mode is determined by the runtime floating point environment. The rounding
13416mode argument is only intended as information to the compiler.
13417
13418
13419'``llvm.experimental.constrained.nearbyint``' Intrinsic
13420^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13421
13422Syntax:
13423"""""""
13424
13425::
13426
13427 declare <type>
13428 @llvm.experimental.constrained.nearbyint(<type> <op1>,
13429 metadata <rounding mode>,
13430 metadata <exception behavior>)
13431
13432Overview:
13433"""""""""
13434
13435The '``llvm.experimental.constrained.nearbyint``' intrinsic returns the first
13436operand rounded to the nearest integer. It will not raise an inexact floating
13437point exception if the operand is not an integer.
13438
13439
13440Arguments:
13441""""""""""
13442
13443The first argument and the return value are floating point numbers of the same
13444type.
13445
13446The second and third arguments specify the rounding mode and exception
13447behavior as described above.
13448
13449Semantics:
13450""""""""""
13451
13452This function returns the same values as the libm ``nearbyint`` functions
13453would, and handles error conditions in the same way. The rounding mode is
13454described, not determined, by the rounding mode argument. The actual rounding
13455mode is determined by the runtime floating point environment. The rounding
13456mode argument is only intended as information to the compiler.
13457
13458
Sean Silvab084af42012-12-07 10:36:55 +000013459General Intrinsics
13460------------------
13461
13462This class of intrinsics is designed to be generic and has no specific
13463purpose.
13464
13465'``llvm.var.annotation``' Intrinsic
13466^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13467
13468Syntax:
13469"""""""
13470
13471::
13472
13473 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
13474
13475Overview:
13476"""""""""
13477
13478The '``llvm.var.annotation``' intrinsic.
13479
13480Arguments:
13481""""""""""
13482
13483The first argument is a pointer to a value, the second is a pointer to a
13484global string, the third is a pointer to a global string which is the
13485source file name, and the last argument is the line number.
13486
13487Semantics:
13488""""""""""
13489
13490This intrinsic allows annotation of local variables with arbitrary
13491strings. This can be useful for special purpose optimizations that want
13492to look for these annotations. These have no other defined use; they are
13493ignored by code generation and optimization.
13494
Michael Gottesman88d18832013-03-26 00:34:27 +000013495'``llvm.ptr.annotation.*``' Intrinsic
13496^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13497
13498Syntax:
13499"""""""
13500
13501This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
13502pointer to an integer of any width. *NOTE* you must specify an address space for
13503the pointer. The identifier for the default address space is the integer
13504'``0``'.
13505
13506::
13507
13508 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
13509 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
13510 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
13511 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
13512 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
13513
13514Overview:
13515"""""""""
13516
13517The '``llvm.ptr.annotation``' intrinsic.
13518
13519Arguments:
13520""""""""""
13521
13522The first argument is a pointer to an integer value of arbitrary bitwidth
13523(result of some expression), the second is a pointer to a global string, the
13524third is a pointer to a global string which is the source file name, and the
13525last argument is the line number. It returns the value of the first argument.
13526
13527Semantics:
13528""""""""""
13529
13530This intrinsic allows annotation of a pointer to an integer with arbitrary
13531strings. This can be useful for special purpose optimizations that want to look
13532for these annotations. These have no other defined use; they are ignored by code
13533generation and optimization.
13534
Sean Silvab084af42012-12-07 10:36:55 +000013535'``llvm.annotation.*``' Intrinsic
13536^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13537
13538Syntax:
13539"""""""
13540
13541This is an overloaded intrinsic. You can use '``llvm.annotation``' on
13542any integer bit width.
13543
13544::
13545
13546 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
13547 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
13548 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
13549 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
13550 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
13551
13552Overview:
13553"""""""""
13554
13555The '``llvm.annotation``' intrinsic.
13556
13557Arguments:
13558""""""""""
13559
13560The first argument is an integer value (result of some expression), the
13561second is a pointer to a global string, the third is a pointer to a
13562global string which is the source file name, and the last argument is
13563the line number. It returns the value of the first argument.
13564
13565Semantics:
13566""""""""""
13567
13568This intrinsic allows annotations to be put on arbitrary expressions
13569with arbitrary strings. This can be useful for special purpose
13570optimizations that want to look for these annotations. These have no
13571other defined use; they are ignored by code generation and optimization.
13572
13573'``llvm.trap``' Intrinsic
13574^^^^^^^^^^^^^^^^^^^^^^^^^
13575
13576Syntax:
13577"""""""
13578
13579::
13580
13581 declare void @llvm.trap() noreturn nounwind
13582
13583Overview:
13584"""""""""
13585
13586The '``llvm.trap``' intrinsic.
13587
13588Arguments:
13589""""""""""
13590
13591None.
13592
13593Semantics:
13594""""""""""
13595
13596This intrinsic is lowered to the target dependent trap instruction. If
13597the target does not have a trap instruction, this intrinsic will be
13598lowered to a call of the ``abort()`` function.
13599
13600'``llvm.debugtrap``' Intrinsic
13601^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13602
13603Syntax:
13604"""""""
13605
13606::
13607
13608 declare void @llvm.debugtrap() nounwind
13609
13610Overview:
13611"""""""""
13612
13613The '``llvm.debugtrap``' intrinsic.
13614
13615Arguments:
13616""""""""""
13617
13618None.
13619
13620Semantics:
13621""""""""""
13622
13623This intrinsic is lowered to code which is intended to cause an
13624execution trap with the intention of requesting the attention of a
13625debugger.
13626
13627'``llvm.stackprotector``' Intrinsic
13628^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13629
13630Syntax:
13631"""""""
13632
13633::
13634
13635 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
13636
13637Overview:
13638"""""""""
13639
13640The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
13641onto the stack at ``slot``. The stack slot is adjusted to ensure that it
13642is placed on the stack before local variables.
13643
13644Arguments:
13645""""""""""
13646
13647The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
13648The first argument is the value loaded from the stack guard
13649``@__stack_chk_guard``. The second variable is an ``alloca`` that has
13650enough space to hold the value of the guard.
13651
13652Semantics:
13653""""""""""
13654
Michael Gottesmandafc7d92013-08-12 18:35:32 +000013655This intrinsic causes the prologue/epilogue inserter to force the position of
13656the ``AllocaInst`` stack slot to be before local variables on the stack. This is
13657to ensure that if a local variable on the stack is overwritten, it will destroy
13658the value of the guard. When the function exits, the guard on the stack is
13659checked against the original guard by ``llvm.stackprotectorcheck``. If they are
13660different, then ``llvm.stackprotectorcheck`` causes the program to abort by
13661calling the ``__stack_chk_fail()`` function.
13662
Tim Shene885d5e2016-04-19 19:40:37 +000013663'``llvm.stackguard``' Intrinsic
13664^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13665
13666Syntax:
13667"""""""
13668
13669::
13670
13671 declare i8* @llvm.stackguard()
13672
13673Overview:
13674"""""""""
13675
13676The ``llvm.stackguard`` intrinsic returns the system stack guard value.
13677
13678It should not be generated by frontends, since it is only for internal usage.
13679The reason why we create this intrinsic is that we still support IR form Stack
13680Protector in FastISel.
13681
13682Arguments:
13683""""""""""
13684
13685None.
13686
13687Semantics:
13688""""""""""
13689
13690On some platforms, the value returned by this intrinsic remains unchanged
13691between loads in the same thread. On other platforms, it returns the same
13692global variable value, if any, e.g. ``@__stack_chk_guard``.
13693
13694Currently some platforms have IR-level customized stack guard loading (e.g.
13695X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
13696in the future.
13697
Sean Silvab084af42012-12-07 10:36:55 +000013698'``llvm.objectsize``' Intrinsic
13699^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13700
13701Syntax:
13702"""""""
13703
13704::
13705
George Burgess IV56c7e882017-03-21 20:08:59 +000013706 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>)
13707 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>)
Sean Silvab084af42012-12-07 10:36:55 +000013708
13709Overview:
13710"""""""""
13711
13712The ``llvm.objectsize`` intrinsic is designed to provide information to
13713the optimizers to determine at compile time whether a) an operation
13714(like memcpy) will overflow a buffer that corresponds to an object, or
13715b) that a runtime check for overflow isn't necessary. An object in this
13716context means an allocation of a specific class, structure, array, or
13717other object.
13718
13719Arguments:
13720""""""""""
13721
George Burgess IV56c7e882017-03-21 20:08:59 +000013722The ``llvm.objectsize`` intrinsic takes three arguments. The first argument is
13723a pointer to or into the ``object``. The second argument determines whether
13724``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size
13725is unknown. The third argument controls how ``llvm.objectsize`` acts when
13726``null`` is used as its pointer argument. If it's true and the pointer is in
13727address space 0, ``null`` is treated as an opaque value with an unknown number
13728of bytes. Otherwise, ``llvm.objectsize`` reports 0 bytes available when given
13729``null``.
13730
13731The second and third arguments only accept constants.
Sean Silvab084af42012-12-07 10:36:55 +000013732
13733Semantics:
13734""""""""""
13735
13736The ``llvm.objectsize`` intrinsic is lowered to a constant representing
13737the size of the object concerned. If the size cannot be determined at
13738compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
13739on the ``min`` argument).
13740
13741'``llvm.expect``' Intrinsic
13742^^^^^^^^^^^^^^^^^^^^^^^^^^^
13743
13744Syntax:
13745"""""""
13746
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000013747This is an overloaded intrinsic. You can use ``llvm.expect`` on any
13748integer bit width.
13749
Sean Silvab084af42012-12-07 10:36:55 +000013750::
13751
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000013752 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000013753 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
13754 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
13755
13756Overview:
13757"""""""""
13758
13759The ``llvm.expect`` intrinsic provides information about expected (the
13760most probable) value of ``val``, which can be used by optimizers.
13761
13762Arguments:
13763""""""""""
13764
13765The ``llvm.expect`` intrinsic takes two arguments. The first argument is
13766a value. The second argument is an expected value, this needs to be a
13767constant value, variables are not allowed.
13768
13769Semantics:
13770""""""""""
13771
13772This intrinsic is lowered to the ``val``.
13773
Philip Reamese0e90832015-04-26 22:23:12 +000013774.. _int_assume:
13775
Hal Finkel93046912014-07-25 21:13:35 +000013776'``llvm.assume``' Intrinsic
13777^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13778
13779Syntax:
13780"""""""
13781
13782::
13783
13784 declare void @llvm.assume(i1 %cond)
13785
13786Overview:
13787"""""""""
13788
13789The ``llvm.assume`` allows the optimizer to assume that the provided
13790condition is true. This information can then be used in simplifying other parts
13791of the code.
13792
13793Arguments:
13794""""""""""
13795
13796The condition which the optimizer may assume is always true.
13797
13798Semantics:
13799""""""""""
13800
13801The intrinsic allows the optimizer to assume that the provided condition is
13802always true whenever the control flow reaches the intrinsic call. No code is
13803generated for this intrinsic, and instructions that contribute only to the
13804provided condition are not used for code generation. If the condition is
13805violated during execution, the behavior is undefined.
13806
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000013807Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000013808used by the ``llvm.assume`` intrinsic in order to preserve the instructions
13809only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000013810if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000013811sufficient overall improvement in code quality. For this reason,
13812``llvm.assume`` should not be used to document basic mathematical invariants
13813that the optimizer can otherwise deduce or facts that are of little use to the
13814optimizer.
13815
Daniel Berlin2c438a32017-02-07 19:29:25 +000013816.. _int_ssa_copy:
13817
13818'``llvm.ssa_copy``' Intrinsic
13819^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13820
13821Syntax:
13822"""""""
13823
13824::
13825
13826 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
13827
13828Arguments:
13829""""""""""
13830
13831The first argument is an operand which is used as the returned value.
13832
13833Overview:
13834""""""""""
13835
13836The ``llvm.ssa_copy`` intrinsic can be used to attach information to
13837operations by copying them and giving them new names. For example,
13838the PredicateInfo utility uses it to build Extended SSA form, and
13839attach various forms of information to operands that dominate specific
13840uses. It is not meant for general use, only for building temporary
13841renaming forms that require value splits at certain points.
13842
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013843.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000013844
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013845'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000013846^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13847
13848Syntax:
13849"""""""
13850
13851::
13852
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013853 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000013854
13855
13856Arguments:
13857""""""""""
13858
13859The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013860metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000013861
13862Overview:
13863"""""""""
13864
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013865The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
13866with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000013867
Peter Collingbourne0312f612016-06-25 00:23:04 +000013868'``llvm.type.checked.load``' Intrinsic
13869^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13870
13871Syntax:
13872"""""""
13873
13874::
13875
13876 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
13877
13878
13879Arguments:
13880""""""""""
13881
13882The first argument is a pointer from which to load a function pointer. The
13883second argument is the byte offset from which to load the function pointer. The
13884third argument is a metadata object representing a :doc:`type identifier
13885<TypeMetadata>`.
13886
13887Overview:
13888"""""""""
13889
13890The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
13891virtual table pointer using type metadata. This intrinsic is used to implement
13892control flow integrity in conjunction with virtual call optimization. The
13893virtual call optimization pass will optimize away ``llvm.type.checked.load``
13894intrinsics associated with devirtualized calls, thereby removing the type
13895check in cases where it is not needed to enforce the control flow integrity
13896constraint.
13897
13898If the given pointer is associated with a type metadata identifier, this
13899function returns true as the second element of its return value. (Note that
13900the function may also return true if the given pointer is not associated
13901with a type metadata identifier.) If the function's return value's second
13902element is true, the following rules apply to the first element:
13903
13904- If the given pointer is associated with the given type metadata identifier,
13905 it is the function pointer loaded from the given byte offset from the given
13906 pointer.
13907
13908- If the given pointer is not associated with the given type metadata
13909 identifier, it is one of the following (the choice of which is unspecified):
13910
13911 1. The function pointer that would have been loaded from an arbitrarily chosen
13912 (through an unspecified mechanism) pointer associated with the type
13913 metadata.
13914
13915 2. If the function has a non-void return type, a pointer to a function that
13916 returns an unspecified value without causing side effects.
13917
13918If the function's return value's second element is false, the value of the
13919first element is undefined.
13920
13921
Sean Silvab084af42012-12-07 10:36:55 +000013922'``llvm.donothing``' Intrinsic
13923^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13924
13925Syntax:
13926"""""""
13927
13928::
13929
13930 declare void @llvm.donothing() nounwind readnone
13931
13932Overview:
13933"""""""""
13934
Juergen Ributzkac9161192014-10-23 22:36:13 +000013935The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000013936three intrinsics (besides ``llvm.experimental.patchpoint`` and
13937``llvm.experimental.gc.statepoint``) that can be called with an invoke
13938instruction.
Sean Silvab084af42012-12-07 10:36:55 +000013939
13940Arguments:
13941""""""""""
13942
13943None.
13944
13945Semantics:
13946""""""""""
13947
13948This intrinsic does nothing, and it's removed by optimizers and ignored
13949by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000013950
Sanjoy Dasb51325d2016-03-11 19:08:34 +000013951'``llvm.experimental.deoptimize``' Intrinsic
13952^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13953
13954Syntax:
13955"""""""
13956
13957::
13958
13959 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
13960
13961Overview:
13962"""""""""
13963
13964This intrinsic, together with :ref:`deoptimization operand bundles
13965<deopt_opbundles>`, allow frontends to express transfer of control and
13966frame-local state from the currently executing (typically more specialized,
13967hence faster) version of a function into another (typically more generic, hence
13968slower) version.
13969
13970In languages with a fully integrated managed runtime like Java and JavaScript
13971this intrinsic can be used to implement "uncommon trap" or "side exit" like
13972functionality. In unmanaged languages like C and C++, this intrinsic can be
13973used to represent the slow paths of specialized functions.
13974
13975
13976Arguments:
13977""""""""""
13978
13979The intrinsic takes an arbitrary number of arguments, whose meaning is
13980decided by the :ref:`lowering strategy<deoptimize_lowering>`.
13981
13982Semantics:
13983""""""""""
13984
13985The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
13986deoptimization continuation (denoted using a :ref:`deoptimization
13987operand bundle <deopt_opbundles>`) and returns the value returned by
13988the deoptimization continuation. Defining the semantic properties of
13989the continuation itself is out of scope of the language reference --
13990as far as LLVM is concerned, the deoptimization continuation can
13991invoke arbitrary side effects, including reading from and writing to
13992the entire heap.
13993
13994Deoptimization continuations expressed using ``"deopt"`` operand bundles always
13995continue execution to the end of the physical frame containing them, so all
13996calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
13997
13998 - ``@llvm.experimental.deoptimize`` cannot be invoked.
13999 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
14000 - The ``ret`` instruction must return the value produced by the
14001 ``@llvm.experimental.deoptimize`` call if there is one, or void.
14002
14003Note that the above restrictions imply that the return type for a call to
14004``@llvm.experimental.deoptimize`` will match the return type of its immediate
14005caller.
14006
14007The inliner composes the ``"deopt"`` continuations of the caller into the
14008``"deopt"`` continuations present in the inlinee, and also updates calls to this
14009intrinsic to return directly from the frame of the function it inlined into.
14010
Sanjoy Dase0aa4142016-05-12 01:17:38 +000014011All declarations of ``@llvm.experimental.deoptimize`` must share the
14012same calling convention.
14013
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014014.. _deoptimize_lowering:
14015
14016Lowering:
14017"""""""""
14018
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000014019Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
14020symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
14021ensure that this symbol is defined). The call arguments to
14022``@llvm.experimental.deoptimize`` are lowered as if they were formal
14023arguments of the specified types, and not as varargs.
14024
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014025
Sanjoy Das021de052016-03-31 00:18:46 +000014026'``llvm.experimental.guard``' Intrinsic
14027^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14028
14029Syntax:
14030"""""""
14031
14032::
14033
14034 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
14035
14036Overview:
14037"""""""""
14038
14039This intrinsic, together with :ref:`deoptimization operand bundles
14040<deopt_opbundles>`, allows frontends to express guards or checks on
14041optimistic assumptions made during compilation. The semantics of
14042``@llvm.experimental.guard`` is defined in terms of
14043``@llvm.experimental.deoptimize`` -- its body is defined to be
14044equivalent to:
14045
Renato Golin124f2592016-07-20 12:16:38 +000014046.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000014047
Renato Golin124f2592016-07-20 12:16:38 +000014048 define void @llvm.experimental.guard(i1 %pred, <args...>) {
14049 %realPred = and i1 %pred, undef
14050 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000014051
Renato Golin124f2592016-07-20 12:16:38 +000014052 leave:
14053 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
14054 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000014055
Renato Golin124f2592016-07-20 12:16:38 +000014056 continue:
14057 ret void
14058 }
Sanjoy Das021de052016-03-31 00:18:46 +000014059
Sanjoy Das47cf2af2016-04-30 00:55:59 +000014060
14061with the optional ``[, !make.implicit !{}]`` present if and only if it
14062is present on the call site. For more details on ``!make.implicit``,
14063see :doc:`FaultMaps`.
14064
Sanjoy Das021de052016-03-31 00:18:46 +000014065In words, ``@llvm.experimental.guard`` executes the attached
14066``"deopt"`` continuation if (but **not** only if) its first argument
14067is ``false``. Since the optimizer is allowed to replace the ``undef``
14068with an arbitrary value, it can optimize guard to fail "spuriously",
14069i.e. without the original condition being false (hence the "not only
14070if"); and this allows for "check widening" type optimizations.
14071
14072``@llvm.experimental.guard`` cannot be invoked.
14073
14074
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000014075'``llvm.load.relative``' Intrinsic
14076^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14077
14078Syntax:
14079"""""""
14080
14081::
14082
14083 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
14084
14085Overview:
14086"""""""""
14087
14088This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
14089adds ``%ptr`` to that value and returns it. The constant folder specifically
14090recognizes the form of this intrinsic and the constant initializers it may
14091load from; if a loaded constant initializer is known to have the form
14092``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
14093
14094LLVM provides that the calculation of such a constant initializer will
14095not overflow at link time under the medium code model if ``x`` is an
14096``unnamed_addr`` function. However, it does not provide this guarantee for
14097a constant initializer folded into a function body. This intrinsic can be
14098used to avoid the possibility of overflows when loading from such a constant.
14099
Andrew Trick5e029ce2013-12-24 02:57:25 +000014100Stack Map Intrinsics
14101--------------------
14102
14103LLVM provides experimental intrinsics to support runtime patching
14104mechanisms commonly desired in dynamic language JITs. These intrinsics
14105are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014106
14107Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000014108-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000014109
14110These intrinsics are similar to the standard library memory intrinsics except
14111that they perform memory transfer as a sequence of atomic memory accesses.
14112
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014113.. _int_memcpy_element_unordered_atomic:
Igor Laevsky4f31e522016-12-29 14:31:07 +000014114
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014115'``llvm.memcpy.element.unordered.atomic``' Intrinsic
14116^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000014117
14118Syntax:
14119"""""""
14120
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014121This is an overloaded intrinsic. You can use ``llvm.memcpy.element.unordered.atomic`` on
Igor Laevsky4f31e522016-12-29 14:31:07 +000014122any integer bit width and for different address spaces. Not all targets
14123support all bit widths however.
14124
14125::
14126
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014127 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
14128 i8* <src>,
14129 i32 <len>,
14130 i32 <element_size>)
14131 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
14132 i8* <src>,
14133 i64 <len>,
14134 i32 <element_size>)
Igor Laevsky4f31e522016-12-29 14:31:07 +000014135
14136Overview:
14137"""""""""
14138
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014139The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic is a specialization of the
14140'``llvm.memcpy.*``' intrinsic. It differs in that the ``dest`` and ``src`` are treated
14141as arrays with elements that are exactly ``element_size`` bytes, and the copy between
14142buffers uses a sequence of :ref:`unordered atomic <ordering>` load/store operations
14143that are a positive integer multiple of the ``element_size`` in size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014144
14145Arguments:
14146""""""""""
14147
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014148The first three arguments are the same as they are in the :ref:`@llvm.memcpy <int_memcpy>`
14149intrinsic, with the added constraint that ``len`` is required to be a positive integer
14150multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
14151``element_size``, then the behaviour of the intrinsic is undefined.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014152
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014153``element_size`` must be a compile-time constant positive power of two no greater than
14154target-specific atomic access size limit.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014155
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014156For each of the input pointers ``align`` parameter attribute must be specified. It
14157must be a power of two no less than the ``element_size``. Caller guarantees that
14158both the source and destination pointers are aligned to that boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014159
14160Semantics:
14161""""""""""
14162
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014163The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic copies ``len`` bytes of
14164memory from the source location to the destination location. These locations are not
14165allowed to overlap. The memory copy is performed as a sequence of load/store operations
14166where each access is guaranteed to be a multiple of ``element_size`` bytes wide and
14167aligned at an ``element_size`` boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014168
14169The order of the copy is unspecified. The same value may be read from the source
14170buffer many times, but only one write is issued to the destination buffer per
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014171element. It is well defined to have concurrent reads and writes to both source and
14172destination provided those reads and writes are unordered atomic when specified.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014173
14174This intrinsic does not provide any additional ordering guarantees over those
14175provided by a set of unordered loads from the source location and stores to the
14176destination.
14177
14178Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000014179"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000014180
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014181In the most general case call to the '``llvm.memcpy.element.unordered.atomic.*``' is
14182lowered to a call to the symbol ``__llvm_memcpy_element_unordered_atomic_*``. Where '*'
14183is replaced with an actual element size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014184
Daniel Neilson57226ef2017-07-12 15:25:26 +000014185Optimizer is allowed to inline memory copy when it's profitable to do so.
14186
14187'``llvm.memmove.element.unordered.atomic``' Intrinsic
14188^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14189
14190Syntax:
14191"""""""
14192
14193This is an overloaded intrinsic. You can use
14194``llvm.memmove.element.unordered.atomic`` on any integer bit width and for
14195different address spaces. Not all targets support all bit widths however.
14196
14197::
14198
14199 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
14200 i8* <src>,
14201 i32 <len>,
14202 i32 <element_size>)
14203 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
14204 i8* <src>,
14205 i64 <len>,
14206 i32 <element_size>)
14207
14208Overview:
14209"""""""""
14210
14211The '``llvm.memmove.element.unordered.atomic.*``' intrinsic is a specialization
14212of the '``llvm.memmove.*``' intrinsic. It differs in that the ``dest`` and
14213``src`` are treated as arrays with elements that are exactly ``element_size``
14214bytes, and the copy between buffers uses a sequence of
14215:ref:`unordered atomic <ordering>` load/store operations that are a positive
14216integer multiple of the ``element_size`` in size.
14217
14218Arguments:
14219""""""""""
14220
14221The first three arguments are the same as they are in the
14222:ref:`@llvm.memmove <int_memmove>` intrinsic, with the added constraint that
14223``len`` is required to be a positive integer multiple of the ``element_size``.
14224If ``len`` is not a positive integer multiple of ``element_size``, then the
14225behaviour of the intrinsic is undefined.
14226
14227``element_size`` must be a compile-time constant positive power of two no
14228greater than a target-specific atomic access size limit.
14229
14230For each of the input pointers the ``align`` parameter attribute must be
14231specified. It must be a power of two no less than the ``element_size``. Caller
14232guarantees that both the source and destination pointers are aligned to that
14233boundary.
14234
14235Semantics:
14236""""""""""
14237
14238The '``llvm.memmove.element.unordered.atomic.*``' intrinsic copies ``len`` bytes
14239of memory from the source location to the destination location. These locations
14240are allowed to overlap. The memory copy is performed as a sequence of load/store
14241operations where each access is guaranteed to be a multiple of ``element_size``
14242bytes wide and aligned at an ``element_size`` boundary.
14243
14244The order of the copy is unspecified. The same value may be read from the source
14245buffer many times, but only one write is issued to the destination buffer per
14246element. It is well defined to have concurrent reads and writes to both source
14247and destination provided those reads and writes are unordered atomic when
14248specified.
14249
14250This intrinsic does not provide any additional ordering guarantees over those
14251provided by a set of unordered loads from the source location and stores to the
14252destination.
14253
14254Lowering:
14255"""""""""
14256
14257In the most general case call to the
14258'``llvm.memmove.element.unordered.atomic.*``' is lowered to a call to the symbol
14259``__llvm_memmove_element_unordered_atomic_*``. Where '*' is replaced with an
14260actual element size.
14261
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014262The optimizer is allowed to inline the memory copy when it's profitable to do so.
Daniel Neilson965613e2017-07-12 21:57:23 +000014263
14264.. _int_memset_element_unordered_atomic:
14265
14266'``llvm.memset.element.unordered.atomic``' Intrinsic
14267^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14268
14269Syntax:
14270"""""""
14271
14272This is an overloaded intrinsic. You can use ``llvm.memset.element.unordered.atomic`` on
14273any integer bit width and for different address spaces. Not all targets
14274support all bit widths however.
14275
14276::
14277
14278 declare void @llvm.memset.element.unordered.atomic.p0i8.i32(i8* <dest>,
14279 i8 <value>,
14280 i32 <len>,
14281 i32 <element_size>)
14282 declare void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* <dest>,
14283 i8 <value>,
14284 i64 <len>,
14285 i32 <element_size>)
14286
14287Overview:
14288"""""""""
14289
14290The '``llvm.memset.element.unordered.atomic.*``' intrinsic is a specialization of the
14291'``llvm.memset.*``' intrinsic. It differs in that the ``dest`` is treated as an array
14292with elements that are exactly ``element_size`` bytes, and the assignment to that array
14293uses uses a sequence of :ref:`unordered atomic <ordering>` store operations
14294that are a positive integer multiple of the ``element_size`` in size.
14295
14296Arguments:
14297""""""""""
14298
14299The first three arguments are the same as they are in the :ref:`@llvm.memset <int_memset>`
14300intrinsic, with the added constraint that ``len`` is required to be a positive integer
14301multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
14302``element_size``, then the behaviour of the intrinsic is undefined.
14303
14304``element_size`` must be a compile-time constant positive power of two no greater than
14305target-specific atomic access size limit.
14306
14307The ``dest`` input pointer must have the ``align`` parameter attribute specified. It
14308must be a power of two no less than the ``element_size``. Caller guarantees that
14309the destination pointer is aligned to that boundary.
14310
14311Semantics:
14312""""""""""
14313
14314The '``llvm.memset.element.unordered.atomic.*``' intrinsic sets the ``len`` bytes of
14315memory starting at the destination location to the given ``value``. The memory is
14316set with a sequence of store operations where each access is guaranteed to be a
14317multiple of ``element_size`` bytes wide and aligned at an ``element_size`` boundary.
14318
14319The order of the assignment is unspecified. Only one write is issued to the
14320destination buffer per element. It is well defined to have concurrent reads and
14321writes to the destination provided those reads and writes are unordered atomic
14322when specified.
14323
14324This intrinsic does not provide any additional ordering guarantees over those
14325provided by a set of unordered stores to the destination.
14326
14327Lowering:
14328"""""""""
14329
14330In the most general case call to the '``llvm.memset.element.unordered.atomic.*``' is
14331lowered to a call to the symbol ``__llvm_memset_element_unordered_atomic_*``. Where '*'
14332is replaced with an actual element size.
14333
14334The optimizer is allowed to inline the memory assignment when it's profitable to do so.
14335