blob: 093d29a5a8b1364cf276fbb50fb0bca947f9cccd [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
George Burgess IVfbc34982017-05-20 04:52:29 +0000164 ; Convert [13 x i8]* to i8*...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledru0604c5c2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvab084af42012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000530.. _namedtypes:
531
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000532Structure Types
533---------------
Sean Silvab084af42012-12-07 10:36:55 +0000534
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000535LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000536types <t_struct>`. Literal types are uniqued structurally, but identified types
537are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000538to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000539
Sean Silva706fba52015-08-06 22:56:24 +0000540An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000541
542.. code-block:: llvm
543
544 %mytype = type { %mytype*, i32 }
545
Sean Silvaa1190322015-08-06 22:56:48 +0000546Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000547literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000548
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000549.. _nointptrtype:
550
551Non-Integral Pointer Type
552-------------------------
553
554Note: non-integral pointer types are a work in progress, and they should be
555considered experimental at this time.
556
557LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000558spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
559Non-integral pointer types represent pointers that have an *unspecified* bitwise
560representation; that is, the integral representation may be target dependent or
561unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000562
563``inttoptr`` instructions converting integers to non-integral pointer types are
564ill-typed, and so are ``ptrtoint`` instructions converting values of
565non-integral pointer types to integers. Vector versions of said instructions
566are ill-typed as well.
567
Sean Silvab084af42012-12-07 10:36:55 +0000568.. _globalvars:
569
570Global Variables
571----------------
572
573Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000574instead of run-time.
575
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000576Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000577
578Global variables in other translation units can also be declared, in which
579case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000580
Bob Wilson85b24f22014-06-12 20:40:33 +0000581Either global variable definitions or declarations may have an explicit section
582to be placed in and may have an optional explicit alignment specified.
583
Michael Gottesman006039c2013-01-31 05:48:48 +0000584A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000585the contents of the variable will **never** be modified (enabling better
586optimization, allowing the global data to be placed in the read-only
587section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000588initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000589variable.
590
591LLVM explicitly allows *declarations* of global variables to be marked
592constant, even if the final definition of the global is not. This
593capability can be used to enable slightly better optimization of the
594program, but requires the language definition to guarantee that
595optimizations based on the 'constantness' are valid for the translation
596units that do not include the definition.
597
598As SSA values, global variables define pointer values that are in scope
599(i.e. they dominate) all basic blocks in the program. Global variables
600always define a pointer to their "content" type because they describe a
601region of memory, and all memory objects in LLVM are accessed through
602pointers.
603
604Global variables can be marked with ``unnamed_addr`` which indicates
605that the address is not significant, only the content. Constants marked
606like this can be merged with other constants if they have the same
607initializer. Note that a constant with significant address *can* be
608merged with a ``unnamed_addr`` constant, the result being a constant
609whose address is significant.
610
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000611If the ``local_unnamed_addr`` attribute is given, the address is known to
612not be significant within the module.
613
Sean Silvab084af42012-12-07 10:36:55 +0000614A global variable may be declared to reside in a target-specific
615numbered address space. For targets that support them, address spaces
616may affect how optimizations are performed and/or what target
617instructions are used to access the variable. The default address space
618is zero. The address space qualifier must precede any other attributes.
619
620LLVM allows an explicit section to be specified for globals. If the
621target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000622Additionally, the global can placed in a comdat if the target has the necessary
623support.
Sean Silvab084af42012-12-07 10:36:55 +0000624
Michael Gottesmane743a302013-02-04 03:22:00 +0000625By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000626variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000627initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000628true even for variables potentially accessible from outside the
629module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000630``@llvm.used`` or dllexported variables. This assumption may be suppressed
631by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000632
Sean Silvab084af42012-12-07 10:36:55 +0000633An explicit alignment may be specified for a global, which must be a
634power of 2. If not present, or if the alignment is set to zero, the
635alignment of the global is set by the target to whatever it feels
636convenient. If an explicit alignment is specified, the global is forced
637to have exactly that alignment. Targets and optimizers are not allowed
638to over-align the global if the global has an assigned section. In this
639case, the extra alignment could be observable: for example, code could
640assume that the globals are densely packed in their section and try to
641iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000642iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000643
Javed Absarf3d79042017-05-11 12:28:08 +0000644Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
645an optional :ref:`global attributes <glattrs>` and
646an optional list of attached :ref:`metadata <metadata>`.
Nico Rieck7157bb72014-01-14 15:22:47 +0000647
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000648Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000649:ref:`Thread Local Storage Model <tls_model>`.
650
Nico Rieck7157bb72014-01-14 15:22:47 +0000651Syntax::
652
Rafael Espindola32483a72016-05-10 18:22:45 +0000653 @<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000654 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
655 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000656 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000657 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000658 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000659
Sean Silvab084af42012-12-07 10:36:55 +0000660For example, the following defines a global in a numbered address space
661with an initializer, section, and alignment:
662
663.. code-block:: llvm
664
665 @G = addrspace(5) constant float 1.0, section "foo", align 4
666
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000667The following example just declares a global variable
668
669.. code-block:: llvm
670
671 @G = external global i32
672
Sean Silvab084af42012-12-07 10:36:55 +0000673The following example defines a thread-local global with the
674``initialexec`` TLS model:
675
676.. code-block:: llvm
677
678 @G = thread_local(initialexec) global i32 0, align 4
679
680.. _functionstructure:
681
682Functions
683---------
684
685LLVM function definitions consist of the "``define``" keyword, an
686optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000687style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
688an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000689an optional ``unnamed_addr`` attribute, a return type, an optional
690:ref:`parameter attribute <paramattrs>` for the return type, a function
691name, a (possibly empty) argument list (each with optional :ref:`parameter
692attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000693an optional section, an optional alignment,
694an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000695an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000696an optional :ref:`prologue <prologuedata>`,
697an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000698an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000699an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000700
701LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000702optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
703<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
704optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
705or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
706attribute <paramattrs>` for the return type, a function name, a possibly
707empty list of arguments, an optional alignment, an optional :ref:`garbage
708collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
709:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000710
Bill Wendling6822ecb2013-10-27 05:09:12 +0000711A function definition contains a list of basic blocks, forming the CFG (Control
712Flow Graph) for the function. Each basic block may optionally start with a label
713(giving the basic block a symbol table entry), contains a list of instructions,
714and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
715function return). If an explicit label is not provided, a block is assigned an
716implicit numbered label, using the next value from the same counter as used for
717unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
718entry block does not have an explicit label, it will be assigned label "%0",
719then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000720
721The first basic block in a function is special in two ways: it is
722immediately executed on entrance to the function, and it is not allowed
723to have predecessor basic blocks (i.e. there can not be any branches to
724the entry block of a function). Because the block can have no
725predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
726
727LLVM allows an explicit section to be specified for functions. If the
728target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000729Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000730
731An explicit alignment may be specified for a function. If not present,
732or if the alignment is set to zero, the alignment of the function is set
733by the target to whatever it feels convenient. If an explicit alignment
734is specified, the function is forced to have at least that much
735alignment. All alignments must be a power of 2.
736
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000737If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000738be significant and two identical functions can be merged.
739
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000740If the ``local_unnamed_addr`` attribute is given, the address is known to
741not be significant within the module.
742
Sean Silvab084af42012-12-07 10:36:55 +0000743Syntax::
744
Nico Rieck7157bb72014-01-14 15:22:47 +0000745 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000746 [cconv] [ret attrs]
747 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000748 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
749 [comdat [($name)]] [align N] [gc] [prefix Constant]
750 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000751
Sean Silva706fba52015-08-06 22:56:24 +0000752The argument list is a comma separated sequence of arguments where each
753argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000754
755Syntax::
756
757 <type> [parameter Attrs] [name]
758
759
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000760.. _langref_aliases:
761
Sean Silvab084af42012-12-07 10:36:55 +0000762Aliases
763-------
764
Rafael Espindola64c1e182014-06-03 02:41:57 +0000765Aliases, unlike function or variables, don't create any new data. They
766are just a new symbol and metadata for an existing position.
767
768Aliases have a name and an aliasee that is either a global value or a
769constant expression.
770
Nico Rieck7157bb72014-01-14 15:22:47 +0000771Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000772:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
773<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000774
775Syntax::
776
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000777 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000778
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000779The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000780``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000781might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000782
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000783Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000784the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
785to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000786
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000787If the ``local_unnamed_addr`` attribute is given, the address is known to
788not be significant within the module.
789
Rafael Espindola64c1e182014-06-03 02:41:57 +0000790Since aliases are only a second name, some restrictions apply, of which
791some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000792
Rafael Espindola64c1e182014-06-03 02:41:57 +0000793* The expression defining the aliasee must be computable at assembly
794 time. Since it is just a name, no relocations can be used.
795
796* No alias in the expression can be weak as the possibility of the
797 intermediate alias being overridden cannot be represented in an
798 object file.
799
800* No global value in the expression can be a declaration, since that
801 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000802
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000803.. _langref_ifunc:
804
805IFuncs
806-------
807
808IFuncs, like as aliases, don't create any new data or func. They are just a new
809symbol that dynamic linker resolves at runtime by calling a resolver function.
810
811IFuncs have a name and a resolver that is a function called by dynamic linker
812that returns address of another function associated with the name.
813
814IFunc may have an optional :ref:`linkage type <linkage>` and an optional
815:ref:`visibility style <visibility>`.
816
817Syntax::
818
819 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
820
821
David Majnemerdad0a642014-06-27 18:19:56 +0000822.. _langref_comdats:
823
824Comdats
825-------
826
827Comdat IR provides access to COFF and ELF object file COMDAT functionality.
828
Sean Silvaa1190322015-08-06 22:56:48 +0000829Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000830specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000831that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000832aliasee computes to, if any.
833
834Comdats have a selection kind to provide input on how the linker should
835choose between keys in two different object files.
836
837Syntax::
838
839 $<Name> = comdat SelectionKind
840
841The selection kind must be one of the following:
842
843``any``
844 The linker may choose any COMDAT key, the choice is arbitrary.
845``exactmatch``
846 The linker may choose any COMDAT key but the sections must contain the
847 same data.
848``largest``
849 The linker will choose the section containing the largest COMDAT key.
850``noduplicates``
851 The linker requires that only section with this COMDAT key exist.
852``samesize``
853 The linker may choose any COMDAT key but the sections must contain the
854 same amount of data.
855
856Note that the Mach-O platform doesn't support COMDATs and ELF only supports
857``any`` as a selection kind.
858
859Here is an example of a COMDAT group where a function will only be selected if
860the COMDAT key's section is the largest:
861
Renato Golin124f2592016-07-20 12:16:38 +0000862.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000863
864 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000865 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000866
Rafael Espindola83a362c2015-01-06 22:55:16 +0000867 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000868 ret void
869 }
870
Rafael Espindola83a362c2015-01-06 22:55:16 +0000871As a syntactic sugar the ``$name`` can be omitted if the name is the same as
872the global name:
873
Renato Golin124f2592016-07-20 12:16:38 +0000874.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000875
876 $foo = comdat any
877 @foo = global i32 2, comdat
878
879
David Majnemerdad0a642014-06-27 18:19:56 +0000880In a COFF object file, this will create a COMDAT section with selection kind
881``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
882and another COMDAT section with selection kind
883``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000884section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000885
886There are some restrictions on the properties of the global object.
887It, or an alias to it, must have the same name as the COMDAT group when
888targeting COFF.
889The contents and size of this object may be used during link-time to determine
890which COMDAT groups get selected depending on the selection kind.
891Because the name of the object must match the name of the COMDAT group, the
892linkage of the global object must not be local; local symbols can get renamed
893if a collision occurs in the symbol table.
894
895The combined use of COMDATS and section attributes may yield surprising results.
896For example:
897
Renato Golin124f2592016-07-20 12:16:38 +0000898.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000899
900 $foo = comdat any
901 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000902 @g1 = global i32 42, section "sec", comdat($foo)
903 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000904
905From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000906with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000907COMDAT groups and COMDATs, at the object file level, are represented by
908sections.
909
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000910Note that certain IR constructs like global variables and functions may
911create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000912COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000913in individual sections (e.g. when `-data-sections` or `-function-sections`
914is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000915
Sean Silvab084af42012-12-07 10:36:55 +0000916.. _namedmetadatastructure:
917
918Named Metadata
919--------------
920
921Named metadata is a collection of metadata. :ref:`Metadata
922nodes <metadata>` (but not metadata strings) are the only valid
923operands for a named metadata.
924
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000925#. Named metadata are represented as a string of characters with the
926 metadata prefix. The rules for metadata names are the same as for
927 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
928 are still valid, which allows any character to be part of a name.
929
Sean Silvab084af42012-12-07 10:36:55 +0000930Syntax::
931
932 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000933 !0 = !{!"zero"}
934 !1 = !{!"one"}
935 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000936 ; A named metadata.
937 !name = !{!0, !1, !2}
938
939.. _paramattrs:
940
941Parameter Attributes
942--------------------
943
944The return type and each parameter of a function type may have a set of
945*parameter attributes* associated with them. Parameter attributes are
946used to communicate additional information about the result or
947parameters of a function. Parameter attributes are considered to be part
948of the function, not of the function type, so functions with different
949parameter attributes can have the same function type.
950
951Parameter attributes are simple keywords that follow the type specified.
952If multiple parameter attributes are needed, they are space separated.
953For example:
954
955.. code-block:: llvm
956
957 declare i32 @printf(i8* noalias nocapture, ...)
958 declare i32 @atoi(i8 zeroext)
959 declare signext i8 @returns_signed_char()
960
961Note that any attributes for the function result (``nounwind``,
962``readonly``) come immediately after the argument list.
963
964Currently, only the following parameter attributes are defined:
965
966``zeroext``
967 This indicates to the code generator that the parameter or return
968 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000969 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000970``signext``
971 This indicates to the code generator that the parameter or return
972 value should be sign-extended to the extent required by the target's
973 ABI (which is usually 32-bits) by the caller (for a parameter) or
974 the callee (for a return value).
975``inreg``
976 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000977 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000978 a function call or return (usually, by putting it in a register as
979 opposed to memory, though some targets use it to distinguish between
980 two different kinds of registers). Use of this attribute is
981 target-specific.
982``byval``
983 This indicates that the pointer parameter should really be passed by
984 value to the function. The attribute implies that a hidden copy of
985 the pointee is made between the caller and the callee, so the callee
986 is unable to modify the value in the caller. This attribute is only
987 valid on LLVM pointer arguments. It is generally used to pass
988 structs and arrays by value, but is also valid on pointers to
989 scalars. The copy is considered to belong to the caller not the
990 callee (for example, ``readonly`` functions should not write to
991 ``byval`` parameters). This is not a valid attribute for return
992 values.
993
994 The byval attribute also supports specifying an alignment with the
995 align attribute. It indicates the alignment of the stack slot to
996 form and the known alignment of the pointer specified to the call
997 site. If the alignment is not specified, then the code generator
998 makes a target-specific assumption.
999
Reid Klecknera534a382013-12-19 02:14:12 +00001000.. _attr_inalloca:
1001
1002``inalloca``
1003
Reid Kleckner60d3a832014-01-16 22:59:24 +00001004 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001005 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001006 be a pointer to stack memory produced by an ``alloca`` instruction.
1007 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001008 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001009 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001010
Reid Kleckner436c42e2014-01-17 23:58:17 +00001011 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001012 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001013 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001014 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001015 ``inalloca`` attribute also disables LLVM's implicit lowering of
1016 large aggregate return values, which means that frontend authors
1017 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001018
Reid Kleckner60d3a832014-01-16 22:59:24 +00001019 When the call site is reached, the argument allocation must have
1020 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001021 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001022 space after an argument allocation and before its call site, but it
1023 must be cleared off with :ref:`llvm.stackrestore
1024 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001025
1026 See :doc:`InAlloca` for more information on how to use this
1027 attribute.
1028
Sean Silvab084af42012-12-07 10:36:55 +00001029``sret``
1030 This indicates that the pointer parameter specifies the address of a
1031 structure that is the return value of the function in the source
1032 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001033 loads and stores to the structure may be assumed by the callee not
1034 to trap and to be properly aligned. This is not a valid attribute
1035 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001036
Hal Finkelccc70902014-07-22 16:58:55 +00001037``align <n>``
1038 This indicates that the pointer value may be assumed by the optimizer to
1039 have the specified alignment.
1040
1041 Note that this attribute has additional semantics when combined with the
1042 ``byval`` attribute.
1043
Sean Silva1703e702014-04-08 21:06:22 +00001044.. _noalias:
1045
Sean Silvab084af42012-12-07 10:36:55 +00001046``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001047 This indicates that objects accessed via pointer values
1048 :ref:`based <pointeraliasing>` on the argument or return value are not also
1049 accessed, during the execution of the function, via pointer values not
1050 *based* on the argument or return value. The attribute on a return value
1051 also has additional semantics described below. The caller shares the
1052 responsibility with the callee for ensuring that these requirements are met.
1053 For further details, please see the discussion of the NoAlias response in
1054 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001055
1056 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001057 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001058
1059 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001060 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1061 attribute on return values are stronger than the semantics of the attribute
1062 when used on function arguments. On function return values, the ``noalias``
1063 attribute indicates that the function acts like a system memory allocation
1064 function, returning a pointer to allocated storage disjoint from the
1065 storage for any other object accessible to the caller.
1066
Sean Silvab084af42012-12-07 10:36:55 +00001067``nocapture``
1068 This indicates that the callee does not make any copies of the
1069 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001070 attribute for return values. Addresses used in volatile operations
1071 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001072
1073.. _nest:
1074
1075``nest``
1076 This indicates that the pointer parameter can be excised using the
1077 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001078 attribute for return values and can only be applied to one parameter.
1079
1080``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001081 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001082 value. This is a hint to the optimizer and code generator used when
1083 generating the caller, allowing value propagation, tail call optimization,
1084 and omission of register saves and restores in some cases; it is not
1085 checked or enforced when generating the callee. The parameter and the
1086 function return type must be valid operands for the
1087 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1088 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001089
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001090``nonnull``
1091 This indicates that the parameter or return pointer is not null. This
1092 attribute may only be applied to pointer typed parameters. This is not
1093 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001094 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001095 is non-null.
1096
Hal Finkelb0407ba2014-07-18 15:51:28 +00001097``dereferenceable(<n>)``
1098 This indicates that the parameter or return pointer is dereferenceable. This
1099 attribute may only be applied to pointer typed parameters. A pointer that
1100 is dereferenceable can be loaded from speculatively without a risk of
1101 trapping. The number of bytes known to be dereferenceable must be provided
1102 in parentheses. It is legal for the number of bytes to be less than the
1103 size of the pointee type. The ``nonnull`` attribute does not imply
1104 dereferenceability (consider a pointer to one element past the end of an
1105 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1106 ``addrspace(0)`` (which is the default address space).
1107
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001108``dereferenceable_or_null(<n>)``
1109 This indicates that the parameter or return value isn't both
1110 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001111 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001112 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1113 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1114 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1115 and in other address spaces ``dereferenceable_or_null(<n>)``
1116 implies that a pointer is at least one of ``dereferenceable(<n>)``
1117 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001118 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001119 pointer typed parameters.
1120
Manman Renf46262e2016-03-29 17:37:21 +00001121``swiftself``
1122 This indicates that the parameter is the self/context parameter. This is not
1123 a valid attribute for return values and can only be applied to one
1124 parameter.
1125
Manman Ren9bfd0d02016-04-01 21:41:15 +00001126``swifterror``
1127 This attribute is motivated to model and optimize Swift error handling. It
1128 can be applied to a parameter with pointer to pointer type or a
1129 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001130 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1131 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1132 the parameter or the alloca) can only be loaded and stored from, or used as
1133 a ``swifterror`` argument. This is not a valid attribute for return values
1134 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001135
1136 These constraints allow the calling convention to optimize access to
1137 ``swifterror`` variables by associating them with a specific register at
1138 call boundaries rather than placing them in memory. Since this does change
1139 the calling convention, a function which uses the ``swifterror`` attribute
1140 on a parameter is not ABI-compatible with one which does not.
1141
1142 These constraints also allow LLVM to assume that a ``swifterror`` argument
1143 does not alias any other memory visible within a function and that a
1144 ``swifterror`` alloca passed as an argument does not escape.
1145
Sean Silvab084af42012-12-07 10:36:55 +00001146.. _gc:
1147
Philip Reamesf80bbff2015-02-25 23:45:20 +00001148Garbage Collector Strategy Names
1149--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001150
Philip Reamesf80bbff2015-02-25 23:45:20 +00001151Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001152string:
1153
1154.. code-block:: llvm
1155
1156 define void @f() gc "name" { ... }
1157
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001158The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001159<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001160strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001161named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001162garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001163which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001164
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001165.. _prefixdata:
1166
1167Prefix Data
1168-----------
1169
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001170Prefix data is data associated with a function which the code
1171generator will emit immediately before the function's entrypoint.
1172The purpose of this feature is to allow frontends to associate
1173language-specific runtime metadata with specific functions and make it
1174available through the function pointer while still allowing the
1175function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001176
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001177To access the data for a given function, a program may bitcast the
1178function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001179index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001180the prefix data. For instance, take the example of a function annotated
1181with a single ``i32``,
1182
1183.. code-block:: llvm
1184
1185 define void @f() prefix i32 123 { ... }
1186
1187The prefix data can be referenced as,
1188
1189.. code-block:: llvm
1190
David Blaikie16a97eb2015-03-04 22:02:58 +00001191 %0 = bitcast void* () @f to i32*
1192 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001193 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001194
1195Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001196of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001197beginning of the prefix data is aligned. This means that if the size
1198of the prefix data is not a multiple of the alignment size, the
1199function's entrypoint will not be aligned. If alignment of the
1200function's entrypoint is desired, padding must be added to the prefix
1201data.
1202
Sean Silvaa1190322015-08-06 22:56:48 +00001203A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001204to the ``available_externally`` linkage in that the data may be used by the
1205optimizers but will not be emitted in the object file.
1206
1207.. _prologuedata:
1208
1209Prologue Data
1210-------------
1211
1212The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1213be inserted prior to the function body. This can be used for enabling
1214function hot-patching and instrumentation.
1215
1216To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001217have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001218bytes which decode to a sequence of machine instructions, valid for the
1219module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001220the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001221the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001222definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001223makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001224
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001225A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001226which encodes the ``nop`` instruction:
1227
Renato Golin124f2592016-07-20 12:16:38 +00001228.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001229
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001230 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001231
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001232Generally prologue data can be formed by encoding a relative branch instruction
1233which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001234x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1235
Renato Golin124f2592016-07-20 12:16:38 +00001236.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001237
1238 %0 = type <{ i8, i8, i8* }>
1239
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001240 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001241
Sean Silvaa1190322015-08-06 22:56:48 +00001242A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001243to the ``available_externally`` linkage in that the data may be used by the
1244optimizers but will not be emitted in the object file.
1245
David Majnemer7fddecc2015-06-17 20:52:32 +00001246.. _personalityfn:
1247
1248Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001249--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001250
1251The ``personality`` attribute permits functions to specify what function
1252to use for exception handling.
1253
Bill Wendling63b88192013-02-06 06:52:58 +00001254.. _attrgrp:
1255
1256Attribute Groups
1257----------------
1258
1259Attribute groups are groups of attributes that are referenced by objects within
1260the IR. They are important for keeping ``.ll`` files readable, because a lot of
1261functions will use the same set of attributes. In the degenerative case of a
1262``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1263group will capture the important command line flags used to build that file.
1264
1265An attribute group is a module-level object. To use an attribute group, an
1266object references the attribute group's ID (e.g. ``#37``). An object may refer
1267to more than one attribute group. In that situation, the attributes from the
1268different groups are merged.
1269
1270Here is an example of attribute groups for a function that should always be
1271inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1272
1273.. code-block:: llvm
1274
1275 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001276 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001277
1278 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001279 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001280
1281 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1282 define void @f() #0 #1 { ... }
1283
Sean Silvab084af42012-12-07 10:36:55 +00001284.. _fnattrs:
1285
1286Function Attributes
1287-------------------
1288
1289Function attributes are set to communicate additional information about
1290a function. Function attributes are considered to be part of the
1291function, not of the function type, so functions with different function
1292attributes can have the same function type.
1293
1294Function attributes are simple keywords that follow the type specified.
1295If multiple attributes are needed, they are space separated. For
1296example:
1297
1298.. code-block:: llvm
1299
1300 define void @f() noinline { ... }
1301 define void @f() alwaysinline { ... }
1302 define void @f() alwaysinline optsize { ... }
1303 define void @f() optsize { ... }
1304
Sean Silvab084af42012-12-07 10:36:55 +00001305``alignstack(<n>)``
1306 This attribute indicates that, when emitting the prologue and
1307 epilogue, the backend should forcibly align the stack pointer.
1308 Specify the desired alignment, which must be a power of two, in
1309 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001310``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1311 This attribute indicates that the annotated function will always return at
1312 least a given number of bytes (or null). Its arguments are zero-indexed
1313 parameter numbers; if one argument is provided, then it's assumed that at
1314 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1315 returned pointer. If two are provided, then it's assumed that
1316 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1317 available. The referenced parameters must be integer types. No assumptions
1318 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001319``alwaysinline``
1320 This attribute indicates that the inliner should attempt to inline
1321 this function into callers whenever possible, ignoring any active
1322 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001323``builtin``
1324 This indicates that the callee function at a call site should be
1325 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001326 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001327 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001328 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001329``cold``
1330 This attribute indicates that this function is rarely called. When
1331 computing edge weights, basic blocks post-dominated by a cold
1332 function call are also considered to be cold; and, thus, given low
1333 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001334``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001335 In some parallel execution models, there exist operations that cannot be
1336 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001337 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001338
Justin Lebar58535b12016-02-17 17:46:41 +00001339 The ``convergent`` attribute may appear on functions or call/invoke
1340 instructions. When it appears on a function, it indicates that calls to
1341 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001342 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001343 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001344 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001345
Justin Lebar58535b12016-02-17 17:46:41 +00001346 When it appears on a call/invoke, the ``convergent`` attribute indicates
1347 that we should treat the call as though we're calling a convergent
1348 function. This is particularly useful on indirect calls; without this we
1349 may treat such calls as though the target is non-convergent.
1350
1351 The optimizer may remove the ``convergent`` attribute on functions when it
1352 can prove that the function does not execute any convergent operations.
1353 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1354 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001355``inaccessiblememonly``
1356 This attribute indicates that the function may only access memory that
1357 is not accessible by the module being compiled. This is a weaker form
1358 of ``readnone``.
1359``inaccessiblemem_or_argmemonly``
1360 This attribute indicates that the function may only access memory that is
1361 either not accessible by the module being compiled, or is pointed to
1362 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001363``inlinehint``
1364 This attribute indicates that the source code contained a hint that
1365 inlining this function is desirable (such as the "inline" keyword in
1366 C/C++). It is just a hint; it imposes no requirements on the
1367 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001368``jumptable``
1369 This attribute indicates that the function should be added to a
1370 jump-instruction table at code-generation time, and that all address-taken
1371 references to this function should be replaced with a reference to the
1372 appropriate jump-instruction-table function pointer. Note that this creates
1373 a new pointer for the original function, which means that code that depends
1374 on function-pointer identity can break. So, any function annotated with
1375 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001376``minsize``
1377 This attribute suggests that optimization passes and code generator
1378 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001379 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001380 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001381``naked``
1382 This attribute disables prologue / epilogue emission for the
1383 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001384``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001385 This indicates that the callee function at a call site is not recognized as
1386 a built-in function. LLVM will retain the original call and not replace it
1387 with equivalent code based on the semantics of the built-in function, unless
1388 the call site uses the ``builtin`` attribute. This is valid at call sites
1389 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001390``noduplicate``
1391 This attribute indicates that calls to the function cannot be
1392 duplicated. A call to a ``noduplicate`` function may be moved
1393 within its parent function, but may not be duplicated within
1394 its parent function.
1395
1396 A function containing a ``noduplicate`` call may still
1397 be an inlining candidate, provided that the call is not
1398 duplicated by inlining. That implies that the function has
1399 internal linkage and only has one call site, so the original
1400 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001401``noimplicitfloat``
1402 This attributes disables implicit floating point instructions.
1403``noinline``
1404 This attribute indicates that the inliner should never inline this
1405 function in any situation. This attribute may not be used together
1406 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001407``nonlazybind``
1408 This attribute suppresses lazy symbol binding for the function. This
1409 may make calls to the function faster, at the cost of extra program
1410 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001411``noredzone``
1412 This attribute indicates that the code generator should not use a
1413 red zone, even if the target-specific ABI normally permits it.
1414``noreturn``
1415 This function attribute indicates that the function never returns
1416 normally. This produces undefined behavior at runtime if the
1417 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001418``norecurse``
1419 This function attribute indicates that the function does not call itself
1420 either directly or indirectly down any possible call path. This produces
1421 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001422``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001423 This function attribute indicates that the function never raises an
1424 exception. If the function does raise an exception, its runtime
1425 behavior is undefined. However, functions marked nounwind may still
1426 trap or generate asynchronous exceptions. Exception handling schemes
1427 that are recognized by LLVM to handle asynchronous exceptions, such
1428 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001429``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001430 This function attribute indicates that most optimization passes will skip
1431 this function, with the exception of interprocedural optimization passes.
1432 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001433 This attribute cannot be used together with the ``alwaysinline``
1434 attribute; this attribute is also incompatible
1435 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001436
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001437 This attribute requires the ``noinline`` attribute to be specified on
1438 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001439 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001440 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001441``optsize``
1442 This attribute suggests that optimization passes and code generator
1443 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001444 and otherwise do optimizations specifically to reduce code size as
1445 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001446``"patchable-function"``
1447 This attribute tells the code generator that the code
1448 generated for this function needs to follow certain conventions that
1449 make it possible for a runtime function to patch over it later.
1450 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001451 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001452
1453 * ``"prologue-short-redirect"`` - This style of patchable
1454 function is intended to support patching a function prologue to
1455 redirect control away from the function in a thread safe
1456 manner. It guarantees that the first instruction of the
1457 function will be large enough to accommodate a short jump
1458 instruction, and will be sufficiently aligned to allow being
1459 fully changed via an atomic compare-and-swap instruction.
1460 While the first requirement can be satisfied by inserting large
1461 enough NOP, LLVM can and will try to re-purpose an existing
1462 instruction (i.e. one that would have to be emitted anyway) as
1463 the patchable instruction larger than a short jump.
1464
1465 ``"prologue-short-redirect"`` is currently only supported on
1466 x86-64.
1467
1468 This attribute by itself does not imply restrictions on
1469 inter-procedural optimizations. All of the semantic effects the
1470 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001471``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001472 On a function, this attribute indicates that the function computes its
1473 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001474 without dereferencing any pointer arguments or otherwise accessing
1475 any mutable state (e.g. memory, control registers, etc) visible to
1476 caller functions. It does not write through any pointer arguments
1477 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das5be2e842017-02-13 23:19:07 +00001478 to callers. This means while it cannot unwind exceptions by calling
1479 the ``C++`` exception throwing methods (since they write to memory), there may
1480 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1481 visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001482
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001483 On an argument, this attribute indicates that the function does not
1484 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001485 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001486``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001487 On a function, this attribute indicates that the function does not write
1488 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001489 modify any state (e.g. memory, control registers, etc) visible to
1490 caller functions. It may dereference pointer arguments and read
1491 state that may be set in the caller. A readonly function always
1492 returns the same value (or unwinds an exception identically) when
Sanjoy Das5be2e842017-02-13 23:19:07 +00001493 called with the same set of arguments and global state. This means while it
1494 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1495 (since they write to memory), there may be non-``C++`` mechanisms that throw
1496 exceptions without writing to LLVM visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001497
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001498 On an argument, this attribute indicates that the function does not write
1499 through this pointer argument, even though it may write to the memory that
1500 the pointer points to.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001501``writeonly``
1502 On a function, this attribute indicates that the function may write to but
1503 does not read from memory.
1504
1505 On an argument, this attribute indicates that the function may write to but
1506 does not read through this pointer argument (even though it may read from
1507 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001508``argmemonly``
1509 This attribute indicates that the only memory accesses inside function are
1510 loads and stores from objects pointed to by its pointer-typed arguments,
1511 with arbitrary offsets. Or in other words, all memory operations in the
1512 function can refer to memory only using pointers based on its function
1513 arguments.
1514 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1515 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001516``returns_twice``
1517 This attribute indicates that this function can return twice. The C
1518 ``setjmp`` is an example of such a function. The compiler disables
1519 some optimizations (like tail calls) in the caller of these
1520 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001521``safestack``
1522 This attribute indicates that
1523 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1524 protection is enabled for this function.
1525
1526 If a function that has a ``safestack`` attribute is inlined into a
1527 function that doesn't have a ``safestack`` attribute or which has an
1528 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1529 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001530``sanitize_address``
1531 This attribute indicates that AddressSanitizer checks
1532 (dynamic address safety analysis) are enabled for this function.
1533``sanitize_memory``
1534 This attribute indicates that MemorySanitizer checks (dynamic detection
1535 of accesses to uninitialized memory) are enabled for this function.
1536``sanitize_thread``
1537 This attribute indicates that ThreadSanitizer checks
1538 (dynamic thread safety analysis) are enabled for this function.
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001539``speculatable``
1540 This function attribute indicates that the function does not have any
1541 effects besides calculating its result and does not have undefined behavior.
1542 Note that ``speculatable`` is not enough to conclude that along any
Xin Tongc7180202017-05-02 23:24:12 +00001543 particular execution path the number of calls to this function will not be
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001544 externally observable. This attribute is only valid on functions
1545 and declarations, not on individual call sites. If a function is
1546 incorrectly marked as speculatable and really does exhibit
1547 undefined behavior, the undefined behavior may be observed even
1548 if the call site is dead code.
1549
Sean Silvab084af42012-12-07 10:36:55 +00001550``ssp``
1551 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001552 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001553 placed on the stack before the local variables that's checked upon
1554 return from the function to see if it has been overwritten. A
1555 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001556 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001557
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001558 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1559 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1560 - Calls to alloca() with variable sizes or constant sizes greater than
1561 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001562
Josh Magee24c7f062014-02-01 01:36:16 +00001563 Variables that are identified as requiring a protector will be arranged
1564 on the stack such that they are adjacent to the stack protector guard.
1565
Sean Silvab084af42012-12-07 10:36:55 +00001566 If a function that has an ``ssp`` attribute is inlined into a
1567 function that doesn't have an ``ssp`` attribute, then the resulting
1568 function will have an ``ssp`` attribute.
1569``sspreq``
1570 This attribute indicates that the function should *always* emit a
1571 stack smashing protector. This overrides the ``ssp`` function
1572 attribute.
1573
Josh Magee24c7f062014-02-01 01:36:16 +00001574 Variables that are identified as requiring a protector will be arranged
1575 on the stack such that they are adjacent to the stack protector guard.
1576 The specific layout rules are:
1577
1578 #. Large arrays and structures containing large arrays
1579 (``>= ssp-buffer-size``) are closest to the stack protector.
1580 #. Small arrays and structures containing small arrays
1581 (``< ssp-buffer-size``) are 2nd closest to the protector.
1582 #. Variables that have had their address taken are 3rd closest to the
1583 protector.
1584
Sean Silvab084af42012-12-07 10:36:55 +00001585 If a function that has an ``sspreq`` attribute is inlined into a
1586 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001587 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1588 an ``sspreq`` attribute.
1589``sspstrong``
1590 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001591 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001592 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001593 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001594
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001595 - Arrays of any size and type
1596 - Aggregates containing an array of any size and type.
1597 - Calls to alloca().
1598 - Local variables that have had their address taken.
1599
Josh Magee24c7f062014-02-01 01:36:16 +00001600 Variables that are identified as requiring a protector will be arranged
1601 on the stack such that they are adjacent to the stack protector guard.
1602 The specific layout rules are:
1603
1604 #. Large arrays and structures containing large arrays
1605 (``>= ssp-buffer-size``) are closest to the stack protector.
1606 #. Small arrays and structures containing small arrays
1607 (``< ssp-buffer-size``) are 2nd closest to the protector.
1608 #. Variables that have had their address taken are 3rd closest to the
1609 protector.
1610
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001611 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001612
1613 If a function that has an ``sspstrong`` attribute is inlined into a
1614 function that doesn't have an ``sspstrong`` attribute, then the
1615 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001616``"thunk"``
1617 This attribute indicates that the function will delegate to some other
1618 function with a tail call. The prototype of a thunk should not be used for
1619 optimization purposes. The caller is expected to cast the thunk prototype to
1620 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001621``uwtable``
1622 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001623 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001624 show that no exceptions passes by it. This is normally the case for
1625 the ELF x86-64 abi, but it can be disabled for some compilation
1626 units.
Sean Silvab084af42012-12-07 10:36:55 +00001627
Javed Absarf3d79042017-05-11 12:28:08 +00001628.. _glattrs:
1629
1630Global Attributes
1631-----------------
1632
1633Attributes may be set to communicate additional information about a global variable.
1634Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
1635are grouped into a single :ref:`attribute group <attrgrp>`.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001636
1637.. _opbundles:
1638
1639Operand Bundles
1640---------------
1641
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001642Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001643with certain LLVM instructions (currently only ``call`` s and
1644``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001645incorrect and will change program semantics.
1646
1647Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001648
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001649 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001650 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1651 bundle operand ::= SSA value
1652 tag ::= string constant
1653
1654Operand bundles are **not** part of a function's signature, and a
1655given function may be called from multiple places with different kinds
1656of operand bundles. This reflects the fact that the operand bundles
1657are conceptually a part of the ``call`` (or ``invoke``), not the
1658callee being dispatched to.
1659
1660Operand bundles are a generic mechanism intended to support
1661runtime-introspection-like functionality for managed languages. While
1662the exact semantics of an operand bundle depend on the bundle tag,
1663there are certain limitations to how much the presence of an operand
1664bundle can influence the semantics of a program. These restrictions
1665are described as the semantics of an "unknown" operand bundle. As
1666long as the behavior of an operand bundle is describable within these
1667restrictions, LLVM does not need to have special knowledge of the
1668operand bundle to not miscompile programs containing it.
1669
David Majnemer34cacb42015-10-22 01:46:38 +00001670- The bundle operands for an unknown operand bundle escape in unknown
1671 ways before control is transferred to the callee or invokee.
1672- Calls and invokes with operand bundles have unknown read / write
1673 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001674 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001675 callsite specific attributes.
1676- An operand bundle at a call site cannot change the implementation
1677 of the called function. Inter-procedural optimizations work as
1678 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001679
Sanjoy Dascdafd842015-11-11 21:38:02 +00001680More specific types of operand bundles are described below.
1681
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001682.. _deopt_opbundles:
1683
Sanjoy Dascdafd842015-11-11 21:38:02 +00001684Deoptimization Operand Bundles
1685^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1686
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001687Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001688operand bundle tag. These operand bundles represent an alternate
1689"safe" continuation for the call site they're attached to, and can be
1690used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001691specified call site. There can be at most one ``"deopt"`` operand
1692bundle attached to a call site. Exact details of deoptimization is
1693out of scope for the language reference, but it usually involves
1694rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001695
1696From the compiler's perspective, deoptimization operand bundles make
1697the call sites they're attached to at least ``readonly``. They read
1698through all of their pointer typed operands (even if they're not
1699otherwise escaped) and the entire visible heap. Deoptimization
1700operand bundles do not capture their operands except during
1701deoptimization, in which case control will not be returned to the
1702compiled frame.
1703
Sanjoy Das2d161452015-11-18 06:23:38 +00001704The inliner knows how to inline through calls that have deoptimization
1705operand bundles. Just like inlining through a normal call site
1706involves composing the normal and exceptional continuations, inlining
1707through a call site with a deoptimization operand bundle needs to
1708appropriately compose the "safe" deoptimization continuation. The
1709inliner does this by prepending the parent's deoptimization
1710continuation to every deoptimization continuation in the inlined body.
1711E.g. inlining ``@f`` into ``@g`` in the following example
1712
1713.. code-block:: llvm
1714
1715 define void @f() {
1716 call void @x() ;; no deopt state
1717 call void @y() [ "deopt"(i32 10) ]
1718 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1719 ret void
1720 }
1721
1722 define void @g() {
1723 call void @f() [ "deopt"(i32 20) ]
1724 ret void
1725 }
1726
1727will result in
1728
1729.. code-block:: llvm
1730
1731 define void @g() {
1732 call void @x() ;; still no deopt state
1733 call void @y() [ "deopt"(i32 20, i32 10) ]
1734 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1735 ret void
1736 }
1737
1738It is the frontend's responsibility to structure or encode the
1739deoptimization state in a way that syntactically prepending the
1740caller's deoptimization state to the callee's deoptimization state is
1741semantically equivalent to composing the caller's deoptimization
1742continuation after the callee's deoptimization continuation.
1743
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001744.. _ob_funclet:
1745
David Majnemer3bb88c02015-12-15 21:27:27 +00001746Funclet Operand Bundles
1747^^^^^^^^^^^^^^^^^^^^^^^
1748
1749Funclet operand bundles are characterized by the ``"funclet"``
1750operand bundle tag. These operand bundles indicate that a call site
1751is within a particular funclet. There can be at most one
1752``"funclet"`` operand bundle attached to a call site and it must have
1753exactly one bundle operand.
1754
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001755If any funclet EH pads have been "entered" but not "exited" (per the
1756`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1757it is undefined behavior to execute a ``call`` or ``invoke`` which:
1758
1759* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1760 intrinsic, or
1761* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1762 not-yet-exited funclet EH pad.
1763
1764Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1765executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1766
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001767GC Transition Operand Bundles
1768^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1769
1770GC transition operand bundles are characterized by the
1771``"gc-transition"`` operand bundle tag. These operand bundles mark a
1772call as a transition between a function with one GC strategy to a
1773function with a different GC strategy. If coordinating the transition
1774between GC strategies requires additional code generation at the call
1775site, these bundles may contain any values that are needed by the
1776generated code. For more details, see :ref:`GC Transitions
1777<gc_transition_args>`.
1778
Sean Silvab084af42012-12-07 10:36:55 +00001779.. _moduleasm:
1780
1781Module-Level Inline Assembly
1782----------------------------
1783
1784Modules may contain "module-level inline asm" blocks, which corresponds
1785to the GCC "file scope inline asm" blocks. These blocks are internally
1786concatenated by LLVM and treated as a single unit, but may be separated
1787in the ``.ll`` file if desired. The syntax is very simple:
1788
1789.. code-block:: llvm
1790
1791 module asm "inline asm code goes here"
1792 module asm "more can go here"
1793
1794The strings can contain any character by escaping non-printable
1795characters. The escape sequence used is simply "\\xx" where "xx" is the
1796two digit hex code for the number.
1797
James Y Knightbc832ed2015-07-08 18:08:36 +00001798Note that the assembly string *must* be parseable by LLVM's integrated assembler
1799(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001800
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001801.. _langref_datalayout:
1802
Sean Silvab084af42012-12-07 10:36:55 +00001803Data Layout
1804-----------
1805
1806A module may specify a target specific data layout string that specifies
1807how data is to be laid out in memory. The syntax for the data layout is
1808simply:
1809
1810.. code-block:: llvm
1811
1812 target datalayout = "layout specification"
1813
1814The *layout specification* consists of a list of specifications
1815separated by the minus sign character ('-'). Each specification starts
1816with a letter and may include other information after the letter to
1817define some aspect of the data layout. The specifications accepted are
1818as follows:
1819
1820``E``
1821 Specifies that the target lays out data in big-endian form. That is,
1822 the bits with the most significance have the lowest address
1823 location.
1824``e``
1825 Specifies that the target lays out data in little-endian form. That
1826 is, the bits with the least significance have the lowest address
1827 location.
1828``S<size>``
1829 Specifies the natural alignment of the stack in bits. Alignment
1830 promotion of stack variables is limited to the natural stack
1831 alignment to avoid dynamic stack realignment. The stack alignment
1832 must be a multiple of 8-bits. If omitted, the natural stack
1833 alignment defaults to "unspecified", which does not prevent any
1834 alignment promotions.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001835``A<address space>``
1836 Specifies the address space of objects created by '``alloca``'.
1837 Defaults to the default address space of 0.
Sean Silvab084af42012-12-07 10:36:55 +00001838``p[n]:<size>:<abi>:<pref>``
1839 This specifies the *size* of a pointer and its ``<abi>`` and
1840 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001841 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001842 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001843 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001844``i<size>:<abi>:<pref>``
1845 This specifies the alignment for an integer type of a given bit
1846 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1847``v<size>:<abi>:<pref>``
1848 This specifies the alignment for a vector type of a given bit
1849 ``<size>``.
1850``f<size>:<abi>:<pref>``
1851 This specifies the alignment for a floating point type of a given bit
1852 ``<size>``. Only values of ``<size>`` that are supported by the target
1853 will work. 32 (float) and 64 (double) are supported on all targets; 80
1854 or 128 (different flavors of long double) are also supported on some
1855 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001856``a:<abi>:<pref>``
1857 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001858``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001859 If present, specifies that llvm names are mangled in the output. The
1860 options are
1861
1862 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1863 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1864 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1865 symbols get a ``_`` prefix.
1866 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1867 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001868 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1869 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001870``n<size1>:<size2>:<size3>...``
1871 This specifies a set of native integer widths for the target CPU in
1872 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1873 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1874 this set are considered to support most general arithmetic operations
1875 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001876``ni:<address space0>:<address space1>:<address space2>...``
1877 This specifies pointer types with the specified address spaces
1878 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1879 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001880
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001881On every specification that takes a ``<abi>:<pref>``, specifying the
1882``<pref>`` alignment is optional. If omitted, the preceding ``:``
1883should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1884
Sean Silvab084af42012-12-07 10:36:55 +00001885When constructing the data layout for a given target, LLVM starts with a
1886default set of specifications which are then (possibly) overridden by
1887the specifications in the ``datalayout`` keyword. The default
1888specifications are given in this list:
1889
1890- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001891- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1892- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1893 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001894- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001895- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1896- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1897- ``i16:16:16`` - i16 is 16-bit aligned
1898- ``i32:32:32`` - i32 is 32-bit aligned
1899- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1900 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001901- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001902- ``f32:32:32`` - float is 32-bit aligned
1903- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001904- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001905- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1906- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001907- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001908
1909When LLVM is determining the alignment for a given type, it uses the
1910following rules:
1911
1912#. If the type sought is an exact match for one of the specifications,
1913 that specification is used.
1914#. If no match is found, and the type sought is an integer type, then
1915 the smallest integer type that is larger than the bitwidth of the
1916 sought type is used. If none of the specifications are larger than
1917 the bitwidth then the largest integer type is used. For example,
1918 given the default specifications above, the i7 type will use the
1919 alignment of i8 (next largest) while both i65 and i256 will use the
1920 alignment of i64 (largest specified).
1921#. If no match is found, and the type sought is a vector type, then the
1922 largest vector type that is smaller than the sought vector type will
1923 be used as a fall back. This happens because <128 x double> can be
1924 implemented in terms of 64 <2 x double>, for example.
1925
1926The function of the data layout string may not be what you expect.
1927Notably, this is not a specification from the frontend of what alignment
1928the code generator should use.
1929
1930Instead, if specified, the target data layout is required to match what
1931the ultimate *code generator* expects. This string is used by the
1932mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001933what the ultimate code generator uses. There is no way to generate IR
1934that does not embed this target-specific detail into the IR. If you
1935don't specify the string, the default specifications will be used to
1936generate a Data Layout and the optimization phases will operate
1937accordingly and introduce target specificity into the IR with respect to
1938these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001939
Bill Wendling5cc90842013-10-18 23:41:25 +00001940.. _langref_triple:
1941
1942Target Triple
1943-------------
1944
1945A module may specify a target triple string that describes the target
1946host. The syntax for the target triple is simply:
1947
1948.. code-block:: llvm
1949
1950 target triple = "x86_64-apple-macosx10.7.0"
1951
1952The *target triple* string consists of a series of identifiers delimited
1953by the minus sign character ('-'). The canonical forms are:
1954
1955::
1956
1957 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1958 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1959
1960This information is passed along to the backend so that it generates
1961code for the proper architecture. It's possible to override this on the
1962command line with the ``-mtriple`` command line option.
1963
Sean Silvab084af42012-12-07 10:36:55 +00001964.. _pointeraliasing:
1965
1966Pointer Aliasing Rules
1967----------------------
1968
1969Any memory access must be done through a pointer value associated with
1970an address range of the memory access, otherwise the behavior is
1971undefined. Pointer values are associated with address ranges according
1972to the following rules:
1973
1974- A pointer value is associated with the addresses associated with any
1975 value it is *based* on.
1976- An address of a global variable is associated with the address range
1977 of the variable's storage.
1978- The result value of an allocation instruction is associated with the
1979 address range of the allocated storage.
1980- A null pointer in the default address-space is associated with no
1981 address.
1982- An integer constant other than zero or a pointer value returned from
1983 a function not defined within LLVM may be associated with address
1984 ranges allocated through mechanisms other than those provided by
1985 LLVM. Such ranges shall not overlap with any ranges of addresses
1986 allocated by mechanisms provided by LLVM.
1987
1988A pointer value is *based* on another pointer value according to the
1989following rules:
1990
1991- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001992 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001993- The result value of a ``bitcast`` is *based* on the operand of the
1994 ``bitcast``.
1995- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1996 values that contribute (directly or indirectly) to the computation of
1997 the pointer's value.
1998- The "*based* on" relationship is transitive.
1999
2000Note that this definition of *"based"* is intentionally similar to the
2001definition of *"based"* in C99, though it is slightly weaker.
2002
2003LLVM IR does not associate types with memory. The result type of a
2004``load`` merely indicates the size and alignment of the memory from
2005which to load, as well as the interpretation of the value. The first
2006operand type of a ``store`` similarly only indicates the size and
2007alignment of the store.
2008
2009Consequently, type-based alias analysis, aka TBAA, aka
2010``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2011:ref:`Metadata <metadata>` may be used to encode additional information
2012which specialized optimization passes may use to implement type-based
2013alias analysis.
2014
2015.. _volatile:
2016
2017Volatile Memory Accesses
2018------------------------
2019
2020Certain memory accesses, such as :ref:`load <i_load>`'s,
2021:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2022marked ``volatile``. The optimizers must not change the number of
2023volatile operations or change their order of execution relative to other
2024volatile operations. The optimizers *may* change the order of volatile
2025operations relative to non-volatile operations. This is not Java's
2026"volatile" and has no cross-thread synchronization behavior.
2027
Andrew Trick89fc5a62013-01-30 21:19:35 +00002028IR-level volatile loads and stores cannot safely be optimized into
2029llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2030flagged volatile. Likewise, the backend should never split or merge
2031target-legal volatile load/store instructions.
2032
Andrew Trick7e6f9282013-01-31 00:49:39 +00002033.. admonition:: Rationale
2034
2035 Platforms may rely on volatile loads and stores of natively supported
2036 data width to be executed as single instruction. For example, in C
2037 this holds for an l-value of volatile primitive type with native
2038 hardware support, but not necessarily for aggregate types. The
2039 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002040 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002041 do not violate the frontend's contract with the language.
2042
Sean Silvab084af42012-12-07 10:36:55 +00002043.. _memmodel:
2044
2045Memory Model for Concurrent Operations
2046--------------------------------------
2047
2048The LLVM IR does not define any way to start parallel threads of
2049execution or to register signal handlers. Nonetheless, there are
2050platform-specific ways to create them, and we define LLVM IR's behavior
2051in their presence. This model is inspired by the C++0x memory model.
2052
2053For a more informal introduction to this model, see the :doc:`Atomics`.
2054
2055We define a *happens-before* partial order as the least partial order
2056that
2057
2058- Is a superset of single-thread program order, and
2059- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2060 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2061 techniques, like pthread locks, thread creation, thread joining,
2062 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2063 Constraints <ordering>`).
2064
2065Note that program order does not introduce *happens-before* edges
2066between a thread and signals executing inside that thread.
2067
2068Every (defined) read operation (load instructions, memcpy, atomic
2069loads/read-modify-writes, etc.) R reads a series of bytes written by
2070(defined) write operations (store instructions, atomic
2071stores/read-modify-writes, memcpy, etc.). For the purposes of this
2072section, initialized globals are considered to have a write of the
2073initializer which is atomic and happens before any other read or write
2074of the memory in question. For each byte of a read R, R\ :sub:`byte`
2075may see any write to the same byte, except:
2076
2077- If write\ :sub:`1` happens before write\ :sub:`2`, and
2078 write\ :sub:`2` happens before R\ :sub:`byte`, then
2079 R\ :sub:`byte` does not see write\ :sub:`1`.
2080- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2081 R\ :sub:`byte` does not see write\ :sub:`3`.
2082
2083Given that definition, R\ :sub:`byte` is defined as follows:
2084
2085- If R is volatile, the result is target-dependent. (Volatile is
2086 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002087 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002088 like normal memory. It does not generally provide cross-thread
2089 synchronization.)
2090- Otherwise, if there is no write to the same byte that happens before
2091 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2092- Otherwise, if R\ :sub:`byte` may see exactly one write,
2093 R\ :sub:`byte` returns the value written by that write.
2094- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2095 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2096 Memory Ordering Constraints <ordering>` section for additional
2097 constraints on how the choice is made.
2098- Otherwise R\ :sub:`byte` returns ``undef``.
2099
2100R returns the value composed of the series of bytes it read. This
2101implies that some bytes within the value may be ``undef`` **without**
2102the entire value being ``undef``. Note that this only defines the
2103semantics of the operation; it doesn't mean that targets will emit more
2104than one instruction to read the series of bytes.
2105
2106Note that in cases where none of the atomic intrinsics are used, this
2107model places only one restriction on IR transformations on top of what
2108is required for single-threaded execution: introducing a store to a byte
2109which might not otherwise be stored is not allowed in general.
2110(Specifically, in the case where another thread might write to and read
2111from an address, introducing a store can change a load that may see
2112exactly one write into a load that may see multiple writes.)
2113
2114.. _ordering:
2115
2116Atomic Memory Ordering Constraints
2117----------------------------------
2118
2119Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2120:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2121:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002122ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002123the same address they *synchronize with*. These semantics are borrowed
2124from Java and C++0x, but are somewhat more colloquial. If these
2125descriptions aren't precise enough, check those specs (see spec
2126references in the :doc:`atomics guide <Atomics>`).
2127:ref:`fence <i_fence>` instructions treat these orderings somewhat
2128differently since they don't take an address. See that instruction's
2129documentation for details.
2130
2131For a simpler introduction to the ordering constraints, see the
2132:doc:`Atomics`.
2133
2134``unordered``
2135 The set of values that can be read is governed by the happens-before
2136 partial order. A value cannot be read unless some operation wrote
2137 it. This is intended to provide a guarantee strong enough to model
2138 Java's non-volatile shared variables. This ordering cannot be
2139 specified for read-modify-write operations; it is not strong enough
2140 to make them atomic in any interesting way.
2141``monotonic``
2142 In addition to the guarantees of ``unordered``, there is a single
2143 total order for modifications by ``monotonic`` operations on each
2144 address. All modification orders must be compatible with the
2145 happens-before order. There is no guarantee that the modification
2146 orders can be combined to a global total order for the whole program
2147 (and this often will not be possible). The read in an atomic
2148 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2149 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2150 order immediately before the value it writes. If one atomic read
2151 happens before another atomic read of the same address, the later
2152 read must see the same value or a later value in the address's
2153 modification order. This disallows reordering of ``monotonic`` (or
2154 stronger) operations on the same address. If an address is written
2155 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2156 read that address repeatedly, the other threads must eventually see
2157 the write. This corresponds to the C++0x/C1x
2158 ``memory_order_relaxed``.
2159``acquire``
2160 In addition to the guarantees of ``monotonic``, a
2161 *synchronizes-with* edge may be formed with a ``release`` operation.
2162 This is intended to model C++'s ``memory_order_acquire``.
2163``release``
2164 In addition to the guarantees of ``monotonic``, if this operation
2165 writes a value which is subsequently read by an ``acquire``
2166 operation, it *synchronizes-with* that operation. (This isn't a
2167 complete description; see the C++0x definition of a release
2168 sequence.) This corresponds to the C++0x/C1x
2169 ``memory_order_release``.
2170``acq_rel`` (acquire+release)
2171 Acts as both an ``acquire`` and ``release`` operation on its
2172 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2173``seq_cst`` (sequentially consistent)
2174 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002175 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002176 writes), there is a global total order on all
2177 sequentially-consistent operations on all addresses, which is
2178 consistent with the *happens-before* partial order and with the
2179 modification orders of all the affected addresses. Each
2180 sequentially-consistent read sees the last preceding write to the
2181 same address in this global order. This corresponds to the C++0x/C1x
2182 ``memory_order_seq_cst`` and Java volatile.
2183
2184.. _singlethread:
2185
2186If an atomic operation is marked ``singlethread``, it only *synchronizes
2187with* or participates in modification and seq\_cst total orderings with
2188other operations running in the same thread (for example, in signal
2189handlers).
2190
2191.. _fastmath:
2192
2193Fast-Math Flags
2194---------------
2195
2196LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2197:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002198:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
2199instructions have the following flags that can be set to enable
2200otherwise unsafe floating point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002201
2202``nnan``
2203 No NaNs - Allow optimizations to assume the arguments and result are not
2204 NaN. Such optimizations are required to retain defined behavior over
2205 NaNs, but the value of the result is undefined.
2206
2207``ninf``
2208 No Infs - Allow optimizations to assume the arguments and result are not
2209 +/-Inf. Such optimizations are required to retain defined behavior over
2210 +/-Inf, but the value of the result is undefined.
2211
2212``nsz``
2213 No Signed Zeros - Allow optimizations to treat the sign of a zero
2214 argument or result as insignificant.
2215
2216``arcp``
2217 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2218 argument rather than perform division.
2219
Adam Nemetcd847a82017-03-28 20:11:52 +00002220``contract``
2221 Allow floating-point contraction (e.g. fusing a multiply followed by an
2222 addition into a fused multiply-and-add).
2223
Sean Silvab084af42012-12-07 10:36:55 +00002224``fast``
2225 Fast - Allow algebraically equivalent transformations that may
2226 dramatically change results in floating point (e.g. reassociate). This
2227 flag implies all the others.
2228
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002229.. _uselistorder:
2230
2231Use-list Order Directives
2232-------------------------
2233
2234Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002235order to be recreated. ``<order-indexes>`` is a comma-separated list of
2236indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002237value's use-list is immediately sorted by these indexes.
2238
Sean Silvaa1190322015-08-06 22:56:48 +00002239Use-list directives may appear at function scope or global scope. They are not
2240instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002241function scope, they must appear after the terminator of the final basic block.
2242
2243If basic blocks have their address taken via ``blockaddress()`` expressions,
2244``uselistorder_bb`` can be used to reorder their use-lists from outside their
2245function's scope.
2246
2247:Syntax:
2248
2249::
2250
2251 uselistorder <ty> <value>, { <order-indexes> }
2252 uselistorder_bb @function, %block { <order-indexes> }
2253
2254:Examples:
2255
2256::
2257
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002258 define void @foo(i32 %arg1, i32 %arg2) {
2259 entry:
2260 ; ... instructions ...
2261 bb:
2262 ; ... instructions ...
2263
2264 ; At function scope.
2265 uselistorder i32 %arg1, { 1, 0, 2 }
2266 uselistorder label %bb, { 1, 0 }
2267 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002268
2269 ; At global scope.
2270 uselistorder i32* @global, { 1, 2, 0 }
2271 uselistorder i32 7, { 1, 0 }
2272 uselistorder i32 (i32) @bar, { 1, 0 }
2273 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2274
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002275.. _source_filename:
2276
2277Source Filename
2278---------------
2279
2280The *source filename* string is set to the original module identifier,
2281which will be the name of the compiled source file when compiling from
2282source through the clang front end, for example. It is then preserved through
2283the IR and bitcode.
2284
2285This is currently necessary to generate a consistent unique global
2286identifier for local functions used in profile data, which prepends the
2287source file name to the local function name.
2288
2289The syntax for the source file name is simply:
2290
Renato Golin124f2592016-07-20 12:16:38 +00002291.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002292
2293 source_filename = "/path/to/source.c"
2294
Sean Silvab084af42012-12-07 10:36:55 +00002295.. _typesystem:
2296
2297Type System
2298===========
2299
2300The LLVM type system is one of the most important features of the
2301intermediate representation. Being typed enables a number of
2302optimizations to be performed on the intermediate representation
2303directly, without having to do extra analyses on the side before the
2304transformation. A strong type system makes it easier to read the
2305generated code and enables novel analyses and transformations that are
2306not feasible to perform on normal three address code representations.
2307
Rafael Espindola08013342013-12-07 19:34:20 +00002308.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002309
Rafael Espindola08013342013-12-07 19:34:20 +00002310Void Type
2311---------
Sean Silvab084af42012-12-07 10:36:55 +00002312
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002313:Overview:
2314
Rafael Espindola08013342013-12-07 19:34:20 +00002315
2316The void type does not represent any value and has no size.
2317
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002318:Syntax:
2319
Rafael Espindola08013342013-12-07 19:34:20 +00002320
2321::
2322
2323 void
Sean Silvab084af42012-12-07 10:36:55 +00002324
2325
Rafael Espindola08013342013-12-07 19:34:20 +00002326.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002327
Rafael Espindola08013342013-12-07 19:34:20 +00002328Function Type
2329-------------
Sean Silvab084af42012-12-07 10:36:55 +00002330
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002331:Overview:
2332
Sean Silvab084af42012-12-07 10:36:55 +00002333
Rafael Espindola08013342013-12-07 19:34:20 +00002334The function type can be thought of as a function signature. It consists of a
2335return type and a list of formal parameter types. The return type of a function
2336type is a void type or first class type --- except for :ref:`label <t_label>`
2337and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002338
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002339:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002340
Rafael Espindola08013342013-12-07 19:34:20 +00002341::
Sean Silvab084af42012-12-07 10:36:55 +00002342
Rafael Espindola08013342013-12-07 19:34:20 +00002343 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002344
Rafael Espindola08013342013-12-07 19:34:20 +00002345...where '``<parameter list>``' is a comma-separated list of type
2346specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002347indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002348argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002349handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002350except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002351
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002352:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002353
Rafael Espindola08013342013-12-07 19:34:20 +00002354+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2355| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2356+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2357| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2358+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2359| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2360+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2361| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2362+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2363
2364.. _t_firstclass:
2365
2366First Class Types
2367-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002368
2369The :ref:`first class <t_firstclass>` types are perhaps the most important.
2370Values of these types are the only ones which can be produced by
2371instructions.
2372
Rafael Espindola08013342013-12-07 19:34:20 +00002373.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002374
Rafael Espindola08013342013-12-07 19:34:20 +00002375Single Value Types
2376^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002377
Rafael Espindola08013342013-12-07 19:34:20 +00002378These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002379
2380.. _t_integer:
2381
2382Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002383""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002384
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002385:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002386
2387The integer type is a very simple type that simply specifies an
2388arbitrary bit width for the integer type desired. Any bit width from 1
2389bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2390
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002391:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002392
2393::
2394
2395 iN
2396
2397The number of bits the integer will occupy is specified by the ``N``
2398value.
2399
2400Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002401*********
Sean Silvab084af42012-12-07 10:36:55 +00002402
2403+----------------+------------------------------------------------+
2404| ``i1`` | a single-bit integer. |
2405+----------------+------------------------------------------------+
2406| ``i32`` | a 32-bit integer. |
2407+----------------+------------------------------------------------+
2408| ``i1942652`` | a really big integer of over 1 million bits. |
2409+----------------+------------------------------------------------+
2410
2411.. _t_floating:
2412
2413Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002414""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002415
2416.. list-table::
2417 :header-rows: 1
2418
2419 * - Type
2420 - Description
2421
2422 * - ``half``
2423 - 16-bit floating point value
2424
2425 * - ``float``
2426 - 32-bit floating point value
2427
2428 * - ``double``
2429 - 64-bit floating point value
2430
2431 * - ``fp128``
2432 - 128-bit floating point value (112-bit mantissa)
2433
2434 * - ``x86_fp80``
2435 - 80-bit floating point value (X87)
2436
2437 * - ``ppc_fp128``
2438 - 128-bit floating point value (two 64-bits)
2439
Reid Kleckner9a16d082014-03-05 02:41:37 +00002440X86_mmx Type
2441""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002442
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002443:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002444
Reid Kleckner9a16d082014-03-05 02:41:37 +00002445The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002446machine. The operations allowed on it are quite limited: parameters and
2447return values, load and store, and bitcast. User-specified MMX
2448instructions are represented as intrinsic or asm calls with arguments
2449and/or results of this type. There are no arrays, vectors or constants
2450of this type.
2451
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002452:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002453
2454::
2455
Reid Kleckner9a16d082014-03-05 02:41:37 +00002456 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002457
Sean Silvab084af42012-12-07 10:36:55 +00002458
Rafael Espindola08013342013-12-07 19:34:20 +00002459.. _t_pointer:
2460
2461Pointer Type
2462""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002463
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002464:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002465
Rafael Espindola08013342013-12-07 19:34:20 +00002466The pointer type is used to specify memory locations. Pointers are
2467commonly used to reference objects in memory.
2468
2469Pointer types may have an optional address space attribute defining the
2470numbered address space where the pointed-to object resides. The default
2471address space is number zero. The semantics of non-zero address spaces
2472are target-specific.
2473
2474Note that LLVM does not permit pointers to void (``void*``) nor does it
2475permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002476
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002477:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002478
2479::
2480
Rafael Espindola08013342013-12-07 19:34:20 +00002481 <type> *
2482
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002483:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002484
2485+-------------------------+--------------------------------------------------------------------------------------------------------------+
2486| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2487+-------------------------+--------------------------------------------------------------------------------------------------------------+
2488| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2489+-------------------------+--------------------------------------------------------------------------------------------------------------+
2490| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2491+-------------------------+--------------------------------------------------------------------------------------------------------------+
2492
2493.. _t_vector:
2494
2495Vector Type
2496"""""""""""
2497
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002498:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002499
2500A vector type is a simple derived type that represents a vector of
2501elements. Vector types are used when multiple primitive data are
2502operated in parallel using a single instruction (SIMD). A vector type
2503requires a size (number of elements) and an underlying primitive data
2504type. Vector types are considered :ref:`first class <t_firstclass>`.
2505
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002506:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002507
2508::
2509
2510 < <# elements> x <elementtype> >
2511
2512The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002513elementtype may be any integer, floating point or pointer type. Vectors
2514of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002515
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002516:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002517
2518+-------------------+--------------------------------------------------+
2519| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2520+-------------------+--------------------------------------------------+
2521| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2522+-------------------+--------------------------------------------------+
2523| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2524+-------------------+--------------------------------------------------+
2525| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2526+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002527
2528.. _t_label:
2529
2530Label Type
2531^^^^^^^^^^
2532
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002533:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002534
2535The label type represents code labels.
2536
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002537:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002538
2539::
2540
2541 label
2542
David Majnemerb611e3f2015-08-14 05:09:07 +00002543.. _t_token:
2544
2545Token Type
2546^^^^^^^^^^
2547
2548:Overview:
2549
2550The token type is used when a value is associated with an instruction
2551but all uses of the value must not attempt to introspect or obscure it.
2552As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2553:ref:`select <i_select>` of type token.
2554
2555:Syntax:
2556
2557::
2558
2559 token
2560
2561
2562
Sean Silvab084af42012-12-07 10:36:55 +00002563.. _t_metadata:
2564
2565Metadata Type
2566^^^^^^^^^^^^^
2567
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002568:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002569
2570The metadata type represents embedded metadata. No derived types may be
2571created from metadata except for :ref:`function <t_function>` arguments.
2572
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002573:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002574
2575::
2576
2577 metadata
2578
Sean Silvab084af42012-12-07 10:36:55 +00002579.. _t_aggregate:
2580
2581Aggregate Types
2582^^^^^^^^^^^^^^^
2583
2584Aggregate Types are a subset of derived types that can contain multiple
2585member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2586aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2587aggregate types.
2588
2589.. _t_array:
2590
2591Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002592""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002593
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002594:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002595
2596The array type is a very simple derived type that arranges elements
2597sequentially in memory. The array type requires a size (number of
2598elements) and an underlying data type.
2599
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002600:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002601
2602::
2603
2604 [<# elements> x <elementtype>]
2605
2606The number of elements is a constant integer value; ``elementtype`` may
2607be any type with a size.
2608
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002609:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002610
2611+------------------+--------------------------------------+
2612| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2613+------------------+--------------------------------------+
2614| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2615+------------------+--------------------------------------+
2616| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2617+------------------+--------------------------------------+
2618
2619Here are some examples of multidimensional arrays:
2620
2621+-----------------------------+----------------------------------------------------------+
2622| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2623+-----------------------------+----------------------------------------------------------+
2624| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2625+-----------------------------+----------------------------------------------------------+
2626| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2627+-----------------------------+----------------------------------------------------------+
2628
2629There is no restriction on indexing beyond the end of the array implied
2630by a static type (though there are restrictions on indexing beyond the
2631bounds of an allocated object in some cases). This means that
2632single-dimension 'variable sized array' addressing can be implemented in
2633LLVM with a zero length array type. An implementation of 'pascal style
2634arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2635example.
2636
Sean Silvab084af42012-12-07 10:36:55 +00002637.. _t_struct:
2638
2639Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002640""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002641
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002642:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002643
2644The structure type is used to represent a collection of data members
2645together in memory. The elements of a structure may be any type that has
2646a size.
2647
2648Structures in memory are accessed using '``load``' and '``store``' by
2649getting a pointer to a field with the '``getelementptr``' instruction.
2650Structures in registers are accessed using the '``extractvalue``' and
2651'``insertvalue``' instructions.
2652
2653Structures may optionally be "packed" structures, which indicate that
2654the alignment of the struct is one byte, and that there is no padding
2655between the elements. In non-packed structs, padding between field types
2656is inserted as defined by the DataLayout string in the module, which is
2657required to match what the underlying code generator expects.
2658
2659Structures can either be "literal" or "identified". A literal structure
2660is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2661identified types are always defined at the top level with a name.
2662Literal types are uniqued by their contents and can never be recursive
2663or opaque since there is no way to write one. Identified types can be
2664recursive, can be opaqued, and are never uniqued.
2665
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002666:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002667
2668::
2669
2670 %T1 = type { <type list> } ; Identified normal struct type
2671 %T2 = type <{ <type list> }> ; Identified packed struct type
2672
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002673:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002674
2675+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2676| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2677+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002678| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002679+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2680| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2681+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2682
2683.. _t_opaque:
2684
2685Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002686""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002687
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002688:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002689
2690Opaque structure types are used to represent named structure types that
2691do not have a body specified. This corresponds (for example) to the C
2692notion of a forward declared structure.
2693
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002694:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002695
2696::
2697
2698 %X = type opaque
2699 %52 = type opaque
2700
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002701:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002702
2703+--------------+-------------------+
2704| ``opaque`` | An opaque type. |
2705+--------------+-------------------+
2706
Sean Silva1703e702014-04-08 21:06:22 +00002707.. _constants:
2708
Sean Silvab084af42012-12-07 10:36:55 +00002709Constants
2710=========
2711
2712LLVM has several different basic types of constants. This section
2713describes them all and their syntax.
2714
2715Simple Constants
2716----------------
2717
2718**Boolean constants**
2719 The two strings '``true``' and '``false``' are both valid constants
2720 of the ``i1`` type.
2721**Integer constants**
2722 Standard integers (such as '4') are constants of the
2723 :ref:`integer <t_integer>` type. Negative numbers may be used with
2724 integer types.
2725**Floating point constants**
2726 Floating point constants use standard decimal notation (e.g.
2727 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2728 hexadecimal notation (see below). The assembler requires the exact
2729 decimal value of a floating-point constant. For example, the
2730 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2731 decimal in binary. Floating point constants must have a :ref:`floating
2732 point <t_floating>` type.
2733**Null pointer constants**
2734 The identifier '``null``' is recognized as a null pointer constant
2735 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002736**Token constants**
2737 The identifier '``none``' is recognized as an empty token constant
2738 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002739
2740The one non-intuitive notation for constants is the hexadecimal form of
2741floating point constants. For example, the form
2742'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2743than) '``double 4.5e+15``'. The only time hexadecimal floating point
2744constants are required (and the only time that they are generated by the
2745disassembler) is when a floating point constant must be emitted but it
2746cannot be represented as a decimal floating point number in a reasonable
2747number of digits. For example, NaN's, infinities, and other special
2748values are represented in their IEEE hexadecimal format so that assembly
2749and disassembly do not cause any bits to change in the constants.
2750
2751When using the hexadecimal form, constants of types half, float, and
2752double are represented using the 16-digit form shown above (which
2753matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002754must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002755precision, respectively. Hexadecimal format is always used for long
2756double, and there are three forms of long double. The 80-bit format used
2757by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2758128-bit format used by PowerPC (two adjacent doubles) is represented by
2759``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002760represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2761will only work if they match the long double format on your target.
2762The IEEE 16-bit format (half precision) is represented by ``0xH``
2763followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2764(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002765
Reid Kleckner9a16d082014-03-05 02:41:37 +00002766There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002767
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002768.. _complexconstants:
2769
Sean Silvab084af42012-12-07 10:36:55 +00002770Complex Constants
2771-----------------
2772
2773Complex constants are a (potentially recursive) combination of simple
2774constants and smaller complex constants.
2775
2776**Structure constants**
2777 Structure constants are represented with notation similar to
2778 structure type definitions (a comma separated list of elements,
2779 surrounded by braces (``{}``)). For example:
2780 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2781 "``@G = external global i32``". Structure constants must have
2782 :ref:`structure type <t_struct>`, and the number and types of elements
2783 must match those specified by the type.
2784**Array constants**
2785 Array constants are represented with notation similar to array type
2786 definitions (a comma separated list of elements, surrounded by
2787 square brackets (``[]``)). For example:
2788 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2789 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002790 match those specified by the type. As a special case, character array
2791 constants may also be represented as a double-quoted string using the ``c``
2792 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002793**Vector constants**
2794 Vector constants are represented with notation similar to vector
2795 type definitions (a comma separated list of elements, surrounded by
2796 less-than/greater-than's (``<>``)). For example:
2797 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2798 must have :ref:`vector type <t_vector>`, and the number and types of
2799 elements must match those specified by the type.
2800**Zero initialization**
2801 The string '``zeroinitializer``' can be used to zero initialize a
2802 value to zero of *any* type, including scalar and
2803 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2804 having to print large zero initializers (e.g. for large arrays) and
2805 is always exactly equivalent to using explicit zero initializers.
2806**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002807 A metadata node is a constant tuple without types. For example:
2808 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002809 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2810 Unlike other typed constants that are meant to be interpreted as part of
2811 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002812 information such as debug info.
2813
2814Global Variable and Function Addresses
2815--------------------------------------
2816
2817The addresses of :ref:`global variables <globalvars>` and
2818:ref:`functions <functionstructure>` are always implicitly valid
2819(link-time) constants. These constants are explicitly referenced when
2820the :ref:`identifier for the global <identifiers>` is used and always have
2821:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2822file:
2823
2824.. code-block:: llvm
2825
2826 @X = global i32 17
2827 @Y = global i32 42
2828 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2829
2830.. _undefvalues:
2831
2832Undefined Values
2833----------------
2834
2835The string '``undef``' can be used anywhere a constant is expected, and
2836indicates that the user of the value may receive an unspecified
2837bit-pattern. Undefined values may be of any type (other than '``label``'
2838or '``void``') and be used anywhere a constant is permitted.
2839
2840Undefined values are useful because they indicate to the compiler that
2841the program is well defined no matter what value is used. This gives the
2842compiler more freedom to optimize. Here are some examples of
2843(potentially surprising) transformations that are valid (in pseudo IR):
2844
2845.. code-block:: llvm
2846
2847 %A = add %X, undef
2848 %B = sub %X, undef
2849 %C = xor %X, undef
2850 Safe:
2851 %A = undef
2852 %B = undef
2853 %C = undef
2854
2855This is safe because all of the output bits are affected by the undef
2856bits. Any output bit can have a zero or one depending on the input bits.
2857
2858.. code-block:: llvm
2859
2860 %A = or %X, undef
2861 %B = and %X, undef
2862 Safe:
2863 %A = -1
2864 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00002865 Safe:
2866 %A = %X ;; By choosing undef as 0
2867 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00002868 Unsafe:
2869 %A = undef
2870 %B = undef
2871
2872These logical operations have bits that are not always affected by the
2873input. For example, if ``%X`` has a zero bit, then the output of the
2874'``and``' operation will always be a zero for that bit, no matter what
2875the corresponding bit from the '``undef``' is. As such, it is unsafe to
2876optimize or assume that the result of the '``and``' is '``undef``'.
2877However, it is safe to assume that all bits of the '``undef``' could be
28780, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2879all the bits of the '``undef``' operand to the '``or``' could be set,
2880allowing the '``or``' to be folded to -1.
2881
2882.. code-block:: llvm
2883
2884 %A = select undef, %X, %Y
2885 %B = select undef, 42, %Y
2886 %C = select %X, %Y, undef
2887 Safe:
2888 %A = %X (or %Y)
2889 %B = 42 (or %Y)
2890 %C = %Y
2891 Unsafe:
2892 %A = undef
2893 %B = undef
2894 %C = undef
2895
2896This set of examples shows that undefined '``select``' (and conditional
2897branch) conditions can go *either way*, but they have to come from one
2898of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2899both known to have a clear low bit, then ``%A`` would have to have a
2900cleared low bit. However, in the ``%C`` example, the optimizer is
2901allowed to assume that the '``undef``' operand could be the same as
2902``%Y``, allowing the whole '``select``' to be eliminated.
2903
Renato Golin124f2592016-07-20 12:16:38 +00002904.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002905
2906 %A = xor undef, undef
2907
2908 %B = undef
2909 %C = xor %B, %B
2910
2911 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002912 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002913 %F = icmp gte %D, 4
2914
2915 Safe:
2916 %A = undef
2917 %B = undef
2918 %C = undef
2919 %D = undef
2920 %E = undef
2921 %F = undef
2922
2923This example points out that two '``undef``' operands are not
2924necessarily the same. This can be surprising to people (and also matches
2925C semantics) where they assume that "``X^X``" is always zero, even if
2926``X`` is undefined. This isn't true for a number of reasons, but the
2927short answer is that an '``undef``' "variable" can arbitrarily change
2928its value over its "live range". This is true because the variable
2929doesn't actually *have a live range*. Instead, the value is logically
2930read from arbitrary registers that happen to be around when needed, so
2931the value is not necessarily consistent over time. In fact, ``%A`` and
2932``%C`` need to have the same semantics or the core LLVM "replace all
2933uses with" concept would not hold.
2934
2935.. code-block:: llvm
2936
2937 %A = fdiv undef, %X
2938 %B = fdiv %X, undef
2939 Safe:
2940 %A = undef
2941 b: unreachable
2942
2943These examples show the crucial difference between an *undefined value*
2944and *undefined behavior*. An undefined value (like '``undef``') is
2945allowed to have an arbitrary bit-pattern. This means that the ``%A``
2946operation can be constant folded to '``undef``', because the '``undef``'
2947could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2948However, in the second example, we can make a more aggressive
2949assumption: because the ``undef`` is allowed to be an arbitrary value,
2950we are allowed to assume that it could be zero. Since a divide by zero
2951has *undefined behavior*, we are allowed to assume that the operation
2952does not execute at all. This allows us to delete the divide and all
2953code after it. Because the undefined operation "can't happen", the
2954optimizer can assume that it occurs in dead code.
2955
Renato Golin124f2592016-07-20 12:16:38 +00002956.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002957
2958 a: store undef -> %X
2959 b: store %X -> undef
2960 Safe:
2961 a: <deleted>
2962 b: unreachable
2963
2964These examples reiterate the ``fdiv`` example: a store *of* an undefined
2965value can be assumed to not have any effect; we can assume that the
2966value is overwritten with bits that happen to match what was already
2967there. However, a store *to* an undefined location could clobber
2968arbitrary memory, therefore, it has undefined behavior.
2969
2970.. _poisonvalues:
2971
2972Poison Values
2973-------------
2974
2975Poison values are similar to :ref:`undef values <undefvalues>`, however
2976they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002977that cannot evoke side effects has nevertheless detected a condition
2978that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002979
2980There is currently no way of representing a poison value in the IR; they
2981only exist when produced by operations such as :ref:`add <i_add>` with
2982the ``nsw`` flag.
2983
2984Poison value behavior is defined in terms of value *dependence*:
2985
2986- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2987- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2988 their dynamic predecessor basic block.
2989- Function arguments depend on the corresponding actual argument values
2990 in the dynamic callers of their functions.
2991- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2992 instructions that dynamically transfer control back to them.
2993- :ref:`Invoke <i_invoke>` instructions depend on the
2994 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2995 call instructions that dynamically transfer control back to them.
2996- Non-volatile loads and stores depend on the most recent stores to all
2997 of the referenced memory addresses, following the order in the IR
2998 (including loads and stores implied by intrinsics such as
2999 :ref:`@llvm.memcpy <int_memcpy>`.)
3000- An instruction with externally visible side effects depends on the
3001 most recent preceding instruction with externally visible side
3002 effects, following the order in the IR. (This includes :ref:`volatile
3003 operations <volatile>`.)
3004- An instruction *control-depends* on a :ref:`terminator
3005 instruction <terminators>` if the terminator instruction has
3006 multiple successors and the instruction is always executed when
3007 control transfers to one of the successors, and may not be executed
3008 when control is transferred to another.
3009- Additionally, an instruction also *control-depends* on a terminator
3010 instruction if the set of instructions it otherwise depends on would
3011 be different if the terminator had transferred control to a different
3012 successor.
3013- Dependence is transitive.
3014
Richard Smith32dbdf62014-07-31 04:25:36 +00003015Poison values have the same behavior as :ref:`undef values <undefvalues>`,
3016with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00003017on a poison value has undefined behavior.
3018
3019Here are some examples:
3020
3021.. code-block:: llvm
3022
3023 entry:
3024 %poison = sub nuw i32 0, 1 ; Results in a poison value.
3025 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00003026 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00003027 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3028
3029 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003030 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003031
3032 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3033
3034 %narrowaddr = bitcast i32* @g to i16*
3035 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003036 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3037 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003038
3039 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3040 br i1 %cmp, label %true, label %end ; Branch to either destination.
3041
3042 true:
3043 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3044 ; it has undefined behavior.
3045 br label %end
3046
3047 end:
3048 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3049 ; Both edges into this PHI are
3050 ; control-dependent on %cmp, so this
3051 ; always results in a poison value.
3052
3053 store volatile i32 0, i32* @g ; This would depend on the store in %true
3054 ; if %cmp is true, or the store in %entry
3055 ; otherwise, so this is undefined behavior.
3056
3057 br i1 %cmp, label %second_true, label %second_end
3058 ; The same branch again, but this time the
3059 ; true block doesn't have side effects.
3060
3061 second_true:
3062 ; No side effects!
3063 ret void
3064
3065 second_end:
3066 store volatile i32 0, i32* @g ; This time, the instruction always depends
3067 ; on the store in %end. Also, it is
3068 ; control-equivalent to %end, so this is
3069 ; well-defined (ignoring earlier undefined
3070 ; behavior in this example).
3071
3072.. _blockaddress:
3073
3074Addresses of Basic Blocks
3075-------------------------
3076
3077``blockaddress(@function, %block)``
3078
3079The '``blockaddress``' constant computes the address of the specified
3080basic block in the specified function, and always has an ``i8*`` type.
3081Taking the address of the entry block is illegal.
3082
3083This value only has defined behavior when used as an operand to the
3084':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3085against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003086undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003087no label is equal to the null pointer. This may be passed around as an
3088opaque pointer sized value as long as the bits are not inspected. This
3089allows ``ptrtoint`` and arithmetic to be performed on these values so
3090long as the original value is reconstituted before the ``indirectbr``
3091instruction.
3092
3093Finally, some targets may provide defined semantics when using the value
3094as the operand to an inline assembly, but that is target specific.
3095
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003096.. _constantexprs:
3097
Sean Silvab084af42012-12-07 10:36:55 +00003098Constant Expressions
3099--------------------
3100
3101Constant expressions are used to allow expressions involving other
3102constants to be used as constants. Constant expressions may be of any
3103:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3104that does not have side effects (e.g. load and call are not supported).
3105The following is the syntax for constant expressions:
3106
3107``trunc (CST to TYPE)``
3108 Truncate a constant to another type. The bit size of CST must be
3109 larger than the bit size of TYPE. Both types must be integers.
3110``zext (CST to TYPE)``
3111 Zero extend a constant to another type. The bit size of CST must be
3112 smaller than the bit size of TYPE. Both types must be integers.
3113``sext (CST to TYPE)``
3114 Sign extend a constant to another type. The bit size of CST must be
3115 smaller than the bit size of TYPE. Both types must be integers.
3116``fptrunc (CST to TYPE)``
3117 Truncate a floating point constant to another floating point type.
3118 The size of CST must be larger than the size of TYPE. Both types
3119 must be floating point.
3120``fpext (CST to TYPE)``
3121 Floating point extend a constant to another type. The size of CST
3122 must be smaller or equal to the size of TYPE. Both types must be
3123 floating point.
3124``fptoui (CST to TYPE)``
3125 Convert a floating point constant to the corresponding unsigned
3126 integer constant. TYPE must be a scalar or vector integer type. CST
3127 must be of scalar or vector floating point type. Both CST and TYPE
3128 must be scalars, or vectors of the same number of elements. If the
3129 value won't fit in the integer type, the results are undefined.
3130``fptosi (CST to TYPE)``
3131 Convert a floating point constant to the corresponding signed
3132 integer constant. TYPE must be a scalar or vector integer type. CST
3133 must be of scalar or vector floating point type. Both CST and TYPE
3134 must be scalars, or vectors of the same number of elements. If the
3135 value won't fit in the integer type, the results are undefined.
3136``uitofp (CST to TYPE)``
3137 Convert an unsigned integer constant to the corresponding floating
3138 point constant. TYPE must be a scalar or vector floating point type.
3139 CST must be of scalar or vector integer type. Both CST and TYPE must
3140 be scalars, or vectors of the same number of elements. If the value
3141 won't fit in the floating point type, the results are undefined.
3142``sitofp (CST to TYPE)``
3143 Convert a signed integer constant to the corresponding floating
3144 point constant. TYPE must be a scalar or vector floating point type.
3145 CST must be of scalar or vector integer type. Both CST and TYPE must
3146 be scalars, or vectors of the same number of elements. If the value
3147 won't fit in the floating point type, the results are undefined.
3148``ptrtoint (CST to TYPE)``
3149 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003150 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003151 pointer type. The ``CST`` value is zero extended, truncated, or
3152 unchanged to make it fit in ``TYPE``.
3153``inttoptr (CST to TYPE)``
3154 Convert an integer constant to a pointer constant. TYPE must be a
3155 pointer type. CST must be of integer type. The CST value is zero
3156 extended, truncated, or unchanged to make it fit in a pointer size.
3157 This one is *really* dangerous!
3158``bitcast (CST to TYPE)``
3159 Convert a constant, CST, to another TYPE. The constraints of the
3160 operands are the same as those for the :ref:`bitcast
3161 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003162``addrspacecast (CST to TYPE)``
3163 Convert a constant pointer or constant vector of pointer, CST, to another
3164 TYPE in a different address space. The constraints of the operands are the
3165 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003166``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003167 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3168 constants. As with the :ref:`getelementptr <i_getelementptr>`
3169 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003170 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003171``select (COND, VAL1, VAL2)``
3172 Perform the :ref:`select operation <i_select>` on constants.
3173``icmp COND (VAL1, VAL2)``
3174 Performs the :ref:`icmp operation <i_icmp>` on constants.
3175``fcmp COND (VAL1, VAL2)``
3176 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3177``extractelement (VAL, IDX)``
3178 Perform the :ref:`extractelement operation <i_extractelement>` on
3179 constants.
3180``insertelement (VAL, ELT, IDX)``
3181 Perform the :ref:`insertelement operation <i_insertelement>` on
3182 constants.
3183``shufflevector (VEC1, VEC2, IDXMASK)``
3184 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3185 constants.
3186``extractvalue (VAL, IDX0, IDX1, ...)``
3187 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3188 constants. The index list is interpreted in a similar manner as
3189 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3190 least one index value must be specified.
3191``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3192 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3193 The index list is interpreted in a similar manner as indices in a
3194 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3195 value must be specified.
3196``OPCODE (LHS, RHS)``
3197 Perform the specified operation of the LHS and RHS constants. OPCODE
3198 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3199 binary <bitwiseops>` operations. The constraints on operands are
3200 the same as those for the corresponding instruction (e.g. no bitwise
3201 operations on floating point values are allowed).
3202
3203Other Values
3204============
3205
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003206.. _inlineasmexprs:
3207
Sean Silvab084af42012-12-07 10:36:55 +00003208Inline Assembler Expressions
3209----------------------------
3210
3211LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003212Inline Assembly <moduleasm>`) through the use of a special value. This value
3213represents the inline assembler as a template string (containing the
3214instructions to emit), a list of operand constraints (stored as a string), a
3215flag that indicates whether or not the inline asm expression has side effects,
3216and a flag indicating whether the function containing the asm needs to align its
3217stack conservatively.
3218
3219The template string supports argument substitution of the operands using "``$``"
3220followed by a number, to indicate substitution of the given register/memory
3221location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3222be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3223operand (See :ref:`inline-asm-modifiers`).
3224
3225A literal "``$``" may be included by using "``$$``" in the template. To include
3226other special characters into the output, the usual "``\XX``" escapes may be
3227used, just as in other strings. Note that after template substitution, the
3228resulting assembly string is parsed by LLVM's integrated assembler unless it is
3229disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3230syntax known to LLVM.
3231
Reid Kleckner71cb1642017-02-06 18:08:45 +00003232LLVM also supports a few more substitions useful for writing inline assembly:
3233
3234- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3235 This substitution is useful when declaring a local label. Many standard
3236 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3237 Adding a blob-unique identifier ensures that the two labels will not conflict
3238 during assembly. This is used to implement `GCC's %= special format
3239 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3240- ``${:comment}``: Expands to the comment character of the current target's
3241 assembly dialect. This is usually ``#``, but many targets use other strings,
3242 such as ``;``, ``//``, or ``!``.
3243- ``${:private}``: Expands to the assembler private label prefix. Labels with
3244 this prefix will not appear in the symbol table of the assembled object.
3245 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3246 relatively popular.
3247
James Y Knightbc832ed2015-07-08 18:08:36 +00003248LLVM's support for inline asm is modeled closely on the requirements of Clang's
3249GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3250modifier codes listed here are similar or identical to those in GCC's inline asm
3251support. However, to be clear, the syntax of the template and constraint strings
3252described here is *not* the same as the syntax accepted by GCC and Clang, and,
3253while most constraint letters are passed through as-is by Clang, some get
3254translated to other codes when converting from the C source to the LLVM
3255assembly.
3256
3257An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003258
3259.. code-block:: llvm
3260
3261 i32 (i32) asm "bswap $0", "=r,r"
3262
3263Inline assembler expressions may **only** be used as the callee operand
3264of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3265Thus, typically we have:
3266
3267.. code-block:: llvm
3268
3269 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3270
3271Inline asms with side effects not visible in the constraint list must be
3272marked as having side effects. This is done through the use of the
3273'``sideeffect``' keyword, like so:
3274
3275.. code-block:: llvm
3276
3277 call void asm sideeffect "eieio", ""()
3278
3279In some cases inline asms will contain code that will not work unless
3280the stack is aligned in some way, such as calls or SSE instructions on
3281x86, yet will not contain code that does that alignment within the asm.
3282The compiler should make conservative assumptions about what the asm
3283might contain and should generate its usual stack alignment code in the
3284prologue if the '``alignstack``' keyword is present:
3285
3286.. code-block:: llvm
3287
3288 call void asm alignstack "eieio", ""()
3289
3290Inline asms also support using non-standard assembly dialects. The
3291assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3292the inline asm is using the Intel dialect. Currently, ATT and Intel are
3293the only supported dialects. An example is:
3294
3295.. code-block:: llvm
3296
3297 call void asm inteldialect "eieio", ""()
3298
3299If multiple keywords appear the '``sideeffect``' keyword must come
3300first, the '``alignstack``' keyword second and the '``inteldialect``'
3301keyword last.
3302
James Y Knightbc832ed2015-07-08 18:08:36 +00003303Inline Asm Constraint String
3304^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3305
3306The constraint list is a comma-separated string, each element containing one or
3307more constraint codes.
3308
3309For each element in the constraint list an appropriate register or memory
3310operand will be chosen, and it will be made available to assembly template
3311string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3312second, etc.
3313
3314There are three different types of constraints, which are distinguished by a
3315prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3316constraints must always be given in that order: outputs first, then inputs, then
3317clobbers. They cannot be intermingled.
3318
3319There are also three different categories of constraint codes:
3320
3321- Register constraint. This is either a register class, or a fixed physical
3322 register. This kind of constraint will allocate a register, and if necessary,
3323 bitcast the argument or result to the appropriate type.
3324- Memory constraint. This kind of constraint is for use with an instruction
3325 taking a memory operand. Different constraints allow for different addressing
3326 modes used by the target.
3327- Immediate value constraint. This kind of constraint is for an integer or other
3328 immediate value which can be rendered directly into an instruction. The
3329 various target-specific constraints allow the selection of a value in the
3330 proper range for the instruction you wish to use it with.
3331
3332Output constraints
3333""""""""""""""""""
3334
3335Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3336indicates that the assembly will write to this operand, and the operand will
3337then be made available as a return value of the ``asm`` expression. Output
3338constraints do not consume an argument from the call instruction. (Except, see
3339below about indirect outputs).
3340
3341Normally, it is expected that no output locations are written to by the assembly
3342expression until *all* of the inputs have been read. As such, LLVM may assign
3343the same register to an output and an input. If this is not safe (e.g. if the
3344assembly contains two instructions, where the first writes to one output, and
3345the second reads an input and writes to a second output), then the "``&``"
3346modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003347"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003348will not use the same register for any inputs (other than an input tied to this
3349output).
3350
3351Input constraints
3352"""""""""""""""""
3353
3354Input constraints do not have a prefix -- just the constraint codes. Each input
3355constraint will consume one argument from the call instruction. It is not
3356permitted for the asm to write to any input register or memory location (unless
3357that input is tied to an output). Note also that multiple inputs may all be
3358assigned to the same register, if LLVM can determine that they necessarily all
3359contain the same value.
3360
3361Instead of providing a Constraint Code, input constraints may also "tie"
3362themselves to an output constraint, by providing an integer as the constraint
3363string. Tied inputs still consume an argument from the call instruction, and
3364take up a position in the asm template numbering as is usual -- they will simply
3365be constrained to always use the same register as the output they've been tied
3366to. For example, a constraint string of "``=r,0``" says to assign a register for
3367output, and use that register as an input as well (it being the 0'th
3368constraint).
3369
3370It is permitted to tie an input to an "early-clobber" output. In that case, no
3371*other* input may share the same register as the input tied to the early-clobber
3372(even when the other input has the same value).
3373
3374You may only tie an input to an output which has a register constraint, not a
3375memory constraint. Only a single input may be tied to an output.
3376
3377There is also an "interesting" feature which deserves a bit of explanation: if a
3378register class constraint allocates a register which is too small for the value
3379type operand provided as input, the input value will be split into multiple
3380registers, and all of them passed to the inline asm.
3381
3382However, this feature is often not as useful as you might think.
3383
3384Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3385architectures that have instructions which operate on multiple consecutive
3386instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3387SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3388hardware then loads into both the named register, and the next register. This
3389feature of inline asm would not be useful to support that.)
3390
3391A few of the targets provide a template string modifier allowing explicit access
3392to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3393``D``). On such an architecture, you can actually access the second allocated
3394register (yet, still, not any subsequent ones). But, in that case, you're still
3395probably better off simply splitting the value into two separate operands, for
3396clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3397despite existing only for use with this feature, is not really a good idea to
3398use)
3399
3400Indirect inputs and outputs
3401"""""""""""""""""""""""""""
3402
3403Indirect output or input constraints can be specified by the "``*``" modifier
3404(which goes after the "``=``" in case of an output). This indicates that the asm
3405will write to or read from the contents of an *address* provided as an input
3406argument. (Note that in this way, indirect outputs act more like an *input* than
3407an output: just like an input, they consume an argument of the call expression,
3408rather than producing a return value. An indirect output constraint is an
3409"output" only in that the asm is expected to write to the contents of the input
3410memory location, instead of just read from it).
3411
3412This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3413address of a variable as a value.
3414
3415It is also possible to use an indirect *register* constraint, but only on output
3416(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3417value normally, and then, separately emit a store to the address provided as
3418input, after the provided inline asm. (It's not clear what value this
3419functionality provides, compared to writing the store explicitly after the asm
3420statement, and it can only produce worse code, since it bypasses many
3421optimization passes. I would recommend not using it.)
3422
3423
3424Clobber constraints
3425"""""""""""""""""""
3426
3427A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3428consume an input operand, nor generate an output. Clobbers cannot use any of the
3429general constraint code letters -- they may use only explicit register
3430constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3431"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3432memory locations -- not only the memory pointed to by a declared indirect
3433output.
3434
Peter Zotov00257232016-08-30 10:48:31 +00003435Note that clobbering named registers that are also present in output
3436constraints is not legal.
3437
James Y Knightbc832ed2015-07-08 18:08:36 +00003438
3439Constraint Codes
3440""""""""""""""""
3441After a potential prefix comes constraint code, or codes.
3442
3443A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3444followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3445(e.g. "``{eax}``").
3446
3447The one and two letter constraint codes are typically chosen to be the same as
3448GCC's constraint codes.
3449
3450A single constraint may include one or more than constraint code in it, leaving
3451it up to LLVM to choose which one to use. This is included mainly for
3452compatibility with the translation of GCC inline asm coming from clang.
3453
3454There are two ways to specify alternatives, and either or both may be used in an
3455inline asm constraint list:
3456
34571) Append the codes to each other, making a constraint code set. E.g. "``im``"
3458 or "``{eax}m``". This means "choose any of the options in the set". The
3459 choice of constraint is made independently for each constraint in the
3460 constraint list.
3461
34622) Use "``|``" between constraint code sets, creating alternatives. Every
3463 constraint in the constraint list must have the same number of alternative
3464 sets. With this syntax, the same alternative in *all* of the items in the
3465 constraint list will be chosen together.
3466
3467Putting those together, you might have a two operand constraint string like
3468``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3469operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3470may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3471
3472However, the use of either of the alternatives features is *NOT* recommended, as
3473LLVM is not able to make an intelligent choice about which one to use. (At the
3474point it currently needs to choose, not enough information is available to do so
3475in a smart way.) Thus, it simply tries to make a choice that's most likely to
3476compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3477always choose to use memory, not registers). And, if given multiple registers,
3478or multiple register classes, it will simply choose the first one. (In fact, it
3479doesn't currently even ensure explicitly specified physical registers are
3480unique, so specifying multiple physical registers as alternatives, like
3481``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3482intended.)
3483
3484Supported Constraint Code List
3485""""""""""""""""""""""""""""""
3486
3487The constraint codes are, in general, expected to behave the same way they do in
3488GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3489inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3490and GCC likely indicates a bug in LLVM.
3491
3492Some constraint codes are typically supported by all targets:
3493
3494- ``r``: A register in the target's general purpose register class.
3495- ``m``: A memory address operand. It is target-specific what addressing modes
3496 are supported, typical examples are register, or register + register offset,
3497 or register + immediate offset (of some target-specific size).
3498- ``i``: An integer constant (of target-specific width). Allows either a simple
3499 immediate, or a relocatable value.
3500- ``n``: An integer constant -- *not* including relocatable values.
3501- ``s``: An integer constant, but allowing *only* relocatable values.
3502- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3503 useful to pass a label for an asm branch or call.
3504
3505 .. FIXME: but that surely isn't actually okay to jump out of an asm
3506 block without telling llvm about the control transfer???)
3507
3508- ``{register-name}``: Requires exactly the named physical register.
3509
3510Other constraints are target-specific:
3511
3512AArch64:
3513
3514- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3515- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3516 i.e. 0 to 4095 with optional shift by 12.
3517- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3518 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3519- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3520 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3521- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3522 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3523- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3524 32-bit register. This is a superset of ``K``: in addition to the bitmask
3525 immediate, also allows immediate integers which can be loaded with a single
3526 ``MOVZ`` or ``MOVL`` instruction.
3527- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3528 64-bit register. This is a superset of ``L``.
3529- ``Q``: Memory address operand must be in a single register (no
3530 offsets). (However, LLVM currently does this for the ``m`` constraint as
3531 well.)
3532- ``r``: A 32 or 64-bit integer register (W* or X*).
3533- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3534- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3535
3536AMDGPU:
3537
3538- ``r``: A 32 or 64-bit integer register.
3539- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3540- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3541
3542
3543All ARM modes:
3544
3545- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3546 operand. Treated the same as operand ``m``, at the moment.
3547
3548ARM and ARM's Thumb2 mode:
3549
3550- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3551- ``I``: An immediate integer valid for a data-processing instruction.
3552- ``J``: An immediate integer between -4095 and 4095.
3553- ``K``: An immediate integer whose bitwise inverse is valid for a
3554 data-processing instruction. (Can be used with template modifier "``B``" to
3555 print the inverted value).
3556- ``L``: An immediate integer whose negation is valid for a data-processing
3557 instruction. (Can be used with template modifier "``n``" to print the negated
3558 value).
3559- ``M``: A power of two or a integer between 0 and 32.
3560- ``N``: Invalid immediate constraint.
3561- ``O``: Invalid immediate constraint.
3562- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3563- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3564 as ``r``.
3565- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3566 invalid.
3567- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3568 ``d0-d31``, or ``q0-q15``.
3569- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3570 ``d0-d7``, or ``q0-q3``.
3571- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3572 ``s0-s31``.
3573
3574ARM's Thumb1 mode:
3575
3576- ``I``: An immediate integer between 0 and 255.
3577- ``J``: An immediate integer between -255 and -1.
3578- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3579 some amount.
3580- ``L``: An immediate integer between -7 and 7.
3581- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3582- ``N``: An immediate integer between 0 and 31.
3583- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3584- ``r``: A low 32-bit GPR register (``r0-r7``).
3585- ``l``: A low 32-bit GPR register (``r0-r7``).
3586- ``h``: A high GPR register (``r0-r7``).
3587- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3588 ``d0-d31``, or ``q0-q15``.
3589- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3590 ``d0-d7``, or ``q0-q3``.
3591- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3592 ``s0-s31``.
3593
3594
3595Hexagon:
3596
3597- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3598 at the moment.
3599- ``r``: A 32 or 64-bit register.
3600
3601MSP430:
3602
3603- ``r``: An 8 or 16-bit register.
3604
3605MIPS:
3606
3607- ``I``: An immediate signed 16-bit integer.
3608- ``J``: An immediate integer zero.
3609- ``K``: An immediate unsigned 16-bit integer.
3610- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3611- ``N``: An immediate integer between -65535 and -1.
3612- ``O``: An immediate signed 15-bit integer.
3613- ``P``: An immediate integer between 1 and 65535.
3614- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3615 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3616- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3617 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3618 ``m``.
3619- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3620 ``sc`` instruction on the given subtarget (details vary).
3621- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3622- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003623 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3624 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003625- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3626 ``25``).
3627- ``l``: The ``lo`` register, 32 or 64-bit.
3628- ``x``: Invalid.
3629
3630NVPTX:
3631
3632- ``b``: A 1-bit integer register.
3633- ``c`` or ``h``: A 16-bit integer register.
3634- ``r``: A 32-bit integer register.
3635- ``l`` or ``N``: A 64-bit integer register.
3636- ``f``: A 32-bit float register.
3637- ``d``: A 64-bit float register.
3638
3639
3640PowerPC:
3641
3642- ``I``: An immediate signed 16-bit integer.
3643- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3644- ``K``: An immediate unsigned 16-bit integer.
3645- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3646- ``M``: An immediate integer greater than 31.
3647- ``N``: An immediate integer that is an exact power of 2.
3648- ``O``: The immediate integer constant 0.
3649- ``P``: An immediate integer constant whose negation is a signed 16-bit
3650 constant.
3651- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3652 treated the same as ``m``.
3653- ``r``: A 32 or 64-bit integer register.
3654- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3655 ``R1-R31``).
3656- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3657 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3658- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3659 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3660 altivec vector register (``V0-V31``).
3661
3662 .. FIXME: is this a bug that v accepts QPX registers? I think this
3663 is supposed to only use the altivec vector registers?
3664
3665- ``y``: Condition register (``CR0-CR7``).
3666- ``wc``: An individual CR bit in a CR register.
3667- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3668 register set (overlapping both the floating-point and vector register files).
3669- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3670 set.
3671
3672Sparc:
3673
3674- ``I``: An immediate 13-bit signed integer.
3675- ``r``: A 32-bit integer register.
James Y Knightd4e1b002017-05-12 15:59:10 +00003676- ``f``: Any floating-point register on SparcV8, or a floating point
3677 register in the "low" half of the registers on SparcV9.
3678- ``e``: Any floating point register. (Same as ``f`` on SparcV8.)
James Y Knightbc832ed2015-07-08 18:08:36 +00003679
3680SystemZ:
3681
3682- ``I``: An immediate unsigned 8-bit integer.
3683- ``J``: An immediate unsigned 12-bit integer.
3684- ``K``: An immediate signed 16-bit integer.
3685- ``L``: An immediate signed 20-bit integer.
3686- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003687- ``Q``: A memory address operand with a base address and a 12-bit immediate
3688 unsigned displacement.
3689- ``R``: A memory address operand with a base address, a 12-bit immediate
3690 unsigned displacement, and an index register.
3691- ``S``: A memory address operand with a base address and a 20-bit immediate
3692 signed displacement.
3693- ``T``: A memory address operand with a base address, a 20-bit immediate
3694 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003695- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3696- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3697 address context evaluates as zero).
3698- ``h``: A 32-bit value in the high part of a 64bit data register
3699 (LLVM-specific)
3700- ``f``: A 32, 64, or 128-bit floating point register.
3701
3702X86:
3703
3704- ``I``: An immediate integer between 0 and 31.
3705- ``J``: An immediate integer between 0 and 64.
3706- ``K``: An immediate signed 8-bit integer.
3707- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3708 0xffffffff.
3709- ``M``: An immediate integer between 0 and 3.
3710- ``N``: An immediate unsigned 8-bit integer.
3711- ``O``: An immediate integer between 0 and 127.
3712- ``e``: An immediate 32-bit signed integer.
3713- ``Z``: An immediate 32-bit unsigned integer.
3714- ``o``, ``v``: Treated the same as ``m``, at the moment.
3715- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3716 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3717 registers, and on X86-64, it is all of the integer registers.
3718- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3719 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3720- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3721- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3722 existed since i386, and can be accessed without the REX prefix.
3723- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3724- ``y``: A 64-bit MMX register, if MMX is enabled.
3725- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3726 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3727 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3728 512-bit vector operand in an AVX512 register, Otherwise, an error.
3729- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3730- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3731 32-bit mode, a 64-bit integer operand will get split into two registers). It
3732 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3733 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3734 you're better off splitting it yourself, before passing it to the asm
3735 statement.
3736
3737XCore:
3738
3739- ``r``: A 32-bit integer register.
3740
3741
3742.. _inline-asm-modifiers:
3743
3744Asm template argument modifiers
3745^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3746
3747In the asm template string, modifiers can be used on the operand reference, like
3748"``${0:n}``".
3749
3750The modifiers are, in general, expected to behave the same way they do in
3751GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3752inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3753and GCC likely indicates a bug in LLVM.
3754
3755Target-independent:
3756
Sean Silvaa1190322015-08-06 22:56:48 +00003757- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003758 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3759- ``n``: Negate and print immediate integer constant unadorned, without the
3760 target-specific immediate punctuation (e.g. no ``$`` prefix).
3761- ``l``: Print as an unadorned label, without the target-specific label
3762 punctuation (e.g. no ``$`` prefix).
3763
3764AArch64:
3765
3766- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3767 instead of ``x30``, print ``w30``.
3768- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3769- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3770 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3771 ``v*``.
3772
3773AMDGPU:
3774
3775- ``r``: No effect.
3776
3777ARM:
3778
3779- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3780 register).
3781- ``P``: No effect.
3782- ``q``: No effect.
3783- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3784 as ``d4[1]`` instead of ``s9``)
3785- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3786 prefix.
3787- ``L``: Print the low 16-bits of an immediate integer constant.
3788- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3789 register operands subsequent to the specified one (!), so use carefully.
3790- ``Q``: Print the low-order register of a register-pair, or the low-order
3791 register of a two-register operand.
3792- ``R``: Print the high-order register of a register-pair, or the high-order
3793 register of a two-register operand.
3794- ``H``: Print the second register of a register-pair. (On a big-endian system,
3795 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3796 to ``R``.)
3797
3798 .. FIXME: H doesn't currently support printing the second register
3799 of a two-register operand.
3800
3801- ``e``: Print the low doubleword register of a NEON quad register.
3802- ``f``: Print the high doubleword register of a NEON quad register.
3803- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3804 adornment.
3805
3806Hexagon:
3807
3808- ``L``: Print the second register of a two-register operand. Requires that it
3809 has been allocated consecutively to the first.
3810
3811 .. FIXME: why is it restricted to consecutive ones? And there's
3812 nothing that ensures that happens, is there?
3813
3814- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3815 nothing. Used to print 'addi' vs 'add' instructions.
3816
3817MSP430:
3818
3819No additional modifiers.
3820
3821MIPS:
3822
3823- ``X``: Print an immediate integer as hexadecimal
3824- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3825- ``d``: Print an immediate integer as decimal.
3826- ``m``: Subtract one and print an immediate integer as decimal.
3827- ``z``: Print $0 if an immediate zero, otherwise print normally.
3828- ``L``: Print the low-order register of a two-register operand, or prints the
3829 address of the low-order word of a double-word memory operand.
3830
3831 .. FIXME: L seems to be missing memory operand support.
3832
3833- ``M``: Print the high-order register of a two-register operand, or prints the
3834 address of the high-order word of a double-word memory operand.
3835
3836 .. FIXME: M seems to be missing memory operand support.
3837
3838- ``D``: Print the second register of a two-register operand, or prints the
3839 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3840 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3841 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003842- ``w``: No effect. Provided for compatibility with GCC which requires this
3843 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3844 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003845
3846NVPTX:
3847
3848- ``r``: No effect.
3849
3850PowerPC:
3851
3852- ``L``: Print the second register of a two-register operand. Requires that it
3853 has been allocated consecutively to the first.
3854
3855 .. FIXME: why is it restricted to consecutive ones? And there's
3856 nothing that ensures that happens, is there?
3857
3858- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3859 nothing. Used to print 'addi' vs 'add' instructions.
3860- ``y``: For a memory operand, prints formatter for a two-register X-form
3861 instruction. (Currently always prints ``r0,OPERAND``).
3862- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3863 otherwise. (NOTE: LLVM does not support update form, so this will currently
3864 always print nothing)
3865- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3866 not support indexed form, so this will currently always print nothing)
3867
3868Sparc:
3869
3870- ``r``: No effect.
3871
3872SystemZ:
3873
3874SystemZ implements only ``n``, and does *not* support any of the other
3875target-independent modifiers.
3876
3877X86:
3878
3879- ``c``: Print an unadorned integer or symbol name. (The latter is
3880 target-specific behavior for this typically target-independent modifier).
3881- ``A``: Print a register name with a '``*``' before it.
3882- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3883 operand.
3884- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3885 memory operand.
3886- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3887 operand.
3888- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3889 operand.
3890- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3891 available, otherwise the 32-bit register name; do nothing on a memory operand.
3892- ``n``: Negate and print an unadorned integer, or, for operands other than an
3893 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3894 the operand. (The behavior for relocatable symbol expressions is a
3895 target-specific behavior for this typically target-independent modifier)
3896- ``H``: Print a memory reference with additional offset +8.
3897- ``P``: Print a memory reference or operand for use as the argument of a call
3898 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3899
3900XCore:
3901
3902No additional modifiers.
3903
3904
Sean Silvab084af42012-12-07 10:36:55 +00003905Inline Asm Metadata
3906^^^^^^^^^^^^^^^^^^^
3907
3908The call instructions that wrap inline asm nodes may have a
3909"``!srcloc``" MDNode attached to it that contains a list of constant
3910integers. If present, the code generator will use the integer as the
3911location cookie value when report errors through the ``LLVMContext``
3912error reporting mechanisms. This allows a front-end to correlate backend
3913errors that occur with inline asm back to the source code that produced
3914it. For example:
3915
3916.. code-block:: llvm
3917
3918 call void asm sideeffect "something bad", ""(), !srcloc !42
3919 ...
3920 !42 = !{ i32 1234567 }
3921
3922It is up to the front-end to make sense of the magic numbers it places
3923in the IR. If the MDNode contains multiple constants, the code generator
3924will use the one that corresponds to the line of the asm that the error
3925occurs on.
3926
3927.. _metadata:
3928
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003929Metadata
3930========
Sean Silvab084af42012-12-07 10:36:55 +00003931
3932LLVM IR allows metadata to be attached to instructions in the program
3933that can convey extra information about the code to the optimizers and
3934code generator. One example application of metadata is source-level
3935debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003936
Sean Silvaa1190322015-08-06 22:56:48 +00003937Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003938``call`` instruction, it uses the ``metadata`` type.
3939
3940All metadata are identified in syntax by a exclamation point ('``!``').
3941
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003942.. _metadata-string:
3943
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003944Metadata Nodes and Metadata Strings
3945-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003946
3947A metadata string is a string surrounded by double quotes. It can
3948contain any character by escaping non-printable characters with
3949"``\xx``" where "``xx``" is the two digit hex code. For example:
3950"``!"test\00"``".
3951
3952Metadata nodes are represented with notation similar to structure
3953constants (a comma separated list of elements, surrounded by braces and
3954preceded by an exclamation point). Metadata nodes can have any values as
3955their operand. For example:
3956
3957.. code-block:: llvm
3958
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003959 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003960
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003961Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3962
Renato Golin124f2592016-07-20 12:16:38 +00003963.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003964
3965 !0 = distinct !{!"test\00", i32 10}
3966
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003967``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003968content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003969when metadata operands change.
3970
Sean Silvab084af42012-12-07 10:36:55 +00003971A :ref:`named metadata <namedmetadatastructure>` is a collection of
3972metadata nodes, which can be looked up in the module symbol table. For
3973example:
3974
3975.. code-block:: llvm
3976
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003977 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003978
3979Metadata can be used as function arguments. Here ``llvm.dbg.value``
3980function is using two metadata arguments:
3981
3982.. code-block:: llvm
3983
3984 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3985
Peter Collingbourne50108682015-11-06 02:41:02 +00003986Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3987to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003988
3989.. code-block:: llvm
3990
3991 %indvar.next = add i64 %indvar, 1, !dbg !21
3992
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003993Metadata can also be attached to a function or a global variable. Here metadata
3994``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
3995and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00003996
3997.. code-block:: llvm
3998
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003999 declare !dbg !22 void @f1()
4000 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00004001 ret void
4002 }
4003
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004004 @g1 = global i32 0, !dbg !22
4005 @g2 = external global i32, !dbg !22
4006
4007A transformation is required to drop any metadata attachment that it does not
4008know or know it can't preserve. Currently there is an exception for metadata
4009attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
4010unconditionally dropped unless the global is itself deleted.
4011
4012Metadata attached to a module using named metadata may not be dropped, with
4013the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
4014
Sean Silvab084af42012-12-07 10:36:55 +00004015More information about specific metadata nodes recognized by the
4016optimizers and code generator is found below.
4017
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004018.. _specialized-metadata:
4019
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004020Specialized Metadata Nodes
4021^^^^^^^^^^^^^^^^^^^^^^^^^^
4022
4023Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00004024to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004025order.
4026
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004027These aren't inherently debug info centric, but currently all the specialized
4028metadata nodes are related to debug info.
4029
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004030.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004031
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004032DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004033"""""""""""""
4034
Sean Silvaa1190322015-08-06 22:56:48 +00004035``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004036``retainedTypes:``, ``globals:``, ``imports:`` and ``macros:`` fields are tuples
4037containing the debug info to be emitted along with the compile unit, regardless
4038of code optimizations (some nodes are only emitted if there are references to
4039them from instructions). The ``debugInfoForProfiling:`` field is a boolean
4040indicating whether or not line-table discriminators are updated to provide
4041more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004042
Renato Golin124f2592016-07-20 12:16:38 +00004043.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004044
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004045 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004046 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004047 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004048 enums: !2, retainedTypes: !3, globals: !4, imports: !5,
4049 macros: !6, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004050
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004051Compile unit descriptors provide the root scope for objects declared in a
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004052specific compilation unit. File descriptors are defined using this scope. These
4053descriptors are collected by a named metadata node ``!llvm.dbg.cu``. They keep
4054track of global variables, type information, and imported entities (declarations
4055and namespaces).
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004056
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004057.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004058
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004059DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004060""""""
4061
Sean Silvaa1190322015-08-06 22:56:48 +00004062``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004063
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004064.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004065
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004066 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4067 checksumkind: CSK_MD5,
4068 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004069
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004070Files are sometimes used in ``scope:`` fields, and are the only valid target
4071for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004072Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004073
Michael Kuperstein605308a2015-05-14 10:58:59 +00004074.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004075
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004076DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004077"""""""""""
4078
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004079``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004080``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004081
Renato Golin124f2592016-07-20 12:16:38 +00004082.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004083
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004084 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004085 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004086 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004087
Sean Silvaa1190322015-08-06 22:56:48 +00004088The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004089following:
4090
Renato Golin124f2592016-07-20 12:16:38 +00004091.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004092
4093 DW_ATE_address = 1
4094 DW_ATE_boolean = 2
4095 DW_ATE_float = 4
4096 DW_ATE_signed = 5
4097 DW_ATE_signed_char = 6
4098 DW_ATE_unsigned = 7
4099 DW_ATE_unsigned_char = 8
4100
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004101.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004102
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004103DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004104""""""""""""""""
4105
Sean Silvaa1190322015-08-06 22:56:48 +00004106``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004107refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004108types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004109represents a function with no return value (such as ``void foo() {}`` in C++).
4110
Renato Golin124f2592016-07-20 12:16:38 +00004111.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004112
4113 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4114 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004115 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004116
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004117.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004118
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004119DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004120"""""""""""""
4121
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004122``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004123qualified types.
4124
Renato Golin124f2592016-07-20 12:16:38 +00004125.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004126
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004127 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004128 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004129 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004130 align: 32)
4131
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004132The following ``tag:`` values are valid:
4133
Renato Golin124f2592016-07-20 12:16:38 +00004134.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004135
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004136 DW_TAG_member = 13
4137 DW_TAG_pointer_type = 15
4138 DW_TAG_reference_type = 16
4139 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004140 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004141 DW_TAG_ptr_to_member_type = 31
4142 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004143 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004144 DW_TAG_volatile_type = 53
4145 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004146 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004147
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004148.. _DIDerivedTypeMember:
4149
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004150``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004151<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004152``offset:`` is the member's bit offset. If the composite type has an ODR
4153``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4154uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004155
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004156``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4157field of :ref:`composite types <DICompositeType>` to describe parents and
4158friends.
4159
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004160``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4161
4162``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004163``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4164are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004165
4166Note that the ``void *`` type is expressed as a type derived from NULL.
4167
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004168.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004169
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004170DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004171"""""""""""""""
4172
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004173``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004174structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004175
4176If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004177identifier used for type merging between modules. When specified,
4178:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4179derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4180``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004181
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004182For a given ``identifier:``, there should only be a single composite type that
4183does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4184together will unique such definitions at parse time via the ``identifier:``
4185field, even if the nodes are ``distinct``.
4186
Renato Golin124f2592016-07-20 12:16:38 +00004187.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004188
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004189 !0 = !DIEnumerator(name: "SixKind", value: 7)
4190 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4191 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4192 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004193 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4194 elements: !{!0, !1, !2})
4195
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004196The following ``tag:`` values are valid:
4197
Renato Golin124f2592016-07-20 12:16:38 +00004198.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004199
4200 DW_TAG_array_type = 1
4201 DW_TAG_class_type = 2
4202 DW_TAG_enumeration_type = 4
4203 DW_TAG_structure_type = 19
4204 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004205
4206For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004207descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004208level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004209array type is a native packed vector.
4210
4211For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004212descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004213value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004214``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004215
4216For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4217``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004218<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4219``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4220``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004221
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004222.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004223
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004224DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004225""""""""""
4226
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004227``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004228:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004229
4230.. code-block:: llvm
4231
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004232 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4233 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4234 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004235
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004236.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004237
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004238DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004239""""""""""""
4240
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004241``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4242variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004243
4244.. code-block:: llvm
4245
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004246 !0 = !DIEnumerator(name: "SixKind", value: 7)
4247 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4248 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004249
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004250DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004251"""""""""""""""""""""""
4252
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004253``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004254language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004255:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004256
4257.. code-block:: llvm
4258
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004259 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004260
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004261DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004262""""""""""""""""""""""""
4263
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004264``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004265language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004266but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004267``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004268:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004269
4270.. code-block:: llvm
4271
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004272 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004273
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004274DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004275"""""""""""
4276
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004277``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004278
4279.. code-block:: llvm
4280
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004281 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004282
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004283DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004284""""""""""""""""
4285
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004286``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004287
4288.. code-block:: llvm
4289
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004290 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004291 file: !2, line: 7, type: !3, isLocal: true,
4292 isDefinition: false, variable: i32* @foo,
4293 declaration: !4)
4294
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004295All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004296:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004297
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004298.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004299
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004300DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004301""""""""""""
4302
Peter Collingbourne50108682015-11-06 02:41:02 +00004303``DISubprogram`` nodes represent functions from the source language. A
4304``DISubprogram`` may be attached to a function definition using ``!dbg``
4305metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4306that must be retained, even if their IR counterparts are optimized out of
4307the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004308
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004309.. _DISubprogramDeclaration:
4310
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004311When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004312tree as opposed to a definition of a function. If the scope is a composite
4313type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4314then the subprogram declaration is uniqued based only on its ``linkageName:``
4315and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004316
Renato Golin124f2592016-07-20 12:16:38 +00004317.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004318
Peter Collingbourne50108682015-11-06 02:41:02 +00004319 define void @_Z3foov() !dbg !0 {
4320 ...
4321 }
4322
4323 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4324 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004325 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004326 containingType: !4,
4327 virtuality: DW_VIRTUALITY_pure_virtual,
4328 virtualIndex: 10, flags: DIFlagPrototyped,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004329 isOptimized: true, unit: !5, templateParams: !6,
4330 declaration: !7, variables: !8, thrownTypes: !9)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004331
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004332.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004333
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004334DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004335""""""""""""""
4336
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004337``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004338<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004339two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004340fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004341
Renato Golin124f2592016-07-20 12:16:38 +00004342.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004343
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004344 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004345
4346Usually lexical blocks are ``distinct`` to prevent node merging based on
4347operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004348
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004349.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004350
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004351DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004352""""""""""""""""""
4353
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004354``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004355:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004356indicate textual inclusion, or the ``discriminator:`` field can be used to
4357discriminate between control flow within a single block in the source language.
4358
4359.. code-block:: llvm
4360
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004361 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4362 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4363 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004364
Michael Kuperstein605308a2015-05-14 10:58:59 +00004365.. _DILocation:
4366
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004367DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004368""""""""""
4369
Sean Silvaa1190322015-08-06 22:56:48 +00004370``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004371mandatory, and points at an :ref:`DILexicalBlockFile`, an
4372:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004373
4374.. code-block:: llvm
4375
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004376 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004377
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004378.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004379
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004380DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004381"""""""""""""""
4382
Sean Silvaa1190322015-08-06 22:56:48 +00004383``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004384the ``arg:`` field is set to non-zero, then this variable is a subprogram
4385parameter, and it will be included in the ``variables:`` field of its
4386:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004387
Renato Golin124f2592016-07-20 12:16:38 +00004388.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004389
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004390 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4391 type: !3, flags: DIFlagArtificial)
4392 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4393 type: !3)
4394 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004395
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004396DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004397""""""""""""
4398
Adrian Prantlb44c7762017-03-22 18:01:01 +00004399``DIExpression`` nodes represent expressions that are inspired by the DWARF
4400expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
4401(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
4402referenced LLVM variable relates to the source language variable.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004403
4404The current supported vocabulary is limited:
4405
Adrian Prantl6825fb62017-04-18 01:21:53 +00004406- ``DW_OP_deref`` dereferences the top of the expression stack.
Florian Hahnffc498d2017-06-14 13:14:38 +00004407- ``DW_OP_plus`` pops the last two entries from the expression stack, adds
4408 them together and appends the result to the expression stack.
4409- ``DW_OP_minus`` pops the last two entries from the expression stack, subtracts
4410 the last entry from the second last entry and appends the result to the
4411 expression stack.
Florian Hahnc9c403c2017-06-13 16:54:44 +00004412- ``DW_OP_plus_uconst, 93`` adds ``93`` to the working expression.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004413- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
4414 here, respectively) of the variable fragment from the working expression. Note
4415 that contrary to DW_OP_bit_piece, the offset is describing the the location
4416 within the described source variable.
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004417- ``DW_OP_swap`` swaps top two stack entries.
4418- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
4419 of the stack is treated as an address. The second stack entry is treated as an
4420 address space identifier.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004421- ``DW_OP_stack_value`` marks a constant value.
4422
Adrian Prantl6825fb62017-04-18 01:21:53 +00004423DWARF specifies three kinds of simple location descriptions: Register, memory,
4424and implicit location descriptions. Register and memory location descriptions
4425describe the *location* of a source variable (in the sense that a debugger might
4426modify its value), whereas implicit locations describe merely the *value* of a
4427source variable. DIExpressions also follow this model: A DIExpression that
4428doesn't have a trailing ``DW_OP_stack_value`` will describe an *address* when
4429combined with a concrete location.
4430
4431.. code-block:: llvm
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004432
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004433 !0 = !DIExpression(DW_OP_deref)
Florian Hahnc9c403c2017-06-13 16:54:44 +00004434 !1 = !DIExpression(DW_OP_plus_uconst, 3)
Florian Hahnffc498d2017-06-14 13:14:38 +00004435 !1 = !DIExpression(DW_OP_constu, 3, DW_OP_plus)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004436 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
Florian Hahnffc498d2017-06-14 13:14:38 +00004437 !3 = !DIExpression(DW_OP_deref, DW_OP_constu, 3, DW_OP_plus, DW_OP_LLVM_fragment, 3, 7)
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004438 !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004439 !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004440
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004441DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004442""""""""""""""
4443
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004444``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004445
4446.. code-block:: llvm
4447
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004448 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004449 getter: "getFoo", attributes: 7, type: !2)
4450
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004451DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004452""""""""""""""""
4453
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004454``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004455compile unit.
4456
Renato Golin124f2592016-07-20 12:16:38 +00004457.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004458
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004459 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004460 entity: !1, line: 7)
4461
Amjad Abouda9bcf162015-12-10 12:56:35 +00004462DIMacro
4463"""""""
4464
4465``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4466The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004467defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004468used to expand the macro identifier.
4469
Renato Golin124f2592016-07-20 12:16:38 +00004470.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004471
4472 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4473 value: "((x) + 1)")
4474 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4475
4476DIMacroFile
4477"""""""""""
4478
4479``DIMacroFile`` nodes represent inclusion of source files.
4480The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4481appear in the included source file.
4482
Renato Golin124f2592016-07-20 12:16:38 +00004483.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004484
4485 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4486 nodes: !3)
4487
Sean Silvab084af42012-12-07 10:36:55 +00004488'``tbaa``' Metadata
4489^^^^^^^^^^^^^^^^^^^
4490
4491In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004492suitable for doing type based alias analysis (TBAA). Instead, metadata is
4493added to the IR to describe a type system of a higher level language. This
4494can be used to implement C/C++ strict type aliasing rules, but it can also
4495be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004496
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004497This description of LLVM's TBAA system is broken into two parts:
4498:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4499:ref:`Representation<tbaa_node_representation>` talks about the metadata
4500encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004501
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004502It is always possible to trace any TBAA node to a "root" TBAA node (details
4503in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4504nodes with different roots have an unknown aliasing relationship, and LLVM
4505conservatively infers ``MayAlias`` between them. The rules mentioned in
4506this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004507
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004508.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004509
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004510Semantics
4511"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004512
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004513The TBAA metadata system, referred to as "struct path TBAA" (not to be
4514confused with ``tbaa.struct``), consists of the following high level
4515concepts: *Type Descriptors*, further subdivided into scalar type
4516descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004517
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004518**Type descriptors** describe the type system of the higher level language
4519being compiled. **Scalar type descriptors** describe types that do not
4520contain other types. Each scalar type has a parent type, which must also
4521be a scalar type or the TBAA root. Via this parent relation, scalar types
4522within a TBAA root form a tree. **Struct type descriptors** denote types
4523that contain a sequence of other type descriptors, at known offsets. These
4524contained type descriptors can either be struct type descriptors themselves
4525or scalar type descriptors.
4526
4527**Access tags** are metadata nodes attached to load and store instructions.
4528Access tags use type descriptors to describe the *location* being accessed
4529in terms of the type system of the higher level language. Access tags are
4530tuples consisting of a base type, an access type and an offset. The base
4531type is a scalar type descriptor or a struct type descriptor, the access
4532type is a scalar type descriptor, and the offset is a constant integer.
4533
4534The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4535things:
4536
4537 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4538 or store) of a value of type ``AccessTy`` contained in the struct type
4539 ``BaseTy`` at offset ``Offset``.
4540
4541 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4542 ``AccessTy`` must be the same; and the access tag describes a scalar
4543 access with scalar type ``AccessTy``.
4544
4545We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4546tuples this way:
4547
4548 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4549 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4550 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4551 undefined if ``Offset`` is non-zero.
4552
4553 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4554 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4555 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4556 to be relative within that inner type.
4557
4558A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4559aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4560Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4561Offset2)`` via the ``Parent`` relation or vice versa.
4562
4563As a concrete example, the type descriptor graph for the following program
4564
4565.. code-block:: c
4566
4567 struct Inner {
4568 int i; // offset 0
4569 float f; // offset 4
4570 };
4571
4572 struct Outer {
4573 float f; // offset 0
4574 double d; // offset 4
4575 struct Inner inner_a; // offset 12
4576 };
4577
4578 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4579 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4580 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
4581 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, IntScalarTy, 16)
4582 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4583 }
4584
4585is (note that in C and C++, ``char`` can be used to access any arbitrary
4586type):
4587
4588.. code-block:: text
4589
4590 Root = "TBAA Root"
4591 CharScalarTy = ("char", Root, 0)
4592 FloatScalarTy = ("float", CharScalarTy, 0)
4593 DoubleScalarTy = ("double", CharScalarTy, 0)
4594 IntScalarTy = ("int", CharScalarTy, 0)
4595 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4596 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4597 (InnerStructTy, 12)}
4598
4599
4600with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
46010)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4602``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4603
4604.. _tbaa_node_representation:
4605
4606Representation
4607""""""""""""""
4608
4609The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4610with exactly one ``MDString`` operand.
4611
4612Scalar type descriptors are represented as an ``MDNode`` s with two
4613operands. The first operand is an ``MDString`` denoting the name of the
4614struct type. LLVM does not assign meaning to the value of this operand, it
4615only cares about it being an ``MDString``. The second operand is an
4616``MDNode`` which points to the parent for said scalar type descriptor,
4617which is either another scalar type descriptor or the TBAA root. Scalar
4618type descriptors can have an optional third argument, but that must be the
4619constant integer zero.
4620
4621Struct type descriptors are represented as ``MDNode`` s with an odd number
4622of operands greater than 1. The first operand is an ``MDString`` denoting
4623the name of the struct type. Like in scalar type descriptors the actual
4624value of this name operand is irrelevant to LLVM. After the name operand,
4625the struct type descriptors have a sequence of alternating ``MDNode`` and
4626``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4627an ``MDNode``, denotes a contained field, and the 2N th operand, a
4628``ConstantInt``, is the offset of the said contained field. The offsets
4629must be in non-decreasing order.
4630
4631Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4632The first operand is an ``MDNode`` pointing to the node representing the
4633base type. The second operand is an ``MDNode`` pointing to the node
4634representing the access type. The third operand is a ``ConstantInt`` that
4635states the offset of the access. If a fourth field is present, it must be
4636a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4637that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004638``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004639AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4640the access type and the base type of an access tag must be the same, and
4641that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004642
4643'``tbaa.struct``' Metadata
4644^^^^^^^^^^^^^^^^^^^^^^^^^^
4645
4646The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4647aggregate assignment operations in C and similar languages, however it
4648is defined to copy a contiguous region of memory, which is more than
4649strictly necessary for aggregate types which contain holes due to
4650padding. Also, it doesn't contain any TBAA information about the fields
4651of the aggregate.
4652
4653``!tbaa.struct`` metadata can describe which memory subregions in a
4654memcpy are padding and what the TBAA tags of the struct are.
4655
4656The current metadata format is very simple. ``!tbaa.struct`` metadata
4657nodes are a list of operands which are in conceptual groups of three.
4658For each group of three, the first operand gives the byte offset of a
4659field in bytes, the second gives its size in bytes, and the third gives
4660its tbaa tag. e.g.:
4661
4662.. code-block:: llvm
4663
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004664 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004665
4666This describes a struct with two fields. The first is at offset 0 bytes
4667with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4668and has size 4 bytes and has tbaa tag !2.
4669
4670Note that the fields need not be contiguous. In this example, there is a
46714 byte gap between the two fields. This gap represents padding which
4672does not carry useful data and need not be preserved.
4673
Hal Finkel94146652014-07-24 14:25:39 +00004674'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004675^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004676
4677``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4678noalias memory-access sets. This means that some collection of memory access
4679instructions (loads, stores, memory-accessing calls, etc.) that carry
4680``noalias`` metadata can specifically be specified not to alias with some other
4681collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004682Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004683a domain.
4684
4685When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004686of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004687subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004688instruction's ``noalias`` list, then the two memory accesses are assumed not to
4689alias.
Hal Finkel94146652014-07-24 14:25:39 +00004690
Adam Nemet569a5b32016-04-27 00:52:48 +00004691Because scopes in one domain don't affect scopes in other domains, separate
4692domains can be used to compose multiple independent noalias sets. This is
4693used for example during inlining. As the noalias function parameters are
4694turned into noalias scope metadata, a new domain is used every time the
4695function is inlined.
4696
Hal Finkel029cde62014-07-25 15:50:02 +00004697The metadata identifying each domain is itself a list containing one or two
4698entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004699string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004700self-reference can be used to create globally unique domain names. A
4701descriptive string may optionally be provided as a second list entry.
4702
4703The metadata identifying each scope is also itself a list containing two or
4704three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004705is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004706self-reference can be used to create globally unique scope names. A metadata
4707reference to the scope's domain is the second entry. A descriptive string may
4708optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004709
4710For example,
4711
4712.. code-block:: llvm
4713
Hal Finkel029cde62014-07-25 15:50:02 +00004714 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004715 !0 = !{!0}
4716 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004717
Hal Finkel029cde62014-07-25 15:50:02 +00004718 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004719 !2 = !{!2, !0}
4720 !3 = !{!3, !0}
4721 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004722
Hal Finkel029cde62014-07-25 15:50:02 +00004723 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004724 !5 = !{!4} ; A list containing only scope !4
4725 !6 = !{!4, !3, !2}
4726 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004727
4728 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004729 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004730 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004731
Hal Finkel029cde62014-07-25 15:50:02 +00004732 ; These two instructions also don't alias (for domain !1, the set of scopes
4733 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004734 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004735 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004736
Adam Nemet0a8416f2015-05-11 08:30:28 +00004737 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004738 ; the !noalias list is not a superset of, or equal to, the scopes in the
4739 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004740 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004741 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004742
Sean Silvab084af42012-12-07 10:36:55 +00004743'``fpmath``' Metadata
4744^^^^^^^^^^^^^^^^^^^^^
4745
4746``fpmath`` metadata may be attached to any instruction of floating point
4747type. It can be used to express the maximum acceptable error in the
4748result of that instruction, in ULPs, thus potentially allowing the
4749compiler to use a more efficient but less accurate method of computing
4750it. ULP is defined as follows:
4751
4752 If ``x`` is a real number that lies between two finite consecutive
4753 floating-point numbers ``a`` and ``b``, without being equal to one
4754 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4755 distance between the two non-equal finite floating-point numbers
4756 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4757
Matt Arsenault82f41512016-06-27 19:43:15 +00004758The metadata node shall consist of a single positive float type number
4759representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004760
4761.. code-block:: llvm
4762
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004763 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004764
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004765.. _range-metadata:
4766
Sean Silvab084af42012-12-07 10:36:55 +00004767'``range``' Metadata
4768^^^^^^^^^^^^^^^^^^^^
4769
Jingyue Wu37fcb592014-06-19 16:50:16 +00004770``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4771integer types. It expresses the possible ranges the loaded value or the value
4772returned by the called function at this call site is in. The ranges are
4773represented with a flattened list of integers. The loaded value or the value
4774returned is known to be in the union of the ranges defined by each consecutive
4775pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004776
4777- The type must match the type loaded by the instruction.
4778- The pair ``a,b`` represents the range ``[a,b)``.
4779- Both ``a`` and ``b`` are constants.
4780- The range is allowed to wrap.
4781- The range should not represent the full or empty set. That is,
4782 ``a!=b``.
4783
4784In addition, the pairs must be in signed order of the lower bound and
4785they must be non-contiguous.
4786
4787Examples:
4788
4789.. code-block:: llvm
4790
David Blaikiec7aabbb2015-03-04 22:06:14 +00004791 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4792 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004793 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4794 %d = invoke i8 @bar() to label %cont
4795 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004796 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004797 !0 = !{ i8 0, i8 2 }
4798 !1 = !{ i8 255, i8 2 }
4799 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4800 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004801
Peter Collingbourne235c2752016-12-08 19:01:00 +00004802'``absolute_symbol``' Metadata
4803^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4804
4805``absolute_symbol`` metadata may be attached to a global variable
4806declaration. It marks the declaration as a reference to an absolute symbol,
4807which causes the backend to use absolute relocations for the symbol even
4808in position independent code, and expresses the possible ranges that the
4809global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00004810``range`` metadata, with the extension that the pair ``all-ones,all-ones``
4811may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00004812
Peter Collingbourned88f9282017-01-20 21:56:37 +00004813Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00004814
4815.. code-block:: llvm
4816
4817 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00004818 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00004819
4820 ...
4821 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00004822 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00004823
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004824'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004825^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004826
4827``unpredictable`` metadata may be attached to any branch or switch
4828instruction. It can be used to express the unpredictability of control
4829flow. Similar to the llvm.expect intrinsic, it may be used to alter
4830optimizations related to compare and branch instructions. The metadata
4831is treated as a boolean value; if it exists, it signals that the branch
4832or switch that it is attached to is completely unpredictable.
4833
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004834'``llvm.loop``'
4835^^^^^^^^^^^^^^^
4836
4837It is sometimes useful to attach information to loop constructs. Currently,
4838loop metadata is implemented as metadata attached to the branch instruction
4839in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004840guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004841specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004842
4843The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004844itself to avoid merging it with any other identifier metadata, e.g.,
4845during module linkage or function inlining. That is, each loop should refer
4846to their own identification metadata even if they reside in separate functions.
4847The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004848constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004849
4850.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004851
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004852 !0 = !{!0}
4853 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004854
Mark Heffernan893752a2014-07-18 19:24:51 +00004855The loop identifier metadata can be used to specify additional
4856per-loop metadata. Any operands after the first operand can be treated
4857as user-defined metadata. For example the ``llvm.loop.unroll.count``
4858suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004859
Paul Redmond5fdf8362013-05-28 20:00:34 +00004860.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004861
Paul Redmond5fdf8362013-05-28 20:00:34 +00004862 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4863 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004864 !0 = !{!0, !1}
4865 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004866
Mark Heffernan9d20e422014-07-21 23:11:03 +00004867'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4868^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004869
Mark Heffernan9d20e422014-07-21 23:11:03 +00004870Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4871used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004872vectorization width and interleave count. These metadata should be used in
4873conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004874``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4875optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004876it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004877which contains information about loop-carried memory dependencies can be helpful
4878in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004879
Mark Heffernan9d20e422014-07-21 23:11:03 +00004880'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004881^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4882
Mark Heffernan9d20e422014-07-21 23:11:03 +00004883This metadata suggests an interleave count to the loop interleaver.
4884The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004885second operand is an integer specifying the interleave count. For
4886example:
4887
4888.. code-block:: llvm
4889
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004890 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004891
Mark Heffernan9d20e422014-07-21 23:11:03 +00004892Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004893multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004894then the interleave count will be determined automatically.
4895
4896'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004897^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004898
4899This metadata selectively enables or disables vectorization for the loop. The
4900first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004901is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000049020 disables vectorization:
4903
4904.. code-block:: llvm
4905
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004906 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4907 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004908
4909'``llvm.loop.vectorize.width``' Metadata
4910^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4911
4912This metadata sets the target width of the vectorizer. The first
4913operand is the string ``llvm.loop.vectorize.width`` and the second
4914operand is an integer specifying the width. For example:
4915
4916.. code-block:: llvm
4917
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004918 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004919
4920Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004921vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000049220 or if the loop does not have this metadata the width will be
4923determined automatically.
4924
4925'``llvm.loop.unroll``'
4926^^^^^^^^^^^^^^^^^^^^^^
4927
4928Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4929optimization hints such as the unroll factor. ``llvm.loop.unroll``
4930metadata should be used in conjunction with ``llvm.loop`` loop
4931identification metadata. The ``llvm.loop.unroll`` metadata are only
4932optimization hints and the unrolling will only be performed if the
4933optimizer believes it is safe to do so.
4934
Mark Heffernan893752a2014-07-18 19:24:51 +00004935'``llvm.loop.unroll.count``' Metadata
4936^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4937
4938This metadata suggests an unroll factor to the loop unroller. The
4939first operand is the string ``llvm.loop.unroll.count`` and the second
4940operand is a positive integer specifying the unroll factor. For
4941example:
4942
4943.. code-block:: llvm
4944
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004945 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004946
4947If the trip count of the loop is less than the unroll count the loop
4948will be partially unrolled.
4949
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004950'``llvm.loop.unroll.disable``' Metadata
4951^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4952
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004953This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004954which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004955
4956.. code-block:: llvm
4957
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004958 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004959
Kevin Qin715b01e2015-03-09 06:14:18 +00004960'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004961^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004962
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004963This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004964operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004965
4966.. code-block:: llvm
4967
4968 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4969
Mark Heffernan89391542015-08-10 17:28:08 +00004970'``llvm.loop.unroll.enable``' Metadata
4971^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4972
4973This metadata suggests that the loop should be fully unrolled if the trip count
4974is known at compile time and partially unrolled if the trip count is not known
4975at compile time. The metadata has a single operand which is the string
4976``llvm.loop.unroll.enable``. For example:
4977
4978.. code-block:: llvm
4979
4980 !0 = !{!"llvm.loop.unroll.enable"}
4981
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004982'``llvm.loop.unroll.full``' Metadata
4983^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4984
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004985This metadata suggests that the loop should be unrolled fully. The
4986metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004987For example:
4988
4989.. code-block:: llvm
4990
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004991 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004992
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004993'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004994^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004995
4996This metadata indicates that the loop should not be versioned for the purpose
4997of enabling loop-invariant code motion (LICM). The metadata has a single operand
4998which is the string ``llvm.loop.licm_versioning.disable``. For example:
4999
5000.. code-block:: llvm
5001
5002 !0 = !{!"llvm.loop.licm_versioning.disable"}
5003
Adam Nemetd2fa4142016-04-27 05:28:18 +00005004'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00005005^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00005006
5007Loop distribution allows splitting a loop into multiple loops. Currently,
5008this is only performed if the entire loop cannot be vectorized due to unsafe
5009memory dependencies. The transformation will atempt to isolate the unsafe
5010dependencies into their own loop.
5011
5012This metadata can be used to selectively enable or disable distribution of the
5013loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
5014second operand is a bit. If the bit operand value is 1 distribution is
5015enabled. A value of 0 disables distribution:
5016
5017.. code-block:: llvm
5018
5019 !0 = !{!"llvm.loop.distribute.enable", i1 0}
5020 !1 = !{!"llvm.loop.distribute.enable", i1 1}
5021
5022This metadata should be used in conjunction with ``llvm.loop`` loop
5023identification metadata.
5024
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005025'``llvm.mem``'
5026^^^^^^^^^^^^^^^
5027
5028Metadata types used to annotate memory accesses with information helpful
5029for optimizations are prefixed with ``llvm.mem``.
5030
5031'``llvm.mem.parallel_loop_access``' Metadata
5032^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5033
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005034The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
5035or metadata containing a list of loop identifiers for nested loops.
5036The metadata is attached to memory accessing instructions and denotes that
5037no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00005038with the same loop identifier. The metadata on memory reads also implies that
5039if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005040
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005041Precisely, given two instructions ``m1`` and ``m2`` that both have the
5042``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
5043set of loops associated with that metadata, respectively, then there is no loop
5044carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005045``L2``.
5046
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005047As a special case, if all memory accessing instructions in a loop have
5048``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
5049loop has no loop carried memory dependences and is considered to be a parallel
5050loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005051
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005052Note that if not all memory access instructions have such metadata referring to
5053the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00005054memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005055safe mechanism, this causes loops that were originally parallel to be considered
5056sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005057insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005058
5059Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00005060both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005061metadata types that refer to the same loop identifier metadata.
5062
5063.. code-block:: llvm
5064
5065 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005066 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005067 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005068 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005069 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005070 ...
5071 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005072
5073 for.end:
5074 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005075 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005076
5077It is also possible to have nested parallel loops. In that case the
5078memory accesses refer to a list of loop identifier metadata nodes instead of
5079the loop identifier metadata node directly:
5080
5081.. code-block:: llvm
5082
5083 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005084 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005085 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005086 ...
5087 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005088
5089 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005090 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005091 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005092 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005093 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005094 ...
5095 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005096
5097 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005098 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005099 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00005100 ...
5101 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005102
5103 outer.for.end: ; preds = %for.body
5104 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005105 !0 = !{!1, !2} ; a list of loop identifiers
5106 !1 = !{!1} ; an identifier for the inner loop
5107 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005108
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005109'``invariant.group``' Metadata
5110^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5111
5112The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
5113The existence of the ``invariant.group`` metadata on the instruction tells
5114the optimizer that every ``load`` and ``store`` to the same pointer operand
5115within the same invariant group can be assumed to load or store the same
5116value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005117when two pointers are considered the same). Pointers returned by bitcast or
5118getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005119
5120Examples:
5121
5122.. code-block:: llvm
5123
5124 @unknownPtr = external global i8
5125 ...
5126 %ptr = alloca i8
5127 store i8 42, i8* %ptr, !invariant.group !0
5128 call void @foo(i8* %ptr)
5129
5130 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5131 call void @foo(i8* %ptr)
5132 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
5133
5134 %newPtr = call i8* @getPointer(i8* %ptr)
5135 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
5136
5137 %unknownValue = load i8, i8* @unknownPtr
5138 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
5139
5140 call void @foo(i8* %ptr)
5141 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
5142 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
5143
5144 ...
5145 declare void @foo(i8*)
5146 declare i8* @getPointer(i8*)
5147 declare i8* @llvm.invariant.group.barrier(i8*)
5148
5149 !0 = !{!"magic ptr"}
5150 !1 = !{!"other ptr"}
5151
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005152The invariant.group metadata must be dropped when replacing one pointer by
5153another based on aliasing information. This is because invariant.group is tied
5154to the SSA value of the pointer operand.
5155
5156.. code-block:: llvm
Piotr Padlewskiaa1b2412017-04-12 11:18:19 +00005157
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005158 %v = load i8, i8* %x, !invariant.group !0
5159 ; if %x mustalias %y then we can replace the above instruction with
5160 %v = load i8, i8* %y
5161
5162
Peter Collingbournea333db82016-07-26 22:31:30 +00005163'``type``' Metadata
5164^^^^^^^^^^^^^^^^^^^
5165
5166See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005167
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005168'``associated``' Metadata
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005169^^^^^^^^^^^^^^^^^^^^^^^^^
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005170
5171The ``associated`` metadata may be attached to a global object
5172declaration with a single argument that references another global object.
5173
5174This metadata prevents discarding of the global object in linker GC
5175unless the referenced object is also discarded. The linker support for
5176this feature is spotty. For best compatibility, globals carrying this
5177metadata may also:
5178
5179- Be in a comdat with the referenced global.
5180- Be in @llvm.compiler.used.
5181- Have an explicit section with a name which is a valid C identifier.
5182
5183It does not have any effect on non-ELF targets.
5184
5185Example:
5186
5187.. code-block:: llvm
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005188
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005189 $a = comdat any
5190 @a = global i32 1, comdat $a
5191 @b = internal global i32 2, comdat $a, section "abc", !associated !0
5192 !0 = !{i32* @a}
5193
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005194
Teresa Johnsond72f51c2017-06-15 15:57:12 +00005195'``prof``' Metadata
5196^^^^^^^^^^^^^^^^^^^
5197
5198The ``prof`` metadata is used to record profile data in the IR.
5199The first operand of the metadata node indicates the profile metadata
5200type. There are currently 3 types:
5201:ref:`branch_weights<prof_node_branch_weights>`,
5202:ref:`function_entry_count<prof_node_function_entry_count>`, and
5203:ref:`VP<prof_node_VP>`.
5204
5205.. _prof_node_branch_weights:
5206
5207branch_weights
5208""""""""""""""
5209
5210Branch weight metadata attached to a branch, select, switch or call instruction
5211represents the likeliness of the associated branch being taken.
5212For more information, see :doc:`BranchWeightMetadata`.
5213
5214.. _prof_node_function_entry_count:
5215
5216function_entry_count
5217""""""""""""""""""""
5218
5219Function entry count metadata can be attached to function definitions
5220to record the number of times the function is called. Used with BFI
5221information, it is also used to derive the basic block profile count.
5222For more information, see :doc:`BranchWeightMetadata`.
5223
5224.. _prof_node_VP:
5225
5226VP
5227""
5228
5229VP (value profile) metadata can be attached to instructions that have
5230value profile information. Currently this is indirect calls (where it
5231records the hottest callees) and calls to memory intrinsics such as memcpy,
5232memmove, and memset (where it records the hottest byte lengths).
5233
5234Each VP metadata node contains "VP" string, then a uint32_t value for the value
5235profiling kind, a uint64_t value for the total number of times the instruction
5236is executed, followed by uint64_t value and execution count pairs.
5237The value profiling kind is 0 for indirect call targets and 1 for memory
5238operations. For indirect call targets, each profile value is a hash
5239of the callee function name, and for memory operations each value is the
5240byte length.
5241
5242Note that the value counts do not need to add up to the total count
5243listed in the third operand (in practice only the top hottest values
5244are tracked and reported).
5245
5246Indirect call example:
5247
5248.. code-block:: llvm
5249
5250 call void %f(), !prof !1
5251 !1 = !{!"VP", i32 0, i64 1600, i64 7651369219802541373, i64 1030, i64 -4377547752858689819, i64 410}
5252
5253Note that the VP type is 0 (the second operand), which indicates this is
5254an indirect call value profile data. The third operand indicates that the
5255indirect call executed 1600 times. The 4th and 6th operands give the
5256hashes of the 2 hottest target functions' names (this is the same hash used
5257to represent function names in the profile database), and the 5th and 7th
5258operands give the execution count that each of the respective prior target
5259functions was called.
5260
Sean Silvab084af42012-12-07 10:36:55 +00005261Module Flags Metadata
5262=====================
5263
5264Information about the module as a whole is difficult to convey to LLVM's
5265subsystems. The LLVM IR isn't sufficient to transmit this information.
5266The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005267this. These flags are in the form of key / value pairs --- much like a
5268dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005269look it up.
5270
5271The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5272Each triplet has the following form:
5273
5274- The first element is a *behavior* flag, which specifies the behavior
5275 when two (or more) modules are merged together, and it encounters two
5276 (or more) metadata with the same ID. The supported behaviors are
5277 described below.
5278- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005279 metadata. Each module may only have one flag entry for each unique ID (not
5280 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005281- The third element is the value of the flag.
5282
5283When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005284``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5285each unique metadata ID string, there will be exactly one entry in the merged
5286modules ``llvm.module.flags`` metadata table, and the value for that entry will
5287be determined by the merge behavior flag, as described below. The only exception
5288is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005289
5290The following behaviors are supported:
5291
5292.. list-table::
5293 :header-rows: 1
5294 :widths: 10 90
5295
5296 * - Value
5297 - Behavior
5298
5299 * - 1
5300 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005301 Emits an error if two values disagree, otherwise the resulting value
5302 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005303
5304 * - 2
5305 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005306 Emits a warning if two values disagree. The result value will be the
5307 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005308
5309 * - 3
5310 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005311 Adds a requirement that another module flag be present and have a
5312 specified value after linking is performed. The value must be a
5313 metadata pair, where the first element of the pair is the ID of the
5314 module flag to be restricted, and the second element of the pair is
5315 the value the module flag should be restricted to. This behavior can
5316 be used to restrict the allowable results (via triggering of an
5317 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005318
5319 * - 4
5320 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005321 Uses the specified value, regardless of the behavior or value of the
5322 other module. If both modules specify **Override**, but the values
5323 differ, an error will be emitted.
5324
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005325 * - 5
5326 - **Append**
5327 Appends the two values, which are required to be metadata nodes.
5328
5329 * - 6
5330 - **AppendUnique**
5331 Appends the two values, which are required to be metadata
5332 nodes. However, duplicate entries in the second list are dropped
5333 during the append operation.
5334
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005335It is an error for a particular unique flag ID to have multiple behaviors,
5336except in the case of **Require** (which adds restrictions on another metadata
5337value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005338
5339An example of module flags:
5340
5341.. code-block:: llvm
5342
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005343 !0 = !{ i32 1, !"foo", i32 1 }
5344 !1 = !{ i32 4, !"bar", i32 37 }
5345 !2 = !{ i32 2, !"qux", i32 42 }
5346 !3 = !{ i32 3, !"qux",
5347 !{
5348 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005349 }
5350 }
5351 !llvm.module.flags = !{ !0, !1, !2, !3 }
5352
5353- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5354 if two or more ``!"foo"`` flags are seen is to emit an error if their
5355 values are not equal.
5356
5357- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5358 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005359 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005360
5361- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5362 behavior if two or more ``!"qux"`` flags are seen is to emit a
5363 warning if their values are not equal.
5364
5365- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5366
5367 ::
5368
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005369 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005370
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005371 The behavior is to emit an error if the ``llvm.module.flags`` does not
5372 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5373 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005374
5375Objective-C Garbage Collection Module Flags Metadata
5376----------------------------------------------------
5377
5378On the Mach-O platform, Objective-C stores metadata about garbage
5379collection in a special section called "image info". The metadata
5380consists of a version number and a bitmask specifying what types of
5381garbage collection are supported (if any) by the file. If two or more
5382modules are linked together their garbage collection metadata needs to
5383be merged rather than appended together.
5384
5385The Objective-C garbage collection module flags metadata consists of the
5386following key-value pairs:
5387
5388.. list-table::
5389 :header-rows: 1
5390 :widths: 30 70
5391
5392 * - Key
5393 - Value
5394
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005395 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005396 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005397
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005398 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005399 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005400 always 0.
5401
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005402 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005403 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005404 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5405 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5406 Objective-C ABI version 2.
5407
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005408 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005409 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005410 not. Valid values are 0, for no garbage collection, and 2, for garbage
5411 collection supported.
5412
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005413 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005414 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005415 If present, its value must be 6. This flag requires that the
5416 ``Objective-C Garbage Collection`` flag have the value 2.
5417
5418Some important flag interactions:
5419
5420- If a module with ``Objective-C Garbage Collection`` set to 0 is
5421 merged with a module with ``Objective-C Garbage Collection`` set to
5422 2, then the resulting module has the
5423 ``Objective-C Garbage Collection`` flag set to 0.
5424- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5425 merged with a module with ``Objective-C GC Only`` set to 6.
5426
Oliver Stannard5dc29342014-06-20 10:08:11 +00005427C type width Module Flags Metadata
5428----------------------------------
5429
5430The ARM backend emits a section into each generated object file describing the
5431options that it was compiled with (in a compiler-independent way) to prevent
5432linking incompatible objects, and to allow automatic library selection. Some
5433of these options are not visible at the IR level, namely wchar_t width and enum
5434width.
5435
5436To pass this information to the backend, these options are encoded in module
5437flags metadata, using the following key-value pairs:
5438
5439.. list-table::
5440 :header-rows: 1
5441 :widths: 30 70
5442
5443 * - Key
5444 - Value
5445
5446 * - short_wchar
5447 - * 0 --- sizeof(wchar_t) == 4
5448 * 1 --- sizeof(wchar_t) == 2
5449
5450 * - short_enum
5451 - * 0 --- Enums are at least as large as an ``int``.
5452 * 1 --- Enums are stored in the smallest integer type which can
5453 represent all of its values.
5454
5455For example, the following metadata section specifies that the module was
5456compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5457enum is the smallest type which can represent all of its values::
5458
5459 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005460 !0 = !{i32 1, !"short_wchar", i32 1}
5461 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005462
Peter Collingbourne89061b22017-06-12 20:10:48 +00005463Automatic Linker Flags Named Metadata
5464=====================================
5465
5466Some targets support embedding flags to the linker inside individual object
5467files. Typically this is used in conjunction with language extensions which
5468allow source files to explicitly declare the libraries they depend on, and have
5469these automatically be transmitted to the linker via object files.
5470
5471These flags are encoded in the IR using named metadata with the name
5472``!llvm.linker.options``. Each operand is expected to be a metadata node
5473which should be a list of other metadata nodes, each of which should be a
5474list of metadata strings defining linker options.
5475
5476For example, the following metadata section specifies two separate sets of
5477linker options, presumably to link against ``libz`` and the ``Cocoa``
5478framework::
5479
5480 !0 = !{ !"-lz" },
5481 !1 = !{ !"-framework", !"Cocoa" } } }
5482 !llvm.linker.options = !{ !0, !1 }
5483
5484The metadata encoding as lists of lists of options, as opposed to a collapsed
5485list of options, is chosen so that the IR encoding can use multiple option
5486strings to specify e.g., a single library, while still having that specifier be
5487preserved as an atomic element that can be recognized by a target specific
5488assembly writer or object file emitter.
5489
5490Each individual option is required to be either a valid option for the target's
5491linker, or an option that is reserved by the target specific assembly writer or
5492object file emitter. No other aspect of these options is defined by the IR.
5493
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005494.. _intrinsicglobalvariables:
5495
Sean Silvab084af42012-12-07 10:36:55 +00005496Intrinsic Global Variables
5497==========================
5498
5499LLVM has a number of "magic" global variables that contain data that
5500affect code generation or other IR semantics. These are documented here.
5501All globals of this sort should have a section specified as
5502"``llvm.metadata``". This section and all globals that start with
5503"``llvm.``" are reserved for use by LLVM.
5504
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005505.. _gv_llvmused:
5506
Sean Silvab084af42012-12-07 10:36:55 +00005507The '``llvm.used``' Global Variable
5508-----------------------------------
5509
Rafael Espindola74f2e462013-04-22 14:58:02 +00005510The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005511:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005512pointers to named global variables, functions and aliases which may optionally
5513have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005514use of it is:
5515
5516.. code-block:: llvm
5517
5518 @X = global i8 4
5519 @Y = global i32 123
5520
5521 @llvm.used = appending global [2 x i8*] [
5522 i8* @X,
5523 i8* bitcast (i32* @Y to i8*)
5524 ], section "llvm.metadata"
5525
Rafael Espindola74f2e462013-04-22 14:58:02 +00005526If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5527and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005528symbol that it cannot see (which is why they have to be named). For example, if
5529a variable has internal linkage and no references other than that from the
5530``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5531references from inline asms and other things the compiler cannot "see", and
5532corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005533
5534On some targets, the code generator must emit a directive to the
5535assembler or object file to prevent the assembler and linker from
5536molesting the symbol.
5537
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005538.. _gv_llvmcompilerused:
5539
Sean Silvab084af42012-12-07 10:36:55 +00005540The '``llvm.compiler.used``' Global Variable
5541--------------------------------------------
5542
5543The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5544directive, except that it only prevents the compiler from touching the
5545symbol. On targets that support it, this allows an intelligent linker to
5546optimize references to the symbol without being impeded as it would be
5547by ``@llvm.used``.
5548
5549This is a rare construct that should only be used in rare circumstances,
5550and should not be exposed to source languages.
5551
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005552.. _gv_llvmglobalctors:
5553
Sean Silvab084af42012-12-07 10:36:55 +00005554The '``llvm.global_ctors``' Global Variable
5555-------------------------------------------
5556
5557.. code-block:: llvm
5558
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005559 %0 = type { i32, void ()*, i8* }
5560 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005561
5562The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005563functions, priorities, and an optional associated global or function.
5564The functions referenced by this array will be called in ascending order
5565of priority (i.e. lowest first) when the module is loaded. The order of
5566functions with the same priority is not defined.
5567
5568If the third field is present, non-null, and points to a global variable
5569or function, the initializer function will only run if the associated
5570data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005571
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005572.. _llvmglobaldtors:
5573
Sean Silvab084af42012-12-07 10:36:55 +00005574The '``llvm.global_dtors``' Global Variable
5575-------------------------------------------
5576
5577.. code-block:: llvm
5578
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005579 %0 = type { i32, void ()*, i8* }
5580 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005581
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005582The ``@llvm.global_dtors`` array contains a list of destructor
5583functions, priorities, and an optional associated global or function.
5584The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005585order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005586order of functions with the same priority is not defined.
5587
5588If the third field is present, non-null, and points to a global variable
5589or function, the destructor function will only run if the associated
5590data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005591
5592Instruction Reference
5593=====================
5594
5595The LLVM instruction set consists of several different classifications
5596of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5597instructions <binaryops>`, :ref:`bitwise binary
5598instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5599:ref:`other instructions <otherops>`.
5600
5601.. _terminators:
5602
5603Terminator Instructions
5604-----------------------
5605
5606As mentioned :ref:`previously <functionstructure>`, every basic block in a
5607program ends with a "Terminator" instruction, which indicates which
5608block should be executed after the current block is finished. These
5609terminator instructions typically yield a '``void``' value: they produce
5610control flow, not values (the one exception being the
5611':ref:`invoke <i_invoke>`' instruction).
5612
5613The terminator instructions are: ':ref:`ret <i_ret>`',
5614':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5615':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005616':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005617':ref:`catchret <i_catchret>`',
5618':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005619and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005620
5621.. _i_ret:
5622
5623'``ret``' Instruction
5624^^^^^^^^^^^^^^^^^^^^^
5625
5626Syntax:
5627"""""""
5628
5629::
5630
5631 ret <type> <value> ; Return a value from a non-void function
5632 ret void ; Return from void function
5633
5634Overview:
5635"""""""""
5636
5637The '``ret``' instruction is used to return control flow (and optionally
5638a value) from a function back to the caller.
5639
5640There are two forms of the '``ret``' instruction: one that returns a
5641value and then causes control flow, and one that just causes control
5642flow to occur.
5643
5644Arguments:
5645""""""""""
5646
5647The '``ret``' instruction optionally accepts a single argument, the
5648return value. The type of the return value must be a ':ref:`first
5649class <t_firstclass>`' type.
5650
5651A function is not :ref:`well formed <wellformed>` if it it has a non-void
5652return type and contains a '``ret``' instruction with no return value or
5653a return value with a type that does not match its type, or if it has a
5654void return type and contains a '``ret``' instruction with a return
5655value.
5656
5657Semantics:
5658""""""""""
5659
5660When the '``ret``' instruction is executed, control flow returns back to
5661the calling function's context. If the caller is a
5662":ref:`call <i_call>`" instruction, execution continues at the
5663instruction after the call. If the caller was an
5664":ref:`invoke <i_invoke>`" instruction, execution continues at the
5665beginning of the "normal" destination block. If the instruction returns
5666a value, that value shall set the call or invoke instruction's return
5667value.
5668
5669Example:
5670""""""""
5671
5672.. code-block:: llvm
5673
5674 ret i32 5 ; Return an integer value of 5
5675 ret void ; Return from a void function
5676 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5677
5678.. _i_br:
5679
5680'``br``' Instruction
5681^^^^^^^^^^^^^^^^^^^^
5682
5683Syntax:
5684"""""""
5685
5686::
5687
5688 br i1 <cond>, label <iftrue>, label <iffalse>
5689 br label <dest> ; Unconditional branch
5690
5691Overview:
5692"""""""""
5693
5694The '``br``' instruction is used to cause control flow to transfer to a
5695different basic block in the current function. There are two forms of
5696this instruction, corresponding to a conditional branch and an
5697unconditional branch.
5698
5699Arguments:
5700""""""""""
5701
5702The conditional branch form of the '``br``' instruction takes a single
5703'``i1``' value and two '``label``' values. The unconditional form of the
5704'``br``' instruction takes a single '``label``' value as a target.
5705
5706Semantics:
5707""""""""""
5708
5709Upon execution of a conditional '``br``' instruction, the '``i1``'
5710argument is evaluated. If the value is ``true``, control flows to the
5711'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5712to the '``iffalse``' ``label`` argument.
5713
5714Example:
5715""""""""
5716
5717.. code-block:: llvm
5718
5719 Test:
5720 %cond = icmp eq i32 %a, %b
5721 br i1 %cond, label %IfEqual, label %IfUnequal
5722 IfEqual:
5723 ret i32 1
5724 IfUnequal:
5725 ret i32 0
5726
5727.. _i_switch:
5728
5729'``switch``' Instruction
5730^^^^^^^^^^^^^^^^^^^^^^^^
5731
5732Syntax:
5733"""""""
5734
5735::
5736
5737 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5738
5739Overview:
5740"""""""""
5741
5742The '``switch``' instruction is used to transfer control flow to one of
5743several different places. It is a generalization of the '``br``'
5744instruction, allowing a branch to occur to one of many possible
5745destinations.
5746
5747Arguments:
5748""""""""""
5749
5750The '``switch``' instruction uses three parameters: an integer
5751comparison value '``value``', a default '``label``' destination, and an
5752array of pairs of comparison value constants and '``label``'s. The table
5753is not allowed to contain duplicate constant entries.
5754
5755Semantics:
5756""""""""""
5757
5758The ``switch`` instruction specifies a table of values and destinations.
5759When the '``switch``' instruction is executed, this table is searched
5760for the given value. If the value is found, control flow is transferred
5761to the corresponding destination; otherwise, control flow is transferred
5762to the default destination.
5763
5764Implementation:
5765"""""""""""""""
5766
5767Depending on properties of the target machine and the particular
5768``switch`` instruction, this instruction may be code generated in
5769different ways. For example, it could be generated as a series of
5770chained conditional branches or with a lookup table.
5771
5772Example:
5773""""""""
5774
5775.. code-block:: llvm
5776
5777 ; Emulate a conditional br instruction
5778 %Val = zext i1 %value to i32
5779 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5780
5781 ; Emulate an unconditional br instruction
5782 switch i32 0, label %dest [ ]
5783
5784 ; Implement a jump table:
5785 switch i32 %val, label %otherwise [ i32 0, label %onzero
5786 i32 1, label %onone
5787 i32 2, label %ontwo ]
5788
5789.. _i_indirectbr:
5790
5791'``indirectbr``' Instruction
5792^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5793
5794Syntax:
5795"""""""
5796
5797::
5798
5799 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5800
5801Overview:
5802"""""""""
5803
5804The '``indirectbr``' instruction implements an indirect branch to a
5805label within the current function, whose address is specified by
5806"``address``". Address must be derived from a
5807:ref:`blockaddress <blockaddress>` constant.
5808
5809Arguments:
5810""""""""""
5811
5812The '``address``' argument is the address of the label to jump to. The
5813rest of the arguments indicate the full set of possible destinations
5814that the address may point to. Blocks are allowed to occur multiple
5815times in the destination list, though this isn't particularly useful.
5816
5817This destination list is required so that dataflow analysis has an
5818accurate understanding of the CFG.
5819
5820Semantics:
5821""""""""""
5822
5823Control transfers to the block specified in the address argument. All
5824possible destination blocks must be listed in the label list, otherwise
5825this instruction has undefined behavior. This implies that jumps to
5826labels defined in other functions have undefined behavior as well.
5827
5828Implementation:
5829"""""""""""""""
5830
5831This is typically implemented with a jump through a register.
5832
5833Example:
5834""""""""
5835
5836.. code-block:: llvm
5837
5838 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5839
5840.. _i_invoke:
5841
5842'``invoke``' Instruction
5843^^^^^^^^^^^^^^^^^^^^^^^^
5844
5845Syntax:
5846"""""""
5847
5848::
5849
David Blaikieb83cf102016-07-13 17:21:34 +00005850 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005851 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005852
5853Overview:
5854"""""""""
5855
5856The '``invoke``' instruction causes control to transfer to a specified
5857function, with the possibility of control flow transfer to either the
5858'``normal``' label or the '``exception``' label. If the callee function
5859returns with the "``ret``" instruction, control flow will return to the
5860"normal" label. If the callee (or any indirect callees) returns via the
5861":ref:`resume <i_resume>`" instruction or other exception handling
5862mechanism, control is interrupted and continued at the dynamically
5863nearest "exception" label.
5864
5865The '``exception``' label is a `landing
5866pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5867'``exception``' label is required to have the
5868":ref:`landingpad <i_landingpad>`" instruction, which contains the
5869information about the behavior of the program after unwinding happens,
5870as its first non-PHI instruction. The restrictions on the
5871"``landingpad``" instruction's tightly couples it to the "``invoke``"
5872instruction, so that the important information contained within the
5873"``landingpad``" instruction can't be lost through normal code motion.
5874
5875Arguments:
5876""""""""""
5877
5878This instruction requires several arguments:
5879
5880#. The optional "cconv" marker indicates which :ref:`calling
5881 convention <callingconv>` the call should use. If none is
5882 specified, the call defaults to using C calling conventions.
5883#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5884 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5885 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00005886#. '``ty``': the type of the call instruction itself which is also the
5887 type of the return value. Functions that return no value are marked
5888 ``void``.
5889#. '``fnty``': shall be the signature of the function being invoked. The
5890 argument types must match the types implied by this signature. This
5891 type can be omitted if the function is not varargs.
5892#. '``fnptrval``': An LLVM value containing a pointer to a function to
5893 be invoked. In most cases, this is a direct function invocation, but
5894 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
5895 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00005896#. '``function args``': argument list whose types match the function
5897 signature argument types and parameter attributes. All arguments must
5898 be of :ref:`first class <t_firstclass>` type. If the function signature
5899 indicates the function accepts a variable number of arguments, the
5900 extra arguments can be specified.
5901#. '``normal label``': the label reached when the called function
5902 executes a '``ret``' instruction.
5903#. '``exception label``': the label reached when a callee returns via
5904 the :ref:`resume <i_resume>` instruction or other exception handling
5905 mechanism.
George Burgess IV8a464a72017-04-13 05:00:31 +00005906#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005907#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005908
5909Semantics:
5910""""""""""
5911
5912This instruction is designed to operate as a standard '``call``'
5913instruction in most regards. The primary difference is that it
5914establishes an association with a label, which is used by the runtime
5915library to unwind the stack.
5916
5917This instruction is used in languages with destructors to ensure that
5918proper cleanup is performed in the case of either a ``longjmp`` or a
5919thrown exception. Additionally, this is important for implementation of
5920'``catch``' clauses in high-level languages that support them.
5921
5922For the purposes of the SSA form, the definition of the value returned
5923by the '``invoke``' instruction is deemed to occur on the edge from the
5924current block to the "normal" label. If the callee unwinds then no
5925return value is available.
5926
5927Example:
5928""""""""
5929
5930.. code-block:: llvm
5931
5932 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005933 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005934 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005935 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005936
5937.. _i_resume:
5938
5939'``resume``' Instruction
5940^^^^^^^^^^^^^^^^^^^^^^^^
5941
5942Syntax:
5943"""""""
5944
5945::
5946
5947 resume <type> <value>
5948
5949Overview:
5950"""""""""
5951
5952The '``resume``' instruction is a terminator instruction that has no
5953successors.
5954
5955Arguments:
5956""""""""""
5957
5958The '``resume``' instruction requires one argument, which must have the
5959same type as the result of any '``landingpad``' instruction in the same
5960function.
5961
5962Semantics:
5963""""""""""
5964
5965The '``resume``' instruction resumes propagation of an existing
5966(in-flight) exception whose unwinding was interrupted with a
5967:ref:`landingpad <i_landingpad>` instruction.
5968
5969Example:
5970""""""""
5971
5972.. code-block:: llvm
5973
5974 resume { i8*, i32 } %exn
5975
David Majnemer8a1c45d2015-12-12 05:38:55 +00005976.. _i_catchswitch:
5977
5978'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005979^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005980
5981Syntax:
5982"""""""
5983
5984::
5985
5986 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5987 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5988
5989Overview:
5990"""""""""
5991
5992The '``catchswitch``' instruction is used by `LLVM's exception handling system
5993<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5994that may be executed by the :ref:`EH personality routine <personalityfn>`.
5995
5996Arguments:
5997""""""""""
5998
5999The ``parent`` argument is the token of the funclet that contains the
6000``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
6001this operand may be the token ``none``.
6002
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006003The ``default`` argument is the label of another basic block beginning with
6004either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
6005must be a legal target with respect to the ``parent`` links, as described in
6006the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00006007
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006008The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00006009:ref:`catchpad <i_catchpad>` instruction.
6010
6011Semantics:
6012""""""""""
6013
6014Executing this instruction transfers control to one of the successors in
6015``handlers``, if appropriate, or continues to unwind via the unwind label if
6016present.
6017
6018The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
6019it must be both the first non-phi instruction and last instruction in the basic
6020block. Therefore, it must be the only non-phi instruction in the block.
6021
6022Example:
6023""""""""
6024
Renato Golin124f2592016-07-20 12:16:38 +00006025.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00006026
6027 dispatch1:
6028 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
6029 dispatch2:
6030 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
6031
David Majnemer654e1302015-07-31 17:58:14 +00006032.. _i_catchret:
6033
6034'``catchret``' Instruction
6035^^^^^^^^^^^^^^^^^^^^^^^^^^
6036
6037Syntax:
6038"""""""
6039
6040::
6041
David Majnemer8a1c45d2015-12-12 05:38:55 +00006042 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00006043
6044Overview:
6045"""""""""
6046
6047The '``catchret``' instruction is a terminator instruction that has a
6048single successor.
6049
6050
6051Arguments:
6052""""""""""
6053
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006054The first argument to a '``catchret``' indicates which ``catchpad`` it
6055exits. It must be a :ref:`catchpad <i_catchpad>`.
6056The second argument to a '``catchret``' specifies where control will
6057transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00006058
6059Semantics:
6060""""""""""
6061
David Majnemer8a1c45d2015-12-12 05:38:55 +00006062The '``catchret``' instruction ends an existing (in-flight) exception whose
6063unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
6064:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
6065code to, for example, destroy the active exception. Control then transfers to
6066``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006067
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006068The ``token`` argument must be a token produced by a ``catchpad`` instruction.
6069If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
6070funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6071the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00006072
6073Example:
6074""""""""
6075
Renato Golin124f2592016-07-20 12:16:38 +00006076.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006077
David Majnemer8a1c45d2015-12-12 05:38:55 +00006078 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006079
David Majnemer654e1302015-07-31 17:58:14 +00006080.. _i_cleanupret:
6081
6082'``cleanupret``' Instruction
6083^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6084
6085Syntax:
6086"""""""
6087
6088::
6089
David Majnemer8a1c45d2015-12-12 05:38:55 +00006090 cleanupret from <value> unwind label <continue>
6091 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00006092
6093Overview:
6094"""""""""
6095
6096The '``cleanupret``' instruction is a terminator instruction that has
6097an optional successor.
6098
6099
6100Arguments:
6101""""""""""
6102
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006103The '``cleanupret``' instruction requires one argument, which indicates
6104which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006105If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
6106funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6107the ``cleanupret``'s behavior is undefined.
6108
6109The '``cleanupret``' instruction also has an optional successor, ``continue``,
6110which must be the label of another basic block beginning with either a
6111``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
6112be a legal target with respect to the ``parent`` links, as described in the
6113`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00006114
6115Semantics:
6116""""""""""
6117
6118The '``cleanupret``' instruction indicates to the
6119:ref:`personality function <personalityfn>` that one
6120:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
6121It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006122
David Majnemer654e1302015-07-31 17:58:14 +00006123Example:
6124""""""""
6125
Renato Golin124f2592016-07-20 12:16:38 +00006126.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006127
David Majnemer8a1c45d2015-12-12 05:38:55 +00006128 cleanupret from %cleanup unwind to caller
6129 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00006130
Sean Silvab084af42012-12-07 10:36:55 +00006131.. _i_unreachable:
6132
6133'``unreachable``' Instruction
6134^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6135
6136Syntax:
6137"""""""
6138
6139::
6140
6141 unreachable
6142
6143Overview:
6144"""""""""
6145
6146The '``unreachable``' instruction has no defined semantics. This
6147instruction is used to inform the optimizer that a particular portion of
6148the code is not reachable. This can be used to indicate that the code
6149after a no-return function cannot be reached, and other facts.
6150
6151Semantics:
6152""""""""""
6153
6154The '``unreachable``' instruction has no defined semantics.
6155
6156.. _binaryops:
6157
6158Binary Operations
6159-----------------
6160
6161Binary operators are used to do most of the computation in a program.
6162They require two operands of the same type, execute an operation on
6163them, and produce a single value. The operands might represent multiple
6164data, as is the case with the :ref:`vector <t_vector>` data type. The
6165result value has the same type as its operands.
6166
6167There are several different binary operators:
6168
6169.. _i_add:
6170
6171'``add``' Instruction
6172^^^^^^^^^^^^^^^^^^^^^
6173
6174Syntax:
6175"""""""
6176
6177::
6178
Tim Northover675a0962014-06-13 14:24:23 +00006179 <result> = add <ty> <op1>, <op2> ; yields ty:result
6180 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
6181 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
6182 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006183
6184Overview:
6185"""""""""
6186
6187The '``add``' instruction returns the sum of its two operands.
6188
6189Arguments:
6190""""""""""
6191
6192The two arguments to the '``add``' instruction must be
6193:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6194arguments must have identical types.
6195
6196Semantics:
6197""""""""""
6198
6199The value produced is the integer sum of the two operands.
6200
6201If the sum has unsigned overflow, the result returned is the
6202mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6203the result.
6204
6205Because LLVM integers use a two's complement representation, this
6206instruction is appropriate for both signed and unsigned integers.
6207
6208``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6209respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6210result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
6211unsigned and/or signed overflow, respectively, occurs.
6212
6213Example:
6214""""""""
6215
Renato Golin124f2592016-07-20 12:16:38 +00006216.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006217
Tim Northover675a0962014-06-13 14:24:23 +00006218 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006219
6220.. _i_fadd:
6221
6222'``fadd``' Instruction
6223^^^^^^^^^^^^^^^^^^^^^^
6224
6225Syntax:
6226"""""""
6227
6228::
6229
Tim Northover675a0962014-06-13 14:24:23 +00006230 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006231
6232Overview:
6233"""""""""
6234
6235The '``fadd``' instruction returns the sum of its two operands.
6236
6237Arguments:
6238""""""""""
6239
6240The two arguments to the '``fadd``' instruction must be :ref:`floating
6241point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6242Both arguments must have identical types.
6243
6244Semantics:
6245""""""""""
6246
6247The value produced is the floating point sum of the two operands. This
6248instruction can also take any number of :ref:`fast-math flags <fastmath>`,
6249which are optimization hints to enable otherwise unsafe floating point
6250optimizations:
6251
6252Example:
6253""""""""
6254
Renato Golin124f2592016-07-20 12:16:38 +00006255.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006256
Tim Northover675a0962014-06-13 14:24:23 +00006257 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006258
6259'``sub``' Instruction
6260^^^^^^^^^^^^^^^^^^^^^
6261
6262Syntax:
6263"""""""
6264
6265::
6266
Tim Northover675a0962014-06-13 14:24:23 +00006267 <result> = sub <ty> <op1>, <op2> ; yields ty:result
6268 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
6269 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
6270 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006271
6272Overview:
6273"""""""""
6274
6275The '``sub``' instruction returns the difference of its two operands.
6276
6277Note that the '``sub``' instruction is used to represent the '``neg``'
6278instruction present in most other intermediate representations.
6279
6280Arguments:
6281""""""""""
6282
6283The two arguments to the '``sub``' instruction must be
6284:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6285arguments must have identical types.
6286
6287Semantics:
6288""""""""""
6289
6290The value produced is the integer difference of the two operands.
6291
6292If the difference has unsigned overflow, the result returned is the
6293mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6294the result.
6295
6296Because LLVM integers use a two's complement representation, this
6297instruction is appropriate for both signed and unsigned integers.
6298
6299``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6300respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6301result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
6302unsigned and/or signed overflow, respectively, occurs.
6303
6304Example:
6305""""""""
6306
Renato Golin124f2592016-07-20 12:16:38 +00006307.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006308
Tim Northover675a0962014-06-13 14:24:23 +00006309 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6310 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006311
6312.. _i_fsub:
6313
6314'``fsub``' Instruction
6315^^^^^^^^^^^^^^^^^^^^^^
6316
6317Syntax:
6318"""""""
6319
6320::
6321
Tim Northover675a0962014-06-13 14:24:23 +00006322 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006323
6324Overview:
6325"""""""""
6326
6327The '``fsub``' instruction returns the difference of its two operands.
6328
6329Note that the '``fsub``' instruction is used to represent the '``fneg``'
6330instruction present in most other intermediate representations.
6331
6332Arguments:
6333""""""""""
6334
6335The two arguments to the '``fsub``' instruction must be :ref:`floating
6336point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6337Both arguments must have identical types.
6338
6339Semantics:
6340""""""""""
6341
6342The value produced is the floating point difference of the two operands.
6343This instruction can also take any number of :ref:`fast-math
6344flags <fastmath>`, which are optimization hints to enable otherwise
6345unsafe floating point optimizations:
6346
6347Example:
6348""""""""
6349
Renato Golin124f2592016-07-20 12:16:38 +00006350.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006351
Tim Northover675a0962014-06-13 14:24:23 +00006352 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6353 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006354
6355'``mul``' Instruction
6356^^^^^^^^^^^^^^^^^^^^^
6357
6358Syntax:
6359"""""""
6360
6361::
6362
Tim Northover675a0962014-06-13 14:24:23 +00006363 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6364 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6365 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6366 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006367
6368Overview:
6369"""""""""
6370
6371The '``mul``' instruction returns the product of its two operands.
6372
6373Arguments:
6374""""""""""
6375
6376The two arguments to the '``mul``' instruction must be
6377:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6378arguments must have identical types.
6379
6380Semantics:
6381""""""""""
6382
6383The value produced is the integer product of the two operands.
6384
6385If the result of the multiplication has unsigned overflow, the result
6386returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6387bit width of the result.
6388
6389Because LLVM integers use a two's complement representation, and the
6390result is the same width as the operands, this instruction returns the
6391correct result for both signed and unsigned integers. If a full product
6392(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6393sign-extended or zero-extended as appropriate to the width of the full
6394product.
6395
6396``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6397respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6398result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6399unsigned and/or signed overflow, respectively, occurs.
6400
6401Example:
6402""""""""
6403
Renato Golin124f2592016-07-20 12:16:38 +00006404.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006405
Tim Northover675a0962014-06-13 14:24:23 +00006406 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006407
6408.. _i_fmul:
6409
6410'``fmul``' Instruction
6411^^^^^^^^^^^^^^^^^^^^^^
6412
6413Syntax:
6414"""""""
6415
6416::
6417
Tim Northover675a0962014-06-13 14:24:23 +00006418 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006419
6420Overview:
6421"""""""""
6422
6423The '``fmul``' instruction returns the product of its two operands.
6424
6425Arguments:
6426""""""""""
6427
6428The two arguments to the '``fmul``' instruction must be :ref:`floating
6429point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6430Both arguments must have identical types.
6431
6432Semantics:
6433""""""""""
6434
6435The value produced is the floating point product of the two operands.
6436This instruction can also take any number of :ref:`fast-math
6437flags <fastmath>`, which are optimization hints to enable otherwise
6438unsafe floating point optimizations:
6439
6440Example:
6441""""""""
6442
Renato Golin124f2592016-07-20 12:16:38 +00006443.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006444
Tim Northover675a0962014-06-13 14:24:23 +00006445 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006446
6447'``udiv``' Instruction
6448^^^^^^^^^^^^^^^^^^^^^^
6449
6450Syntax:
6451"""""""
6452
6453::
6454
Tim Northover675a0962014-06-13 14:24:23 +00006455 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6456 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006457
6458Overview:
6459"""""""""
6460
6461The '``udiv``' instruction returns the quotient of its two operands.
6462
6463Arguments:
6464""""""""""
6465
6466The two arguments to the '``udiv``' instruction must be
6467:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6468arguments must have identical types.
6469
6470Semantics:
6471""""""""""
6472
6473The value produced is the unsigned integer quotient of the two operands.
6474
6475Note that unsigned integer division and signed integer division are
6476distinct operations; for signed integer division, use '``sdiv``'.
6477
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006478Division by zero is undefined behavior. For vectors, if any element
6479of the divisor is zero, the operation has undefined behavior.
6480
Sean Silvab084af42012-12-07 10:36:55 +00006481
6482If the ``exact`` keyword is present, the result value of the ``udiv`` is
6483a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6484such, "((a udiv exact b) mul b) == a").
6485
6486Example:
6487""""""""
6488
Renato Golin124f2592016-07-20 12:16:38 +00006489.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006490
Tim Northover675a0962014-06-13 14:24:23 +00006491 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006492
6493'``sdiv``' Instruction
6494^^^^^^^^^^^^^^^^^^^^^^
6495
6496Syntax:
6497"""""""
6498
6499::
6500
Tim Northover675a0962014-06-13 14:24:23 +00006501 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6502 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006503
6504Overview:
6505"""""""""
6506
6507The '``sdiv``' instruction returns the quotient of its two operands.
6508
6509Arguments:
6510""""""""""
6511
6512The two arguments to the '``sdiv``' instruction must be
6513:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6514arguments must have identical types.
6515
6516Semantics:
6517""""""""""
6518
6519The value produced is the signed integer quotient of the two operands
6520rounded towards zero.
6521
6522Note that signed integer division and unsigned integer division are
6523distinct operations; for unsigned integer division, use '``udiv``'.
6524
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006525Division by zero is undefined behavior. For vectors, if any element
6526of the divisor is zero, the operation has undefined behavior.
6527Overflow also leads to undefined behavior; this is a rare case, but can
6528occur, for example, by doing a 32-bit division of -2147483648 by -1.
Sean Silvab084af42012-12-07 10:36:55 +00006529
6530If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6531a :ref:`poison value <poisonvalues>` if the result would be rounded.
6532
6533Example:
6534""""""""
6535
Renato Golin124f2592016-07-20 12:16:38 +00006536.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006537
Tim Northover675a0962014-06-13 14:24:23 +00006538 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006539
6540.. _i_fdiv:
6541
6542'``fdiv``' Instruction
6543^^^^^^^^^^^^^^^^^^^^^^
6544
6545Syntax:
6546"""""""
6547
6548::
6549
Tim Northover675a0962014-06-13 14:24:23 +00006550 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006551
6552Overview:
6553"""""""""
6554
6555The '``fdiv``' instruction returns the quotient of its two operands.
6556
6557Arguments:
6558""""""""""
6559
6560The two arguments to the '``fdiv``' instruction must be :ref:`floating
6561point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6562Both arguments must have identical types.
6563
6564Semantics:
6565""""""""""
6566
6567The value produced is the floating point quotient of the two operands.
6568This instruction can also take any number of :ref:`fast-math
6569flags <fastmath>`, which are optimization hints to enable otherwise
6570unsafe floating point optimizations:
6571
6572Example:
6573""""""""
6574
Renato Golin124f2592016-07-20 12:16:38 +00006575.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006576
Tim Northover675a0962014-06-13 14:24:23 +00006577 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006578
6579'``urem``' Instruction
6580^^^^^^^^^^^^^^^^^^^^^^
6581
6582Syntax:
6583"""""""
6584
6585::
6586
Tim Northover675a0962014-06-13 14:24:23 +00006587 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006588
6589Overview:
6590"""""""""
6591
6592The '``urem``' instruction returns the remainder from the unsigned
6593division of its two arguments.
6594
6595Arguments:
6596""""""""""
6597
6598The two arguments to the '``urem``' instruction must be
6599:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6600arguments must have identical types.
6601
6602Semantics:
6603""""""""""
6604
6605This instruction returns the unsigned integer *remainder* of a division.
6606This instruction always performs an unsigned division to get the
6607remainder.
6608
6609Note that unsigned integer remainder and signed integer remainder are
6610distinct operations; for signed integer remainder, use '``srem``'.
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006611
6612Taking the remainder of a division by zero is undefined behavior.
6613For vectors, if any element of the divisor is zero, the operation has
6614undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006615
6616Example:
6617""""""""
6618
Renato Golin124f2592016-07-20 12:16:38 +00006619.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006620
Tim Northover675a0962014-06-13 14:24:23 +00006621 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006622
6623'``srem``' Instruction
6624^^^^^^^^^^^^^^^^^^^^^^
6625
6626Syntax:
6627"""""""
6628
6629::
6630
Tim Northover675a0962014-06-13 14:24:23 +00006631 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006632
6633Overview:
6634"""""""""
6635
6636The '``srem``' instruction returns the remainder from the signed
6637division of its two operands. This instruction can also take
6638:ref:`vector <t_vector>` versions of the values in which case the elements
6639must be integers.
6640
6641Arguments:
6642""""""""""
6643
6644The two arguments to the '``srem``' instruction must be
6645:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6646arguments must have identical types.
6647
6648Semantics:
6649""""""""""
6650
6651This instruction returns the *remainder* of a division (where the result
6652is either zero or has the same sign as the dividend, ``op1``), not the
6653*modulo* operator (where the result is either zero or has the same sign
6654as the divisor, ``op2``) of a value. For more information about the
6655difference, see `The Math
6656Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6657table of how this is implemented in various languages, please see
6658`Wikipedia: modulo
6659operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6660
6661Note that signed integer remainder and unsigned integer remainder are
6662distinct operations; for unsigned integer remainder, use '``urem``'.
6663
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006664Taking the remainder of a division by zero is undefined behavior.
6665For vectors, if any element of the divisor is zero, the operation has
6666undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006667Overflow also leads to undefined behavior; this is a rare case, but can
6668occur, for example, by taking the remainder of a 32-bit division of
6669-2147483648 by -1. (The remainder doesn't actually overflow, but this
6670rule lets srem be implemented using instructions that return both the
6671result of the division and the remainder.)
6672
6673Example:
6674""""""""
6675
Renato Golin124f2592016-07-20 12:16:38 +00006676.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006677
Tim Northover675a0962014-06-13 14:24:23 +00006678 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006679
6680.. _i_frem:
6681
6682'``frem``' Instruction
6683^^^^^^^^^^^^^^^^^^^^^^
6684
6685Syntax:
6686"""""""
6687
6688::
6689
Tim Northover675a0962014-06-13 14:24:23 +00006690 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006691
6692Overview:
6693"""""""""
6694
6695The '``frem``' instruction returns the remainder from the division of
6696its two operands.
6697
6698Arguments:
6699""""""""""
6700
6701The two arguments to the '``frem``' instruction must be :ref:`floating
6702point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6703Both arguments must have identical types.
6704
6705Semantics:
6706""""""""""
6707
6708This instruction returns the *remainder* of a division. The remainder
6709has the same sign as the dividend. This instruction can also take any
6710number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6711to enable otherwise unsafe floating point optimizations:
6712
6713Example:
6714""""""""
6715
Renato Golin124f2592016-07-20 12:16:38 +00006716.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006717
Tim Northover675a0962014-06-13 14:24:23 +00006718 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006719
6720.. _bitwiseops:
6721
6722Bitwise Binary Operations
6723-------------------------
6724
6725Bitwise binary operators are used to do various forms of bit-twiddling
6726in a program. They are generally very efficient instructions and can
6727commonly be strength reduced from other instructions. They require two
6728operands of the same type, execute an operation on them, and produce a
6729single value. The resulting value is the same type as its operands.
6730
6731'``shl``' Instruction
6732^^^^^^^^^^^^^^^^^^^^^
6733
6734Syntax:
6735"""""""
6736
6737::
6738
Tim Northover675a0962014-06-13 14:24:23 +00006739 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6740 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6741 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6742 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006743
6744Overview:
6745"""""""""
6746
6747The '``shl``' instruction returns the first operand shifted to the left
6748a specified number of bits.
6749
6750Arguments:
6751""""""""""
6752
6753Both arguments to the '``shl``' instruction must be the same
6754:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6755'``op2``' is treated as an unsigned value.
6756
6757Semantics:
6758""""""""""
6759
6760The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6761where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006762dynamically) equal to or larger than the number of bits in
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006763``op1``, this instruction returns a :ref:`poison value <poisonvalues>`.
6764If the arguments are vectors, each vector element of ``op1`` is shifted
6765by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006766
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006767If the ``nuw`` keyword is present, then the shift produces a poison
6768value if it shifts out any non-zero bits.
6769If the ``nsw`` keyword is present, then the shift produces a poison
6770value it shifts out any bits that disagree with the resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00006771
6772Example:
6773""""""""
6774
Renato Golin124f2592016-07-20 12:16:38 +00006775.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006776
Tim Northover675a0962014-06-13 14:24:23 +00006777 <result> = shl i32 4, %var ; yields i32: 4 << %var
6778 <result> = shl i32 4, 2 ; yields i32: 16
6779 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006780 <result> = shl i32 1, 32 ; undefined
6781 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6782
6783'``lshr``' Instruction
6784^^^^^^^^^^^^^^^^^^^^^^
6785
6786Syntax:
6787"""""""
6788
6789::
6790
Tim Northover675a0962014-06-13 14:24:23 +00006791 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6792 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006793
6794Overview:
6795"""""""""
6796
6797The '``lshr``' instruction (logical shift right) returns the first
6798operand shifted to the right a specified number of bits with zero fill.
6799
6800Arguments:
6801""""""""""
6802
6803Both arguments to the '``lshr``' instruction must be the same
6804:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6805'``op2``' is treated as an unsigned value.
6806
6807Semantics:
6808""""""""""
6809
6810This instruction always performs a logical shift right operation. The
6811most significant bits of the result will be filled with zero bits after
6812the shift. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006813than the number of bits in ``op1``, this instruction returns a :ref:`poison
6814value <poisonvalues>`. If the arguments are vectors, each vector element
6815of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006816
6817If the ``exact`` keyword is present, the result value of the ``lshr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006818a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00006819
6820Example:
6821""""""""
6822
Renato Golin124f2592016-07-20 12:16:38 +00006823.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006824
Tim Northover675a0962014-06-13 14:24:23 +00006825 <result> = lshr i32 4, 1 ; yields i32:result = 2
6826 <result> = lshr i32 4, 2 ; yields i32:result = 1
6827 <result> = lshr i8 4, 3 ; yields i8:result = 0
6828 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006829 <result> = lshr i32 1, 32 ; undefined
6830 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6831
6832'``ashr``' Instruction
6833^^^^^^^^^^^^^^^^^^^^^^
6834
6835Syntax:
6836"""""""
6837
6838::
6839
Tim Northover675a0962014-06-13 14:24:23 +00006840 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6841 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006842
6843Overview:
6844"""""""""
6845
6846The '``ashr``' instruction (arithmetic shift right) returns the first
6847operand shifted to the right a specified number of bits with sign
6848extension.
6849
6850Arguments:
6851""""""""""
6852
6853Both arguments to the '``ashr``' instruction must be the same
6854:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6855'``op2``' is treated as an unsigned value.
6856
6857Semantics:
6858""""""""""
6859
6860This instruction always performs an arithmetic shift right operation,
6861The most significant bits of the result will be filled with the sign bit
6862of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006863than the number of bits in ``op1``, this instruction returns a :ref:`poison
6864value <poisonvalues>`. If the arguments are vectors, each vector element
6865of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006866
6867If the ``exact`` keyword is present, the result value of the ``ashr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006868a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00006869
6870Example:
6871""""""""
6872
Renato Golin124f2592016-07-20 12:16:38 +00006873.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006874
Tim Northover675a0962014-06-13 14:24:23 +00006875 <result> = ashr i32 4, 1 ; yields i32:result = 2
6876 <result> = ashr i32 4, 2 ; yields i32:result = 1
6877 <result> = ashr i8 4, 3 ; yields i8:result = 0
6878 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006879 <result> = ashr i32 1, 32 ; undefined
6880 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6881
6882'``and``' Instruction
6883^^^^^^^^^^^^^^^^^^^^^
6884
6885Syntax:
6886"""""""
6887
6888::
6889
Tim Northover675a0962014-06-13 14:24:23 +00006890 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006891
6892Overview:
6893"""""""""
6894
6895The '``and``' instruction returns the bitwise logical and of its two
6896operands.
6897
6898Arguments:
6899""""""""""
6900
6901The two arguments to the '``and``' instruction must be
6902:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6903arguments must have identical types.
6904
6905Semantics:
6906""""""""""
6907
6908The truth table used for the '``and``' instruction is:
6909
6910+-----+-----+-----+
6911| In0 | In1 | Out |
6912+-----+-----+-----+
6913| 0 | 0 | 0 |
6914+-----+-----+-----+
6915| 0 | 1 | 0 |
6916+-----+-----+-----+
6917| 1 | 0 | 0 |
6918+-----+-----+-----+
6919| 1 | 1 | 1 |
6920+-----+-----+-----+
6921
6922Example:
6923""""""""
6924
Renato Golin124f2592016-07-20 12:16:38 +00006925.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006926
Tim Northover675a0962014-06-13 14:24:23 +00006927 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6928 <result> = and i32 15, 40 ; yields i32:result = 8
6929 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006930
6931'``or``' Instruction
6932^^^^^^^^^^^^^^^^^^^^
6933
6934Syntax:
6935"""""""
6936
6937::
6938
Tim Northover675a0962014-06-13 14:24:23 +00006939 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006940
6941Overview:
6942"""""""""
6943
6944The '``or``' instruction returns the bitwise logical inclusive or of its
6945two operands.
6946
6947Arguments:
6948""""""""""
6949
6950The two arguments to the '``or``' instruction must be
6951:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6952arguments must have identical types.
6953
6954Semantics:
6955""""""""""
6956
6957The truth table used for the '``or``' instruction is:
6958
6959+-----+-----+-----+
6960| In0 | In1 | Out |
6961+-----+-----+-----+
6962| 0 | 0 | 0 |
6963+-----+-----+-----+
6964| 0 | 1 | 1 |
6965+-----+-----+-----+
6966| 1 | 0 | 1 |
6967+-----+-----+-----+
6968| 1 | 1 | 1 |
6969+-----+-----+-----+
6970
6971Example:
6972""""""""
6973
6974::
6975
Tim Northover675a0962014-06-13 14:24:23 +00006976 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6977 <result> = or i32 15, 40 ; yields i32:result = 47
6978 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006979
6980'``xor``' Instruction
6981^^^^^^^^^^^^^^^^^^^^^
6982
6983Syntax:
6984"""""""
6985
6986::
6987
Tim Northover675a0962014-06-13 14:24:23 +00006988 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006989
6990Overview:
6991"""""""""
6992
6993The '``xor``' instruction returns the bitwise logical exclusive or of
6994its two operands. The ``xor`` is used to implement the "one's
6995complement" operation, which is the "~" operator in C.
6996
6997Arguments:
6998""""""""""
6999
7000The two arguments to the '``xor``' instruction must be
7001:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7002arguments must have identical types.
7003
7004Semantics:
7005""""""""""
7006
7007The truth table used for the '``xor``' instruction is:
7008
7009+-----+-----+-----+
7010| In0 | In1 | Out |
7011+-----+-----+-----+
7012| 0 | 0 | 0 |
7013+-----+-----+-----+
7014| 0 | 1 | 1 |
7015+-----+-----+-----+
7016| 1 | 0 | 1 |
7017+-----+-----+-----+
7018| 1 | 1 | 0 |
7019+-----+-----+-----+
7020
7021Example:
7022""""""""
7023
Renato Golin124f2592016-07-20 12:16:38 +00007024.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007025
Tim Northover675a0962014-06-13 14:24:23 +00007026 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
7027 <result> = xor i32 15, 40 ; yields i32:result = 39
7028 <result> = xor i32 4, 8 ; yields i32:result = 12
7029 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00007030
7031Vector Operations
7032-----------------
7033
7034LLVM supports several instructions to represent vector operations in a
7035target-independent manner. These instructions cover the element-access
7036and vector-specific operations needed to process vectors effectively.
7037While LLVM does directly support these vector operations, many
7038sophisticated algorithms will want to use target-specific intrinsics to
7039take full advantage of a specific target.
7040
7041.. _i_extractelement:
7042
7043'``extractelement``' Instruction
7044^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7045
7046Syntax:
7047"""""""
7048
7049::
7050
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007051 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00007052
7053Overview:
7054"""""""""
7055
7056The '``extractelement``' instruction extracts a single scalar element
7057from a vector at a specified index.
7058
7059Arguments:
7060""""""""""
7061
7062The first operand of an '``extractelement``' instruction is a value of
7063:ref:`vector <t_vector>` type. The second operand is an index indicating
7064the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007065variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007066
7067Semantics:
7068""""""""""
7069
7070The result is a scalar of the same type as the element type of ``val``.
7071Its value is the value at position ``idx`` of ``val``. If ``idx``
7072exceeds the length of ``val``, the results are undefined.
7073
7074Example:
7075""""""""
7076
Renato Golin124f2592016-07-20 12:16:38 +00007077.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007078
7079 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
7080
7081.. _i_insertelement:
7082
7083'``insertelement``' Instruction
7084^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7085
7086Syntax:
7087"""""""
7088
7089::
7090
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007091 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00007092
7093Overview:
7094"""""""""
7095
7096The '``insertelement``' instruction inserts a scalar element into a
7097vector at a specified index.
7098
7099Arguments:
7100""""""""""
7101
7102The first operand of an '``insertelement``' instruction is a value of
7103:ref:`vector <t_vector>` type. The second operand is a scalar value whose
7104type must equal the element type of the first operand. The third operand
7105is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007106index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007107
7108Semantics:
7109""""""""""
7110
7111The result is a vector of the same type as ``val``. Its element values
7112are those of ``val`` except at position ``idx``, where it gets the value
7113``elt``. If ``idx`` exceeds the length of ``val``, the results are
7114undefined.
7115
7116Example:
7117""""""""
7118
Renato Golin124f2592016-07-20 12:16:38 +00007119.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007120
7121 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
7122
7123.. _i_shufflevector:
7124
7125'``shufflevector``' Instruction
7126^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7127
7128Syntax:
7129"""""""
7130
7131::
7132
7133 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
7134
7135Overview:
7136"""""""""
7137
7138The '``shufflevector``' instruction constructs a permutation of elements
7139from two input vectors, returning a vector with the same element type as
7140the input and length that is the same as the shuffle mask.
7141
7142Arguments:
7143""""""""""
7144
7145The first two operands of a '``shufflevector``' instruction are vectors
7146with the same type. The third argument is a shuffle mask whose element
7147type is always 'i32'. The result of the instruction is a vector whose
7148length is the same as the shuffle mask and whose element type is the
7149same as the element type of the first two operands.
7150
7151The shuffle mask operand is required to be a constant vector with either
7152constant integer or undef values.
7153
7154Semantics:
7155""""""""""
7156
7157The elements of the two input vectors are numbered from left to right
7158across both of the vectors. The shuffle mask operand specifies, for each
7159element of the result vector, which element of the two input vectors the
Sanjay Patel6e410182017-04-12 18:39:53 +00007160result element gets. If the shuffle mask is undef, the result vector is
7161undef. If any element of the mask operand is undef, that element of the
7162result is undef. If the shuffle mask selects an undef element from one
7163of the input vectors, the resulting element is undef.
Sean Silvab084af42012-12-07 10:36:55 +00007164
7165Example:
7166""""""""
7167
Renato Golin124f2592016-07-20 12:16:38 +00007168.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007169
7170 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7171 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
7172 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
7173 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
7174 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
7175 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
7176 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7177 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
7178
7179Aggregate Operations
7180--------------------
7181
7182LLVM supports several instructions for working with
7183:ref:`aggregate <t_aggregate>` values.
7184
7185.. _i_extractvalue:
7186
7187'``extractvalue``' Instruction
7188^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7189
7190Syntax:
7191"""""""
7192
7193::
7194
7195 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
7196
7197Overview:
7198"""""""""
7199
7200The '``extractvalue``' instruction extracts the value of a member field
7201from an :ref:`aggregate <t_aggregate>` value.
7202
7203Arguments:
7204""""""""""
7205
7206The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00007207:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00007208constant indices to specify which value to extract in a similar manner
7209as indices in a '``getelementptr``' instruction.
7210
7211The major differences to ``getelementptr`` indexing are:
7212
7213- Since the value being indexed is not a pointer, the first index is
7214 omitted and assumed to be zero.
7215- At least one index must be specified.
7216- Not only struct indices but also array indices must be in bounds.
7217
7218Semantics:
7219""""""""""
7220
7221The result is the value at the position in the aggregate specified by
7222the index operands.
7223
7224Example:
7225""""""""
7226
Renato Golin124f2592016-07-20 12:16:38 +00007227.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007228
7229 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
7230
7231.. _i_insertvalue:
7232
7233'``insertvalue``' Instruction
7234^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7235
7236Syntax:
7237"""""""
7238
7239::
7240
7241 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
7242
7243Overview:
7244"""""""""
7245
7246The '``insertvalue``' instruction inserts a value into a member field in
7247an :ref:`aggregate <t_aggregate>` value.
7248
7249Arguments:
7250""""""""""
7251
7252The first operand of an '``insertvalue``' instruction is a value of
7253:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
7254a first-class value to insert. The following operands are constant
7255indices indicating the position at which to insert the value in a
7256similar manner as indices in a '``extractvalue``' instruction. The value
7257to insert must have the same type as the value identified by the
7258indices.
7259
7260Semantics:
7261""""""""""
7262
7263The result is an aggregate of the same type as ``val``. Its value is
7264that of ``val`` except that the value at the position specified by the
7265indices is that of ``elt``.
7266
7267Example:
7268""""""""
7269
7270.. code-block:: llvm
7271
7272 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
7273 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00007274 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00007275
7276.. _memoryops:
7277
7278Memory Access and Addressing Operations
7279---------------------------------------
7280
7281A key design point of an SSA-based representation is how it represents
7282memory. In LLVM, no memory locations are in SSA form, which makes things
7283very simple. This section describes how to read, write, and allocate
7284memory in LLVM.
7285
7286.. _i_alloca:
7287
7288'``alloca``' Instruction
7289^^^^^^^^^^^^^^^^^^^^^^^^
7290
7291Syntax:
7292"""""""
7293
7294::
7295
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007296 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result
Sean Silvab084af42012-12-07 10:36:55 +00007297
7298Overview:
7299"""""""""
7300
7301The '``alloca``' instruction allocates memory on the stack frame of the
7302currently executing function, to be automatically released when this
7303function returns to its caller. The object is always allocated in the
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007304address space for allocas indicated in the datalayout.
Sean Silvab084af42012-12-07 10:36:55 +00007305
7306Arguments:
7307""""""""""
7308
7309The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7310bytes of memory on the runtime stack, returning a pointer of the
7311appropriate type to the program. If "NumElements" is specified, it is
7312the number of elements allocated, otherwise "NumElements" is defaulted
7313to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007314allocation is guaranteed to be aligned to at least that boundary. The
7315alignment may not be greater than ``1 << 29``. If not specified, or if
7316zero, the target can choose to align the allocation on any convenient
7317boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007318
7319'``type``' may be any sized type.
7320
7321Semantics:
7322""""""""""
7323
7324Memory is allocated; a pointer is returned. The operation is undefined
7325if there is insufficient stack space for the allocation. '``alloca``'d
7326memory is automatically released when the function returns. The
7327'``alloca``' instruction is commonly used to represent automatic
7328variables that must have an address available. When the function returns
7329(either with the ``ret`` or ``resume`` instructions), the memory is
7330reclaimed. Allocating zero bytes is legal, but the result is undefined.
7331The order in which memory is allocated (ie., which way the stack grows)
7332is not specified.
7333
7334Example:
7335""""""""
7336
7337.. code-block:: llvm
7338
Tim Northover675a0962014-06-13 14:24:23 +00007339 %ptr = alloca i32 ; yields i32*:ptr
7340 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7341 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7342 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007343
7344.. _i_load:
7345
7346'``load``' Instruction
7347^^^^^^^^^^^^^^^^^^^^^^
7348
7349Syntax:
7350"""""""
7351
7352::
7353
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007354 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00007355 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007356 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007357 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007358 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007359
7360Overview:
7361"""""""""
7362
7363The '``load``' instruction is used to read from memory.
7364
7365Arguments:
7366""""""""""
7367
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007368The argument to the ``load`` instruction specifies the memory address from which
7369to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7370known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7371the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7372modify the number or order of execution of this ``load`` with other
7373:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007374
JF Bastiend1fb5852015-12-17 22:09:19 +00007375If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
7376<ordering>` and optional ``singlethread`` argument. The ``release`` and
7377``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
7378produce :ref:`defined <memmodel>` results when they may see multiple atomic
7379stores. The type of the pointee must be an integer, pointer, or floating-point
7380type whose bit width is a power of two greater than or equal to eight and less
7381than or equal to a target-specific size limit. ``align`` must be explicitly
7382specified on atomic loads, and the load has undefined behavior if the alignment
7383is not set to a value which is at least the size in bytes of the
7384pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007385
7386The optional constant ``align`` argument specifies the alignment of the
7387operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007388or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007389alignment for the target. It is the responsibility of the code emitter
7390to ensure that the alignment information is correct. Overestimating the
7391alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007392may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007393maximum possible alignment is ``1 << 29``. An alignment value higher
7394than the size of the loaded type implies memory up to the alignment
7395value bytes can be safely loaded without trapping in the default
7396address space. Access of the high bytes can interfere with debugging
7397tools, so should not be accessed if the function has the
7398``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007399
7400The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007401metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007402``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007403metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007404that this load is not expected to be reused in the cache. The code
7405generator may select special instructions to save cache bandwidth, such
7406as the ``MOVNT`` instruction on x86.
7407
7408The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007409metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007410entries. If a load instruction tagged with the ``!invariant.load``
7411metadata is executed, the optimizer may assume the memory location
7412referenced by the load contains the same value at all points in the
7413program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007414
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007415The optional ``!invariant.group`` metadata must reference a single metadata name
7416 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7417
Philip Reamescdb72f32014-10-20 22:40:55 +00007418The optional ``!nonnull`` metadata must reference a single
7419metadata name ``<index>`` corresponding to a metadata node with no
7420entries. The existence of the ``!nonnull`` metadata on the
7421instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007422never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007423on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007424to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007425
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007426The optional ``!dereferenceable`` metadata must reference a single metadata
7427name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007428entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007429tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007430The number of bytes known to be dereferenceable is specified by the integer
7431value in the metadata node. This is analogous to the ''dereferenceable''
7432attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007433to loads of a pointer type.
7434
7435The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007436metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7437``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007438instruction tells the optimizer that the value loaded is known to be either
7439dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007440The number of bytes known to be dereferenceable is specified by the integer
7441value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7442attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007443to loads of a pointer type.
7444
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007445The optional ``!align`` metadata must reference a single metadata name
7446``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7447The existence of the ``!align`` metadata on the instruction tells the
7448optimizer that the value loaded is known to be aligned to a boundary specified
7449by the integer value in the metadata node. The alignment must be a power of 2.
7450This is analogous to the ''align'' attribute on parameters and return values.
7451This metadata can only be applied to loads of a pointer type.
7452
Sean Silvab084af42012-12-07 10:36:55 +00007453Semantics:
7454""""""""""
7455
7456The location of memory pointed to is loaded. If the value being loaded
7457is of scalar type then the number of bytes read does not exceed the
7458minimum number of bytes needed to hold all bits of the type. For
7459example, loading an ``i24`` reads at most three bytes. When loading a
7460value of a type like ``i20`` with a size that is not an integral number
7461of bytes, the result is undefined if the value was not originally
7462written using a store of the same type.
7463
7464Examples:
7465"""""""""
7466
7467.. code-block:: llvm
7468
Tim Northover675a0962014-06-13 14:24:23 +00007469 %ptr = alloca i32 ; yields i32*:ptr
7470 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007471 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007472
7473.. _i_store:
7474
7475'``store``' Instruction
7476^^^^^^^^^^^^^^^^^^^^^^^
7477
7478Syntax:
7479"""""""
7480
7481::
7482
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007483 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7484 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007485
7486Overview:
7487"""""""""
7488
7489The '``store``' instruction is used to write to memory.
7490
7491Arguments:
7492""""""""""
7493
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007494There are two arguments to the ``store`` instruction: a value to store and an
7495address at which to store it. The type of the ``<pointer>`` operand must be a
7496pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7497operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7498allowed to modify the number or order of execution of this ``store`` with other
7499:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7500<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7501structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007502
JF Bastiend1fb5852015-12-17 22:09:19 +00007503If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7504<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7505``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7506produce :ref:`defined <memmodel>` results when they may see multiple atomic
7507stores. The type of the pointee must be an integer, pointer, or floating-point
7508type whose bit width is a power of two greater than or equal to eight and less
7509than or equal to a target-specific size limit. ``align`` must be explicitly
7510specified on atomic stores, and the store has undefined behavior if the
7511alignment is not set to a value which is at least the size in bytes of the
7512pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007513
Eli Benderskyca380842013-04-17 17:17:20 +00007514The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007515operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007516or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007517alignment for the target. It is the responsibility of the code emitter
7518to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007519alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007520alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007521safe. The maximum possible alignment is ``1 << 29``. An alignment
7522value higher than the size of the stored type implies memory up to the
7523alignment value bytes can be stored to without trapping in the default
7524address space. Storing to the higher bytes however may result in data
7525races if another thread can access the same address. Introducing a
7526data race is not allowed. Storing to the extra bytes is not allowed
7527even in situations where a data race is known to not exist if the
7528function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007529
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007530The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007531name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007532value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007533tells the optimizer and code generator that this load is not expected to
7534be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007535instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007536x86.
7537
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007538The optional ``!invariant.group`` metadata must reference a
7539single metadata name ``<index>``. See ``invariant.group`` metadata.
7540
Sean Silvab084af42012-12-07 10:36:55 +00007541Semantics:
7542""""""""""
7543
Eli Benderskyca380842013-04-17 17:17:20 +00007544The contents of memory are updated to contain ``<value>`` at the
7545location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007546of scalar type then the number of bytes written does not exceed the
7547minimum number of bytes needed to hold all bits of the type. For
7548example, storing an ``i24`` writes at most three bytes. When writing a
7549value of a type like ``i20`` with a size that is not an integral number
7550of bytes, it is unspecified what happens to the extra bits that do not
7551belong to the type, but they will typically be overwritten.
7552
7553Example:
7554""""""""
7555
7556.. code-block:: llvm
7557
Tim Northover675a0962014-06-13 14:24:23 +00007558 %ptr = alloca i32 ; yields i32*:ptr
7559 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007560 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007561
7562.. _i_fence:
7563
7564'``fence``' Instruction
7565^^^^^^^^^^^^^^^^^^^^^^^
7566
7567Syntax:
7568"""""""
7569
7570::
7571
Tim Northover675a0962014-06-13 14:24:23 +00007572 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007573
7574Overview:
7575"""""""""
7576
7577The '``fence``' instruction is used to introduce happens-before edges
7578between operations.
7579
7580Arguments:
7581""""""""""
7582
7583'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7584defines what *synchronizes-with* edges they add. They can only be given
7585``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7586
7587Semantics:
7588""""""""""
7589
7590A fence A which has (at least) ``release`` ordering semantics
7591*synchronizes with* a fence B with (at least) ``acquire`` ordering
7592semantics if and only if there exist atomic operations X and Y, both
7593operating on some atomic object M, such that A is sequenced before X, X
7594modifies M (either directly or through some side effect of a sequence
7595headed by X), Y is sequenced before B, and Y observes M. This provides a
7596*happens-before* dependency between A and B. Rather than an explicit
7597``fence``, one (but not both) of the atomic operations X or Y might
7598provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7599still *synchronize-with* the explicit ``fence`` and establish the
7600*happens-before* edge.
7601
7602A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7603``acquire`` and ``release`` semantics specified above, participates in
7604the global program order of other ``seq_cst`` operations and/or fences.
7605
7606The optional ":ref:`singlethread <singlethread>`" argument specifies
7607that the fence only synchronizes with other fences in the same thread.
7608(This is useful for interacting with signal handlers.)
7609
7610Example:
7611""""""""
7612
7613.. code-block:: llvm
7614
Tim Northover675a0962014-06-13 14:24:23 +00007615 fence acquire ; yields void
7616 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007617
7618.. _i_cmpxchg:
7619
7620'``cmpxchg``' Instruction
7621^^^^^^^^^^^^^^^^^^^^^^^^^
7622
7623Syntax:
7624"""""""
7625
7626::
7627
Tim Northover675a0962014-06-13 14:24:23 +00007628 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007629
7630Overview:
7631"""""""""
7632
7633The '``cmpxchg``' instruction is used to atomically modify memory. It
7634loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007635equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007636
7637Arguments:
7638""""""""""
7639
7640There are three arguments to the '``cmpxchg``' instruction: an address
7641to operate on, a value to compare to the value currently be at that
7642address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007643are equal. The type of '<cmp>' must be an integer or pointer type whose
7644bit width is a power of two greater than or equal to eight and less
7645than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7646have the same type, and the type of '<pointer>' must be a pointer to
7647that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7648optimizer is not allowed to modify the number or order of execution of
7649this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007650
Tim Northovere94a5182014-03-11 10:48:52 +00007651The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007652``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7653must be at least ``monotonic``, the ordering constraint on failure must be no
7654stronger than that on success, and the failure ordering cannot be either
7655``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007656
7657The optional "``singlethread``" argument declares that the ``cmpxchg``
7658is only atomic with respect to code (usually signal handlers) running in
7659the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7660respect to all other code in the system.
7661
7662The pointer passed into cmpxchg must have alignment greater than or
7663equal to the size in memory of the operand.
7664
7665Semantics:
7666""""""""""
7667
Tim Northover420a2162014-06-13 14:24:07 +00007668The contents of memory at the location specified by the '``<pointer>``' operand
7669is read and compared to '``<cmp>``'; if the read value is the equal, the
7670'``<new>``' is written. The original value at the location is returned, together
7671with a flag indicating success (true) or failure (false).
7672
7673If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7674permitted: the operation may not write ``<new>`` even if the comparison
7675matched.
7676
7677If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7678if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007679
Tim Northovere94a5182014-03-11 10:48:52 +00007680A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7681identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7682load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007683
7684Example:
7685""""""""
7686
7687.. code-block:: llvm
7688
7689 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007690 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007691 br label %loop
7692
7693 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007694 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007695 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007696 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007697 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7698 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007699 br i1 %success, label %done, label %loop
7700
7701 done:
7702 ...
7703
7704.. _i_atomicrmw:
7705
7706'``atomicrmw``' Instruction
7707^^^^^^^^^^^^^^^^^^^^^^^^^^^
7708
7709Syntax:
7710"""""""
7711
7712::
7713
Tim Northover675a0962014-06-13 14:24:23 +00007714 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007715
7716Overview:
7717"""""""""
7718
7719The '``atomicrmw``' instruction is used to atomically modify memory.
7720
7721Arguments:
7722""""""""""
7723
7724There are three arguments to the '``atomicrmw``' instruction: an
7725operation to apply, an address whose value to modify, an argument to the
7726operation. The operation must be one of the following keywords:
7727
7728- xchg
7729- add
7730- sub
7731- and
7732- nand
7733- or
7734- xor
7735- max
7736- min
7737- umax
7738- umin
7739
7740The type of '<value>' must be an integer type whose bit width is a power
7741of two greater than or equal to eight and less than or equal to a
7742target-specific size limit. The type of the '``<pointer>``' operand must
7743be a pointer to that type. If the ``atomicrmw`` is marked as
7744``volatile``, then the optimizer is not allowed to modify the number or
7745order of execution of this ``atomicrmw`` with other :ref:`volatile
7746operations <volatile>`.
7747
7748Semantics:
7749""""""""""
7750
7751The contents of memory at the location specified by the '``<pointer>``'
7752operand are atomically read, modified, and written back. The original
7753value at the location is returned. The modification is specified by the
7754operation argument:
7755
7756- xchg: ``*ptr = val``
7757- add: ``*ptr = *ptr + val``
7758- sub: ``*ptr = *ptr - val``
7759- and: ``*ptr = *ptr & val``
7760- nand: ``*ptr = ~(*ptr & val)``
7761- or: ``*ptr = *ptr | val``
7762- xor: ``*ptr = *ptr ^ val``
7763- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7764- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7765- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7766 comparison)
7767- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7768 comparison)
7769
7770Example:
7771""""""""
7772
7773.. code-block:: llvm
7774
Tim Northover675a0962014-06-13 14:24:23 +00007775 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007776
7777.. _i_getelementptr:
7778
7779'``getelementptr``' Instruction
7780^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7781
7782Syntax:
7783"""""""
7784
7785::
7786
Peter Collingbourned93620b2016-11-10 22:34:55 +00007787 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7788 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7789 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007790
7791Overview:
7792"""""""""
7793
7794The '``getelementptr``' instruction is used to get the address of a
7795subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007796address calculation only and does not access memory. The instruction can also
7797be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007798
7799Arguments:
7800""""""""""
7801
David Blaikie16a97eb2015-03-04 22:02:58 +00007802The first argument is always a type used as the basis for the calculations.
7803The second argument is always a pointer or a vector of pointers, and is the
7804base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007805that indicate which of the elements of the aggregate object are indexed.
7806The interpretation of each index is dependent on the type being indexed
7807into. The first index always indexes the pointer value given as the
7808first argument, the second index indexes a value of the type pointed to
7809(not necessarily the value directly pointed to, since the first index
7810can be non-zero), etc. The first type indexed into must be a pointer
7811value, subsequent types can be arrays, vectors, and structs. Note that
7812subsequent types being indexed into can never be pointers, since that
7813would require loading the pointer before continuing calculation.
7814
7815The type of each index argument depends on the type it is indexing into.
7816When indexing into a (optionally packed) structure, only ``i32`` integer
7817**constants** are allowed (when using a vector of indices they must all
7818be the **same** ``i32`` integer constant). When indexing into an array,
7819pointer or vector, integers of any width are allowed, and they are not
7820required to be constant. These integers are treated as signed values
7821where relevant.
7822
7823For example, let's consider a C code fragment and how it gets compiled
7824to LLVM:
7825
7826.. code-block:: c
7827
7828 struct RT {
7829 char A;
7830 int B[10][20];
7831 char C;
7832 };
7833 struct ST {
7834 int X;
7835 double Y;
7836 struct RT Z;
7837 };
7838
7839 int *foo(struct ST *s) {
7840 return &s[1].Z.B[5][13];
7841 }
7842
7843The LLVM code generated by Clang is:
7844
7845.. code-block:: llvm
7846
7847 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7848 %struct.ST = type { i32, double, %struct.RT }
7849
7850 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7851 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007852 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007853 ret i32* %arrayidx
7854 }
7855
7856Semantics:
7857""""""""""
7858
7859In the example above, the first index is indexing into the
7860'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7861= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7862indexes into the third element of the structure, yielding a
7863'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7864structure. The third index indexes into the second element of the
7865structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7866dimensions of the array are subscripted into, yielding an '``i32``'
7867type. The '``getelementptr``' instruction returns a pointer to this
7868element, thus computing a value of '``i32*``' type.
7869
7870Note that it is perfectly legal to index partially through a structure,
7871returning a pointer to an inner element. Because of this, the LLVM code
7872for the given testcase is equivalent to:
7873
7874.. code-block:: llvm
7875
7876 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007877 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7878 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7879 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7880 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7881 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007882 ret i32* %t5
7883 }
7884
7885If the ``inbounds`` keyword is present, the result value of the
7886``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7887pointer is not an *in bounds* address of an allocated object, or if any
7888of the addresses that would be formed by successive addition of the
7889offsets implied by the indices to the base address with infinitely
7890precise signed arithmetic are not an *in bounds* address of that
7891allocated object. The *in bounds* addresses for an allocated object are
7892all the addresses that point into the object, plus the address one byte
Eli Friedman13f2e352017-02-23 00:48:18 +00007893past the end. The only *in bounds* address for a null pointer in the
7894default address-space is the null pointer itself. In cases where the
7895base is a vector of pointers the ``inbounds`` keyword applies to each
7896of the computations element-wise.
Sean Silvab084af42012-12-07 10:36:55 +00007897
7898If the ``inbounds`` keyword is not present, the offsets are added to the
7899base address with silently-wrapping two's complement arithmetic. If the
7900offsets have a different width from the pointer, they are sign-extended
7901or truncated to the width of the pointer. The result value of the
7902``getelementptr`` may be outside the object pointed to by the base
7903pointer. The result value may not necessarily be used to access memory
7904though, even if it happens to point into allocated storage. See the
7905:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7906information.
7907
Peter Collingbourned93620b2016-11-10 22:34:55 +00007908If the ``inrange`` keyword is present before any index, loading from or
7909storing to any pointer derived from the ``getelementptr`` has undefined
7910behavior if the load or store would access memory outside of the bounds of
7911the element selected by the index marked as ``inrange``. The result of a
7912pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
7913involving memory) involving a pointer derived from a ``getelementptr`` with
7914the ``inrange`` keyword is undefined, with the exception of comparisons
7915in the case where both operands are in the range of the element selected
7916by the ``inrange`` keyword, inclusive of the address one past the end of
7917that element. Note that the ``inrange`` keyword is currently only allowed
7918in constant ``getelementptr`` expressions.
7919
Sean Silvab084af42012-12-07 10:36:55 +00007920The getelementptr instruction is often confusing. For some more insight
7921into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7922
7923Example:
7924""""""""
7925
7926.. code-block:: llvm
7927
7928 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007929 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007930 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007931 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007932 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007933 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007934 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007935 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007936
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007937Vector of pointers:
7938"""""""""""""""""""
7939
7940The ``getelementptr`` returns a vector of pointers, instead of a single address,
7941when one or more of its arguments is a vector. In such cases, all vector
7942arguments should have the same number of elements, and every scalar argument
7943will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007944
7945.. code-block:: llvm
7946
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007947 ; All arguments are vectors:
7948 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7949 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007950
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007951 ; Add the same scalar offset to each pointer of a vector:
7952 ; A[i] = ptrs[i] + offset*sizeof(i8)
7953 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007954
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007955 ; Add distinct offsets to the same pointer:
7956 ; A[i] = ptr + offsets[i]*sizeof(i8)
7957 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007958
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007959 ; In all cases described above the type of the result is <4 x i8*>
7960
7961The two following instructions are equivalent:
7962
7963.. code-block:: llvm
7964
7965 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7966 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7967 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7968 <4 x i32> %ind4,
7969 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007970
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007971 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7972 i32 2, i32 1, <4 x i32> %ind4, i64 13
7973
7974Let's look at the C code, where the vector version of ``getelementptr``
7975makes sense:
7976
7977.. code-block:: c
7978
7979 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00007980 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007981 for (int i = 0; i < size; ++i) {
7982 A[i] = B[C[i]];
7983 }
7984
7985.. code-block:: llvm
7986
7987 ; get pointers for 8 elements from array B
7988 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7989 ; load 8 elements from array B into A
Elad Cohenef5798a2017-05-03 12:28:54 +00007990 %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007991 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007992
7993Conversion Operations
7994---------------------
7995
7996The instructions in this category are the conversion instructions
7997(casting) which all take a single operand and a type. They perform
7998various bit conversions on the operand.
7999
8000'``trunc .. to``' Instruction
8001^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8002
8003Syntax:
8004"""""""
8005
8006::
8007
8008 <result> = trunc <ty> <value> to <ty2> ; yields ty2
8009
8010Overview:
8011"""""""""
8012
8013The '``trunc``' instruction truncates its operand to the type ``ty2``.
8014
8015Arguments:
8016""""""""""
8017
8018The '``trunc``' instruction takes a value to trunc, and a type to trunc
8019it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
8020of the same number of integers. The bit size of the ``value`` must be
8021larger than the bit size of the destination type, ``ty2``. Equal sized
8022types are not allowed.
8023
8024Semantics:
8025""""""""""
8026
8027The '``trunc``' instruction truncates the high order bits in ``value``
8028and converts the remaining bits to ``ty2``. Since the source size must
8029be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
8030It will always truncate bits.
8031
8032Example:
8033""""""""
8034
8035.. code-block:: llvm
8036
8037 %X = trunc i32 257 to i8 ; yields i8:1
8038 %Y = trunc i32 123 to i1 ; yields i1:true
8039 %Z = trunc i32 122 to i1 ; yields i1:false
8040 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
8041
8042'``zext .. to``' Instruction
8043^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8044
8045Syntax:
8046"""""""
8047
8048::
8049
8050 <result> = zext <ty> <value> to <ty2> ; yields ty2
8051
8052Overview:
8053"""""""""
8054
8055The '``zext``' instruction zero extends its operand to type ``ty2``.
8056
8057Arguments:
8058""""""""""
8059
8060The '``zext``' instruction takes a value to cast, and a type to cast it
8061to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8062the same number of integers. The bit size of the ``value`` must be
8063smaller than the bit size of the destination type, ``ty2``.
8064
8065Semantics:
8066""""""""""
8067
8068The ``zext`` fills the high order bits of the ``value`` with zero bits
8069until it reaches the size of the destination type, ``ty2``.
8070
8071When zero extending from i1, the result will always be either 0 or 1.
8072
8073Example:
8074""""""""
8075
8076.. code-block:: llvm
8077
8078 %X = zext i32 257 to i64 ; yields i64:257
8079 %Y = zext i1 true to i32 ; yields i32:1
8080 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8081
8082'``sext .. to``' Instruction
8083^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8084
8085Syntax:
8086"""""""
8087
8088::
8089
8090 <result> = sext <ty> <value> to <ty2> ; yields ty2
8091
8092Overview:
8093"""""""""
8094
8095The '``sext``' sign extends ``value`` to the type ``ty2``.
8096
8097Arguments:
8098""""""""""
8099
8100The '``sext``' instruction takes a value to cast, and a type to cast it
8101to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8102the same number of integers. The bit size of the ``value`` must be
8103smaller than the bit size of the destination type, ``ty2``.
8104
8105Semantics:
8106""""""""""
8107
8108The '``sext``' instruction performs a sign extension by copying the sign
8109bit (highest order bit) of the ``value`` until it reaches the bit size
8110of the type ``ty2``.
8111
8112When sign extending from i1, the extension always results in -1 or 0.
8113
8114Example:
8115""""""""
8116
8117.. code-block:: llvm
8118
8119 %X = sext i8 -1 to i16 ; yields i16 :65535
8120 %Y = sext i1 true to i32 ; yields i32:-1
8121 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8122
8123'``fptrunc .. to``' Instruction
8124^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8125
8126Syntax:
8127"""""""
8128
8129::
8130
8131 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
8132
8133Overview:
8134"""""""""
8135
8136The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
8137
8138Arguments:
8139""""""""""
8140
8141The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
8142value to cast and a :ref:`floating point <t_floating>` type to cast it to.
8143The size of ``value`` must be larger than the size of ``ty2``. This
8144implies that ``fptrunc`` cannot be used to make a *no-op cast*.
8145
8146Semantics:
8147""""""""""
8148
Dan Liew50456fb2015-09-03 18:43:56 +00008149The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00008150:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00008151point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
8152destination type, ``ty2``, then the results are undefined. If the cast produces
8153an inexact result, how rounding is performed (e.g. truncation, also known as
8154round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00008155
8156Example:
8157""""""""
8158
8159.. code-block:: llvm
8160
8161 %X = fptrunc double 123.0 to float ; yields float:123.0
8162 %Y = fptrunc double 1.0E+300 to float ; yields undefined
8163
8164'``fpext .. to``' Instruction
8165^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8166
8167Syntax:
8168"""""""
8169
8170::
8171
8172 <result> = fpext <ty> <value> to <ty2> ; yields ty2
8173
8174Overview:
8175"""""""""
8176
8177The '``fpext``' extends a floating point ``value`` to a larger floating
8178point value.
8179
8180Arguments:
8181""""""""""
8182
8183The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
8184``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
8185to. The source type must be smaller than the destination type.
8186
8187Semantics:
8188""""""""""
8189
8190The '``fpext``' instruction extends the ``value`` from a smaller
8191:ref:`floating point <t_floating>` type to a larger :ref:`floating
8192point <t_floating>` type. The ``fpext`` cannot be used to make a
8193*no-op cast* because it always changes bits. Use ``bitcast`` to make a
8194*no-op cast* for a floating point cast.
8195
8196Example:
8197""""""""
8198
8199.. code-block:: llvm
8200
8201 %X = fpext float 3.125 to double ; yields double:3.125000e+00
8202 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
8203
8204'``fptoui .. to``' Instruction
8205^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8206
8207Syntax:
8208"""""""
8209
8210::
8211
8212 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
8213
8214Overview:
8215"""""""""
8216
8217The '``fptoui``' converts a floating point ``value`` to its unsigned
8218integer equivalent of type ``ty2``.
8219
8220Arguments:
8221""""""""""
8222
8223The '``fptoui``' instruction takes a value to cast, which must be a
8224scalar or vector :ref:`floating point <t_floating>` value, and a type to
8225cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8226``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8227type with the same number of elements as ``ty``
8228
8229Semantics:
8230""""""""""
8231
8232The '``fptoui``' instruction converts its :ref:`floating
8233point <t_floating>` operand into the nearest (rounding towards zero)
8234unsigned integer value. If the value cannot fit in ``ty2``, the results
8235are undefined.
8236
8237Example:
8238""""""""
8239
8240.. code-block:: llvm
8241
8242 %X = fptoui double 123.0 to i32 ; yields i32:123
8243 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
8244 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
8245
8246'``fptosi .. to``' Instruction
8247^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8248
8249Syntax:
8250"""""""
8251
8252::
8253
8254 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
8255
8256Overview:
8257"""""""""
8258
8259The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
8260``value`` to type ``ty2``.
8261
8262Arguments:
8263""""""""""
8264
8265The '``fptosi``' instruction takes a value to cast, which must be a
8266scalar or vector :ref:`floating point <t_floating>` value, and a type to
8267cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8268``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8269type with the same number of elements as ``ty``
8270
8271Semantics:
8272""""""""""
8273
8274The '``fptosi``' instruction converts its :ref:`floating
8275point <t_floating>` operand into the nearest (rounding towards zero)
8276signed integer value. If the value cannot fit in ``ty2``, the results
8277are undefined.
8278
8279Example:
8280""""""""
8281
8282.. code-block:: llvm
8283
8284 %X = fptosi double -123.0 to i32 ; yields i32:-123
8285 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
8286 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
8287
8288'``uitofp .. to``' Instruction
8289^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8290
8291Syntax:
8292"""""""
8293
8294::
8295
8296 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
8297
8298Overview:
8299"""""""""
8300
8301The '``uitofp``' instruction regards ``value`` as an unsigned integer
8302and converts that value to the ``ty2`` type.
8303
8304Arguments:
8305""""""""""
8306
8307The '``uitofp``' instruction takes a value to cast, which must be a
8308scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8309``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8310``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8311type with the same number of elements as ``ty``
8312
8313Semantics:
8314""""""""""
8315
8316The '``uitofp``' instruction interprets its operand as an unsigned
8317integer quantity and converts it to the corresponding floating point
8318value. If the value cannot fit in the floating point value, the results
8319are undefined.
8320
8321Example:
8322""""""""
8323
8324.. code-block:: llvm
8325
8326 %X = uitofp i32 257 to float ; yields float:257.0
8327 %Y = uitofp i8 -1 to double ; yields double:255.0
8328
8329'``sitofp .. to``' Instruction
8330^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8331
8332Syntax:
8333"""""""
8334
8335::
8336
8337 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8338
8339Overview:
8340"""""""""
8341
8342The '``sitofp``' instruction regards ``value`` as a signed integer and
8343converts that value to the ``ty2`` type.
8344
8345Arguments:
8346""""""""""
8347
8348The '``sitofp``' instruction takes a value to cast, which must be a
8349scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8350``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8351``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8352type with the same number of elements as ``ty``
8353
8354Semantics:
8355""""""""""
8356
8357The '``sitofp``' instruction interprets its operand as a signed integer
8358quantity and converts it to the corresponding floating point value. If
8359the value cannot fit in the floating point value, the results are
8360undefined.
8361
8362Example:
8363""""""""
8364
8365.. code-block:: llvm
8366
8367 %X = sitofp i32 257 to float ; yields float:257.0
8368 %Y = sitofp i8 -1 to double ; yields double:-1.0
8369
8370.. _i_ptrtoint:
8371
8372'``ptrtoint .. to``' Instruction
8373^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8374
8375Syntax:
8376"""""""
8377
8378::
8379
8380 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8381
8382Overview:
8383"""""""""
8384
8385The '``ptrtoint``' instruction converts the pointer or a vector of
8386pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8387
8388Arguments:
8389""""""""""
8390
8391The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008392a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008393type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8394a vector of integers type.
8395
8396Semantics:
8397""""""""""
8398
8399The '``ptrtoint``' instruction converts ``value`` to integer type
8400``ty2`` by interpreting the pointer value as an integer and either
8401truncating or zero extending that value to the size of the integer type.
8402If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8403``value`` is larger than ``ty2`` then a truncation is done. If they are
8404the same size, then nothing is done (*no-op cast*) other than a type
8405change.
8406
8407Example:
8408""""""""
8409
8410.. code-block:: llvm
8411
8412 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8413 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8414 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8415
8416.. _i_inttoptr:
8417
8418'``inttoptr .. to``' Instruction
8419^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8420
8421Syntax:
8422"""""""
8423
8424::
8425
8426 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8427
8428Overview:
8429"""""""""
8430
8431The '``inttoptr``' instruction converts an integer ``value`` to a
8432pointer type, ``ty2``.
8433
8434Arguments:
8435""""""""""
8436
8437The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8438cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8439type.
8440
8441Semantics:
8442""""""""""
8443
8444The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8445applying either a zero extension or a truncation depending on the size
8446of the integer ``value``. If ``value`` is larger than the size of a
8447pointer then a truncation is done. If ``value`` is smaller than the size
8448of a pointer then a zero extension is done. If they are the same size,
8449nothing is done (*no-op cast*).
8450
8451Example:
8452""""""""
8453
8454.. code-block:: llvm
8455
8456 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8457 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8458 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8459 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8460
8461.. _i_bitcast:
8462
8463'``bitcast .. to``' Instruction
8464^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8465
8466Syntax:
8467"""""""
8468
8469::
8470
8471 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8472
8473Overview:
8474"""""""""
8475
8476The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8477changing any bits.
8478
8479Arguments:
8480""""""""""
8481
8482The '``bitcast``' instruction takes a value to cast, which must be a
8483non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008484also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8485bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008486identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008487also be a pointer of the same size. This instruction supports bitwise
8488conversion of vectors to integers and to vectors of other types (as
8489long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008490
8491Semantics:
8492""""""""""
8493
Matt Arsenault24b49c42013-07-31 17:49:08 +00008494The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8495is always a *no-op cast* because no bits change with this
8496conversion. The conversion is done as if the ``value`` had been stored
8497to memory and read back as type ``ty2``. Pointer (or vector of
8498pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008499pointers) types with the same address space through this instruction.
8500To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8501or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008502
8503Example:
8504""""""""
8505
Renato Golin124f2592016-07-20 12:16:38 +00008506.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008507
8508 %X = bitcast i8 255 to i8 ; yields i8 :-1
8509 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8510 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8511 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8512
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008513.. _i_addrspacecast:
8514
8515'``addrspacecast .. to``' Instruction
8516^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8517
8518Syntax:
8519"""""""
8520
8521::
8522
8523 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8524
8525Overview:
8526"""""""""
8527
8528The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8529address space ``n`` to type ``pty2`` in address space ``m``.
8530
8531Arguments:
8532""""""""""
8533
8534The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8535to cast and a pointer type to cast it to, which must have a different
8536address space.
8537
8538Semantics:
8539""""""""""
8540
8541The '``addrspacecast``' instruction converts the pointer value
8542``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008543value modification, depending on the target and the address space
8544pair. Pointer conversions within the same address space must be
8545performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008546conversion is legal then both result and operand refer to the same memory
8547location.
8548
8549Example:
8550""""""""
8551
8552.. code-block:: llvm
8553
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008554 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8555 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8556 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008557
Sean Silvab084af42012-12-07 10:36:55 +00008558.. _otherops:
8559
8560Other Operations
8561----------------
8562
8563The instructions in this category are the "miscellaneous" instructions,
8564which defy better classification.
8565
8566.. _i_icmp:
8567
8568'``icmp``' Instruction
8569^^^^^^^^^^^^^^^^^^^^^^
8570
8571Syntax:
8572"""""""
8573
8574::
8575
Tim Northover675a0962014-06-13 14:24:23 +00008576 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008577
8578Overview:
8579"""""""""
8580
8581The '``icmp``' instruction returns a boolean value or a vector of
8582boolean values based on comparison of its two integer, integer vector,
8583pointer, or pointer vector operands.
8584
8585Arguments:
8586""""""""""
8587
8588The '``icmp``' instruction takes three operands. The first operand is
8589the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008590not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008591
8592#. ``eq``: equal
8593#. ``ne``: not equal
8594#. ``ugt``: unsigned greater than
8595#. ``uge``: unsigned greater or equal
8596#. ``ult``: unsigned less than
8597#. ``ule``: unsigned less or equal
8598#. ``sgt``: signed greater than
8599#. ``sge``: signed greater or equal
8600#. ``slt``: signed less than
8601#. ``sle``: signed less or equal
8602
8603The remaining two arguments must be :ref:`integer <t_integer>` or
8604:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8605must also be identical types.
8606
8607Semantics:
8608""""""""""
8609
8610The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8611code given as ``cond``. The comparison performed always yields either an
8612:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8613
8614#. ``eq``: yields ``true`` if the operands are equal, ``false``
8615 otherwise. No sign interpretation is necessary or performed.
8616#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8617 otherwise. No sign interpretation is necessary or performed.
8618#. ``ugt``: interprets the operands as unsigned values and yields
8619 ``true`` if ``op1`` is greater than ``op2``.
8620#. ``uge``: interprets the operands as unsigned values and yields
8621 ``true`` if ``op1`` is greater than or equal to ``op2``.
8622#. ``ult``: interprets the operands as unsigned values and yields
8623 ``true`` if ``op1`` is less than ``op2``.
8624#. ``ule``: interprets the operands as unsigned values and yields
8625 ``true`` if ``op1`` is less than or equal to ``op2``.
8626#. ``sgt``: interprets the operands as signed values and yields ``true``
8627 if ``op1`` is greater than ``op2``.
8628#. ``sge``: interprets the operands as signed values and yields ``true``
8629 if ``op1`` is greater than or equal to ``op2``.
8630#. ``slt``: interprets the operands as signed values and yields ``true``
8631 if ``op1`` is less than ``op2``.
8632#. ``sle``: interprets the operands as signed values and yields ``true``
8633 if ``op1`` is less than or equal to ``op2``.
8634
8635If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8636are compared as if they were integers.
8637
8638If the operands are integer vectors, then they are compared element by
8639element. The result is an ``i1`` vector with the same number of elements
8640as the values being compared. Otherwise, the result is an ``i1``.
8641
8642Example:
8643""""""""
8644
Renato Golin124f2592016-07-20 12:16:38 +00008645.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008646
8647 <result> = icmp eq i32 4, 5 ; yields: result=false
8648 <result> = icmp ne float* %X, %X ; yields: result=false
8649 <result> = icmp ult i16 4, 5 ; yields: result=true
8650 <result> = icmp sgt i16 4, 5 ; yields: result=false
8651 <result> = icmp ule i16 -4, 5 ; yields: result=false
8652 <result> = icmp sge i16 4, 5 ; yields: result=false
8653
Sean Silvab084af42012-12-07 10:36:55 +00008654.. _i_fcmp:
8655
8656'``fcmp``' Instruction
8657^^^^^^^^^^^^^^^^^^^^^^
8658
8659Syntax:
8660"""""""
8661
8662::
8663
James Molloy88eb5352015-07-10 12:52:00 +00008664 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008665
8666Overview:
8667"""""""""
8668
8669The '``fcmp``' instruction returns a boolean value or vector of boolean
8670values based on comparison of its operands.
8671
8672If the operands are floating point scalars, then the result type is a
8673boolean (:ref:`i1 <t_integer>`).
8674
8675If the operands are floating point vectors, then the result type is a
8676vector of boolean with the same number of elements as the operands being
8677compared.
8678
8679Arguments:
8680""""""""""
8681
8682The '``fcmp``' instruction takes three operands. The first operand is
8683the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008684not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008685
8686#. ``false``: no comparison, always returns false
8687#. ``oeq``: ordered and equal
8688#. ``ogt``: ordered and greater than
8689#. ``oge``: ordered and greater than or equal
8690#. ``olt``: ordered and less than
8691#. ``ole``: ordered and less than or equal
8692#. ``one``: ordered and not equal
8693#. ``ord``: ordered (no nans)
8694#. ``ueq``: unordered or equal
8695#. ``ugt``: unordered or greater than
8696#. ``uge``: unordered or greater than or equal
8697#. ``ult``: unordered or less than
8698#. ``ule``: unordered or less than or equal
8699#. ``une``: unordered or not equal
8700#. ``uno``: unordered (either nans)
8701#. ``true``: no comparison, always returns true
8702
8703*Ordered* means that neither operand is a QNAN while *unordered* means
8704that either operand may be a QNAN.
8705
8706Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8707point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8708type. They must have identical types.
8709
8710Semantics:
8711""""""""""
8712
8713The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8714condition code given as ``cond``. If the operands are vectors, then the
8715vectors are compared element by element. Each comparison performed
8716always yields an :ref:`i1 <t_integer>` result, as follows:
8717
8718#. ``false``: always yields ``false``, regardless of operands.
8719#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8720 is equal to ``op2``.
8721#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8722 is greater than ``op2``.
8723#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8724 is greater than or equal to ``op2``.
8725#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8726 is less than ``op2``.
8727#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8728 is less than or equal to ``op2``.
8729#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8730 is not equal to ``op2``.
8731#. ``ord``: yields ``true`` if both operands are not a QNAN.
8732#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8733 equal to ``op2``.
8734#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8735 greater than ``op2``.
8736#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8737 greater than or equal to ``op2``.
8738#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8739 less than ``op2``.
8740#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8741 less than or equal to ``op2``.
8742#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8743 not equal to ``op2``.
8744#. ``uno``: yields ``true`` if either operand is a QNAN.
8745#. ``true``: always yields ``true``, regardless of operands.
8746
James Molloy88eb5352015-07-10 12:52:00 +00008747The ``fcmp`` instruction can also optionally take any number of
8748:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8749otherwise unsafe floating point optimizations.
8750
8751Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8752only flags that have any effect on its semantics are those that allow
8753assumptions to be made about the values of input arguments; namely
8754``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8755
Sean Silvab084af42012-12-07 10:36:55 +00008756Example:
8757""""""""
8758
Renato Golin124f2592016-07-20 12:16:38 +00008759.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008760
8761 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8762 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8763 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8764 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8765
Sean Silvab084af42012-12-07 10:36:55 +00008766.. _i_phi:
8767
8768'``phi``' Instruction
8769^^^^^^^^^^^^^^^^^^^^^
8770
8771Syntax:
8772"""""""
8773
8774::
8775
8776 <result> = phi <ty> [ <val0>, <label0>], ...
8777
8778Overview:
8779"""""""""
8780
8781The '``phi``' instruction is used to implement the φ node in the SSA
8782graph representing the function.
8783
8784Arguments:
8785""""""""""
8786
8787The type of the incoming values is specified with the first type field.
8788After this, the '``phi``' instruction takes a list of pairs as
8789arguments, with one pair for each predecessor basic block of the current
8790block. Only values of :ref:`first class <t_firstclass>` type may be used as
8791the value arguments to the PHI node. Only labels may be used as the
8792label arguments.
8793
8794There must be no non-phi instructions between the start of a basic block
8795and the PHI instructions: i.e. PHI instructions must be first in a basic
8796block.
8797
8798For the purposes of the SSA form, the use of each incoming value is
8799deemed to occur on the edge from the corresponding predecessor block to
8800the current block (but after any definition of an '``invoke``'
8801instruction's return value on the same edge).
8802
8803Semantics:
8804""""""""""
8805
8806At runtime, the '``phi``' instruction logically takes on the value
8807specified by the pair corresponding to the predecessor basic block that
8808executed just prior to the current block.
8809
8810Example:
8811""""""""
8812
8813.. code-block:: llvm
8814
8815 Loop: ; Infinite loop that counts from 0 on up...
8816 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8817 %nextindvar = add i32 %indvar, 1
8818 br label %Loop
8819
8820.. _i_select:
8821
8822'``select``' Instruction
8823^^^^^^^^^^^^^^^^^^^^^^^^
8824
8825Syntax:
8826"""""""
8827
8828::
8829
8830 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8831
8832 selty is either i1 or {<N x i1>}
8833
8834Overview:
8835"""""""""
8836
8837The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008838condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008839
8840Arguments:
8841""""""""""
8842
8843The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8844values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008845class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008846
8847Semantics:
8848""""""""""
8849
8850If the condition is an i1 and it evaluates to 1, the instruction returns
8851the first value argument; otherwise, it returns the second value
8852argument.
8853
8854If the condition is a vector of i1, then the value arguments must be
8855vectors of the same size, and the selection is done element by element.
8856
David Majnemer40a0b592015-03-03 22:45:47 +00008857If the condition is an i1 and the value arguments are vectors of the
8858same size, then an entire vector is selected.
8859
Sean Silvab084af42012-12-07 10:36:55 +00008860Example:
8861""""""""
8862
8863.. code-block:: llvm
8864
8865 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8866
8867.. _i_call:
8868
8869'``call``' Instruction
8870^^^^^^^^^^^^^^^^^^^^^^
8871
8872Syntax:
8873"""""""
8874
8875::
8876
David Blaikieb83cf102016-07-13 17:21:34 +00008877 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008878 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008879
8880Overview:
8881"""""""""
8882
8883The '``call``' instruction represents a simple function call.
8884
8885Arguments:
8886""""""""""
8887
8888This instruction requires several arguments:
8889
Reid Kleckner5772b772014-04-24 20:14:34 +00008890#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008891 should perform tail call optimization. The ``tail`` marker is a hint that
8892 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008893 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008894 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008895
8896 #. The call will not cause unbounded stack growth if it is part of a
8897 recursive cycle in the call graph.
8898 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8899 forwarded in place.
8900
8901 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008902 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008903 rules:
8904
8905 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8906 or a pointer bitcast followed by a ret instruction.
8907 - The ret instruction must return the (possibly bitcasted) value
8908 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008909 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008910 parameters or return types may differ in pointee type, but not
8911 in address space.
8912 - The calling conventions of the caller and callee must match.
8913 - All ABI-impacting function attributes, such as sret, byval, inreg,
8914 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008915 - The callee must be varargs iff the caller is varargs. Bitcasting a
8916 non-varargs function to the appropriate varargs type is legal so
8917 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008918
8919 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8920 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008921
8922 - Caller and callee both have the calling convention ``fastcc``.
8923 - The call is in tail position (ret immediately follows call and ret
8924 uses value of call or is void).
8925 - Option ``-tailcallopt`` is enabled, or
8926 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008927 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008928 met. <CodeGenerator.html#tailcallopt>`_
8929
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008930#. The optional ``notail`` marker indicates that the optimizers should not add
8931 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8932 call optimization from being performed on the call.
8933
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008934#. The optional ``fast-math flags`` marker indicates that the call has one or more
8935 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8936 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8937 for calls that return a floating-point scalar or vector type.
8938
Sean Silvab084af42012-12-07 10:36:55 +00008939#. The optional "cconv" marker indicates which :ref:`calling
8940 convention <callingconv>` the call should use. If none is
8941 specified, the call defaults to using C calling conventions. The
8942 calling convention of the call must match the calling convention of
8943 the target function, or else the behavior is undefined.
8944#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8945 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8946 are valid here.
8947#. '``ty``': the type of the call instruction itself which is also the
8948 type of the return value. Functions that return no value are marked
8949 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00008950#. '``fnty``': shall be the signature of the function being called. The
8951 argument types must match the types implied by this signature. This
8952 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00008953#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00008954 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00008955 indirect ``call``'s are just as possible, calling an arbitrary pointer
8956 to function value.
8957#. '``function args``': argument list whose types match the function
8958 signature argument types and parameter attributes. All arguments must
8959 be of :ref:`first class <t_firstclass>` type. If the function signature
8960 indicates the function accepts a variable number of arguments, the
8961 extra arguments can be specified.
George Burgess IV39c91052017-04-13 04:01:55 +00008962#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008963#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008964
8965Semantics:
8966""""""""""
8967
8968The '``call``' instruction is used to cause control flow to transfer to
8969a specified function, with its incoming arguments bound to the specified
8970values. Upon a '``ret``' instruction in the called function, control
8971flow continues with the instruction after the function call, and the
8972return value of the function is bound to the result argument.
8973
8974Example:
8975""""""""
8976
8977.. code-block:: llvm
8978
8979 %retval = call i32 @test(i32 %argc)
8980 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8981 %X = tail call i32 @foo() ; yields i32
8982 %Y = tail call fastcc i32 @foo() ; yields i32
8983 call void %foo(i8 97 signext)
8984
8985 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008986 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008987 %gr = extractvalue %struct.A %r, 0 ; yields i32
8988 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8989 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8990 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8991
8992llvm treats calls to some functions with names and arguments that match
8993the standard C99 library as being the C99 library functions, and may
8994perform optimizations or generate code for them under that assumption.
8995This is something we'd like to change in the future to provide better
8996support for freestanding environments and non-C-based languages.
8997
8998.. _i_va_arg:
8999
9000'``va_arg``' Instruction
9001^^^^^^^^^^^^^^^^^^^^^^^^
9002
9003Syntax:
9004"""""""
9005
9006::
9007
9008 <resultval> = va_arg <va_list*> <arglist>, <argty>
9009
9010Overview:
9011"""""""""
9012
9013The '``va_arg``' instruction is used to access arguments passed through
9014the "variable argument" area of a function call. It is used to implement
9015the ``va_arg`` macro in C.
9016
9017Arguments:
9018""""""""""
9019
9020This instruction takes a ``va_list*`` value and the type of the
9021argument. It returns a value of the specified argument type and
9022increments the ``va_list`` to point to the next argument. The actual
9023type of ``va_list`` is target specific.
9024
9025Semantics:
9026""""""""""
9027
9028The '``va_arg``' instruction loads an argument of the specified type
9029from the specified ``va_list`` and causes the ``va_list`` to point to
9030the next argument. For more information, see the variable argument
9031handling :ref:`Intrinsic Functions <int_varargs>`.
9032
9033It is legal for this instruction to be called in a function which does
9034not take a variable number of arguments, for example, the ``vfprintf``
9035function.
9036
9037``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
9038function <intrinsics>` because it takes a type as an argument.
9039
9040Example:
9041""""""""
9042
9043See the :ref:`variable argument processing <int_varargs>` section.
9044
9045Note that the code generator does not yet fully support va\_arg on many
9046targets. Also, it does not currently support va\_arg with aggregate
9047types on any target.
9048
9049.. _i_landingpad:
9050
9051'``landingpad``' Instruction
9052^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9053
9054Syntax:
9055"""""""
9056
9057::
9058
David Majnemer7fddecc2015-06-17 20:52:32 +00009059 <resultval> = landingpad <resultty> <clause>+
9060 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00009061
9062 <clause> := catch <type> <value>
9063 <clause> := filter <array constant type> <array constant>
9064
9065Overview:
9066"""""""""
9067
9068The '``landingpad``' instruction is used by `LLVM's exception handling
9069system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009070is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00009071code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00009072defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00009073re-entry to the function. The ``resultval`` has the type ``resultty``.
9074
9075Arguments:
9076""""""""""
9077
David Majnemer7fddecc2015-06-17 20:52:32 +00009078The optional
Sean Silvab084af42012-12-07 10:36:55 +00009079``cleanup`` flag indicates that the landing pad block is a cleanup.
9080
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009081A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00009082contains the global variable representing the "type" that may be caught
9083or filtered respectively. Unlike the ``catch`` clause, the ``filter``
9084clause takes an array constant as its argument. Use
9085"``[0 x i8**] undef``" for a filter which cannot throw. The
9086'``landingpad``' instruction must contain *at least* one ``clause`` or
9087the ``cleanup`` flag.
9088
9089Semantics:
9090""""""""""
9091
9092The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00009093:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00009094therefore the "result type" of the ``landingpad`` instruction. As with
9095calling conventions, how the personality function results are
9096represented in LLVM IR is target specific.
9097
9098The clauses are applied in order from top to bottom. If two
9099``landingpad`` instructions are merged together through inlining, the
9100clauses from the calling function are appended to the list of clauses.
9101When the call stack is being unwound due to an exception being thrown,
9102the exception is compared against each ``clause`` in turn. If it doesn't
9103match any of the clauses, and the ``cleanup`` flag is not set, then
9104unwinding continues further up the call stack.
9105
9106The ``landingpad`` instruction has several restrictions:
9107
9108- A landing pad block is a basic block which is the unwind destination
9109 of an '``invoke``' instruction.
9110- A landing pad block must have a '``landingpad``' instruction as its
9111 first non-PHI instruction.
9112- There can be only one '``landingpad``' instruction within the landing
9113 pad block.
9114- A basic block that is not a landing pad block may not include a
9115 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009116
9117Example:
9118""""""""
9119
9120.. code-block:: llvm
9121
9122 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00009123 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009124 catch i8** @_ZTIi
9125 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00009126 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009127 cleanup
9128 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00009129 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009130 catch i8** @_ZTIi
9131 filter [1 x i8**] [@_ZTId]
9132
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009133.. _i_catchpad:
9134
9135'``catchpad``' Instruction
9136^^^^^^^^^^^^^^^^^^^^^^^^^^
9137
9138Syntax:
9139"""""""
9140
9141::
9142
9143 <resultval> = catchpad within <catchswitch> [<args>*]
9144
9145Overview:
9146"""""""""
9147
9148The '``catchpad``' instruction is used by `LLVM's exception handling
9149system <ExceptionHandling.html#overview>`_ to specify that a basic block
9150begins a catch handler --- one where a personality routine attempts to transfer
9151control to catch an exception.
9152
9153Arguments:
9154""""""""""
9155
9156The ``catchswitch`` operand must always be a token produced by a
9157:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
9158ensures that each ``catchpad`` has exactly one predecessor block, and it always
9159terminates in a ``catchswitch``.
9160
9161The ``args`` correspond to whatever information the personality routine
9162requires to know if this is an appropriate handler for the exception. Control
9163will transfer to the ``catchpad`` if this is the first appropriate handler for
9164the exception.
9165
9166The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
9167``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
9168pads.
9169
9170Semantics:
9171""""""""""
9172
9173When the call stack is being unwound due to an exception being thrown, the
9174exception is compared against the ``args``. If it doesn't match, control will
9175not reach the ``catchpad`` instruction. The representation of ``args`` is
9176entirely target and personality function-specific.
9177
9178Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
9179instruction must be the first non-phi of its parent basic block.
9180
9181The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
9182instructions is described in the
9183`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
9184
9185When a ``catchpad`` has been "entered" but not yet "exited" (as
9186described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9187it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9188that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
9189
9190Example:
9191""""""""
9192
Renato Golin124f2592016-07-20 12:16:38 +00009193.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009194
9195 dispatch:
9196 %cs = catchswitch within none [label %handler0] unwind to caller
9197 ;; A catch block which can catch an integer.
9198 handler0:
9199 %tok = catchpad within %cs [i8** @_ZTIi]
9200
David Majnemer654e1302015-07-31 17:58:14 +00009201.. _i_cleanuppad:
9202
9203'``cleanuppad``' Instruction
9204^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9205
9206Syntax:
9207"""""""
9208
9209::
9210
David Majnemer8a1c45d2015-12-12 05:38:55 +00009211 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00009212
9213Overview:
9214"""""""""
9215
9216The '``cleanuppad``' instruction is used by `LLVM's exception handling
9217system <ExceptionHandling.html#overview>`_ to specify that a basic block
9218is a cleanup block --- one where a personality routine attempts to
9219transfer control to run cleanup actions.
9220The ``args`` correspond to whatever additional
9221information the :ref:`personality function <personalityfn>` requires to
9222execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00009223The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00009224match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
9225The ``parent`` argument is the token of the funclet that contains the
9226``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
9227this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00009228
9229Arguments:
9230""""""""""
9231
9232The instruction takes a list of arbitrary values which are interpreted
9233by the :ref:`personality function <personalityfn>`.
9234
9235Semantics:
9236""""""""""
9237
David Majnemer654e1302015-07-31 17:58:14 +00009238When the call stack is being unwound due to an exception being thrown,
9239the :ref:`personality function <personalityfn>` transfers control to the
9240``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00009241As with calling conventions, how the personality function results are
9242represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00009243
9244The ``cleanuppad`` instruction has several restrictions:
9245
9246- A cleanup block is a basic block which is the unwind destination of
9247 an exceptional instruction.
9248- A cleanup block must have a '``cleanuppad``' instruction as its
9249 first non-PHI instruction.
9250- There can be only one '``cleanuppad``' instruction within the
9251 cleanup block.
9252- A basic block that is not a cleanup block may not include a
9253 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009254
Joseph Tremoulete28885e2016-01-10 04:28:38 +00009255When a ``cleanuppad`` has been "entered" but not yet "exited" (as
9256described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9257it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9258that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009259
David Majnemer654e1302015-07-31 17:58:14 +00009260Example:
9261""""""""
9262
Renato Golin124f2592016-07-20 12:16:38 +00009263.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00009264
David Majnemer8a1c45d2015-12-12 05:38:55 +00009265 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00009266
Sean Silvab084af42012-12-07 10:36:55 +00009267.. _intrinsics:
9268
9269Intrinsic Functions
9270===================
9271
9272LLVM supports the notion of an "intrinsic function". These functions
9273have well known names and semantics and are required to follow certain
9274restrictions. Overall, these intrinsics represent an extension mechanism
9275for the LLVM language that does not require changing all of the
9276transformations in LLVM when adding to the language (or the bitcode
9277reader/writer, the parser, etc...).
9278
9279Intrinsic function names must all start with an "``llvm.``" prefix. This
9280prefix is reserved in LLVM for intrinsic names; thus, function names may
9281not begin with this prefix. Intrinsic functions must always be external
9282functions: you cannot define the body of intrinsic functions. Intrinsic
9283functions may only be used in call or invoke instructions: it is illegal
9284to take the address of an intrinsic function. Additionally, because
9285intrinsic functions are part of the LLVM language, it is required if any
9286are added that they be documented here.
9287
9288Some intrinsic functions can be overloaded, i.e., the intrinsic
9289represents a family of functions that perform the same operation but on
9290different data types. Because LLVM can represent over 8 million
9291different integer types, overloading is used commonly to allow an
9292intrinsic function to operate on any integer type. One or more of the
9293argument types or the result type can be overloaded to accept any
9294integer type. Argument types may also be defined as exactly matching a
9295previous argument's type or the result type. This allows an intrinsic
9296function which accepts multiple arguments, but needs all of them to be
9297of the same type, to only be overloaded with respect to a single
9298argument or the result.
9299
9300Overloaded intrinsics will have the names of its overloaded argument
9301types encoded into its function name, each preceded by a period. Only
9302those types which are overloaded result in a name suffix. Arguments
9303whose type is matched against another type do not. For example, the
9304``llvm.ctpop`` function can take an integer of any width and returns an
9305integer of exactly the same integer width. This leads to a family of
9306functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
9307``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
9308overloaded, and only one type suffix is required. Because the argument's
9309type is matched against the return type, it does not require its own
9310name suffix.
9311
9312To learn how to add an intrinsic function, please see the `Extending
9313LLVM Guide <ExtendingLLVM.html>`_.
9314
9315.. _int_varargs:
9316
9317Variable Argument Handling Intrinsics
9318-------------------------------------
9319
9320Variable argument support is defined in LLVM with the
9321:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9322functions. These functions are related to the similarly named macros
9323defined in the ``<stdarg.h>`` header file.
9324
9325All of these functions operate on arguments that use a target-specific
9326value type "``va_list``". The LLVM assembly language reference manual
9327does not define what this type is, so all transformations should be
9328prepared to handle these functions regardless of the type used.
9329
9330This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9331variable argument handling intrinsic functions are used.
9332
9333.. code-block:: llvm
9334
Tim Northoverab60bb92014-11-02 01:21:51 +00009335 ; This struct is different for every platform. For most platforms,
9336 ; it is merely an i8*.
9337 %struct.va_list = type { i8* }
9338
9339 ; For Unix x86_64 platforms, va_list is the following struct:
9340 ; %struct.va_list = type { i32, i32, i8*, i8* }
9341
Sean Silvab084af42012-12-07 10:36:55 +00009342 define i32 @test(i32 %X, ...) {
9343 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009344 %ap = alloca %struct.va_list
9345 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009346 call void @llvm.va_start(i8* %ap2)
9347
9348 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009349 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009350
9351 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9352 %aq = alloca i8*
9353 %aq2 = bitcast i8** %aq to i8*
9354 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9355 call void @llvm.va_end(i8* %aq2)
9356
9357 ; Stop processing of arguments.
9358 call void @llvm.va_end(i8* %ap2)
9359 ret i32 %tmp
9360 }
9361
9362 declare void @llvm.va_start(i8*)
9363 declare void @llvm.va_copy(i8*, i8*)
9364 declare void @llvm.va_end(i8*)
9365
9366.. _int_va_start:
9367
9368'``llvm.va_start``' Intrinsic
9369^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9370
9371Syntax:
9372"""""""
9373
9374::
9375
Nick Lewycky04f6de02013-09-11 22:04:52 +00009376 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009377
9378Overview:
9379"""""""""
9380
9381The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9382subsequent use by ``va_arg``.
9383
9384Arguments:
9385""""""""""
9386
9387The argument is a pointer to a ``va_list`` element to initialize.
9388
9389Semantics:
9390""""""""""
9391
9392The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9393available in C. In a target-dependent way, it initializes the
9394``va_list`` element to which the argument points, so that the next call
9395to ``va_arg`` will produce the first variable argument passed to the
9396function. Unlike the C ``va_start`` macro, this intrinsic does not need
9397to know the last argument of the function as the compiler can figure
9398that out.
9399
9400'``llvm.va_end``' Intrinsic
9401^^^^^^^^^^^^^^^^^^^^^^^^^^^
9402
9403Syntax:
9404"""""""
9405
9406::
9407
9408 declare void @llvm.va_end(i8* <arglist>)
9409
9410Overview:
9411"""""""""
9412
9413The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9414initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9415
9416Arguments:
9417""""""""""
9418
9419The argument is a pointer to a ``va_list`` to destroy.
9420
9421Semantics:
9422""""""""""
9423
9424The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9425available in C. In a target-dependent way, it destroys the ``va_list``
9426element to which the argument points. Calls to
9427:ref:`llvm.va_start <int_va_start>` and
9428:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9429``llvm.va_end``.
9430
9431.. _int_va_copy:
9432
9433'``llvm.va_copy``' Intrinsic
9434^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9435
9436Syntax:
9437"""""""
9438
9439::
9440
9441 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9442
9443Overview:
9444"""""""""
9445
9446The '``llvm.va_copy``' intrinsic copies the current argument position
9447from the source argument list to the destination argument list.
9448
9449Arguments:
9450""""""""""
9451
9452The first argument is a pointer to a ``va_list`` element to initialize.
9453The second argument is a pointer to a ``va_list`` element to copy from.
9454
9455Semantics:
9456""""""""""
9457
9458The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9459available in C. In a target-dependent way, it copies the source
9460``va_list`` element into the destination ``va_list`` element. This
9461intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9462arbitrarily complex and require, for example, memory allocation.
9463
9464Accurate Garbage Collection Intrinsics
9465--------------------------------------
9466
Philip Reamesc5b0f562015-02-25 23:52:06 +00009467LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009468(GC) requires the frontend to generate code containing appropriate intrinsic
9469calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009470intrinsics in a manner which is appropriate for the target collector.
9471
Sean Silvab084af42012-12-07 10:36:55 +00009472These intrinsics allow identification of :ref:`GC roots on the
9473stack <int_gcroot>`, as well as garbage collector implementations that
9474require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009475Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009476these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009477details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009478
Philip Reamesf80bbff2015-02-25 23:45:20 +00009479Experimental Statepoint Intrinsics
9480^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9481
9482LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009483collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009484to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009485:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009486differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009487<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009488described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009489
9490.. _int_gcroot:
9491
9492'``llvm.gcroot``' Intrinsic
9493^^^^^^^^^^^^^^^^^^^^^^^^^^^
9494
9495Syntax:
9496"""""""
9497
9498::
9499
9500 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9501
9502Overview:
9503"""""""""
9504
9505The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9506the code generator, and allows some metadata to be associated with it.
9507
9508Arguments:
9509""""""""""
9510
9511The first argument specifies the address of a stack object that contains
9512the root pointer. The second pointer (which must be either a constant or
9513a global value address) contains the meta-data to be associated with the
9514root.
9515
9516Semantics:
9517""""""""""
9518
9519At runtime, a call to this intrinsic stores a null pointer into the
9520"ptrloc" location. At compile-time, the code generator generates
9521information to allow the runtime to find the pointer at GC safe points.
9522The '``llvm.gcroot``' intrinsic may only be used in a function which
9523:ref:`specifies a GC algorithm <gc>`.
9524
9525.. _int_gcread:
9526
9527'``llvm.gcread``' Intrinsic
9528^^^^^^^^^^^^^^^^^^^^^^^^^^^
9529
9530Syntax:
9531"""""""
9532
9533::
9534
9535 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9536
9537Overview:
9538"""""""""
9539
9540The '``llvm.gcread``' intrinsic identifies reads of references from heap
9541locations, allowing garbage collector implementations that require read
9542barriers.
9543
9544Arguments:
9545""""""""""
9546
9547The second argument is the address to read from, which should be an
9548address allocated from the garbage collector. The first object is a
9549pointer to the start of the referenced object, if needed by the language
9550runtime (otherwise null).
9551
9552Semantics:
9553""""""""""
9554
9555The '``llvm.gcread``' intrinsic has the same semantics as a load
9556instruction, but may be replaced with substantially more complex code by
9557the garbage collector runtime, as needed. The '``llvm.gcread``'
9558intrinsic may only be used in a function which :ref:`specifies a GC
9559algorithm <gc>`.
9560
9561.. _int_gcwrite:
9562
9563'``llvm.gcwrite``' Intrinsic
9564^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9565
9566Syntax:
9567"""""""
9568
9569::
9570
9571 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9572
9573Overview:
9574"""""""""
9575
9576The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9577locations, allowing garbage collector implementations that require write
9578barriers (such as generational or reference counting collectors).
9579
9580Arguments:
9581""""""""""
9582
9583The first argument is the reference to store, the second is the start of
9584the object to store it to, and the third is the address of the field of
9585Obj to store to. If the runtime does not require a pointer to the
9586object, Obj may be null.
9587
9588Semantics:
9589""""""""""
9590
9591The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9592instruction, but may be replaced with substantially more complex code by
9593the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9594intrinsic may only be used in a function which :ref:`specifies a GC
9595algorithm <gc>`.
9596
9597Code Generator Intrinsics
9598-------------------------
9599
9600These intrinsics are provided by LLVM to expose special features that
9601may only be implemented with code generator support.
9602
9603'``llvm.returnaddress``' Intrinsic
9604^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9605
9606Syntax:
9607"""""""
9608
9609::
9610
George Burgess IVfbc34982017-05-20 04:52:29 +00009611 declare i8* @llvm.returnaddress(i32 <level>)
Sean Silvab084af42012-12-07 10:36:55 +00009612
9613Overview:
9614"""""""""
9615
9616The '``llvm.returnaddress``' intrinsic attempts to compute a
9617target-specific value indicating the return address of the current
9618function or one of its callers.
9619
9620Arguments:
9621""""""""""
9622
9623The argument to this intrinsic indicates which function to return the
9624address for. Zero indicates the calling function, one indicates its
9625caller, etc. The argument is **required** to be a constant integer
9626value.
9627
9628Semantics:
9629""""""""""
9630
9631The '``llvm.returnaddress``' intrinsic either returns a pointer
9632indicating the return address of the specified call frame, or zero if it
9633cannot be identified. The value returned by this intrinsic is likely to
9634be incorrect or 0 for arguments other than zero, so it should only be
9635used for debugging purposes.
9636
9637Note that calling this intrinsic does not prevent function inlining or
9638other aggressive transformations, so the value returned may not be that
9639of the obvious source-language caller.
9640
Albert Gutowski795d7d62016-10-12 22:13:19 +00009641'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +00009642^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +00009643
9644Syntax:
9645"""""""
9646
9647::
9648
George Burgess IVfbc34982017-05-20 04:52:29 +00009649 declare i8* @llvm.addressofreturnaddress()
Albert Gutowski795d7d62016-10-12 22:13:19 +00009650
9651Overview:
9652"""""""""
9653
9654The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
9655pointer to the place in the stack frame where the return address of the
9656current function is stored.
9657
9658Semantics:
9659""""""""""
9660
9661Note that calling this intrinsic does not prevent function inlining or
9662other aggressive transformations, so the value returned may not be that
9663of the obvious source-language caller.
9664
9665This intrinsic is only implemented for x86.
9666
Sean Silvab084af42012-12-07 10:36:55 +00009667'``llvm.frameaddress``' Intrinsic
9668^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9669
9670Syntax:
9671"""""""
9672
9673::
9674
9675 declare i8* @llvm.frameaddress(i32 <level>)
9676
9677Overview:
9678"""""""""
9679
9680The '``llvm.frameaddress``' intrinsic attempts to return the
9681target-specific frame pointer value for the specified stack frame.
9682
9683Arguments:
9684""""""""""
9685
9686The argument to this intrinsic indicates which function to return the
9687frame pointer for. Zero indicates the calling function, one indicates
9688its caller, etc. The argument is **required** to be a constant integer
9689value.
9690
9691Semantics:
9692""""""""""
9693
9694The '``llvm.frameaddress``' intrinsic either returns a pointer
9695indicating the frame address of the specified call frame, or zero if it
9696cannot be identified. The value returned by this intrinsic is likely to
9697be incorrect or 0 for arguments other than zero, so it should only be
9698used for debugging purposes.
9699
9700Note that calling this intrinsic does not prevent function inlining or
9701other aggressive transformations, so the value returned may not be that
9702of the obvious source-language caller.
9703
Reid Kleckner60381792015-07-07 22:25:32 +00009704'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009705^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9706
9707Syntax:
9708"""""""
9709
9710::
9711
Reid Kleckner60381792015-07-07 22:25:32 +00009712 declare void @llvm.localescape(...)
9713 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009714
9715Overview:
9716"""""""""
9717
Reid Kleckner60381792015-07-07 22:25:32 +00009718The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9719allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009720live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009721computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009722
9723Arguments:
9724""""""""""
9725
Reid Kleckner60381792015-07-07 22:25:32 +00009726All arguments to '``llvm.localescape``' must be pointers to static allocas or
9727casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009728once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009729
Reid Kleckner60381792015-07-07 22:25:32 +00009730The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009731bitcasted pointer to a function defined in the current module. The code
9732generator cannot determine the frame allocation offset of functions defined in
9733other modules.
9734
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009735The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9736call frame that is currently live. The return value of '``llvm.localaddress``'
9737is one way to produce such a value, but various runtimes also expose a suitable
9738pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009739
Reid Kleckner60381792015-07-07 22:25:32 +00009740The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9741'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009742
Reid Klecknere9b89312015-01-13 00:48:10 +00009743Semantics:
9744""""""""""
9745
Reid Kleckner60381792015-07-07 22:25:32 +00009746These intrinsics allow a group of functions to share access to a set of local
9747stack allocations of a one parent function. The parent function may call the
9748'``llvm.localescape``' intrinsic once from the function entry block, and the
9749child functions can use '``llvm.localrecover``' to access the escaped allocas.
9750The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9751the escaped allocas are allocated, which would break attempts to use
9752'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009753
Renato Golinc7aea402014-05-06 16:51:25 +00009754.. _int_read_register:
9755.. _int_write_register:
9756
9757'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9758^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9759
9760Syntax:
9761"""""""
9762
9763::
9764
9765 declare i32 @llvm.read_register.i32(metadata)
9766 declare i64 @llvm.read_register.i64(metadata)
9767 declare void @llvm.write_register.i32(metadata, i32 @value)
9768 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009769 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009770
9771Overview:
9772"""""""""
9773
9774The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9775provides access to the named register. The register must be valid on
9776the architecture being compiled to. The type needs to be compatible
9777with the register being read.
9778
9779Semantics:
9780""""""""""
9781
9782The '``llvm.read_register``' intrinsic returns the current value of the
9783register, where possible. The '``llvm.write_register``' intrinsic sets
9784the current value of the register, where possible.
9785
9786This is useful to implement named register global variables that need
9787to always be mapped to a specific register, as is common practice on
9788bare-metal programs including OS kernels.
9789
9790The compiler doesn't check for register availability or use of the used
9791register in surrounding code, including inline assembly. Because of that,
9792allocatable registers are not supported.
9793
9794Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009795architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009796work is needed to support other registers and even more so, allocatable
9797registers.
9798
Sean Silvab084af42012-12-07 10:36:55 +00009799.. _int_stacksave:
9800
9801'``llvm.stacksave``' Intrinsic
9802^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9803
9804Syntax:
9805"""""""
9806
9807::
9808
9809 declare i8* @llvm.stacksave()
9810
9811Overview:
9812"""""""""
9813
9814The '``llvm.stacksave``' intrinsic is used to remember the current state
9815of the function stack, for use with
9816:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9817implementing language features like scoped automatic variable sized
9818arrays in C99.
9819
9820Semantics:
9821""""""""""
9822
9823This intrinsic returns a opaque pointer value that can be passed to
9824:ref:`llvm.stackrestore <int_stackrestore>`. When an
9825``llvm.stackrestore`` intrinsic is executed with a value saved from
9826``llvm.stacksave``, it effectively restores the state of the stack to
9827the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9828practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9829were allocated after the ``llvm.stacksave`` was executed.
9830
9831.. _int_stackrestore:
9832
9833'``llvm.stackrestore``' Intrinsic
9834^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9835
9836Syntax:
9837"""""""
9838
9839::
9840
9841 declare void @llvm.stackrestore(i8* %ptr)
9842
9843Overview:
9844"""""""""
9845
9846The '``llvm.stackrestore``' intrinsic is used to restore the state of
9847the function stack to the state it was in when the corresponding
9848:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9849useful for implementing language features like scoped automatic variable
9850sized arrays in C99.
9851
9852Semantics:
9853""""""""""
9854
9855See the description for :ref:`llvm.stacksave <int_stacksave>`.
9856
Yury Gribovd7dbb662015-12-01 11:40:55 +00009857.. _int_get_dynamic_area_offset:
9858
9859'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009860^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009861
9862Syntax:
9863"""""""
9864
9865::
9866
9867 declare i32 @llvm.get.dynamic.area.offset.i32()
9868 declare i64 @llvm.get.dynamic.area.offset.i64()
9869
Lang Hames10239932016-10-08 00:20:42 +00009870Overview:
9871"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +00009872
9873 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9874 get the offset from native stack pointer to the address of the most
9875 recent dynamic alloca on the caller's stack. These intrinsics are
9876 intendend for use in combination with
9877 :ref:`llvm.stacksave <int_stacksave>` to get a
9878 pointer to the most recent dynamic alloca. This is useful, for example,
9879 for AddressSanitizer's stack unpoisoning routines.
9880
9881Semantics:
9882""""""""""
9883
9884 These intrinsics return a non-negative integer value that can be used to
9885 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9886 on the caller's stack. In particular, for targets where stack grows downwards,
9887 adding this offset to the native stack pointer would get the address of the most
9888 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +00009889 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +00009890 one past the end of the most recent dynamic alloca.
9891
9892 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9893 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9894 compile-time-known constant value.
9895
9896 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
Matt Arsenaultc749bdc2017-03-30 23:36:47 +00009897 must match the target's default address space's (address space 0) pointer type.
Yury Gribovd7dbb662015-12-01 11:40:55 +00009898
Sean Silvab084af42012-12-07 10:36:55 +00009899'``llvm.prefetch``' Intrinsic
9900^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9901
9902Syntax:
9903"""""""
9904
9905::
9906
9907 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9908
9909Overview:
9910"""""""""
9911
9912The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9913insert a prefetch instruction if supported; otherwise, it is a noop.
9914Prefetches have no effect on the behavior of the program but can change
9915its performance characteristics.
9916
9917Arguments:
9918""""""""""
9919
9920``address`` is the address to be prefetched, ``rw`` is the specifier
9921determining if the fetch should be for a read (0) or write (1), and
9922``locality`` is a temporal locality specifier ranging from (0) - no
9923locality, to (3) - extremely local keep in cache. The ``cache type``
9924specifies whether the prefetch is performed on the data (1) or
9925instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9926arguments must be constant integers.
9927
9928Semantics:
9929""""""""""
9930
9931This intrinsic does not modify the behavior of the program. In
9932particular, prefetches cannot trap and do not produce a value. On
9933targets that support this intrinsic, the prefetch can provide hints to
9934the processor cache for better performance.
9935
9936'``llvm.pcmarker``' Intrinsic
9937^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9938
9939Syntax:
9940"""""""
9941
9942::
9943
9944 declare void @llvm.pcmarker(i32 <id>)
9945
9946Overview:
9947"""""""""
9948
9949The '``llvm.pcmarker``' intrinsic is a method to export a Program
9950Counter (PC) in a region of code to simulators and other tools. The
9951method is target specific, but it is expected that the marker will use
9952exported symbols to transmit the PC of the marker. The marker makes no
9953guarantees that it will remain with any specific instruction after
9954optimizations. It is possible that the presence of a marker will inhibit
9955optimizations. The intended use is to be inserted after optimizations to
9956allow correlations of simulation runs.
9957
9958Arguments:
9959""""""""""
9960
9961``id`` is a numerical id identifying the marker.
9962
9963Semantics:
9964""""""""""
9965
9966This intrinsic does not modify the behavior of the program. Backends
9967that do not support this intrinsic may ignore it.
9968
9969'``llvm.readcyclecounter``' Intrinsic
9970^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9971
9972Syntax:
9973"""""""
9974
9975::
9976
9977 declare i64 @llvm.readcyclecounter()
9978
9979Overview:
9980"""""""""
9981
9982The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9983counter register (or similar low latency, high accuracy clocks) on those
9984targets that support it. On X86, it should map to RDTSC. On Alpha, it
9985should map to RPCC. As the backing counters overflow quickly (on the
9986order of 9 seconds on alpha), this should only be used for small
9987timings.
9988
9989Semantics:
9990""""""""""
9991
9992When directly supported, reading the cycle counter should not modify any
9993memory. Implementations are allowed to either return a application
9994specific value or a system wide value. On backends without support, this
9995is lowered to a constant 0.
9996
Tim Northoverbc933082013-05-23 19:11:20 +00009997Note that runtime support may be conditional on the privilege-level code is
9998running at and the host platform.
9999
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010000'``llvm.clear_cache``' Intrinsic
10001^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10002
10003Syntax:
10004"""""""
10005
10006::
10007
10008 declare void @llvm.clear_cache(i8*, i8*)
10009
10010Overview:
10011"""""""""
10012
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010013The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
10014in the specified range to the execution unit of the processor. On
10015targets with non-unified instruction and data cache, the implementation
10016flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010017
10018Semantics:
10019""""""""""
10020
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010021On platforms with coherent instruction and data caches (e.g. x86), this
10022intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +000010023cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010024instructions or a system call, if cache flushing requires special
10025privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010026
Sean Silvad02bf3e2014-04-07 22:29:53 +000010027The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010028time library.
Renato Golin93010e62014-03-26 14:01:32 +000010029
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010030This instrinsic does *not* empty the instruction pipeline. Modifications
10031of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010032
Justin Bogner61ba2e32014-12-08 18:02:35 +000010033'``llvm.instrprof_increment``' Intrinsic
10034^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10035
10036Syntax:
10037"""""""
10038
10039::
10040
10041 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
10042 i32 <num-counters>, i32 <index>)
10043
10044Overview:
10045"""""""""
10046
10047The '``llvm.instrprof_increment``' intrinsic can be emitted by a
10048frontend for use with instrumentation based profiling. These will be
10049lowered by the ``-instrprof`` pass to generate execution counts of a
10050program at runtime.
10051
10052Arguments:
10053""""""""""
10054
10055The first argument is a pointer to a global variable containing the
10056name of the entity being instrumented. This should generally be the
10057(mangled) function name for a set of counters.
10058
10059The second argument is a hash value that can be used by the consumer
10060of the profile data to detect changes to the instrumented source, and
10061the third is the number of counters associated with ``name``. It is an
10062error if ``hash`` or ``num-counters`` differ between two instances of
10063``instrprof_increment`` that refer to the same name.
10064
10065The last argument refers to which of the counters for ``name`` should
10066be incremented. It should be a value between 0 and ``num-counters``.
10067
10068Semantics:
10069""""""""""
10070
10071This intrinsic represents an increment of a profiling counter. It will
10072cause the ``-instrprof`` pass to generate the appropriate data
10073structures and the code to increment the appropriate value, in a
10074format that can be written out by a compiler runtime and consumed via
10075the ``llvm-profdata`` tool.
10076
Xinliang David Li4ca17332016-09-18 18:34:07 +000010077'``llvm.instrprof_increment_step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +000010078^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +000010079
10080Syntax:
10081"""""""
10082
10083::
10084
10085 declare void @llvm.instrprof_increment_step(i8* <name>, i64 <hash>,
10086 i32 <num-counters>,
10087 i32 <index>, i64 <step>)
10088
10089Overview:
10090"""""""""
10091
10092The '``llvm.instrprof_increment_step``' intrinsic is an extension to
10093the '``llvm.instrprof_increment``' intrinsic with an additional fifth
10094argument to specify the step of the increment.
10095
10096Arguments:
10097""""""""""
10098The first four arguments are the same as '``llvm.instrprof_increment``'
10099instrinsic.
10100
10101The last argument specifies the value of the increment of the counter variable.
10102
10103Semantics:
10104""""""""""
10105See description of '``llvm.instrprof_increment``' instrinsic.
10106
10107
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010108'``llvm.instrprof_value_profile``' Intrinsic
10109^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10110
10111Syntax:
10112"""""""
10113
10114::
10115
10116 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
10117 i64 <value>, i32 <value_kind>,
10118 i32 <index>)
10119
10120Overview:
10121"""""""""
10122
10123The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
10124frontend for use with instrumentation based profiling. This will be
10125lowered by the ``-instrprof`` pass to find out the target values,
10126instrumented expressions take in a program at runtime.
10127
10128Arguments:
10129""""""""""
10130
10131The first argument is a pointer to a global variable containing the
10132name of the entity being instrumented. ``name`` should generally be the
10133(mangled) function name for a set of counters.
10134
10135The second argument is a hash value that can be used by the consumer
10136of the profile data to detect changes to the instrumented source. It
10137is an error if ``hash`` differs between two instances of
10138``llvm.instrprof_*`` that refer to the same name.
10139
10140The third argument is the value of the expression being profiled. The profiled
10141expression's value should be representable as an unsigned 64-bit value. The
10142fourth argument represents the kind of value profiling that is being done. The
10143supported value profiling kinds are enumerated through the
10144``InstrProfValueKind`` type declared in the
10145``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
10146index of the instrumented expression within ``name``. It should be >= 0.
10147
10148Semantics:
10149""""""""""
10150
10151This intrinsic represents the point where a call to a runtime routine
10152should be inserted for value profiling of target expressions. ``-instrprof``
10153pass will generate the appropriate data structures and replace the
10154``llvm.instrprof_value_profile`` intrinsic with the call to the profile
10155runtime library with proper arguments.
10156
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000010157'``llvm.thread.pointer``' Intrinsic
10158^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10159
10160Syntax:
10161"""""""
10162
10163::
10164
10165 declare i8* @llvm.thread.pointer()
10166
10167Overview:
10168"""""""""
10169
10170The '``llvm.thread.pointer``' intrinsic returns the value of the thread
10171pointer.
10172
10173Semantics:
10174""""""""""
10175
10176The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
10177for the current thread. The exact semantics of this value are target
10178specific: it may point to the start of TLS area, to the end, or somewhere
10179in the middle. Depending on the target, this intrinsic may read a register,
10180call a helper function, read from an alternate memory space, or perform
10181other operations necessary to locate the TLS area. Not all targets support
10182this intrinsic.
10183
Sean Silvab084af42012-12-07 10:36:55 +000010184Standard C Library Intrinsics
10185-----------------------------
10186
10187LLVM provides intrinsics for a few important standard C library
10188functions. These intrinsics allow source-language front-ends to pass
10189information about the alignment of the pointer arguments to the code
10190generator, providing opportunity for more efficient code generation.
10191
10192.. _int_memcpy:
10193
10194'``llvm.memcpy``' Intrinsic
10195^^^^^^^^^^^^^^^^^^^^^^^^^^^
10196
10197Syntax:
10198"""""""
10199
10200This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
10201integer bit width and for different address spaces. Not all targets
10202support all bit widths however.
10203
10204::
10205
10206 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
10207 i32 <len>, i32 <align>, i1 <isvolatile>)
10208 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
10209 i64 <len>, i32 <align>, i1 <isvolatile>)
10210
10211Overview:
10212"""""""""
10213
10214The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10215source location to the destination location.
10216
10217Note that, unlike the standard libc function, the ``llvm.memcpy.*``
10218intrinsics do not return a value, takes extra alignment/isvolatile
10219arguments and the pointers can be in specified address spaces.
10220
10221Arguments:
10222""""""""""
10223
10224The first argument is a pointer to the destination, the second is a
10225pointer to the source. The third argument is an integer argument
10226specifying the number of bytes to copy, the fourth argument is the
10227alignment of the source and destination locations, and the fifth is a
10228boolean indicating a volatile access.
10229
10230If the call to this intrinsic has an alignment value that is not 0 or 1,
10231then the caller guarantees that both the source and destination pointers
10232are aligned to that boundary.
10233
10234If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
10235a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10236very cleanly specified and it is unwise to depend on it.
10237
10238Semantics:
10239""""""""""
10240
10241The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10242source location to the destination location, which are not allowed to
10243overlap. It copies "len" bytes of memory over. If the argument is known
10244to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +000010245argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010246
10247'``llvm.memmove``' Intrinsic
10248^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10249
10250Syntax:
10251"""""""
10252
10253This is an overloaded intrinsic. You can use llvm.memmove on any integer
10254bit width and for different address space. Not all targets support all
10255bit widths however.
10256
10257::
10258
10259 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
10260 i32 <len>, i32 <align>, i1 <isvolatile>)
10261 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
10262 i64 <len>, i32 <align>, i1 <isvolatile>)
10263
10264Overview:
10265"""""""""
10266
10267The '``llvm.memmove.*``' intrinsics move a block of memory from the
10268source location to the destination location. It is similar to the
10269'``llvm.memcpy``' intrinsic but allows the two memory locations to
10270overlap.
10271
10272Note that, unlike the standard libc function, the ``llvm.memmove.*``
10273intrinsics do not return a value, takes extra alignment/isvolatile
10274arguments and the pointers can be in specified address spaces.
10275
10276Arguments:
10277""""""""""
10278
10279The first argument is a pointer to the destination, the second is a
10280pointer to the source. The third argument is an integer argument
10281specifying the number of bytes to copy, the fourth argument is the
10282alignment of the source and destination locations, and the fifth is a
10283boolean indicating a volatile access.
10284
10285If the call to this intrinsic has an alignment value that is not 0 or 1,
10286then the caller guarantees that the source and destination pointers are
10287aligned to that boundary.
10288
10289If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
10290is a :ref:`volatile operation <volatile>`. The detailed access behavior is
10291not very cleanly specified and it is unwise to depend on it.
10292
10293Semantics:
10294""""""""""
10295
10296The '``llvm.memmove.*``' intrinsics copy a block of memory from the
10297source location to the destination location, which may overlap. It
10298copies "len" bytes of memory over. If the argument is known to be
10299aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000010300otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010301
10302'``llvm.memset.*``' Intrinsics
10303^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10304
10305Syntax:
10306"""""""
10307
10308This is an overloaded intrinsic. You can use llvm.memset on any integer
10309bit width and for different address spaces. However, not all targets
10310support all bit widths.
10311
10312::
10313
10314 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
10315 i32 <len>, i32 <align>, i1 <isvolatile>)
10316 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
10317 i64 <len>, i32 <align>, i1 <isvolatile>)
10318
10319Overview:
10320"""""""""
10321
10322The '``llvm.memset.*``' intrinsics fill a block of memory with a
10323particular byte value.
10324
10325Note that, unlike the standard libc function, the ``llvm.memset``
10326intrinsic does not return a value and takes extra alignment/volatile
10327arguments. Also, the destination can be in an arbitrary address space.
10328
10329Arguments:
10330""""""""""
10331
10332The first argument is a pointer to the destination to fill, the second
10333is the byte value with which to fill it, the third argument is an
10334integer argument specifying the number of bytes to fill, and the fourth
10335argument is the known alignment of the destination location.
10336
10337If the call to this intrinsic has an alignment value that is not 0 or 1,
10338then the caller guarantees that the destination pointer is aligned to
10339that boundary.
10340
10341If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10342a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10343very cleanly specified and it is unwise to depend on it.
10344
10345Semantics:
10346""""""""""
10347
10348The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
10349at the destination location. If the argument is known to be aligned to
10350some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +000010351it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010352
10353'``llvm.sqrt.*``' Intrinsic
10354^^^^^^^^^^^^^^^^^^^^^^^^^^^
10355
10356Syntax:
10357"""""""
10358
10359This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
10360floating point or vector of floating point type. Not all targets support
10361all types however.
10362
10363::
10364
10365 declare float @llvm.sqrt.f32(float %Val)
10366 declare double @llvm.sqrt.f64(double %Val)
10367 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10368 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10369 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10370
10371Overview:
10372"""""""""
10373
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010374The '``llvm.sqrt``' intrinsics return the square root of the specified value,
Justin Lebarcb9b41d2017-01-27 00:58:03 +000010375returning the same value as the libm '``sqrt``' functions would, but without
10376trapping or setting ``errno``.
Sean Silvab084af42012-12-07 10:36:55 +000010377
10378Arguments:
10379""""""""""
10380
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010381The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010382
10383Semantics:
10384""""""""""
10385
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010386This function returns the square root of the operand if it is a nonnegative
10387floating point number.
Sean Silvab084af42012-12-07 10:36:55 +000010388
10389'``llvm.powi.*``' Intrinsic
10390^^^^^^^^^^^^^^^^^^^^^^^^^^^
10391
10392Syntax:
10393"""""""
10394
10395This is an overloaded intrinsic. You can use ``llvm.powi`` on any
10396floating point or vector of floating point type. Not all targets support
10397all types however.
10398
10399::
10400
10401 declare float @llvm.powi.f32(float %Val, i32 %power)
10402 declare double @llvm.powi.f64(double %Val, i32 %power)
10403 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10404 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10405 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10406
10407Overview:
10408"""""""""
10409
10410The '``llvm.powi.*``' intrinsics return the first operand raised to the
10411specified (positive or negative) power. The order of evaluation of
10412multiplications is not defined. When a vector of floating point type is
10413used, the second argument remains a scalar integer value.
10414
10415Arguments:
10416""""""""""
10417
10418The second argument is an integer power, and the first is a value to
10419raise to that power.
10420
10421Semantics:
10422""""""""""
10423
10424This function returns the first value raised to the second power with an
10425unspecified sequence of rounding operations.
10426
10427'``llvm.sin.*``' Intrinsic
10428^^^^^^^^^^^^^^^^^^^^^^^^^^
10429
10430Syntax:
10431"""""""
10432
10433This is an overloaded intrinsic. You can use ``llvm.sin`` on any
10434floating point or vector of floating point type. Not all targets support
10435all types however.
10436
10437::
10438
10439 declare float @llvm.sin.f32(float %Val)
10440 declare double @llvm.sin.f64(double %Val)
10441 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10442 declare fp128 @llvm.sin.f128(fp128 %Val)
10443 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10444
10445Overview:
10446"""""""""
10447
10448The '``llvm.sin.*``' intrinsics return the sine of the operand.
10449
10450Arguments:
10451""""""""""
10452
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010453The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010454
10455Semantics:
10456""""""""""
10457
10458This function returns the sine of the specified operand, returning the
10459same values as the libm ``sin`` functions would, and handles error
10460conditions in the same way.
10461
10462'``llvm.cos.*``' Intrinsic
10463^^^^^^^^^^^^^^^^^^^^^^^^^^
10464
10465Syntax:
10466"""""""
10467
10468This is an overloaded intrinsic. You can use ``llvm.cos`` on any
10469floating point or vector of floating point type. Not all targets support
10470all types however.
10471
10472::
10473
10474 declare float @llvm.cos.f32(float %Val)
10475 declare double @llvm.cos.f64(double %Val)
10476 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10477 declare fp128 @llvm.cos.f128(fp128 %Val)
10478 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10479
10480Overview:
10481"""""""""
10482
10483The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10484
10485Arguments:
10486""""""""""
10487
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010488The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010489
10490Semantics:
10491""""""""""
10492
10493This function returns the cosine of the specified operand, returning the
10494same values as the libm ``cos`` functions would, and handles error
10495conditions in the same way.
10496
10497'``llvm.pow.*``' Intrinsic
10498^^^^^^^^^^^^^^^^^^^^^^^^^^
10499
10500Syntax:
10501"""""""
10502
10503This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10504floating point or vector of floating point type. Not all targets support
10505all types however.
10506
10507::
10508
10509 declare float @llvm.pow.f32(float %Val, float %Power)
10510 declare double @llvm.pow.f64(double %Val, double %Power)
10511 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10512 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10513 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10514
10515Overview:
10516"""""""""
10517
10518The '``llvm.pow.*``' intrinsics return the first operand raised to the
10519specified (positive or negative) power.
10520
10521Arguments:
10522""""""""""
10523
10524The second argument is a floating point power, and the first is a value
10525to raise to that power.
10526
10527Semantics:
10528""""""""""
10529
10530This function returns the first value raised to the second power,
10531returning the same values as the libm ``pow`` functions would, and
10532handles error conditions in the same way.
10533
10534'``llvm.exp.*``' Intrinsic
10535^^^^^^^^^^^^^^^^^^^^^^^^^^
10536
10537Syntax:
10538"""""""
10539
10540This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10541floating point or vector of floating point type. Not all targets support
10542all types however.
10543
10544::
10545
10546 declare float @llvm.exp.f32(float %Val)
10547 declare double @llvm.exp.f64(double %Val)
10548 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10549 declare fp128 @llvm.exp.f128(fp128 %Val)
10550 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10551
10552Overview:
10553"""""""""
10554
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010555The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
10556value.
Sean Silvab084af42012-12-07 10:36:55 +000010557
10558Arguments:
10559""""""""""
10560
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010561The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010562
10563Semantics:
10564""""""""""
10565
10566This function returns the same values as the libm ``exp`` functions
10567would, and handles error conditions in the same way.
10568
10569'``llvm.exp2.*``' Intrinsic
10570^^^^^^^^^^^^^^^^^^^^^^^^^^^
10571
10572Syntax:
10573"""""""
10574
10575This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10576floating point or vector of floating point type. Not all targets support
10577all types however.
10578
10579::
10580
10581 declare float @llvm.exp2.f32(float %Val)
10582 declare double @llvm.exp2.f64(double %Val)
10583 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10584 declare fp128 @llvm.exp2.f128(fp128 %Val)
10585 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10586
10587Overview:
10588"""""""""
10589
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010590The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
10591specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010592
10593Arguments:
10594""""""""""
10595
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010596The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010597
10598Semantics:
10599""""""""""
10600
10601This function returns the same values as the libm ``exp2`` functions
10602would, and handles error conditions in the same way.
10603
10604'``llvm.log.*``' Intrinsic
10605^^^^^^^^^^^^^^^^^^^^^^^^^^
10606
10607Syntax:
10608"""""""
10609
10610This is an overloaded intrinsic. You can use ``llvm.log`` on any
10611floating point or vector of floating point type. Not all targets support
10612all types however.
10613
10614::
10615
10616 declare float @llvm.log.f32(float %Val)
10617 declare double @llvm.log.f64(double %Val)
10618 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10619 declare fp128 @llvm.log.f128(fp128 %Val)
10620 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10621
10622Overview:
10623"""""""""
10624
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010625The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
10626value.
Sean Silvab084af42012-12-07 10:36:55 +000010627
10628Arguments:
10629""""""""""
10630
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010631The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010632
10633Semantics:
10634""""""""""
10635
10636This function returns the same values as the libm ``log`` functions
10637would, and handles error conditions in the same way.
10638
10639'``llvm.log10.*``' Intrinsic
10640^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10641
10642Syntax:
10643"""""""
10644
10645This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10646floating point or vector of floating point type. Not all targets support
10647all types however.
10648
10649::
10650
10651 declare float @llvm.log10.f32(float %Val)
10652 declare double @llvm.log10.f64(double %Val)
10653 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10654 declare fp128 @llvm.log10.f128(fp128 %Val)
10655 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10656
10657Overview:
10658"""""""""
10659
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010660The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
10661specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010662
10663Arguments:
10664""""""""""
10665
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010666The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010667
10668Semantics:
10669""""""""""
10670
10671This function returns the same values as the libm ``log10`` functions
10672would, and handles error conditions in the same way.
10673
10674'``llvm.log2.*``' Intrinsic
10675^^^^^^^^^^^^^^^^^^^^^^^^^^^
10676
10677Syntax:
10678"""""""
10679
10680This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10681floating point or vector of floating point type. Not all targets support
10682all types however.
10683
10684::
10685
10686 declare float @llvm.log2.f32(float %Val)
10687 declare double @llvm.log2.f64(double %Val)
10688 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10689 declare fp128 @llvm.log2.f128(fp128 %Val)
10690 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10691
10692Overview:
10693"""""""""
10694
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010695The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
10696value.
Sean Silvab084af42012-12-07 10:36:55 +000010697
10698Arguments:
10699""""""""""
10700
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010701The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010702
10703Semantics:
10704""""""""""
10705
10706This function returns the same values as the libm ``log2`` functions
10707would, and handles error conditions in the same way.
10708
10709'``llvm.fma.*``' Intrinsic
10710^^^^^^^^^^^^^^^^^^^^^^^^^^
10711
10712Syntax:
10713"""""""
10714
10715This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10716floating point or vector of floating point type. Not all targets support
10717all types however.
10718
10719::
10720
10721 declare float @llvm.fma.f32(float %a, float %b, float %c)
10722 declare double @llvm.fma.f64(double %a, double %b, double %c)
10723 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10724 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10725 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10726
10727Overview:
10728"""""""""
10729
10730The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10731operation.
10732
10733Arguments:
10734""""""""""
10735
10736The argument and return value are floating point numbers of the same
10737type.
10738
10739Semantics:
10740""""""""""
10741
10742This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010743would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010744
10745'``llvm.fabs.*``' Intrinsic
10746^^^^^^^^^^^^^^^^^^^^^^^^^^^
10747
10748Syntax:
10749"""""""
10750
10751This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10752floating point or vector of floating point type. Not all targets support
10753all types however.
10754
10755::
10756
10757 declare float @llvm.fabs.f32(float %Val)
10758 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010759 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010760 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010761 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010762
10763Overview:
10764"""""""""
10765
10766The '``llvm.fabs.*``' intrinsics return the absolute value of the
10767operand.
10768
10769Arguments:
10770""""""""""
10771
10772The argument and return value are floating point numbers of the same
10773type.
10774
10775Semantics:
10776""""""""""
10777
10778This function returns the same values as the libm ``fabs`` functions
10779would, and handles error conditions in the same way.
10780
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010781'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010782^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010783
10784Syntax:
10785"""""""
10786
10787This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10788floating point or vector of floating point type. Not all targets support
10789all types however.
10790
10791::
10792
Matt Arsenault64313c92014-10-22 18:25:02 +000010793 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10794 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10795 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10796 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10797 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010798
10799Overview:
10800"""""""""
10801
10802The '``llvm.minnum.*``' intrinsics return the minimum of the two
10803arguments.
10804
10805
10806Arguments:
10807""""""""""
10808
10809The arguments and return value are floating point numbers of the same
10810type.
10811
10812Semantics:
10813""""""""""
10814
10815Follows the IEEE-754 semantics for minNum, which also match for libm's
10816fmin.
10817
10818If either operand is a NaN, returns the other non-NaN operand. Returns
10819NaN only if both operands are NaN. If the operands compare equal,
10820returns a value that compares equal to both operands. This means that
10821fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10822
10823'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010824^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010825
10826Syntax:
10827"""""""
10828
10829This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10830floating point or vector of floating point type. Not all targets support
10831all types however.
10832
10833::
10834
Matt Arsenault64313c92014-10-22 18:25:02 +000010835 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10836 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10837 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10838 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10839 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010840
10841Overview:
10842"""""""""
10843
10844The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10845arguments.
10846
10847
10848Arguments:
10849""""""""""
10850
10851The arguments and return value are floating point numbers of the same
10852type.
10853
10854Semantics:
10855""""""""""
10856Follows the IEEE-754 semantics for maxNum, which also match for libm's
10857fmax.
10858
10859If either operand is a NaN, returns the other non-NaN operand. Returns
10860NaN only if both operands are NaN. If the operands compare equal,
10861returns a value that compares equal to both operands. This means that
10862fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10863
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010864'``llvm.copysign.*``' Intrinsic
10865^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10866
10867Syntax:
10868"""""""
10869
10870This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10871floating point or vector of floating point type. Not all targets support
10872all types however.
10873
10874::
10875
10876 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10877 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10878 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10879 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10880 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10881
10882Overview:
10883"""""""""
10884
10885The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10886first operand and the sign of the second operand.
10887
10888Arguments:
10889""""""""""
10890
10891The arguments and return value are floating point numbers of the same
10892type.
10893
10894Semantics:
10895""""""""""
10896
10897This function returns the same values as the libm ``copysign``
10898functions would, and handles error conditions in the same way.
10899
Sean Silvab084af42012-12-07 10:36:55 +000010900'``llvm.floor.*``' Intrinsic
10901^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10902
10903Syntax:
10904"""""""
10905
10906This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10907floating point or vector of floating point type. Not all targets support
10908all types however.
10909
10910::
10911
10912 declare float @llvm.floor.f32(float %Val)
10913 declare double @llvm.floor.f64(double %Val)
10914 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10915 declare fp128 @llvm.floor.f128(fp128 %Val)
10916 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10917
10918Overview:
10919"""""""""
10920
10921The '``llvm.floor.*``' intrinsics return the floor of the operand.
10922
10923Arguments:
10924""""""""""
10925
10926The argument and return value are floating point numbers of the same
10927type.
10928
10929Semantics:
10930""""""""""
10931
10932This function returns the same values as the libm ``floor`` functions
10933would, and handles error conditions in the same way.
10934
10935'``llvm.ceil.*``' Intrinsic
10936^^^^^^^^^^^^^^^^^^^^^^^^^^^
10937
10938Syntax:
10939"""""""
10940
10941This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10942floating point or vector of floating point type. Not all targets support
10943all types however.
10944
10945::
10946
10947 declare float @llvm.ceil.f32(float %Val)
10948 declare double @llvm.ceil.f64(double %Val)
10949 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10950 declare fp128 @llvm.ceil.f128(fp128 %Val)
10951 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10952
10953Overview:
10954"""""""""
10955
10956The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10957
10958Arguments:
10959""""""""""
10960
10961The argument and return value are floating point numbers of the same
10962type.
10963
10964Semantics:
10965""""""""""
10966
10967This function returns the same values as the libm ``ceil`` functions
10968would, and handles error conditions in the same way.
10969
10970'``llvm.trunc.*``' Intrinsic
10971^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10972
10973Syntax:
10974"""""""
10975
10976This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10977floating point or vector of floating point type. Not all targets support
10978all types however.
10979
10980::
10981
10982 declare float @llvm.trunc.f32(float %Val)
10983 declare double @llvm.trunc.f64(double %Val)
10984 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10985 declare fp128 @llvm.trunc.f128(fp128 %Val)
10986 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10987
10988Overview:
10989"""""""""
10990
10991The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10992nearest integer not larger in magnitude than the operand.
10993
10994Arguments:
10995""""""""""
10996
10997The argument and return value are floating point numbers of the same
10998type.
10999
11000Semantics:
11001""""""""""
11002
11003This function returns the same values as the libm ``trunc`` functions
11004would, and handles error conditions in the same way.
11005
11006'``llvm.rint.*``' Intrinsic
11007^^^^^^^^^^^^^^^^^^^^^^^^^^^
11008
11009Syntax:
11010"""""""
11011
11012This is an overloaded intrinsic. You can use ``llvm.rint`` on any
11013floating point or vector of floating point type. Not all targets support
11014all types however.
11015
11016::
11017
11018 declare float @llvm.rint.f32(float %Val)
11019 declare double @llvm.rint.f64(double %Val)
11020 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
11021 declare fp128 @llvm.rint.f128(fp128 %Val)
11022 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
11023
11024Overview:
11025"""""""""
11026
11027The '``llvm.rint.*``' intrinsics returns the operand rounded to the
11028nearest integer. It may raise an inexact floating-point exception if the
11029operand isn't an integer.
11030
11031Arguments:
11032""""""""""
11033
11034The argument and return value are floating point numbers of the same
11035type.
11036
11037Semantics:
11038""""""""""
11039
11040This function returns the same values as the libm ``rint`` functions
11041would, and handles error conditions in the same way.
11042
11043'``llvm.nearbyint.*``' Intrinsic
11044^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11045
11046Syntax:
11047"""""""
11048
11049This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
11050floating point or vector of floating point type. Not all targets support
11051all types however.
11052
11053::
11054
11055 declare float @llvm.nearbyint.f32(float %Val)
11056 declare double @llvm.nearbyint.f64(double %Val)
11057 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
11058 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
11059 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
11060
11061Overview:
11062"""""""""
11063
11064The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
11065nearest integer.
11066
11067Arguments:
11068""""""""""
11069
11070The argument and return value are floating point numbers of the same
11071type.
11072
11073Semantics:
11074""""""""""
11075
11076This function returns the same values as the libm ``nearbyint``
11077functions would, and handles error conditions in the same way.
11078
Hal Finkel171817e2013-08-07 22:49:12 +000011079'``llvm.round.*``' Intrinsic
11080^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11081
11082Syntax:
11083"""""""
11084
11085This is an overloaded intrinsic. You can use ``llvm.round`` on any
11086floating point or vector of floating point type. Not all targets support
11087all types however.
11088
11089::
11090
11091 declare float @llvm.round.f32(float %Val)
11092 declare double @llvm.round.f64(double %Val)
11093 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
11094 declare fp128 @llvm.round.f128(fp128 %Val)
11095 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
11096
11097Overview:
11098"""""""""
11099
11100The '``llvm.round.*``' intrinsics returns the operand rounded to the
11101nearest integer.
11102
11103Arguments:
11104""""""""""
11105
11106The argument and return value are floating point numbers of the same
11107type.
11108
11109Semantics:
11110""""""""""
11111
11112This function returns the same values as the libm ``round``
11113functions would, and handles error conditions in the same way.
11114
Sean Silvab084af42012-12-07 10:36:55 +000011115Bit Manipulation Intrinsics
11116---------------------------
11117
11118LLVM provides intrinsics for a few important bit manipulation
11119operations. These allow efficient code generation for some algorithms.
11120
James Molloy90111f72015-11-12 12:29:09 +000011121'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000011122^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000011123
11124Syntax:
11125"""""""
11126
11127This is an overloaded intrinsic function. You can use bitreverse on any
11128integer type.
11129
11130::
11131
11132 declare i16 @llvm.bitreverse.i16(i16 <id>)
11133 declare i32 @llvm.bitreverse.i32(i32 <id>)
11134 declare i64 @llvm.bitreverse.i64(i64 <id>)
11135
11136Overview:
11137"""""""""
11138
11139The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000011140bitpattern of an integer value; for example ``0b10110110`` becomes
11141``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000011142
11143Semantics:
11144""""""""""
11145
Yichao Yu5abf14b2016-11-23 16:25:31 +000011146The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000011147``M`` in the input moved to bit ``N-M`` in the output.
11148
Sean Silvab084af42012-12-07 10:36:55 +000011149'``llvm.bswap.*``' Intrinsics
11150^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11151
11152Syntax:
11153"""""""
11154
11155This is an overloaded intrinsic function. You can use bswap on any
11156integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
11157
11158::
11159
11160 declare i16 @llvm.bswap.i16(i16 <id>)
11161 declare i32 @llvm.bswap.i32(i32 <id>)
11162 declare i64 @llvm.bswap.i64(i64 <id>)
11163
11164Overview:
11165"""""""""
11166
11167The '``llvm.bswap``' family of intrinsics is used to byte swap integer
11168values with an even number of bytes (positive multiple of 16 bits).
11169These are useful for performing operations on data that is not in the
11170target's native byte order.
11171
11172Semantics:
11173""""""""""
11174
11175The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
11176and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
11177intrinsic returns an i32 value that has the four bytes of the input i32
11178swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
11179returned i32 will have its bytes in 3, 2, 1, 0 order. The
11180``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
11181concept to additional even-byte lengths (6 bytes, 8 bytes and more,
11182respectively).
11183
11184'``llvm.ctpop.*``' Intrinsic
11185^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11186
11187Syntax:
11188"""""""
11189
11190This is an overloaded intrinsic. You can use llvm.ctpop on any integer
11191bit width, or on any vector with integer elements. Not all targets
11192support all bit widths or vector types, however.
11193
11194::
11195
11196 declare i8 @llvm.ctpop.i8(i8 <src>)
11197 declare i16 @llvm.ctpop.i16(i16 <src>)
11198 declare i32 @llvm.ctpop.i32(i32 <src>)
11199 declare i64 @llvm.ctpop.i64(i64 <src>)
11200 declare i256 @llvm.ctpop.i256(i256 <src>)
11201 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
11202
11203Overview:
11204"""""""""
11205
11206The '``llvm.ctpop``' family of intrinsics counts the number of bits set
11207in a value.
11208
11209Arguments:
11210""""""""""
11211
11212The only argument is the value to be counted. The argument may be of any
11213integer type, or a vector with integer elements. The return type must
11214match the argument type.
11215
11216Semantics:
11217""""""""""
11218
11219The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
11220each element of a vector.
11221
11222'``llvm.ctlz.*``' Intrinsic
11223^^^^^^^^^^^^^^^^^^^^^^^^^^^
11224
11225Syntax:
11226"""""""
11227
11228This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
11229integer bit width, or any vector whose elements are integers. Not all
11230targets support all bit widths or vector types, however.
11231
11232::
11233
11234 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
11235 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
11236 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
11237 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
11238 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011239 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011240
11241Overview:
11242"""""""""
11243
11244The '``llvm.ctlz``' family of intrinsic functions counts the number of
11245leading zeros in a variable.
11246
11247Arguments:
11248""""""""""
11249
11250The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011251any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011252type must match the first argument type.
11253
11254The second argument must be a constant and is a flag to indicate whether
11255the intrinsic should ensure that a zero as the first argument produces a
11256defined result. Historically some architectures did not provide a
11257defined result for zero values as efficiently, and many algorithms are
11258now predicated on avoiding zero-value inputs.
11259
11260Semantics:
11261""""""""""
11262
11263The '``llvm.ctlz``' intrinsic counts the leading (most significant)
11264zeros in a variable, or within each element of the vector. If
11265``src == 0`` then the result is the size in bits of the type of ``src``
11266if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11267``llvm.ctlz(i32 2) = 30``.
11268
11269'``llvm.cttz.*``' Intrinsic
11270^^^^^^^^^^^^^^^^^^^^^^^^^^^
11271
11272Syntax:
11273"""""""
11274
11275This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
11276integer bit width, or any vector of integer elements. Not all targets
11277support all bit widths or vector types, however.
11278
11279::
11280
11281 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
11282 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
11283 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
11284 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
11285 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011286 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011287
11288Overview:
11289"""""""""
11290
11291The '``llvm.cttz``' family of intrinsic functions counts the number of
11292trailing zeros.
11293
11294Arguments:
11295""""""""""
11296
11297The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011298any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011299type must match the first argument type.
11300
11301The second argument must be a constant and is a flag to indicate whether
11302the intrinsic should ensure that a zero as the first argument produces a
11303defined result. Historically some architectures did not provide a
11304defined result for zero values as efficiently, and many algorithms are
11305now predicated on avoiding zero-value inputs.
11306
11307Semantics:
11308""""""""""
11309
11310The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11311zeros in a variable, or within each element of a vector. If ``src == 0``
11312then the result is the size in bits of the type of ``src`` if
11313``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11314``llvm.cttz(2) = 1``.
11315
Philip Reames34843ae2015-03-05 05:55:55 +000011316.. _int_overflow:
11317
Sean Silvab084af42012-12-07 10:36:55 +000011318Arithmetic with Overflow Intrinsics
11319-----------------------------------
11320
John Regehr6a493f22016-05-12 20:55:09 +000011321LLVM provides intrinsics for fast arithmetic overflow checking.
11322
11323Each of these intrinsics returns a two-element struct. The first
11324element of this struct contains the result of the corresponding
11325arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
11326the result. Therefore, for example, the first element of the struct
11327returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
11328result of a 32-bit ``add`` instruction with the same operands, where
11329the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
11330
11331The second element of the result is an ``i1`` that is 1 if the
11332arithmetic operation overflowed and 0 otherwise. An operation
11333overflows if, for any values of its operands ``A`` and ``B`` and for
11334any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
11335not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
11336``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11337``op`` is the underlying arithmetic operation.
11338
11339The behavior of these intrinsics is well-defined for all argument
11340values.
Sean Silvab084af42012-12-07 10:36:55 +000011341
11342'``llvm.sadd.with.overflow.*``' Intrinsics
11343^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11344
11345Syntax:
11346"""""""
11347
11348This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11349on any integer bit width.
11350
11351::
11352
11353 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11354 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11355 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11356
11357Overview:
11358"""""""""
11359
11360The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11361a signed addition of the two arguments, and indicate whether an overflow
11362occurred during the signed summation.
11363
11364Arguments:
11365""""""""""
11366
11367The arguments (%a and %b) and the first element of the result structure
11368may be of integer types of any bit width, but they must have the same
11369bit width. The second element of the result structure must be of type
11370``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11371addition.
11372
11373Semantics:
11374""""""""""
11375
11376The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011377a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011378first element of which is the signed summation, and the second element
11379of which is a bit specifying if the signed summation resulted in an
11380overflow.
11381
11382Examples:
11383"""""""""
11384
11385.. code-block:: llvm
11386
11387 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11388 %sum = extractvalue {i32, i1} %res, 0
11389 %obit = extractvalue {i32, i1} %res, 1
11390 br i1 %obit, label %overflow, label %normal
11391
11392'``llvm.uadd.with.overflow.*``' Intrinsics
11393^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11394
11395Syntax:
11396"""""""
11397
11398This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11399on any integer bit width.
11400
11401::
11402
11403 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11404 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11405 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11406
11407Overview:
11408"""""""""
11409
11410The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11411an unsigned addition of the two arguments, and indicate whether a carry
11412occurred during the unsigned summation.
11413
11414Arguments:
11415""""""""""
11416
11417The arguments (%a and %b) and the first element of the result structure
11418may be of integer types of any bit width, but they must have the same
11419bit width. The second element of the result structure must be of type
11420``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11421addition.
11422
11423Semantics:
11424""""""""""
11425
11426The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011427an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011428first element of which is the sum, and the second element of which is a
11429bit specifying if the unsigned summation resulted in a carry.
11430
11431Examples:
11432"""""""""
11433
11434.. code-block:: llvm
11435
11436 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11437 %sum = extractvalue {i32, i1} %res, 0
11438 %obit = extractvalue {i32, i1} %res, 1
11439 br i1 %obit, label %carry, label %normal
11440
11441'``llvm.ssub.with.overflow.*``' Intrinsics
11442^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11443
11444Syntax:
11445"""""""
11446
11447This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11448on any integer bit width.
11449
11450::
11451
11452 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11453 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11454 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11455
11456Overview:
11457"""""""""
11458
11459The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11460a signed subtraction of the two arguments, and indicate whether an
11461overflow occurred during the signed subtraction.
11462
11463Arguments:
11464""""""""""
11465
11466The arguments (%a and %b) and the first element of the result structure
11467may be of integer types of any bit width, but they must have the same
11468bit width. The second element of the result structure must be of type
11469``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11470subtraction.
11471
11472Semantics:
11473""""""""""
11474
11475The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011476a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011477first element of which is the subtraction, and the second element of
11478which is a bit specifying if the signed subtraction resulted in an
11479overflow.
11480
11481Examples:
11482"""""""""
11483
11484.. code-block:: llvm
11485
11486 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11487 %sum = extractvalue {i32, i1} %res, 0
11488 %obit = extractvalue {i32, i1} %res, 1
11489 br i1 %obit, label %overflow, label %normal
11490
11491'``llvm.usub.with.overflow.*``' Intrinsics
11492^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11493
11494Syntax:
11495"""""""
11496
11497This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11498on any integer bit width.
11499
11500::
11501
11502 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11503 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11504 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11505
11506Overview:
11507"""""""""
11508
11509The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11510an unsigned subtraction of the two arguments, and indicate whether an
11511overflow occurred during the unsigned subtraction.
11512
11513Arguments:
11514""""""""""
11515
11516The arguments (%a and %b) and the first element of the result structure
11517may be of integer types of any bit width, but they must have the same
11518bit width. The second element of the result structure must be of type
11519``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11520subtraction.
11521
11522Semantics:
11523""""""""""
11524
11525The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011526an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011527the first element of which is the subtraction, and the second element of
11528which is a bit specifying if the unsigned subtraction resulted in an
11529overflow.
11530
11531Examples:
11532"""""""""
11533
11534.. code-block:: llvm
11535
11536 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11537 %sum = extractvalue {i32, i1} %res, 0
11538 %obit = extractvalue {i32, i1} %res, 1
11539 br i1 %obit, label %overflow, label %normal
11540
11541'``llvm.smul.with.overflow.*``' Intrinsics
11542^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11543
11544Syntax:
11545"""""""
11546
11547This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11548on any integer bit width.
11549
11550::
11551
11552 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11553 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11554 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11555
11556Overview:
11557"""""""""
11558
11559The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11560a signed multiplication of the two arguments, and indicate whether an
11561overflow occurred during the signed multiplication.
11562
11563Arguments:
11564""""""""""
11565
11566The arguments (%a and %b) and the first element of the result structure
11567may be of integer types of any bit width, but they must have the same
11568bit width. The second element of the result structure must be of type
11569``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11570multiplication.
11571
11572Semantics:
11573""""""""""
11574
11575The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011576a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011577the first element of which is the multiplication, and the second element
11578of which is a bit specifying if the signed multiplication resulted in an
11579overflow.
11580
11581Examples:
11582"""""""""
11583
11584.. code-block:: llvm
11585
11586 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11587 %sum = extractvalue {i32, i1} %res, 0
11588 %obit = extractvalue {i32, i1} %res, 1
11589 br i1 %obit, label %overflow, label %normal
11590
11591'``llvm.umul.with.overflow.*``' Intrinsics
11592^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11593
11594Syntax:
11595"""""""
11596
11597This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11598on any integer bit width.
11599
11600::
11601
11602 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11603 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11604 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11605
11606Overview:
11607"""""""""
11608
11609The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11610a unsigned multiplication of the two arguments, and indicate whether an
11611overflow occurred during the unsigned multiplication.
11612
11613Arguments:
11614""""""""""
11615
11616The arguments (%a and %b) and the first element of the result structure
11617may be of integer types of any bit width, but they must have the same
11618bit width. The second element of the result structure must be of type
11619``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11620multiplication.
11621
11622Semantics:
11623""""""""""
11624
11625The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011626an unsigned multiplication of the two arguments. They return a structure ---
11627the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011628element of which is a bit specifying if the unsigned multiplication
11629resulted in an overflow.
11630
11631Examples:
11632"""""""""
11633
11634.. code-block:: llvm
11635
11636 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11637 %sum = extractvalue {i32, i1} %res, 0
11638 %obit = extractvalue {i32, i1} %res, 1
11639 br i1 %obit, label %overflow, label %normal
11640
11641Specialised Arithmetic Intrinsics
11642---------------------------------
11643
Owen Anderson1056a922015-07-11 07:01:27 +000011644'``llvm.canonicalize.*``' Intrinsic
11645^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11646
11647Syntax:
11648"""""""
11649
11650::
11651
11652 declare float @llvm.canonicalize.f32(float %a)
11653 declare double @llvm.canonicalize.f64(double %b)
11654
11655Overview:
11656"""""""""
11657
11658The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011659encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011660implementing certain numeric primitives such as frexp. The canonical encoding is
11661defined by IEEE-754-2008 to be:
11662
11663::
11664
11665 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011666 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011667 numbers, infinities, and NaNs, especially in decimal formats.
11668
11669This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011670conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011671according to section 6.2.
11672
11673Examples of non-canonical encodings:
11674
Sean Silvaa1190322015-08-06 22:56:48 +000011675- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011676 converted to a canonical representation per hardware-specific protocol.
11677- Many normal decimal floating point numbers have non-canonical alternative
11678 encodings.
11679- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011680 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011681 a zero of the same sign by this operation.
11682
11683Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11684default exception handling must signal an invalid exception, and produce a
11685quiet NaN result.
11686
11687This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011688that the compiler does not constant fold the operation. Likewise, division by
116891.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011690-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11691
Sean Silvaa1190322015-08-06 22:56:48 +000011692``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011693
11694- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11695- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11696 to ``(x == y)``
11697
11698Additionally, the sign of zero must be conserved:
11699``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11700
11701The payload bits of a NaN must be conserved, with two exceptions.
11702First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011703must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011704usual methods.
11705
11706The canonicalization operation may be optimized away if:
11707
Sean Silvaa1190322015-08-06 22:56:48 +000011708- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011709 floating-point operation that is required by the standard to be canonical.
11710- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011711 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011712
Sean Silvab084af42012-12-07 10:36:55 +000011713'``llvm.fmuladd.*``' Intrinsic
11714^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11715
11716Syntax:
11717"""""""
11718
11719::
11720
11721 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11722 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11723
11724Overview:
11725"""""""""
11726
11727The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011728expressions that can be fused if the code generator determines that (a) the
11729target instruction set has support for a fused operation, and (b) that the
11730fused operation is more efficient than the equivalent, separate pair of mul
11731and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011732
11733Arguments:
11734""""""""""
11735
11736The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11737multiplicands, a and b, and an addend c.
11738
11739Semantics:
11740""""""""""
11741
11742The expression:
11743
11744::
11745
11746 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11747
11748is equivalent to the expression a \* b + c, except that rounding will
11749not be performed between the multiplication and addition steps if the
11750code generator fuses the operations. Fusion is not guaranteed, even if
11751the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011752corresponding llvm.fma.\* intrinsic function should be used
11753instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011754
11755Examples:
11756"""""""""
11757
11758.. code-block:: llvm
11759
Tim Northover675a0962014-06-13 14:24:23 +000011760 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011761
Amara Emersoncf9daa32017-05-09 10:43:25 +000011762
11763Experimental Vector Reduction Intrinsics
11764----------------------------------------
11765
11766Horizontal reductions of vectors can be expressed using the following
11767intrinsics. Each one takes a vector operand as an input and applies its
11768respective operation across all elements of the vector, returning a single
11769scalar result of the same element type.
11770
11771
11772'``llvm.experimental.vector.reduce.add.*``' Intrinsic
11773^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11774
11775Syntax:
11776"""""""
11777
11778::
11779
11780 declare i32 @llvm.experimental.vector.reduce.add.i32.v4i32(<4 x i32> %a)
11781 declare i64 @llvm.experimental.vector.reduce.add.i64.v2i64(<2 x i64> %a)
11782
11783Overview:
11784"""""""""
11785
11786The '``llvm.experimental.vector.reduce.add.*``' intrinsics do an integer ``ADD``
11787reduction of a vector, returning the result as a scalar. The return type matches
11788the element-type of the vector input.
11789
11790Arguments:
11791""""""""""
11792The argument to this intrinsic must be a vector of integer values.
11793
11794'``llvm.experimental.vector.reduce.fadd.*``' Intrinsic
11795^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11796
11797Syntax:
11798"""""""
11799
11800::
11801
11802 declare float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %a)
11803 declare double @llvm.experimental.vector.reduce.fadd.f64.v2f64(double %acc, <2 x double> %a)
11804
11805Overview:
11806"""""""""
11807
11808The '``llvm.experimental.vector.reduce.fadd.*``' intrinsics do a floating point
11809``ADD`` reduction of a vector, returning the result as a scalar. The return type
11810matches the element-type of the vector input.
11811
11812If the intrinsic call has fast-math flags, then the reduction will not preserve
11813the associativity of an equivalent scalarized counterpart. If it does not have
11814fast-math flags, then the reduction will be *ordered*, implying that the
11815operation respects the associativity of a scalarized reduction.
11816
11817
11818Arguments:
11819""""""""""
11820The first argument to this intrinsic is a scalar accumulator value, which is
11821only used when there are no fast-math flags attached. This argument may be undef
11822when fast-math flags are used.
11823
11824The second argument must be a vector of floating point values.
11825
11826Examples:
11827"""""""""
11828
11829.. code-block:: llvm
11830
11831 %fast = call fast float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
11832 %ord = call float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
11833
11834
11835'``llvm.experimental.vector.reduce.mul.*``' Intrinsic
11836^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11837
11838Syntax:
11839"""""""
11840
11841::
11842
11843 declare i32 @llvm.experimental.vector.reduce.mul.i32.v4i32(<4 x i32> %a)
11844 declare i64 @llvm.experimental.vector.reduce.mul.i64.v2i64(<2 x i64> %a)
11845
11846Overview:
11847"""""""""
11848
11849The '``llvm.experimental.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
11850reduction of a vector, returning the result as a scalar. The return type matches
11851the element-type of the vector input.
11852
11853Arguments:
11854""""""""""
11855The argument to this intrinsic must be a vector of integer values.
11856
11857'``llvm.experimental.vector.reduce.fmul.*``' Intrinsic
11858^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11859
11860Syntax:
11861"""""""
11862
11863::
11864
11865 declare float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %a)
11866 declare double @llvm.experimental.vector.reduce.fmul.f64.v2f64(double %acc, <2 x double> %a)
11867
11868Overview:
11869"""""""""
11870
11871The '``llvm.experimental.vector.reduce.fmul.*``' intrinsics do a floating point
11872``MUL`` reduction of a vector, returning the result as a scalar. The return type
11873matches the element-type of the vector input.
11874
11875If the intrinsic call has fast-math flags, then the reduction will not preserve
11876the associativity of an equivalent scalarized counterpart. If it does not have
11877fast-math flags, then the reduction will be *ordered*, implying that the
11878operation respects the associativity of a scalarized reduction.
11879
11880
11881Arguments:
11882""""""""""
11883The first argument to this intrinsic is a scalar accumulator value, which is
11884only used when there are no fast-math flags attached. This argument may be undef
11885when fast-math flags are used.
11886
11887The second argument must be a vector of floating point values.
11888
11889Examples:
11890"""""""""
11891
11892.. code-block:: llvm
11893
11894 %fast = call fast float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
11895 %ord = call float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
11896
11897'``llvm.experimental.vector.reduce.and.*``' Intrinsic
11898^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11899
11900Syntax:
11901"""""""
11902
11903::
11904
11905 declare i32 @llvm.experimental.vector.reduce.and.i32.v4i32(<4 x i32> %a)
11906
11907Overview:
11908"""""""""
11909
11910The '``llvm.experimental.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
11911reduction of a vector, returning the result as a scalar. The return type matches
11912the element-type of the vector input.
11913
11914Arguments:
11915""""""""""
11916The argument to this intrinsic must be a vector of integer values.
11917
11918'``llvm.experimental.vector.reduce.or.*``' Intrinsic
11919^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11920
11921Syntax:
11922"""""""
11923
11924::
11925
11926 declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
11927
11928Overview:
11929"""""""""
11930
11931The '``llvm.experimental.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
11932of a vector, returning the result as a scalar. The return type matches the
11933element-type of the vector input.
11934
11935Arguments:
11936""""""""""
11937The argument to this intrinsic must be a vector of integer values.
11938
11939'``llvm.experimental.vector.reduce.xor.*``' Intrinsic
11940^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11941
11942Syntax:
11943"""""""
11944
11945::
11946
11947 declare i32 @llvm.experimental.vector.reduce.xor.i32.v4i32(<4 x i32> %a)
11948
11949Overview:
11950"""""""""
11951
11952The '``llvm.experimental.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
11953reduction of a vector, returning the result as a scalar. The return type matches
11954the element-type of the vector input.
11955
11956Arguments:
11957""""""""""
11958The argument to this intrinsic must be a vector of integer values.
11959
11960'``llvm.experimental.vector.reduce.smax.*``' Intrinsic
11961^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11962
11963Syntax:
11964"""""""
11965
11966::
11967
11968 declare i32 @llvm.experimental.vector.reduce.smax.i32.v4i32(<4 x i32> %a)
11969
11970Overview:
11971"""""""""
11972
11973The '``llvm.experimental.vector.reduce.smax.*``' intrinsics do a signed integer
11974``MAX`` reduction of a vector, returning the result as a scalar. The return type
11975matches the element-type of the vector input.
11976
11977Arguments:
11978""""""""""
11979The argument to this intrinsic must be a vector of integer values.
11980
11981'``llvm.experimental.vector.reduce.smin.*``' Intrinsic
11982^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11983
11984Syntax:
11985"""""""
11986
11987::
11988
11989 declare i32 @llvm.experimental.vector.reduce.smin.i32.v4i32(<4 x i32> %a)
11990
11991Overview:
11992"""""""""
11993
11994The '``llvm.experimental.vector.reduce.smin.*``' intrinsics do a signed integer
11995``MIN`` reduction of a vector, returning the result as a scalar. The return type
11996matches the element-type of the vector input.
11997
11998Arguments:
11999""""""""""
12000The argument to this intrinsic must be a vector of integer values.
12001
12002'``llvm.experimental.vector.reduce.umax.*``' Intrinsic
12003^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12004
12005Syntax:
12006"""""""
12007
12008::
12009
12010 declare i32 @llvm.experimental.vector.reduce.umax.i32.v4i32(<4 x i32> %a)
12011
12012Overview:
12013"""""""""
12014
12015The '``llvm.experimental.vector.reduce.umax.*``' intrinsics do an unsigned
12016integer ``MAX`` reduction of a vector, returning the result as a scalar. The
12017return type matches the element-type of the vector input.
12018
12019Arguments:
12020""""""""""
12021The argument to this intrinsic must be a vector of integer values.
12022
12023'``llvm.experimental.vector.reduce.umin.*``' Intrinsic
12024^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12025
12026Syntax:
12027"""""""
12028
12029::
12030
12031 declare i32 @llvm.experimental.vector.reduce.umin.i32.v4i32(<4 x i32> %a)
12032
12033Overview:
12034"""""""""
12035
12036The '``llvm.experimental.vector.reduce.umin.*``' intrinsics do an unsigned
12037integer ``MIN`` reduction of a vector, returning the result as a scalar. The
12038return type matches the element-type of the vector input.
12039
12040Arguments:
12041""""""""""
12042The argument to this intrinsic must be a vector of integer values.
12043
12044'``llvm.experimental.vector.reduce.fmax.*``' Intrinsic
12045^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12046
12047Syntax:
12048"""""""
12049
12050::
12051
12052 declare float @llvm.experimental.vector.reduce.fmax.f32.v4f32(<4 x float> %a)
12053 declare double @llvm.experimental.vector.reduce.fmax.f64.v2f64(<2 x double> %a)
12054
12055Overview:
12056"""""""""
12057
12058The '``llvm.experimental.vector.reduce.fmax.*``' intrinsics do a floating point
12059``MAX`` reduction of a vector, returning the result as a scalar. The return type
12060matches the element-type of the vector input.
12061
12062If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12063assume that NaNs are not present in the input vector.
12064
12065Arguments:
12066""""""""""
12067The argument to this intrinsic must be a vector of floating point values.
12068
12069'``llvm.experimental.vector.reduce.fmin.*``' Intrinsic
12070^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12071
12072Syntax:
12073"""""""
12074
12075::
12076
12077 declare float @llvm.experimental.vector.reduce.fmin.f32.v4f32(<4 x float> %a)
12078 declare double @llvm.experimental.vector.reduce.fmin.f64.v2f64(<2 x double> %a)
12079
12080Overview:
12081"""""""""
12082
12083The '``llvm.experimental.vector.reduce.fmin.*``' intrinsics do a floating point
12084``MIN`` reduction of a vector, returning the result as a scalar. The return type
12085matches the element-type of the vector input.
12086
12087If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12088assume that NaNs are not present in the input vector.
12089
12090Arguments:
12091""""""""""
12092The argument to this intrinsic must be a vector of floating point values.
12093
Sean Silvab084af42012-12-07 10:36:55 +000012094Half Precision Floating Point Intrinsics
12095----------------------------------------
12096
12097For most target platforms, half precision floating point is a
12098storage-only format. This means that it is a dense encoding (in memory)
12099but does not support computation in the format.
12100
12101This means that code must first load the half-precision floating point
12102value as an i16, then convert it to float with
12103:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
12104then be performed on the float value (including extending to double
12105etc). To store the value back to memory, it is first converted to float
12106if needed, then converted to i16 with
12107:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
12108i16 value.
12109
12110.. _int_convert_to_fp16:
12111
12112'``llvm.convert.to.fp16``' Intrinsic
12113^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12114
12115Syntax:
12116"""""""
12117
12118::
12119
Tim Northoverfd7e4242014-07-17 10:51:23 +000012120 declare i16 @llvm.convert.to.fp16.f32(float %a)
12121 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000012122
12123Overview:
12124"""""""""
12125
Tim Northoverfd7e4242014-07-17 10:51:23 +000012126The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
12127conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000012128
12129Arguments:
12130""""""""""
12131
12132The intrinsic function contains single argument - the value to be
12133converted.
12134
12135Semantics:
12136""""""""""
12137
Tim Northoverfd7e4242014-07-17 10:51:23 +000012138The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
12139conventional floating point format to half precision floating point format. The
12140return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000012141
12142Examples:
12143"""""""""
12144
12145.. code-block:: llvm
12146
Tim Northoverfd7e4242014-07-17 10:51:23 +000012147 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000012148 store i16 %res, i16* @x, align 2
12149
12150.. _int_convert_from_fp16:
12151
12152'``llvm.convert.from.fp16``' Intrinsic
12153^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12154
12155Syntax:
12156"""""""
12157
12158::
12159
Tim Northoverfd7e4242014-07-17 10:51:23 +000012160 declare float @llvm.convert.from.fp16.f32(i16 %a)
12161 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012162
12163Overview:
12164"""""""""
12165
12166The '``llvm.convert.from.fp16``' intrinsic function performs a
12167conversion from half precision floating point format to single precision
12168floating point format.
12169
12170Arguments:
12171""""""""""
12172
12173The intrinsic function contains single argument - the value to be
12174converted.
12175
12176Semantics:
12177""""""""""
12178
12179The '``llvm.convert.from.fp16``' intrinsic function performs a
12180conversion from half single precision floating point format to single
12181precision floating point format. The input half-float value is
12182represented by an ``i16`` value.
12183
12184Examples:
12185"""""""""
12186
12187.. code-block:: llvm
12188
David Blaikiec7aabbb2015-03-04 22:06:14 +000012189 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000012190 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012191
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000012192.. _dbg_intrinsics:
12193
Sean Silvab084af42012-12-07 10:36:55 +000012194Debugger Intrinsics
12195-------------------
12196
12197The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
12198prefix), are described in the `LLVM Source Level
12199Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
12200document.
12201
12202Exception Handling Intrinsics
12203-----------------------------
12204
12205The LLVM exception handling intrinsics (which all start with
12206``llvm.eh.`` prefix), are described in the `LLVM Exception
12207Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
12208
12209.. _int_trampoline:
12210
12211Trampoline Intrinsics
12212---------------------
12213
12214These intrinsics make it possible to excise one parameter, marked with
12215the :ref:`nest <nest>` attribute, from a function. The result is a
12216callable function pointer lacking the nest parameter - the caller does
12217not need to provide a value for it. Instead, the value to use is stored
12218in advance in a "trampoline", a block of memory usually allocated on the
12219stack, which also contains code to splice the nest value into the
12220argument list. This is used to implement the GCC nested function address
12221extension.
12222
12223For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
12224then the resulting function pointer has signature ``i32 (i32, i32)*``.
12225It can be created as follows:
12226
12227.. code-block:: llvm
12228
12229 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000012230 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000012231 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
12232 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
12233 %fp = bitcast i8* %p to i32 (i32, i32)*
12234
12235The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
12236``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
12237
12238.. _int_it:
12239
12240'``llvm.init.trampoline``' Intrinsic
12241^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12242
12243Syntax:
12244"""""""
12245
12246::
12247
12248 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
12249
12250Overview:
12251"""""""""
12252
12253This fills the memory pointed to by ``tramp`` with executable code,
12254turning it into a trampoline.
12255
12256Arguments:
12257""""""""""
12258
12259The ``llvm.init.trampoline`` intrinsic takes three arguments, all
12260pointers. The ``tramp`` argument must point to a sufficiently large and
12261sufficiently aligned block of memory; this memory is written to by the
12262intrinsic. Note that the size and the alignment are target-specific -
12263LLVM currently provides no portable way of determining them, so a
12264front-end that generates this intrinsic needs to have some
12265target-specific knowledge. The ``func`` argument must hold a function
12266bitcast to an ``i8*``.
12267
12268Semantics:
12269""""""""""
12270
12271The block of memory pointed to by ``tramp`` is filled with target
12272dependent code, turning it into a function. Then ``tramp`` needs to be
12273passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
12274be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
12275function's signature is the same as that of ``func`` with any arguments
12276marked with the ``nest`` attribute removed. At most one such ``nest``
12277argument is allowed, and it must be of pointer type. Calling the new
12278function is equivalent to calling ``func`` with the same argument list,
12279but with ``nval`` used for the missing ``nest`` argument. If, after
12280calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
12281modified, then the effect of any later call to the returned function
12282pointer is undefined.
12283
12284.. _int_at:
12285
12286'``llvm.adjust.trampoline``' Intrinsic
12287^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12288
12289Syntax:
12290"""""""
12291
12292::
12293
12294 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
12295
12296Overview:
12297"""""""""
12298
12299This performs any required machine-specific adjustment to the address of
12300a trampoline (passed as ``tramp``).
12301
12302Arguments:
12303""""""""""
12304
12305``tramp`` must point to a block of memory which already has trampoline
12306code filled in by a previous call to
12307:ref:`llvm.init.trampoline <int_it>`.
12308
12309Semantics:
12310""""""""""
12311
12312On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012313different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000012314intrinsic returns the executable address corresponding to ``tramp``
12315after performing the required machine specific adjustments. The pointer
12316returned can then be :ref:`bitcast and executed <int_trampoline>`.
12317
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012318.. _int_mload_mstore:
12319
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012320Masked Vector Load and Store Intrinsics
12321---------------------------------------
12322
12323LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
12324
12325.. _int_mload:
12326
12327'``llvm.masked.load.*``' Intrinsics
12328^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12329
12330Syntax:
12331"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012332This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012333
12334::
12335
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012336 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12337 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012338 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012339 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012340 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012341 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012342
12343Overview:
12344"""""""""
12345
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012346Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012347
12348
12349Arguments:
12350""""""""""
12351
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012352The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012353
12354
12355Semantics:
12356""""""""""
12357
12358The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
12359The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
12360
12361
12362::
12363
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012364 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012365
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012366 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000012367 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012368 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012369
12370.. _int_mstore:
12371
12372'``llvm.masked.store.*``' Intrinsics
12373^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12374
12375Syntax:
12376"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012377This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012378
12379::
12380
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012381 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
12382 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012383 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012384 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012385 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012386 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012387
12388Overview:
12389"""""""""
12390
12391Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12392
12393Arguments:
12394""""""""""
12395
12396The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12397
12398
12399Semantics:
12400""""""""""
12401
12402The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
12403The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
12404
12405::
12406
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012407 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012408
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012409 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000012410 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012411 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
12412 store <16 x float> %res, <16 x float>* %ptr, align 4
12413
12414
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012415Masked Vector Gather and Scatter Intrinsics
12416-------------------------------------------
12417
12418LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
12419
12420.. _int_mgather:
12421
12422'``llvm.masked.gather.*``' Intrinsics
12423^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12424
12425Syntax:
12426"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012427This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012428
12429::
12430
Elad Cohenef5798a2017-05-03 12:28:54 +000012431 declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12432 declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64 (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
12433 declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012434
12435Overview:
12436"""""""""
12437
12438Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
12439
12440
12441Arguments:
12442""""""""""
12443
12444The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
12445
12446
12447Semantics:
12448""""""""""
12449
12450The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
12451The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
12452
12453
12454::
12455
Elad Cohenef5798a2017-05-03 12:28:54 +000012456 %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012457
12458 ;; The gather with all-true mask is equivalent to the following instruction sequence
12459 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
12460 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
12461 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
12462 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
12463
12464 %val0 = load double, double* %ptr0, align 8
12465 %val1 = load double, double* %ptr1, align 8
12466 %val2 = load double, double* %ptr2, align 8
12467 %val3 = load double, double* %ptr3, align 8
12468
12469 %vec0 = insertelement <4 x double>undef, %val0, 0
12470 %vec01 = insertelement <4 x double>%vec0, %val1, 1
12471 %vec012 = insertelement <4 x double>%vec01, %val2, 2
12472 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
12473
12474.. _int_mscatter:
12475
12476'``llvm.masked.scatter.*``' Intrinsics
12477^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12478
12479Syntax:
12480"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012481This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012482
12483::
12484
Elad Cohenef5798a2017-05-03 12:28:54 +000012485 declare void @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
12486 declare void @llvm.masked.scatter.v16f32.v16p1f32 (<16 x float> <value>, <16 x float addrspace(1)*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
12487 declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012488
12489Overview:
12490"""""""""
12491
12492Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12493
12494Arguments:
12495""""""""""
12496
12497The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12498
12499
12500Semantics:
12501""""""""""
12502
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000012503The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012504
12505::
12506
Sylvestre Ledru84666a12016-02-14 20:16:22 +000012507 ;; This instruction unconditionally stores data vector in multiple addresses
Elad Cohenef5798a2017-05-03 12:28:54 +000012508 call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012509
12510 ;; It is equivalent to a list of scalar stores
12511 %val0 = extractelement <8 x i32> %value, i32 0
12512 %val1 = extractelement <8 x i32> %value, i32 1
12513 ..
12514 %val7 = extractelement <8 x i32> %value, i32 7
12515 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
12516 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
12517 ..
12518 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
12519 ;; Note: the order of the following stores is important when they overlap:
12520 store i32 %val0, i32* %ptr0, align 4
12521 store i32 %val1, i32* %ptr1, align 4
12522 ..
12523 store i32 %val7, i32* %ptr7, align 4
12524
12525
Sean Silvab084af42012-12-07 10:36:55 +000012526Memory Use Markers
12527------------------
12528
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012529This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000012530memory objects and ranges where variables are immutable.
12531
Reid Klecknera534a382013-12-19 02:14:12 +000012532.. _int_lifestart:
12533
Sean Silvab084af42012-12-07 10:36:55 +000012534'``llvm.lifetime.start``' Intrinsic
12535^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12536
12537Syntax:
12538"""""""
12539
12540::
12541
12542 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
12543
12544Overview:
12545"""""""""
12546
12547The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
12548object's lifetime.
12549
12550Arguments:
12551""""""""""
12552
12553The first argument is a constant integer representing the size of the
12554object, or -1 if it is variable sized. The second argument is a pointer
12555to the object.
12556
12557Semantics:
12558""""""""""
12559
12560This intrinsic indicates that before this point in the code, the value
12561of the memory pointed to by ``ptr`` is dead. This means that it is known
12562to never be used and has an undefined value. A load from the pointer
12563that precedes this intrinsic can be replaced with ``'undef'``.
12564
Reid Klecknera534a382013-12-19 02:14:12 +000012565.. _int_lifeend:
12566
Sean Silvab084af42012-12-07 10:36:55 +000012567'``llvm.lifetime.end``' Intrinsic
12568^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12569
12570Syntax:
12571"""""""
12572
12573::
12574
12575 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
12576
12577Overview:
12578"""""""""
12579
12580The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
12581object's lifetime.
12582
12583Arguments:
12584""""""""""
12585
12586The first argument is a constant integer representing the size of the
12587object, or -1 if it is variable sized. The second argument is a pointer
12588to the object.
12589
12590Semantics:
12591""""""""""
12592
12593This intrinsic indicates that after this point in the code, the value of
12594the memory pointed to by ``ptr`` is dead. This means that it is known to
12595never be used and has an undefined value. Any stores into the memory
12596object following this intrinsic may be removed as dead.
12597
12598'``llvm.invariant.start``' Intrinsic
12599^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12600
12601Syntax:
12602"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012603This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012604
12605::
12606
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012607 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012608
12609Overview:
12610"""""""""
12611
12612The '``llvm.invariant.start``' intrinsic specifies that the contents of
12613a memory object will not change.
12614
12615Arguments:
12616""""""""""
12617
12618The first argument is a constant integer representing the size of the
12619object, or -1 if it is variable sized. The second argument is a pointer
12620to the object.
12621
12622Semantics:
12623""""""""""
12624
12625This intrinsic indicates that until an ``llvm.invariant.end`` that uses
12626the return value, the referenced memory location is constant and
12627unchanging.
12628
12629'``llvm.invariant.end``' Intrinsic
12630^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12631
12632Syntax:
12633"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012634This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012635
12636::
12637
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012638 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012639
12640Overview:
12641"""""""""
12642
12643The '``llvm.invariant.end``' intrinsic specifies that the contents of a
12644memory object are mutable.
12645
12646Arguments:
12647""""""""""
12648
12649The first argument is the matching ``llvm.invariant.start`` intrinsic.
12650The second argument is a constant integer representing the size of the
12651object, or -1 if it is variable sized and the third argument is a
12652pointer to the object.
12653
12654Semantics:
12655""""""""""
12656
12657This intrinsic indicates that the memory is mutable again.
12658
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012659'``llvm.invariant.group.barrier``' Intrinsic
12660^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12661
12662Syntax:
12663"""""""
12664
12665::
12666
12667 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
12668
12669Overview:
12670"""""""""
12671
12672The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
12673established by invariant.group metadata no longer holds, to obtain a new pointer
12674value that does not carry the invariant information.
12675
12676
12677Arguments:
12678""""""""""
12679
12680The ``llvm.invariant.group.barrier`` takes only one argument, which is
12681the pointer to the memory for which the ``invariant.group`` no longer holds.
12682
12683Semantics:
12684""""""""""
12685
12686Returns another pointer that aliases its argument but which is considered different
12687for the purposes of ``load``/``store`` ``invariant.group`` metadata.
12688
Andrew Kaylora0a11642017-01-26 23:27:59 +000012689Constrained Floating Point Intrinsics
12690-------------------------------------
12691
12692These intrinsics are used to provide special handling of floating point
12693operations when specific rounding mode or floating point exception behavior is
12694required. By default, LLVM optimization passes assume that the rounding mode is
12695round-to-nearest and that floating point exceptions will not be monitored.
12696Constrained FP intrinsics are used to support non-default rounding modes and
12697accurately preserve exception behavior without compromising LLVM's ability to
12698optimize FP code when the default behavior is used.
12699
12700Each of these intrinsics corresponds to a normal floating point operation. The
12701first two arguments and the return value are the same as the corresponding FP
12702operation.
12703
12704The third argument is a metadata argument specifying the rounding mode to be
12705assumed. This argument must be one of the following strings:
12706
12707::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012708
Andrew Kaylora0a11642017-01-26 23:27:59 +000012709 "round.dynamic"
12710 "round.tonearest"
12711 "round.downward"
12712 "round.upward"
12713 "round.towardzero"
12714
12715If this argument is "round.dynamic" optimization passes must assume that the
12716rounding mode is unknown and may change at runtime. No transformations that
12717depend on rounding mode may be performed in this case.
12718
12719The other possible values for the rounding mode argument correspond to the
12720similarly named IEEE rounding modes. If the argument is any of these values
12721optimization passes may perform transformations as long as they are consistent
12722with the specified rounding mode.
12723
12724For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
12725"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
12726'x-0' should evaluate to '-0' when rounding downward. However, this
12727transformation is legal for all other rounding modes.
12728
12729For values other than "round.dynamic" optimization passes may assume that the
12730actual runtime rounding mode (as defined in a target-specific manner) matches
12731the specified rounding mode, but this is not guaranteed. Using a specific
12732non-dynamic rounding mode which does not match the actual rounding mode at
12733runtime results in undefined behavior.
12734
12735The fourth argument to the constrained floating point intrinsics specifies the
12736required exception behavior. This argument must be one of the following
12737strings:
12738
12739::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012740
Andrew Kaylora0a11642017-01-26 23:27:59 +000012741 "fpexcept.ignore"
12742 "fpexcept.maytrap"
12743 "fpexcept.strict"
12744
12745If this argument is "fpexcept.ignore" optimization passes may assume that the
12746exception status flags will not be read and that floating point exceptions will
12747be masked. This allows transformations to be performed that may change the
12748exception semantics of the original code. For example, FP operations may be
12749speculatively executed in this case whereas they must not be for either of the
12750other possible values of this argument.
12751
12752If the exception behavior argument is "fpexcept.maytrap" optimization passes
12753must avoid transformations that may raise exceptions that would not have been
12754raised by the original code (such as speculatively executing FP operations), but
12755passes are not required to preserve all exceptions that are implied by the
12756original code. For example, exceptions may be potentially hidden by constant
12757folding.
12758
12759If the exception behavior argument is "fpexcept.strict" all transformations must
12760strictly preserve the floating point exception semantics of the original code.
12761Any FP exception that would have been raised by the original code must be raised
12762by the transformed code, and the transformed code must not raise any FP
12763exceptions that would not have been raised by the original code. This is the
12764exception behavior argument that will be used if the code being compiled reads
12765the FP exception status flags, but this mode can also be used with code that
12766unmasks FP exceptions.
12767
12768The number and order of floating point exceptions is NOT guaranteed. For
12769example, a series of FP operations that each may raise exceptions may be
12770vectorized into a single instruction that raises each unique exception a single
12771time.
12772
12773
12774'``llvm.experimental.constrained.fadd``' Intrinsic
12775^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12776
12777Syntax:
12778"""""""
12779
12780::
12781
12782 declare <type>
12783 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
12784 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012785 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012786
12787Overview:
12788"""""""""
12789
12790The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
12791two operands.
12792
12793
12794Arguments:
12795""""""""""
12796
12797The first two arguments to the '``llvm.experimental.constrained.fadd``'
12798intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12799of floating point values. Both arguments must have identical types.
12800
12801The third and fourth arguments specify the rounding mode and exception
12802behavior as described above.
12803
12804Semantics:
12805""""""""""
12806
12807The value produced is the floating point sum of the two value operands and has
12808the same type as the operands.
12809
12810
12811'``llvm.experimental.constrained.fsub``' Intrinsic
12812^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12813
12814Syntax:
12815"""""""
12816
12817::
12818
12819 declare <type>
12820 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
12821 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012822 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012823
12824Overview:
12825"""""""""
12826
12827The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
12828of its two operands.
12829
12830
12831Arguments:
12832""""""""""
12833
12834The first two arguments to the '``llvm.experimental.constrained.fsub``'
12835intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12836of floating point values. Both arguments must have identical types.
12837
12838The third and fourth arguments specify the rounding mode and exception
12839behavior as described above.
12840
12841Semantics:
12842""""""""""
12843
12844The value produced is the floating point difference of the two value operands
12845and has the same type as the operands.
12846
12847
12848'``llvm.experimental.constrained.fmul``' Intrinsic
12849^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12850
12851Syntax:
12852"""""""
12853
12854::
12855
12856 declare <type>
12857 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
12858 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012859 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012860
12861Overview:
12862"""""""""
12863
12864The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
12865its two operands.
12866
12867
12868Arguments:
12869""""""""""
12870
12871The first two arguments to the '``llvm.experimental.constrained.fmul``'
12872intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12873of floating point values. Both arguments must have identical types.
12874
12875The third and fourth arguments specify the rounding mode and exception
12876behavior as described above.
12877
12878Semantics:
12879""""""""""
12880
12881The value produced is the floating point product of the two value operands and
12882has the same type as the operands.
12883
12884
12885'``llvm.experimental.constrained.fdiv``' Intrinsic
12886^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12887
12888Syntax:
12889"""""""
12890
12891::
12892
12893 declare <type>
12894 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
12895 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012896 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012897
12898Overview:
12899"""""""""
12900
12901The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
12902its two operands.
12903
12904
12905Arguments:
12906""""""""""
12907
12908The first two arguments to the '``llvm.experimental.constrained.fdiv``'
12909intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12910of floating point values. Both arguments must have identical types.
12911
12912The third and fourth arguments specify the rounding mode and exception
12913behavior as described above.
12914
12915Semantics:
12916""""""""""
12917
12918The value produced is the floating point quotient of the two value operands and
12919has the same type as the operands.
12920
12921
12922'``llvm.experimental.constrained.frem``' Intrinsic
12923^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12924
12925Syntax:
12926"""""""
12927
12928::
12929
12930 declare <type>
12931 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
12932 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012933 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012934
12935Overview:
12936"""""""""
12937
12938The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
12939from the division of its two operands.
12940
12941
12942Arguments:
12943""""""""""
12944
12945The first two arguments to the '``llvm.experimental.constrained.frem``'
12946intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12947of floating point values. Both arguments must have identical types.
12948
12949The third and fourth arguments specify the rounding mode and exception
12950behavior as described above. The rounding mode argument has no effect, since
12951the result of frem is never rounded, but the argument is included for
12952consistency with the other constrained floating point intrinsics.
12953
12954Semantics:
12955""""""""""
12956
12957The value produced is the floating point remainder from the division of the two
12958value operands and has the same type as the operands. The remainder has the
12959same sign as the dividend.
12960
12961
Andrew Kaylorf4660012017-05-25 21:31:00 +000012962Constrained libm-equivalent Intrinsics
12963--------------------------------------
12964
12965In addition to the basic floating point operations for which constrained
12966intrinsics are described above, there are constrained versions of various
12967operations which provide equivalent behavior to a corresponding libm function.
12968These intrinsics allow the precise behavior of these operations with respect to
12969rounding mode and exception behavior to be controlled.
12970
12971As with the basic constrained floating point intrinsics, the rounding mode
12972and exception behavior arguments only control the behavior of the optimizer.
12973They do not change the runtime floating point environment.
12974
12975
12976'``llvm.experimental.constrained.sqrt``' Intrinsic
12977^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12978
12979Syntax:
12980"""""""
12981
12982::
12983
12984 declare <type>
12985 @llvm.experimental.constrained.sqrt(<type> <op1>,
12986 metadata <rounding mode>,
12987 metadata <exception behavior>)
12988
12989Overview:
12990"""""""""
12991
12992The '``llvm.experimental.constrained.sqrt``' intrinsic returns the square root
12993of the specified value, returning the same value as the libm '``sqrt``'
12994functions would, but without setting ``errno``.
12995
12996Arguments:
12997""""""""""
12998
12999The first argument and the return type are floating point numbers of the same
13000type.
13001
13002The second and third arguments specify the rounding mode and exception
13003behavior as described above.
13004
13005Semantics:
13006""""""""""
13007
13008This function returns the nonnegative square root of the specified value.
13009If the value is less than negative zero, a floating point exception occurs
13010and the the return value is architecture specific.
13011
13012
13013'``llvm.experimental.constrained.pow``' Intrinsic
13014^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13015
13016Syntax:
13017"""""""
13018
13019::
13020
13021 declare <type>
13022 @llvm.experimental.constrained.pow(<type> <op1>, <type> <op2>,
13023 metadata <rounding mode>,
13024 metadata <exception behavior>)
13025
13026Overview:
13027"""""""""
13028
13029The '``llvm.experimental.constrained.pow``' intrinsic returns the first operand
13030raised to the (positive or negative) power specified by the second operand.
13031
13032Arguments:
13033""""""""""
13034
13035The first two arguments and the return value are floating point numbers of the
13036same type. The second argument specifies the power to which the first argument
13037should be raised.
13038
13039The third and fourth arguments specify the rounding mode and exception
13040behavior as described above.
13041
13042Semantics:
13043""""""""""
13044
13045This function returns the first value raised to the second power,
13046returning the same values as the libm ``pow`` functions would, and
13047handles error conditions in the same way.
13048
13049
13050'``llvm.experimental.constrained.powi``' Intrinsic
13051^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13052
13053Syntax:
13054"""""""
13055
13056::
13057
13058 declare <type>
13059 @llvm.experimental.constrained.powi(<type> <op1>, i32 <op2>,
13060 metadata <rounding mode>,
13061 metadata <exception behavior>)
13062
13063Overview:
13064"""""""""
13065
13066The '``llvm.experimental.constrained.powi``' intrinsic returns the first operand
13067raised to the (positive or negative) power specified by the second operand. The
13068order of evaluation of multiplications is not defined. When a vector of floating
13069point type is used, the second argument remains a scalar integer value.
13070
13071
13072Arguments:
13073""""""""""
13074
13075The first argument and the return value are floating point numbers of the same
13076type. The second argument is a 32-bit signed integer specifying the power to
13077which the first argument should be raised.
13078
13079The third and fourth arguments specify the rounding mode and exception
13080behavior as described above.
13081
13082Semantics:
13083""""""""""
13084
13085This function returns the first value raised to the second power with an
13086unspecified sequence of rounding operations.
13087
13088
13089'``llvm.experimental.constrained.sin``' Intrinsic
13090^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13091
13092Syntax:
13093"""""""
13094
13095::
13096
13097 declare <type>
13098 @llvm.experimental.constrained.sin(<type> <op1>,
13099 metadata <rounding mode>,
13100 metadata <exception behavior>)
13101
13102Overview:
13103"""""""""
13104
13105The '``llvm.experimental.constrained.sin``' intrinsic returns the sine of the
13106first operand.
13107
13108Arguments:
13109""""""""""
13110
13111The first argument and the return type are floating point numbers of the same
13112type.
13113
13114The second and third arguments specify the rounding mode and exception
13115behavior as described above.
13116
13117Semantics:
13118""""""""""
13119
13120This function returns the sine of the specified operand, returning the
13121same values as the libm ``sin`` functions would, and handles error
13122conditions in the same way.
13123
13124
13125'``llvm.experimental.constrained.cos``' Intrinsic
13126^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13127
13128Syntax:
13129"""""""
13130
13131::
13132
13133 declare <type>
13134 @llvm.experimental.constrained.cos(<type> <op1>,
13135 metadata <rounding mode>,
13136 metadata <exception behavior>)
13137
13138Overview:
13139"""""""""
13140
13141The '``llvm.experimental.constrained.cos``' intrinsic returns the cosine of the
13142first operand.
13143
13144Arguments:
13145""""""""""
13146
13147The first argument and the return type are floating point numbers of the same
13148type.
13149
13150The second and third arguments specify the rounding mode and exception
13151behavior as described above.
13152
13153Semantics:
13154""""""""""
13155
13156This function returns the cosine of the specified operand, returning the
13157same values as the libm ``cos`` functions would, and handles error
13158conditions in the same way.
13159
13160
13161'``llvm.experimental.constrained.exp``' Intrinsic
13162^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13163
13164Syntax:
13165"""""""
13166
13167::
13168
13169 declare <type>
13170 @llvm.experimental.constrained.exp(<type> <op1>,
13171 metadata <rounding mode>,
13172 metadata <exception behavior>)
13173
13174Overview:
13175"""""""""
13176
13177The '``llvm.experimental.constrained.exp``' intrinsic computes the base-e
13178exponential of the specified value.
13179
13180Arguments:
13181""""""""""
13182
13183The first argument and the return value are floating point numbers of the same
13184type.
13185
13186The second and third arguments specify the rounding mode and exception
13187behavior as described above.
13188
13189Semantics:
13190""""""""""
13191
13192This function returns the same values as the libm ``exp`` functions
13193would, and handles error conditions in the same way.
13194
13195
13196'``llvm.experimental.constrained.exp2``' Intrinsic
13197^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13198
13199Syntax:
13200"""""""
13201
13202::
13203
13204 declare <type>
13205 @llvm.experimental.constrained.exp2(<type> <op1>,
13206 metadata <rounding mode>,
13207 metadata <exception behavior>)
13208
13209Overview:
13210"""""""""
13211
13212The '``llvm.experimental.constrained.exp2``' intrinsic computes the base-2
13213exponential of the specified value.
13214
13215
13216Arguments:
13217""""""""""
13218
13219The first argument and the return value are floating point numbers of the same
13220type.
13221
13222The second and third arguments specify the rounding mode and exception
13223behavior as described above.
13224
13225Semantics:
13226""""""""""
13227
13228This function returns the same values as the libm ``exp2`` functions
13229would, and handles error conditions in the same way.
13230
13231
13232'``llvm.experimental.constrained.log``' Intrinsic
13233^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13234
13235Syntax:
13236"""""""
13237
13238::
13239
13240 declare <type>
13241 @llvm.experimental.constrained.log(<type> <op1>,
13242 metadata <rounding mode>,
13243 metadata <exception behavior>)
13244
13245Overview:
13246"""""""""
13247
13248The '``llvm.experimental.constrained.log``' intrinsic computes the base-e
13249logarithm of the specified value.
13250
13251Arguments:
13252""""""""""
13253
13254The first argument and the return value are floating point numbers of the same
13255type.
13256
13257The second and third arguments specify the rounding mode and exception
13258behavior as described above.
13259
13260
13261Semantics:
13262""""""""""
13263
13264This function returns the same values as the libm ``log`` functions
13265would, and handles error conditions in the same way.
13266
13267
13268'``llvm.experimental.constrained.log10``' Intrinsic
13269^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13270
13271Syntax:
13272"""""""
13273
13274::
13275
13276 declare <type>
13277 @llvm.experimental.constrained.log10(<type> <op1>,
13278 metadata <rounding mode>,
13279 metadata <exception behavior>)
13280
13281Overview:
13282"""""""""
13283
13284The '``llvm.experimental.constrained.log10``' intrinsic computes the base-10
13285logarithm of the specified value.
13286
13287Arguments:
13288""""""""""
13289
13290The first argument and the return value are floating point numbers of the same
13291type.
13292
13293The second and third arguments specify the rounding mode and exception
13294behavior as described above.
13295
13296Semantics:
13297""""""""""
13298
13299This function returns the same values as the libm ``log10`` functions
13300would, and handles error conditions in the same way.
13301
13302
13303'``llvm.experimental.constrained.log2``' Intrinsic
13304^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13305
13306Syntax:
13307"""""""
13308
13309::
13310
13311 declare <type>
13312 @llvm.experimental.constrained.log2(<type> <op1>,
13313 metadata <rounding mode>,
13314 metadata <exception behavior>)
13315
13316Overview:
13317"""""""""
13318
13319The '``llvm.experimental.constrained.log2``' intrinsic computes the base-2
13320logarithm of the specified value.
13321
13322Arguments:
13323""""""""""
13324
13325The first argument and the return value are floating point numbers of the same
13326type.
13327
13328The second and third arguments specify the rounding mode and exception
13329behavior as described above.
13330
13331Semantics:
13332""""""""""
13333
13334This function returns the same values as the libm ``log2`` functions
13335would, and handles error conditions in the same way.
13336
13337
13338'``llvm.experimental.constrained.rint``' Intrinsic
13339^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13340
13341Syntax:
13342"""""""
13343
13344::
13345
13346 declare <type>
13347 @llvm.experimental.constrained.rint(<type> <op1>,
13348 metadata <rounding mode>,
13349 metadata <exception behavior>)
13350
13351Overview:
13352"""""""""
13353
13354The '``llvm.experimental.constrained.rint``' intrinsic returns the first
13355operand rounded to the nearest integer. It may raise an inexact floating point
13356exception if the operand is not an integer.
13357
13358Arguments:
13359""""""""""
13360
13361The first argument and the return value are floating point numbers of the same
13362type.
13363
13364The second and third arguments specify the rounding mode and exception
13365behavior as described above.
13366
13367Semantics:
13368""""""""""
13369
13370This function returns the same values as the libm ``rint`` functions
13371would, and handles error conditions in the same way. The rounding mode is
13372described, not determined, by the rounding mode argument. The actual rounding
13373mode is determined by the runtime floating point environment. The rounding
13374mode argument is only intended as information to the compiler.
13375
13376
13377'``llvm.experimental.constrained.nearbyint``' Intrinsic
13378^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13379
13380Syntax:
13381"""""""
13382
13383::
13384
13385 declare <type>
13386 @llvm.experimental.constrained.nearbyint(<type> <op1>,
13387 metadata <rounding mode>,
13388 metadata <exception behavior>)
13389
13390Overview:
13391"""""""""
13392
13393The '``llvm.experimental.constrained.nearbyint``' intrinsic returns the first
13394operand rounded to the nearest integer. It will not raise an inexact floating
13395point exception if the operand is not an integer.
13396
13397
13398Arguments:
13399""""""""""
13400
13401The first argument and the return value are floating point numbers of the same
13402type.
13403
13404The second and third arguments specify the rounding mode and exception
13405behavior as described above.
13406
13407Semantics:
13408""""""""""
13409
13410This function returns the same values as the libm ``nearbyint`` functions
13411would, and handles error conditions in the same way. The rounding mode is
13412described, not determined, by the rounding mode argument. The actual rounding
13413mode is determined by the runtime floating point environment. The rounding
13414mode argument is only intended as information to the compiler.
13415
13416
Sean Silvab084af42012-12-07 10:36:55 +000013417General Intrinsics
13418------------------
13419
13420This class of intrinsics is designed to be generic and has no specific
13421purpose.
13422
13423'``llvm.var.annotation``' Intrinsic
13424^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13425
13426Syntax:
13427"""""""
13428
13429::
13430
13431 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
13432
13433Overview:
13434"""""""""
13435
13436The '``llvm.var.annotation``' intrinsic.
13437
13438Arguments:
13439""""""""""
13440
13441The first argument is a pointer to a value, the second is a pointer to a
13442global string, the third is a pointer to a global string which is the
13443source file name, and the last argument is the line number.
13444
13445Semantics:
13446""""""""""
13447
13448This intrinsic allows annotation of local variables with arbitrary
13449strings. This can be useful for special purpose optimizations that want
13450to look for these annotations. These have no other defined use; they are
13451ignored by code generation and optimization.
13452
Michael Gottesman88d18832013-03-26 00:34:27 +000013453'``llvm.ptr.annotation.*``' Intrinsic
13454^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13455
13456Syntax:
13457"""""""
13458
13459This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
13460pointer to an integer of any width. *NOTE* you must specify an address space for
13461the pointer. The identifier for the default address space is the integer
13462'``0``'.
13463
13464::
13465
13466 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
13467 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
13468 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
13469 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
13470 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
13471
13472Overview:
13473"""""""""
13474
13475The '``llvm.ptr.annotation``' intrinsic.
13476
13477Arguments:
13478""""""""""
13479
13480The first argument is a pointer to an integer value of arbitrary bitwidth
13481(result of some expression), the second is a pointer to a global string, the
13482third is a pointer to a global string which is the source file name, and the
13483last argument is the line number. It returns the value of the first argument.
13484
13485Semantics:
13486""""""""""
13487
13488This intrinsic allows annotation of a pointer to an integer with arbitrary
13489strings. This can be useful for special purpose optimizations that want to look
13490for these annotations. These have no other defined use; they are ignored by code
13491generation and optimization.
13492
Sean Silvab084af42012-12-07 10:36:55 +000013493'``llvm.annotation.*``' Intrinsic
13494^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13495
13496Syntax:
13497"""""""
13498
13499This is an overloaded intrinsic. You can use '``llvm.annotation``' on
13500any integer bit width.
13501
13502::
13503
13504 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
13505 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
13506 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
13507 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
13508 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
13509
13510Overview:
13511"""""""""
13512
13513The '``llvm.annotation``' intrinsic.
13514
13515Arguments:
13516""""""""""
13517
13518The first argument is an integer value (result of some expression), the
13519second is a pointer to a global string, the third is a pointer to a
13520global string which is the source file name, and the last argument is
13521the line number. It returns the value of the first argument.
13522
13523Semantics:
13524""""""""""
13525
13526This intrinsic allows annotations to be put on arbitrary expressions
13527with arbitrary strings. This can be useful for special purpose
13528optimizations that want to look for these annotations. These have no
13529other defined use; they are ignored by code generation and optimization.
13530
13531'``llvm.trap``' Intrinsic
13532^^^^^^^^^^^^^^^^^^^^^^^^^
13533
13534Syntax:
13535"""""""
13536
13537::
13538
13539 declare void @llvm.trap() noreturn nounwind
13540
13541Overview:
13542"""""""""
13543
13544The '``llvm.trap``' intrinsic.
13545
13546Arguments:
13547""""""""""
13548
13549None.
13550
13551Semantics:
13552""""""""""
13553
13554This intrinsic is lowered to the target dependent trap instruction. If
13555the target does not have a trap instruction, this intrinsic will be
13556lowered to a call of the ``abort()`` function.
13557
13558'``llvm.debugtrap``' Intrinsic
13559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13560
13561Syntax:
13562"""""""
13563
13564::
13565
13566 declare void @llvm.debugtrap() nounwind
13567
13568Overview:
13569"""""""""
13570
13571The '``llvm.debugtrap``' intrinsic.
13572
13573Arguments:
13574""""""""""
13575
13576None.
13577
13578Semantics:
13579""""""""""
13580
13581This intrinsic is lowered to code which is intended to cause an
13582execution trap with the intention of requesting the attention of a
13583debugger.
13584
13585'``llvm.stackprotector``' Intrinsic
13586^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13587
13588Syntax:
13589"""""""
13590
13591::
13592
13593 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
13594
13595Overview:
13596"""""""""
13597
13598The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
13599onto the stack at ``slot``. The stack slot is adjusted to ensure that it
13600is placed on the stack before local variables.
13601
13602Arguments:
13603""""""""""
13604
13605The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
13606The first argument is the value loaded from the stack guard
13607``@__stack_chk_guard``. The second variable is an ``alloca`` that has
13608enough space to hold the value of the guard.
13609
13610Semantics:
13611""""""""""
13612
Michael Gottesmandafc7d92013-08-12 18:35:32 +000013613This intrinsic causes the prologue/epilogue inserter to force the position of
13614the ``AllocaInst`` stack slot to be before local variables on the stack. This is
13615to ensure that if a local variable on the stack is overwritten, it will destroy
13616the value of the guard. When the function exits, the guard on the stack is
13617checked against the original guard by ``llvm.stackprotectorcheck``. If they are
13618different, then ``llvm.stackprotectorcheck`` causes the program to abort by
13619calling the ``__stack_chk_fail()`` function.
13620
Tim Shene885d5e2016-04-19 19:40:37 +000013621'``llvm.stackguard``' Intrinsic
13622^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13623
13624Syntax:
13625"""""""
13626
13627::
13628
13629 declare i8* @llvm.stackguard()
13630
13631Overview:
13632"""""""""
13633
13634The ``llvm.stackguard`` intrinsic returns the system stack guard value.
13635
13636It should not be generated by frontends, since it is only for internal usage.
13637The reason why we create this intrinsic is that we still support IR form Stack
13638Protector in FastISel.
13639
13640Arguments:
13641""""""""""
13642
13643None.
13644
13645Semantics:
13646""""""""""
13647
13648On some platforms, the value returned by this intrinsic remains unchanged
13649between loads in the same thread. On other platforms, it returns the same
13650global variable value, if any, e.g. ``@__stack_chk_guard``.
13651
13652Currently some platforms have IR-level customized stack guard loading (e.g.
13653X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
13654in the future.
13655
Sean Silvab084af42012-12-07 10:36:55 +000013656'``llvm.objectsize``' Intrinsic
13657^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13658
13659Syntax:
13660"""""""
13661
13662::
13663
George Burgess IV56c7e882017-03-21 20:08:59 +000013664 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>)
13665 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>)
Sean Silvab084af42012-12-07 10:36:55 +000013666
13667Overview:
13668"""""""""
13669
13670The ``llvm.objectsize`` intrinsic is designed to provide information to
13671the optimizers to determine at compile time whether a) an operation
13672(like memcpy) will overflow a buffer that corresponds to an object, or
13673b) that a runtime check for overflow isn't necessary. An object in this
13674context means an allocation of a specific class, structure, array, or
13675other object.
13676
13677Arguments:
13678""""""""""
13679
George Burgess IV56c7e882017-03-21 20:08:59 +000013680The ``llvm.objectsize`` intrinsic takes three arguments. The first argument is
13681a pointer to or into the ``object``. The second argument determines whether
13682``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size
13683is unknown. The third argument controls how ``llvm.objectsize`` acts when
13684``null`` is used as its pointer argument. If it's true and the pointer is in
13685address space 0, ``null`` is treated as an opaque value with an unknown number
13686of bytes. Otherwise, ``llvm.objectsize`` reports 0 bytes available when given
13687``null``.
13688
13689The second and third arguments only accept constants.
Sean Silvab084af42012-12-07 10:36:55 +000013690
13691Semantics:
13692""""""""""
13693
13694The ``llvm.objectsize`` intrinsic is lowered to a constant representing
13695the size of the object concerned. If the size cannot be determined at
13696compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
13697on the ``min`` argument).
13698
13699'``llvm.expect``' Intrinsic
13700^^^^^^^^^^^^^^^^^^^^^^^^^^^
13701
13702Syntax:
13703"""""""
13704
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000013705This is an overloaded intrinsic. You can use ``llvm.expect`` on any
13706integer bit width.
13707
Sean Silvab084af42012-12-07 10:36:55 +000013708::
13709
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000013710 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000013711 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
13712 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
13713
13714Overview:
13715"""""""""
13716
13717The ``llvm.expect`` intrinsic provides information about expected (the
13718most probable) value of ``val``, which can be used by optimizers.
13719
13720Arguments:
13721""""""""""
13722
13723The ``llvm.expect`` intrinsic takes two arguments. The first argument is
13724a value. The second argument is an expected value, this needs to be a
13725constant value, variables are not allowed.
13726
13727Semantics:
13728""""""""""
13729
13730This intrinsic is lowered to the ``val``.
13731
Philip Reamese0e90832015-04-26 22:23:12 +000013732.. _int_assume:
13733
Hal Finkel93046912014-07-25 21:13:35 +000013734'``llvm.assume``' Intrinsic
13735^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13736
13737Syntax:
13738"""""""
13739
13740::
13741
13742 declare void @llvm.assume(i1 %cond)
13743
13744Overview:
13745"""""""""
13746
13747The ``llvm.assume`` allows the optimizer to assume that the provided
13748condition is true. This information can then be used in simplifying other parts
13749of the code.
13750
13751Arguments:
13752""""""""""
13753
13754The condition which the optimizer may assume is always true.
13755
13756Semantics:
13757""""""""""
13758
13759The intrinsic allows the optimizer to assume that the provided condition is
13760always true whenever the control flow reaches the intrinsic call. No code is
13761generated for this intrinsic, and instructions that contribute only to the
13762provided condition are not used for code generation. If the condition is
13763violated during execution, the behavior is undefined.
13764
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000013765Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000013766used by the ``llvm.assume`` intrinsic in order to preserve the instructions
13767only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000013768if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000013769sufficient overall improvement in code quality. For this reason,
13770``llvm.assume`` should not be used to document basic mathematical invariants
13771that the optimizer can otherwise deduce or facts that are of little use to the
13772optimizer.
13773
Daniel Berlin2c438a32017-02-07 19:29:25 +000013774.. _int_ssa_copy:
13775
13776'``llvm.ssa_copy``' Intrinsic
13777^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13778
13779Syntax:
13780"""""""
13781
13782::
13783
13784 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
13785
13786Arguments:
13787""""""""""
13788
13789The first argument is an operand which is used as the returned value.
13790
13791Overview:
13792""""""""""
13793
13794The ``llvm.ssa_copy`` intrinsic can be used to attach information to
13795operations by copying them and giving them new names. For example,
13796the PredicateInfo utility uses it to build Extended SSA form, and
13797attach various forms of information to operands that dominate specific
13798uses. It is not meant for general use, only for building temporary
13799renaming forms that require value splits at certain points.
13800
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013801.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000013802
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013803'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000013804^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13805
13806Syntax:
13807"""""""
13808
13809::
13810
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013811 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000013812
13813
13814Arguments:
13815""""""""""
13816
13817The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013818metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000013819
13820Overview:
13821"""""""""
13822
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013823The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
13824with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000013825
Peter Collingbourne0312f612016-06-25 00:23:04 +000013826'``llvm.type.checked.load``' Intrinsic
13827^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13828
13829Syntax:
13830"""""""
13831
13832::
13833
13834 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
13835
13836
13837Arguments:
13838""""""""""
13839
13840The first argument is a pointer from which to load a function pointer. The
13841second argument is the byte offset from which to load the function pointer. The
13842third argument is a metadata object representing a :doc:`type identifier
13843<TypeMetadata>`.
13844
13845Overview:
13846"""""""""
13847
13848The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
13849virtual table pointer using type metadata. This intrinsic is used to implement
13850control flow integrity in conjunction with virtual call optimization. The
13851virtual call optimization pass will optimize away ``llvm.type.checked.load``
13852intrinsics associated with devirtualized calls, thereby removing the type
13853check in cases where it is not needed to enforce the control flow integrity
13854constraint.
13855
13856If the given pointer is associated with a type metadata identifier, this
13857function returns true as the second element of its return value. (Note that
13858the function may also return true if the given pointer is not associated
13859with a type metadata identifier.) If the function's return value's second
13860element is true, the following rules apply to the first element:
13861
13862- If the given pointer is associated with the given type metadata identifier,
13863 it is the function pointer loaded from the given byte offset from the given
13864 pointer.
13865
13866- If the given pointer is not associated with the given type metadata
13867 identifier, it is one of the following (the choice of which is unspecified):
13868
13869 1. The function pointer that would have been loaded from an arbitrarily chosen
13870 (through an unspecified mechanism) pointer associated with the type
13871 metadata.
13872
13873 2. If the function has a non-void return type, a pointer to a function that
13874 returns an unspecified value without causing side effects.
13875
13876If the function's return value's second element is false, the value of the
13877first element is undefined.
13878
13879
Sean Silvab084af42012-12-07 10:36:55 +000013880'``llvm.donothing``' Intrinsic
13881^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13882
13883Syntax:
13884"""""""
13885
13886::
13887
13888 declare void @llvm.donothing() nounwind readnone
13889
13890Overview:
13891"""""""""
13892
Juergen Ributzkac9161192014-10-23 22:36:13 +000013893The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000013894three intrinsics (besides ``llvm.experimental.patchpoint`` and
13895``llvm.experimental.gc.statepoint``) that can be called with an invoke
13896instruction.
Sean Silvab084af42012-12-07 10:36:55 +000013897
13898Arguments:
13899""""""""""
13900
13901None.
13902
13903Semantics:
13904""""""""""
13905
13906This intrinsic does nothing, and it's removed by optimizers and ignored
13907by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000013908
Sanjoy Dasb51325d2016-03-11 19:08:34 +000013909'``llvm.experimental.deoptimize``' Intrinsic
13910^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13911
13912Syntax:
13913"""""""
13914
13915::
13916
13917 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
13918
13919Overview:
13920"""""""""
13921
13922This intrinsic, together with :ref:`deoptimization operand bundles
13923<deopt_opbundles>`, allow frontends to express transfer of control and
13924frame-local state from the currently executing (typically more specialized,
13925hence faster) version of a function into another (typically more generic, hence
13926slower) version.
13927
13928In languages with a fully integrated managed runtime like Java and JavaScript
13929this intrinsic can be used to implement "uncommon trap" or "side exit" like
13930functionality. In unmanaged languages like C and C++, this intrinsic can be
13931used to represent the slow paths of specialized functions.
13932
13933
13934Arguments:
13935""""""""""
13936
13937The intrinsic takes an arbitrary number of arguments, whose meaning is
13938decided by the :ref:`lowering strategy<deoptimize_lowering>`.
13939
13940Semantics:
13941""""""""""
13942
13943The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
13944deoptimization continuation (denoted using a :ref:`deoptimization
13945operand bundle <deopt_opbundles>`) and returns the value returned by
13946the deoptimization continuation. Defining the semantic properties of
13947the continuation itself is out of scope of the language reference --
13948as far as LLVM is concerned, the deoptimization continuation can
13949invoke arbitrary side effects, including reading from and writing to
13950the entire heap.
13951
13952Deoptimization continuations expressed using ``"deopt"`` operand bundles always
13953continue execution to the end of the physical frame containing them, so all
13954calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
13955
13956 - ``@llvm.experimental.deoptimize`` cannot be invoked.
13957 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
13958 - The ``ret`` instruction must return the value produced by the
13959 ``@llvm.experimental.deoptimize`` call if there is one, or void.
13960
13961Note that the above restrictions imply that the return type for a call to
13962``@llvm.experimental.deoptimize`` will match the return type of its immediate
13963caller.
13964
13965The inliner composes the ``"deopt"`` continuations of the caller into the
13966``"deopt"`` continuations present in the inlinee, and also updates calls to this
13967intrinsic to return directly from the frame of the function it inlined into.
13968
Sanjoy Dase0aa4142016-05-12 01:17:38 +000013969All declarations of ``@llvm.experimental.deoptimize`` must share the
13970same calling convention.
13971
Sanjoy Dasb51325d2016-03-11 19:08:34 +000013972.. _deoptimize_lowering:
13973
13974Lowering:
13975"""""""""
13976
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000013977Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
13978symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
13979ensure that this symbol is defined). The call arguments to
13980``@llvm.experimental.deoptimize`` are lowered as if they were formal
13981arguments of the specified types, and not as varargs.
13982
Sanjoy Dasb51325d2016-03-11 19:08:34 +000013983
Sanjoy Das021de052016-03-31 00:18:46 +000013984'``llvm.experimental.guard``' Intrinsic
13985^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13986
13987Syntax:
13988"""""""
13989
13990::
13991
13992 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
13993
13994Overview:
13995"""""""""
13996
13997This intrinsic, together with :ref:`deoptimization operand bundles
13998<deopt_opbundles>`, allows frontends to express guards or checks on
13999optimistic assumptions made during compilation. The semantics of
14000``@llvm.experimental.guard`` is defined in terms of
14001``@llvm.experimental.deoptimize`` -- its body is defined to be
14002equivalent to:
14003
Renato Golin124f2592016-07-20 12:16:38 +000014004.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000014005
Renato Golin124f2592016-07-20 12:16:38 +000014006 define void @llvm.experimental.guard(i1 %pred, <args...>) {
14007 %realPred = and i1 %pred, undef
14008 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000014009
Renato Golin124f2592016-07-20 12:16:38 +000014010 leave:
14011 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
14012 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000014013
Renato Golin124f2592016-07-20 12:16:38 +000014014 continue:
14015 ret void
14016 }
Sanjoy Das021de052016-03-31 00:18:46 +000014017
Sanjoy Das47cf2af2016-04-30 00:55:59 +000014018
14019with the optional ``[, !make.implicit !{}]`` present if and only if it
14020is present on the call site. For more details on ``!make.implicit``,
14021see :doc:`FaultMaps`.
14022
Sanjoy Das021de052016-03-31 00:18:46 +000014023In words, ``@llvm.experimental.guard`` executes the attached
14024``"deopt"`` continuation if (but **not** only if) its first argument
14025is ``false``. Since the optimizer is allowed to replace the ``undef``
14026with an arbitrary value, it can optimize guard to fail "spuriously",
14027i.e. without the original condition being false (hence the "not only
14028if"); and this allows for "check widening" type optimizations.
14029
14030``@llvm.experimental.guard`` cannot be invoked.
14031
14032
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000014033'``llvm.load.relative``' Intrinsic
14034^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14035
14036Syntax:
14037"""""""
14038
14039::
14040
14041 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
14042
14043Overview:
14044"""""""""
14045
14046This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
14047adds ``%ptr`` to that value and returns it. The constant folder specifically
14048recognizes the form of this intrinsic and the constant initializers it may
14049load from; if a loaded constant initializer is known to have the form
14050``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
14051
14052LLVM provides that the calculation of such a constant initializer will
14053not overflow at link time under the medium code model if ``x`` is an
14054``unnamed_addr`` function. However, it does not provide this guarantee for
14055a constant initializer folded into a function body. This intrinsic can be
14056used to avoid the possibility of overflows when loading from such a constant.
14057
Andrew Trick5e029ce2013-12-24 02:57:25 +000014058Stack Map Intrinsics
14059--------------------
14060
14061LLVM provides experimental intrinsics to support runtime patching
14062mechanisms commonly desired in dynamic language JITs. These intrinsics
14063are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014064
14065Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000014066-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000014067
14068These intrinsics are similar to the standard library memory intrinsics except
14069that they perform memory transfer as a sequence of atomic memory accesses.
14070
14071.. _int_memcpy_element_atomic:
14072
14073'``llvm.memcpy.element.atomic``' Intrinsic
Igor Laevskyfedab152016-12-29 15:08:57 +000014074^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000014075
14076Syntax:
14077"""""""
14078
14079This is an overloaded intrinsic. You can use ``llvm.memcpy.element.atomic`` on
14080any integer bit width and for different address spaces. Not all targets
14081support all bit widths however.
14082
14083::
14084
14085 declare void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* <dest>, i8* <src>,
14086 i64 <num_elements>, i32 <element_size>)
14087
14088Overview:
14089"""""""""
14090
14091The '``llvm.memcpy.element.atomic.*``' intrinsic performs copy of a block of
14092memory from the source location to the destination location as a sequence of
14093unordered atomic memory accesses where each access is a multiple of
14094``element_size`` bytes wide and aligned at an element size boundary. For example
14095each element is accessed atomically in source and destination buffers.
14096
14097Arguments:
14098""""""""""
14099
14100The first argument is a pointer to the destination, the second is a
14101pointer to the source. The third argument is an integer argument
14102specifying the number of elements to copy, the fourth argument is size of
14103the single element in bytes.
14104
14105``element_size`` should be a power of two, greater than zero and less than
14106a target-specific atomic access size limit.
14107
14108For each of the input pointers ``align`` parameter attribute must be specified.
14109It must be a power of two and greater than or equal to the ``element_size``.
14110Caller guarantees that both the source and destination pointers are aligned to
14111that boundary.
14112
14113Semantics:
14114""""""""""
14115
14116The '``llvm.memcpy.element.atomic.*``' intrinsic copies
14117'``num_elements`` * ``element_size``' bytes of memory from the source location to
14118the destination location. These locations are not allowed to overlap. Memory copy
14119is performed as a sequence of unordered atomic memory accesses where each access
14120is guaranteed to be a multiple of ``element_size`` bytes wide and aligned at an
14121element size boundary.
14122
14123The order of the copy is unspecified. The same value may be read from the source
14124buffer many times, but only one write is issued to the destination buffer per
14125element. It is well defined to have concurrent reads and writes to both source
14126and destination provided those reads and writes are at least unordered atomic.
14127
14128This intrinsic does not provide any additional ordering guarantees over those
14129provided by a set of unordered loads from the source location and stores to the
14130destination.
14131
14132Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000014133"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000014134
14135In the most general case call to the '``llvm.memcpy.element.atomic.*``' is lowered
14136to a call to the symbol ``__llvm_memcpy_element_atomic_*``. Where '*' is replaced
14137with an actual element size.
14138
14139Optimizer is allowed to inline memory copy when it's profitable to do so.