blob: 1d0b9068d31e91300feecf56c78e639a770a13be [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledru0604c5c2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvab084af42012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000530.. _namedtypes:
531
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000532Structure Types
533---------------
Sean Silvab084af42012-12-07 10:36:55 +0000534
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000535LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000536types <t_struct>`. Literal types are uniqued structurally, but identified types
537are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000538to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000539
Sean Silva706fba52015-08-06 22:56:24 +0000540An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000541
542.. code-block:: llvm
543
544 %mytype = type { %mytype*, i32 }
545
Sean Silvaa1190322015-08-06 22:56:48 +0000546Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000547literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000548
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000549.. _nointptrtype:
550
551Non-Integral Pointer Type
552-------------------------
553
554Note: non-integral pointer types are a work in progress, and they should be
555considered experimental at this time.
556
557LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000558spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
559Non-integral pointer types represent pointers that have an *unspecified* bitwise
560representation; that is, the integral representation may be target dependent or
561unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000562
563``inttoptr`` instructions converting integers to non-integral pointer types are
564ill-typed, and so are ``ptrtoint`` instructions converting values of
565non-integral pointer types to integers. Vector versions of said instructions
566are ill-typed as well.
567
Sean Silvab084af42012-12-07 10:36:55 +0000568.. _globalvars:
569
570Global Variables
571----------------
572
573Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000574instead of run-time.
575
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000576Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000577
578Global variables in other translation units can also be declared, in which
579case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000580
Bob Wilson85b24f22014-06-12 20:40:33 +0000581Either global variable definitions or declarations may have an explicit section
582to be placed in and may have an optional explicit alignment specified.
583
Michael Gottesman006039c2013-01-31 05:48:48 +0000584A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000585the contents of the variable will **never** be modified (enabling better
586optimization, allowing the global data to be placed in the read-only
587section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000588initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000589variable.
590
591LLVM explicitly allows *declarations* of global variables to be marked
592constant, even if the final definition of the global is not. This
593capability can be used to enable slightly better optimization of the
594program, but requires the language definition to guarantee that
595optimizations based on the 'constantness' are valid for the translation
596units that do not include the definition.
597
598As SSA values, global variables define pointer values that are in scope
599(i.e. they dominate) all basic blocks in the program. Global variables
600always define a pointer to their "content" type because they describe a
601region of memory, and all memory objects in LLVM are accessed through
602pointers.
603
604Global variables can be marked with ``unnamed_addr`` which indicates
605that the address is not significant, only the content. Constants marked
606like this can be merged with other constants if they have the same
607initializer. Note that a constant with significant address *can* be
608merged with a ``unnamed_addr`` constant, the result being a constant
609whose address is significant.
610
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000611If the ``local_unnamed_addr`` attribute is given, the address is known to
612not be significant within the module.
613
Sean Silvab084af42012-12-07 10:36:55 +0000614A global variable may be declared to reside in a target-specific
615numbered address space. For targets that support them, address spaces
616may affect how optimizations are performed and/or what target
617instructions are used to access the variable. The default address space
618is zero. The address space qualifier must precede any other attributes.
619
620LLVM allows an explicit section to be specified for globals. If the
621target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000622Additionally, the global can placed in a comdat if the target has the necessary
623support.
Sean Silvab084af42012-12-07 10:36:55 +0000624
Michael Gottesmane743a302013-02-04 03:22:00 +0000625By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000626variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000627initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000628true even for variables potentially accessible from outside the
629module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000630``@llvm.used`` or dllexported variables. This assumption may be suppressed
631by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000632
Sean Silvab084af42012-12-07 10:36:55 +0000633An explicit alignment may be specified for a global, which must be a
634power of 2. If not present, or if the alignment is set to zero, the
635alignment of the global is set by the target to whatever it feels
636convenient. If an explicit alignment is specified, the global is forced
637to have exactly that alignment. Targets and optimizers are not allowed
638to over-align the global if the global has an assigned section. In this
639case, the extra alignment could be observable: for example, code could
640assume that the globals are densely packed in their section and try to
641iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000642iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000643
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000644Globals can also have a :ref:`DLL storage class <dllstorageclass>` and
645an optional list of attached :ref:`metadata <metadata>`,
Nico Rieck7157bb72014-01-14 15:22:47 +0000646
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000647Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000648:ref:`Thread Local Storage Model <tls_model>`.
649
Nico Rieck7157bb72014-01-14 15:22:47 +0000650Syntax::
651
Rafael Espindola32483a72016-05-10 18:22:45 +0000652 @<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000653 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
654 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000655 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000656 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000657 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659For example, the following defines a global in a numbered address space
660with an initializer, section, and alignment:
661
662.. code-block:: llvm
663
664 @G = addrspace(5) constant float 1.0, section "foo", align 4
665
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000666The following example just declares a global variable
667
668.. code-block:: llvm
669
670 @G = external global i32
671
Sean Silvab084af42012-12-07 10:36:55 +0000672The following example defines a thread-local global with the
673``initialexec`` TLS model:
674
675.. code-block:: llvm
676
677 @G = thread_local(initialexec) global i32 0, align 4
678
679.. _functionstructure:
680
681Functions
682---------
683
684LLVM function definitions consist of the "``define``" keyword, an
685optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000686style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
687an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000688an optional ``unnamed_addr`` attribute, a return type, an optional
689:ref:`parameter attribute <paramattrs>` for the return type, a function
690name, a (possibly empty) argument list (each with optional :ref:`parameter
691attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000692an optional section, an optional alignment,
693an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000694an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000695an optional :ref:`prologue <prologuedata>`,
696an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000697an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000698an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000699
700LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000701optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
702<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
703optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
704or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
705attribute <paramattrs>` for the return type, a function name, a possibly
706empty list of arguments, an optional alignment, an optional :ref:`garbage
707collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
708:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000709
Bill Wendling6822ecb2013-10-27 05:09:12 +0000710A function definition contains a list of basic blocks, forming the CFG (Control
711Flow Graph) for the function. Each basic block may optionally start with a label
712(giving the basic block a symbol table entry), contains a list of instructions,
713and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
714function return). If an explicit label is not provided, a block is assigned an
715implicit numbered label, using the next value from the same counter as used for
716unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
717entry block does not have an explicit label, it will be assigned label "%0",
718then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000719
720The first basic block in a function is special in two ways: it is
721immediately executed on entrance to the function, and it is not allowed
722to have predecessor basic blocks (i.e. there can not be any branches to
723the entry block of a function). Because the block can have no
724predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
725
726LLVM allows an explicit section to be specified for functions. If the
727target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000728Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730An explicit alignment may be specified for a function. If not present,
731or if the alignment is set to zero, the alignment of the function is set
732by the target to whatever it feels convenient. If an explicit alignment
733is specified, the function is forced to have at least that much
734alignment. All alignments must be a power of 2.
735
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000736If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000737be significant and two identical functions can be merged.
738
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000739If the ``local_unnamed_addr`` attribute is given, the address is known to
740not be significant within the module.
741
Sean Silvab084af42012-12-07 10:36:55 +0000742Syntax::
743
Nico Rieck7157bb72014-01-14 15:22:47 +0000744 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000745 [cconv] [ret attrs]
746 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000747 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
748 [comdat [($name)]] [align N] [gc] [prefix Constant]
749 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000750
Sean Silva706fba52015-08-06 22:56:24 +0000751The argument list is a comma separated sequence of arguments where each
752argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000753
754Syntax::
755
756 <type> [parameter Attrs] [name]
757
758
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000759.. _langref_aliases:
760
Sean Silvab084af42012-12-07 10:36:55 +0000761Aliases
762-------
763
Rafael Espindola64c1e182014-06-03 02:41:57 +0000764Aliases, unlike function or variables, don't create any new data. They
765are just a new symbol and metadata for an existing position.
766
767Aliases have a name and an aliasee that is either a global value or a
768constant expression.
769
Nico Rieck7157bb72014-01-14 15:22:47 +0000770Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000771:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
772<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000773
774Syntax::
775
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000776 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000777
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000778The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000779``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000780might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000781
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000782Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000783the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
784to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000785
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000786If the ``local_unnamed_addr`` attribute is given, the address is known to
787not be significant within the module.
788
Rafael Espindola64c1e182014-06-03 02:41:57 +0000789Since aliases are only a second name, some restrictions apply, of which
790some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000791
Rafael Espindola64c1e182014-06-03 02:41:57 +0000792* The expression defining the aliasee must be computable at assembly
793 time. Since it is just a name, no relocations can be used.
794
795* No alias in the expression can be weak as the possibility of the
796 intermediate alias being overridden cannot be represented in an
797 object file.
798
799* No global value in the expression can be a declaration, since that
800 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000801
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000802.. _langref_ifunc:
803
804IFuncs
805-------
806
807IFuncs, like as aliases, don't create any new data or func. They are just a new
808symbol that dynamic linker resolves at runtime by calling a resolver function.
809
810IFuncs have a name and a resolver that is a function called by dynamic linker
811that returns address of another function associated with the name.
812
813IFunc may have an optional :ref:`linkage type <linkage>` and an optional
814:ref:`visibility style <visibility>`.
815
816Syntax::
817
818 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
819
820
David Majnemerdad0a642014-06-27 18:19:56 +0000821.. _langref_comdats:
822
823Comdats
824-------
825
826Comdat IR provides access to COFF and ELF object file COMDAT functionality.
827
Sean Silvaa1190322015-08-06 22:56:48 +0000828Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000829specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000830that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000831aliasee computes to, if any.
832
833Comdats have a selection kind to provide input on how the linker should
834choose between keys in two different object files.
835
836Syntax::
837
838 $<Name> = comdat SelectionKind
839
840The selection kind must be one of the following:
841
842``any``
843 The linker may choose any COMDAT key, the choice is arbitrary.
844``exactmatch``
845 The linker may choose any COMDAT key but the sections must contain the
846 same data.
847``largest``
848 The linker will choose the section containing the largest COMDAT key.
849``noduplicates``
850 The linker requires that only section with this COMDAT key exist.
851``samesize``
852 The linker may choose any COMDAT key but the sections must contain the
853 same amount of data.
854
855Note that the Mach-O platform doesn't support COMDATs and ELF only supports
856``any`` as a selection kind.
857
858Here is an example of a COMDAT group where a function will only be selected if
859the COMDAT key's section is the largest:
860
Renato Golin124f2592016-07-20 12:16:38 +0000861.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000862
863 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000864 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000865
Rafael Espindola83a362c2015-01-06 22:55:16 +0000866 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000867 ret void
868 }
869
Rafael Espindola83a362c2015-01-06 22:55:16 +0000870As a syntactic sugar the ``$name`` can be omitted if the name is the same as
871the global name:
872
Renato Golin124f2592016-07-20 12:16:38 +0000873.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000874
875 $foo = comdat any
876 @foo = global i32 2, comdat
877
878
David Majnemerdad0a642014-06-27 18:19:56 +0000879In a COFF object file, this will create a COMDAT section with selection kind
880``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
881and another COMDAT section with selection kind
882``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000883section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000884
885There are some restrictions on the properties of the global object.
886It, or an alias to it, must have the same name as the COMDAT group when
887targeting COFF.
888The contents and size of this object may be used during link-time to determine
889which COMDAT groups get selected depending on the selection kind.
890Because the name of the object must match the name of the COMDAT group, the
891linkage of the global object must not be local; local symbols can get renamed
892if a collision occurs in the symbol table.
893
894The combined use of COMDATS and section attributes may yield surprising results.
895For example:
896
Renato Golin124f2592016-07-20 12:16:38 +0000897.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000898
899 $foo = comdat any
900 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000901 @g1 = global i32 42, section "sec", comdat($foo)
902 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000903
904From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000905with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000906COMDAT groups and COMDATs, at the object file level, are represented by
907sections.
908
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000909Note that certain IR constructs like global variables and functions may
910create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000911COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000912in individual sections (e.g. when `-data-sections` or `-function-sections`
913is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000914
Sean Silvab084af42012-12-07 10:36:55 +0000915.. _namedmetadatastructure:
916
917Named Metadata
918--------------
919
920Named metadata is a collection of metadata. :ref:`Metadata
921nodes <metadata>` (but not metadata strings) are the only valid
922operands for a named metadata.
923
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000924#. Named metadata are represented as a string of characters with the
925 metadata prefix. The rules for metadata names are the same as for
926 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
927 are still valid, which allows any character to be part of a name.
928
Sean Silvab084af42012-12-07 10:36:55 +0000929Syntax::
930
931 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000932 !0 = !{!"zero"}
933 !1 = !{!"one"}
934 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000935 ; A named metadata.
936 !name = !{!0, !1, !2}
937
938.. _paramattrs:
939
940Parameter Attributes
941--------------------
942
943The return type and each parameter of a function type may have a set of
944*parameter attributes* associated with them. Parameter attributes are
945used to communicate additional information about the result or
946parameters of a function. Parameter attributes are considered to be part
947of the function, not of the function type, so functions with different
948parameter attributes can have the same function type.
949
950Parameter attributes are simple keywords that follow the type specified.
951If multiple parameter attributes are needed, they are space separated.
952For example:
953
954.. code-block:: llvm
955
956 declare i32 @printf(i8* noalias nocapture, ...)
957 declare i32 @atoi(i8 zeroext)
958 declare signext i8 @returns_signed_char()
959
960Note that any attributes for the function result (``nounwind``,
961``readonly``) come immediately after the argument list.
962
963Currently, only the following parameter attributes are defined:
964
965``zeroext``
966 This indicates to the code generator that the parameter or return
967 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000968 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000969``signext``
970 This indicates to the code generator that the parameter or return
971 value should be sign-extended to the extent required by the target's
972 ABI (which is usually 32-bits) by the caller (for a parameter) or
973 the callee (for a return value).
974``inreg``
975 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000976 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000977 a function call or return (usually, by putting it in a register as
978 opposed to memory, though some targets use it to distinguish between
979 two different kinds of registers). Use of this attribute is
980 target-specific.
981``byval``
982 This indicates that the pointer parameter should really be passed by
983 value to the function. The attribute implies that a hidden copy of
984 the pointee is made between the caller and the callee, so the callee
985 is unable to modify the value in the caller. This attribute is only
986 valid on LLVM pointer arguments. It is generally used to pass
987 structs and arrays by value, but is also valid on pointers to
988 scalars. The copy is considered to belong to the caller not the
989 callee (for example, ``readonly`` functions should not write to
990 ``byval`` parameters). This is not a valid attribute for return
991 values.
992
993 The byval attribute also supports specifying an alignment with the
994 align attribute. It indicates the alignment of the stack slot to
995 form and the known alignment of the pointer specified to the call
996 site. If the alignment is not specified, then the code generator
997 makes a target-specific assumption.
998
Reid Klecknera534a382013-12-19 02:14:12 +0000999.. _attr_inalloca:
1000
1001``inalloca``
1002
Reid Kleckner60d3a832014-01-16 22:59:24 +00001003 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001004 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001005 be a pointer to stack memory produced by an ``alloca`` instruction.
1006 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001007 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001008 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001009
Reid Kleckner436c42e2014-01-17 23:58:17 +00001010 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001011 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001012 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001013 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001014 ``inalloca`` attribute also disables LLVM's implicit lowering of
1015 large aggregate return values, which means that frontend authors
1016 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001017
Reid Kleckner60d3a832014-01-16 22:59:24 +00001018 When the call site is reached, the argument allocation must have
1019 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001020 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001021 space after an argument allocation and before its call site, but it
1022 must be cleared off with :ref:`llvm.stackrestore
1023 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001024
1025 See :doc:`InAlloca` for more information on how to use this
1026 attribute.
1027
Sean Silvab084af42012-12-07 10:36:55 +00001028``sret``
1029 This indicates that the pointer parameter specifies the address of a
1030 structure that is the return value of the function in the source
1031 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001032 loads and stores to the structure may be assumed by the callee not
1033 to trap and to be properly aligned. This is not a valid attribute
1034 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001035
Hal Finkelccc70902014-07-22 16:58:55 +00001036``align <n>``
1037 This indicates that the pointer value may be assumed by the optimizer to
1038 have the specified alignment.
1039
1040 Note that this attribute has additional semantics when combined with the
1041 ``byval`` attribute.
1042
Sean Silva1703e702014-04-08 21:06:22 +00001043.. _noalias:
1044
Sean Silvab084af42012-12-07 10:36:55 +00001045``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001046 This indicates that objects accessed via pointer values
1047 :ref:`based <pointeraliasing>` on the argument or return value are not also
1048 accessed, during the execution of the function, via pointer values not
1049 *based* on the argument or return value. The attribute on a return value
1050 also has additional semantics described below. The caller shares the
1051 responsibility with the callee for ensuring that these requirements are met.
1052 For further details, please see the discussion of the NoAlias response in
1053 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001054
1055 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001056 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001057
1058 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001059 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1060 attribute on return values are stronger than the semantics of the attribute
1061 when used on function arguments. On function return values, the ``noalias``
1062 attribute indicates that the function acts like a system memory allocation
1063 function, returning a pointer to allocated storage disjoint from the
1064 storage for any other object accessible to the caller.
1065
Sean Silvab084af42012-12-07 10:36:55 +00001066``nocapture``
1067 This indicates that the callee does not make any copies of the
1068 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001069 attribute for return values. Addresses used in volatile operations
1070 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001071
1072.. _nest:
1073
1074``nest``
1075 This indicates that the pointer parameter can be excised using the
1076 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001077 attribute for return values and can only be applied to one parameter.
1078
1079``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001080 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001081 value. This is a hint to the optimizer and code generator used when
1082 generating the caller, allowing value propagation, tail call optimization,
1083 and omission of register saves and restores in some cases; it is not
1084 checked or enforced when generating the callee. The parameter and the
1085 function return type must be valid operands for the
1086 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1087 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001088
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001089``nonnull``
1090 This indicates that the parameter or return pointer is not null. This
1091 attribute may only be applied to pointer typed parameters. This is not
1092 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001093 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001094 is non-null.
1095
Hal Finkelb0407ba2014-07-18 15:51:28 +00001096``dereferenceable(<n>)``
1097 This indicates that the parameter or return pointer is dereferenceable. This
1098 attribute may only be applied to pointer typed parameters. A pointer that
1099 is dereferenceable can be loaded from speculatively without a risk of
1100 trapping. The number of bytes known to be dereferenceable must be provided
1101 in parentheses. It is legal for the number of bytes to be less than the
1102 size of the pointee type. The ``nonnull`` attribute does not imply
1103 dereferenceability (consider a pointer to one element past the end of an
1104 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1105 ``addrspace(0)`` (which is the default address space).
1106
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001107``dereferenceable_or_null(<n>)``
1108 This indicates that the parameter or return value isn't both
1109 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001110 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001111 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1112 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1113 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1114 and in other address spaces ``dereferenceable_or_null(<n>)``
1115 implies that a pointer is at least one of ``dereferenceable(<n>)``
1116 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001117 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001118 pointer typed parameters.
1119
Manman Renf46262e2016-03-29 17:37:21 +00001120``swiftself``
1121 This indicates that the parameter is the self/context parameter. This is not
1122 a valid attribute for return values and can only be applied to one
1123 parameter.
1124
Manman Ren9bfd0d02016-04-01 21:41:15 +00001125``swifterror``
1126 This attribute is motivated to model and optimize Swift error handling. It
1127 can be applied to a parameter with pointer to pointer type or a
1128 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001129 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1130 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1131 the parameter or the alloca) can only be loaded and stored from, or used as
1132 a ``swifterror`` argument. This is not a valid attribute for return values
1133 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001134
1135 These constraints allow the calling convention to optimize access to
1136 ``swifterror`` variables by associating them with a specific register at
1137 call boundaries rather than placing them in memory. Since this does change
1138 the calling convention, a function which uses the ``swifterror`` attribute
1139 on a parameter is not ABI-compatible with one which does not.
1140
1141 These constraints also allow LLVM to assume that a ``swifterror`` argument
1142 does not alias any other memory visible within a function and that a
1143 ``swifterror`` alloca passed as an argument does not escape.
1144
Sean Silvab084af42012-12-07 10:36:55 +00001145.. _gc:
1146
Philip Reamesf80bbff2015-02-25 23:45:20 +00001147Garbage Collector Strategy Names
1148--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001149
Philip Reamesf80bbff2015-02-25 23:45:20 +00001150Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001151string:
1152
1153.. code-block:: llvm
1154
1155 define void @f() gc "name" { ... }
1156
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001157The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001158<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001159strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001160named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001161garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001162which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001163
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001164.. _prefixdata:
1165
1166Prefix Data
1167-----------
1168
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001169Prefix data is data associated with a function which the code
1170generator will emit immediately before the function's entrypoint.
1171The purpose of this feature is to allow frontends to associate
1172language-specific runtime metadata with specific functions and make it
1173available through the function pointer while still allowing the
1174function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001175
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001176To access the data for a given function, a program may bitcast the
1177function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001178index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001179the prefix data. For instance, take the example of a function annotated
1180with a single ``i32``,
1181
1182.. code-block:: llvm
1183
1184 define void @f() prefix i32 123 { ... }
1185
1186The prefix data can be referenced as,
1187
1188.. code-block:: llvm
1189
David Blaikie16a97eb2015-03-04 22:02:58 +00001190 %0 = bitcast void* () @f to i32*
1191 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001192 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001193
1194Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001195of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001196beginning of the prefix data is aligned. This means that if the size
1197of the prefix data is not a multiple of the alignment size, the
1198function's entrypoint will not be aligned. If alignment of the
1199function's entrypoint is desired, padding must be added to the prefix
1200data.
1201
Sean Silvaa1190322015-08-06 22:56:48 +00001202A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001203to the ``available_externally`` linkage in that the data may be used by the
1204optimizers but will not be emitted in the object file.
1205
1206.. _prologuedata:
1207
1208Prologue Data
1209-------------
1210
1211The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1212be inserted prior to the function body. This can be used for enabling
1213function hot-patching and instrumentation.
1214
1215To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001216have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001217bytes which decode to a sequence of machine instructions, valid for the
1218module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001219the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001220the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001221definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001222makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001223
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001224A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001225which encodes the ``nop`` instruction:
1226
Renato Golin124f2592016-07-20 12:16:38 +00001227.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001228
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001229 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001230
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001231Generally prologue data can be formed by encoding a relative branch instruction
1232which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001233x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1234
Renato Golin124f2592016-07-20 12:16:38 +00001235.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001236
1237 %0 = type <{ i8, i8, i8* }>
1238
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001239 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001240
Sean Silvaa1190322015-08-06 22:56:48 +00001241A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001242to the ``available_externally`` linkage in that the data may be used by the
1243optimizers but will not be emitted in the object file.
1244
David Majnemer7fddecc2015-06-17 20:52:32 +00001245.. _personalityfn:
1246
1247Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001248--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001249
1250The ``personality`` attribute permits functions to specify what function
1251to use for exception handling.
1252
Bill Wendling63b88192013-02-06 06:52:58 +00001253.. _attrgrp:
1254
1255Attribute Groups
1256----------------
1257
1258Attribute groups are groups of attributes that are referenced by objects within
1259the IR. They are important for keeping ``.ll`` files readable, because a lot of
1260functions will use the same set of attributes. In the degenerative case of a
1261``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1262group will capture the important command line flags used to build that file.
1263
1264An attribute group is a module-level object. To use an attribute group, an
1265object references the attribute group's ID (e.g. ``#37``). An object may refer
1266to more than one attribute group. In that situation, the attributes from the
1267different groups are merged.
1268
1269Here is an example of attribute groups for a function that should always be
1270inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1271
1272.. code-block:: llvm
1273
1274 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001275 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001276
1277 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001278 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001279
1280 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1281 define void @f() #0 #1 { ... }
1282
Sean Silvab084af42012-12-07 10:36:55 +00001283.. _fnattrs:
1284
1285Function Attributes
1286-------------------
1287
1288Function attributes are set to communicate additional information about
1289a function. Function attributes are considered to be part of the
1290function, not of the function type, so functions with different function
1291attributes can have the same function type.
1292
1293Function attributes are simple keywords that follow the type specified.
1294If multiple attributes are needed, they are space separated. For
1295example:
1296
1297.. code-block:: llvm
1298
1299 define void @f() noinline { ... }
1300 define void @f() alwaysinline { ... }
1301 define void @f() alwaysinline optsize { ... }
1302 define void @f() optsize { ... }
1303
Sean Silvab084af42012-12-07 10:36:55 +00001304``alignstack(<n>)``
1305 This attribute indicates that, when emitting the prologue and
1306 epilogue, the backend should forcibly align the stack pointer.
1307 Specify the desired alignment, which must be a power of two, in
1308 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001309``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1310 This attribute indicates that the annotated function will always return at
1311 least a given number of bytes (or null). Its arguments are zero-indexed
1312 parameter numbers; if one argument is provided, then it's assumed that at
1313 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1314 returned pointer. If two are provided, then it's assumed that
1315 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1316 available. The referenced parameters must be integer types. No assumptions
1317 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001318``alwaysinline``
1319 This attribute indicates that the inliner should attempt to inline
1320 this function into callers whenever possible, ignoring any active
1321 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001322``builtin``
1323 This indicates that the callee function at a call site should be
1324 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001325 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001326 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001327 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001328``cold``
1329 This attribute indicates that this function is rarely called. When
1330 computing edge weights, basic blocks post-dominated by a cold
1331 function call are also considered to be cold; and, thus, given low
1332 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001333``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001334 In some parallel execution models, there exist operations that cannot be
1335 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001336 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001337
Justin Lebar58535b12016-02-17 17:46:41 +00001338 The ``convergent`` attribute may appear on functions or call/invoke
1339 instructions. When it appears on a function, it indicates that calls to
1340 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001341 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001342 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001343 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001344
Justin Lebar58535b12016-02-17 17:46:41 +00001345 When it appears on a call/invoke, the ``convergent`` attribute indicates
1346 that we should treat the call as though we're calling a convergent
1347 function. This is particularly useful on indirect calls; without this we
1348 may treat such calls as though the target is non-convergent.
1349
1350 The optimizer may remove the ``convergent`` attribute on functions when it
1351 can prove that the function does not execute any convergent operations.
1352 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1353 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001354``inaccessiblememonly``
1355 This attribute indicates that the function may only access memory that
1356 is not accessible by the module being compiled. This is a weaker form
1357 of ``readnone``.
1358``inaccessiblemem_or_argmemonly``
1359 This attribute indicates that the function may only access memory that is
1360 either not accessible by the module being compiled, or is pointed to
1361 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001362``inlinehint``
1363 This attribute indicates that the source code contained a hint that
1364 inlining this function is desirable (such as the "inline" keyword in
1365 C/C++). It is just a hint; it imposes no requirements on the
1366 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001367``jumptable``
1368 This attribute indicates that the function should be added to a
1369 jump-instruction table at code-generation time, and that all address-taken
1370 references to this function should be replaced with a reference to the
1371 appropriate jump-instruction-table function pointer. Note that this creates
1372 a new pointer for the original function, which means that code that depends
1373 on function-pointer identity can break. So, any function annotated with
1374 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001375``minsize``
1376 This attribute suggests that optimization passes and code generator
1377 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001378 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001379 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001380``naked``
1381 This attribute disables prologue / epilogue emission for the
1382 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001383``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001384 This indicates that the callee function at a call site is not recognized as
1385 a built-in function. LLVM will retain the original call and not replace it
1386 with equivalent code based on the semantics of the built-in function, unless
1387 the call site uses the ``builtin`` attribute. This is valid at call sites
1388 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001389``noduplicate``
1390 This attribute indicates that calls to the function cannot be
1391 duplicated. A call to a ``noduplicate`` function may be moved
1392 within its parent function, but may not be duplicated within
1393 its parent function.
1394
1395 A function containing a ``noduplicate`` call may still
1396 be an inlining candidate, provided that the call is not
1397 duplicated by inlining. That implies that the function has
1398 internal linkage and only has one call site, so the original
1399 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001400``noimplicitfloat``
1401 This attributes disables implicit floating point instructions.
1402``noinline``
1403 This attribute indicates that the inliner should never inline this
1404 function in any situation. This attribute may not be used together
1405 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001406``nonlazybind``
1407 This attribute suppresses lazy symbol binding for the function. This
1408 may make calls to the function faster, at the cost of extra program
1409 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001410``noredzone``
1411 This attribute indicates that the code generator should not use a
1412 red zone, even if the target-specific ABI normally permits it.
1413``noreturn``
1414 This function attribute indicates that the function never returns
1415 normally. This produces undefined behavior at runtime if the
1416 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001417``norecurse``
1418 This function attribute indicates that the function does not call itself
1419 either directly or indirectly down any possible call path. This produces
1420 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001421``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001422 This function attribute indicates that the function never raises an
1423 exception. If the function does raise an exception, its runtime
1424 behavior is undefined. However, functions marked nounwind may still
1425 trap or generate asynchronous exceptions. Exception handling schemes
1426 that are recognized by LLVM to handle asynchronous exceptions, such
1427 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001428``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001429 This function attribute indicates that most optimization passes will skip
1430 this function, with the exception of interprocedural optimization passes.
1431 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001432 This attribute cannot be used together with the ``alwaysinline``
1433 attribute; this attribute is also incompatible
1434 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001435
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001436 This attribute requires the ``noinline`` attribute to be specified on
1437 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001438 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001439 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001440``optsize``
1441 This attribute suggests that optimization passes and code generator
1442 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001443 and otherwise do optimizations specifically to reduce code size as
1444 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001445``"patchable-function"``
1446 This attribute tells the code generator that the code
1447 generated for this function needs to follow certain conventions that
1448 make it possible for a runtime function to patch over it later.
1449 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001450 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001451
1452 * ``"prologue-short-redirect"`` - This style of patchable
1453 function is intended to support patching a function prologue to
1454 redirect control away from the function in a thread safe
1455 manner. It guarantees that the first instruction of the
1456 function will be large enough to accommodate a short jump
1457 instruction, and will be sufficiently aligned to allow being
1458 fully changed via an atomic compare-and-swap instruction.
1459 While the first requirement can be satisfied by inserting large
1460 enough NOP, LLVM can and will try to re-purpose an existing
1461 instruction (i.e. one that would have to be emitted anyway) as
1462 the patchable instruction larger than a short jump.
1463
1464 ``"prologue-short-redirect"`` is currently only supported on
1465 x86-64.
1466
1467 This attribute by itself does not imply restrictions on
1468 inter-procedural optimizations. All of the semantic effects the
1469 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001470``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001471 On a function, this attribute indicates that the function computes its
1472 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001473 without dereferencing any pointer arguments or otherwise accessing
1474 any mutable state (e.g. memory, control registers, etc) visible to
1475 caller functions. It does not write through any pointer arguments
1476 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das5be2e842017-02-13 23:19:07 +00001477 to callers. This means while it cannot unwind exceptions by calling
1478 the ``C++`` exception throwing methods (since they write to memory), there may
1479 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1480 visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001481
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001482 On an argument, this attribute indicates that the function does not
1483 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001484 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001485``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001486 On a function, this attribute indicates that the function does not write
1487 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001488 modify any state (e.g. memory, control registers, etc) visible to
1489 caller functions. It may dereference pointer arguments and read
1490 state that may be set in the caller. A readonly function always
1491 returns the same value (or unwinds an exception identically) when
Sanjoy Das5be2e842017-02-13 23:19:07 +00001492 called with the same set of arguments and global state. This means while it
1493 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1494 (since they write to memory), there may be non-``C++`` mechanisms that throw
1495 exceptions without writing to LLVM visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001496
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001497 On an argument, this attribute indicates that the function does not write
1498 through this pointer argument, even though it may write to the memory that
1499 the pointer points to.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001500``writeonly``
1501 On a function, this attribute indicates that the function may write to but
1502 does not read from memory.
1503
1504 On an argument, this attribute indicates that the function may write to but
1505 does not read through this pointer argument (even though it may read from
1506 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001507``argmemonly``
1508 This attribute indicates that the only memory accesses inside function are
1509 loads and stores from objects pointed to by its pointer-typed arguments,
1510 with arbitrary offsets. Or in other words, all memory operations in the
1511 function can refer to memory only using pointers based on its function
1512 arguments.
1513 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1514 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001515``returns_twice``
1516 This attribute indicates that this function can return twice. The C
1517 ``setjmp`` is an example of such a function. The compiler disables
1518 some optimizations (like tail calls) in the caller of these
1519 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001520``safestack``
1521 This attribute indicates that
1522 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1523 protection is enabled for this function.
1524
1525 If a function that has a ``safestack`` attribute is inlined into a
1526 function that doesn't have a ``safestack`` attribute or which has an
1527 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1528 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001529``sanitize_address``
1530 This attribute indicates that AddressSanitizer checks
1531 (dynamic address safety analysis) are enabled for this function.
1532``sanitize_memory``
1533 This attribute indicates that MemorySanitizer checks (dynamic detection
1534 of accesses to uninitialized memory) are enabled for this function.
1535``sanitize_thread``
1536 This attribute indicates that ThreadSanitizer checks
1537 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001538``ssp``
1539 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001540 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001541 placed on the stack before the local variables that's checked upon
1542 return from the function to see if it has been overwritten. A
1543 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001544 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001545
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001546 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1547 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1548 - Calls to alloca() with variable sizes or constant sizes greater than
1549 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001550
Josh Magee24c7f062014-02-01 01:36:16 +00001551 Variables that are identified as requiring a protector will be arranged
1552 on the stack such that they are adjacent to the stack protector guard.
1553
Sean Silvab084af42012-12-07 10:36:55 +00001554 If a function that has an ``ssp`` attribute is inlined into a
1555 function that doesn't have an ``ssp`` attribute, then the resulting
1556 function will have an ``ssp`` attribute.
1557``sspreq``
1558 This attribute indicates that the function should *always* emit a
1559 stack smashing protector. This overrides the ``ssp`` function
1560 attribute.
1561
Josh Magee24c7f062014-02-01 01:36:16 +00001562 Variables that are identified as requiring a protector will be arranged
1563 on the stack such that they are adjacent to the stack protector guard.
1564 The specific layout rules are:
1565
1566 #. Large arrays and structures containing large arrays
1567 (``>= ssp-buffer-size``) are closest to the stack protector.
1568 #. Small arrays and structures containing small arrays
1569 (``< ssp-buffer-size``) are 2nd closest to the protector.
1570 #. Variables that have had their address taken are 3rd closest to the
1571 protector.
1572
Sean Silvab084af42012-12-07 10:36:55 +00001573 If a function that has an ``sspreq`` attribute is inlined into a
1574 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001575 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1576 an ``sspreq`` attribute.
1577``sspstrong``
1578 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001579 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001580 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001581 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001582
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001583 - Arrays of any size and type
1584 - Aggregates containing an array of any size and type.
1585 - Calls to alloca().
1586 - Local variables that have had their address taken.
1587
Josh Magee24c7f062014-02-01 01:36:16 +00001588 Variables that are identified as requiring a protector will be arranged
1589 on the stack such that they are adjacent to the stack protector guard.
1590 The specific layout rules are:
1591
1592 #. Large arrays and structures containing large arrays
1593 (``>= ssp-buffer-size``) are closest to the stack protector.
1594 #. Small arrays and structures containing small arrays
1595 (``< ssp-buffer-size``) are 2nd closest to the protector.
1596 #. Variables that have had their address taken are 3rd closest to the
1597 protector.
1598
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001599 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001600
1601 If a function that has an ``sspstrong`` attribute is inlined into a
1602 function that doesn't have an ``sspstrong`` attribute, then the
1603 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001604``"thunk"``
1605 This attribute indicates that the function will delegate to some other
1606 function with a tail call. The prototype of a thunk should not be used for
1607 optimization purposes. The caller is expected to cast the thunk prototype to
1608 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001609``uwtable``
1610 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001611 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001612 show that no exceptions passes by it. This is normally the case for
1613 the ELF x86-64 abi, but it can be disabled for some compilation
1614 units.
Sean Silvab084af42012-12-07 10:36:55 +00001615
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001616
1617.. _opbundles:
1618
1619Operand Bundles
1620---------------
1621
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001622Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001623with certain LLVM instructions (currently only ``call`` s and
1624``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001625incorrect and will change program semantics.
1626
1627Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001628
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001629 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001630 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1631 bundle operand ::= SSA value
1632 tag ::= string constant
1633
1634Operand bundles are **not** part of a function's signature, and a
1635given function may be called from multiple places with different kinds
1636of operand bundles. This reflects the fact that the operand bundles
1637are conceptually a part of the ``call`` (or ``invoke``), not the
1638callee being dispatched to.
1639
1640Operand bundles are a generic mechanism intended to support
1641runtime-introspection-like functionality for managed languages. While
1642the exact semantics of an operand bundle depend on the bundle tag,
1643there are certain limitations to how much the presence of an operand
1644bundle can influence the semantics of a program. These restrictions
1645are described as the semantics of an "unknown" operand bundle. As
1646long as the behavior of an operand bundle is describable within these
1647restrictions, LLVM does not need to have special knowledge of the
1648operand bundle to not miscompile programs containing it.
1649
David Majnemer34cacb42015-10-22 01:46:38 +00001650- The bundle operands for an unknown operand bundle escape in unknown
1651 ways before control is transferred to the callee or invokee.
1652- Calls and invokes with operand bundles have unknown read / write
1653 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001654 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001655 callsite specific attributes.
1656- An operand bundle at a call site cannot change the implementation
1657 of the called function. Inter-procedural optimizations work as
1658 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001659
Sanjoy Dascdafd842015-11-11 21:38:02 +00001660More specific types of operand bundles are described below.
1661
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001662.. _deopt_opbundles:
1663
Sanjoy Dascdafd842015-11-11 21:38:02 +00001664Deoptimization Operand Bundles
1665^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1666
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001667Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001668operand bundle tag. These operand bundles represent an alternate
1669"safe" continuation for the call site they're attached to, and can be
1670used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001671specified call site. There can be at most one ``"deopt"`` operand
1672bundle attached to a call site. Exact details of deoptimization is
1673out of scope for the language reference, but it usually involves
1674rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001675
1676From the compiler's perspective, deoptimization operand bundles make
1677the call sites they're attached to at least ``readonly``. They read
1678through all of their pointer typed operands (even if they're not
1679otherwise escaped) and the entire visible heap. Deoptimization
1680operand bundles do not capture their operands except during
1681deoptimization, in which case control will not be returned to the
1682compiled frame.
1683
Sanjoy Das2d161452015-11-18 06:23:38 +00001684The inliner knows how to inline through calls that have deoptimization
1685operand bundles. Just like inlining through a normal call site
1686involves composing the normal and exceptional continuations, inlining
1687through a call site with a deoptimization operand bundle needs to
1688appropriately compose the "safe" deoptimization continuation. The
1689inliner does this by prepending the parent's deoptimization
1690continuation to every deoptimization continuation in the inlined body.
1691E.g. inlining ``@f`` into ``@g`` in the following example
1692
1693.. code-block:: llvm
1694
1695 define void @f() {
1696 call void @x() ;; no deopt state
1697 call void @y() [ "deopt"(i32 10) ]
1698 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1699 ret void
1700 }
1701
1702 define void @g() {
1703 call void @f() [ "deopt"(i32 20) ]
1704 ret void
1705 }
1706
1707will result in
1708
1709.. code-block:: llvm
1710
1711 define void @g() {
1712 call void @x() ;; still no deopt state
1713 call void @y() [ "deopt"(i32 20, i32 10) ]
1714 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1715 ret void
1716 }
1717
1718It is the frontend's responsibility to structure or encode the
1719deoptimization state in a way that syntactically prepending the
1720caller's deoptimization state to the callee's deoptimization state is
1721semantically equivalent to composing the caller's deoptimization
1722continuation after the callee's deoptimization continuation.
1723
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001724.. _ob_funclet:
1725
David Majnemer3bb88c02015-12-15 21:27:27 +00001726Funclet Operand Bundles
1727^^^^^^^^^^^^^^^^^^^^^^^
1728
1729Funclet operand bundles are characterized by the ``"funclet"``
1730operand bundle tag. These operand bundles indicate that a call site
1731is within a particular funclet. There can be at most one
1732``"funclet"`` operand bundle attached to a call site and it must have
1733exactly one bundle operand.
1734
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001735If any funclet EH pads have been "entered" but not "exited" (per the
1736`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1737it is undefined behavior to execute a ``call`` or ``invoke`` which:
1738
1739* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1740 intrinsic, or
1741* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1742 not-yet-exited funclet EH pad.
1743
1744Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1745executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1746
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001747GC Transition Operand Bundles
1748^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1749
1750GC transition operand bundles are characterized by the
1751``"gc-transition"`` operand bundle tag. These operand bundles mark a
1752call as a transition between a function with one GC strategy to a
1753function with a different GC strategy. If coordinating the transition
1754between GC strategies requires additional code generation at the call
1755site, these bundles may contain any values that are needed by the
1756generated code. For more details, see :ref:`GC Transitions
1757<gc_transition_args>`.
1758
Sean Silvab084af42012-12-07 10:36:55 +00001759.. _moduleasm:
1760
1761Module-Level Inline Assembly
1762----------------------------
1763
1764Modules may contain "module-level inline asm" blocks, which corresponds
1765to the GCC "file scope inline asm" blocks. These blocks are internally
1766concatenated by LLVM and treated as a single unit, but may be separated
1767in the ``.ll`` file if desired. The syntax is very simple:
1768
1769.. code-block:: llvm
1770
1771 module asm "inline asm code goes here"
1772 module asm "more can go here"
1773
1774The strings can contain any character by escaping non-printable
1775characters. The escape sequence used is simply "\\xx" where "xx" is the
1776two digit hex code for the number.
1777
James Y Knightbc832ed2015-07-08 18:08:36 +00001778Note that the assembly string *must* be parseable by LLVM's integrated assembler
1779(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001780
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001781.. _langref_datalayout:
1782
Sean Silvab084af42012-12-07 10:36:55 +00001783Data Layout
1784-----------
1785
1786A module may specify a target specific data layout string that specifies
1787how data is to be laid out in memory. The syntax for the data layout is
1788simply:
1789
1790.. code-block:: llvm
1791
1792 target datalayout = "layout specification"
1793
1794The *layout specification* consists of a list of specifications
1795separated by the minus sign character ('-'). Each specification starts
1796with a letter and may include other information after the letter to
1797define some aspect of the data layout. The specifications accepted are
1798as follows:
1799
1800``E``
1801 Specifies that the target lays out data in big-endian form. That is,
1802 the bits with the most significance have the lowest address
1803 location.
1804``e``
1805 Specifies that the target lays out data in little-endian form. That
1806 is, the bits with the least significance have the lowest address
1807 location.
1808``S<size>``
1809 Specifies the natural alignment of the stack in bits. Alignment
1810 promotion of stack variables is limited to the natural stack
1811 alignment to avoid dynamic stack realignment. The stack alignment
1812 must be a multiple of 8-bits. If omitted, the natural stack
1813 alignment defaults to "unspecified", which does not prevent any
1814 alignment promotions.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001815``A<address space>``
1816 Specifies the address space of objects created by '``alloca``'.
1817 Defaults to the default address space of 0.
Sean Silvab084af42012-12-07 10:36:55 +00001818``p[n]:<size>:<abi>:<pref>``
1819 This specifies the *size* of a pointer and its ``<abi>`` and
1820 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001821 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001822 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001823 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001824``i<size>:<abi>:<pref>``
1825 This specifies the alignment for an integer type of a given bit
1826 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1827``v<size>:<abi>:<pref>``
1828 This specifies the alignment for a vector type of a given bit
1829 ``<size>``.
1830``f<size>:<abi>:<pref>``
1831 This specifies the alignment for a floating point type of a given bit
1832 ``<size>``. Only values of ``<size>`` that are supported by the target
1833 will work. 32 (float) and 64 (double) are supported on all targets; 80
1834 or 128 (different flavors of long double) are also supported on some
1835 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001836``a:<abi>:<pref>``
1837 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001838``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001839 If present, specifies that llvm names are mangled in the output. The
1840 options are
1841
1842 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1843 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1844 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1845 symbols get a ``_`` prefix.
1846 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1847 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001848 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1849 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001850``n<size1>:<size2>:<size3>...``
1851 This specifies a set of native integer widths for the target CPU in
1852 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1853 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1854 this set are considered to support most general arithmetic operations
1855 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001856``ni:<address space0>:<address space1>:<address space2>...``
1857 This specifies pointer types with the specified address spaces
1858 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1859 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001860
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001861On every specification that takes a ``<abi>:<pref>``, specifying the
1862``<pref>`` alignment is optional. If omitted, the preceding ``:``
1863should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1864
Sean Silvab084af42012-12-07 10:36:55 +00001865When constructing the data layout for a given target, LLVM starts with a
1866default set of specifications which are then (possibly) overridden by
1867the specifications in the ``datalayout`` keyword. The default
1868specifications are given in this list:
1869
1870- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001871- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1872- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1873 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001874- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001875- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1876- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1877- ``i16:16:16`` - i16 is 16-bit aligned
1878- ``i32:32:32`` - i32 is 32-bit aligned
1879- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1880 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001881- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001882- ``f32:32:32`` - float is 32-bit aligned
1883- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001884- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001885- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1886- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001887- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001888
1889When LLVM is determining the alignment for a given type, it uses the
1890following rules:
1891
1892#. If the type sought is an exact match for one of the specifications,
1893 that specification is used.
1894#. If no match is found, and the type sought is an integer type, then
1895 the smallest integer type that is larger than the bitwidth of the
1896 sought type is used. If none of the specifications are larger than
1897 the bitwidth then the largest integer type is used. For example,
1898 given the default specifications above, the i7 type will use the
1899 alignment of i8 (next largest) while both i65 and i256 will use the
1900 alignment of i64 (largest specified).
1901#. If no match is found, and the type sought is a vector type, then the
1902 largest vector type that is smaller than the sought vector type will
1903 be used as a fall back. This happens because <128 x double> can be
1904 implemented in terms of 64 <2 x double>, for example.
1905
1906The function of the data layout string may not be what you expect.
1907Notably, this is not a specification from the frontend of what alignment
1908the code generator should use.
1909
1910Instead, if specified, the target data layout is required to match what
1911the ultimate *code generator* expects. This string is used by the
1912mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001913what the ultimate code generator uses. There is no way to generate IR
1914that does not embed this target-specific detail into the IR. If you
1915don't specify the string, the default specifications will be used to
1916generate a Data Layout and the optimization phases will operate
1917accordingly and introduce target specificity into the IR with respect to
1918these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001919
Bill Wendling5cc90842013-10-18 23:41:25 +00001920.. _langref_triple:
1921
1922Target Triple
1923-------------
1924
1925A module may specify a target triple string that describes the target
1926host. The syntax for the target triple is simply:
1927
1928.. code-block:: llvm
1929
1930 target triple = "x86_64-apple-macosx10.7.0"
1931
1932The *target triple* string consists of a series of identifiers delimited
1933by the minus sign character ('-'). The canonical forms are:
1934
1935::
1936
1937 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1938 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1939
1940This information is passed along to the backend so that it generates
1941code for the proper architecture. It's possible to override this on the
1942command line with the ``-mtriple`` command line option.
1943
Sean Silvab084af42012-12-07 10:36:55 +00001944.. _pointeraliasing:
1945
1946Pointer Aliasing Rules
1947----------------------
1948
1949Any memory access must be done through a pointer value associated with
1950an address range of the memory access, otherwise the behavior is
1951undefined. Pointer values are associated with address ranges according
1952to the following rules:
1953
1954- A pointer value is associated with the addresses associated with any
1955 value it is *based* on.
1956- An address of a global variable is associated with the address range
1957 of the variable's storage.
1958- The result value of an allocation instruction is associated with the
1959 address range of the allocated storage.
1960- A null pointer in the default address-space is associated with no
1961 address.
1962- An integer constant other than zero or a pointer value returned from
1963 a function not defined within LLVM may be associated with address
1964 ranges allocated through mechanisms other than those provided by
1965 LLVM. Such ranges shall not overlap with any ranges of addresses
1966 allocated by mechanisms provided by LLVM.
1967
1968A pointer value is *based* on another pointer value according to the
1969following rules:
1970
1971- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001972 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001973- The result value of a ``bitcast`` is *based* on the operand of the
1974 ``bitcast``.
1975- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1976 values that contribute (directly or indirectly) to the computation of
1977 the pointer's value.
1978- The "*based* on" relationship is transitive.
1979
1980Note that this definition of *"based"* is intentionally similar to the
1981definition of *"based"* in C99, though it is slightly weaker.
1982
1983LLVM IR does not associate types with memory. The result type of a
1984``load`` merely indicates the size and alignment of the memory from
1985which to load, as well as the interpretation of the value. The first
1986operand type of a ``store`` similarly only indicates the size and
1987alignment of the store.
1988
1989Consequently, type-based alias analysis, aka TBAA, aka
1990``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1991:ref:`Metadata <metadata>` may be used to encode additional information
1992which specialized optimization passes may use to implement type-based
1993alias analysis.
1994
1995.. _volatile:
1996
1997Volatile Memory Accesses
1998------------------------
1999
2000Certain memory accesses, such as :ref:`load <i_load>`'s,
2001:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2002marked ``volatile``. The optimizers must not change the number of
2003volatile operations or change their order of execution relative to other
2004volatile operations. The optimizers *may* change the order of volatile
2005operations relative to non-volatile operations. This is not Java's
2006"volatile" and has no cross-thread synchronization behavior.
2007
Andrew Trick89fc5a62013-01-30 21:19:35 +00002008IR-level volatile loads and stores cannot safely be optimized into
2009llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2010flagged volatile. Likewise, the backend should never split or merge
2011target-legal volatile load/store instructions.
2012
Andrew Trick7e6f9282013-01-31 00:49:39 +00002013.. admonition:: Rationale
2014
2015 Platforms may rely on volatile loads and stores of natively supported
2016 data width to be executed as single instruction. For example, in C
2017 this holds for an l-value of volatile primitive type with native
2018 hardware support, but not necessarily for aggregate types. The
2019 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002020 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002021 do not violate the frontend's contract with the language.
2022
Sean Silvab084af42012-12-07 10:36:55 +00002023.. _memmodel:
2024
2025Memory Model for Concurrent Operations
2026--------------------------------------
2027
2028The LLVM IR does not define any way to start parallel threads of
2029execution or to register signal handlers. Nonetheless, there are
2030platform-specific ways to create them, and we define LLVM IR's behavior
2031in their presence. This model is inspired by the C++0x memory model.
2032
2033For a more informal introduction to this model, see the :doc:`Atomics`.
2034
2035We define a *happens-before* partial order as the least partial order
2036that
2037
2038- Is a superset of single-thread program order, and
2039- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2040 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2041 techniques, like pthread locks, thread creation, thread joining,
2042 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2043 Constraints <ordering>`).
2044
2045Note that program order does not introduce *happens-before* edges
2046between a thread and signals executing inside that thread.
2047
2048Every (defined) read operation (load instructions, memcpy, atomic
2049loads/read-modify-writes, etc.) R reads a series of bytes written by
2050(defined) write operations (store instructions, atomic
2051stores/read-modify-writes, memcpy, etc.). For the purposes of this
2052section, initialized globals are considered to have a write of the
2053initializer which is atomic and happens before any other read or write
2054of the memory in question. For each byte of a read R, R\ :sub:`byte`
2055may see any write to the same byte, except:
2056
2057- If write\ :sub:`1` happens before write\ :sub:`2`, and
2058 write\ :sub:`2` happens before R\ :sub:`byte`, then
2059 R\ :sub:`byte` does not see write\ :sub:`1`.
2060- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2061 R\ :sub:`byte` does not see write\ :sub:`3`.
2062
2063Given that definition, R\ :sub:`byte` is defined as follows:
2064
2065- If R is volatile, the result is target-dependent. (Volatile is
2066 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002067 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002068 like normal memory. It does not generally provide cross-thread
2069 synchronization.)
2070- Otherwise, if there is no write to the same byte that happens before
2071 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2072- Otherwise, if R\ :sub:`byte` may see exactly one write,
2073 R\ :sub:`byte` returns the value written by that write.
2074- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2075 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2076 Memory Ordering Constraints <ordering>` section for additional
2077 constraints on how the choice is made.
2078- Otherwise R\ :sub:`byte` returns ``undef``.
2079
2080R returns the value composed of the series of bytes it read. This
2081implies that some bytes within the value may be ``undef`` **without**
2082the entire value being ``undef``. Note that this only defines the
2083semantics of the operation; it doesn't mean that targets will emit more
2084than one instruction to read the series of bytes.
2085
2086Note that in cases where none of the atomic intrinsics are used, this
2087model places only one restriction on IR transformations on top of what
2088is required for single-threaded execution: introducing a store to a byte
2089which might not otherwise be stored is not allowed in general.
2090(Specifically, in the case where another thread might write to and read
2091from an address, introducing a store can change a load that may see
2092exactly one write into a load that may see multiple writes.)
2093
2094.. _ordering:
2095
2096Atomic Memory Ordering Constraints
2097----------------------------------
2098
2099Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2100:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2101:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002102ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002103the same address they *synchronize with*. These semantics are borrowed
2104from Java and C++0x, but are somewhat more colloquial. If these
2105descriptions aren't precise enough, check those specs (see spec
2106references in the :doc:`atomics guide <Atomics>`).
2107:ref:`fence <i_fence>` instructions treat these orderings somewhat
2108differently since they don't take an address. See that instruction's
2109documentation for details.
2110
2111For a simpler introduction to the ordering constraints, see the
2112:doc:`Atomics`.
2113
2114``unordered``
2115 The set of values that can be read is governed by the happens-before
2116 partial order. A value cannot be read unless some operation wrote
2117 it. This is intended to provide a guarantee strong enough to model
2118 Java's non-volatile shared variables. This ordering cannot be
2119 specified for read-modify-write operations; it is not strong enough
2120 to make them atomic in any interesting way.
2121``monotonic``
2122 In addition to the guarantees of ``unordered``, there is a single
2123 total order for modifications by ``monotonic`` operations on each
2124 address. All modification orders must be compatible with the
2125 happens-before order. There is no guarantee that the modification
2126 orders can be combined to a global total order for the whole program
2127 (and this often will not be possible). The read in an atomic
2128 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2129 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2130 order immediately before the value it writes. If one atomic read
2131 happens before another atomic read of the same address, the later
2132 read must see the same value or a later value in the address's
2133 modification order. This disallows reordering of ``monotonic`` (or
2134 stronger) operations on the same address. If an address is written
2135 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2136 read that address repeatedly, the other threads must eventually see
2137 the write. This corresponds to the C++0x/C1x
2138 ``memory_order_relaxed``.
2139``acquire``
2140 In addition to the guarantees of ``monotonic``, a
2141 *synchronizes-with* edge may be formed with a ``release`` operation.
2142 This is intended to model C++'s ``memory_order_acquire``.
2143``release``
2144 In addition to the guarantees of ``monotonic``, if this operation
2145 writes a value which is subsequently read by an ``acquire``
2146 operation, it *synchronizes-with* that operation. (This isn't a
2147 complete description; see the C++0x definition of a release
2148 sequence.) This corresponds to the C++0x/C1x
2149 ``memory_order_release``.
2150``acq_rel`` (acquire+release)
2151 Acts as both an ``acquire`` and ``release`` operation on its
2152 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2153``seq_cst`` (sequentially consistent)
2154 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002155 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002156 writes), there is a global total order on all
2157 sequentially-consistent operations on all addresses, which is
2158 consistent with the *happens-before* partial order and with the
2159 modification orders of all the affected addresses. Each
2160 sequentially-consistent read sees the last preceding write to the
2161 same address in this global order. This corresponds to the C++0x/C1x
2162 ``memory_order_seq_cst`` and Java volatile.
2163
2164.. _singlethread:
2165
2166If an atomic operation is marked ``singlethread``, it only *synchronizes
2167with* or participates in modification and seq\_cst total orderings with
2168other operations running in the same thread (for example, in signal
2169handlers).
2170
2171.. _fastmath:
2172
2173Fast-Math Flags
2174---------------
2175
2176LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2177:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002178:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
2179instructions have the following flags that can be set to enable
2180otherwise unsafe floating point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002181
2182``nnan``
2183 No NaNs - Allow optimizations to assume the arguments and result are not
2184 NaN. Such optimizations are required to retain defined behavior over
2185 NaNs, but the value of the result is undefined.
2186
2187``ninf``
2188 No Infs - Allow optimizations to assume the arguments and result are not
2189 +/-Inf. Such optimizations are required to retain defined behavior over
2190 +/-Inf, but the value of the result is undefined.
2191
2192``nsz``
2193 No Signed Zeros - Allow optimizations to treat the sign of a zero
2194 argument or result as insignificant.
2195
2196``arcp``
2197 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2198 argument rather than perform division.
2199
Adam Nemetcd847a82017-03-28 20:11:52 +00002200``contract``
2201 Allow floating-point contraction (e.g. fusing a multiply followed by an
2202 addition into a fused multiply-and-add).
2203
Sean Silvab084af42012-12-07 10:36:55 +00002204``fast``
2205 Fast - Allow algebraically equivalent transformations that may
2206 dramatically change results in floating point (e.g. reassociate). This
2207 flag implies all the others.
2208
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002209.. _uselistorder:
2210
2211Use-list Order Directives
2212-------------------------
2213
2214Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002215order to be recreated. ``<order-indexes>`` is a comma-separated list of
2216indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002217value's use-list is immediately sorted by these indexes.
2218
Sean Silvaa1190322015-08-06 22:56:48 +00002219Use-list directives may appear at function scope or global scope. They are not
2220instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002221function scope, they must appear after the terminator of the final basic block.
2222
2223If basic blocks have their address taken via ``blockaddress()`` expressions,
2224``uselistorder_bb`` can be used to reorder their use-lists from outside their
2225function's scope.
2226
2227:Syntax:
2228
2229::
2230
2231 uselistorder <ty> <value>, { <order-indexes> }
2232 uselistorder_bb @function, %block { <order-indexes> }
2233
2234:Examples:
2235
2236::
2237
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002238 define void @foo(i32 %arg1, i32 %arg2) {
2239 entry:
2240 ; ... instructions ...
2241 bb:
2242 ; ... instructions ...
2243
2244 ; At function scope.
2245 uselistorder i32 %arg1, { 1, 0, 2 }
2246 uselistorder label %bb, { 1, 0 }
2247 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002248
2249 ; At global scope.
2250 uselistorder i32* @global, { 1, 2, 0 }
2251 uselistorder i32 7, { 1, 0 }
2252 uselistorder i32 (i32) @bar, { 1, 0 }
2253 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2254
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002255.. _source_filename:
2256
2257Source Filename
2258---------------
2259
2260The *source filename* string is set to the original module identifier,
2261which will be the name of the compiled source file when compiling from
2262source through the clang front end, for example. It is then preserved through
2263the IR and bitcode.
2264
2265This is currently necessary to generate a consistent unique global
2266identifier for local functions used in profile data, which prepends the
2267source file name to the local function name.
2268
2269The syntax for the source file name is simply:
2270
Renato Golin124f2592016-07-20 12:16:38 +00002271.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002272
2273 source_filename = "/path/to/source.c"
2274
Sean Silvab084af42012-12-07 10:36:55 +00002275.. _typesystem:
2276
2277Type System
2278===========
2279
2280The LLVM type system is one of the most important features of the
2281intermediate representation. Being typed enables a number of
2282optimizations to be performed on the intermediate representation
2283directly, without having to do extra analyses on the side before the
2284transformation. A strong type system makes it easier to read the
2285generated code and enables novel analyses and transformations that are
2286not feasible to perform on normal three address code representations.
2287
Rafael Espindola08013342013-12-07 19:34:20 +00002288.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002289
Rafael Espindola08013342013-12-07 19:34:20 +00002290Void Type
2291---------
Sean Silvab084af42012-12-07 10:36:55 +00002292
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002293:Overview:
2294
Rafael Espindola08013342013-12-07 19:34:20 +00002295
2296The void type does not represent any value and has no size.
2297
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002298:Syntax:
2299
Rafael Espindola08013342013-12-07 19:34:20 +00002300
2301::
2302
2303 void
Sean Silvab084af42012-12-07 10:36:55 +00002304
2305
Rafael Espindola08013342013-12-07 19:34:20 +00002306.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002307
Rafael Espindola08013342013-12-07 19:34:20 +00002308Function Type
2309-------------
Sean Silvab084af42012-12-07 10:36:55 +00002310
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002311:Overview:
2312
Sean Silvab084af42012-12-07 10:36:55 +00002313
Rafael Espindola08013342013-12-07 19:34:20 +00002314The function type can be thought of as a function signature. It consists of a
2315return type and a list of formal parameter types. The return type of a function
2316type is a void type or first class type --- except for :ref:`label <t_label>`
2317and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002318
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002319:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002320
Rafael Espindola08013342013-12-07 19:34:20 +00002321::
Sean Silvab084af42012-12-07 10:36:55 +00002322
Rafael Espindola08013342013-12-07 19:34:20 +00002323 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002324
Rafael Espindola08013342013-12-07 19:34:20 +00002325...where '``<parameter list>``' is a comma-separated list of type
2326specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002327indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002328argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002329handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002330except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002331
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002332:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002333
Rafael Espindola08013342013-12-07 19:34:20 +00002334+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2335| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2336+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2337| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2338+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2339| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2340+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2341| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2342+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2343
2344.. _t_firstclass:
2345
2346First Class Types
2347-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002348
2349The :ref:`first class <t_firstclass>` types are perhaps the most important.
2350Values of these types are the only ones which can be produced by
2351instructions.
2352
Rafael Espindola08013342013-12-07 19:34:20 +00002353.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002354
Rafael Espindola08013342013-12-07 19:34:20 +00002355Single Value Types
2356^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002357
Rafael Espindola08013342013-12-07 19:34:20 +00002358These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002359
2360.. _t_integer:
2361
2362Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002363""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002364
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002365:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002366
2367The integer type is a very simple type that simply specifies an
2368arbitrary bit width for the integer type desired. Any bit width from 1
2369bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2370
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002371:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002372
2373::
2374
2375 iN
2376
2377The number of bits the integer will occupy is specified by the ``N``
2378value.
2379
2380Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002381*********
Sean Silvab084af42012-12-07 10:36:55 +00002382
2383+----------------+------------------------------------------------+
2384| ``i1`` | a single-bit integer. |
2385+----------------+------------------------------------------------+
2386| ``i32`` | a 32-bit integer. |
2387+----------------+------------------------------------------------+
2388| ``i1942652`` | a really big integer of over 1 million bits. |
2389+----------------+------------------------------------------------+
2390
2391.. _t_floating:
2392
2393Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002394""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002395
2396.. list-table::
2397 :header-rows: 1
2398
2399 * - Type
2400 - Description
2401
2402 * - ``half``
2403 - 16-bit floating point value
2404
2405 * - ``float``
2406 - 32-bit floating point value
2407
2408 * - ``double``
2409 - 64-bit floating point value
2410
2411 * - ``fp128``
2412 - 128-bit floating point value (112-bit mantissa)
2413
2414 * - ``x86_fp80``
2415 - 80-bit floating point value (X87)
2416
2417 * - ``ppc_fp128``
2418 - 128-bit floating point value (two 64-bits)
2419
Reid Kleckner9a16d082014-03-05 02:41:37 +00002420X86_mmx Type
2421""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002422
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002423:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002424
Reid Kleckner9a16d082014-03-05 02:41:37 +00002425The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002426machine. The operations allowed on it are quite limited: parameters and
2427return values, load and store, and bitcast. User-specified MMX
2428instructions are represented as intrinsic or asm calls with arguments
2429and/or results of this type. There are no arrays, vectors or constants
2430of this type.
2431
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002432:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002433
2434::
2435
Reid Kleckner9a16d082014-03-05 02:41:37 +00002436 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002437
Sean Silvab084af42012-12-07 10:36:55 +00002438
Rafael Espindola08013342013-12-07 19:34:20 +00002439.. _t_pointer:
2440
2441Pointer Type
2442""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002443
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002444:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002445
Rafael Espindola08013342013-12-07 19:34:20 +00002446The pointer type is used to specify memory locations. Pointers are
2447commonly used to reference objects in memory.
2448
2449Pointer types may have an optional address space attribute defining the
2450numbered address space where the pointed-to object resides. The default
2451address space is number zero. The semantics of non-zero address spaces
2452are target-specific.
2453
2454Note that LLVM does not permit pointers to void (``void*``) nor does it
2455permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002456
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002457:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002458
2459::
2460
Rafael Espindola08013342013-12-07 19:34:20 +00002461 <type> *
2462
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002463:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002464
2465+-------------------------+--------------------------------------------------------------------------------------------------------------+
2466| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2467+-------------------------+--------------------------------------------------------------------------------------------------------------+
2468| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2469+-------------------------+--------------------------------------------------------------------------------------------------------------+
2470| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2471+-------------------------+--------------------------------------------------------------------------------------------------------------+
2472
2473.. _t_vector:
2474
2475Vector Type
2476"""""""""""
2477
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002478:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002479
2480A vector type is a simple derived type that represents a vector of
2481elements. Vector types are used when multiple primitive data are
2482operated in parallel using a single instruction (SIMD). A vector type
2483requires a size (number of elements) and an underlying primitive data
2484type. Vector types are considered :ref:`first class <t_firstclass>`.
2485
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002486:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002487
2488::
2489
2490 < <# elements> x <elementtype> >
2491
2492The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002493elementtype may be any integer, floating point or pointer type. Vectors
2494of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002495
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002496:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002497
2498+-------------------+--------------------------------------------------+
2499| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2500+-------------------+--------------------------------------------------+
2501| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2502+-------------------+--------------------------------------------------+
2503| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2504+-------------------+--------------------------------------------------+
2505| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2506+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002507
2508.. _t_label:
2509
2510Label Type
2511^^^^^^^^^^
2512
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002513:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002514
2515The label type represents code labels.
2516
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002517:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002518
2519::
2520
2521 label
2522
David Majnemerb611e3f2015-08-14 05:09:07 +00002523.. _t_token:
2524
2525Token Type
2526^^^^^^^^^^
2527
2528:Overview:
2529
2530The token type is used when a value is associated with an instruction
2531but all uses of the value must not attempt to introspect or obscure it.
2532As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2533:ref:`select <i_select>` of type token.
2534
2535:Syntax:
2536
2537::
2538
2539 token
2540
2541
2542
Sean Silvab084af42012-12-07 10:36:55 +00002543.. _t_metadata:
2544
2545Metadata Type
2546^^^^^^^^^^^^^
2547
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002548:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002549
2550The metadata type represents embedded metadata. No derived types may be
2551created from metadata except for :ref:`function <t_function>` arguments.
2552
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002553:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002554
2555::
2556
2557 metadata
2558
Sean Silvab084af42012-12-07 10:36:55 +00002559.. _t_aggregate:
2560
2561Aggregate Types
2562^^^^^^^^^^^^^^^
2563
2564Aggregate Types are a subset of derived types that can contain multiple
2565member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2566aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2567aggregate types.
2568
2569.. _t_array:
2570
2571Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002572""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002573
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002574:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002575
2576The array type is a very simple derived type that arranges elements
2577sequentially in memory. The array type requires a size (number of
2578elements) and an underlying data type.
2579
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002580:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002581
2582::
2583
2584 [<# elements> x <elementtype>]
2585
2586The number of elements is a constant integer value; ``elementtype`` may
2587be any type with a size.
2588
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002589:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002590
2591+------------------+--------------------------------------+
2592| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2593+------------------+--------------------------------------+
2594| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2595+------------------+--------------------------------------+
2596| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2597+------------------+--------------------------------------+
2598
2599Here are some examples of multidimensional arrays:
2600
2601+-----------------------------+----------------------------------------------------------+
2602| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2603+-----------------------------+----------------------------------------------------------+
2604| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2605+-----------------------------+----------------------------------------------------------+
2606| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2607+-----------------------------+----------------------------------------------------------+
2608
2609There is no restriction on indexing beyond the end of the array implied
2610by a static type (though there are restrictions on indexing beyond the
2611bounds of an allocated object in some cases). This means that
2612single-dimension 'variable sized array' addressing can be implemented in
2613LLVM with a zero length array type. An implementation of 'pascal style
2614arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2615example.
2616
Sean Silvab084af42012-12-07 10:36:55 +00002617.. _t_struct:
2618
2619Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002620""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002621
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002622:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002623
2624The structure type is used to represent a collection of data members
2625together in memory. The elements of a structure may be any type that has
2626a size.
2627
2628Structures in memory are accessed using '``load``' and '``store``' by
2629getting a pointer to a field with the '``getelementptr``' instruction.
2630Structures in registers are accessed using the '``extractvalue``' and
2631'``insertvalue``' instructions.
2632
2633Structures may optionally be "packed" structures, which indicate that
2634the alignment of the struct is one byte, and that there is no padding
2635between the elements. In non-packed structs, padding between field types
2636is inserted as defined by the DataLayout string in the module, which is
2637required to match what the underlying code generator expects.
2638
2639Structures can either be "literal" or "identified". A literal structure
2640is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2641identified types are always defined at the top level with a name.
2642Literal types are uniqued by their contents and can never be recursive
2643or opaque since there is no way to write one. Identified types can be
2644recursive, can be opaqued, and are never uniqued.
2645
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002646:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002647
2648::
2649
2650 %T1 = type { <type list> } ; Identified normal struct type
2651 %T2 = type <{ <type list> }> ; Identified packed struct type
2652
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002653:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002654
2655+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2656| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2657+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002658| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002659+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2660| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2661+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2662
2663.. _t_opaque:
2664
2665Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002666""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002667
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002668:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002669
2670Opaque structure types are used to represent named structure types that
2671do not have a body specified. This corresponds (for example) to the C
2672notion of a forward declared structure.
2673
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002674:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002675
2676::
2677
2678 %X = type opaque
2679 %52 = type opaque
2680
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002681:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002682
2683+--------------+-------------------+
2684| ``opaque`` | An opaque type. |
2685+--------------+-------------------+
2686
Sean Silva1703e702014-04-08 21:06:22 +00002687.. _constants:
2688
Sean Silvab084af42012-12-07 10:36:55 +00002689Constants
2690=========
2691
2692LLVM has several different basic types of constants. This section
2693describes them all and their syntax.
2694
2695Simple Constants
2696----------------
2697
2698**Boolean constants**
2699 The two strings '``true``' and '``false``' are both valid constants
2700 of the ``i1`` type.
2701**Integer constants**
2702 Standard integers (such as '4') are constants of the
2703 :ref:`integer <t_integer>` type. Negative numbers may be used with
2704 integer types.
2705**Floating point constants**
2706 Floating point constants use standard decimal notation (e.g.
2707 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2708 hexadecimal notation (see below). The assembler requires the exact
2709 decimal value of a floating-point constant. For example, the
2710 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2711 decimal in binary. Floating point constants must have a :ref:`floating
2712 point <t_floating>` type.
2713**Null pointer constants**
2714 The identifier '``null``' is recognized as a null pointer constant
2715 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002716**Token constants**
2717 The identifier '``none``' is recognized as an empty token constant
2718 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002719
2720The one non-intuitive notation for constants is the hexadecimal form of
2721floating point constants. For example, the form
2722'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2723than) '``double 4.5e+15``'. The only time hexadecimal floating point
2724constants are required (and the only time that they are generated by the
2725disassembler) is when a floating point constant must be emitted but it
2726cannot be represented as a decimal floating point number in a reasonable
2727number of digits. For example, NaN's, infinities, and other special
2728values are represented in their IEEE hexadecimal format so that assembly
2729and disassembly do not cause any bits to change in the constants.
2730
2731When using the hexadecimal form, constants of types half, float, and
2732double are represented using the 16-digit form shown above (which
2733matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002734must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002735precision, respectively. Hexadecimal format is always used for long
2736double, and there are three forms of long double. The 80-bit format used
2737by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2738128-bit format used by PowerPC (two adjacent doubles) is represented by
2739``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002740represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2741will only work if they match the long double format on your target.
2742The IEEE 16-bit format (half precision) is represented by ``0xH``
2743followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2744(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002745
Reid Kleckner9a16d082014-03-05 02:41:37 +00002746There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002747
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002748.. _complexconstants:
2749
Sean Silvab084af42012-12-07 10:36:55 +00002750Complex Constants
2751-----------------
2752
2753Complex constants are a (potentially recursive) combination of simple
2754constants and smaller complex constants.
2755
2756**Structure constants**
2757 Structure constants are represented with notation similar to
2758 structure type definitions (a comma separated list of elements,
2759 surrounded by braces (``{}``)). For example:
2760 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2761 "``@G = external global i32``". Structure constants must have
2762 :ref:`structure type <t_struct>`, and the number and types of elements
2763 must match those specified by the type.
2764**Array constants**
2765 Array constants are represented with notation similar to array type
2766 definitions (a comma separated list of elements, surrounded by
2767 square brackets (``[]``)). For example:
2768 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2769 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002770 match those specified by the type. As a special case, character array
2771 constants may also be represented as a double-quoted string using the ``c``
2772 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002773**Vector constants**
2774 Vector constants are represented with notation similar to vector
2775 type definitions (a comma separated list of elements, surrounded by
2776 less-than/greater-than's (``<>``)). For example:
2777 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2778 must have :ref:`vector type <t_vector>`, and the number and types of
2779 elements must match those specified by the type.
2780**Zero initialization**
2781 The string '``zeroinitializer``' can be used to zero initialize a
2782 value to zero of *any* type, including scalar and
2783 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2784 having to print large zero initializers (e.g. for large arrays) and
2785 is always exactly equivalent to using explicit zero initializers.
2786**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002787 A metadata node is a constant tuple without types. For example:
2788 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002789 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2790 Unlike other typed constants that are meant to be interpreted as part of
2791 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002792 information such as debug info.
2793
2794Global Variable and Function Addresses
2795--------------------------------------
2796
2797The addresses of :ref:`global variables <globalvars>` and
2798:ref:`functions <functionstructure>` are always implicitly valid
2799(link-time) constants. These constants are explicitly referenced when
2800the :ref:`identifier for the global <identifiers>` is used and always have
2801:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2802file:
2803
2804.. code-block:: llvm
2805
2806 @X = global i32 17
2807 @Y = global i32 42
2808 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2809
2810.. _undefvalues:
2811
2812Undefined Values
2813----------------
2814
2815The string '``undef``' can be used anywhere a constant is expected, and
2816indicates that the user of the value may receive an unspecified
2817bit-pattern. Undefined values may be of any type (other than '``label``'
2818or '``void``') and be used anywhere a constant is permitted.
2819
2820Undefined values are useful because they indicate to the compiler that
2821the program is well defined no matter what value is used. This gives the
2822compiler more freedom to optimize. Here are some examples of
2823(potentially surprising) transformations that are valid (in pseudo IR):
2824
2825.. code-block:: llvm
2826
2827 %A = add %X, undef
2828 %B = sub %X, undef
2829 %C = xor %X, undef
2830 Safe:
2831 %A = undef
2832 %B = undef
2833 %C = undef
2834
2835This is safe because all of the output bits are affected by the undef
2836bits. Any output bit can have a zero or one depending on the input bits.
2837
2838.. code-block:: llvm
2839
2840 %A = or %X, undef
2841 %B = and %X, undef
2842 Safe:
2843 %A = -1
2844 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00002845 Safe:
2846 %A = %X ;; By choosing undef as 0
2847 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00002848 Unsafe:
2849 %A = undef
2850 %B = undef
2851
2852These logical operations have bits that are not always affected by the
2853input. For example, if ``%X`` has a zero bit, then the output of the
2854'``and``' operation will always be a zero for that bit, no matter what
2855the corresponding bit from the '``undef``' is. As such, it is unsafe to
2856optimize or assume that the result of the '``and``' is '``undef``'.
2857However, it is safe to assume that all bits of the '``undef``' could be
28580, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2859all the bits of the '``undef``' operand to the '``or``' could be set,
2860allowing the '``or``' to be folded to -1.
2861
2862.. code-block:: llvm
2863
2864 %A = select undef, %X, %Y
2865 %B = select undef, 42, %Y
2866 %C = select %X, %Y, undef
2867 Safe:
2868 %A = %X (or %Y)
2869 %B = 42 (or %Y)
2870 %C = %Y
2871 Unsafe:
2872 %A = undef
2873 %B = undef
2874 %C = undef
2875
2876This set of examples shows that undefined '``select``' (and conditional
2877branch) conditions can go *either way*, but they have to come from one
2878of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2879both known to have a clear low bit, then ``%A`` would have to have a
2880cleared low bit. However, in the ``%C`` example, the optimizer is
2881allowed to assume that the '``undef``' operand could be the same as
2882``%Y``, allowing the whole '``select``' to be eliminated.
2883
Renato Golin124f2592016-07-20 12:16:38 +00002884.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002885
2886 %A = xor undef, undef
2887
2888 %B = undef
2889 %C = xor %B, %B
2890
2891 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002892 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002893 %F = icmp gte %D, 4
2894
2895 Safe:
2896 %A = undef
2897 %B = undef
2898 %C = undef
2899 %D = undef
2900 %E = undef
2901 %F = undef
2902
2903This example points out that two '``undef``' operands are not
2904necessarily the same. This can be surprising to people (and also matches
2905C semantics) where they assume that "``X^X``" is always zero, even if
2906``X`` is undefined. This isn't true for a number of reasons, but the
2907short answer is that an '``undef``' "variable" can arbitrarily change
2908its value over its "live range". This is true because the variable
2909doesn't actually *have a live range*. Instead, the value is logically
2910read from arbitrary registers that happen to be around when needed, so
2911the value is not necessarily consistent over time. In fact, ``%A`` and
2912``%C`` need to have the same semantics or the core LLVM "replace all
2913uses with" concept would not hold.
2914
2915.. code-block:: llvm
2916
2917 %A = fdiv undef, %X
2918 %B = fdiv %X, undef
2919 Safe:
2920 %A = undef
2921 b: unreachable
2922
2923These examples show the crucial difference between an *undefined value*
2924and *undefined behavior*. An undefined value (like '``undef``') is
2925allowed to have an arbitrary bit-pattern. This means that the ``%A``
2926operation can be constant folded to '``undef``', because the '``undef``'
2927could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2928However, in the second example, we can make a more aggressive
2929assumption: because the ``undef`` is allowed to be an arbitrary value,
2930we are allowed to assume that it could be zero. Since a divide by zero
2931has *undefined behavior*, we are allowed to assume that the operation
2932does not execute at all. This allows us to delete the divide and all
2933code after it. Because the undefined operation "can't happen", the
2934optimizer can assume that it occurs in dead code.
2935
Renato Golin124f2592016-07-20 12:16:38 +00002936.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002937
2938 a: store undef -> %X
2939 b: store %X -> undef
2940 Safe:
2941 a: <deleted>
2942 b: unreachable
2943
2944These examples reiterate the ``fdiv`` example: a store *of* an undefined
2945value can be assumed to not have any effect; we can assume that the
2946value is overwritten with bits that happen to match what was already
2947there. However, a store *to* an undefined location could clobber
2948arbitrary memory, therefore, it has undefined behavior.
2949
2950.. _poisonvalues:
2951
2952Poison Values
2953-------------
2954
2955Poison values are similar to :ref:`undef values <undefvalues>`, however
2956they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002957that cannot evoke side effects has nevertheless detected a condition
2958that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002959
2960There is currently no way of representing a poison value in the IR; they
2961only exist when produced by operations such as :ref:`add <i_add>` with
2962the ``nsw`` flag.
2963
2964Poison value behavior is defined in terms of value *dependence*:
2965
2966- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2967- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2968 their dynamic predecessor basic block.
2969- Function arguments depend on the corresponding actual argument values
2970 in the dynamic callers of their functions.
2971- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2972 instructions that dynamically transfer control back to them.
2973- :ref:`Invoke <i_invoke>` instructions depend on the
2974 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2975 call instructions that dynamically transfer control back to them.
2976- Non-volatile loads and stores depend on the most recent stores to all
2977 of the referenced memory addresses, following the order in the IR
2978 (including loads and stores implied by intrinsics such as
2979 :ref:`@llvm.memcpy <int_memcpy>`.)
2980- An instruction with externally visible side effects depends on the
2981 most recent preceding instruction with externally visible side
2982 effects, following the order in the IR. (This includes :ref:`volatile
2983 operations <volatile>`.)
2984- An instruction *control-depends* on a :ref:`terminator
2985 instruction <terminators>` if the terminator instruction has
2986 multiple successors and the instruction is always executed when
2987 control transfers to one of the successors, and may not be executed
2988 when control is transferred to another.
2989- Additionally, an instruction also *control-depends* on a terminator
2990 instruction if the set of instructions it otherwise depends on would
2991 be different if the terminator had transferred control to a different
2992 successor.
2993- Dependence is transitive.
2994
Richard Smith32dbdf62014-07-31 04:25:36 +00002995Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2996with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002997on a poison value has undefined behavior.
2998
2999Here are some examples:
3000
3001.. code-block:: llvm
3002
3003 entry:
3004 %poison = sub nuw i32 0, 1 ; Results in a poison value.
3005 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00003006 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00003007 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3008
3009 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003010 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003011
3012 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3013
3014 %narrowaddr = bitcast i32* @g to i16*
3015 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003016 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3017 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003018
3019 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3020 br i1 %cmp, label %true, label %end ; Branch to either destination.
3021
3022 true:
3023 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3024 ; it has undefined behavior.
3025 br label %end
3026
3027 end:
3028 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3029 ; Both edges into this PHI are
3030 ; control-dependent on %cmp, so this
3031 ; always results in a poison value.
3032
3033 store volatile i32 0, i32* @g ; This would depend on the store in %true
3034 ; if %cmp is true, or the store in %entry
3035 ; otherwise, so this is undefined behavior.
3036
3037 br i1 %cmp, label %second_true, label %second_end
3038 ; The same branch again, but this time the
3039 ; true block doesn't have side effects.
3040
3041 second_true:
3042 ; No side effects!
3043 ret void
3044
3045 second_end:
3046 store volatile i32 0, i32* @g ; This time, the instruction always depends
3047 ; on the store in %end. Also, it is
3048 ; control-equivalent to %end, so this is
3049 ; well-defined (ignoring earlier undefined
3050 ; behavior in this example).
3051
3052.. _blockaddress:
3053
3054Addresses of Basic Blocks
3055-------------------------
3056
3057``blockaddress(@function, %block)``
3058
3059The '``blockaddress``' constant computes the address of the specified
3060basic block in the specified function, and always has an ``i8*`` type.
3061Taking the address of the entry block is illegal.
3062
3063This value only has defined behavior when used as an operand to the
3064':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3065against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003066undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003067no label is equal to the null pointer. This may be passed around as an
3068opaque pointer sized value as long as the bits are not inspected. This
3069allows ``ptrtoint`` and arithmetic to be performed on these values so
3070long as the original value is reconstituted before the ``indirectbr``
3071instruction.
3072
3073Finally, some targets may provide defined semantics when using the value
3074as the operand to an inline assembly, but that is target specific.
3075
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003076.. _constantexprs:
3077
Sean Silvab084af42012-12-07 10:36:55 +00003078Constant Expressions
3079--------------------
3080
3081Constant expressions are used to allow expressions involving other
3082constants to be used as constants. Constant expressions may be of any
3083:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3084that does not have side effects (e.g. load and call are not supported).
3085The following is the syntax for constant expressions:
3086
3087``trunc (CST to TYPE)``
3088 Truncate a constant to another type. The bit size of CST must be
3089 larger than the bit size of TYPE. Both types must be integers.
3090``zext (CST to TYPE)``
3091 Zero extend a constant to another type. The bit size of CST must be
3092 smaller than the bit size of TYPE. Both types must be integers.
3093``sext (CST to TYPE)``
3094 Sign extend a constant to another type. The bit size of CST must be
3095 smaller than the bit size of TYPE. Both types must be integers.
3096``fptrunc (CST to TYPE)``
3097 Truncate a floating point constant to another floating point type.
3098 The size of CST must be larger than the size of TYPE. Both types
3099 must be floating point.
3100``fpext (CST to TYPE)``
3101 Floating point extend a constant to another type. The size of CST
3102 must be smaller or equal to the size of TYPE. Both types must be
3103 floating point.
3104``fptoui (CST to TYPE)``
3105 Convert a floating point constant to the corresponding unsigned
3106 integer constant. TYPE must be a scalar or vector integer type. CST
3107 must be of scalar or vector floating point type. Both CST and TYPE
3108 must be scalars, or vectors of the same number of elements. If the
3109 value won't fit in the integer type, the results are undefined.
3110``fptosi (CST to TYPE)``
3111 Convert a floating point constant to the corresponding signed
3112 integer constant. TYPE must be a scalar or vector integer type. CST
3113 must be of scalar or vector floating point type. Both CST and TYPE
3114 must be scalars, or vectors of the same number of elements. If the
3115 value won't fit in the integer type, the results are undefined.
3116``uitofp (CST to TYPE)``
3117 Convert an unsigned integer constant to the corresponding floating
3118 point constant. TYPE must be a scalar or vector floating point type.
3119 CST must be of scalar or vector integer type. Both CST and TYPE must
3120 be scalars, or vectors of the same number of elements. If the value
3121 won't fit in the floating point type, the results are undefined.
3122``sitofp (CST to TYPE)``
3123 Convert a signed integer constant to the corresponding floating
3124 point constant. TYPE must be a scalar or vector floating point type.
3125 CST must be of scalar or vector integer type. Both CST and TYPE must
3126 be scalars, or vectors of the same number of elements. If the value
3127 won't fit in the floating point type, the results are undefined.
3128``ptrtoint (CST to TYPE)``
3129 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003130 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003131 pointer type. The ``CST`` value is zero extended, truncated, or
3132 unchanged to make it fit in ``TYPE``.
3133``inttoptr (CST to TYPE)``
3134 Convert an integer constant to a pointer constant. TYPE must be a
3135 pointer type. CST must be of integer type. The CST value is zero
3136 extended, truncated, or unchanged to make it fit in a pointer size.
3137 This one is *really* dangerous!
3138``bitcast (CST to TYPE)``
3139 Convert a constant, CST, to another TYPE. The constraints of the
3140 operands are the same as those for the :ref:`bitcast
3141 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003142``addrspacecast (CST to TYPE)``
3143 Convert a constant pointer or constant vector of pointer, CST, to another
3144 TYPE in a different address space. The constraints of the operands are the
3145 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003146``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003147 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3148 constants. As with the :ref:`getelementptr <i_getelementptr>`
3149 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003150 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003151``select (COND, VAL1, VAL2)``
3152 Perform the :ref:`select operation <i_select>` on constants.
3153``icmp COND (VAL1, VAL2)``
3154 Performs the :ref:`icmp operation <i_icmp>` on constants.
3155``fcmp COND (VAL1, VAL2)``
3156 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3157``extractelement (VAL, IDX)``
3158 Perform the :ref:`extractelement operation <i_extractelement>` on
3159 constants.
3160``insertelement (VAL, ELT, IDX)``
3161 Perform the :ref:`insertelement operation <i_insertelement>` on
3162 constants.
3163``shufflevector (VEC1, VEC2, IDXMASK)``
3164 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3165 constants.
3166``extractvalue (VAL, IDX0, IDX1, ...)``
3167 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3168 constants. The index list is interpreted in a similar manner as
3169 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3170 least one index value must be specified.
3171``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3172 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3173 The index list is interpreted in a similar manner as indices in a
3174 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3175 value must be specified.
3176``OPCODE (LHS, RHS)``
3177 Perform the specified operation of the LHS and RHS constants. OPCODE
3178 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3179 binary <bitwiseops>` operations. The constraints on operands are
3180 the same as those for the corresponding instruction (e.g. no bitwise
3181 operations on floating point values are allowed).
3182
3183Other Values
3184============
3185
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003186.. _inlineasmexprs:
3187
Sean Silvab084af42012-12-07 10:36:55 +00003188Inline Assembler Expressions
3189----------------------------
3190
3191LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003192Inline Assembly <moduleasm>`) through the use of a special value. This value
3193represents the inline assembler as a template string (containing the
3194instructions to emit), a list of operand constraints (stored as a string), a
3195flag that indicates whether or not the inline asm expression has side effects,
3196and a flag indicating whether the function containing the asm needs to align its
3197stack conservatively.
3198
3199The template string supports argument substitution of the operands using "``$``"
3200followed by a number, to indicate substitution of the given register/memory
3201location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3202be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3203operand (See :ref:`inline-asm-modifiers`).
3204
3205A literal "``$``" may be included by using "``$$``" in the template. To include
3206other special characters into the output, the usual "``\XX``" escapes may be
3207used, just as in other strings. Note that after template substitution, the
3208resulting assembly string is parsed by LLVM's integrated assembler unless it is
3209disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3210syntax known to LLVM.
3211
Reid Kleckner71cb1642017-02-06 18:08:45 +00003212LLVM also supports a few more substitions useful for writing inline assembly:
3213
3214- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3215 This substitution is useful when declaring a local label. Many standard
3216 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3217 Adding a blob-unique identifier ensures that the two labels will not conflict
3218 during assembly. This is used to implement `GCC's %= special format
3219 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3220- ``${:comment}``: Expands to the comment character of the current target's
3221 assembly dialect. This is usually ``#``, but many targets use other strings,
3222 such as ``;``, ``//``, or ``!``.
3223- ``${:private}``: Expands to the assembler private label prefix. Labels with
3224 this prefix will not appear in the symbol table of the assembled object.
3225 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3226 relatively popular.
3227
James Y Knightbc832ed2015-07-08 18:08:36 +00003228LLVM's support for inline asm is modeled closely on the requirements of Clang's
3229GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3230modifier codes listed here are similar or identical to those in GCC's inline asm
3231support. However, to be clear, the syntax of the template and constraint strings
3232described here is *not* the same as the syntax accepted by GCC and Clang, and,
3233while most constraint letters are passed through as-is by Clang, some get
3234translated to other codes when converting from the C source to the LLVM
3235assembly.
3236
3237An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003238
3239.. code-block:: llvm
3240
3241 i32 (i32) asm "bswap $0", "=r,r"
3242
3243Inline assembler expressions may **only** be used as the callee operand
3244of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3245Thus, typically we have:
3246
3247.. code-block:: llvm
3248
3249 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3250
3251Inline asms with side effects not visible in the constraint list must be
3252marked as having side effects. This is done through the use of the
3253'``sideeffect``' keyword, like so:
3254
3255.. code-block:: llvm
3256
3257 call void asm sideeffect "eieio", ""()
3258
3259In some cases inline asms will contain code that will not work unless
3260the stack is aligned in some way, such as calls or SSE instructions on
3261x86, yet will not contain code that does that alignment within the asm.
3262The compiler should make conservative assumptions about what the asm
3263might contain and should generate its usual stack alignment code in the
3264prologue if the '``alignstack``' keyword is present:
3265
3266.. code-block:: llvm
3267
3268 call void asm alignstack "eieio", ""()
3269
3270Inline asms also support using non-standard assembly dialects. The
3271assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3272the inline asm is using the Intel dialect. Currently, ATT and Intel are
3273the only supported dialects. An example is:
3274
3275.. code-block:: llvm
3276
3277 call void asm inteldialect "eieio", ""()
3278
3279If multiple keywords appear the '``sideeffect``' keyword must come
3280first, the '``alignstack``' keyword second and the '``inteldialect``'
3281keyword last.
3282
James Y Knightbc832ed2015-07-08 18:08:36 +00003283Inline Asm Constraint String
3284^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3285
3286The constraint list is a comma-separated string, each element containing one or
3287more constraint codes.
3288
3289For each element in the constraint list an appropriate register or memory
3290operand will be chosen, and it will be made available to assembly template
3291string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3292second, etc.
3293
3294There are three different types of constraints, which are distinguished by a
3295prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3296constraints must always be given in that order: outputs first, then inputs, then
3297clobbers. They cannot be intermingled.
3298
3299There are also three different categories of constraint codes:
3300
3301- Register constraint. This is either a register class, or a fixed physical
3302 register. This kind of constraint will allocate a register, and if necessary,
3303 bitcast the argument or result to the appropriate type.
3304- Memory constraint. This kind of constraint is for use with an instruction
3305 taking a memory operand. Different constraints allow for different addressing
3306 modes used by the target.
3307- Immediate value constraint. This kind of constraint is for an integer or other
3308 immediate value which can be rendered directly into an instruction. The
3309 various target-specific constraints allow the selection of a value in the
3310 proper range for the instruction you wish to use it with.
3311
3312Output constraints
3313""""""""""""""""""
3314
3315Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3316indicates that the assembly will write to this operand, and the operand will
3317then be made available as a return value of the ``asm`` expression. Output
3318constraints do not consume an argument from the call instruction. (Except, see
3319below about indirect outputs).
3320
3321Normally, it is expected that no output locations are written to by the assembly
3322expression until *all* of the inputs have been read. As such, LLVM may assign
3323the same register to an output and an input. If this is not safe (e.g. if the
3324assembly contains two instructions, where the first writes to one output, and
3325the second reads an input and writes to a second output), then the "``&``"
3326modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003327"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003328will not use the same register for any inputs (other than an input tied to this
3329output).
3330
3331Input constraints
3332"""""""""""""""""
3333
3334Input constraints do not have a prefix -- just the constraint codes. Each input
3335constraint will consume one argument from the call instruction. It is not
3336permitted for the asm to write to any input register or memory location (unless
3337that input is tied to an output). Note also that multiple inputs may all be
3338assigned to the same register, if LLVM can determine that they necessarily all
3339contain the same value.
3340
3341Instead of providing a Constraint Code, input constraints may also "tie"
3342themselves to an output constraint, by providing an integer as the constraint
3343string. Tied inputs still consume an argument from the call instruction, and
3344take up a position in the asm template numbering as is usual -- they will simply
3345be constrained to always use the same register as the output they've been tied
3346to. For example, a constraint string of "``=r,0``" says to assign a register for
3347output, and use that register as an input as well (it being the 0'th
3348constraint).
3349
3350It is permitted to tie an input to an "early-clobber" output. In that case, no
3351*other* input may share the same register as the input tied to the early-clobber
3352(even when the other input has the same value).
3353
3354You may only tie an input to an output which has a register constraint, not a
3355memory constraint. Only a single input may be tied to an output.
3356
3357There is also an "interesting" feature which deserves a bit of explanation: if a
3358register class constraint allocates a register which is too small for the value
3359type operand provided as input, the input value will be split into multiple
3360registers, and all of them passed to the inline asm.
3361
3362However, this feature is often not as useful as you might think.
3363
3364Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3365architectures that have instructions which operate on multiple consecutive
3366instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3367SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3368hardware then loads into both the named register, and the next register. This
3369feature of inline asm would not be useful to support that.)
3370
3371A few of the targets provide a template string modifier allowing explicit access
3372to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3373``D``). On such an architecture, you can actually access the second allocated
3374register (yet, still, not any subsequent ones). But, in that case, you're still
3375probably better off simply splitting the value into two separate operands, for
3376clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3377despite existing only for use with this feature, is not really a good idea to
3378use)
3379
3380Indirect inputs and outputs
3381"""""""""""""""""""""""""""
3382
3383Indirect output or input constraints can be specified by the "``*``" modifier
3384(which goes after the "``=``" in case of an output). This indicates that the asm
3385will write to or read from the contents of an *address* provided as an input
3386argument. (Note that in this way, indirect outputs act more like an *input* than
3387an output: just like an input, they consume an argument of the call expression,
3388rather than producing a return value. An indirect output constraint is an
3389"output" only in that the asm is expected to write to the contents of the input
3390memory location, instead of just read from it).
3391
3392This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3393address of a variable as a value.
3394
3395It is also possible to use an indirect *register* constraint, but only on output
3396(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3397value normally, and then, separately emit a store to the address provided as
3398input, after the provided inline asm. (It's not clear what value this
3399functionality provides, compared to writing the store explicitly after the asm
3400statement, and it can only produce worse code, since it bypasses many
3401optimization passes. I would recommend not using it.)
3402
3403
3404Clobber constraints
3405"""""""""""""""""""
3406
3407A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3408consume an input operand, nor generate an output. Clobbers cannot use any of the
3409general constraint code letters -- they may use only explicit register
3410constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3411"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3412memory locations -- not only the memory pointed to by a declared indirect
3413output.
3414
Peter Zotov00257232016-08-30 10:48:31 +00003415Note that clobbering named registers that are also present in output
3416constraints is not legal.
3417
James Y Knightbc832ed2015-07-08 18:08:36 +00003418
3419Constraint Codes
3420""""""""""""""""
3421After a potential prefix comes constraint code, or codes.
3422
3423A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3424followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3425(e.g. "``{eax}``").
3426
3427The one and two letter constraint codes are typically chosen to be the same as
3428GCC's constraint codes.
3429
3430A single constraint may include one or more than constraint code in it, leaving
3431it up to LLVM to choose which one to use. This is included mainly for
3432compatibility with the translation of GCC inline asm coming from clang.
3433
3434There are two ways to specify alternatives, and either or both may be used in an
3435inline asm constraint list:
3436
34371) Append the codes to each other, making a constraint code set. E.g. "``im``"
3438 or "``{eax}m``". This means "choose any of the options in the set". The
3439 choice of constraint is made independently for each constraint in the
3440 constraint list.
3441
34422) Use "``|``" between constraint code sets, creating alternatives. Every
3443 constraint in the constraint list must have the same number of alternative
3444 sets. With this syntax, the same alternative in *all* of the items in the
3445 constraint list will be chosen together.
3446
3447Putting those together, you might have a two operand constraint string like
3448``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3449operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3450may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3451
3452However, the use of either of the alternatives features is *NOT* recommended, as
3453LLVM is not able to make an intelligent choice about which one to use. (At the
3454point it currently needs to choose, not enough information is available to do so
3455in a smart way.) Thus, it simply tries to make a choice that's most likely to
3456compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3457always choose to use memory, not registers). And, if given multiple registers,
3458or multiple register classes, it will simply choose the first one. (In fact, it
3459doesn't currently even ensure explicitly specified physical registers are
3460unique, so specifying multiple physical registers as alternatives, like
3461``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3462intended.)
3463
3464Supported Constraint Code List
3465""""""""""""""""""""""""""""""
3466
3467The constraint codes are, in general, expected to behave the same way they do in
3468GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3469inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3470and GCC likely indicates a bug in LLVM.
3471
3472Some constraint codes are typically supported by all targets:
3473
3474- ``r``: A register in the target's general purpose register class.
3475- ``m``: A memory address operand. It is target-specific what addressing modes
3476 are supported, typical examples are register, or register + register offset,
3477 or register + immediate offset (of some target-specific size).
3478- ``i``: An integer constant (of target-specific width). Allows either a simple
3479 immediate, or a relocatable value.
3480- ``n``: An integer constant -- *not* including relocatable values.
3481- ``s``: An integer constant, but allowing *only* relocatable values.
3482- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3483 useful to pass a label for an asm branch or call.
3484
3485 .. FIXME: but that surely isn't actually okay to jump out of an asm
3486 block without telling llvm about the control transfer???)
3487
3488- ``{register-name}``: Requires exactly the named physical register.
3489
3490Other constraints are target-specific:
3491
3492AArch64:
3493
3494- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3495- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3496 i.e. 0 to 4095 with optional shift by 12.
3497- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3498 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3499- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3500 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3501- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3502 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3503- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3504 32-bit register. This is a superset of ``K``: in addition to the bitmask
3505 immediate, also allows immediate integers which can be loaded with a single
3506 ``MOVZ`` or ``MOVL`` instruction.
3507- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3508 64-bit register. This is a superset of ``L``.
3509- ``Q``: Memory address operand must be in a single register (no
3510 offsets). (However, LLVM currently does this for the ``m`` constraint as
3511 well.)
3512- ``r``: A 32 or 64-bit integer register (W* or X*).
3513- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3514- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3515
3516AMDGPU:
3517
3518- ``r``: A 32 or 64-bit integer register.
3519- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3520- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3521
3522
3523All ARM modes:
3524
3525- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3526 operand. Treated the same as operand ``m``, at the moment.
3527
3528ARM and ARM's Thumb2 mode:
3529
3530- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3531- ``I``: An immediate integer valid for a data-processing instruction.
3532- ``J``: An immediate integer between -4095 and 4095.
3533- ``K``: An immediate integer whose bitwise inverse is valid for a
3534 data-processing instruction. (Can be used with template modifier "``B``" to
3535 print the inverted value).
3536- ``L``: An immediate integer whose negation is valid for a data-processing
3537 instruction. (Can be used with template modifier "``n``" to print the negated
3538 value).
3539- ``M``: A power of two or a integer between 0 and 32.
3540- ``N``: Invalid immediate constraint.
3541- ``O``: Invalid immediate constraint.
3542- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3543- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3544 as ``r``.
3545- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3546 invalid.
3547- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3548 ``d0-d31``, or ``q0-q15``.
3549- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3550 ``d0-d7``, or ``q0-q3``.
3551- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3552 ``s0-s31``.
3553
3554ARM's Thumb1 mode:
3555
3556- ``I``: An immediate integer between 0 and 255.
3557- ``J``: An immediate integer between -255 and -1.
3558- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3559 some amount.
3560- ``L``: An immediate integer between -7 and 7.
3561- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3562- ``N``: An immediate integer between 0 and 31.
3563- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3564- ``r``: A low 32-bit GPR register (``r0-r7``).
3565- ``l``: A low 32-bit GPR register (``r0-r7``).
3566- ``h``: A high GPR register (``r0-r7``).
3567- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3568 ``d0-d31``, or ``q0-q15``.
3569- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3570 ``d0-d7``, or ``q0-q3``.
3571- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3572 ``s0-s31``.
3573
3574
3575Hexagon:
3576
3577- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3578 at the moment.
3579- ``r``: A 32 or 64-bit register.
3580
3581MSP430:
3582
3583- ``r``: An 8 or 16-bit register.
3584
3585MIPS:
3586
3587- ``I``: An immediate signed 16-bit integer.
3588- ``J``: An immediate integer zero.
3589- ``K``: An immediate unsigned 16-bit integer.
3590- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3591- ``N``: An immediate integer between -65535 and -1.
3592- ``O``: An immediate signed 15-bit integer.
3593- ``P``: An immediate integer between 1 and 65535.
3594- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3595 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3596- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3597 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3598 ``m``.
3599- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3600 ``sc`` instruction on the given subtarget (details vary).
3601- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3602- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003603 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3604 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003605- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3606 ``25``).
3607- ``l``: The ``lo`` register, 32 or 64-bit.
3608- ``x``: Invalid.
3609
3610NVPTX:
3611
3612- ``b``: A 1-bit integer register.
3613- ``c`` or ``h``: A 16-bit integer register.
3614- ``r``: A 32-bit integer register.
3615- ``l`` or ``N``: A 64-bit integer register.
3616- ``f``: A 32-bit float register.
3617- ``d``: A 64-bit float register.
3618
3619
3620PowerPC:
3621
3622- ``I``: An immediate signed 16-bit integer.
3623- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3624- ``K``: An immediate unsigned 16-bit integer.
3625- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3626- ``M``: An immediate integer greater than 31.
3627- ``N``: An immediate integer that is an exact power of 2.
3628- ``O``: The immediate integer constant 0.
3629- ``P``: An immediate integer constant whose negation is a signed 16-bit
3630 constant.
3631- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3632 treated the same as ``m``.
3633- ``r``: A 32 or 64-bit integer register.
3634- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3635 ``R1-R31``).
3636- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3637 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3638- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3639 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3640 altivec vector register (``V0-V31``).
3641
3642 .. FIXME: is this a bug that v accepts QPX registers? I think this
3643 is supposed to only use the altivec vector registers?
3644
3645- ``y``: Condition register (``CR0-CR7``).
3646- ``wc``: An individual CR bit in a CR register.
3647- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3648 register set (overlapping both the floating-point and vector register files).
3649- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3650 set.
3651
3652Sparc:
3653
3654- ``I``: An immediate 13-bit signed integer.
3655- ``r``: A 32-bit integer register.
3656
3657SystemZ:
3658
3659- ``I``: An immediate unsigned 8-bit integer.
3660- ``J``: An immediate unsigned 12-bit integer.
3661- ``K``: An immediate signed 16-bit integer.
3662- ``L``: An immediate signed 20-bit integer.
3663- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003664- ``Q``: A memory address operand with a base address and a 12-bit immediate
3665 unsigned displacement.
3666- ``R``: A memory address operand with a base address, a 12-bit immediate
3667 unsigned displacement, and an index register.
3668- ``S``: A memory address operand with a base address and a 20-bit immediate
3669 signed displacement.
3670- ``T``: A memory address operand with a base address, a 20-bit immediate
3671 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003672- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3673- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3674 address context evaluates as zero).
3675- ``h``: A 32-bit value in the high part of a 64bit data register
3676 (LLVM-specific)
3677- ``f``: A 32, 64, or 128-bit floating point register.
3678
3679X86:
3680
3681- ``I``: An immediate integer between 0 and 31.
3682- ``J``: An immediate integer between 0 and 64.
3683- ``K``: An immediate signed 8-bit integer.
3684- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3685 0xffffffff.
3686- ``M``: An immediate integer between 0 and 3.
3687- ``N``: An immediate unsigned 8-bit integer.
3688- ``O``: An immediate integer between 0 and 127.
3689- ``e``: An immediate 32-bit signed integer.
3690- ``Z``: An immediate 32-bit unsigned integer.
3691- ``o``, ``v``: Treated the same as ``m``, at the moment.
3692- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3693 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3694 registers, and on X86-64, it is all of the integer registers.
3695- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3696 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3697- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3698- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3699 existed since i386, and can be accessed without the REX prefix.
3700- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3701- ``y``: A 64-bit MMX register, if MMX is enabled.
3702- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3703 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3704 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3705 512-bit vector operand in an AVX512 register, Otherwise, an error.
3706- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3707- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3708 32-bit mode, a 64-bit integer operand will get split into two registers). It
3709 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3710 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3711 you're better off splitting it yourself, before passing it to the asm
3712 statement.
3713
3714XCore:
3715
3716- ``r``: A 32-bit integer register.
3717
3718
3719.. _inline-asm-modifiers:
3720
3721Asm template argument modifiers
3722^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3723
3724In the asm template string, modifiers can be used on the operand reference, like
3725"``${0:n}``".
3726
3727The modifiers are, in general, expected to behave the same way they do in
3728GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3729inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3730and GCC likely indicates a bug in LLVM.
3731
3732Target-independent:
3733
Sean Silvaa1190322015-08-06 22:56:48 +00003734- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003735 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3736- ``n``: Negate and print immediate integer constant unadorned, without the
3737 target-specific immediate punctuation (e.g. no ``$`` prefix).
3738- ``l``: Print as an unadorned label, without the target-specific label
3739 punctuation (e.g. no ``$`` prefix).
3740
3741AArch64:
3742
3743- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3744 instead of ``x30``, print ``w30``.
3745- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3746- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3747 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3748 ``v*``.
3749
3750AMDGPU:
3751
3752- ``r``: No effect.
3753
3754ARM:
3755
3756- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3757 register).
3758- ``P``: No effect.
3759- ``q``: No effect.
3760- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3761 as ``d4[1]`` instead of ``s9``)
3762- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3763 prefix.
3764- ``L``: Print the low 16-bits of an immediate integer constant.
3765- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3766 register operands subsequent to the specified one (!), so use carefully.
3767- ``Q``: Print the low-order register of a register-pair, or the low-order
3768 register of a two-register operand.
3769- ``R``: Print the high-order register of a register-pair, or the high-order
3770 register of a two-register operand.
3771- ``H``: Print the second register of a register-pair. (On a big-endian system,
3772 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3773 to ``R``.)
3774
3775 .. FIXME: H doesn't currently support printing the second register
3776 of a two-register operand.
3777
3778- ``e``: Print the low doubleword register of a NEON quad register.
3779- ``f``: Print the high doubleword register of a NEON quad register.
3780- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3781 adornment.
3782
3783Hexagon:
3784
3785- ``L``: Print the second register of a two-register operand. Requires that it
3786 has been allocated consecutively to the first.
3787
3788 .. FIXME: why is it restricted to consecutive ones? And there's
3789 nothing that ensures that happens, is there?
3790
3791- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3792 nothing. Used to print 'addi' vs 'add' instructions.
3793
3794MSP430:
3795
3796No additional modifiers.
3797
3798MIPS:
3799
3800- ``X``: Print an immediate integer as hexadecimal
3801- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3802- ``d``: Print an immediate integer as decimal.
3803- ``m``: Subtract one and print an immediate integer as decimal.
3804- ``z``: Print $0 if an immediate zero, otherwise print normally.
3805- ``L``: Print the low-order register of a two-register operand, or prints the
3806 address of the low-order word of a double-word memory operand.
3807
3808 .. FIXME: L seems to be missing memory operand support.
3809
3810- ``M``: Print the high-order register of a two-register operand, or prints the
3811 address of the high-order word of a double-word memory operand.
3812
3813 .. FIXME: M seems to be missing memory operand support.
3814
3815- ``D``: Print the second register of a two-register operand, or prints the
3816 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3817 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3818 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003819- ``w``: No effect. Provided for compatibility with GCC which requires this
3820 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3821 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003822
3823NVPTX:
3824
3825- ``r``: No effect.
3826
3827PowerPC:
3828
3829- ``L``: Print the second register of a two-register operand. Requires that it
3830 has been allocated consecutively to the first.
3831
3832 .. FIXME: why is it restricted to consecutive ones? And there's
3833 nothing that ensures that happens, is there?
3834
3835- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3836 nothing. Used to print 'addi' vs 'add' instructions.
3837- ``y``: For a memory operand, prints formatter for a two-register X-form
3838 instruction. (Currently always prints ``r0,OPERAND``).
3839- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3840 otherwise. (NOTE: LLVM does not support update form, so this will currently
3841 always print nothing)
3842- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3843 not support indexed form, so this will currently always print nothing)
3844
3845Sparc:
3846
3847- ``r``: No effect.
3848
3849SystemZ:
3850
3851SystemZ implements only ``n``, and does *not* support any of the other
3852target-independent modifiers.
3853
3854X86:
3855
3856- ``c``: Print an unadorned integer or symbol name. (The latter is
3857 target-specific behavior for this typically target-independent modifier).
3858- ``A``: Print a register name with a '``*``' before it.
3859- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3860 operand.
3861- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3862 memory operand.
3863- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3864 operand.
3865- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3866 operand.
3867- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3868 available, otherwise the 32-bit register name; do nothing on a memory operand.
3869- ``n``: Negate and print an unadorned integer, or, for operands other than an
3870 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3871 the operand. (The behavior for relocatable symbol expressions is a
3872 target-specific behavior for this typically target-independent modifier)
3873- ``H``: Print a memory reference with additional offset +8.
3874- ``P``: Print a memory reference or operand for use as the argument of a call
3875 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3876
3877XCore:
3878
3879No additional modifiers.
3880
3881
Sean Silvab084af42012-12-07 10:36:55 +00003882Inline Asm Metadata
3883^^^^^^^^^^^^^^^^^^^
3884
3885The call instructions that wrap inline asm nodes may have a
3886"``!srcloc``" MDNode attached to it that contains a list of constant
3887integers. If present, the code generator will use the integer as the
3888location cookie value when report errors through the ``LLVMContext``
3889error reporting mechanisms. This allows a front-end to correlate backend
3890errors that occur with inline asm back to the source code that produced
3891it. For example:
3892
3893.. code-block:: llvm
3894
3895 call void asm sideeffect "something bad", ""(), !srcloc !42
3896 ...
3897 !42 = !{ i32 1234567 }
3898
3899It is up to the front-end to make sense of the magic numbers it places
3900in the IR. If the MDNode contains multiple constants, the code generator
3901will use the one that corresponds to the line of the asm that the error
3902occurs on.
3903
3904.. _metadata:
3905
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003906Metadata
3907========
Sean Silvab084af42012-12-07 10:36:55 +00003908
3909LLVM IR allows metadata to be attached to instructions in the program
3910that can convey extra information about the code to the optimizers and
3911code generator. One example application of metadata is source-level
3912debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003913
Sean Silvaa1190322015-08-06 22:56:48 +00003914Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003915``call`` instruction, it uses the ``metadata`` type.
3916
3917All metadata are identified in syntax by a exclamation point ('``!``').
3918
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003919.. _metadata-string:
3920
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003921Metadata Nodes and Metadata Strings
3922-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003923
3924A metadata string is a string surrounded by double quotes. It can
3925contain any character by escaping non-printable characters with
3926"``\xx``" where "``xx``" is the two digit hex code. For example:
3927"``!"test\00"``".
3928
3929Metadata nodes are represented with notation similar to structure
3930constants (a comma separated list of elements, surrounded by braces and
3931preceded by an exclamation point). Metadata nodes can have any values as
3932their operand. For example:
3933
3934.. code-block:: llvm
3935
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003936 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003937
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003938Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3939
Renato Golin124f2592016-07-20 12:16:38 +00003940.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003941
3942 !0 = distinct !{!"test\00", i32 10}
3943
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003944``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003945content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003946when metadata operands change.
3947
Sean Silvab084af42012-12-07 10:36:55 +00003948A :ref:`named metadata <namedmetadatastructure>` is a collection of
3949metadata nodes, which can be looked up in the module symbol table. For
3950example:
3951
3952.. code-block:: llvm
3953
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003954 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003955
3956Metadata can be used as function arguments. Here ``llvm.dbg.value``
3957function is using two metadata arguments:
3958
3959.. code-block:: llvm
3960
3961 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3962
Peter Collingbourne50108682015-11-06 02:41:02 +00003963Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3964to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003965
3966.. code-block:: llvm
3967
3968 %indvar.next = add i64 %indvar, 1, !dbg !21
3969
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003970Metadata can also be attached to a function or a global variable. Here metadata
3971``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
3972and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00003973
3974.. code-block:: llvm
3975
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003976 declare !dbg !22 void @f1()
3977 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00003978 ret void
3979 }
3980
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00003981 @g1 = global i32 0, !dbg !22
3982 @g2 = external global i32, !dbg !22
3983
3984A transformation is required to drop any metadata attachment that it does not
3985know or know it can't preserve. Currently there is an exception for metadata
3986attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
3987unconditionally dropped unless the global is itself deleted.
3988
3989Metadata attached to a module using named metadata may not be dropped, with
3990the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
3991
Sean Silvab084af42012-12-07 10:36:55 +00003992More information about specific metadata nodes recognized by the
3993optimizers and code generator is found below.
3994
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003995.. _specialized-metadata:
3996
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003997Specialized Metadata Nodes
3998^^^^^^^^^^^^^^^^^^^^^^^^^^
3999
4000Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00004001to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004002order.
4003
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004004These aren't inherently debug info centric, but currently all the specialized
4005metadata nodes are related to debug info.
4006
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004007.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004008
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004009DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004010"""""""""""""
4011
Sean Silvaa1190322015-08-06 22:56:48 +00004012``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00004013``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
4014fields are tuples containing the debug info to be emitted along with the compile
4015unit, regardless of code optimizations (some nodes are only emitted if there are
Dehao Chenfb02f712017-02-10 21:09:07 +00004016references to them from instructions). The ``debugInfoForProfiling:`` field is a
4017boolean indicating whether or not line-table discriminators are updated to
4018provide more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004019
Renato Golin124f2592016-07-20 12:16:38 +00004020.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004021
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004022 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004023 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004024 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004025 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00004026 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004027
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004028Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00004029specific compilation unit. File descriptors are defined using this scope.
4030These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004031keep track of subprograms, global variables, type information, and imported
4032entities (declarations and namespaces).
4033
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004034.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004035
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004036DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004037""""""
4038
Sean Silvaa1190322015-08-06 22:56:48 +00004039``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004040
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004041.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004042
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004043 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4044 checksumkind: CSK_MD5,
4045 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004046
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004047Files are sometimes used in ``scope:`` fields, and are the only valid target
4048for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004049Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004050
Michael Kuperstein605308a2015-05-14 10:58:59 +00004051.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004052
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004053DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004054"""""""""""
4055
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004056``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004057``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004058
Renato Golin124f2592016-07-20 12:16:38 +00004059.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004060
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004061 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004062 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004063 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004064
Sean Silvaa1190322015-08-06 22:56:48 +00004065The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004066following:
4067
Renato Golin124f2592016-07-20 12:16:38 +00004068.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004069
4070 DW_ATE_address = 1
4071 DW_ATE_boolean = 2
4072 DW_ATE_float = 4
4073 DW_ATE_signed = 5
4074 DW_ATE_signed_char = 6
4075 DW_ATE_unsigned = 7
4076 DW_ATE_unsigned_char = 8
4077
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004078.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004079
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004080DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004081""""""""""""""""
4082
Sean Silvaa1190322015-08-06 22:56:48 +00004083``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004084refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004085types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004086represents a function with no return value (such as ``void foo() {}`` in C++).
4087
Renato Golin124f2592016-07-20 12:16:38 +00004088.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004089
4090 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4091 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004092 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004093
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004094.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004095
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004096DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004097"""""""""""""
4098
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004099``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004100qualified types.
4101
Renato Golin124f2592016-07-20 12:16:38 +00004102.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004103
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004104 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004105 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004106 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004107 align: 32)
4108
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004109The following ``tag:`` values are valid:
4110
Renato Golin124f2592016-07-20 12:16:38 +00004111.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004112
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004113 DW_TAG_member = 13
4114 DW_TAG_pointer_type = 15
4115 DW_TAG_reference_type = 16
4116 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004117 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004118 DW_TAG_ptr_to_member_type = 31
4119 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004120 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004121 DW_TAG_volatile_type = 53
4122 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004123 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004124
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004125.. _DIDerivedTypeMember:
4126
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004127``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004128<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004129``offset:`` is the member's bit offset. If the composite type has an ODR
4130``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4131uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004132
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004133``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4134field of :ref:`composite types <DICompositeType>` to describe parents and
4135friends.
4136
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004137``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4138
4139``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004140``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4141are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004142
4143Note that the ``void *`` type is expressed as a type derived from NULL.
4144
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004145.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004146
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004147DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004148"""""""""""""""
4149
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004150``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004151structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004152
4153If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004154identifier used for type merging between modules. When specified,
4155:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4156derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4157``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004158
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004159For a given ``identifier:``, there should only be a single composite type that
4160does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4161together will unique such definitions at parse time via the ``identifier:``
4162field, even if the nodes are ``distinct``.
4163
Renato Golin124f2592016-07-20 12:16:38 +00004164.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004165
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004166 !0 = !DIEnumerator(name: "SixKind", value: 7)
4167 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4168 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4169 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004170 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4171 elements: !{!0, !1, !2})
4172
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004173The following ``tag:`` values are valid:
4174
Renato Golin124f2592016-07-20 12:16:38 +00004175.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004176
4177 DW_TAG_array_type = 1
4178 DW_TAG_class_type = 2
4179 DW_TAG_enumeration_type = 4
4180 DW_TAG_structure_type = 19
4181 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004182
4183For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004184descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004185level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004186array type is a native packed vector.
4187
4188For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004189descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004190value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004191``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004192
4193For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4194``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004195<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4196``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4197``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004198
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004199.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004200
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004201DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004202""""""""""
4203
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004204``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004205:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004206
4207.. code-block:: llvm
4208
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004209 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4210 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4211 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004212
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004213.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004214
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004215DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004216""""""""""""
4217
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004218``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4219variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004220
4221.. code-block:: llvm
4222
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004223 !0 = !DIEnumerator(name: "SixKind", value: 7)
4224 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4225 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004226
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004227DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004228"""""""""""""""""""""""
4229
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004230``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004231language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004232:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004233
4234.. code-block:: llvm
4235
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004236 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004237
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004238DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004239""""""""""""""""""""""""
4240
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004241``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004242language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004243but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004244``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004245:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004246
4247.. code-block:: llvm
4248
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004249 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004250
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004251DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004252"""""""""""
4253
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004254``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004255
4256.. code-block:: llvm
4257
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004258 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004259
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004260DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004261""""""""""""""""
4262
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004263``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004264
4265.. code-block:: llvm
4266
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004267 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004268 file: !2, line: 7, type: !3, isLocal: true,
4269 isDefinition: false, variable: i32* @foo,
4270 declaration: !4)
4271
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004272All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004273:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004274
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004275.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004276
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004277DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004278""""""""""""
4279
Peter Collingbourne50108682015-11-06 02:41:02 +00004280``DISubprogram`` nodes represent functions from the source language. A
4281``DISubprogram`` may be attached to a function definition using ``!dbg``
4282metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4283that must be retained, even if their IR counterparts are optimized out of
4284the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004285
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004286.. _DISubprogramDeclaration:
4287
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004288When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004289tree as opposed to a definition of a function. If the scope is a composite
4290type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4291then the subprogram declaration is uniqued based only on its ``linkageName:``
4292and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004293
Renato Golin124f2592016-07-20 12:16:38 +00004294.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004295
Peter Collingbourne50108682015-11-06 02:41:02 +00004296 define void @_Z3foov() !dbg !0 {
4297 ...
4298 }
4299
4300 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4301 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004302 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004303 containingType: !4,
4304 virtuality: DW_VIRTUALITY_pure_virtual,
4305 virtualIndex: 10, flags: DIFlagPrototyped,
4306 isOptimized: true, templateParams: !5,
4307 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004308
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004309.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004310
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004311DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004312""""""""""""""
4313
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004314``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004315<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004316two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004317fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004318
Renato Golin124f2592016-07-20 12:16:38 +00004319.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004320
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004321 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004322
4323Usually lexical blocks are ``distinct`` to prevent node merging based on
4324operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004325
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004326.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004327
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004328DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004329""""""""""""""""""
4330
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004331``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004332:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004333indicate textual inclusion, or the ``discriminator:`` field can be used to
4334discriminate between control flow within a single block in the source language.
4335
4336.. code-block:: llvm
4337
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004338 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4339 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4340 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004341
Michael Kuperstein605308a2015-05-14 10:58:59 +00004342.. _DILocation:
4343
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004344DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004345""""""""""
4346
Sean Silvaa1190322015-08-06 22:56:48 +00004347``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004348mandatory, and points at an :ref:`DILexicalBlockFile`, an
4349:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004350
4351.. code-block:: llvm
4352
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004353 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004354
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004355.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004356
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004357DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004358"""""""""""""""
4359
Sean Silvaa1190322015-08-06 22:56:48 +00004360``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004361the ``arg:`` field is set to non-zero, then this variable is a subprogram
4362parameter, and it will be included in the ``variables:`` field of its
4363:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004364
Renato Golin124f2592016-07-20 12:16:38 +00004365.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004366
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004367 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4368 type: !3, flags: DIFlagArtificial)
4369 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4370 type: !3)
4371 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004372
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004373DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004374""""""""""""
4375
Adrian Prantlb44c7762017-03-22 18:01:01 +00004376``DIExpression`` nodes represent expressions that are inspired by the DWARF
4377expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
4378(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
4379referenced LLVM variable relates to the source language variable.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004380
4381The current supported vocabulary is limited:
4382
4383- ``DW_OP_deref`` dereferences the working expression.
4384- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004385- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
4386 here, respectively) of the variable fragment from the working expression. Note
4387 that contrary to DW_OP_bit_piece, the offset is describing the the location
4388 within the described source variable.
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004389- ``DW_OP_swap`` swaps top two stack entries.
4390- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
4391 of the stack is treated as an address. The second stack entry is treated as an
4392 address space identifier.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004393- ``DW_OP_stack_value`` marks a constant value.
4394
4395DIExpression nodes that contain a ``DW_OP_stack_value`` operator are standalone
4396location descriptions that describe constant values. This form is used to
4397describe global constants that have been optimized away. All other expressions
4398are modifiers to another location: A debug intrinsic ties a location and a
4399DIExpression together. Contrary to DWARF expressions, a DIExpression always
4400describes the *value* of a source variable and never its *address*. In DWARF
4401terminology, a DIExpression can always be considered an implicit location
4402description regardless whether it contains a ``DW_OP_stack_value`` or not.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004403
Renato Golin124f2592016-07-20 12:16:38 +00004404.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004405
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004406 !0 = !DIExpression(DW_OP_deref)
4407 !1 = !DIExpression(DW_OP_plus, 3)
4408 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004409 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_LLVM_fragment, 3, 7)
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004410 !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004411 !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004412
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004413DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004414""""""""""""""
4415
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004416``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004417
4418.. code-block:: llvm
4419
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004420 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004421 getter: "getFoo", attributes: 7, type: !2)
4422
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004423DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004424""""""""""""""""
4425
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004426``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004427compile unit.
4428
Renato Golin124f2592016-07-20 12:16:38 +00004429.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004430
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004431 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004432 entity: !1, line: 7)
4433
Amjad Abouda9bcf162015-12-10 12:56:35 +00004434DIMacro
4435"""""""
4436
4437``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4438The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004439defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004440used to expand the macro identifier.
4441
Renato Golin124f2592016-07-20 12:16:38 +00004442.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004443
4444 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4445 value: "((x) + 1)")
4446 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4447
4448DIMacroFile
4449"""""""""""
4450
4451``DIMacroFile`` nodes represent inclusion of source files.
4452The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4453appear in the included source file.
4454
Renato Golin124f2592016-07-20 12:16:38 +00004455.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004456
4457 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4458 nodes: !3)
4459
Sean Silvab084af42012-12-07 10:36:55 +00004460'``tbaa``' Metadata
4461^^^^^^^^^^^^^^^^^^^
4462
4463In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004464suitable for doing type based alias analysis (TBAA). Instead, metadata is
4465added to the IR to describe a type system of a higher level language. This
4466can be used to implement C/C++ strict type aliasing rules, but it can also
4467be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004468
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004469This description of LLVM's TBAA system is broken into two parts:
4470:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4471:ref:`Representation<tbaa_node_representation>` talks about the metadata
4472encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004473
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004474It is always possible to trace any TBAA node to a "root" TBAA node (details
4475in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4476nodes with different roots have an unknown aliasing relationship, and LLVM
4477conservatively infers ``MayAlias`` between them. The rules mentioned in
4478this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004479
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004480.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004481
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004482Semantics
4483"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004484
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004485The TBAA metadata system, referred to as "struct path TBAA" (not to be
4486confused with ``tbaa.struct``), consists of the following high level
4487concepts: *Type Descriptors*, further subdivided into scalar type
4488descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004489
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004490**Type descriptors** describe the type system of the higher level language
4491being compiled. **Scalar type descriptors** describe types that do not
4492contain other types. Each scalar type has a parent type, which must also
4493be a scalar type or the TBAA root. Via this parent relation, scalar types
4494within a TBAA root form a tree. **Struct type descriptors** denote types
4495that contain a sequence of other type descriptors, at known offsets. These
4496contained type descriptors can either be struct type descriptors themselves
4497or scalar type descriptors.
4498
4499**Access tags** are metadata nodes attached to load and store instructions.
4500Access tags use type descriptors to describe the *location* being accessed
4501in terms of the type system of the higher level language. Access tags are
4502tuples consisting of a base type, an access type and an offset. The base
4503type is a scalar type descriptor or a struct type descriptor, the access
4504type is a scalar type descriptor, and the offset is a constant integer.
4505
4506The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4507things:
4508
4509 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4510 or store) of a value of type ``AccessTy`` contained in the struct type
4511 ``BaseTy`` at offset ``Offset``.
4512
4513 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4514 ``AccessTy`` must be the same; and the access tag describes a scalar
4515 access with scalar type ``AccessTy``.
4516
4517We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4518tuples this way:
4519
4520 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4521 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4522 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4523 undefined if ``Offset`` is non-zero.
4524
4525 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4526 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4527 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4528 to be relative within that inner type.
4529
4530A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4531aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4532Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4533Offset2)`` via the ``Parent`` relation or vice versa.
4534
4535As a concrete example, the type descriptor graph for the following program
4536
4537.. code-block:: c
4538
4539 struct Inner {
4540 int i; // offset 0
4541 float f; // offset 4
4542 };
4543
4544 struct Outer {
4545 float f; // offset 0
4546 double d; // offset 4
4547 struct Inner inner_a; // offset 12
4548 };
4549
4550 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4551 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4552 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
4553 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, IntScalarTy, 16)
4554 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4555 }
4556
4557is (note that in C and C++, ``char`` can be used to access any arbitrary
4558type):
4559
4560.. code-block:: text
4561
4562 Root = "TBAA Root"
4563 CharScalarTy = ("char", Root, 0)
4564 FloatScalarTy = ("float", CharScalarTy, 0)
4565 DoubleScalarTy = ("double", CharScalarTy, 0)
4566 IntScalarTy = ("int", CharScalarTy, 0)
4567 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4568 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4569 (InnerStructTy, 12)}
4570
4571
4572with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
45730)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4574``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4575
4576.. _tbaa_node_representation:
4577
4578Representation
4579""""""""""""""
4580
4581The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4582with exactly one ``MDString`` operand.
4583
4584Scalar type descriptors are represented as an ``MDNode`` s with two
4585operands. The first operand is an ``MDString`` denoting the name of the
4586struct type. LLVM does not assign meaning to the value of this operand, it
4587only cares about it being an ``MDString``. The second operand is an
4588``MDNode`` which points to the parent for said scalar type descriptor,
4589which is either another scalar type descriptor or the TBAA root. Scalar
4590type descriptors can have an optional third argument, but that must be the
4591constant integer zero.
4592
4593Struct type descriptors are represented as ``MDNode`` s with an odd number
4594of operands greater than 1. The first operand is an ``MDString`` denoting
4595the name of the struct type. Like in scalar type descriptors the actual
4596value of this name operand is irrelevant to LLVM. After the name operand,
4597the struct type descriptors have a sequence of alternating ``MDNode`` and
4598``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4599an ``MDNode``, denotes a contained field, and the 2N th operand, a
4600``ConstantInt``, is the offset of the said contained field. The offsets
4601must be in non-decreasing order.
4602
4603Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4604The first operand is an ``MDNode`` pointing to the node representing the
4605base type. The second operand is an ``MDNode`` pointing to the node
4606representing the access type. The third operand is a ``ConstantInt`` that
4607states the offset of the access. If a fourth field is present, it must be
4608a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4609that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004610``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004611AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4612the access type and the base type of an access tag must be the same, and
4613that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004614
4615'``tbaa.struct``' Metadata
4616^^^^^^^^^^^^^^^^^^^^^^^^^^
4617
4618The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4619aggregate assignment operations in C and similar languages, however it
4620is defined to copy a contiguous region of memory, which is more than
4621strictly necessary for aggregate types which contain holes due to
4622padding. Also, it doesn't contain any TBAA information about the fields
4623of the aggregate.
4624
4625``!tbaa.struct`` metadata can describe which memory subregions in a
4626memcpy are padding and what the TBAA tags of the struct are.
4627
4628The current metadata format is very simple. ``!tbaa.struct`` metadata
4629nodes are a list of operands which are in conceptual groups of three.
4630For each group of three, the first operand gives the byte offset of a
4631field in bytes, the second gives its size in bytes, and the third gives
4632its tbaa tag. e.g.:
4633
4634.. code-block:: llvm
4635
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004636 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004637
4638This describes a struct with two fields. The first is at offset 0 bytes
4639with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4640and has size 4 bytes and has tbaa tag !2.
4641
4642Note that the fields need not be contiguous. In this example, there is a
46434 byte gap between the two fields. This gap represents padding which
4644does not carry useful data and need not be preserved.
4645
Hal Finkel94146652014-07-24 14:25:39 +00004646'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004647^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004648
4649``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4650noalias memory-access sets. This means that some collection of memory access
4651instructions (loads, stores, memory-accessing calls, etc.) that carry
4652``noalias`` metadata can specifically be specified not to alias with some other
4653collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004654Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004655a domain.
4656
4657When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004658of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004659subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004660instruction's ``noalias`` list, then the two memory accesses are assumed not to
4661alias.
Hal Finkel94146652014-07-24 14:25:39 +00004662
Adam Nemet569a5b32016-04-27 00:52:48 +00004663Because scopes in one domain don't affect scopes in other domains, separate
4664domains can be used to compose multiple independent noalias sets. This is
4665used for example during inlining. As the noalias function parameters are
4666turned into noalias scope metadata, a new domain is used every time the
4667function is inlined.
4668
Hal Finkel029cde62014-07-25 15:50:02 +00004669The metadata identifying each domain is itself a list containing one or two
4670entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004671string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004672self-reference can be used to create globally unique domain names. A
4673descriptive string may optionally be provided as a second list entry.
4674
4675The metadata identifying each scope is also itself a list containing two or
4676three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004677is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004678self-reference can be used to create globally unique scope names. A metadata
4679reference to the scope's domain is the second entry. A descriptive string may
4680optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004681
4682For example,
4683
4684.. code-block:: llvm
4685
Hal Finkel029cde62014-07-25 15:50:02 +00004686 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004687 !0 = !{!0}
4688 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004689
Hal Finkel029cde62014-07-25 15:50:02 +00004690 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004691 !2 = !{!2, !0}
4692 !3 = !{!3, !0}
4693 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004694
Hal Finkel029cde62014-07-25 15:50:02 +00004695 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004696 !5 = !{!4} ; A list containing only scope !4
4697 !6 = !{!4, !3, !2}
4698 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004699
4700 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004701 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004702 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004703
Hal Finkel029cde62014-07-25 15:50:02 +00004704 ; These two instructions also don't alias (for domain !1, the set of scopes
4705 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004706 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004707 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004708
Adam Nemet0a8416f2015-05-11 08:30:28 +00004709 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004710 ; the !noalias list is not a superset of, or equal to, the scopes in the
4711 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004712 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004713 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004714
Sean Silvab084af42012-12-07 10:36:55 +00004715'``fpmath``' Metadata
4716^^^^^^^^^^^^^^^^^^^^^
4717
4718``fpmath`` metadata may be attached to any instruction of floating point
4719type. It can be used to express the maximum acceptable error in the
4720result of that instruction, in ULPs, thus potentially allowing the
4721compiler to use a more efficient but less accurate method of computing
4722it. ULP is defined as follows:
4723
4724 If ``x`` is a real number that lies between two finite consecutive
4725 floating-point numbers ``a`` and ``b``, without being equal to one
4726 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4727 distance between the two non-equal finite floating-point numbers
4728 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4729
Matt Arsenault82f41512016-06-27 19:43:15 +00004730The metadata node shall consist of a single positive float type number
4731representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004732
4733.. code-block:: llvm
4734
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004735 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004736
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004737.. _range-metadata:
4738
Sean Silvab084af42012-12-07 10:36:55 +00004739'``range``' Metadata
4740^^^^^^^^^^^^^^^^^^^^
4741
Jingyue Wu37fcb592014-06-19 16:50:16 +00004742``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4743integer types. It expresses the possible ranges the loaded value or the value
4744returned by the called function at this call site is in. The ranges are
4745represented with a flattened list of integers. The loaded value or the value
4746returned is known to be in the union of the ranges defined by each consecutive
4747pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004748
4749- The type must match the type loaded by the instruction.
4750- The pair ``a,b`` represents the range ``[a,b)``.
4751- Both ``a`` and ``b`` are constants.
4752- The range is allowed to wrap.
4753- The range should not represent the full or empty set. That is,
4754 ``a!=b``.
4755
4756In addition, the pairs must be in signed order of the lower bound and
4757they must be non-contiguous.
4758
4759Examples:
4760
4761.. code-block:: llvm
4762
David Blaikiec7aabbb2015-03-04 22:06:14 +00004763 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4764 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004765 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4766 %d = invoke i8 @bar() to label %cont
4767 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004768 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004769 !0 = !{ i8 0, i8 2 }
4770 !1 = !{ i8 255, i8 2 }
4771 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4772 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004773
Peter Collingbourne235c2752016-12-08 19:01:00 +00004774'``absolute_symbol``' Metadata
4775^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4776
4777``absolute_symbol`` metadata may be attached to a global variable
4778declaration. It marks the declaration as a reference to an absolute symbol,
4779which causes the backend to use absolute relocations for the symbol even
4780in position independent code, and expresses the possible ranges that the
4781global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00004782``range`` metadata, with the extension that the pair ``all-ones,all-ones``
4783may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00004784
Peter Collingbourned88f9282017-01-20 21:56:37 +00004785Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00004786
4787.. code-block:: llvm
4788
4789 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00004790 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00004791
4792 ...
4793 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00004794 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00004795
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004796'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004797^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004798
4799``unpredictable`` metadata may be attached to any branch or switch
4800instruction. It can be used to express the unpredictability of control
4801flow. Similar to the llvm.expect intrinsic, it may be used to alter
4802optimizations related to compare and branch instructions. The metadata
4803is treated as a boolean value; if it exists, it signals that the branch
4804or switch that it is attached to is completely unpredictable.
4805
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004806'``llvm.loop``'
4807^^^^^^^^^^^^^^^
4808
4809It is sometimes useful to attach information to loop constructs. Currently,
4810loop metadata is implemented as metadata attached to the branch instruction
4811in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004812guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004813specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004814
4815The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004816itself to avoid merging it with any other identifier metadata, e.g.,
4817during module linkage or function inlining. That is, each loop should refer
4818to their own identification metadata even if they reside in separate functions.
4819The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004820constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004821
4822.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004823
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004824 !0 = !{!0}
4825 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004826
Mark Heffernan893752a2014-07-18 19:24:51 +00004827The loop identifier metadata can be used to specify additional
4828per-loop metadata. Any operands after the first operand can be treated
4829as user-defined metadata. For example the ``llvm.loop.unroll.count``
4830suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004831
Paul Redmond5fdf8362013-05-28 20:00:34 +00004832.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004833
Paul Redmond5fdf8362013-05-28 20:00:34 +00004834 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4835 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004836 !0 = !{!0, !1}
4837 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004838
Mark Heffernan9d20e422014-07-21 23:11:03 +00004839'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4840^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004841
Mark Heffernan9d20e422014-07-21 23:11:03 +00004842Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4843used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004844vectorization width and interleave count. These metadata should be used in
4845conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004846``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4847optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004848it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004849which contains information about loop-carried memory dependencies can be helpful
4850in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004851
Mark Heffernan9d20e422014-07-21 23:11:03 +00004852'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004853^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4854
Mark Heffernan9d20e422014-07-21 23:11:03 +00004855This metadata suggests an interleave count to the loop interleaver.
4856The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004857second operand is an integer specifying the interleave count. For
4858example:
4859
4860.. code-block:: llvm
4861
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004862 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004863
Mark Heffernan9d20e422014-07-21 23:11:03 +00004864Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004865multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004866then the interleave count will be determined automatically.
4867
4868'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004869^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004870
4871This metadata selectively enables or disables vectorization for the loop. The
4872first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004873is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000048740 disables vectorization:
4875
4876.. code-block:: llvm
4877
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004878 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4879 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004880
4881'``llvm.loop.vectorize.width``' Metadata
4882^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4883
4884This metadata sets the target width of the vectorizer. The first
4885operand is the string ``llvm.loop.vectorize.width`` and the second
4886operand is an integer specifying the width. For example:
4887
4888.. code-block:: llvm
4889
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004890 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004891
4892Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004893vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000048940 or if the loop does not have this metadata the width will be
4895determined automatically.
4896
4897'``llvm.loop.unroll``'
4898^^^^^^^^^^^^^^^^^^^^^^
4899
4900Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4901optimization hints such as the unroll factor. ``llvm.loop.unroll``
4902metadata should be used in conjunction with ``llvm.loop`` loop
4903identification metadata. The ``llvm.loop.unroll`` metadata are only
4904optimization hints and the unrolling will only be performed if the
4905optimizer believes it is safe to do so.
4906
Mark Heffernan893752a2014-07-18 19:24:51 +00004907'``llvm.loop.unroll.count``' Metadata
4908^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4909
4910This metadata suggests an unroll factor to the loop unroller. The
4911first operand is the string ``llvm.loop.unroll.count`` and the second
4912operand is a positive integer specifying the unroll factor. For
4913example:
4914
4915.. code-block:: llvm
4916
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004917 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004918
4919If the trip count of the loop is less than the unroll count the loop
4920will be partially unrolled.
4921
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004922'``llvm.loop.unroll.disable``' Metadata
4923^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4924
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004925This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004926which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004927
4928.. code-block:: llvm
4929
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004930 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004931
Kevin Qin715b01e2015-03-09 06:14:18 +00004932'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004933^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004934
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004935This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004936operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004937
4938.. code-block:: llvm
4939
4940 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4941
Mark Heffernan89391542015-08-10 17:28:08 +00004942'``llvm.loop.unroll.enable``' Metadata
4943^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4944
4945This metadata suggests that the loop should be fully unrolled if the trip count
4946is known at compile time and partially unrolled if the trip count is not known
4947at compile time. The metadata has a single operand which is the string
4948``llvm.loop.unroll.enable``. For example:
4949
4950.. code-block:: llvm
4951
4952 !0 = !{!"llvm.loop.unroll.enable"}
4953
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004954'``llvm.loop.unroll.full``' Metadata
4955^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4956
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004957This metadata suggests that the loop should be unrolled fully. The
4958metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004959For example:
4960
4961.. code-block:: llvm
4962
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004963 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004964
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004965'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004966^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004967
4968This metadata indicates that the loop should not be versioned for the purpose
4969of enabling loop-invariant code motion (LICM). The metadata has a single operand
4970which is the string ``llvm.loop.licm_versioning.disable``. For example:
4971
4972.. code-block:: llvm
4973
4974 !0 = !{!"llvm.loop.licm_versioning.disable"}
4975
Adam Nemetd2fa4142016-04-27 05:28:18 +00004976'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00004977^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00004978
4979Loop distribution allows splitting a loop into multiple loops. Currently,
4980this is only performed if the entire loop cannot be vectorized due to unsafe
4981memory dependencies. The transformation will atempt to isolate the unsafe
4982dependencies into their own loop.
4983
4984This metadata can be used to selectively enable or disable distribution of the
4985loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
4986second operand is a bit. If the bit operand value is 1 distribution is
4987enabled. A value of 0 disables distribution:
4988
4989.. code-block:: llvm
4990
4991 !0 = !{!"llvm.loop.distribute.enable", i1 0}
4992 !1 = !{!"llvm.loop.distribute.enable", i1 1}
4993
4994This metadata should be used in conjunction with ``llvm.loop`` loop
4995identification metadata.
4996
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004997'``llvm.mem``'
4998^^^^^^^^^^^^^^^
4999
5000Metadata types used to annotate memory accesses with information helpful
5001for optimizations are prefixed with ``llvm.mem``.
5002
5003'``llvm.mem.parallel_loop_access``' Metadata
5004^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5005
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005006The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
5007or metadata containing a list of loop identifiers for nested loops.
5008The metadata is attached to memory accessing instructions and denotes that
5009no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00005010with the same loop identifier. The metadata on memory reads also implies that
5011if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005012
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005013Precisely, given two instructions ``m1`` and ``m2`` that both have the
5014``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
5015set of loops associated with that metadata, respectively, then there is no loop
5016carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005017``L2``.
5018
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005019As a special case, if all memory accessing instructions in a loop have
5020``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
5021loop has no loop carried memory dependences and is considered to be a parallel
5022loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005023
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005024Note that if not all memory access instructions have such metadata referring to
5025the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00005026memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005027safe mechanism, this causes loops that were originally parallel to be considered
5028sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005029insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005030
5031Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00005032both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005033metadata types that refer to the same loop identifier metadata.
5034
5035.. code-block:: llvm
5036
5037 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005038 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005039 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005040 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005041 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005042 ...
5043 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005044
5045 for.end:
5046 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005047 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005048
5049It is also possible to have nested parallel loops. In that case the
5050memory accesses refer to a list of loop identifier metadata nodes instead of
5051the loop identifier metadata node directly:
5052
5053.. code-block:: llvm
5054
5055 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005056 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005057 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005058 ...
5059 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005060
5061 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005062 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005063 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005064 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005065 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005066 ...
5067 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005068
5069 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005070 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005071 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00005072 ...
5073 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005074
5075 outer.for.end: ; preds = %for.body
5076 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005077 !0 = !{!1, !2} ; a list of loop identifiers
5078 !1 = !{!1} ; an identifier for the inner loop
5079 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005080
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005081'``invariant.group``' Metadata
5082^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5083
5084The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
5085The existence of the ``invariant.group`` metadata on the instruction tells
5086the optimizer that every ``load`` and ``store`` to the same pointer operand
5087within the same invariant group can be assumed to load or store the same
5088value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005089when two pointers are considered the same). Pointers returned by bitcast or
5090getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005091
5092Examples:
5093
5094.. code-block:: llvm
5095
5096 @unknownPtr = external global i8
5097 ...
5098 %ptr = alloca i8
5099 store i8 42, i8* %ptr, !invariant.group !0
5100 call void @foo(i8* %ptr)
5101
5102 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5103 call void @foo(i8* %ptr)
5104 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
5105
5106 %newPtr = call i8* @getPointer(i8* %ptr)
5107 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
5108
5109 %unknownValue = load i8, i8* @unknownPtr
5110 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
5111
5112 call void @foo(i8* %ptr)
5113 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
5114 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
5115
5116 ...
5117 declare void @foo(i8*)
5118 declare i8* @getPointer(i8*)
5119 declare i8* @llvm.invariant.group.barrier(i8*)
5120
5121 !0 = !{!"magic ptr"}
5122 !1 = !{!"other ptr"}
5123
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005124The invariant.group metadata must be dropped when replacing one pointer by
5125another based on aliasing information. This is because invariant.group is tied
5126to the SSA value of the pointer operand.
5127
5128.. code-block:: llvm
5129 %v = load i8, i8* %x, !invariant.group !0
5130 ; if %x mustalias %y then we can replace the above instruction with
5131 %v = load i8, i8* %y
5132
5133
Peter Collingbournea333db82016-07-26 22:31:30 +00005134'``type``' Metadata
5135^^^^^^^^^^^^^^^^^^^
5136
5137See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005138
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005139'``associated``' Metadata
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005140^^^^^^^^^^^^^^^^^^^^^^^^^
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005141
5142The ``associated`` metadata may be attached to a global object
5143declaration with a single argument that references another global object.
5144
5145This metadata prevents discarding of the global object in linker GC
5146unless the referenced object is also discarded. The linker support for
5147this feature is spotty. For best compatibility, globals carrying this
5148metadata may also:
5149
5150- Be in a comdat with the referenced global.
5151- Be in @llvm.compiler.used.
5152- Have an explicit section with a name which is a valid C identifier.
5153
5154It does not have any effect on non-ELF targets.
5155
5156Example:
5157
5158.. code-block:: llvm
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005159
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005160 $a = comdat any
5161 @a = global i32 1, comdat $a
5162 @b = internal global i32 2, comdat $a, section "abc", !associated !0
5163 !0 = !{i32* @a}
5164
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005165
Sean Silvab084af42012-12-07 10:36:55 +00005166Module Flags Metadata
5167=====================
5168
5169Information about the module as a whole is difficult to convey to LLVM's
5170subsystems. The LLVM IR isn't sufficient to transmit this information.
5171The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005172this. These flags are in the form of key / value pairs --- much like a
5173dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005174look it up.
5175
5176The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5177Each triplet has the following form:
5178
5179- The first element is a *behavior* flag, which specifies the behavior
5180 when two (or more) modules are merged together, and it encounters two
5181 (or more) metadata with the same ID. The supported behaviors are
5182 described below.
5183- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005184 metadata. Each module may only have one flag entry for each unique ID (not
5185 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005186- The third element is the value of the flag.
5187
5188When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005189``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5190each unique metadata ID string, there will be exactly one entry in the merged
5191modules ``llvm.module.flags`` metadata table, and the value for that entry will
5192be determined by the merge behavior flag, as described below. The only exception
5193is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005194
5195The following behaviors are supported:
5196
5197.. list-table::
5198 :header-rows: 1
5199 :widths: 10 90
5200
5201 * - Value
5202 - Behavior
5203
5204 * - 1
5205 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005206 Emits an error if two values disagree, otherwise the resulting value
5207 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005208
5209 * - 2
5210 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005211 Emits a warning if two values disagree. The result value will be the
5212 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005213
5214 * - 3
5215 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005216 Adds a requirement that another module flag be present and have a
5217 specified value after linking is performed. The value must be a
5218 metadata pair, where the first element of the pair is the ID of the
5219 module flag to be restricted, and the second element of the pair is
5220 the value the module flag should be restricted to. This behavior can
5221 be used to restrict the allowable results (via triggering of an
5222 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005223
5224 * - 4
5225 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005226 Uses the specified value, regardless of the behavior or value of the
5227 other module. If both modules specify **Override**, but the values
5228 differ, an error will be emitted.
5229
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005230 * - 5
5231 - **Append**
5232 Appends the two values, which are required to be metadata nodes.
5233
5234 * - 6
5235 - **AppendUnique**
5236 Appends the two values, which are required to be metadata
5237 nodes. However, duplicate entries in the second list are dropped
5238 during the append operation.
5239
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005240It is an error for a particular unique flag ID to have multiple behaviors,
5241except in the case of **Require** (which adds restrictions on another metadata
5242value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005243
5244An example of module flags:
5245
5246.. code-block:: llvm
5247
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005248 !0 = !{ i32 1, !"foo", i32 1 }
5249 !1 = !{ i32 4, !"bar", i32 37 }
5250 !2 = !{ i32 2, !"qux", i32 42 }
5251 !3 = !{ i32 3, !"qux",
5252 !{
5253 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005254 }
5255 }
5256 !llvm.module.flags = !{ !0, !1, !2, !3 }
5257
5258- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5259 if two or more ``!"foo"`` flags are seen is to emit an error if their
5260 values are not equal.
5261
5262- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5263 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005264 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005265
5266- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5267 behavior if two or more ``!"qux"`` flags are seen is to emit a
5268 warning if their values are not equal.
5269
5270- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5271
5272 ::
5273
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005274 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005275
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005276 The behavior is to emit an error if the ``llvm.module.flags`` does not
5277 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5278 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005279
5280Objective-C Garbage Collection Module Flags Metadata
5281----------------------------------------------------
5282
5283On the Mach-O platform, Objective-C stores metadata about garbage
5284collection in a special section called "image info". The metadata
5285consists of a version number and a bitmask specifying what types of
5286garbage collection are supported (if any) by the file. If two or more
5287modules are linked together their garbage collection metadata needs to
5288be merged rather than appended together.
5289
5290The Objective-C garbage collection module flags metadata consists of the
5291following key-value pairs:
5292
5293.. list-table::
5294 :header-rows: 1
5295 :widths: 30 70
5296
5297 * - Key
5298 - Value
5299
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005300 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005301 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005302
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005303 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005304 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005305 always 0.
5306
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005307 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005308 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005309 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5310 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5311 Objective-C ABI version 2.
5312
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005313 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005314 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005315 not. Valid values are 0, for no garbage collection, and 2, for garbage
5316 collection supported.
5317
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005318 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005319 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005320 If present, its value must be 6. This flag requires that the
5321 ``Objective-C Garbage Collection`` flag have the value 2.
5322
5323Some important flag interactions:
5324
5325- If a module with ``Objective-C Garbage Collection`` set to 0 is
5326 merged with a module with ``Objective-C Garbage Collection`` set to
5327 2, then the resulting module has the
5328 ``Objective-C Garbage Collection`` flag set to 0.
5329- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5330 merged with a module with ``Objective-C GC Only`` set to 6.
5331
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005332Automatic Linker Flags Module Flags Metadata
5333--------------------------------------------
5334
5335Some targets support embedding flags to the linker inside individual object
5336files. Typically this is used in conjunction with language extensions which
5337allow source files to explicitly declare the libraries they depend on, and have
5338these automatically be transmitted to the linker via object files.
5339
5340These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005341using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005342to be ``AppendUnique``, and the value for the key is expected to be a metadata
5343node which should be a list of other metadata nodes, each of which should be a
5344list of metadata strings defining linker options.
5345
5346For example, the following metadata section specifies two separate sets of
5347linker options, presumably to link against ``libz`` and the ``Cocoa``
5348framework::
5349
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005350 !0 = !{ i32 6, !"Linker Options",
5351 !{
5352 !{ !"-lz" },
5353 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005354 !llvm.module.flags = !{ !0 }
5355
5356The metadata encoding as lists of lists of options, as opposed to a collapsed
5357list of options, is chosen so that the IR encoding can use multiple option
5358strings to specify e.g., a single library, while still having that specifier be
5359preserved as an atomic element that can be recognized by a target specific
5360assembly writer or object file emitter.
5361
5362Each individual option is required to be either a valid option for the target's
5363linker, or an option that is reserved by the target specific assembly writer or
5364object file emitter. No other aspect of these options is defined by the IR.
5365
Oliver Stannard5dc29342014-06-20 10:08:11 +00005366C type width Module Flags Metadata
5367----------------------------------
5368
5369The ARM backend emits a section into each generated object file describing the
5370options that it was compiled with (in a compiler-independent way) to prevent
5371linking incompatible objects, and to allow automatic library selection. Some
5372of these options are not visible at the IR level, namely wchar_t width and enum
5373width.
5374
5375To pass this information to the backend, these options are encoded in module
5376flags metadata, using the following key-value pairs:
5377
5378.. list-table::
5379 :header-rows: 1
5380 :widths: 30 70
5381
5382 * - Key
5383 - Value
5384
5385 * - short_wchar
5386 - * 0 --- sizeof(wchar_t) == 4
5387 * 1 --- sizeof(wchar_t) == 2
5388
5389 * - short_enum
5390 - * 0 --- Enums are at least as large as an ``int``.
5391 * 1 --- Enums are stored in the smallest integer type which can
5392 represent all of its values.
5393
5394For example, the following metadata section specifies that the module was
5395compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5396enum is the smallest type which can represent all of its values::
5397
5398 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005399 !0 = !{i32 1, !"short_wchar", i32 1}
5400 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005401
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005402.. _intrinsicglobalvariables:
5403
Sean Silvab084af42012-12-07 10:36:55 +00005404Intrinsic Global Variables
5405==========================
5406
5407LLVM has a number of "magic" global variables that contain data that
5408affect code generation or other IR semantics. These are documented here.
5409All globals of this sort should have a section specified as
5410"``llvm.metadata``". This section and all globals that start with
5411"``llvm.``" are reserved for use by LLVM.
5412
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005413.. _gv_llvmused:
5414
Sean Silvab084af42012-12-07 10:36:55 +00005415The '``llvm.used``' Global Variable
5416-----------------------------------
5417
Rafael Espindola74f2e462013-04-22 14:58:02 +00005418The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005419:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005420pointers to named global variables, functions and aliases which may optionally
5421have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005422use of it is:
5423
5424.. code-block:: llvm
5425
5426 @X = global i8 4
5427 @Y = global i32 123
5428
5429 @llvm.used = appending global [2 x i8*] [
5430 i8* @X,
5431 i8* bitcast (i32* @Y to i8*)
5432 ], section "llvm.metadata"
5433
Rafael Espindola74f2e462013-04-22 14:58:02 +00005434If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5435and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005436symbol that it cannot see (which is why they have to be named). For example, if
5437a variable has internal linkage and no references other than that from the
5438``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5439references from inline asms and other things the compiler cannot "see", and
5440corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005441
5442On some targets, the code generator must emit a directive to the
5443assembler or object file to prevent the assembler and linker from
5444molesting the symbol.
5445
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005446.. _gv_llvmcompilerused:
5447
Sean Silvab084af42012-12-07 10:36:55 +00005448The '``llvm.compiler.used``' Global Variable
5449--------------------------------------------
5450
5451The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5452directive, except that it only prevents the compiler from touching the
5453symbol. On targets that support it, this allows an intelligent linker to
5454optimize references to the symbol without being impeded as it would be
5455by ``@llvm.used``.
5456
5457This is a rare construct that should only be used in rare circumstances,
5458and should not be exposed to source languages.
5459
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005460.. _gv_llvmglobalctors:
5461
Sean Silvab084af42012-12-07 10:36:55 +00005462The '``llvm.global_ctors``' Global Variable
5463-------------------------------------------
5464
5465.. code-block:: llvm
5466
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005467 %0 = type { i32, void ()*, i8* }
5468 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005469
5470The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005471functions, priorities, and an optional associated global or function.
5472The functions referenced by this array will be called in ascending order
5473of priority (i.e. lowest first) when the module is loaded. The order of
5474functions with the same priority is not defined.
5475
5476If the third field is present, non-null, and points to a global variable
5477or function, the initializer function will only run if the associated
5478data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005479
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005480.. _llvmglobaldtors:
5481
Sean Silvab084af42012-12-07 10:36:55 +00005482The '``llvm.global_dtors``' Global Variable
5483-------------------------------------------
5484
5485.. code-block:: llvm
5486
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005487 %0 = type { i32, void ()*, i8* }
5488 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005489
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005490The ``@llvm.global_dtors`` array contains a list of destructor
5491functions, priorities, and an optional associated global or function.
5492The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005493order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005494order of functions with the same priority is not defined.
5495
5496If the third field is present, non-null, and points to a global variable
5497or function, the destructor function will only run if the associated
5498data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005499
5500Instruction Reference
5501=====================
5502
5503The LLVM instruction set consists of several different classifications
5504of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5505instructions <binaryops>`, :ref:`bitwise binary
5506instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5507:ref:`other instructions <otherops>`.
5508
5509.. _terminators:
5510
5511Terminator Instructions
5512-----------------------
5513
5514As mentioned :ref:`previously <functionstructure>`, every basic block in a
5515program ends with a "Terminator" instruction, which indicates which
5516block should be executed after the current block is finished. These
5517terminator instructions typically yield a '``void``' value: they produce
5518control flow, not values (the one exception being the
5519':ref:`invoke <i_invoke>`' instruction).
5520
5521The terminator instructions are: ':ref:`ret <i_ret>`',
5522':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5523':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005524':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005525':ref:`catchret <i_catchret>`',
5526':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005527and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005528
5529.. _i_ret:
5530
5531'``ret``' Instruction
5532^^^^^^^^^^^^^^^^^^^^^
5533
5534Syntax:
5535"""""""
5536
5537::
5538
5539 ret <type> <value> ; Return a value from a non-void function
5540 ret void ; Return from void function
5541
5542Overview:
5543"""""""""
5544
5545The '``ret``' instruction is used to return control flow (and optionally
5546a value) from a function back to the caller.
5547
5548There are two forms of the '``ret``' instruction: one that returns a
5549value and then causes control flow, and one that just causes control
5550flow to occur.
5551
5552Arguments:
5553""""""""""
5554
5555The '``ret``' instruction optionally accepts a single argument, the
5556return value. The type of the return value must be a ':ref:`first
5557class <t_firstclass>`' type.
5558
5559A function is not :ref:`well formed <wellformed>` if it it has a non-void
5560return type and contains a '``ret``' instruction with no return value or
5561a return value with a type that does not match its type, or if it has a
5562void return type and contains a '``ret``' instruction with a return
5563value.
5564
5565Semantics:
5566""""""""""
5567
5568When the '``ret``' instruction is executed, control flow returns back to
5569the calling function's context. If the caller is a
5570":ref:`call <i_call>`" instruction, execution continues at the
5571instruction after the call. If the caller was an
5572":ref:`invoke <i_invoke>`" instruction, execution continues at the
5573beginning of the "normal" destination block. If the instruction returns
5574a value, that value shall set the call or invoke instruction's return
5575value.
5576
5577Example:
5578""""""""
5579
5580.. code-block:: llvm
5581
5582 ret i32 5 ; Return an integer value of 5
5583 ret void ; Return from a void function
5584 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5585
5586.. _i_br:
5587
5588'``br``' Instruction
5589^^^^^^^^^^^^^^^^^^^^
5590
5591Syntax:
5592"""""""
5593
5594::
5595
5596 br i1 <cond>, label <iftrue>, label <iffalse>
5597 br label <dest> ; Unconditional branch
5598
5599Overview:
5600"""""""""
5601
5602The '``br``' instruction is used to cause control flow to transfer to a
5603different basic block in the current function. There are two forms of
5604this instruction, corresponding to a conditional branch and an
5605unconditional branch.
5606
5607Arguments:
5608""""""""""
5609
5610The conditional branch form of the '``br``' instruction takes a single
5611'``i1``' value and two '``label``' values. The unconditional form of the
5612'``br``' instruction takes a single '``label``' value as a target.
5613
5614Semantics:
5615""""""""""
5616
5617Upon execution of a conditional '``br``' instruction, the '``i1``'
5618argument is evaluated. If the value is ``true``, control flows to the
5619'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5620to the '``iffalse``' ``label`` argument.
5621
5622Example:
5623""""""""
5624
5625.. code-block:: llvm
5626
5627 Test:
5628 %cond = icmp eq i32 %a, %b
5629 br i1 %cond, label %IfEqual, label %IfUnequal
5630 IfEqual:
5631 ret i32 1
5632 IfUnequal:
5633 ret i32 0
5634
5635.. _i_switch:
5636
5637'``switch``' Instruction
5638^^^^^^^^^^^^^^^^^^^^^^^^
5639
5640Syntax:
5641"""""""
5642
5643::
5644
5645 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5646
5647Overview:
5648"""""""""
5649
5650The '``switch``' instruction is used to transfer control flow to one of
5651several different places. It is a generalization of the '``br``'
5652instruction, allowing a branch to occur to one of many possible
5653destinations.
5654
5655Arguments:
5656""""""""""
5657
5658The '``switch``' instruction uses three parameters: an integer
5659comparison value '``value``', a default '``label``' destination, and an
5660array of pairs of comparison value constants and '``label``'s. The table
5661is not allowed to contain duplicate constant entries.
5662
5663Semantics:
5664""""""""""
5665
5666The ``switch`` instruction specifies a table of values and destinations.
5667When the '``switch``' instruction is executed, this table is searched
5668for the given value. If the value is found, control flow is transferred
5669to the corresponding destination; otherwise, control flow is transferred
5670to the default destination.
5671
5672Implementation:
5673"""""""""""""""
5674
5675Depending on properties of the target machine and the particular
5676``switch`` instruction, this instruction may be code generated in
5677different ways. For example, it could be generated as a series of
5678chained conditional branches or with a lookup table.
5679
5680Example:
5681""""""""
5682
5683.. code-block:: llvm
5684
5685 ; Emulate a conditional br instruction
5686 %Val = zext i1 %value to i32
5687 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5688
5689 ; Emulate an unconditional br instruction
5690 switch i32 0, label %dest [ ]
5691
5692 ; Implement a jump table:
5693 switch i32 %val, label %otherwise [ i32 0, label %onzero
5694 i32 1, label %onone
5695 i32 2, label %ontwo ]
5696
5697.. _i_indirectbr:
5698
5699'``indirectbr``' Instruction
5700^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5701
5702Syntax:
5703"""""""
5704
5705::
5706
5707 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5708
5709Overview:
5710"""""""""
5711
5712The '``indirectbr``' instruction implements an indirect branch to a
5713label within the current function, whose address is specified by
5714"``address``". Address must be derived from a
5715:ref:`blockaddress <blockaddress>` constant.
5716
5717Arguments:
5718""""""""""
5719
5720The '``address``' argument is the address of the label to jump to. The
5721rest of the arguments indicate the full set of possible destinations
5722that the address may point to. Blocks are allowed to occur multiple
5723times in the destination list, though this isn't particularly useful.
5724
5725This destination list is required so that dataflow analysis has an
5726accurate understanding of the CFG.
5727
5728Semantics:
5729""""""""""
5730
5731Control transfers to the block specified in the address argument. All
5732possible destination blocks must be listed in the label list, otherwise
5733this instruction has undefined behavior. This implies that jumps to
5734labels defined in other functions have undefined behavior as well.
5735
5736Implementation:
5737"""""""""""""""
5738
5739This is typically implemented with a jump through a register.
5740
5741Example:
5742""""""""
5743
5744.. code-block:: llvm
5745
5746 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5747
5748.. _i_invoke:
5749
5750'``invoke``' Instruction
5751^^^^^^^^^^^^^^^^^^^^^^^^
5752
5753Syntax:
5754"""""""
5755
5756::
5757
David Blaikieb83cf102016-07-13 17:21:34 +00005758 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005759 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005760
5761Overview:
5762"""""""""
5763
5764The '``invoke``' instruction causes control to transfer to a specified
5765function, with the possibility of control flow transfer to either the
5766'``normal``' label or the '``exception``' label. If the callee function
5767returns with the "``ret``" instruction, control flow will return to the
5768"normal" label. If the callee (or any indirect callees) returns via the
5769":ref:`resume <i_resume>`" instruction or other exception handling
5770mechanism, control is interrupted and continued at the dynamically
5771nearest "exception" label.
5772
5773The '``exception``' label is a `landing
5774pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5775'``exception``' label is required to have the
5776":ref:`landingpad <i_landingpad>`" instruction, which contains the
5777information about the behavior of the program after unwinding happens,
5778as its first non-PHI instruction. The restrictions on the
5779"``landingpad``" instruction's tightly couples it to the "``invoke``"
5780instruction, so that the important information contained within the
5781"``landingpad``" instruction can't be lost through normal code motion.
5782
5783Arguments:
5784""""""""""
5785
5786This instruction requires several arguments:
5787
5788#. The optional "cconv" marker indicates which :ref:`calling
5789 convention <callingconv>` the call should use. If none is
5790 specified, the call defaults to using C calling conventions.
5791#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5792 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5793 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00005794#. '``ty``': the type of the call instruction itself which is also the
5795 type of the return value. Functions that return no value are marked
5796 ``void``.
5797#. '``fnty``': shall be the signature of the function being invoked. The
5798 argument types must match the types implied by this signature. This
5799 type can be omitted if the function is not varargs.
5800#. '``fnptrval``': An LLVM value containing a pointer to a function to
5801 be invoked. In most cases, this is a direct function invocation, but
5802 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
5803 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00005804#. '``function args``': argument list whose types match the function
5805 signature argument types and parameter attributes. All arguments must
5806 be of :ref:`first class <t_firstclass>` type. If the function signature
5807 indicates the function accepts a variable number of arguments, the
5808 extra arguments can be specified.
5809#. '``normal label``': the label reached when the called function
5810 executes a '``ret``' instruction.
5811#. '``exception label``': the label reached when a callee returns via
5812 the :ref:`resume <i_resume>` instruction or other exception handling
5813 mechanism.
5814#. The optional :ref:`function attributes <fnattrs>` list. Only
5815 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5816 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005817#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005818
5819Semantics:
5820""""""""""
5821
5822This instruction is designed to operate as a standard '``call``'
5823instruction in most regards. The primary difference is that it
5824establishes an association with a label, which is used by the runtime
5825library to unwind the stack.
5826
5827This instruction is used in languages with destructors to ensure that
5828proper cleanup is performed in the case of either a ``longjmp`` or a
5829thrown exception. Additionally, this is important for implementation of
5830'``catch``' clauses in high-level languages that support them.
5831
5832For the purposes of the SSA form, the definition of the value returned
5833by the '``invoke``' instruction is deemed to occur on the edge from the
5834current block to the "normal" label. If the callee unwinds then no
5835return value is available.
5836
5837Example:
5838""""""""
5839
5840.. code-block:: llvm
5841
5842 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005843 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005844 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005845 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005846
5847.. _i_resume:
5848
5849'``resume``' Instruction
5850^^^^^^^^^^^^^^^^^^^^^^^^
5851
5852Syntax:
5853"""""""
5854
5855::
5856
5857 resume <type> <value>
5858
5859Overview:
5860"""""""""
5861
5862The '``resume``' instruction is a terminator instruction that has no
5863successors.
5864
5865Arguments:
5866""""""""""
5867
5868The '``resume``' instruction requires one argument, which must have the
5869same type as the result of any '``landingpad``' instruction in the same
5870function.
5871
5872Semantics:
5873""""""""""
5874
5875The '``resume``' instruction resumes propagation of an existing
5876(in-flight) exception whose unwinding was interrupted with a
5877:ref:`landingpad <i_landingpad>` instruction.
5878
5879Example:
5880""""""""
5881
5882.. code-block:: llvm
5883
5884 resume { i8*, i32 } %exn
5885
David Majnemer8a1c45d2015-12-12 05:38:55 +00005886.. _i_catchswitch:
5887
5888'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005889^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005890
5891Syntax:
5892"""""""
5893
5894::
5895
5896 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5897 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5898
5899Overview:
5900"""""""""
5901
5902The '``catchswitch``' instruction is used by `LLVM's exception handling system
5903<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5904that may be executed by the :ref:`EH personality routine <personalityfn>`.
5905
5906Arguments:
5907""""""""""
5908
5909The ``parent`` argument is the token of the funclet that contains the
5910``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5911this operand may be the token ``none``.
5912
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005913The ``default`` argument is the label of another basic block beginning with
5914either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5915must be a legal target with respect to the ``parent`` links, as described in
5916the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005917
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005918The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005919:ref:`catchpad <i_catchpad>` instruction.
5920
5921Semantics:
5922""""""""""
5923
5924Executing this instruction transfers control to one of the successors in
5925``handlers``, if appropriate, or continues to unwind via the unwind label if
5926present.
5927
5928The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5929it must be both the first non-phi instruction and last instruction in the basic
5930block. Therefore, it must be the only non-phi instruction in the block.
5931
5932Example:
5933""""""""
5934
Renato Golin124f2592016-07-20 12:16:38 +00005935.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00005936
5937 dispatch1:
5938 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5939 dispatch2:
5940 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5941
David Majnemer654e1302015-07-31 17:58:14 +00005942.. _i_catchret:
5943
5944'``catchret``' Instruction
5945^^^^^^^^^^^^^^^^^^^^^^^^^^
5946
5947Syntax:
5948"""""""
5949
5950::
5951
David Majnemer8a1c45d2015-12-12 05:38:55 +00005952 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005953
5954Overview:
5955"""""""""
5956
5957The '``catchret``' instruction is a terminator instruction that has a
5958single successor.
5959
5960
5961Arguments:
5962""""""""""
5963
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005964The first argument to a '``catchret``' indicates which ``catchpad`` it
5965exits. It must be a :ref:`catchpad <i_catchpad>`.
5966The second argument to a '``catchret``' specifies where control will
5967transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005968
5969Semantics:
5970""""""""""
5971
David Majnemer8a1c45d2015-12-12 05:38:55 +00005972The '``catchret``' instruction ends an existing (in-flight) exception whose
5973unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5974:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5975code to, for example, destroy the active exception. Control then transfers to
5976``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005977
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005978The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5979If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5980funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5981the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005982
5983Example:
5984""""""""
5985
Renato Golin124f2592016-07-20 12:16:38 +00005986.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005987
David Majnemer8a1c45d2015-12-12 05:38:55 +00005988 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005989
David Majnemer654e1302015-07-31 17:58:14 +00005990.. _i_cleanupret:
5991
5992'``cleanupret``' Instruction
5993^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5994
5995Syntax:
5996"""""""
5997
5998::
5999
David Majnemer8a1c45d2015-12-12 05:38:55 +00006000 cleanupret from <value> unwind label <continue>
6001 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00006002
6003Overview:
6004"""""""""
6005
6006The '``cleanupret``' instruction is a terminator instruction that has
6007an optional successor.
6008
6009
6010Arguments:
6011""""""""""
6012
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006013The '``cleanupret``' instruction requires one argument, which indicates
6014which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006015If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
6016funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6017the ``cleanupret``'s behavior is undefined.
6018
6019The '``cleanupret``' instruction also has an optional successor, ``continue``,
6020which must be the label of another basic block beginning with either a
6021``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
6022be a legal target with respect to the ``parent`` links, as described in the
6023`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00006024
6025Semantics:
6026""""""""""
6027
6028The '``cleanupret``' instruction indicates to the
6029:ref:`personality function <personalityfn>` that one
6030:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
6031It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006032
David Majnemer654e1302015-07-31 17:58:14 +00006033Example:
6034""""""""
6035
Renato Golin124f2592016-07-20 12:16:38 +00006036.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006037
David Majnemer8a1c45d2015-12-12 05:38:55 +00006038 cleanupret from %cleanup unwind to caller
6039 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00006040
Sean Silvab084af42012-12-07 10:36:55 +00006041.. _i_unreachable:
6042
6043'``unreachable``' Instruction
6044^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6045
6046Syntax:
6047"""""""
6048
6049::
6050
6051 unreachable
6052
6053Overview:
6054"""""""""
6055
6056The '``unreachable``' instruction has no defined semantics. This
6057instruction is used to inform the optimizer that a particular portion of
6058the code is not reachable. This can be used to indicate that the code
6059after a no-return function cannot be reached, and other facts.
6060
6061Semantics:
6062""""""""""
6063
6064The '``unreachable``' instruction has no defined semantics.
6065
6066.. _binaryops:
6067
6068Binary Operations
6069-----------------
6070
6071Binary operators are used to do most of the computation in a program.
6072They require two operands of the same type, execute an operation on
6073them, and produce a single value. The operands might represent multiple
6074data, as is the case with the :ref:`vector <t_vector>` data type. The
6075result value has the same type as its operands.
6076
6077There are several different binary operators:
6078
6079.. _i_add:
6080
6081'``add``' Instruction
6082^^^^^^^^^^^^^^^^^^^^^
6083
6084Syntax:
6085"""""""
6086
6087::
6088
Tim Northover675a0962014-06-13 14:24:23 +00006089 <result> = add <ty> <op1>, <op2> ; yields ty:result
6090 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
6091 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
6092 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006093
6094Overview:
6095"""""""""
6096
6097The '``add``' instruction returns the sum of its two operands.
6098
6099Arguments:
6100""""""""""
6101
6102The two arguments to the '``add``' instruction must be
6103:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6104arguments must have identical types.
6105
6106Semantics:
6107""""""""""
6108
6109The value produced is the integer sum of the two operands.
6110
6111If the sum has unsigned overflow, the result returned is the
6112mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6113the result.
6114
6115Because LLVM integers use a two's complement representation, this
6116instruction is appropriate for both signed and unsigned integers.
6117
6118``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6119respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6120result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
6121unsigned and/or signed overflow, respectively, occurs.
6122
6123Example:
6124""""""""
6125
Renato Golin124f2592016-07-20 12:16:38 +00006126.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006127
Tim Northover675a0962014-06-13 14:24:23 +00006128 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006129
6130.. _i_fadd:
6131
6132'``fadd``' Instruction
6133^^^^^^^^^^^^^^^^^^^^^^
6134
6135Syntax:
6136"""""""
6137
6138::
6139
Tim Northover675a0962014-06-13 14:24:23 +00006140 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006141
6142Overview:
6143"""""""""
6144
6145The '``fadd``' instruction returns the sum of its two operands.
6146
6147Arguments:
6148""""""""""
6149
6150The two arguments to the '``fadd``' instruction must be :ref:`floating
6151point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6152Both arguments must have identical types.
6153
6154Semantics:
6155""""""""""
6156
6157The value produced is the floating point sum of the two operands. This
6158instruction can also take any number of :ref:`fast-math flags <fastmath>`,
6159which are optimization hints to enable otherwise unsafe floating point
6160optimizations:
6161
6162Example:
6163""""""""
6164
Renato Golin124f2592016-07-20 12:16:38 +00006165.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006166
Tim Northover675a0962014-06-13 14:24:23 +00006167 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006168
6169'``sub``' Instruction
6170^^^^^^^^^^^^^^^^^^^^^
6171
6172Syntax:
6173"""""""
6174
6175::
6176
Tim Northover675a0962014-06-13 14:24:23 +00006177 <result> = sub <ty> <op1>, <op2> ; yields ty:result
6178 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
6179 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
6180 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006181
6182Overview:
6183"""""""""
6184
6185The '``sub``' instruction returns the difference of its two operands.
6186
6187Note that the '``sub``' instruction is used to represent the '``neg``'
6188instruction present in most other intermediate representations.
6189
6190Arguments:
6191""""""""""
6192
6193The two arguments to the '``sub``' instruction must be
6194:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6195arguments must have identical types.
6196
6197Semantics:
6198""""""""""
6199
6200The value produced is the integer difference of the two operands.
6201
6202If the difference has unsigned overflow, the result returned is the
6203mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6204the result.
6205
6206Because LLVM integers use a two's complement representation, this
6207instruction is appropriate for both signed and unsigned integers.
6208
6209``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6210respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6211result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
6212unsigned and/or signed overflow, respectively, occurs.
6213
6214Example:
6215""""""""
6216
Renato Golin124f2592016-07-20 12:16:38 +00006217.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006218
Tim Northover675a0962014-06-13 14:24:23 +00006219 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6220 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006221
6222.. _i_fsub:
6223
6224'``fsub``' Instruction
6225^^^^^^^^^^^^^^^^^^^^^^
6226
6227Syntax:
6228"""""""
6229
6230::
6231
Tim Northover675a0962014-06-13 14:24:23 +00006232 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006233
6234Overview:
6235"""""""""
6236
6237The '``fsub``' instruction returns the difference of its two operands.
6238
6239Note that the '``fsub``' instruction is used to represent the '``fneg``'
6240instruction present in most other intermediate representations.
6241
6242Arguments:
6243""""""""""
6244
6245The two arguments to the '``fsub``' instruction must be :ref:`floating
6246point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6247Both arguments must have identical types.
6248
6249Semantics:
6250""""""""""
6251
6252The value produced is the floating point difference of the two operands.
6253This instruction can also take any number of :ref:`fast-math
6254flags <fastmath>`, which are optimization hints to enable otherwise
6255unsafe floating point optimizations:
6256
6257Example:
6258""""""""
6259
Renato Golin124f2592016-07-20 12:16:38 +00006260.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006261
Tim Northover675a0962014-06-13 14:24:23 +00006262 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6263 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006264
6265'``mul``' Instruction
6266^^^^^^^^^^^^^^^^^^^^^
6267
6268Syntax:
6269"""""""
6270
6271::
6272
Tim Northover675a0962014-06-13 14:24:23 +00006273 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6274 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6275 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6276 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006277
6278Overview:
6279"""""""""
6280
6281The '``mul``' instruction returns the product of its two operands.
6282
6283Arguments:
6284""""""""""
6285
6286The two arguments to the '``mul``' instruction must be
6287:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6288arguments must have identical types.
6289
6290Semantics:
6291""""""""""
6292
6293The value produced is the integer product of the two operands.
6294
6295If the result of the multiplication has unsigned overflow, the result
6296returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6297bit width of the result.
6298
6299Because LLVM integers use a two's complement representation, and the
6300result is the same width as the operands, this instruction returns the
6301correct result for both signed and unsigned integers. If a full product
6302(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6303sign-extended or zero-extended as appropriate to the width of the full
6304product.
6305
6306``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6307respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6308result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6309unsigned and/or signed overflow, respectively, occurs.
6310
6311Example:
6312""""""""
6313
Renato Golin124f2592016-07-20 12:16:38 +00006314.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006315
Tim Northover675a0962014-06-13 14:24:23 +00006316 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006317
6318.. _i_fmul:
6319
6320'``fmul``' Instruction
6321^^^^^^^^^^^^^^^^^^^^^^
6322
6323Syntax:
6324"""""""
6325
6326::
6327
Tim Northover675a0962014-06-13 14:24:23 +00006328 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006329
6330Overview:
6331"""""""""
6332
6333The '``fmul``' instruction returns the product of its two operands.
6334
6335Arguments:
6336""""""""""
6337
6338The two arguments to the '``fmul``' instruction must be :ref:`floating
6339point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6340Both arguments must have identical types.
6341
6342Semantics:
6343""""""""""
6344
6345The value produced is the floating point product of the two operands.
6346This instruction can also take any number of :ref:`fast-math
6347flags <fastmath>`, which are optimization hints to enable otherwise
6348unsafe floating point optimizations:
6349
6350Example:
6351""""""""
6352
Renato Golin124f2592016-07-20 12:16:38 +00006353.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006354
Tim Northover675a0962014-06-13 14:24:23 +00006355 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006356
6357'``udiv``' Instruction
6358^^^^^^^^^^^^^^^^^^^^^^
6359
6360Syntax:
6361"""""""
6362
6363::
6364
Tim Northover675a0962014-06-13 14:24:23 +00006365 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6366 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006367
6368Overview:
6369"""""""""
6370
6371The '``udiv``' instruction returns the quotient of its two operands.
6372
6373Arguments:
6374""""""""""
6375
6376The two arguments to the '``udiv``' instruction must be
6377:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6378arguments must have identical types.
6379
6380Semantics:
6381""""""""""
6382
6383The value produced is the unsigned integer quotient of the two operands.
6384
6385Note that unsigned integer division and signed integer division are
6386distinct operations; for signed integer division, use '``sdiv``'.
6387
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006388Division by zero is undefined behavior. For vectors, if any element
6389of the divisor is zero, the operation has undefined behavior.
6390
Sean Silvab084af42012-12-07 10:36:55 +00006391
6392If the ``exact`` keyword is present, the result value of the ``udiv`` is
6393a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6394such, "((a udiv exact b) mul b) == a").
6395
6396Example:
6397""""""""
6398
Renato Golin124f2592016-07-20 12:16:38 +00006399.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006400
Tim Northover675a0962014-06-13 14:24:23 +00006401 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006402
6403'``sdiv``' Instruction
6404^^^^^^^^^^^^^^^^^^^^^^
6405
6406Syntax:
6407"""""""
6408
6409::
6410
Tim Northover675a0962014-06-13 14:24:23 +00006411 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6412 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006413
6414Overview:
6415"""""""""
6416
6417The '``sdiv``' instruction returns the quotient of its two operands.
6418
6419Arguments:
6420""""""""""
6421
6422The two arguments to the '``sdiv``' instruction must be
6423:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6424arguments must have identical types.
6425
6426Semantics:
6427""""""""""
6428
6429The value produced is the signed integer quotient of the two operands
6430rounded towards zero.
6431
6432Note that signed integer division and unsigned integer division are
6433distinct operations; for unsigned integer division, use '``udiv``'.
6434
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006435Division by zero is undefined behavior. For vectors, if any element
6436of the divisor is zero, the operation has undefined behavior.
6437Overflow also leads to undefined behavior; this is a rare case, but can
6438occur, for example, by doing a 32-bit division of -2147483648 by -1.
Sean Silvab084af42012-12-07 10:36:55 +00006439
6440If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6441a :ref:`poison value <poisonvalues>` if the result would be rounded.
6442
6443Example:
6444""""""""
6445
Renato Golin124f2592016-07-20 12:16:38 +00006446.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006447
Tim Northover675a0962014-06-13 14:24:23 +00006448 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006449
6450.. _i_fdiv:
6451
6452'``fdiv``' Instruction
6453^^^^^^^^^^^^^^^^^^^^^^
6454
6455Syntax:
6456"""""""
6457
6458::
6459
Tim Northover675a0962014-06-13 14:24:23 +00006460 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006461
6462Overview:
6463"""""""""
6464
6465The '``fdiv``' instruction returns the quotient of its two operands.
6466
6467Arguments:
6468""""""""""
6469
6470The two arguments to the '``fdiv``' instruction must be :ref:`floating
6471point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6472Both arguments must have identical types.
6473
6474Semantics:
6475""""""""""
6476
6477The value produced is the floating point quotient of the two operands.
6478This instruction can also take any number of :ref:`fast-math
6479flags <fastmath>`, which are optimization hints to enable otherwise
6480unsafe floating point optimizations:
6481
6482Example:
6483""""""""
6484
Renato Golin124f2592016-07-20 12:16:38 +00006485.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006486
Tim Northover675a0962014-06-13 14:24:23 +00006487 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006488
6489'``urem``' Instruction
6490^^^^^^^^^^^^^^^^^^^^^^
6491
6492Syntax:
6493"""""""
6494
6495::
6496
Tim Northover675a0962014-06-13 14:24:23 +00006497 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006498
6499Overview:
6500"""""""""
6501
6502The '``urem``' instruction returns the remainder from the unsigned
6503division of its two arguments.
6504
6505Arguments:
6506""""""""""
6507
6508The two arguments to the '``urem``' instruction must be
6509:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6510arguments must have identical types.
6511
6512Semantics:
6513""""""""""
6514
6515This instruction returns the unsigned integer *remainder* of a division.
6516This instruction always performs an unsigned division to get the
6517remainder.
6518
6519Note that unsigned integer remainder and signed integer remainder are
6520distinct operations; for signed integer remainder, use '``srem``'.
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006521
6522Taking the remainder of a division by zero is undefined behavior.
6523For vectors, if any element of the divisor is zero, the operation has
6524undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006525
6526Example:
6527""""""""
6528
Renato Golin124f2592016-07-20 12:16:38 +00006529.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006530
Tim Northover675a0962014-06-13 14:24:23 +00006531 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006532
6533'``srem``' Instruction
6534^^^^^^^^^^^^^^^^^^^^^^
6535
6536Syntax:
6537"""""""
6538
6539::
6540
Tim Northover675a0962014-06-13 14:24:23 +00006541 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006542
6543Overview:
6544"""""""""
6545
6546The '``srem``' instruction returns the remainder from the signed
6547division of its two operands. This instruction can also take
6548:ref:`vector <t_vector>` versions of the values in which case the elements
6549must be integers.
6550
6551Arguments:
6552""""""""""
6553
6554The two arguments to the '``srem``' instruction must be
6555:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6556arguments must have identical types.
6557
6558Semantics:
6559""""""""""
6560
6561This instruction returns the *remainder* of a division (where the result
6562is either zero or has the same sign as the dividend, ``op1``), not the
6563*modulo* operator (where the result is either zero or has the same sign
6564as the divisor, ``op2``) of a value. For more information about the
6565difference, see `The Math
6566Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6567table of how this is implemented in various languages, please see
6568`Wikipedia: modulo
6569operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6570
6571Note that signed integer remainder and unsigned integer remainder are
6572distinct operations; for unsigned integer remainder, use '``urem``'.
6573
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006574Taking the remainder of a division by zero is undefined behavior.
6575For vectors, if any element of the divisor is zero, the operation has
6576undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006577Overflow also leads to undefined behavior; this is a rare case, but can
6578occur, for example, by taking the remainder of a 32-bit division of
6579-2147483648 by -1. (The remainder doesn't actually overflow, but this
6580rule lets srem be implemented using instructions that return both the
6581result of the division and the remainder.)
6582
6583Example:
6584""""""""
6585
Renato Golin124f2592016-07-20 12:16:38 +00006586.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006587
Tim Northover675a0962014-06-13 14:24:23 +00006588 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006589
6590.. _i_frem:
6591
6592'``frem``' Instruction
6593^^^^^^^^^^^^^^^^^^^^^^
6594
6595Syntax:
6596"""""""
6597
6598::
6599
Tim Northover675a0962014-06-13 14:24:23 +00006600 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006601
6602Overview:
6603"""""""""
6604
6605The '``frem``' instruction returns the remainder from the division of
6606its two operands.
6607
6608Arguments:
6609""""""""""
6610
6611The two arguments to the '``frem``' instruction must be :ref:`floating
6612point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6613Both arguments must have identical types.
6614
6615Semantics:
6616""""""""""
6617
6618This instruction returns the *remainder* of a division. The remainder
6619has the same sign as the dividend. This instruction can also take any
6620number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6621to enable otherwise unsafe floating point optimizations:
6622
6623Example:
6624""""""""
6625
Renato Golin124f2592016-07-20 12:16:38 +00006626.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006627
Tim Northover675a0962014-06-13 14:24:23 +00006628 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006629
6630.. _bitwiseops:
6631
6632Bitwise Binary Operations
6633-------------------------
6634
6635Bitwise binary operators are used to do various forms of bit-twiddling
6636in a program. They are generally very efficient instructions and can
6637commonly be strength reduced from other instructions. They require two
6638operands of the same type, execute an operation on them, and produce a
6639single value. The resulting value is the same type as its operands.
6640
6641'``shl``' Instruction
6642^^^^^^^^^^^^^^^^^^^^^
6643
6644Syntax:
6645"""""""
6646
6647::
6648
Tim Northover675a0962014-06-13 14:24:23 +00006649 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6650 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6651 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6652 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006653
6654Overview:
6655"""""""""
6656
6657The '``shl``' instruction returns the first operand shifted to the left
6658a specified number of bits.
6659
6660Arguments:
6661""""""""""
6662
6663Both arguments to the '``shl``' instruction must be the same
6664:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6665'``op2``' is treated as an unsigned value.
6666
6667Semantics:
6668""""""""""
6669
6670The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6671where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006672dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006673``op1``, the result is undefined. If the arguments are vectors, each
6674vector element of ``op1`` is shifted by the corresponding shift amount
6675in ``op2``.
6676
6677If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6678value <poisonvalues>` if it shifts out any non-zero bits. If the
6679``nsw`` keyword is present, then the shift produces a :ref:`poison
6680value <poisonvalues>` if it shifts out any bits that disagree with the
Sanjoy Dasdbc58d02016-11-13 23:40:40 +00006681resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00006682
6683Example:
6684""""""""
6685
Renato Golin124f2592016-07-20 12:16:38 +00006686.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006687
Tim Northover675a0962014-06-13 14:24:23 +00006688 <result> = shl i32 4, %var ; yields i32: 4 << %var
6689 <result> = shl i32 4, 2 ; yields i32: 16
6690 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006691 <result> = shl i32 1, 32 ; undefined
6692 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6693
6694'``lshr``' Instruction
6695^^^^^^^^^^^^^^^^^^^^^^
6696
6697Syntax:
6698"""""""
6699
6700::
6701
Tim Northover675a0962014-06-13 14:24:23 +00006702 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6703 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006704
6705Overview:
6706"""""""""
6707
6708The '``lshr``' instruction (logical shift right) returns the first
6709operand shifted to the right a specified number of bits with zero fill.
6710
6711Arguments:
6712""""""""""
6713
6714Both arguments to the '``lshr``' instruction must be the same
6715:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6716'``op2``' is treated as an unsigned value.
6717
6718Semantics:
6719""""""""""
6720
6721This instruction always performs a logical shift right operation. The
6722most significant bits of the result will be filled with zero bits after
6723the shift. If ``op2`` is (statically or dynamically) equal to or larger
6724than the number of bits in ``op1``, the result is undefined. If the
6725arguments are vectors, each vector element of ``op1`` is shifted by the
6726corresponding shift amount in ``op2``.
6727
6728If the ``exact`` keyword is present, the result value of the ``lshr`` is
6729a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6730non-zero.
6731
6732Example:
6733""""""""
6734
Renato Golin124f2592016-07-20 12:16:38 +00006735.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006736
Tim Northover675a0962014-06-13 14:24:23 +00006737 <result> = lshr i32 4, 1 ; yields i32:result = 2
6738 <result> = lshr i32 4, 2 ; yields i32:result = 1
6739 <result> = lshr i8 4, 3 ; yields i8:result = 0
6740 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006741 <result> = lshr i32 1, 32 ; undefined
6742 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6743
6744'``ashr``' Instruction
6745^^^^^^^^^^^^^^^^^^^^^^
6746
6747Syntax:
6748"""""""
6749
6750::
6751
Tim Northover675a0962014-06-13 14:24:23 +00006752 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6753 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006754
6755Overview:
6756"""""""""
6757
6758The '``ashr``' instruction (arithmetic shift right) returns the first
6759operand shifted to the right a specified number of bits with sign
6760extension.
6761
6762Arguments:
6763""""""""""
6764
6765Both arguments to the '``ashr``' instruction must be the same
6766:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6767'``op2``' is treated as an unsigned value.
6768
6769Semantics:
6770""""""""""
6771
6772This instruction always performs an arithmetic shift right operation,
6773The most significant bits of the result will be filled with the sign bit
6774of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6775than the number of bits in ``op1``, the result is undefined. If the
6776arguments are vectors, each vector element of ``op1`` is shifted by the
6777corresponding shift amount in ``op2``.
6778
6779If the ``exact`` keyword is present, the result value of the ``ashr`` is
6780a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6781non-zero.
6782
6783Example:
6784""""""""
6785
Renato Golin124f2592016-07-20 12:16:38 +00006786.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006787
Tim Northover675a0962014-06-13 14:24:23 +00006788 <result> = ashr i32 4, 1 ; yields i32:result = 2
6789 <result> = ashr i32 4, 2 ; yields i32:result = 1
6790 <result> = ashr i8 4, 3 ; yields i8:result = 0
6791 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006792 <result> = ashr i32 1, 32 ; undefined
6793 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6794
6795'``and``' Instruction
6796^^^^^^^^^^^^^^^^^^^^^
6797
6798Syntax:
6799"""""""
6800
6801::
6802
Tim Northover675a0962014-06-13 14:24:23 +00006803 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006804
6805Overview:
6806"""""""""
6807
6808The '``and``' instruction returns the bitwise logical and of its two
6809operands.
6810
6811Arguments:
6812""""""""""
6813
6814The two arguments to the '``and``' instruction must be
6815:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6816arguments must have identical types.
6817
6818Semantics:
6819""""""""""
6820
6821The truth table used for the '``and``' instruction is:
6822
6823+-----+-----+-----+
6824| In0 | In1 | Out |
6825+-----+-----+-----+
6826| 0 | 0 | 0 |
6827+-----+-----+-----+
6828| 0 | 1 | 0 |
6829+-----+-----+-----+
6830| 1 | 0 | 0 |
6831+-----+-----+-----+
6832| 1 | 1 | 1 |
6833+-----+-----+-----+
6834
6835Example:
6836""""""""
6837
Renato Golin124f2592016-07-20 12:16:38 +00006838.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006839
Tim Northover675a0962014-06-13 14:24:23 +00006840 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6841 <result> = and i32 15, 40 ; yields i32:result = 8
6842 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006843
6844'``or``' Instruction
6845^^^^^^^^^^^^^^^^^^^^
6846
6847Syntax:
6848"""""""
6849
6850::
6851
Tim Northover675a0962014-06-13 14:24:23 +00006852 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006853
6854Overview:
6855"""""""""
6856
6857The '``or``' instruction returns the bitwise logical inclusive or of its
6858two operands.
6859
6860Arguments:
6861""""""""""
6862
6863The two arguments to the '``or``' instruction must be
6864:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6865arguments must have identical types.
6866
6867Semantics:
6868""""""""""
6869
6870The truth table used for the '``or``' instruction is:
6871
6872+-----+-----+-----+
6873| In0 | In1 | Out |
6874+-----+-----+-----+
6875| 0 | 0 | 0 |
6876+-----+-----+-----+
6877| 0 | 1 | 1 |
6878+-----+-----+-----+
6879| 1 | 0 | 1 |
6880+-----+-----+-----+
6881| 1 | 1 | 1 |
6882+-----+-----+-----+
6883
6884Example:
6885""""""""
6886
6887::
6888
Tim Northover675a0962014-06-13 14:24:23 +00006889 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6890 <result> = or i32 15, 40 ; yields i32:result = 47
6891 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006892
6893'``xor``' Instruction
6894^^^^^^^^^^^^^^^^^^^^^
6895
6896Syntax:
6897"""""""
6898
6899::
6900
Tim Northover675a0962014-06-13 14:24:23 +00006901 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006902
6903Overview:
6904"""""""""
6905
6906The '``xor``' instruction returns the bitwise logical exclusive or of
6907its two operands. The ``xor`` is used to implement the "one's
6908complement" operation, which is the "~" operator in C.
6909
6910Arguments:
6911""""""""""
6912
6913The two arguments to the '``xor``' instruction must be
6914:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6915arguments must have identical types.
6916
6917Semantics:
6918""""""""""
6919
6920The truth table used for the '``xor``' instruction is:
6921
6922+-----+-----+-----+
6923| In0 | In1 | Out |
6924+-----+-----+-----+
6925| 0 | 0 | 0 |
6926+-----+-----+-----+
6927| 0 | 1 | 1 |
6928+-----+-----+-----+
6929| 1 | 0 | 1 |
6930+-----+-----+-----+
6931| 1 | 1 | 0 |
6932+-----+-----+-----+
6933
6934Example:
6935""""""""
6936
Renato Golin124f2592016-07-20 12:16:38 +00006937.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006938
Tim Northover675a0962014-06-13 14:24:23 +00006939 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6940 <result> = xor i32 15, 40 ; yields i32:result = 39
6941 <result> = xor i32 4, 8 ; yields i32:result = 12
6942 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006943
6944Vector Operations
6945-----------------
6946
6947LLVM supports several instructions to represent vector operations in a
6948target-independent manner. These instructions cover the element-access
6949and vector-specific operations needed to process vectors effectively.
6950While LLVM does directly support these vector operations, many
6951sophisticated algorithms will want to use target-specific intrinsics to
6952take full advantage of a specific target.
6953
6954.. _i_extractelement:
6955
6956'``extractelement``' Instruction
6957^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6958
6959Syntax:
6960"""""""
6961
6962::
6963
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006964 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006965
6966Overview:
6967"""""""""
6968
6969The '``extractelement``' instruction extracts a single scalar element
6970from a vector at a specified index.
6971
6972Arguments:
6973""""""""""
6974
6975The first operand of an '``extractelement``' instruction is a value of
6976:ref:`vector <t_vector>` type. The second operand is an index indicating
6977the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006978variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006979
6980Semantics:
6981""""""""""
6982
6983The result is a scalar of the same type as the element type of ``val``.
6984Its value is the value at position ``idx`` of ``val``. If ``idx``
6985exceeds the length of ``val``, the results are undefined.
6986
6987Example:
6988""""""""
6989
Renato Golin124f2592016-07-20 12:16:38 +00006990.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006991
6992 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6993
6994.. _i_insertelement:
6995
6996'``insertelement``' Instruction
6997^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6998
6999Syntax:
7000"""""""
7001
7002::
7003
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007004 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00007005
7006Overview:
7007"""""""""
7008
7009The '``insertelement``' instruction inserts a scalar element into a
7010vector at a specified index.
7011
7012Arguments:
7013""""""""""
7014
7015The first operand of an '``insertelement``' instruction is a value of
7016:ref:`vector <t_vector>` type. The second operand is a scalar value whose
7017type must equal the element type of the first operand. The third operand
7018is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007019index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007020
7021Semantics:
7022""""""""""
7023
7024The result is a vector of the same type as ``val``. Its element values
7025are those of ``val`` except at position ``idx``, where it gets the value
7026``elt``. If ``idx`` exceeds the length of ``val``, the results are
7027undefined.
7028
7029Example:
7030""""""""
7031
Renato Golin124f2592016-07-20 12:16:38 +00007032.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007033
7034 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
7035
7036.. _i_shufflevector:
7037
7038'``shufflevector``' Instruction
7039^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7040
7041Syntax:
7042"""""""
7043
7044::
7045
7046 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
7047
7048Overview:
7049"""""""""
7050
7051The '``shufflevector``' instruction constructs a permutation of elements
7052from two input vectors, returning a vector with the same element type as
7053the input and length that is the same as the shuffle mask.
7054
7055Arguments:
7056""""""""""
7057
7058The first two operands of a '``shufflevector``' instruction are vectors
7059with the same type. The third argument is a shuffle mask whose element
7060type is always 'i32'. The result of the instruction is a vector whose
7061length is the same as the shuffle mask and whose element type is the
7062same as the element type of the first two operands.
7063
7064The shuffle mask operand is required to be a constant vector with either
7065constant integer or undef values.
7066
7067Semantics:
7068""""""""""
7069
7070The elements of the two input vectors are numbered from left to right
7071across both of the vectors. The shuffle mask operand specifies, for each
7072element of the result vector, which element of the two input vectors the
7073result element gets. The element selector may be undef (meaning "don't
7074care") and the second operand may be undef if performing a shuffle from
7075only one vector.
7076
7077Example:
7078""""""""
7079
Renato Golin124f2592016-07-20 12:16:38 +00007080.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007081
7082 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7083 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
7084 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
7085 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
7086 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
7087 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
7088 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7089 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
7090
7091Aggregate Operations
7092--------------------
7093
7094LLVM supports several instructions for working with
7095:ref:`aggregate <t_aggregate>` values.
7096
7097.. _i_extractvalue:
7098
7099'``extractvalue``' Instruction
7100^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7101
7102Syntax:
7103"""""""
7104
7105::
7106
7107 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
7108
7109Overview:
7110"""""""""
7111
7112The '``extractvalue``' instruction extracts the value of a member field
7113from an :ref:`aggregate <t_aggregate>` value.
7114
7115Arguments:
7116""""""""""
7117
7118The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00007119:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00007120constant indices to specify which value to extract in a similar manner
7121as indices in a '``getelementptr``' instruction.
7122
7123The major differences to ``getelementptr`` indexing are:
7124
7125- Since the value being indexed is not a pointer, the first index is
7126 omitted and assumed to be zero.
7127- At least one index must be specified.
7128- Not only struct indices but also array indices must be in bounds.
7129
7130Semantics:
7131""""""""""
7132
7133The result is the value at the position in the aggregate specified by
7134the index operands.
7135
7136Example:
7137""""""""
7138
Renato Golin124f2592016-07-20 12:16:38 +00007139.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007140
7141 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
7142
7143.. _i_insertvalue:
7144
7145'``insertvalue``' Instruction
7146^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7147
7148Syntax:
7149"""""""
7150
7151::
7152
7153 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
7154
7155Overview:
7156"""""""""
7157
7158The '``insertvalue``' instruction inserts a value into a member field in
7159an :ref:`aggregate <t_aggregate>` value.
7160
7161Arguments:
7162""""""""""
7163
7164The first operand of an '``insertvalue``' instruction is a value of
7165:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
7166a first-class value to insert. The following operands are constant
7167indices indicating the position at which to insert the value in a
7168similar manner as indices in a '``extractvalue``' instruction. The value
7169to insert must have the same type as the value identified by the
7170indices.
7171
7172Semantics:
7173""""""""""
7174
7175The result is an aggregate of the same type as ``val``. Its value is
7176that of ``val`` except that the value at the position specified by the
7177indices is that of ``elt``.
7178
7179Example:
7180""""""""
7181
7182.. code-block:: llvm
7183
7184 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
7185 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00007186 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00007187
7188.. _memoryops:
7189
7190Memory Access and Addressing Operations
7191---------------------------------------
7192
7193A key design point of an SSA-based representation is how it represents
7194memory. In LLVM, no memory locations are in SSA form, which makes things
7195very simple. This section describes how to read, write, and allocate
7196memory in LLVM.
7197
7198.. _i_alloca:
7199
7200'``alloca``' Instruction
7201^^^^^^^^^^^^^^^^^^^^^^^^
7202
7203Syntax:
7204"""""""
7205
7206::
7207
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007208 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result
Sean Silvab084af42012-12-07 10:36:55 +00007209
7210Overview:
7211"""""""""
7212
7213The '``alloca``' instruction allocates memory on the stack frame of the
7214currently executing function, to be automatically released when this
7215function returns to its caller. The object is always allocated in the
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007216address space for allocas indicated in the datalayout.
Sean Silvab084af42012-12-07 10:36:55 +00007217
7218Arguments:
7219""""""""""
7220
7221The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7222bytes of memory on the runtime stack, returning a pointer of the
7223appropriate type to the program. If "NumElements" is specified, it is
7224the number of elements allocated, otherwise "NumElements" is defaulted
7225to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007226allocation is guaranteed to be aligned to at least that boundary. The
7227alignment may not be greater than ``1 << 29``. If not specified, or if
7228zero, the target can choose to align the allocation on any convenient
7229boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007230
7231'``type``' may be any sized type.
7232
7233Semantics:
7234""""""""""
7235
7236Memory is allocated; a pointer is returned. The operation is undefined
7237if there is insufficient stack space for the allocation. '``alloca``'d
7238memory is automatically released when the function returns. The
7239'``alloca``' instruction is commonly used to represent automatic
7240variables that must have an address available. When the function returns
7241(either with the ``ret`` or ``resume`` instructions), the memory is
7242reclaimed. Allocating zero bytes is legal, but the result is undefined.
7243The order in which memory is allocated (ie., which way the stack grows)
7244is not specified.
7245
7246Example:
7247""""""""
7248
7249.. code-block:: llvm
7250
Tim Northover675a0962014-06-13 14:24:23 +00007251 %ptr = alloca i32 ; yields i32*:ptr
7252 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7253 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7254 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007255
7256.. _i_load:
7257
7258'``load``' Instruction
7259^^^^^^^^^^^^^^^^^^^^^^
7260
7261Syntax:
7262"""""""
7263
7264::
7265
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007266 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00007267 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007268 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007269 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007270 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007271
7272Overview:
7273"""""""""
7274
7275The '``load``' instruction is used to read from memory.
7276
7277Arguments:
7278""""""""""
7279
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007280The argument to the ``load`` instruction specifies the memory address from which
7281to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7282known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7283the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7284modify the number or order of execution of this ``load`` with other
7285:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007286
JF Bastiend1fb5852015-12-17 22:09:19 +00007287If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
7288<ordering>` and optional ``singlethread`` argument. The ``release`` and
7289``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
7290produce :ref:`defined <memmodel>` results when they may see multiple atomic
7291stores. The type of the pointee must be an integer, pointer, or floating-point
7292type whose bit width is a power of two greater than or equal to eight and less
7293than or equal to a target-specific size limit. ``align`` must be explicitly
7294specified on atomic loads, and the load has undefined behavior if the alignment
7295is not set to a value which is at least the size in bytes of the
7296pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007297
7298The optional constant ``align`` argument specifies the alignment of the
7299operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007300or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007301alignment for the target. It is the responsibility of the code emitter
7302to ensure that the alignment information is correct. Overestimating the
7303alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007304may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007305maximum possible alignment is ``1 << 29``. An alignment value higher
7306than the size of the loaded type implies memory up to the alignment
7307value bytes can be safely loaded without trapping in the default
7308address space. Access of the high bytes can interfere with debugging
7309tools, so should not be accessed if the function has the
7310``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007311
7312The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007313metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007314``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007315metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007316that this load is not expected to be reused in the cache. The code
7317generator may select special instructions to save cache bandwidth, such
7318as the ``MOVNT`` instruction on x86.
7319
7320The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007321metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007322entries. If a load instruction tagged with the ``!invariant.load``
7323metadata is executed, the optimizer may assume the memory location
7324referenced by the load contains the same value at all points in the
7325program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007326
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007327The optional ``!invariant.group`` metadata must reference a single metadata name
7328 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7329
Philip Reamescdb72f32014-10-20 22:40:55 +00007330The optional ``!nonnull`` metadata must reference a single
7331metadata name ``<index>`` corresponding to a metadata node with no
7332entries. The existence of the ``!nonnull`` metadata on the
7333instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007334never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007335on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007336to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007337
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007338The optional ``!dereferenceable`` metadata must reference a single metadata
7339name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007340entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007341tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007342The number of bytes known to be dereferenceable is specified by the integer
7343value in the metadata node. This is analogous to the ''dereferenceable''
7344attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007345to loads of a pointer type.
7346
7347The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007348metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7349``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007350instruction tells the optimizer that the value loaded is known to be either
7351dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007352The number of bytes known to be dereferenceable is specified by the integer
7353value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7354attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007355to loads of a pointer type.
7356
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007357The optional ``!align`` metadata must reference a single metadata name
7358``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7359The existence of the ``!align`` metadata on the instruction tells the
7360optimizer that the value loaded is known to be aligned to a boundary specified
7361by the integer value in the metadata node. The alignment must be a power of 2.
7362This is analogous to the ''align'' attribute on parameters and return values.
7363This metadata can only be applied to loads of a pointer type.
7364
Sean Silvab084af42012-12-07 10:36:55 +00007365Semantics:
7366""""""""""
7367
7368The location of memory pointed to is loaded. If the value being loaded
7369is of scalar type then the number of bytes read does not exceed the
7370minimum number of bytes needed to hold all bits of the type. For
7371example, loading an ``i24`` reads at most three bytes. When loading a
7372value of a type like ``i20`` with a size that is not an integral number
7373of bytes, the result is undefined if the value was not originally
7374written using a store of the same type.
7375
7376Examples:
7377"""""""""
7378
7379.. code-block:: llvm
7380
Tim Northover675a0962014-06-13 14:24:23 +00007381 %ptr = alloca i32 ; yields i32*:ptr
7382 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007383 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007384
7385.. _i_store:
7386
7387'``store``' Instruction
7388^^^^^^^^^^^^^^^^^^^^^^^
7389
7390Syntax:
7391"""""""
7392
7393::
7394
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007395 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7396 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007397
7398Overview:
7399"""""""""
7400
7401The '``store``' instruction is used to write to memory.
7402
7403Arguments:
7404""""""""""
7405
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007406There are two arguments to the ``store`` instruction: a value to store and an
7407address at which to store it. The type of the ``<pointer>`` operand must be a
7408pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7409operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7410allowed to modify the number or order of execution of this ``store`` with other
7411:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7412<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7413structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007414
JF Bastiend1fb5852015-12-17 22:09:19 +00007415If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7416<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7417``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7418produce :ref:`defined <memmodel>` results when they may see multiple atomic
7419stores. The type of the pointee must be an integer, pointer, or floating-point
7420type whose bit width is a power of two greater than or equal to eight and less
7421than or equal to a target-specific size limit. ``align`` must be explicitly
7422specified on atomic stores, and the store has undefined behavior if the
7423alignment is not set to a value which is at least the size in bytes of the
7424pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007425
Eli Benderskyca380842013-04-17 17:17:20 +00007426The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007427operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007428or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007429alignment for the target. It is the responsibility of the code emitter
7430to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007431alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007432alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007433safe. The maximum possible alignment is ``1 << 29``. An alignment
7434value higher than the size of the stored type implies memory up to the
7435alignment value bytes can be stored to without trapping in the default
7436address space. Storing to the higher bytes however may result in data
7437races if another thread can access the same address. Introducing a
7438data race is not allowed. Storing to the extra bytes is not allowed
7439even in situations where a data race is known to not exist if the
7440function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007441
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007442The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007443name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007444value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007445tells the optimizer and code generator that this load is not expected to
7446be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007447instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007448x86.
7449
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007450The optional ``!invariant.group`` metadata must reference a
7451single metadata name ``<index>``. See ``invariant.group`` metadata.
7452
Sean Silvab084af42012-12-07 10:36:55 +00007453Semantics:
7454""""""""""
7455
Eli Benderskyca380842013-04-17 17:17:20 +00007456The contents of memory are updated to contain ``<value>`` at the
7457location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007458of scalar type then the number of bytes written does not exceed the
7459minimum number of bytes needed to hold all bits of the type. For
7460example, storing an ``i24`` writes at most three bytes. When writing a
7461value of a type like ``i20`` with a size that is not an integral number
7462of bytes, it is unspecified what happens to the extra bits that do not
7463belong to the type, but they will typically be overwritten.
7464
7465Example:
7466""""""""
7467
7468.. code-block:: llvm
7469
Tim Northover675a0962014-06-13 14:24:23 +00007470 %ptr = alloca i32 ; yields i32*:ptr
7471 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007472 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007473
7474.. _i_fence:
7475
7476'``fence``' Instruction
7477^^^^^^^^^^^^^^^^^^^^^^^
7478
7479Syntax:
7480"""""""
7481
7482::
7483
Tim Northover675a0962014-06-13 14:24:23 +00007484 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007485
7486Overview:
7487"""""""""
7488
7489The '``fence``' instruction is used to introduce happens-before edges
7490between operations.
7491
7492Arguments:
7493""""""""""
7494
7495'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7496defines what *synchronizes-with* edges they add. They can only be given
7497``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7498
7499Semantics:
7500""""""""""
7501
7502A fence A which has (at least) ``release`` ordering semantics
7503*synchronizes with* a fence B with (at least) ``acquire`` ordering
7504semantics if and only if there exist atomic operations X and Y, both
7505operating on some atomic object M, such that A is sequenced before X, X
7506modifies M (either directly or through some side effect of a sequence
7507headed by X), Y is sequenced before B, and Y observes M. This provides a
7508*happens-before* dependency between A and B. Rather than an explicit
7509``fence``, one (but not both) of the atomic operations X or Y might
7510provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7511still *synchronize-with* the explicit ``fence`` and establish the
7512*happens-before* edge.
7513
7514A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7515``acquire`` and ``release`` semantics specified above, participates in
7516the global program order of other ``seq_cst`` operations and/or fences.
7517
7518The optional ":ref:`singlethread <singlethread>`" argument specifies
7519that the fence only synchronizes with other fences in the same thread.
7520(This is useful for interacting with signal handlers.)
7521
7522Example:
7523""""""""
7524
7525.. code-block:: llvm
7526
Tim Northover675a0962014-06-13 14:24:23 +00007527 fence acquire ; yields void
7528 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007529
7530.. _i_cmpxchg:
7531
7532'``cmpxchg``' Instruction
7533^^^^^^^^^^^^^^^^^^^^^^^^^
7534
7535Syntax:
7536"""""""
7537
7538::
7539
Tim Northover675a0962014-06-13 14:24:23 +00007540 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007541
7542Overview:
7543"""""""""
7544
7545The '``cmpxchg``' instruction is used to atomically modify memory. It
7546loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007547equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007548
7549Arguments:
7550""""""""""
7551
7552There are three arguments to the '``cmpxchg``' instruction: an address
7553to operate on, a value to compare to the value currently be at that
7554address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007555are equal. The type of '<cmp>' must be an integer or pointer type whose
7556bit width is a power of two greater than or equal to eight and less
7557than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7558have the same type, and the type of '<pointer>' must be a pointer to
7559that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7560optimizer is not allowed to modify the number or order of execution of
7561this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007562
Tim Northovere94a5182014-03-11 10:48:52 +00007563The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007564``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7565must be at least ``monotonic``, the ordering constraint on failure must be no
7566stronger than that on success, and the failure ordering cannot be either
7567``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007568
7569The optional "``singlethread``" argument declares that the ``cmpxchg``
7570is only atomic with respect to code (usually signal handlers) running in
7571the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7572respect to all other code in the system.
7573
7574The pointer passed into cmpxchg must have alignment greater than or
7575equal to the size in memory of the operand.
7576
7577Semantics:
7578""""""""""
7579
Tim Northover420a2162014-06-13 14:24:07 +00007580The contents of memory at the location specified by the '``<pointer>``' operand
7581is read and compared to '``<cmp>``'; if the read value is the equal, the
7582'``<new>``' is written. The original value at the location is returned, together
7583with a flag indicating success (true) or failure (false).
7584
7585If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7586permitted: the operation may not write ``<new>`` even if the comparison
7587matched.
7588
7589If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7590if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007591
Tim Northovere94a5182014-03-11 10:48:52 +00007592A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7593identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7594load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007595
7596Example:
7597""""""""
7598
7599.. code-block:: llvm
7600
7601 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007602 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007603 br label %loop
7604
7605 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007606 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007607 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007608 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007609 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7610 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007611 br i1 %success, label %done, label %loop
7612
7613 done:
7614 ...
7615
7616.. _i_atomicrmw:
7617
7618'``atomicrmw``' Instruction
7619^^^^^^^^^^^^^^^^^^^^^^^^^^^
7620
7621Syntax:
7622"""""""
7623
7624::
7625
Tim Northover675a0962014-06-13 14:24:23 +00007626 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007627
7628Overview:
7629"""""""""
7630
7631The '``atomicrmw``' instruction is used to atomically modify memory.
7632
7633Arguments:
7634""""""""""
7635
7636There are three arguments to the '``atomicrmw``' instruction: an
7637operation to apply, an address whose value to modify, an argument to the
7638operation. The operation must be one of the following keywords:
7639
7640- xchg
7641- add
7642- sub
7643- and
7644- nand
7645- or
7646- xor
7647- max
7648- min
7649- umax
7650- umin
7651
7652The type of '<value>' must be an integer type whose bit width is a power
7653of two greater than or equal to eight and less than or equal to a
7654target-specific size limit. The type of the '``<pointer>``' operand must
7655be a pointer to that type. If the ``atomicrmw`` is marked as
7656``volatile``, then the optimizer is not allowed to modify the number or
7657order of execution of this ``atomicrmw`` with other :ref:`volatile
7658operations <volatile>`.
7659
7660Semantics:
7661""""""""""
7662
7663The contents of memory at the location specified by the '``<pointer>``'
7664operand are atomically read, modified, and written back. The original
7665value at the location is returned. The modification is specified by the
7666operation argument:
7667
7668- xchg: ``*ptr = val``
7669- add: ``*ptr = *ptr + val``
7670- sub: ``*ptr = *ptr - val``
7671- and: ``*ptr = *ptr & val``
7672- nand: ``*ptr = ~(*ptr & val)``
7673- or: ``*ptr = *ptr | val``
7674- xor: ``*ptr = *ptr ^ val``
7675- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7676- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7677- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7678 comparison)
7679- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7680 comparison)
7681
7682Example:
7683""""""""
7684
7685.. code-block:: llvm
7686
Tim Northover675a0962014-06-13 14:24:23 +00007687 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007688
7689.. _i_getelementptr:
7690
7691'``getelementptr``' Instruction
7692^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7693
7694Syntax:
7695"""""""
7696
7697::
7698
Peter Collingbourned93620b2016-11-10 22:34:55 +00007699 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7700 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7701 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007702
7703Overview:
7704"""""""""
7705
7706The '``getelementptr``' instruction is used to get the address of a
7707subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007708address calculation only and does not access memory. The instruction can also
7709be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007710
7711Arguments:
7712""""""""""
7713
David Blaikie16a97eb2015-03-04 22:02:58 +00007714The first argument is always a type used as the basis for the calculations.
7715The second argument is always a pointer or a vector of pointers, and is the
7716base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007717that indicate which of the elements of the aggregate object are indexed.
7718The interpretation of each index is dependent on the type being indexed
7719into. The first index always indexes the pointer value given as the
7720first argument, the second index indexes a value of the type pointed to
7721(not necessarily the value directly pointed to, since the first index
7722can be non-zero), etc. The first type indexed into must be a pointer
7723value, subsequent types can be arrays, vectors, and structs. Note that
7724subsequent types being indexed into can never be pointers, since that
7725would require loading the pointer before continuing calculation.
7726
7727The type of each index argument depends on the type it is indexing into.
7728When indexing into a (optionally packed) structure, only ``i32`` integer
7729**constants** are allowed (when using a vector of indices they must all
7730be the **same** ``i32`` integer constant). When indexing into an array,
7731pointer or vector, integers of any width are allowed, and they are not
7732required to be constant. These integers are treated as signed values
7733where relevant.
7734
7735For example, let's consider a C code fragment and how it gets compiled
7736to LLVM:
7737
7738.. code-block:: c
7739
7740 struct RT {
7741 char A;
7742 int B[10][20];
7743 char C;
7744 };
7745 struct ST {
7746 int X;
7747 double Y;
7748 struct RT Z;
7749 };
7750
7751 int *foo(struct ST *s) {
7752 return &s[1].Z.B[5][13];
7753 }
7754
7755The LLVM code generated by Clang is:
7756
7757.. code-block:: llvm
7758
7759 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7760 %struct.ST = type { i32, double, %struct.RT }
7761
7762 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7763 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007764 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007765 ret i32* %arrayidx
7766 }
7767
7768Semantics:
7769""""""""""
7770
7771In the example above, the first index is indexing into the
7772'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7773= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7774indexes into the third element of the structure, yielding a
7775'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7776structure. The third index indexes into the second element of the
7777structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7778dimensions of the array are subscripted into, yielding an '``i32``'
7779type. The '``getelementptr``' instruction returns a pointer to this
7780element, thus computing a value of '``i32*``' type.
7781
7782Note that it is perfectly legal to index partially through a structure,
7783returning a pointer to an inner element. Because of this, the LLVM code
7784for the given testcase is equivalent to:
7785
7786.. code-block:: llvm
7787
7788 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007789 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7790 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7791 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7792 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7793 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007794 ret i32* %t5
7795 }
7796
7797If the ``inbounds`` keyword is present, the result value of the
7798``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7799pointer is not an *in bounds* address of an allocated object, or if any
7800of the addresses that would be formed by successive addition of the
7801offsets implied by the indices to the base address with infinitely
7802precise signed arithmetic are not an *in bounds* address of that
7803allocated object. The *in bounds* addresses for an allocated object are
7804all the addresses that point into the object, plus the address one byte
Eli Friedman13f2e352017-02-23 00:48:18 +00007805past the end. The only *in bounds* address for a null pointer in the
7806default address-space is the null pointer itself. In cases where the
7807base is a vector of pointers the ``inbounds`` keyword applies to each
7808of the computations element-wise.
Sean Silvab084af42012-12-07 10:36:55 +00007809
7810If the ``inbounds`` keyword is not present, the offsets are added to the
7811base address with silently-wrapping two's complement arithmetic. If the
7812offsets have a different width from the pointer, they are sign-extended
7813or truncated to the width of the pointer. The result value of the
7814``getelementptr`` may be outside the object pointed to by the base
7815pointer. The result value may not necessarily be used to access memory
7816though, even if it happens to point into allocated storage. See the
7817:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7818information.
7819
Peter Collingbourned93620b2016-11-10 22:34:55 +00007820If the ``inrange`` keyword is present before any index, loading from or
7821storing to any pointer derived from the ``getelementptr`` has undefined
7822behavior if the load or store would access memory outside of the bounds of
7823the element selected by the index marked as ``inrange``. The result of a
7824pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
7825involving memory) involving a pointer derived from a ``getelementptr`` with
7826the ``inrange`` keyword is undefined, with the exception of comparisons
7827in the case where both operands are in the range of the element selected
7828by the ``inrange`` keyword, inclusive of the address one past the end of
7829that element. Note that the ``inrange`` keyword is currently only allowed
7830in constant ``getelementptr`` expressions.
7831
Sean Silvab084af42012-12-07 10:36:55 +00007832The getelementptr instruction is often confusing. For some more insight
7833into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7834
7835Example:
7836""""""""
7837
7838.. code-block:: llvm
7839
7840 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007841 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007842 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007843 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007844 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007845 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007846 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007847 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007848
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007849Vector of pointers:
7850"""""""""""""""""""
7851
7852The ``getelementptr`` returns a vector of pointers, instead of a single address,
7853when one or more of its arguments is a vector. In such cases, all vector
7854arguments should have the same number of elements, and every scalar argument
7855will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007856
7857.. code-block:: llvm
7858
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007859 ; All arguments are vectors:
7860 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7861 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007862
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007863 ; Add the same scalar offset to each pointer of a vector:
7864 ; A[i] = ptrs[i] + offset*sizeof(i8)
7865 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007866
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007867 ; Add distinct offsets to the same pointer:
7868 ; A[i] = ptr + offsets[i]*sizeof(i8)
7869 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007870
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007871 ; In all cases described above the type of the result is <4 x i8*>
7872
7873The two following instructions are equivalent:
7874
7875.. code-block:: llvm
7876
7877 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7878 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7879 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7880 <4 x i32> %ind4,
7881 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007882
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007883 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7884 i32 2, i32 1, <4 x i32> %ind4, i64 13
7885
7886Let's look at the C code, where the vector version of ``getelementptr``
7887makes sense:
7888
7889.. code-block:: c
7890
7891 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00007892 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007893 for (int i = 0; i < size; ++i) {
7894 A[i] = B[C[i]];
7895 }
7896
7897.. code-block:: llvm
7898
7899 ; get pointers for 8 elements from array B
7900 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7901 ; load 8 elements from array B into A
7902 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7903 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007904
7905Conversion Operations
7906---------------------
7907
7908The instructions in this category are the conversion instructions
7909(casting) which all take a single operand and a type. They perform
7910various bit conversions on the operand.
7911
7912'``trunc .. to``' Instruction
7913^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7914
7915Syntax:
7916"""""""
7917
7918::
7919
7920 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7921
7922Overview:
7923"""""""""
7924
7925The '``trunc``' instruction truncates its operand to the type ``ty2``.
7926
7927Arguments:
7928""""""""""
7929
7930The '``trunc``' instruction takes a value to trunc, and a type to trunc
7931it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7932of the same number of integers. The bit size of the ``value`` must be
7933larger than the bit size of the destination type, ``ty2``. Equal sized
7934types are not allowed.
7935
7936Semantics:
7937""""""""""
7938
7939The '``trunc``' instruction truncates the high order bits in ``value``
7940and converts the remaining bits to ``ty2``. Since the source size must
7941be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7942It will always truncate bits.
7943
7944Example:
7945""""""""
7946
7947.. code-block:: llvm
7948
7949 %X = trunc i32 257 to i8 ; yields i8:1
7950 %Y = trunc i32 123 to i1 ; yields i1:true
7951 %Z = trunc i32 122 to i1 ; yields i1:false
7952 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7953
7954'``zext .. to``' Instruction
7955^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7956
7957Syntax:
7958"""""""
7959
7960::
7961
7962 <result> = zext <ty> <value> to <ty2> ; yields ty2
7963
7964Overview:
7965"""""""""
7966
7967The '``zext``' instruction zero extends its operand to type ``ty2``.
7968
7969Arguments:
7970""""""""""
7971
7972The '``zext``' instruction takes a value to cast, and a type to cast it
7973to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7974the same number of integers. The bit size of the ``value`` must be
7975smaller than the bit size of the destination type, ``ty2``.
7976
7977Semantics:
7978""""""""""
7979
7980The ``zext`` fills the high order bits of the ``value`` with zero bits
7981until it reaches the size of the destination type, ``ty2``.
7982
7983When zero extending from i1, the result will always be either 0 or 1.
7984
7985Example:
7986""""""""
7987
7988.. code-block:: llvm
7989
7990 %X = zext i32 257 to i64 ; yields i64:257
7991 %Y = zext i1 true to i32 ; yields i32:1
7992 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7993
7994'``sext .. to``' Instruction
7995^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7996
7997Syntax:
7998"""""""
7999
8000::
8001
8002 <result> = sext <ty> <value> to <ty2> ; yields ty2
8003
8004Overview:
8005"""""""""
8006
8007The '``sext``' sign extends ``value`` to the type ``ty2``.
8008
8009Arguments:
8010""""""""""
8011
8012The '``sext``' instruction takes a value to cast, and a type to cast it
8013to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8014the same number of integers. The bit size of the ``value`` must be
8015smaller than the bit size of the destination type, ``ty2``.
8016
8017Semantics:
8018""""""""""
8019
8020The '``sext``' instruction performs a sign extension by copying the sign
8021bit (highest order bit) of the ``value`` until it reaches the bit size
8022of the type ``ty2``.
8023
8024When sign extending from i1, the extension always results in -1 or 0.
8025
8026Example:
8027""""""""
8028
8029.. code-block:: llvm
8030
8031 %X = sext i8 -1 to i16 ; yields i16 :65535
8032 %Y = sext i1 true to i32 ; yields i32:-1
8033 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8034
8035'``fptrunc .. to``' Instruction
8036^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8037
8038Syntax:
8039"""""""
8040
8041::
8042
8043 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
8044
8045Overview:
8046"""""""""
8047
8048The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
8049
8050Arguments:
8051""""""""""
8052
8053The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
8054value to cast and a :ref:`floating point <t_floating>` type to cast it to.
8055The size of ``value`` must be larger than the size of ``ty2``. This
8056implies that ``fptrunc`` cannot be used to make a *no-op cast*.
8057
8058Semantics:
8059""""""""""
8060
Dan Liew50456fb2015-09-03 18:43:56 +00008061The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00008062:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00008063point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
8064destination type, ``ty2``, then the results are undefined. If the cast produces
8065an inexact result, how rounding is performed (e.g. truncation, also known as
8066round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00008067
8068Example:
8069""""""""
8070
8071.. code-block:: llvm
8072
8073 %X = fptrunc double 123.0 to float ; yields float:123.0
8074 %Y = fptrunc double 1.0E+300 to float ; yields undefined
8075
8076'``fpext .. to``' Instruction
8077^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8078
8079Syntax:
8080"""""""
8081
8082::
8083
8084 <result> = fpext <ty> <value> to <ty2> ; yields ty2
8085
8086Overview:
8087"""""""""
8088
8089The '``fpext``' extends a floating point ``value`` to a larger floating
8090point value.
8091
8092Arguments:
8093""""""""""
8094
8095The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
8096``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
8097to. The source type must be smaller than the destination type.
8098
8099Semantics:
8100""""""""""
8101
8102The '``fpext``' instruction extends the ``value`` from a smaller
8103:ref:`floating point <t_floating>` type to a larger :ref:`floating
8104point <t_floating>` type. The ``fpext`` cannot be used to make a
8105*no-op cast* because it always changes bits. Use ``bitcast`` to make a
8106*no-op cast* for a floating point cast.
8107
8108Example:
8109""""""""
8110
8111.. code-block:: llvm
8112
8113 %X = fpext float 3.125 to double ; yields double:3.125000e+00
8114 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
8115
8116'``fptoui .. to``' Instruction
8117^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8118
8119Syntax:
8120"""""""
8121
8122::
8123
8124 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
8125
8126Overview:
8127"""""""""
8128
8129The '``fptoui``' converts a floating point ``value`` to its unsigned
8130integer equivalent of type ``ty2``.
8131
8132Arguments:
8133""""""""""
8134
8135The '``fptoui``' instruction takes a value to cast, which must be a
8136scalar or vector :ref:`floating point <t_floating>` value, and a type to
8137cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8138``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8139type with the same number of elements as ``ty``
8140
8141Semantics:
8142""""""""""
8143
8144The '``fptoui``' instruction converts its :ref:`floating
8145point <t_floating>` operand into the nearest (rounding towards zero)
8146unsigned integer value. If the value cannot fit in ``ty2``, the results
8147are undefined.
8148
8149Example:
8150""""""""
8151
8152.. code-block:: llvm
8153
8154 %X = fptoui double 123.0 to i32 ; yields i32:123
8155 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
8156 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
8157
8158'``fptosi .. to``' Instruction
8159^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8160
8161Syntax:
8162"""""""
8163
8164::
8165
8166 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
8167
8168Overview:
8169"""""""""
8170
8171The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
8172``value`` to type ``ty2``.
8173
8174Arguments:
8175""""""""""
8176
8177The '``fptosi``' instruction takes a value to cast, which must be a
8178scalar or vector :ref:`floating point <t_floating>` value, and a type to
8179cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8180``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8181type with the same number of elements as ``ty``
8182
8183Semantics:
8184""""""""""
8185
8186The '``fptosi``' instruction converts its :ref:`floating
8187point <t_floating>` operand into the nearest (rounding towards zero)
8188signed integer value. If the value cannot fit in ``ty2``, the results
8189are undefined.
8190
8191Example:
8192""""""""
8193
8194.. code-block:: llvm
8195
8196 %X = fptosi double -123.0 to i32 ; yields i32:-123
8197 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
8198 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
8199
8200'``uitofp .. to``' Instruction
8201^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8202
8203Syntax:
8204"""""""
8205
8206::
8207
8208 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
8209
8210Overview:
8211"""""""""
8212
8213The '``uitofp``' instruction regards ``value`` as an unsigned integer
8214and converts that value to the ``ty2`` type.
8215
8216Arguments:
8217""""""""""
8218
8219The '``uitofp``' instruction takes a value to cast, which must be a
8220scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8221``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8222``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8223type with the same number of elements as ``ty``
8224
8225Semantics:
8226""""""""""
8227
8228The '``uitofp``' instruction interprets its operand as an unsigned
8229integer quantity and converts it to the corresponding floating point
8230value. If the value cannot fit in the floating point value, the results
8231are undefined.
8232
8233Example:
8234""""""""
8235
8236.. code-block:: llvm
8237
8238 %X = uitofp i32 257 to float ; yields float:257.0
8239 %Y = uitofp i8 -1 to double ; yields double:255.0
8240
8241'``sitofp .. to``' Instruction
8242^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8243
8244Syntax:
8245"""""""
8246
8247::
8248
8249 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8250
8251Overview:
8252"""""""""
8253
8254The '``sitofp``' instruction regards ``value`` as a signed integer and
8255converts that value to the ``ty2`` type.
8256
8257Arguments:
8258""""""""""
8259
8260The '``sitofp``' instruction takes a value to cast, which must be a
8261scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8262``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8263``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8264type with the same number of elements as ``ty``
8265
8266Semantics:
8267""""""""""
8268
8269The '``sitofp``' instruction interprets its operand as a signed integer
8270quantity and converts it to the corresponding floating point value. If
8271the value cannot fit in the floating point value, the results are
8272undefined.
8273
8274Example:
8275""""""""
8276
8277.. code-block:: llvm
8278
8279 %X = sitofp i32 257 to float ; yields float:257.0
8280 %Y = sitofp i8 -1 to double ; yields double:-1.0
8281
8282.. _i_ptrtoint:
8283
8284'``ptrtoint .. to``' Instruction
8285^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8286
8287Syntax:
8288"""""""
8289
8290::
8291
8292 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8293
8294Overview:
8295"""""""""
8296
8297The '``ptrtoint``' instruction converts the pointer or a vector of
8298pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8299
8300Arguments:
8301""""""""""
8302
8303The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008304a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008305type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8306a vector of integers type.
8307
8308Semantics:
8309""""""""""
8310
8311The '``ptrtoint``' instruction converts ``value`` to integer type
8312``ty2`` by interpreting the pointer value as an integer and either
8313truncating or zero extending that value to the size of the integer type.
8314If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8315``value`` is larger than ``ty2`` then a truncation is done. If they are
8316the same size, then nothing is done (*no-op cast*) other than a type
8317change.
8318
8319Example:
8320""""""""
8321
8322.. code-block:: llvm
8323
8324 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8325 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8326 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8327
8328.. _i_inttoptr:
8329
8330'``inttoptr .. to``' Instruction
8331^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8332
8333Syntax:
8334"""""""
8335
8336::
8337
8338 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8339
8340Overview:
8341"""""""""
8342
8343The '``inttoptr``' instruction converts an integer ``value`` to a
8344pointer type, ``ty2``.
8345
8346Arguments:
8347""""""""""
8348
8349The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8350cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8351type.
8352
8353Semantics:
8354""""""""""
8355
8356The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8357applying either a zero extension or a truncation depending on the size
8358of the integer ``value``. If ``value`` is larger than the size of a
8359pointer then a truncation is done. If ``value`` is smaller than the size
8360of a pointer then a zero extension is done. If they are the same size,
8361nothing is done (*no-op cast*).
8362
8363Example:
8364""""""""
8365
8366.. code-block:: llvm
8367
8368 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8369 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8370 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8371 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8372
8373.. _i_bitcast:
8374
8375'``bitcast .. to``' Instruction
8376^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8377
8378Syntax:
8379"""""""
8380
8381::
8382
8383 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8384
8385Overview:
8386"""""""""
8387
8388The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8389changing any bits.
8390
8391Arguments:
8392""""""""""
8393
8394The '``bitcast``' instruction takes a value to cast, which must be a
8395non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008396also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8397bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008398identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008399also be a pointer of the same size. This instruction supports bitwise
8400conversion of vectors to integers and to vectors of other types (as
8401long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008402
8403Semantics:
8404""""""""""
8405
Matt Arsenault24b49c42013-07-31 17:49:08 +00008406The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8407is always a *no-op cast* because no bits change with this
8408conversion. The conversion is done as if the ``value`` had been stored
8409to memory and read back as type ``ty2``. Pointer (or vector of
8410pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008411pointers) types with the same address space through this instruction.
8412To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8413or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008414
8415Example:
8416""""""""
8417
Renato Golin124f2592016-07-20 12:16:38 +00008418.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008419
8420 %X = bitcast i8 255 to i8 ; yields i8 :-1
8421 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8422 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8423 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8424
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008425.. _i_addrspacecast:
8426
8427'``addrspacecast .. to``' Instruction
8428^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8429
8430Syntax:
8431"""""""
8432
8433::
8434
8435 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8436
8437Overview:
8438"""""""""
8439
8440The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8441address space ``n`` to type ``pty2`` in address space ``m``.
8442
8443Arguments:
8444""""""""""
8445
8446The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8447to cast and a pointer type to cast it to, which must have a different
8448address space.
8449
8450Semantics:
8451""""""""""
8452
8453The '``addrspacecast``' instruction converts the pointer value
8454``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008455value modification, depending on the target and the address space
8456pair. Pointer conversions within the same address space must be
8457performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008458conversion is legal then both result and operand refer to the same memory
8459location.
8460
8461Example:
8462""""""""
8463
8464.. code-block:: llvm
8465
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008466 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8467 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8468 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008469
Sean Silvab084af42012-12-07 10:36:55 +00008470.. _otherops:
8471
8472Other Operations
8473----------------
8474
8475The instructions in this category are the "miscellaneous" instructions,
8476which defy better classification.
8477
8478.. _i_icmp:
8479
8480'``icmp``' Instruction
8481^^^^^^^^^^^^^^^^^^^^^^
8482
8483Syntax:
8484"""""""
8485
8486::
8487
Tim Northover675a0962014-06-13 14:24:23 +00008488 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008489
8490Overview:
8491"""""""""
8492
8493The '``icmp``' instruction returns a boolean value or a vector of
8494boolean values based on comparison of its two integer, integer vector,
8495pointer, or pointer vector operands.
8496
8497Arguments:
8498""""""""""
8499
8500The '``icmp``' instruction takes three operands. The first operand is
8501the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008502not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008503
8504#. ``eq``: equal
8505#. ``ne``: not equal
8506#. ``ugt``: unsigned greater than
8507#. ``uge``: unsigned greater or equal
8508#. ``ult``: unsigned less than
8509#. ``ule``: unsigned less or equal
8510#. ``sgt``: signed greater than
8511#. ``sge``: signed greater or equal
8512#. ``slt``: signed less than
8513#. ``sle``: signed less or equal
8514
8515The remaining two arguments must be :ref:`integer <t_integer>` or
8516:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8517must also be identical types.
8518
8519Semantics:
8520""""""""""
8521
8522The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8523code given as ``cond``. The comparison performed always yields either an
8524:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8525
8526#. ``eq``: yields ``true`` if the operands are equal, ``false``
8527 otherwise. No sign interpretation is necessary or performed.
8528#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8529 otherwise. No sign interpretation is necessary or performed.
8530#. ``ugt``: interprets the operands as unsigned values and yields
8531 ``true`` if ``op1`` is greater than ``op2``.
8532#. ``uge``: interprets the operands as unsigned values and yields
8533 ``true`` if ``op1`` is greater than or equal to ``op2``.
8534#. ``ult``: interprets the operands as unsigned values and yields
8535 ``true`` if ``op1`` is less than ``op2``.
8536#. ``ule``: interprets the operands as unsigned values and yields
8537 ``true`` if ``op1`` is less than or equal to ``op2``.
8538#. ``sgt``: interprets the operands as signed values and yields ``true``
8539 if ``op1`` is greater than ``op2``.
8540#. ``sge``: interprets the operands as signed values and yields ``true``
8541 if ``op1`` is greater than or equal to ``op2``.
8542#. ``slt``: interprets the operands as signed values and yields ``true``
8543 if ``op1`` is less than ``op2``.
8544#. ``sle``: interprets the operands as signed values and yields ``true``
8545 if ``op1`` is less than or equal to ``op2``.
8546
8547If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8548are compared as if they were integers.
8549
8550If the operands are integer vectors, then they are compared element by
8551element. The result is an ``i1`` vector with the same number of elements
8552as the values being compared. Otherwise, the result is an ``i1``.
8553
8554Example:
8555""""""""
8556
Renato Golin124f2592016-07-20 12:16:38 +00008557.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008558
8559 <result> = icmp eq i32 4, 5 ; yields: result=false
8560 <result> = icmp ne float* %X, %X ; yields: result=false
8561 <result> = icmp ult i16 4, 5 ; yields: result=true
8562 <result> = icmp sgt i16 4, 5 ; yields: result=false
8563 <result> = icmp ule i16 -4, 5 ; yields: result=false
8564 <result> = icmp sge i16 4, 5 ; yields: result=false
8565
Sean Silvab084af42012-12-07 10:36:55 +00008566.. _i_fcmp:
8567
8568'``fcmp``' Instruction
8569^^^^^^^^^^^^^^^^^^^^^^
8570
8571Syntax:
8572"""""""
8573
8574::
8575
James Molloy88eb5352015-07-10 12:52:00 +00008576 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008577
8578Overview:
8579"""""""""
8580
8581The '``fcmp``' instruction returns a boolean value or vector of boolean
8582values based on comparison of its operands.
8583
8584If the operands are floating point scalars, then the result type is a
8585boolean (:ref:`i1 <t_integer>`).
8586
8587If the operands are floating point vectors, then the result type is a
8588vector of boolean with the same number of elements as the operands being
8589compared.
8590
8591Arguments:
8592""""""""""
8593
8594The '``fcmp``' instruction takes three operands. The first operand is
8595the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008596not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008597
8598#. ``false``: no comparison, always returns false
8599#. ``oeq``: ordered and equal
8600#. ``ogt``: ordered and greater than
8601#. ``oge``: ordered and greater than or equal
8602#. ``olt``: ordered and less than
8603#. ``ole``: ordered and less than or equal
8604#. ``one``: ordered and not equal
8605#. ``ord``: ordered (no nans)
8606#. ``ueq``: unordered or equal
8607#. ``ugt``: unordered or greater than
8608#. ``uge``: unordered or greater than or equal
8609#. ``ult``: unordered or less than
8610#. ``ule``: unordered or less than or equal
8611#. ``une``: unordered or not equal
8612#. ``uno``: unordered (either nans)
8613#. ``true``: no comparison, always returns true
8614
8615*Ordered* means that neither operand is a QNAN while *unordered* means
8616that either operand may be a QNAN.
8617
8618Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8619point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8620type. They must have identical types.
8621
8622Semantics:
8623""""""""""
8624
8625The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8626condition code given as ``cond``. If the operands are vectors, then the
8627vectors are compared element by element. Each comparison performed
8628always yields an :ref:`i1 <t_integer>` result, as follows:
8629
8630#. ``false``: always yields ``false``, regardless of operands.
8631#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8632 is equal to ``op2``.
8633#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8634 is greater than ``op2``.
8635#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8636 is greater than or equal to ``op2``.
8637#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8638 is less than ``op2``.
8639#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8640 is less than or equal to ``op2``.
8641#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8642 is not equal to ``op2``.
8643#. ``ord``: yields ``true`` if both operands are not a QNAN.
8644#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8645 equal to ``op2``.
8646#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8647 greater than ``op2``.
8648#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8649 greater than or equal to ``op2``.
8650#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8651 less than ``op2``.
8652#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8653 less than or equal to ``op2``.
8654#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8655 not equal to ``op2``.
8656#. ``uno``: yields ``true`` if either operand is a QNAN.
8657#. ``true``: always yields ``true``, regardless of operands.
8658
James Molloy88eb5352015-07-10 12:52:00 +00008659The ``fcmp`` instruction can also optionally take any number of
8660:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8661otherwise unsafe floating point optimizations.
8662
8663Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8664only flags that have any effect on its semantics are those that allow
8665assumptions to be made about the values of input arguments; namely
8666``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8667
Sean Silvab084af42012-12-07 10:36:55 +00008668Example:
8669""""""""
8670
Renato Golin124f2592016-07-20 12:16:38 +00008671.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008672
8673 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8674 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8675 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8676 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8677
Sean Silvab084af42012-12-07 10:36:55 +00008678.. _i_phi:
8679
8680'``phi``' Instruction
8681^^^^^^^^^^^^^^^^^^^^^
8682
8683Syntax:
8684"""""""
8685
8686::
8687
8688 <result> = phi <ty> [ <val0>, <label0>], ...
8689
8690Overview:
8691"""""""""
8692
8693The '``phi``' instruction is used to implement the φ node in the SSA
8694graph representing the function.
8695
8696Arguments:
8697""""""""""
8698
8699The type of the incoming values is specified with the first type field.
8700After this, the '``phi``' instruction takes a list of pairs as
8701arguments, with one pair for each predecessor basic block of the current
8702block. Only values of :ref:`first class <t_firstclass>` type may be used as
8703the value arguments to the PHI node. Only labels may be used as the
8704label arguments.
8705
8706There must be no non-phi instructions between the start of a basic block
8707and the PHI instructions: i.e. PHI instructions must be first in a basic
8708block.
8709
8710For the purposes of the SSA form, the use of each incoming value is
8711deemed to occur on the edge from the corresponding predecessor block to
8712the current block (but after any definition of an '``invoke``'
8713instruction's return value on the same edge).
8714
8715Semantics:
8716""""""""""
8717
8718At runtime, the '``phi``' instruction logically takes on the value
8719specified by the pair corresponding to the predecessor basic block that
8720executed just prior to the current block.
8721
8722Example:
8723""""""""
8724
8725.. code-block:: llvm
8726
8727 Loop: ; Infinite loop that counts from 0 on up...
8728 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8729 %nextindvar = add i32 %indvar, 1
8730 br label %Loop
8731
8732.. _i_select:
8733
8734'``select``' Instruction
8735^^^^^^^^^^^^^^^^^^^^^^^^
8736
8737Syntax:
8738"""""""
8739
8740::
8741
8742 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8743
8744 selty is either i1 or {<N x i1>}
8745
8746Overview:
8747"""""""""
8748
8749The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008750condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008751
8752Arguments:
8753""""""""""
8754
8755The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8756values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008757class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008758
8759Semantics:
8760""""""""""
8761
8762If the condition is an i1 and it evaluates to 1, the instruction returns
8763the first value argument; otherwise, it returns the second value
8764argument.
8765
8766If the condition is a vector of i1, then the value arguments must be
8767vectors of the same size, and the selection is done element by element.
8768
David Majnemer40a0b592015-03-03 22:45:47 +00008769If the condition is an i1 and the value arguments are vectors of the
8770same size, then an entire vector is selected.
8771
Sean Silvab084af42012-12-07 10:36:55 +00008772Example:
8773""""""""
8774
8775.. code-block:: llvm
8776
8777 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8778
8779.. _i_call:
8780
8781'``call``' Instruction
8782^^^^^^^^^^^^^^^^^^^^^^
8783
8784Syntax:
8785"""""""
8786
8787::
8788
David Blaikieb83cf102016-07-13 17:21:34 +00008789 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008790 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008791
8792Overview:
8793"""""""""
8794
8795The '``call``' instruction represents a simple function call.
8796
8797Arguments:
8798""""""""""
8799
8800This instruction requires several arguments:
8801
Reid Kleckner5772b772014-04-24 20:14:34 +00008802#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008803 should perform tail call optimization. The ``tail`` marker is a hint that
8804 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008805 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008806 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008807
8808 #. The call will not cause unbounded stack growth if it is part of a
8809 recursive cycle in the call graph.
8810 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8811 forwarded in place.
8812
8813 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008814 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008815 rules:
8816
8817 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8818 or a pointer bitcast followed by a ret instruction.
8819 - The ret instruction must return the (possibly bitcasted) value
8820 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008821 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008822 parameters or return types may differ in pointee type, but not
8823 in address space.
8824 - The calling conventions of the caller and callee must match.
8825 - All ABI-impacting function attributes, such as sret, byval, inreg,
8826 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008827 - The callee must be varargs iff the caller is varargs. Bitcasting a
8828 non-varargs function to the appropriate varargs type is legal so
8829 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008830
8831 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8832 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008833
8834 - Caller and callee both have the calling convention ``fastcc``.
8835 - The call is in tail position (ret immediately follows call and ret
8836 uses value of call or is void).
8837 - Option ``-tailcallopt`` is enabled, or
8838 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008839 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008840 met. <CodeGenerator.html#tailcallopt>`_
8841
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008842#. The optional ``notail`` marker indicates that the optimizers should not add
8843 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8844 call optimization from being performed on the call.
8845
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008846#. The optional ``fast-math flags`` marker indicates that the call has one or more
8847 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8848 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8849 for calls that return a floating-point scalar or vector type.
8850
Sean Silvab084af42012-12-07 10:36:55 +00008851#. The optional "cconv" marker indicates which :ref:`calling
8852 convention <callingconv>` the call should use. If none is
8853 specified, the call defaults to using C calling conventions. The
8854 calling convention of the call must match the calling convention of
8855 the target function, or else the behavior is undefined.
8856#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8857 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8858 are valid here.
8859#. '``ty``': the type of the call instruction itself which is also the
8860 type of the return value. Functions that return no value are marked
8861 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00008862#. '``fnty``': shall be the signature of the function being called. The
8863 argument types must match the types implied by this signature. This
8864 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00008865#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00008866 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00008867 indirect ``call``'s are just as possible, calling an arbitrary pointer
8868 to function value.
8869#. '``function args``': argument list whose types match the function
8870 signature argument types and parameter attributes. All arguments must
8871 be of :ref:`first class <t_firstclass>` type. If the function signature
8872 indicates the function accepts a variable number of arguments, the
8873 extra arguments can be specified.
8874#. The optional :ref:`function attributes <fnattrs>` list. Only
Matt Arsenault50d02ef2016-06-10 00:36:57 +00008875 '``noreturn``', '``nounwind``', '``readonly``' , '``readnone``',
8876 and '``convergent``' attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008877#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008878
8879Semantics:
8880""""""""""
8881
8882The '``call``' instruction is used to cause control flow to transfer to
8883a specified function, with its incoming arguments bound to the specified
8884values. Upon a '``ret``' instruction in the called function, control
8885flow continues with the instruction after the function call, and the
8886return value of the function is bound to the result argument.
8887
8888Example:
8889""""""""
8890
8891.. code-block:: llvm
8892
8893 %retval = call i32 @test(i32 %argc)
8894 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8895 %X = tail call i32 @foo() ; yields i32
8896 %Y = tail call fastcc i32 @foo() ; yields i32
8897 call void %foo(i8 97 signext)
8898
8899 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008900 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008901 %gr = extractvalue %struct.A %r, 0 ; yields i32
8902 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8903 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8904 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8905
8906llvm treats calls to some functions with names and arguments that match
8907the standard C99 library as being the C99 library functions, and may
8908perform optimizations or generate code for them under that assumption.
8909This is something we'd like to change in the future to provide better
8910support for freestanding environments and non-C-based languages.
8911
8912.. _i_va_arg:
8913
8914'``va_arg``' Instruction
8915^^^^^^^^^^^^^^^^^^^^^^^^
8916
8917Syntax:
8918"""""""
8919
8920::
8921
8922 <resultval> = va_arg <va_list*> <arglist>, <argty>
8923
8924Overview:
8925"""""""""
8926
8927The '``va_arg``' instruction is used to access arguments passed through
8928the "variable argument" area of a function call. It is used to implement
8929the ``va_arg`` macro in C.
8930
8931Arguments:
8932""""""""""
8933
8934This instruction takes a ``va_list*`` value and the type of the
8935argument. It returns a value of the specified argument type and
8936increments the ``va_list`` to point to the next argument. The actual
8937type of ``va_list`` is target specific.
8938
8939Semantics:
8940""""""""""
8941
8942The '``va_arg``' instruction loads an argument of the specified type
8943from the specified ``va_list`` and causes the ``va_list`` to point to
8944the next argument. For more information, see the variable argument
8945handling :ref:`Intrinsic Functions <int_varargs>`.
8946
8947It is legal for this instruction to be called in a function which does
8948not take a variable number of arguments, for example, the ``vfprintf``
8949function.
8950
8951``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8952function <intrinsics>` because it takes a type as an argument.
8953
8954Example:
8955""""""""
8956
8957See the :ref:`variable argument processing <int_varargs>` section.
8958
8959Note that the code generator does not yet fully support va\_arg on many
8960targets. Also, it does not currently support va\_arg with aggregate
8961types on any target.
8962
8963.. _i_landingpad:
8964
8965'``landingpad``' Instruction
8966^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8967
8968Syntax:
8969"""""""
8970
8971::
8972
David Majnemer7fddecc2015-06-17 20:52:32 +00008973 <resultval> = landingpad <resultty> <clause>+
8974 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008975
8976 <clause> := catch <type> <value>
8977 <clause> := filter <array constant type> <array constant>
8978
8979Overview:
8980"""""""""
8981
8982The '``landingpad``' instruction is used by `LLVM's exception handling
8983system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008984is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008985code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008986defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008987re-entry to the function. The ``resultval`` has the type ``resultty``.
8988
8989Arguments:
8990""""""""""
8991
David Majnemer7fddecc2015-06-17 20:52:32 +00008992The optional
Sean Silvab084af42012-12-07 10:36:55 +00008993``cleanup`` flag indicates that the landing pad block is a cleanup.
8994
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008995A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008996contains the global variable representing the "type" that may be caught
8997or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8998clause takes an array constant as its argument. Use
8999"``[0 x i8**] undef``" for a filter which cannot throw. The
9000'``landingpad``' instruction must contain *at least* one ``clause`` or
9001the ``cleanup`` flag.
9002
9003Semantics:
9004""""""""""
9005
9006The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00009007:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00009008therefore the "result type" of the ``landingpad`` instruction. As with
9009calling conventions, how the personality function results are
9010represented in LLVM IR is target specific.
9011
9012The clauses are applied in order from top to bottom. If two
9013``landingpad`` instructions are merged together through inlining, the
9014clauses from the calling function are appended to the list of clauses.
9015When the call stack is being unwound due to an exception being thrown,
9016the exception is compared against each ``clause`` in turn. If it doesn't
9017match any of the clauses, and the ``cleanup`` flag is not set, then
9018unwinding continues further up the call stack.
9019
9020The ``landingpad`` instruction has several restrictions:
9021
9022- A landing pad block is a basic block which is the unwind destination
9023 of an '``invoke``' instruction.
9024- A landing pad block must have a '``landingpad``' instruction as its
9025 first non-PHI instruction.
9026- There can be only one '``landingpad``' instruction within the landing
9027 pad block.
9028- A basic block that is not a landing pad block may not include a
9029 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009030
9031Example:
9032""""""""
9033
9034.. code-block:: llvm
9035
9036 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00009037 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009038 catch i8** @_ZTIi
9039 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00009040 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009041 cleanup
9042 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00009043 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009044 catch i8** @_ZTIi
9045 filter [1 x i8**] [@_ZTId]
9046
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009047.. _i_catchpad:
9048
9049'``catchpad``' Instruction
9050^^^^^^^^^^^^^^^^^^^^^^^^^^
9051
9052Syntax:
9053"""""""
9054
9055::
9056
9057 <resultval> = catchpad within <catchswitch> [<args>*]
9058
9059Overview:
9060"""""""""
9061
9062The '``catchpad``' instruction is used by `LLVM's exception handling
9063system <ExceptionHandling.html#overview>`_ to specify that a basic block
9064begins a catch handler --- one where a personality routine attempts to transfer
9065control to catch an exception.
9066
9067Arguments:
9068""""""""""
9069
9070The ``catchswitch`` operand must always be a token produced by a
9071:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
9072ensures that each ``catchpad`` has exactly one predecessor block, and it always
9073terminates in a ``catchswitch``.
9074
9075The ``args`` correspond to whatever information the personality routine
9076requires to know if this is an appropriate handler for the exception. Control
9077will transfer to the ``catchpad`` if this is the first appropriate handler for
9078the exception.
9079
9080The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
9081``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
9082pads.
9083
9084Semantics:
9085""""""""""
9086
9087When the call stack is being unwound due to an exception being thrown, the
9088exception is compared against the ``args``. If it doesn't match, control will
9089not reach the ``catchpad`` instruction. The representation of ``args`` is
9090entirely target and personality function-specific.
9091
9092Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
9093instruction must be the first non-phi of its parent basic block.
9094
9095The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
9096instructions is described in the
9097`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
9098
9099When a ``catchpad`` has been "entered" but not yet "exited" (as
9100described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9101it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9102that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
9103
9104Example:
9105""""""""
9106
Renato Golin124f2592016-07-20 12:16:38 +00009107.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009108
9109 dispatch:
9110 %cs = catchswitch within none [label %handler0] unwind to caller
9111 ;; A catch block which can catch an integer.
9112 handler0:
9113 %tok = catchpad within %cs [i8** @_ZTIi]
9114
David Majnemer654e1302015-07-31 17:58:14 +00009115.. _i_cleanuppad:
9116
9117'``cleanuppad``' Instruction
9118^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9119
9120Syntax:
9121"""""""
9122
9123::
9124
David Majnemer8a1c45d2015-12-12 05:38:55 +00009125 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00009126
9127Overview:
9128"""""""""
9129
9130The '``cleanuppad``' instruction is used by `LLVM's exception handling
9131system <ExceptionHandling.html#overview>`_ to specify that a basic block
9132is a cleanup block --- one where a personality routine attempts to
9133transfer control to run cleanup actions.
9134The ``args`` correspond to whatever additional
9135information the :ref:`personality function <personalityfn>` requires to
9136execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00009137The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00009138match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
9139The ``parent`` argument is the token of the funclet that contains the
9140``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
9141this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00009142
9143Arguments:
9144""""""""""
9145
9146The instruction takes a list of arbitrary values which are interpreted
9147by the :ref:`personality function <personalityfn>`.
9148
9149Semantics:
9150""""""""""
9151
David Majnemer654e1302015-07-31 17:58:14 +00009152When the call stack is being unwound due to an exception being thrown,
9153the :ref:`personality function <personalityfn>` transfers control to the
9154``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00009155As with calling conventions, how the personality function results are
9156represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00009157
9158The ``cleanuppad`` instruction has several restrictions:
9159
9160- A cleanup block is a basic block which is the unwind destination of
9161 an exceptional instruction.
9162- A cleanup block must have a '``cleanuppad``' instruction as its
9163 first non-PHI instruction.
9164- There can be only one '``cleanuppad``' instruction within the
9165 cleanup block.
9166- A basic block that is not a cleanup block may not include a
9167 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009168
Joseph Tremoulete28885e2016-01-10 04:28:38 +00009169When a ``cleanuppad`` has been "entered" but not yet "exited" (as
9170described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9171it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9172that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009173
David Majnemer654e1302015-07-31 17:58:14 +00009174Example:
9175""""""""
9176
Renato Golin124f2592016-07-20 12:16:38 +00009177.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00009178
David Majnemer8a1c45d2015-12-12 05:38:55 +00009179 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00009180
Sean Silvab084af42012-12-07 10:36:55 +00009181.. _intrinsics:
9182
9183Intrinsic Functions
9184===================
9185
9186LLVM supports the notion of an "intrinsic function". These functions
9187have well known names and semantics and are required to follow certain
9188restrictions. Overall, these intrinsics represent an extension mechanism
9189for the LLVM language that does not require changing all of the
9190transformations in LLVM when adding to the language (or the bitcode
9191reader/writer, the parser, etc...).
9192
9193Intrinsic function names must all start with an "``llvm.``" prefix. This
9194prefix is reserved in LLVM for intrinsic names; thus, function names may
9195not begin with this prefix. Intrinsic functions must always be external
9196functions: you cannot define the body of intrinsic functions. Intrinsic
9197functions may only be used in call or invoke instructions: it is illegal
9198to take the address of an intrinsic function. Additionally, because
9199intrinsic functions are part of the LLVM language, it is required if any
9200are added that they be documented here.
9201
9202Some intrinsic functions can be overloaded, i.e., the intrinsic
9203represents a family of functions that perform the same operation but on
9204different data types. Because LLVM can represent over 8 million
9205different integer types, overloading is used commonly to allow an
9206intrinsic function to operate on any integer type. One or more of the
9207argument types or the result type can be overloaded to accept any
9208integer type. Argument types may also be defined as exactly matching a
9209previous argument's type or the result type. This allows an intrinsic
9210function which accepts multiple arguments, but needs all of them to be
9211of the same type, to only be overloaded with respect to a single
9212argument or the result.
9213
9214Overloaded intrinsics will have the names of its overloaded argument
9215types encoded into its function name, each preceded by a period. Only
9216those types which are overloaded result in a name suffix. Arguments
9217whose type is matched against another type do not. For example, the
9218``llvm.ctpop`` function can take an integer of any width and returns an
9219integer of exactly the same integer width. This leads to a family of
9220functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
9221``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
9222overloaded, and only one type suffix is required. Because the argument's
9223type is matched against the return type, it does not require its own
9224name suffix.
9225
9226To learn how to add an intrinsic function, please see the `Extending
9227LLVM Guide <ExtendingLLVM.html>`_.
9228
9229.. _int_varargs:
9230
9231Variable Argument Handling Intrinsics
9232-------------------------------------
9233
9234Variable argument support is defined in LLVM with the
9235:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9236functions. These functions are related to the similarly named macros
9237defined in the ``<stdarg.h>`` header file.
9238
9239All of these functions operate on arguments that use a target-specific
9240value type "``va_list``". The LLVM assembly language reference manual
9241does not define what this type is, so all transformations should be
9242prepared to handle these functions regardless of the type used.
9243
9244This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9245variable argument handling intrinsic functions are used.
9246
9247.. code-block:: llvm
9248
Tim Northoverab60bb92014-11-02 01:21:51 +00009249 ; This struct is different for every platform. For most platforms,
9250 ; it is merely an i8*.
9251 %struct.va_list = type { i8* }
9252
9253 ; For Unix x86_64 platforms, va_list is the following struct:
9254 ; %struct.va_list = type { i32, i32, i8*, i8* }
9255
Sean Silvab084af42012-12-07 10:36:55 +00009256 define i32 @test(i32 %X, ...) {
9257 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009258 %ap = alloca %struct.va_list
9259 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009260 call void @llvm.va_start(i8* %ap2)
9261
9262 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009263 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009264
9265 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9266 %aq = alloca i8*
9267 %aq2 = bitcast i8** %aq to i8*
9268 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9269 call void @llvm.va_end(i8* %aq2)
9270
9271 ; Stop processing of arguments.
9272 call void @llvm.va_end(i8* %ap2)
9273 ret i32 %tmp
9274 }
9275
9276 declare void @llvm.va_start(i8*)
9277 declare void @llvm.va_copy(i8*, i8*)
9278 declare void @llvm.va_end(i8*)
9279
9280.. _int_va_start:
9281
9282'``llvm.va_start``' Intrinsic
9283^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9284
9285Syntax:
9286"""""""
9287
9288::
9289
Nick Lewycky04f6de02013-09-11 22:04:52 +00009290 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009291
9292Overview:
9293"""""""""
9294
9295The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9296subsequent use by ``va_arg``.
9297
9298Arguments:
9299""""""""""
9300
9301The argument is a pointer to a ``va_list`` element to initialize.
9302
9303Semantics:
9304""""""""""
9305
9306The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9307available in C. In a target-dependent way, it initializes the
9308``va_list`` element to which the argument points, so that the next call
9309to ``va_arg`` will produce the first variable argument passed to the
9310function. Unlike the C ``va_start`` macro, this intrinsic does not need
9311to know the last argument of the function as the compiler can figure
9312that out.
9313
9314'``llvm.va_end``' Intrinsic
9315^^^^^^^^^^^^^^^^^^^^^^^^^^^
9316
9317Syntax:
9318"""""""
9319
9320::
9321
9322 declare void @llvm.va_end(i8* <arglist>)
9323
9324Overview:
9325"""""""""
9326
9327The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9328initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9329
9330Arguments:
9331""""""""""
9332
9333The argument is a pointer to a ``va_list`` to destroy.
9334
9335Semantics:
9336""""""""""
9337
9338The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9339available in C. In a target-dependent way, it destroys the ``va_list``
9340element to which the argument points. Calls to
9341:ref:`llvm.va_start <int_va_start>` and
9342:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9343``llvm.va_end``.
9344
9345.. _int_va_copy:
9346
9347'``llvm.va_copy``' Intrinsic
9348^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9349
9350Syntax:
9351"""""""
9352
9353::
9354
9355 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9356
9357Overview:
9358"""""""""
9359
9360The '``llvm.va_copy``' intrinsic copies the current argument position
9361from the source argument list to the destination argument list.
9362
9363Arguments:
9364""""""""""
9365
9366The first argument is a pointer to a ``va_list`` element to initialize.
9367The second argument is a pointer to a ``va_list`` element to copy from.
9368
9369Semantics:
9370""""""""""
9371
9372The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9373available in C. In a target-dependent way, it copies the source
9374``va_list`` element into the destination ``va_list`` element. This
9375intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9376arbitrarily complex and require, for example, memory allocation.
9377
9378Accurate Garbage Collection Intrinsics
9379--------------------------------------
9380
Philip Reamesc5b0f562015-02-25 23:52:06 +00009381LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009382(GC) requires the frontend to generate code containing appropriate intrinsic
9383calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009384intrinsics in a manner which is appropriate for the target collector.
9385
Sean Silvab084af42012-12-07 10:36:55 +00009386These intrinsics allow identification of :ref:`GC roots on the
9387stack <int_gcroot>`, as well as garbage collector implementations that
9388require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009389Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009390these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009391details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009392
Philip Reamesf80bbff2015-02-25 23:45:20 +00009393Experimental Statepoint Intrinsics
9394^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9395
9396LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009397collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009398to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009399:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009400differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009401<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009402described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009403
9404.. _int_gcroot:
9405
9406'``llvm.gcroot``' Intrinsic
9407^^^^^^^^^^^^^^^^^^^^^^^^^^^
9408
9409Syntax:
9410"""""""
9411
9412::
9413
9414 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9415
9416Overview:
9417"""""""""
9418
9419The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9420the code generator, and allows some metadata to be associated with it.
9421
9422Arguments:
9423""""""""""
9424
9425The first argument specifies the address of a stack object that contains
9426the root pointer. The second pointer (which must be either a constant or
9427a global value address) contains the meta-data to be associated with the
9428root.
9429
9430Semantics:
9431""""""""""
9432
9433At runtime, a call to this intrinsic stores a null pointer into the
9434"ptrloc" location. At compile-time, the code generator generates
9435information to allow the runtime to find the pointer at GC safe points.
9436The '``llvm.gcroot``' intrinsic may only be used in a function which
9437:ref:`specifies a GC algorithm <gc>`.
9438
9439.. _int_gcread:
9440
9441'``llvm.gcread``' Intrinsic
9442^^^^^^^^^^^^^^^^^^^^^^^^^^^
9443
9444Syntax:
9445"""""""
9446
9447::
9448
9449 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9450
9451Overview:
9452"""""""""
9453
9454The '``llvm.gcread``' intrinsic identifies reads of references from heap
9455locations, allowing garbage collector implementations that require read
9456barriers.
9457
9458Arguments:
9459""""""""""
9460
9461The second argument is the address to read from, which should be an
9462address allocated from the garbage collector. The first object is a
9463pointer to the start of the referenced object, if needed by the language
9464runtime (otherwise null).
9465
9466Semantics:
9467""""""""""
9468
9469The '``llvm.gcread``' intrinsic has the same semantics as a load
9470instruction, but may be replaced with substantially more complex code by
9471the garbage collector runtime, as needed. The '``llvm.gcread``'
9472intrinsic may only be used in a function which :ref:`specifies a GC
9473algorithm <gc>`.
9474
9475.. _int_gcwrite:
9476
9477'``llvm.gcwrite``' Intrinsic
9478^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9479
9480Syntax:
9481"""""""
9482
9483::
9484
9485 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9486
9487Overview:
9488"""""""""
9489
9490The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9491locations, allowing garbage collector implementations that require write
9492barriers (such as generational or reference counting collectors).
9493
9494Arguments:
9495""""""""""
9496
9497The first argument is the reference to store, the second is the start of
9498the object to store it to, and the third is the address of the field of
9499Obj to store to. If the runtime does not require a pointer to the
9500object, Obj may be null.
9501
9502Semantics:
9503""""""""""
9504
9505The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9506instruction, but may be replaced with substantially more complex code by
9507the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9508intrinsic may only be used in a function which :ref:`specifies a GC
9509algorithm <gc>`.
9510
9511Code Generator Intrinsics
9512-------------------------
9513
9514These intrinsics are provided by LLVM to expose special features that
9515may only be implemented with code generator support.
9516
9517'``llvm.returnaddress``' Intrinsic
9518^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9519
9520Syntax:
9521"""""""
9522
9523::
9524
9525 declare i8 *@llvm.returnaddress(i32 <level>)
9526
9527Overview:
9528"""""""""
9529
9530The '``llvm.returnaddress``' intrinsic attempts to compute a
9531target-specific value indicating the return address of the current
9532function or one of its callers.
9533
9534Arguments:
9535""""""""""
9536
9537The argument to this intrinsic indicates which function to return the
9538address for. Zero indicates the calling function, one indicates its
9539caller, etc. The argument is **required** to be a constant integer
9540value.
9541
9542Semantics:
9543""""""""""
9544
9545The '``llvm.returnaddress``' intrinsic either returns a pointer
9546indicating the return address of the specified call frame, or zero if it
9547cannot be identified. The value returned by this intrinsic is likely to
9548be incorrect or 0 for arguments other than zero, so it should only be
9549used for debugging purposes.
9550
9551Note that calling this intrinsic does not prevent function inlining or
9552other aggressive transformations, so the value returned may not be that
9553of the obvious source-language caller.
9554
Albert Gutowski795d7d62016-10-12 22:13:19 +00009555'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +00009556^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +00009557
9558Syntax:
9559"""""""
9560
9561::
9562
9563 declare i8 *@llvm.addressofreturnaddress()
9564
9565Overview:
9566"""""""""
9567
9568The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
9569pointer to the place in the stack frame where the return address of the
9570current function is stored.
9571
9572Semantics:
9573""""""""""
9574
9575Note that calling this intrinsic does not prevent function inlining or
9576other aggressive transformations, so the value returned may not be that
9577of the obvious source-language caller.
9578
9579This intrinsic is only implemented for x86.
9580
Sean Silvab084af42012-12-07 10:36:55 +00009581'``llvm.frameaddress``' Intrinsic
9582^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9583
9584Syntax:
9585"""""""
9586
9587::
9588
9589 declare i8* @llvm.frameaddress(i32 <level>)
9590
9591Overview:
9592"""""""""
9593
9594The '``llvm.frameaddress``' intrinsic attempts to return the
9595target-specific frame pointer value for the specified stack frame.
9596
9597Arguments:
9598""""""""""
9599
9600The argument to this intrinsic indicates which function to return the
9601frame pointer for. Zero indicates the calling function, one indicates
9602its caller, etc. The argument is **required** to be a constant integer
9603value.
9604
9605Semantics:
9606""""""""""
9607
9608The '``llvm.frameaddress``' intrinsic either returns a pointer
9609indicating the frame address of the specified call frame, or zero if it
9610cannot be identified. The value returned by this intrinsic is likely to
9611be incorrect or 0 for arguments other than zero, so it should only be
9612used for debugging purposes.
9613
9614Note that calling this intrinsic does not prevent function inlining or
9615other aggressive transformations, so the value returned may not be that
9616of the obvious source-language caller.
9617
Reid Kleckner60381792015-07-07 22:25:32 +00009618'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009619^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9620
9621Syntax:
9622"""""""
9623
9624::
9625
Reid Kleckner60381792015-07-07 22:25:32 +00009626 declare void @llvm.localescape(...)
9627 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009628
9629Overview:
9630"""""""""
9631
Reid Kleckner60381792015-07-07 22:25:32 +00009632The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9633allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009634live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009635computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009636
9637Arguments:
9638""""""""""
9639
Reid Kleckner60381792015-07-07 22:25:32 +00009640All arguments to '``llvm.localescape``' must be pointers to static allocas or
9641casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009642once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009643
Reid Kleckner60381792015-07-07 22:25:32 +00009644The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009645bitcasted pointer to a function defined in the current module. The code
9646generator cannot determine the frame allocation offset of functions defined in
9647other modules.
9648
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009649The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9650call frame that is currently live. The return value of '``llvm.localaddress``'
9651is one way to produce such a value, but various runtimes also expose a suitable
9652pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009653
Reid Kleckner60381792015-07-07 22:25:32 +00009654The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9655'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009656
Reid Klecknere9b89312015-01-13 00:48:10 +00009657Semantics:
9658""""""""""
9659
Reid Kleckner60381792015-07-07 22:25:32 +00009660These intrinsics allow a group of functions to share access to a set of local
9661stack allocations of a one parent function. The parent function may call the
9662'``llvm.localescape``' intrinsic once from the function entry block, and the
9663child functions can use '``llvm.localrecover``' to access the escaped allocas.
9664The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9665the escaped allocas are allocated, which would break attempts to use
9666'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009667
Renato Golinc7aea402014-05-06 16:51:25 +00009668.. _int_read_register:
9669.. _int_write_register:
9670
9671'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9672^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9673
9674Syntax:
9675"""""""
9676
9677::
9678
9679 declare i32 @llvm.read_register.i32(metadata)
9680 declare i64 @llvm.read_register.i64(metadata)
9681 declare void @llvm.write_register.i32(metadata, i32 @value)
9682 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009683 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009684
9685Overview:
9686"""""""""
9687
9688The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9689provides access to the named register. The register must be valid on
9690the architecture being compiled to. The type needs to be compatible
9691with the register being read.
9692
9693Semantics:
9694""""""""""
9695
9696The '``llvm.read_register``' intrinsic returns the current value of the
9697register, where possible. The '``llvm.write_register``' intrinsic sets
9698the current value of the register, where possible.
9699
9700This is useful to implement named register global variables that need
9701to always be mapped to a specific register, as is common practice on
9702bare-metal programs including OS kernels.
9703
9704The compiler doesn't check for register availability or use of the used
9705register in surrounding code, including inline assembly. Because of that,
9706allocatable registers are not supported.
9707
9708Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009709architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009710work is needed to support other registers and even more so, allocatable
9711registers.
9712
Sean Silvab084af42012-12-07 10:36:55 +00009713.. _int_stacksave:
9714
9715'``llvm.stacksave``' Intrinsic
9716^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9717
9718Syntax:
9719"""""""
9720
9721::
9722
9723 declare i8* @llvm.stacksave()
9724
9725Overview:
9726"""""""""
9727
9728The '``llvm.stacksave``' intrinsic is used to remember the current state
9729of the function stack, for use with
9730:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9731implementing language features like scoped automatic variable sized
9732arrays in C99.
9733
9734Semantics:
9735""""""""""
9736
9737This intrinsic returns a opaque pointer value that can be passed to
9738:ref:`llvm.stackrestore <int_stackrestore>`. When an
9739``llvm.stackrestore`` intrinsic is executed with a value saved from
9740``llvm.stacksave``, it effectively restores the state of the stack to
9741the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9742practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9743were allocated after the ``llvm.stacksave`` was executed.
9744
9745.. _int_stackrestore:
9746
9747'``llvm.stackrestore``' Intrinsic
9748^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9749
9750Syntax:
9751"""""""
9752
9753::
9754
9755 declare void @llvm.stackrestore(i8* %ptr)
9756
9757Overview:
9758"""""""""
9759
9760The '``llvm.stackrestore``' intrinsic is used to restore the state of
9761the function stack to the state it was in when the corresponding
9762:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9763useful for implementing language features like scoped automatic variable
9764sized arrays in C99.
9765
9766Semantics:
9767""""""""""
9768
9769See the description for :ref:`llvm.stacksave <int_stacksave>`.
9770
Yury Gribovd7dbb662015-12-01 11:40:55 +00009771.. _int_get_dynamic_area_offset:
9772
9773'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009774^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009775
9776Syntax:
9777"""""""
9778
9779::
9780
9781 declare i32 @llvm.get.dynamic.area.offset.i32()
9782 declare i64 @llvm.get.dynamic.area.offset.i64()
9783
Lang Hames10239932016-10-08 00:20:42 +00009784Overview:
9785"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +00009786
9787 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9788 get the offset from native stack pointer to the address of the most
9789 recent dynamic alloca on the caller's stack. These intrinsics are
9790 intendend for use in combination with
9791 :ref:`llvm.stacksave <int_stacksave>` to get a
9792 pointer to the most recent dynamic alloca. This is useful, for example,
9793 for AddressSanitizer's stack unpoisoning routines.
9794
9795Semantics:
9796""""""""""
9797
9798 These intrinsics return a non-negative integer value that can be used to
9799 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9800 on the caller's stack. In particular, for targets where stack grows downwards,
9801 adding this offset to the native stack pointer would get the address of the most
9802 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +00009803 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +00009804 one past the end of the most recent dynamic alloca.
9805
9806 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9807 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9808 compile-time-known constant value.
9809
9810 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
Matt Arsenaultc749bdc2017-03-30 23:36:47 +00009811 must match the target's default address space's (address space 0) pointer type.
Yury Gribovd7dbb662015-12-01 11:40:55 +00009812
Sean Silvab084af42012-12-07 10:36:55 +00009813'``llvm.prefetch``' Intrinsic
9814^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9815
9816Syntax:
9817"""""""
9818
9819::
9820
9821 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9822
9823Overview:
9824"""""""""
9825
9826The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9827insert a prefetch instruction if supported; otherwise, it is a noop.
9828Prefetches have no effect on the behavior of the program but can change
9829its performance characteristics.
9830
9831Arguments:
9832""""""""""
9833
9834``address`` is the address to be prefetched, ``rw`` is the specifier
9835determining if the fetch should be for a read (0) or write (1), and
9836``locality`` is a temporal locality specifier ranging from (0) - no
9837locality, to (3) - extremely local keep in cache. The ``cache type``
9838specifies whether the prefetch is performed on the data (1) or
9839instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9840arguments must be constant integers.
9841
9842Semantics:
9843""""""""""
9844
9845This intrinsic does not modify the behavior of the program. In
9846particular, prefetches cannot trap and do not produce a value. On
9847targets that support this intrinsic, the prefetch can provide hints to
9848the processor cache for better performance.
9849
9850'``llvm.pcmarker``' Intrinsic
9851^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9852
9853Syntax:
9854"""""""
9855
9856::
9857
9858 declare void @llvm.pcmarker(i32 <id>)
9859
9860Overview:
9861"""""""""
9862
9863The '``llvm.pcmarker``' intrinsic is a method to export a Program
9864Counter (PC) in a region of code to simulators and other tools. The
9865method is target specific, but it is expected that the marker will use
9866exported symbols to transmit the PC of the marker. The marker makes no
9867guarantees that it will remain with any specific instruction after
9868optimizations. It is possible that the presence of a marker will inhibit
9869optimizations. The intended use is to be inserted after optimizations to
9870allow correlations of simulation runs.
9871
9872Arguments:
9873""""""""""
9874
9875``id`` is a numerical id identifying the marker.
9876
9877Semantics:
9878""""""""""
9879
9880This intrinsic does not modify the behavior of the program. Backends
9881that do not support this intrinsic may ignore it.
9882
9883'``llvm.readcyclecounter``' Intrinsic
9884^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9885
9886Syntax:
9887"""""""
9888
9889::
9890
9891 declare i64 @llvm.readcyclecounter()
9892
9893Overview:
9894"""""""""
9895
9896The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9897counter register (or similar low latency, high accuracy clocks) on those
9898targets that support it. On X86, it should map to RDTSC. On Alpha, it
9899should map to RPCC. As the backing counters overflow quickly (on the
9900order of 9 seconds on alpha), this should only be used for small
9901timings.
9902
9903Semantics:
9904""""""""""
9905
9906When directly supported, reading the cycle counter should not modify any
9907memory. Implementations are allowed to either return a application
9908specific value or a system wide value. On backends without support, this
9909is lowered to a constant 0.
9910
Tim Northoverbc933082013-05-23 19:11:20 +00009911Note that runtime support may be conditional on the privilege-level code is
9912running at and the host platform.
9913
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009914'``llvm.clear_cache``' Intrinsic
9915^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9916
9917Syntax:
9918"""""""
9919
9920::
9921
9922 declare void @llvm.clear_cache(i8*, i8*)
9923
9924Overview:
9925"""""""""
9926
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009927The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9928in the specified range to the execution unit of the processor. On
9929targets with non-unified instruction and data cache, the implementation
9930flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009931
9932Semantics:
9933""""""""""
9934
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009935On platforms with coherent instruction and data caches (e.g. x86), this
9936intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009937cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009938instructions or a system call, if cache flushing requires special
9939privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009940
Sean Silvad02bf3e2014-04-07 22:29:53 +00009941The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009942time library.
Renato Golin93010e62014-03-26 14:01:32 +00009943
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009944This instrinsic does *not* empty the instruction pipeline. Modifications
9945of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009946
Justin Bogner61ba2e32014-12-08 18:02:35 +00009947'``llvm.instrprof_increment``' Intrinsic
9948^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9949
9950Syntax:
9951"""""""
9952
9953::
9954
9955 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9956 i32 <num-counters>, i32 <index>)
9957
9958Overview:
9959"""""""""
9960
9961The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9962frontend for use with instrumentation based profiling. These will be
9963lowered by the ``-instrprof`` pass to generate execution counts of a
9964program at runtime.
9965
9966Arguments:
9967""""""""""
9968
9969The first argument is a pointer to a global variable containing the
9970name of the entity being instrumented. This should generally be the
9971(mangled) function name for a set of counters.
9972
9973The second argument is a hash value that can be used by the consumer
9974of the profile data to detect changes to the instrumented source, and
9975the third is the number of counters associated with ``name``. It is an
9976error if ``hash`` or ``num-counters`` differ between two instances of
9977``instrprof_increment`` that refer to the same name.
9978
9979The last argument refers to which of the counters for ``name`` should
9980be incremented. It should be a value between 0 and ``num-counters``.
9981
9982Semantics:
9983""""""""""
9984
9985This intrinsic represents an increment of a profiling counter. It will
9986cause the ``-instrprof`` pass to generate the appropriate data
9987structures and the code to increment the appropriate value, in a
9988format that can be written out by a compiler runtime and consumed via
9989the ``llvm-profdata`` tool.
9990
Xinliang David Li4ca17332016-09-18 18:34:07 +00009991'``llvm.instrprof_increment_step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +00009992^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +00009993
9994Syntax:
9995"""""""
9996
9997::
9998
9999 declare void @llvm.instrprof_increment_step(i8* <name>, i64 <hash>,
10000 i32 <num-counters>,
10001 i32 <index>, i64 <step>)
10002
10003Overview:
10004"""""""""
10005
10006The '``llvm.instrprof_increment_step``' intrinsic is an extension to
10007the '``llvm.instrprof_increment``' intrinsic with an additional fifth
10008argument to specify the step of the increment.
10009
10010Arguments:
10011""""""""""
10012The first four arguments are the same as '``llvm.instrprof_increment``'
10013instrinsic.
10014
10015The last argument specifies the value of the increment of the counter variable.
10016
10017Semantics:
10018""""""""""
10019See description of '``llvm.instrprof_increment``' instrinsic.
10020
10021
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010022'``llvm.instrprof_value_profile``' Intrinsic
10023^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10024
10025Syntax:
10026"""""""
10027
10028::
10029
10030 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
10031 i64 <value>, i32 <value_kind>,
10032 i32 <index>)
10033
10034Overview:
10035"""""""""
10036
10037The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
10038frontend for use with instrumentation based profiling. This will be
10039lowered by the ``-instrprof`` pass to find out the target values,
10040instrumented expressions take in a program at runtime.
10041
10042Arguments:
10043""""""""""
10044
10045The first argument is a pointer to a global variable containing the
10046name of the entity being instrumented. ``name`` should generally be the
10047(mangled) function name for a set of counters.
10048
10049The second argument is a hash value that can be used by the consumer
10050of the profile data to detect changes to the instrumented source. It
10051is an error if ``hash`` differs between two instances of
10052``llvm.instrprof_*`` that refer to the same name.
10053
10054The third argument is the value of the expression being profiled. The profiled
10055expression's value should be representable as an unsigned 64-bit value. The
10056fourth argument represents the kind of value profiling that is being done. The
10057supported value profiling kinds are enumerated through the
10058``InstrProfValueKind`` type declared in the
10059``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
10060index of the instrumented expression within ``name``. It should be >= 0.
10061
10062Semantics:
10063""""""""""
10064
10065This intrinsic represents the point where a call to a runtime routine
10066should be inserted for value profiling of target expressions. ``-instrprof``
10067pass will generate the appropriate data structures and replace the
10068``llvm.instrprof_value_profile`` intrinsic with the call to the profile
10069runtime library with proper arguments.
10070
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000010071'``llvm.thread.pointer``' Intrinsic
10072^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10073
10074Syntax:
10075"""""""
10076
10077::
10078
10079 declare i8* @llvm.thread.pointer()
10080
10081Overview:
10082"""""""""
10083
10084The '``llvm.thread.pointer``' intrinsic returns the value of the thread
10085pointer.
10086
10087Semantics:
10088""""""""""
10089
10090The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
10091for the current thread. The exact semantics of this value are target
10092specific: it may point to the start of TLS area, to the end, or somewhere
10093in the middle. Depending on the target, this intrinsic may read a register,
10094call a helper function, read from an alternate memory space, or perform
10095other operations necessary to locate the TLS area. Not all targets support
10096this intrinsic.
10097
Sean Silvab084af42012-12-07 10:36:55 +000010098Standard C Library Intrinsics
10099-----------------------------
10100
10101LLVM provides intrinsics for a few important standard C library
10102functions. These intrinsics allow source-language front-ends to pass
10103information about the alignment of the pointer arguments to the code
10104generator, providing opportunity for more efficient code generation.
10105
10106.. _int_memcpy:
10107
10108'``llvm.memcpy``' Intrinsic
10109^^^^^^^^^^^^^^^^^^^^^^^^^^^
10110
10111Syntax:
10112"""""""
10113
10114This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
10115integer bit width and for different address spaces. Not all targets
10116support all bit widths however.
10117
10118::
10119
10120 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
10121 i32 <len>, i32 <align>, i1 <isvolatile>)
10122 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
10123 i64 <len>, i32 <align>, i1 <isvolatile>)
10124
10125Overview:
10126"""""""""
10127
10128The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10129source location to the destination location.
10130
10131Note that, unlike the standard libc function, the ``llvm.memcpy.*``
10132intrinsics do not return a value, takes extra alignment/isvolatile
10133arguments and the pointers can be in specified address spaces.
10134
10135Arguments:
10136""""""""""
10137
10138The first argument is a pointer to the destination, the second is a
10139pointer to the source. The third argument is an integer argument
10140specifying the number of bytes to copy, the fourth argument is the
10141alignment of the source and destination locations, and the fifth is a
10142boolean indicating a volatile access.
10143
10144If the call to this intrinsic has an alignment value that is not 0 or 1,
10145then the caller guarantees that both the source and destination pointers
10146are aligned to that boundary.
10147
10148If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
10149a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10150very cleanly specified and it is unwise to depend on it.
10151
10152Semantics:
10153""""""""""
10154
10155The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10156source location to the destination location, which are not allowed to
10157overlap. It copies "len" bytes of memory over. If the argument is known
10158to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +000010159argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010160
10161'``llvm.memmove``' Intrinsic
10162^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10163
10164Syntax:
10165"""""""
10166
10167This is an overloaded intrinsic. You can use llvm.memmove on any integer
10168bit width and for different address space. Not all targets support all
10169bit widths however.
10170
10171::
10172
10173 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
10174 i32 <len>, i32 <align>, i1 <isvolatile>)
10175 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
10176 i64 <len>, i32 <align>, i1 <isvolatile>)
10177
10178Overview:
10179"""""""""
10180
10181The '``llvm.memmove.*``' intrinsics move a block of memory from the
10182source location to the destination location. It is similar to the
10183'``llvm.memcpy``' intrinsic but allows the two memory locations to
10184overlap.
10185
10186Note that, unlike the standard libc function, the ``llvm.memmove.*``
10187intrinsics do not return a value, takes extra alignment/isvolatile
10188arguments and the pointers can be in specified address spaces.
10189
10190Arguments:
10191""""""""""
10192
10193The first argument is a pointer to the destination, the second is a
10194pointer to the source. The third argument is an integer argument
10195specifying the number of bytes to copy, the fourth argument is the
10196alignment of the source and destination locations, and the fifth is a
10197boolean indicating a volatile access.
10198
10199If the call to this intrinsic has an alignment value that is not 0 or 1,
10200then the caller guarantees that the source and destination pointers are
10201aligned to that boundary.
10202
10203If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
10204is a :ref:`volatile operation <volatile>`. The detailed access behavior is
10205not very cleanly specified and it is unwise to depend on it.
10206
10207Semantics:
10208""""""""""
10209
10210The '``llvm.memmove.*``' intrinsics copy a block of memory from the
10211source location to the destination location, which may overlap. It
10212copies "len" bytes of memory over. If the argument is known to be
10213aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000010214otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010215
10216'``llvm.memset.*``' Intrinsics
10217^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10218
10219Syntax:
10220"""""""
10221
10222This is an overloaded intrinsic. You can use llvm.memset on any integer
10223bit width and for different address spaces. However, not all targets
10224support all bit widths.
10225
10226::
10227
10228 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
10229 i32 <len>, i32 <align>, i1 <isvolatile>)
10230 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
10231 i64 <len>, i32 <align>, i1 <isvolatile>)
10232
10233Overview:
10234"""""""""
10235
10236The '``llvm.memset.*``' intrinsics fill a block of memory with a
10237particular byte value.
10238
10239Note that, unlike the standard libc function, the ``llvm.memset``
10240intrinsic does not return a value and takes extra alignment/volatile
10241arguments. Also, the destination can be in an arbitrary address space.
10242
10243Arguments:
10244""""""""""
10245
10246The first argument is a pointer to the destination to fill, the second
10247is the byte value with which to fill it, the third argument is an
10248integer argument specifying the number of bytes to fill, and the fourth
10249argument is the known alignment of the destination location.
10250
10251If the call to this intrinsic has an alignment value that is not 0 or 1,
10252then the caller guarantees that the destination pointer is aligned to
10253that boundary.
10254
10255If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10256a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10257very cleanly specified and it is unwise to depend on it.
10258
10259Semantics:
10260""""""""""
10261
10262The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
10263at the destination location. If the argument is known to be aligned to
10264some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +000010265it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010266
10267'``llvm.sqrt.*``' Intrinsic
10268^^^^^^^^^^^^^^^^^^^^^^^^^^^
10269
10270Syntax:
10271"""""""
10272
10273This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
10274floating point or vector of floating point type. Not all targets support
10275all types however.
10276
10277::
10278
10279 declare float @llvm.sqrt.f32(float %Val)
10280 declare double @llvm.sqrt.f64(double %Val)
10281 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10282 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10283 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10284
10285Overview:
10286"""""""""
10287
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010288The '``llvm.sqrt``' intrinsics return the square root of the specified value,
Justin Lebarcb9b41d2017-01-27 00:58:03 +000010289returning the same value as the libm '``sqrt``' functions would, but without
10290trapping or setting ``errno``.
Sean Silvab084af42012-12-07 10:36:55 +000010291
10292Arguments:
10293""""""""""
10294
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010295The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010296
10297Semantics:
10298""""""""""
10299
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010300This function returns the square root of the operand if it is a nonnegative
10301floating point number.
Sean Silvab084af42012-12-07 10:36:55 +000010302
10303'``llvm.powi.*``' Intrinsic
10304^^^^^^^^^^^^^^^^^^^^^^^^^^^
10305
10306Syntax:
10307"""""""
10308
10309This is an overloaded intrinsic. You can use ``llvm.powi`` on any
10310floating point or vector of floating point type. Not all targets support
10311all types however.
10312
10313::
10314
10315 declare float @llvm.powi.f32(float %Val, i32 %power)
10316 declare double @llvm.powi.f64(double %Val, i32 %power)
10317 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10318 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10319 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10320
10321Overview:
10322"""""""""
10323
10324The '``llvm.powi.*``' intrinsics return the first operand raised to the
10325specified (positive or negative) power. The order of evaluation of
10326multiplications is not defined. When a vector of floating point type is
10327used, the second argument remains a scalar integer value.
10328
10329Arguments:
10330""""""""""
10331
10332The second argument is an integer power, and the first is a value to
10333raise to that power.
10334
10335Semantics:
10336""""""""""
10337
10338This function returns the first value raised to the second power with an
10339unspecified sequence of rounding operations.
10340
10341'``llvm.sin.*``' Intrinsic
10342^^^^^^^^^^^^^^^^^^^^^^^^^^
10343
10344Syntax:
10345"""""""
10346
10347This is an overloaded intrinsic. You can use ``llvm.sin`` on any
10348floating point or vector of floating point type. Not all targets support
10349all types however.
10350
10351::
10352
10353 declare float @llvm.sin.f32(float %Val)
10354 declare double @llvm.sin.f64(double %Val)
10355 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10356 declare fp128 @llvm.sin.f128(fp128 %Val)
10357 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10358
10359Overview:
10360"""""""""
10361
10362The '``llvm.sin.*``' intrinsics return the sine of the operand.
10363
10364Arguments:
10365""""""""""
10366
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010367The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010368
10369Semantics:
10370""""""""""
10371
10372This function returns the sine of the specified operand, returning the
10373same values as the libm ``sin`` functions would, and handles error
10374conditions in the same way.
10375
10376'``llvm.cos.*``' Intrinsic
10377^^^^^^^^^^^^^^^^^^^^^^^^^^
10378
10379Syntax:
10380"""""""
10381
10382This is an overloaded intrinsic. You can use ``llvm.cos`` on any
10383floating point or vector of floating point type. Not all targets support
10384all types however.
10385
10386::
10387
10388 declare float @llvm.cos.f32(float %Val)
10389 declare double @llvm.cos.f64(double %Val)
10390 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10391 declare fp128 @llvm.cos.f128(fp128 %Val)
10392 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10393
10394Overview:
10395"""""""""
10396
10397The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10398
10399Arguments:
10400""""""""""
10401
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010402The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010403
10404Semantics:
10405""""""""""
10406
10407This function returns the cosine of the specified operand, returning the
10408same values as the libm ``cos`` functions would, and handles error
10409conditions in the same way.
10410
10411'``llvm.pow.*``' Intrinsic
10412^^^^^^^^^^^^^^^^^^^^^^^^^^
10413
10414Syntax:
10415"""""""
10416
10417This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10418floating point or vector of floating point type. Not all targets support
10419all types however.
10420
10421::
10422
10423 declare float @llvm.pow.f32(float %Val, float %Power)
10424 declare double @llvm.pow.f64(double %Val, double %Power)
10425 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10426 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10427 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10428
10429Overview:
10430"""""""""
10431
10432The '``llvm.pow.*``' intrinsics return the first operand raised to the
10433specified (positive or negative) power.
10434
10435Arguments:
10436""""""""""
10437
10438The second argument is a floating point power, and the first is a value
10439to raise to that power.
10440
10441Semantics:
10442""""""""""
10443
10444This function returns the first value raised to the second power,
10445returning the same values as the libm ``pow`` functions would, and
10446handles error conditions in the same way.
10447
10448'``llvm.exp.*``' Intrinsic
10449^^^^^^^^^^^^^^^^^^^^^^^^^^
10450
10451Syntax:
10452"""""""
10453
10454This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10455floating point or vector of floating point type. Not all targets support
10456all types however.
10457
10458::
10459
10460 declare float @llvm.exp.f32(float %Val)
10461 declare double @llvm.exp.f64(double %Val)
10462 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10463 declare fp128 @llvm.exp.f128(fp128 %Val)
10464 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10465
10466Overview:
10467"""""""""
10468
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010469The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
10470value.
Sean Silvab084af42012-12-07 10:36:55 +000010471
10472Arguments:
10473""""""""""
10474
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010475The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010476
10477Semantics:
10478""""""""""
10479
10480This function returns the same values as the libm ``exp`` functions
10481would, and handles error conditions in the same way.
10482
10483'``llvm.exp2.*``' Intrinsic
10484^^^^^^^^^^^^^^^^^^^^^^^^^^^
10485
10486Syntax:
10487"""""""
10488
10489This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10490floating point or vector of floating point type. Not all targets support
10491all types however.
10492
10493::
10494
10495 declare float @llvm.exp2.f32(float %Val)
10496 declare double @llvm.exp2.f64(double %Val)
10497 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10498 declare fp128 @llvm.exp2.f128(fp128 %Val)
10499 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10500
10501Overview:
10502"""""""""
10503
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010504The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
10505specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010506
10507Arguments:
10508""""""""""
10509
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010510The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010511
10512Semantics:
10513""""""""""
10514
10515This function returns the same values as the libm ``exp2`` functions
10516would, and handles error conditions in the same way.
10517
10518'``llvm.log.*``' Intrinsic
10519^^^^^^^^^^^^^^^^^^^^^^^^^^
10520
10521Syntax:
10522"""""""
10523
10524This is an overloaded intrinsic. You can use ``llvm.log`` on any
10525floating point or vector of floating point type. Not all targets support
10526all types however.
10527
10528::
10529
10530 declare float @llvm.log.f32(float %Val)
10531 declare double @llvm.log.f64(double %Val)
10532 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10533 declare fp128 @llvm.log.f128(fp128 %Val)
10534 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10535
10536Overview:
10537"""""""""
10538
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010539The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
10540value.
Sean Silvab084af42012-12-07 10:36:55 +000010541
10542Arguments:
10543""""""""""
10544
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010545The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010546
10547Semantics:
10548""""""""""
10549
10550This function returns the same values as the libm ``log`` functions
10551would, and handles error conditions in the same way.
10552
10553'``llvm.log10.*``' Intrinsic
10554^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10555
10556Syntax:
10557"""""""
10558
10559This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10560floating point or vector of floating point type. Not all targets support
10561all types however.
10562
10563::
10564
10565 declare float @llvm.log10.f32(float %Val)
10566 declare double @llvm.log10.f64(double %Val)
10567 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10568 declare fp128 @llvm.log10.f128(fp128 %Val)
10569 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10570
10571Overview:
10572"""""""""
10573
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010574The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
10575specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010576
10577Arguments:
10578""""""""""
10579
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010580The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010581
10582Semantics:
10583""""""""""
10584
10585This function returns the same values as the libm ``log10`` functions
10586would, and handles error conditions in the same way.
10587
10588'``llvm.log2.*``' Intrinsic
10589^^^^^^^^^^^^^^^^^^^^^^^^^^^
10590
10591Syntax:
10592"""""""
10593
10594This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10595floating point or vector of floating point type. Not all targets support
10596all types however.
10597
10598::
10599
10600 declare float @llvm.log2.f32(float %Val)
10601 declare double @llvm.log2.f64(double %Val)
10602 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10603 declare fp128 @llvm.log2.f128(fp128 %Val)
10604 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10605
10606Overview:
10607"""""""""
10608
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010609The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
10610value.
Sean Silvab084af42012-12-07 10:36:55 +000010611
10612Arguments:
10613""""""""""
10614
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010615The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010616
10617Semantics:
10618""""""""""
10619
10620This function returns the same values as the libm ``log2`` functions
10621would, and handles error conditions in the same way.
10622
10623'``llvm.fma.*``' Intrinsic
10624^^^^^^^^^^^^^^^^^^^^^^^^^^
10625
10626Syntax:
10627"""""""
10628
10629This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10630floating point or vector of floating point type. Not all targets support
10631all types however.
10632
10633::
10634
10635 declare float @llvm.fma.f32(float %a, float %b, float %c)
10636 declare double @llvm.fma.f64(double %a, double %b, double %c)
10637 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10638 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10639 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10640
10641Overview:
10642"""""""""
10643
10644The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10645operation.
10646
10647Arguments:
10648""""""""""
10649
10650The argument and return value are floating point numbers of the same
10651type.
10652
10653Semantics:
10654""""""""""
10655
10656This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010657would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010658
10659'``llvm.fabs.*``' Intrinsic
10660^^^^^^^^^^^^^^^^^^^^^^^^^^^
10661
10662Syntax:
10663"""""""
10664
10665This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10666floating point or vector of floating point type. Not all targets support
10667all types however.
10668
10669::
10670
10671 declare float @llvm.fabs.f32(float %Val)
10672 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010673 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010674 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010675 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010676
10677Overview:
10678"""""""""
10679
10680The '``llvm.fabs.*``' intrinsics return the absolute value of the
10681operand.
10682
10683Arguments:
10684""""""""""
10685
10686The argument and return value are floating point numbers of the same
10687type.
10688
10689Semantics:
10690""""""""""
10691
10692This function returns the same values as the libm ``fabs`` functions
10693would, and handles error conditions in the same way.
10694
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010695'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010696^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010697
10698Syntax:
10699"""""""
10700
10701This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10702floating point or vector of floating point type. Not all targets support
10703all types however.
10704
10705::
10706
Matt Arsenault64313c92014-10-22 18:25:02 +000010707 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10708 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10709 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10710 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10711 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010712
10713Overview:
10714"""""""""
10715
10716The '``llvm.minnum.*``' intrinsics return the minimum of the two
10717arguments.
10718
10719
10720Arguments:
10721""""""""""
10722
10723The arguments and return value are floating point numbers of the same
10724type.
10725
10726Semantics:
10727""""""""""
10728
10729Follows the IEEE-754 semantics for minNum, which also match for libm's
10730fmin.
10731
10732If either operand is a NaN, returns the other non-NaN operand. Returns
10733NaN only if both operands are NaN. If the operands compare equal,
10734returns a value that compares equal to both operands. This means that
10735fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10736
10737'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010738^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010739
10740Syntax:
10741"""""""
10742
10743This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10744floating point or vector of floating point type. Not all targets support
10745all types however.
10746
10747::
10748
Matt Arsenault64313c92014-10-22 18:25:02 +000010749 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10750 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10751 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10752 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10753 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010754
10755Overview:
10756"""""""""
10757
10758The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10759arguments.
10760
10761
10762Arguments:
10763""""""""""
10764
10765The arguments and return value are floating point numbers of the same
10766type.
10767
10768Semantics:
10769""""""""""
10770Follows the IEEE-754 semantics for maxNum, which also match for libm's
10771fmax.
10772
10773If either operand is a NaN, returns the other non-NaN operand. Returns
10774NaN only if both operands are NaN. If the operands compare equal,
10775returns a value that compares equal to both operands. This means that
10776fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10777
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010778'``llvm.copysign.*``' Intrinsic
10779^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10780
10781Syntax:
10782"""""""
10783
10784This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10785floating point or vector of floating point type. Not all targets support
10786all types however.
10787
10788::
10789
10790 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10791 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10792 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10793 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10794 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10795
10796Overview:
10797"""""""""
10798
10799The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10800first operand and the sign of the second operand.
10801
10802Arguments:
10803""""""""""
10804
10805The arguments and return value are floating point numbers of the same
10806type.
10807
10808Semantics:
10809""""""""""
10810
10811This function returns the same values as the libm ``copysign``
10812functions would, and handles error conditions in the same way.
10813
Sean Silvab084af42012-12-07 10:36:55 +000010814'``llvm.floor.*``' Intrinsic
10815^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10816
10817Syntax:
10818"""""""
10819
10820This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10821floating point or vector of floating point type. Not all targets support
10822all types however.
10823
10824::
10825
10826 declare float @llvm.floor.f32(float %Val)
10827 declare double @llvm.floor.f64(double %Val)
10828 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10829 declare fp128 @llvm.floor.f128(fp128 %Val)
10830 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10831
10832Overview:
10833"""""""""
10834
10835The '``llvm.floor.*``' intrinsics return the floor of the operand.
10836
10837Arguments:
10838""""""""""
10839
10840The argument and return value are floating point numbers of the same
10841type.
10842
10843Semantics:
10844""""""""""
10845
10846This function returns the same values as the libm ``floor`` functions
10847would, and handles error conditions in the same way.
10848
10849'``llvm.ceil.*``' Intrinsic
10850^^^^^^^^^^^^^^^^^^^^^^^^^^^
10851
10852Syntax:
10853"""""""
10854
10855This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10856floating point or vector of floating point type. Not all targets support
10857all types however.
10858
10859::
10860
10861 declare float @llvm.ceil.f32(float %Val)
10862 declare double @llvm.ceil.f64(double %Val)
10863 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10864 declare fp128 @llvm.ceil.f128(fp128 %Val)
10865 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10866
10867Overview:
10868"""""""""
10869
10870The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10871
10872Arguments:
10873""""""""""
10874
10875The argument and return value are floating point numbers of the same
10876type.
10877
10878Semantics:
10879""""""""""
10880
10881This function returns the same values as the libm ``ceil`` functions
10882would, and handles error conditions in the same way.
10883
10884'``llvm.trunc.*``' Intrinsic
10885^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10886
10887Syntax:
10888"""""""
10889
10890This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10891floating point or vector of floating point type. Not all targets support
10892all types however.
10893
10894::
10895
10896 declare float @llvm.trunc.f32(float %Val)
10897 declare double @llvm.trunc.f64(double %Val)
10898 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10899 declare fp128 @llvm.trunc.f128(fp128 %Val)
10900 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10901
10902Overview:
10903"""""""""
10904
10905The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10906nearest integer not larger in magnitude than the operand.
10907
10908Arguments:
10909""""""""""
10910
10911The argument and return value are floating point numbers of the same
10912type.
10913
10914Semantics:
10915""""""""""
10916
10917This function returns the same values as the libm ``trunc`` functions
10918would, and handles error conditions in the same way.
10919
10920'``llvm.rint.*``' Intrinsic
10921^^^^^^^^^^^^^^^^^^^^^^^^^^^
10922
10923Syntax:
10924"""""""
10925
10926This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10927floating point or vector of floating point type. Not all targets support
10928all types however.
10929
10930::
10931
10932 declare float @llvm.rint.f32(float %Val)
10933 declare double @llvm.rint.f64(double %Val)
10934 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10935 declare fp128 @llvm.rint.f128(fp128 %Val)
10936 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10937
10938Overview:
10939"""""""""
10940
10941The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10942nearest integer. It may raise an inexact floating-point exception if the
10943operand isn't an integer.
10944
10945Arguments:
10946""""""""""
10947
10948The argument and return value are floating point numbers of the same
10949type.
10950
10951Semantics:
10952""""""""""
10953
10954This function returns the same values as the libm ``rint`` functions
10955would, and handles error conditions in the same way.
10956
10957'``llvm.nearbyint.*``' Intrinsic
10958^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10959
10960Syntax:
10961"""""""
10962
10963This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10964floating point or vector of floating point type. Not all targets support
10965all types however.
10966
10967::
10968
10969 declare float @llvm.nearbyint.f32(float %Val)
10970 declare double @llvm.nearbyint.f64(double %Val)
10971 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10972 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10973 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10974
10975Overview:
10976"""""""""
10977
10978The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10979nearest integer.
10980
10981Arguments:
10982""""""""""
10983
10984The argument and return value are floating point numbers of the same
10985type.
10986
10987Semantics:
10988""""""""""
10989
10990This function returns the same values as the libm ``nearbyint``
10991functions would, and handles error conditions in the same way.
10992
Hal Finkel171817e2013-08-07 22:49:12 +000010993'``llvm.round.*``' Intrinsic
10994^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10995
10996Syntax:
10997"""""""
10998
10999This is an overloaded intrinsic. You can use ``llvm.round`` on any
11000floating point or vector of floating point type. Not all targets support
11001all types however.
11002
11003::
11004
11005 declare float @llvm.round.f32(float %Val)
11006 declare double @llvm.round.f64(double %Val)
11007 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
11008 declare fp128 @llvm.round.f128(fp128 %Val)
11009 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
11010
11011Overview:
11012"""""""""
11013
11014The '``llvm.round.*``' intrinsics returns the operand rounded to the
11015nearest integer.
11016
11017Arguments:
11018""""""""""
11019
11020The argument and return value are floating point numbers of the same
11021type.
11022
11023Semantics:
11024""""""""""
11025
11026This function returns the same values as the libm ``round``
11027functions would, and handles error conditions in the same way.
11028
Sean Silvab084af42012-12-07 10:36:55 +000011029Bit Manipulation Intrinsics
11030---------------------------
11031
11032LLVM provides intrinsics for a few important bit manipulation
11033operations. These allow efficient code generation for some algorithms.
11034
James Molloy90111f72015-11-12 12:29:09 +000011035'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000011036^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000011037
11038Syntax:
11039"""""""
11040
11041This is an overloaded intrinsic function. You can use bitreverse on any
11042integer type.
11043
11044::
11045
11046 declare i16 @llvm.bitreverse.i16(i16 <id>)
11047 declare i32 @llvm.bitreverse.i32(i32 <id>)
11048 declare i64 @llvm.bitreverse.i64(i64 <id>)
11049
11050Overview:
11051"""""""""
11052
11053The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000011054bitpattern of an integer value; for example ``0b10110110`` becomes
11055``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000011056
11057Semantics:
11058""""""""""
11059
Yichao Yu5abf14b2016-11-23 16:25:31 +000011060The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000011061``M`` in the input moved to bit ``N-M`` in the output.
11062
Sean Silvab084af42012-12-07 10:36:55 +000011063'``llvm.bswap.*``' Intrinsics
11064^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11065
11066Syntax:
11067"""""""
11068
11069This is an overloaded intrinsic function. You can use bswap on any
11070integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
11071
11072::
11073
11074 declare i16 @llvm.bswap.i16(i16 <id>)
11075 declare i32 @llvm.bswap.i32(i32 <id>)
11076 declare i64 @llvm.bswap.i64(i64 <id>)
11077
11078Overview:
11079"""""""""
11080
11081The '``llvm.bswap``' family of intrinsics is used to byte swap integer
11082values with an even number of bytes (positive multiple of 16 bits).
11083These are useful for performing operations on data that is not in the
11084target's native byte order.
11085
11086Semantics:
11087""""""""""
11088
11089The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
11090and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
11091intrinsic returns an i32 value that has the four bytes of the input i32
11092swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
11093returned i32 will have its bytes in 3, 2, 1, 0 order. The
11094``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
11095concept to additional even-byte lengths (6 bytes, 8 bytes and more,
11096respectively).
11097
11098'``llvm.ctpop.*``' Intrinsic
11099^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11100
11101Syntax:
11102"""""""
11103
11104This is an overloaded intrinsic. You can use llvm.ctpop on any integer
11105bit width, or on any vector with integer elements. Not all targets
11106support all bit widths or vector types, however.
11107
11108::
11109
11110 declare i8 @llvm.ctpop.i8(i8 <src>)
11111 declare i16 @llvm.ctpop.i16(i16 <src>)
11112 declare i32 @llvm.ctpop.i32(i32 <src>)
11113 declare i64 @llvm.ctpop.i64(i64 <src>)
11114 declare i256 @llvm.ctpop.i256(i256 <src>)
11115 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
11116
11117Overview:
11118"""""""""
11119
11120The '``llvm.ctpop``' family of intrinsics counts the number of bits set
11121in a value.
11122
11123Arguments:
11124""""""""""
11125
11126The only argument is the value to be counted. The argument may be of any
11127integer type, or a vector with integer elements. The return type must
11128match the argument type.
11129
11130Semantics:
11131""""""""""
11132
11133The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
11134each element of a vector.
11135
11136'``llvm.ctlz.*``' Intrinsic
11137^^^^^^^^^^^^^^^^^^^^^^^^^^^
11138
11139Syntax:
11140"""""""
11141
11142This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
11143integer bit width, or any vector whose elements are integers. Not all
11144targets support all bit widths or vector types, however.
11145
11146::
11147
11148 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
11149 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
11150 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
11151 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
11152 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011153 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011154
11155Overview:
11156"""""""""
11157
11158The '``llvm.ctlz``' family of intrinsic functions counts the number of
11159leading zeros in a variable.
11160
11161Arguments:
11162""""""""""
11163
11164The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011165any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011166type must match the first argument type.
11167
11168The second argument must be a constant and is a flag to indicate whether
11169the intrinsic should ensure that a zero as the first argument produces a
11170defined result. Historically some architectures did not provide a
11171defined result for zero values as efficiently, and many algorithms are
11172now predicated on avoiding zero-value inputs.
11173
11174Semantics:
11175""""""""""
11176
11177The '``llvm.ctlz``' intrinsic counts the leading (most significant)
11178zeros in a variable, or within each element of the vector. If
11179``src == 0`` then the result is the size in bits of the type of ``src``
11180if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11181``llvm.ctlz(i32 2) = 30``.
11182
11183'``llvm.cttz.*``' Intrinsic
11184^^^^^^^^^^^^^^^^^^^^^^^^^^^
11185
11186Syntax:
11187"""""""
11188
11189This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
11190integer bit width, or any vector of integer elements. Not all targets
11191support all bit widths or vector types, however.
11192
11193::
11194
11195 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
11196 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
11197 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
11198 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
11199 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011200 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011201
11202Overview:
11203"""""""""
11204
11205The '``llvm.cttz``' family of intrinsic functions counts the number of
11206trailing zeros.
11207
11208Arguments:
11209""""""""""
11210
11211The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011212any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011213type must match the first argument type.
11214
11215The second argument must be a constant and is a flag to indicate whether
11216the intrinsic should ensure that a zero as the first argument produces a
11217defined result. Historically some architectures did not provide a
11218defined result for zero values as efficiently, and many algorithms are
11219now predicated on avoiding zero-value inputs.
11220
11221Semantics:
11222""""""""""
11223
11224The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11225zeros in a variable, or within each element of a vector. If ``src == 0``
11226then the result is the size in bits of the type of ``src`` if
11227``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11228``llvm.cttz(2) = 1``.
11229
Philip Reames34843ae2015-03-05 05:55:55 +000011230.. _int_overflow:
11231
Sean Silvab084af42012-12-07 10:36:55 +000011232Arithmetic with Overflow Intrinsics
11233-----------------------------------
11234
John Regehr6a493f22016-05-12 20:55:09 +000011235LLVM provides intrinsics for fast arithmetic overflow checking.
11236
11237Each of these intrinsics returns a two-element struct. The first
11238element of this struct contains the result of the corresponding
11239arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
11240the result. Therefore, for example, the first element of the struct
11241returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
11242result of a 32-bit ``add`` instruction with the same operands, where
11243the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
11244
11245The second element of the result is an ``i1`` that is 1 if the
11246arithmetic operation overflowed and 0 otherwise. An operation
11247overflows if, for any values of its operands ``A`` and ``B`` and for
11248any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
11249not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
11250``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11251``op`` is the underlying arithmetic operation.
11252
11253The behavior of these intrinsics is well-defined for all argument
11254values.
Sean Silvab084af42012-12-07 10:36:55 +000011255
11256'``llvm.sadd.with.overflow.*``' Intrinsics
11257^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11258
11259Syntax:
11260"""""""
11261
11262This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11263on any integer bit width.
11264
11265::
11266
11267 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11268 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11269 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11270
11271Overview:
11272"""""""""
11273
11274The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11275a signed addition of the two arguments, and indicate whether an overflow
11276occurred during the signed summation.
11277
11278Arguments:
11279""""""""""
11280
11281The arguments (%a and %b) and the first element of the result structure
11282may be of integer types of any bit width, but they must have the same
11283bit width. The second element of the result structure must be of type
11284``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11285addition.
11286
11287Semantics:
11288""""""""""
11289
11290The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011291a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011292first element of which is the signed summation, and the second element
11293of which is a bit specifying if the signed summation resulted in an
11294overflow.
11295
11296Examples:
11297"""""""""
11298
11299.. code-block:: llvm
11300
11301 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11302 %sum = extractvalue {i32, i1} %res, 0
11303 %obit = extractvalue {i32, i1} %res, 1
11304 br i1 %obit, label %overflow, label %normal
11305
11306'``llvm.uadd.with.overflow.*``' Intrinsics
11307^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11308
11309Syntax:
11310"""""""
11311
11312This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11313on any integer bit width.
11314
11315::
11316
11317 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11318 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11319 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11320
11321Overview:
11322"""""""""
11323
11324The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11325an unsigned addition of the two arguments, and indicate whether a carry
11326occurred during the unsigned summation.
11327
11328Arguments:
11329""""""""""
11330
11331The arguments (%a and %b) and the first element of the result structure
11332may be of integer types of any bit width, but they must have the same
11333bit width. The second element of the result structure must be of type
11334``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11335addition.
11336
11337Semantics:
11338""""""""""
11339
11340The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011341an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011342first element of which is the sum, and the second element of which is a
11343bit specifying if the unsigned summation resulted in a carry.
11344
11345Examples:
11346"""""""""
11347
11348.. code-block:: llvm
11349
11350 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11351 %sum = extractvalue {i32, i1} %res, 0
11352 %obit = extractvalue {i32, i1} %res, 1
11353 br i1 %obit, label %carry, label %normal
11354
11355'``llvm.ssub.with.overflow.*``' Intrinsics
11356^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11357
11358Syntax:
11359"""""""
11360
11361This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11362on any integer bit width.
11363
11364::
11365
11366 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11367 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11368 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11369
11370Overview:
11371"""""""""
11372
11373The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11374a signed subtraction of the two arguments, and indicate whether an
11375overflow occurred during the signed subtraction.
11376
11377Arguments:
11378""""""""""
11379
11380The arguments (%a and %b) and the first element of the result structure
11381may be of integer types of any bit width, but they must have the same
11382bit width. The second element of the result structure must be of type
11383``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11384subtraction.
11385
11386Semantics:
11387""""""""""
11388
11389The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011390a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011391first element of which is the subtraction, and the second element of
11392which is a bit specifying if the signed subtraction resulted in an
11393overflow.
11394
11395Examples:
11396"""""""""
11397
11398.. code-block:: llvm
11399
11400 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11401 %sum = extractvalue {i32, i1} %res, 0
11402 %obit = extractvalue {i32, i1} %res, 1
11403 br i1 %obit, label %overflow, label %normal
11404
11405'``llvm.usub.with.overflow.*``' Intrinsics
11406^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11407
11408Syntax:
11409"""""""
11410
11411This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11412on any integer bit width.
11413
11414::
11415
11416 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11417 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11418 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11419
11420Overview:
11421"""""""""
11422
11423The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11424an unsigned subtraction of the two arguments, and indicate whether an
11425overflow occurred during the unsigned subtraction.
11426
11427Arguments:
11428""""""""""
11429
11430The arguments (%a and %b) and the first element of the result structure
11431may be of integer types of any bit width, but they must have the same
11432bit width. The second element of the result structure must be of type
11433``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11434subtraction.
11435
11436Semantics:
11437""""""""""
11438
11439The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011440an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011441the first element of which is the subtraction, and the second element of
11442which is a bit specifying if the unsigned subtraction resulted in an
11443overflow.
11444
11445Examples:
11446"""""""""
11447
11448.. code-block:: llvm
11449
11450 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11451 %sum = extractvalue {i32, i1} %res, 0
11452 %obit = extractvalue {i32, i1} %res, 1
11453 br i1 %obit, label %overflow, label %normal
11454
11455'``llvm.smul.with.overflow.*``' Intrinsics
11456^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11457
11458Syntax:
11459"""""""
11460
11461This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11462on any integer bit width.
11463
11464::
11465
11466 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11467 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11468 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11469
11470Overview:
11471"""""""""
11472
11473The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11474a signed multiplication of the two arguments, and indicate whether an
11475overflow occurred during the signed multiplication.
11476
11477Arguments:
11478""""""""""
11479
11480The arguments (%a and %b) and the first element of the result structure
11481may be of integer types of any bit width, but they must have the same
11482bit width. The second element of the result structure must be of type
11483``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11484multiplication.
11485
11486Semantics:
11487""""""""""
11488
11489The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011490a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011491the first element of which is the multiplication, and the second element
11492of which is a bit specifying if the signed multiplication resulted in an
11493overflow.
11494
11495Examples:
11496"""""""""
11497
11498.. code-block:: llvm
11499
11500 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11501 %sum = extractvalue {i32, i1} %res, 0
11502 %obit = extractvalue {i32, i1} %res, 1
11503 br i1 %obit, label %overflow, label %normal
11504
11505'``llvm.umul.with.overflow.*``' Intrinsics
11506^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11507
11508Syntax:
11509"""""""
11510
11511This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11512on any integer bit width.
11513
11514::
11515
11516 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11517 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11518 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11519
11520Overview:
11521"""""""""
11522
11523The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11524a unsigned multiplication of the two arguments, and indicate whether an
11525overflow occurred during the unsigned multiplication.
11526
11527Arguments:
11528""""""""""
11529
11530The arguments (%a and %b) and the first element of the result structure
11531may be of integer types of any bit width, but they must have the same
11532bit width. The second element of the result structure must be of type
11533``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11534multiplication.
11535
11536Semantics:
11537""""""""""
11538
11539The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011540an unsigned multiplication of the two arguments. They return a structure ---
11541the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011542element of which is a bit specifying if the unsigned multiplication
11543resulted in an overflow.
11544
11545Examples:
11546"""""""""
11547
11548.. code-block:: llvm
11549
11550 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11551 %sum = extractvalue {i32, i1} %res, 0
11552 %obit = extractvalue {i32, i1} %res, 1
11553 br i1 %obit, label %overflow, label %normal
11554
11555Specialised Arithmetic Intrinsics
11556---------------------------------
11557
Owen Anderson1056a922015-07-11 07:01:27 +000011558'``llvm.canonicalize.*``' Intrinsic
11559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11560
11561Syntax:
11562"""""""
11563
11564::
11565
11566 declare float @llvm.canonicalize.f32(float %a)
11567 declare double @llvm.canonicalize.f64(double %b)
11568
11569Overview:
11570"""""""""
11571
11572The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011573encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011574implementing certain numeric primitives such as frexp. The canonical encoding is
11575defined by IEEE-754-2008 to be:
11576
11577::
11578
11579 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011580 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011581 numbers, infinities, and NaNs, especially in decimal formats.
11582
11583This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011584conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011585according to section 6.2.
11586
11587Examples of non-canonical encodings:
11588
Sean Silvaa1190322015-08-06 22:56:48 +000011589- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011590 converted to a canonical representation per hardware-specific protocol.
11591- Many normal decimal floating point numbers have non-canonical alternative
11592 encodings.
11593- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011594 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011595 a zero of the same sign by this operation.
11596
11597Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11598default exception handling must signal an invalid exception, and produce a
11599quiet NaN result.
11600
11601This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011602that the compiler does not constant fold the operation. Likewise, division by
116031.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011604-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11605
Sean Silvaa1190322015-08-06 22:56:48 +000011606``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011607
11608- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11609- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11610 to ``(x == y)``
11611
11612Additionally, the sign of zero must be conserved:
11613``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11614
11615The payload bits of a NaN must be conserved, with two exceptions.
11616First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011617must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011618usual methods.
11619
11620The canonicalization operation may be optimized away if:
11621
Sean Silvaa1190322015-08-06 22:56:48 +000011622- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011623 floating-point operation that is required by the standard to be canonical.
11624- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011625 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011626
Sean Silvab084af42012-12-07 10:36:55 +000011627'``llvm.fmuladd.*``' Intrinsic
11628^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11629
11630Syntax:
11631"""""""
11632
11633::
11634
11635 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11636 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11637
11638Overview:
11639"""""""""
11640
11641The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011642expressions that can be fused if the code generator determines that (a) the
11643target instruction set has support for a fused operation, and (b) that the
11644fused operation is more efficient than the equivalent, separate pair of mul
11645and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011646
11647Arguments:
11648""""""""""
11649
11650The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11651multiplicands, a and b, and an addend c.
11652
11653Semantics:
11654""""""""""
11655
11656The expression:
11657
11658::
11659
11660 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11661
11662is equivalent to the expression a \* b + c, except that rounding will
11663not be performed between the multiplication and addition steps if the
11664code generator fuses the operations. Fusion is not guaranteed, even if
11665the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011666corresponding llvm.fma.\* intrinsic function should be used
11667instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011668
11669Examples:
11670"""""""""
11671
11672.. code-block:: llvm
11673
Tim Northover675a0962014-06-13 14:24:23 +000011674 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011675
11676Half Precision Floating Point Intrinsics
11677----------------------------------------
11678
11679For most target platforms, half precision floating point is a
11680storage-only format. This means that it is a dense encoding (in memory)
11681but does not support computation in the format.
11682
11683This means that code must first load the half-precision floating point
11684value as an i16, then convert it to float with
11685:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11686then be performed on the float value (including extending to double
11687etc). To store the value back to memory, it is first converted to float
11688if needed, then converted to i16 with
11689:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11690i16 value.
11691
11692.. _int_convert_to_fp16:
11693
11694'``llvm.convert.to.fp16``' Intrinsic
11695^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11696
11697Syntax:
11698"""""""
11699
11700::
11701
Tim Northoverfd7e4242014-07-17 10:51:23 +000011702 declare i16 @llvm.convert.to.fp16.f32(float %a)
11703 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011704
11705Overview:
11706"""""""""
11707
Tim Northoverfd7e4242014-07-17 10:51:23 +000011708The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11709conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011710
11711Arguments:
11712""""""""""
11713
11714The intrinsic function contains single argument - the value to be
11715converted.
11716
11717Semantics:
11718""""""""""
11719
Tim Northoverfd7e4242014-07-17 10:51:23 +000011720The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11721conventional floating point format to half precision floating point format. The
11722return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011723
11724Examples:
11725"""""""""
11726
11727.. code-block:: llvm
11728
Tim Northoverfd7e4242014-07-17 10:51:23 +000011729 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011730 store i16 %res, i16* @x, align 2
11731
11732.. _int_convert_from_fp16:
11733
11734'``llvm.convert.from.fp16``' Intrinsic
11735^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11736
11737Syntax:
11738"""""""
11739
11740::
11741
Tim Northoverfd7e4242014-07-17 10:51:23 +000011742 declare float @llvm.convert.from.fp16.f32(i16 %a)
11743 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011744
11745Overview:
11746"""""""""
11747
11748The '``llvm.convert.from.fp16``' intrinsic function performs a
11749conversion from half precision floating point format to single precision
11750floating point format.
11751
11752Arguments:
11753""""""""""
11754
11755The intrinsic function contains single argument - the value to be
11756converted.
11757
11758Semantics:
11759""""""""""
11760
11761The '``llvm.convert.from.fp16``' intrinsic function performs a
11762conversion from half single precision floating point format to single
11763precision floating point format. The input half-float value is
11764represented by an ``i16`` value.
11765
11766Examples:
11767"""""""""
11768
11769.. code-block:: llvm
11770
David Blaikiec7aabbb2015-03-04 22:06:14 +000011771 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011772 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011773
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011774.. _dbg_intrinsics:
11775
Sean Silvab084af42012-12-07 10:36:55 +000011776Debugger Intrinsics
11777-------------------
11778
11779The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11780prefix), are described in the `LLVM Source Level
11781Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11782document.
11783
11784Exception Handling Intrinsics
11785-----------------------------
11786
11787The LLVM exception handling intrinsics (which all start with
11788``llvm.eh.`` prefix), are described in the `LLVM Exception
11789Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11790
11791.. _int_trampoline:
11792
11793Trampoline Intrinsics
11794---------------------
11795
11796These intrinsics make it possible to excise one parameter, marked with
11797the :ref:`nest <nest>` attribute, from a function. The result is a
11798callable function pointer lacking the nest parameter - the caller does
11799not need to provide a value for it. Instead, the value to use is stored
11800in advance in a "trampoline", a block of memory usually allocated on the
11801stack, which also contains code to splice the nest value into the
11802argument list. This is used to implement the GCC nested function address
11803extension.
11804
11805For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11806then the resulting function pointer has signature ``i32 (i32, i32)*``.
11807It can be created as follows:
11808
11809.. code-block:: llvm
11810
11811 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011812 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011813 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11814 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11815 %fp = bitcast i8* %p to i32 (i32, i32)*
11816
11817The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11818``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11819
11820.. _int_it:
11821
11822'``llvm.init.trampoline``' Intrinsic
11823^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11824
11825Syntax:
11826"""""""
11827
11828::
11829
11830 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11831
11832Overview:
11833"""""""""
11834
11835This fills the memory pointed to by ``tramp`` with executable code,
11836turning it into a trampoline.
11837
11838Arguments:
11839""""""""""
11840
11841The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11842pointers. The ``tramp`` argument must point to a sufficiently large and
11843sufficiently aligned block of memory; this memory is written to by the
11844intrinsic. Note that the size and the alignment are target-specific -
11845LLVM currently provides no portable way of determining them, so a
11846front-end that generates this intrinsic needs to have some
11847target-specific knowledge. The ``func`` argument must hold a function
11848bitcast to an ``i8*``.
11849
11850Semantics:
11851""""""""""
11852
11853The block of memory pointed to by ``tramp`` is filled with target
11854dependent code, turning it into a function. Then ``tramp`` needs to be
11855passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11856be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11857function's signature is the same as that of ``func`` with any arguments
11858marked with the ``nest`` attribute removed. At most one such ``nest``
11859argument is allowed, and it must be of pointer type. Calling the new
11860function is equivalent to calling ``func`` with the same argument list,
11861but with ``nval`` used for the missing ``nest`` argument. If, after
11862calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11863modified, then the effect of any later call to the returned function
11864pointer is undefined.
11865
11866.. _int_at:
11867
11868'``llvm.adjust.trampoline``' Intrinsic
11869^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11870
11871Syntax:
11872"""""""
11873
11874::
11875
11876 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11877
11878Overview:
11879"""""""""
11880
11881This performs any required machine-specific adjustment to the address of
11882a trampoline (passed as ``tramp``).
11883
11884Arguments:
11885""""""""""
11886
11887``tramp`` must point to a block of memory which already has trampoline
11888code filled in by a previous call to
11889:ref:`llvm.init.trampoline <int_it>`.
11890
11891Semantics:
11892""""""""""
11893
11894On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011895different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011896intrinsic returns the executable address corresponding to ``tramp``
11897after performing the required machine specific adjustments. The pointer
11898returned can then be :ref:`bitcast and executed <int_trampoline>`.
11899
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011900.. _int_mload_mstore:
11901
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011902Masked Vector Load and Store Intrinsics
11903---------------------------------------
11904
11905LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11906
11907.. _int_mload:
11908
11909'``llvm.masked.load.*``' Intrinsics
11910^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11911
11912Syntax:
11913"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011914This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011915
11916::
11917
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011918 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11919 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011920 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011921 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011922 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011923 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011924
11925Overview:
11926"""""""""
11927
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011928Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011929
11930
11931Arguments:
11932""""""""""
11933
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011934The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011935
11936
11937Semantics:
11938""""""""""
11939
11940The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11941The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11942
11943
11944::
11945
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011946 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011947
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011948 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011949 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011950 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011951
11952.. _int_mstore:
11953
11954'``llvm.masked.store.*``' Intrinsics
11955^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11956
11957Syntax:
11958"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011959This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011960
11961::
11962
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011963 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11964 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011965 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011966 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011967 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011968 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011969
11970Overview:
11971"""""""""
11972
11973Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11974
11975Arguments:
11976""""""""""
11977
11978The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11979
11980
11981Semantics:
11982""""""""""
11983
11984The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11985The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11986
11987::
11988
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011989 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011990
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011991 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011992 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011993 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11994 store <16 x float> %res, <16 x float>* %ptr, align 4
11995
11996
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011997Masked Vector Gather and Scatter Intrinsics
11998-------------------------------------------
11999
12000LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
12001
12002.. _int_mgather:
12003
12004'``llvm.masked.gather.*``' Intrinsics
12005^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12006
12007Syntax:
12008"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012009This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012010
12011::
12012
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012013 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12014 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
12015 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012016
12017Overview:
12018"""""""""
12019
12020Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
12021
12022
12023Arguments:
12024""""""""""
12025
12026The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
12027
12028
12029Semantics:
12030""""""""""
12031
12032The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
12033The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
12034
12035
12036::
12037
Zvi Rackoverb26530c2017-01-26 20:29:15 +000012038 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012039
12040 ;; The gather with all-true mask is equivalent to the following instruction sequence
12041 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
12042 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
12043 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
12044 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
12045
12046 %val0 = load double, double* %ptr0, align 8
12047 %val1 = load double, double* %ptr1, align 8
12048 %val2 = load double, double* %ptr2, align 8
12049 %val3 = load double, double* %ptr3, align 8
12050
12051 %vec0 = insertelement <4 x double>undef, %val0, 0
12052 %vec01 = insertelement <4 x double>%vec0, %val1, 1
12053 %vec012 = insertelement <4 x double>%vec01, %val2, 2
12054 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
12055
12056.. _int_mscatter:
12057
12058'``llvm.masked.scatter.*``' Intrinsics
12059^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12060
12061Syntax:
12062"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012063This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012064
12065::
12066
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012067 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
12068 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
12069 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012070
12071Overview:
12072"""""""""
12073
12074Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12075
12076Arguments:
12077""""""""""
12078
12079The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12080
12081
12082Semantics:
12083""""""""""
12084
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000012085The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012086
12087::
12088
Sylvestre Ledru84666a12016-02-14 20:16:22 +000012089 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012090 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
12091
12092 ;; It is equivalent to a list of scalar stores
12093 %val0 = extractelement <8 x i32> %value, i32 0
12094 %val1 = extractelement <8 x i32> %value, i32 1
12095 ..
12096 %val7 = extractelement <8 x i32> %value, i32 7
12097 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
12098 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
12099 ..
12100 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
12101 ;; Note: the order of the following stores is important when they overlap:
12102 store i32 %val0, i32* %ptr0, align 4
12103 store i32 %val1, i32* %ptr1, align 4
12104 ..
12105 store i32 %val7, i32* %ptr7, align 4
12106
12107
Sean Silvab084af42012-12-07 10:36:55 +000012108Memory Use Markers
12109------------------
12110
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012111This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000012112memory objects and ranges where variables are immutable.
12113
Reid Klecknera534a382013-12-19 02:14:12 +000012114.. _int_lifestart:
12115
Sean Silvab084af42012-12-07 10:36:55 +000012116'``llvm.lifetime.start``' Intrinsic
12117^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12118
12119Syntax:
12120"""""""
12121
12122::
12123
12124 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
12125
12126Overview:
12127"""""""""
12128
12129The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
12130object's lifetime.
12131
12132Arguments:
12133""""""""""
12134
12135The first argument is a constant integer representing the size of the
12136object, or -1 if it is variable sized. The second argument is a pointer
12137to the object.
12138
12139Semantics:
12140""""""""""
12141
12142This intrinsic indicates that before this point in the code, the value
12143of the memory pointed to by ``ptr`` is dead. This means that it is known
12144to never be used and has an undefined value. A load from the pointer
12145that precedes this intrinsic can be replaced with ``'undef'``.
12146
Reid Klecknera534a382013-12-19 02:14:12 +000012147.. _int_lifeend:
12148
Sean Silvab084af42012-12-07 10:36:55 +000012149'``llvm.lifetime.end``' Intrinsic
12150^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12151
12152Syntax:
12153"""""""
12154
12155::
12156
12157 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
12158
12159Overview:
12160"""""""""
12161
12162The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
12163object's lifetime.
12164
12165Arguments:
12166""""""""""
12167
12168The first argument is a constant integer representing the size of the
12169object, or -1 if it is variable sized. The second argument is a pointer
12170to the object.
12171
12172Semantics:
12173""""""""""
12174
12175This intrinsic indicates that after this point in the code, the value of
12176the memory pointed to by ``ptr`` is dead. This means that it is known to
12177never be used and has an undefined value. Any stores into the memory
12178object following this intrinsic may be removed as dead.
12179
12180'``llvm.invariant.start``' Intrinsic
12181^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12182
12183Syntax:
12184"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012185This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012186
12187::
12188
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012189 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012190
12191Overview:
12192"""""""""
12193
12194The '``llvm.invariant.start``' intrinsic specifies that the contents of
12195a memory object will not change.
12196
12197Arguments:
12198""""""""""
12199
12200The first argument is a constant integer representing the size of the
12201object, or -1 if it is variable sized. The second argument is a pointer
12202to the object.
12203
12204Semantics:
12205""""""""""
12206
12207This intrinsic indicates that until an ``llvm.invariant.end`` that uses
12208the return value, the referenced memory location is constant and
12209unchanging.
12210
12211'``llvm.invariant.end``' Intrinsic
12212^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12213
12214Syntax:
12215"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012216This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012217
12218::
12219
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012220 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012221
12222Overview:
12223"""""""""
12224
12225The '``llvm.invariant.end``' intrinsic specifies that the contents of a
12226memory object are mutable.
12227
12228Arguments:
12229""""""""""
12230
12231The first argument is the matching ``llvm.invariant.start`` intrinsic.
12232The second argument is a constant integer representing the size of the
12233object, or -1 if it is variable sized and the third argument is a
12234pointer to the object.
12235
12236Semantics:
12237""""""""""
12238
12239This intrinsic indicates that the memory is mutable again.
12240
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012241'``llvm.invariant.group.barrier``' Intrinsic
12242^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12243
12244Syntax:
12245"""""""
12246
12247::
12248
12249 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
12250
12251Overview:
12252"""""""""
12253
12254The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
12255established by invariant.group metadata no longer holds, to obtain a new pointer
12256value that does not carry the invariant information.
12257
12258
12259Arguments:
12260""""""""""
12261
12262The ``llvm.invariant.group.barrier`` takes only one argument, which is
12263the pointer to the memory for which the ``invariant.group`` no longer holds.
12264
12265Semantics:
12266""""""""""
12267
12268Returns another pointer that aliases its argument but which is considered different
12269for the purposes of ``load``/``store`` ``invariant.group`` metadata.
12270
Andrew Kaylora0a11642017-01-26 23:27:59 +000012271Constrained Floating Point Intrinsics
12272-------------------------------------
12273
12274These intrinsics are used to provide special handling of floating point
12275operations when specific rounding mode or floating point exception behavior is
12276required. By default, LLVM optimization passes assume that the rounding mode is
12277round-to-nearest and that floating point exceptions will not be monitored.
12278Constrained FP intrinsics are used to support non-default rounding modes and
12279accurately preserve exception behavior without compromising LLVM's ability to
12280optimize FP code when the default behavior is used.
12281
12282Each of these intrinsics corresponds to a normal floating point operation. The
12283first two arguments and the return value are the same as the corresponding FP
12284operation.
12285
12286The third argument is a metadata argument specifying the rounding mode to be
12287assumed. This argument must be one of the following strings:
12288
12289::
12290 "round.dynamic"
12291 "round.tonearest"
12292 "round.downward"
12293 "round.upward"
12294 "round.towardzero"
12295
12296If this argument is "round.dynamic" optimization passes must assume that the
12297rounding mode is unknown and may change at runtime. No transformations that
12298depend on rounding mode may be performed in this case.
12299
12300The other possible values for the rounding mode argument correspond to the
12301similarly named IEEE rounding modes. If the argument is any of these values
12302optimization passes may perform transformations as long as they are consistent
12303with the specified rounding mode.
12304
12305For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
12306"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
12307'x-0' should evaluate to '-0' when rounding downward. However, this
12308transformation is legal for all other rounding modes.
12309
12310For values other than "round.dynamic" optimization passes may assume that the
12311actual runtime rounding mode (as defined in a target-specific manner) matches
12312the specified rounding mode, but this is not guaranteed. Using a specific
12313non-dynamic rounding mode which does not match the actual rounding mode at
12314runtime results in undefined behavior.
12315
12316The fourth argument to the constrained floating point intrinsics specifies the
12317required exception behavior. This argument must be one of the following
12318strings:
12319
12320::
12321 "fpexcept.ignore"
12322 "fpexcept.maytrap"
12323 "fpexcept.strict"
12324
12325If this argument is "fpexcept.ignore" optimization passes may assume that the
12326exception status flags will not be read and that floating point exceptions will
12327be masked. This allows transformations to be performed that may change the
12328exception semantics of the original code. For example, FP operations may be
12329speculatively executed in this case whereas they must not be for either of the
12330other possible values of this argument.
12331
12332If the exception behavior argument is "fpexcept.maytrap" optimization passes
12333must avoid transformations that may raise exceptions that would not have been
12334raised by the original code (such as speculatively executing FP operations), but
12335passes are not required to preserve all exceptions that are implied by the
12336original code. For example, exceptions may be potentially hidden by constant
12337folding.
12338
12339If the exception behavior argument is "fpexcept.strict" all transformations must
12340strictly preserve the floating point exception semantics of the original code.
12341Any FP exception that would have been raised by the original code must be raised
12342by the transformed code, and the transformed code must not raise any FP
12343exceptions that would not have been raised by the original code. This is the
12344exception behavior argument that will be used if the code being compiled reads
12345the FP exception status flags, but this mode can also be used with code that
12346unmasks FP exceptions.
12347
12348The number and order of floating point exceptions is NOT guaranteed. For
12349example, a series of FP operations that each may raise exceptions may be
12350vectorized into a single instruction that raises each unique exception a single
12351time.
12352
12353
12354'``llvm.experimental.constrained.fadd``' Intrinsic
12355^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12356
12357Syntax:
12358"""""""
12359
12360::
12361
12362 declare <type>
12363 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
12364 metadata <rounding mode>,
12365 metadata <exception behavior>)
12366
12367Overview:
12368"""""""""
12369
12370The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
12371two operands.
12372
12373
12374Arguments:
12375""""""""""
12376
12377The first two arguments to the '``llvm.experimental.constrained.fadd``'
12378intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12379of floating point values. Both arguments must have identical types.
12380
12381The third and fourth arguments specify the rounding mode and exception
12382behavior as described above.
12383
12384Semantics:
12385""""""""""
12386
12387The value produced is the floating point sum of the two value operands and has
12388the same type as the operands.
12389
12390
12391'``llvm.experimental.constrained.fsub``' Intrinsic
12392^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12393
12394Syntax:
12395"""""""
12396
12397::
12398
12399 declare <type>
12400 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
12401 metadata <rounding mode>,
12402 metadata <exception behavior>)
12403
12404Overview:
12405"""""""""
12406
12407The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
12408of its two operands.
12409
12410
12411Arguments:
12412""""""""""
12413
12414The first two arguments to the '``llvm.experimental.constrained.fsub``'
12415intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12416of floating point values. Both arguments must have identical types.
12417
12418The third and fourth arguments specify the rounding mode and exception
12419behavior as described above.
12420
12421Semantics:
12422""""""""""
12423
12424The value produced is the floating point difference of the two value operands
12425and has the same type as the operands.
12426
12427
12428'``llvm.experimental.constrained.fmul``' Intrinsic
12429^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12430
12431Syntax:
12432"""""""
12433
12434::
12435
12436 declare <type>
12437 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
12438 metadata <rounding mode>,
12439 metadata <exception behavior>)
12440
12441Overview:
12442"""""""""
12443
12444The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
12445its two operands.
12446
12447
12448Arguments:
12449""""""""""
12450
12451The first two arguments to the '``llvm.experimental.constrained.fmul``'
12452intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12453of floating point values. Both arguments must have identical types.
12454
12455The third and fourth arguments specify the rounding mode and exception
12456behavior as described above.
12457
12458Semantics:
12459""""""""""
12460
12461The value produced is the floating point product of the two value operands and
12462has the same type as the operands.
12463
12464
12465'``llvm.experimental.constrained.fdiv``' Intrinsic
12466^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12467
12468Syntax:
12469"""""""
12470
12471::
12472
12473 declare <type>
12474 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
12475 metadata <rounding mode>,
12476 metadata <exception behavior>)
12477
12478Overview:
12479"""""""""
12480
12481The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
12482its two operands.
12483
12484
12485Arguments:
12486""""""""""
12487
12488The first two arguments to the '``llvm.experimental.constrained.fdiv``'
12489intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12490of floating point values. Both arguments must have identical types.
12491
12492The third and fourth arguments specify the rounding mode and exception
12493behavior as described above.
12494
12495Semantics:
12496""""""""""
12497
12498The value produced is the floating point quotient of the two value operands and
12499has the same type as the operands.
12500
12501
12502'``llvm.experimental.constrained.frem``' Intrinsic
12503^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12504
12505Syntax:
12506"""""""
12507
12508::
12509
12510 declare <type>
12511 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
12512 metadata <rounding mode>,
12513 metadata <exception behavior>)
12514
12515Overview:
12516"""""""""
12517
12518The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
12519from the division of its two operands.
12520
12521
12522Arguments:
12523""""""""""
12524
12525The first two arguments to the '``llvm.experimental.constrained.frem``'
12526intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12527of floating point values. Both arguments must have identical types.
12528
12529The third and fourth arguments specify the rounding mode and exception
12530behavior as described above. The rounding mode argument has no effect, since
12531the result of frem is never rounded, but the argument is included for
12532consistency with the other constrained floating point intrinsics.
12533
12534Semantics:
12535""""""""""
12536
12537The value produced is the floating point remainder from the division of the two
12538value operands and has the same type as the operands. The remainder has the
12539same sign as the dividend.
12540
12541
Sean Silvab084af42012-12-07 10:36:55 +000012542General Intrinsics
12543------------------
12544
12545This class of intrinsics is designed to be generic and has no specific
12546purpose.
12547
12548'``llvm.var.annotation``' Intrinsic
12549^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12550
12551Syntax:
12552"""""""
12553
12554::
12555
12556 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12557
12558Overview:
12559"""""""""
12560
12561The '``llvm.var.annotation``' intrinsic.
12562
12563Arguments:
12564""""""""""
12565
12566The first argument is a pointer to a value, the second is a pointer to a
12567global string, the third is a pointer to a global string which is the
12568source file name, and the last argument is the line number.
12569
12570Semantics:
12571""""""""""
12572
12573This intrinsic allows annotation of local variables with arbitrary
12574strings. This can be useful for special purpose optimizations that want
12575to look for these annotations. These have no other defined use; they are
12576ignored by code generation and optimization.
12577
Michael Gottesman88d18832013-03-26 00:34:27 +000012578'``llvm.ptr.annotation.*``' Intrinsic
12579^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12580
12581Syntax:
12582"""""""
12583
12584This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
12585pointer to an integer of any width. *NOTE* you must specify an address space for
12586the pointer. The identifier for the default address space is the integer
12587'``0``'.
12588
12589::
12590
12591 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12592 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
12593 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
12594 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
12595 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
12596
12597Overview:
12598"""""""""
12599
12600The '``llvm.ptr.annotation``' intrinsic.
12601
12602Arguments:
12603""""""""""
12604
12605The first argument is a pointer to an integer value of arbitrary bitwidth
12606(result of some expression), the second is a pointer to a global string, the
12607third is a pointer to a global string which is the source file name, and the
12608last argument is the line number. It returns the value of the first argument.
12609
12610Semantics:
12611""""""""""
12612
12613This intrinsic allows annotation of a pointer to an integer with arbitrary
12614strings. This can be useful for special purpose optimizations that want to look
12615for these annotations. These have no other defined use; they are ignored by code
12616generation and optimization.
12617
Sean Silvab084af42012-12-07 10:36:55 +000012618'``llvm.annotation.*``' Intrinsic
12619^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12620
12621Syntax:
12622"""""""
12623
12624This is an overloaded intrinsic. You can use '``llvm.annotation``' on
12625any integer bit width.
12626
12627::
12628
12629 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
12630 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
12631 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
12632 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
12633 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
12634
12635Overview:
12636"""""""""
12637
12638The '``llvm.annotation``' intrinsic.
12639
12640Arguments:
12641""""""""""
12642
12643The first argument is an integer value (result of some expression), the
12644second is a pointer to a global string, the third is a pointer to a
12645global string which is the source file name, and the last argument is
12646the line number. It returns the value of the first argument.
12647
12648Semantics:
12649""""""""""
12650
12651This intrinsic allows annotations to be put on arbitrary expressions
12652with arbitrary strings. This can be useful for special purpose
12653optimizations that want to look for these annotations. These have no
12654other defined use; they are ignored by code generation and optimization.
12655
12656'``llvm.trap``' Intrinsic
12657^^^^^^^^^^^^^^^^^^^^^^^^^
12658
12659Syntax:
12660"""""""
12661
12662::
12663
12664 declare void @llvm.trap() noreturn nounwind
12665
12666Overview:
12667"""""""""
12668
12669The '``llvm.trap``' intrinsic.
12670
12671Arguments:
12672""""""""""
12673
12674None.
12675
12676Semantics:
12677""""""""""
12678
12679This intrinsic is lowered to the target dependent trap instruction. If
12680the target does not have a trap instruction, this intrinsic will be
12681lowered to a call of the ``abort()`` function.
12682
12683'``llvm.debugtrap``' Intrinsic
12684^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12685
12686Syntax:
12687"""""""
12688
12689::
12690
12691 declare void @llvm.debugtrap() nounwind
12692
12693Overview:
12694"""""""""
12695
12696The '``llvm.debugtrap``' intrinsic.
12697
12698Arguments:
12699""""""""""
12700
12701None.
12702
12703Semantics:
12704""""""""""
12705
12706This intrinsic is lowered to code which is intended to cause an
12707execution trap with the intention of requesting the attention of a
12708debugger.
12709
12710'``llvm.stackprotector``' Intrinsic
12711^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12712
12713Syntax:
12714"""""""
12715
12716::
12717
12718 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
12719
12720Overview:
12721"""""""""
12722
12723The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
12724onto the stack at ``slot``. The stack slot is adjusted to ensure that it
12725is placed on the stack before local variables.
12726
12727Arguments:
12728""""""""""
12729
12730The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
12731The first argument is the value loaded from the stack guard
12732``@__stack_chk_guard``. The second variable is an ``alloca`` that has
12733enough space to hold the value of the guard.
12734
12735Semantics:
12736""""""""""
12737
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012738This intrinsic causes the prologue/epilogue inserter to force the position of
12739the ``AllocaInst`` stack slot to be before local variables on the stack. This is
12740to ensure that if a local variable on the stack is overwritten, it will destroy
12741the value of the guard. When the function exits, the guard on the stack is
12742checked against the original guard by ``llvm.stackprotectorcheck``. If they are
12743different, then ``llvm.stackprotectorcheck`` causes the program to abort by
12744calling the ``__stack_chk_fail()`` function.
12745
Tim Shene885d5e2016-04-19 19:40:37 +000012746'``llvm.stackguard``' Intrinsic
12747^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12748
12749Syntax:
12750"""""""
12751
12752::
12753
12754 declare i8* @llvm.stackguard()
12755
12756Overview:
12757"""""""""
12758
12759The ``llvm.stackguard`` intrinsic returns the system stack guard value.
12760
12761It should not be generated by frontends, since it is only for internal usage.
12762The reason why we create this intrinsic is that we still support IR form Stack
12763Protector in FastISel.
12764
12765Arguments:
12766""""""""""
12767
12768None.
12769
12770Semantics:
12771""""""""""
12772
12773On some platforms, the value returned by this intrinsic remains unchanged
12774between loads in the same thread. On other platforms, it returns the same
12775global variable value, if any, e.g. ``@__stack_chk_guard``.
12776
12777Currently some platforms have IR-level customized stack guard loading (e.g.
12778X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
12779in the future.
12780
Sean Silvab084af42012-12-07 10:36:55 +000012781'``llvm.objectsize``' Intrinsic
12782^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12783
12784Syntax:
12785"""""""
12786
12787::
12788
George Burgess IV56c7e882017-03-21 20:08:59 +000012789 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>)
12790 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>)
Sean Silvab084af42012-12-07 10:36:55 +000012791
12792Overview:
12793"""""""""
12794
12795The ``llvm.objectsize`` intrinsic is designed to provide information to
12796the optimizers to determine at compile time whether a) an operation
12797(like memcpy) will overflow a buffer that corresponds to an object, or
12798b) that a runtime check for overflow isn't necessary. An object in this
12799context means an allocation of a specific class, structure, array, or
12800other object.
12801
12802Arguments:
12803""""""""""
12804
George Burgess IV56c7e882017-03-21 20:08:59 +000012805The ``llvm.objectsize`` intrinsic takes three arguments. The first argument is
12806a pointer to or into the ``object``. The second argument determines whether
12807``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size
12808is unknown. The third argument controls how ``llvm.objectsize`` acts when
12809``null`` is used as its pointer argument. If it's true and the pointer is in
12810address space 0, ``null`` is treated as an opaque value with an unknown number
12811of bytes. Otherwise, ``llvm.objectsize`` reports 0 bytes available when given
12812``null``.
12813
12814The second and third arguments only accept constants.
Sean Silvab084af42012-12-07 10:36:55 +000012815
12816Semantics:
12817""""""""""
12818
12819The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12820the size of the object concerned. If the size cannot be determined at
12821compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12822on the ``min`` argument).
12823
12824'``llvm.expect``' Intrinsic
12825^^^^^^^^^^^^^^^^^^^^^^^^^^^
12826
12827Syntax:
12828"""""""
12829
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012830This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12831integer bit width.
12832
Sean Silvab084af42012-12-07 10:36:55 +000012833::
12834
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012835 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012836 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12837 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12838
12839Overview:
12840"""""""""
12841
12842The ``llvm.expect`` intrinsic provides information about expected (the
12843most probable) value of ``val``, which can be used by optimizers.
12844
12845Arguments:
12846""""""""""
12847
12848The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12849a value. The second argument is an expected value, this needs to be a
12850constant value, variables are not allowed.
12851
12852Semantics:
12853""""""""""
12854
12855This intrinsic is lowered to the ``val``.
12856
Philip Reamese0e90832015-04-26 22:23:12 +000012857.. _int_assume:
12858
Hal Finkel93046912014-07-25 21:13:35 +000012859'``llvm.assume``' Intrinsic
12860^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12861
12862Syntax:
12863"""""""
12864
12865::
12866
12867 declare void @llvm.assume(i1 %cond)
12868
12869Overview:
12870"""""""""
12871
12872The ``llvm.assume`` allows the optimizer to assume that the provided
12873condition is true. This information can then be used in simplifying other parts
12874of the code.
12875
12876Arguments:
12877""""""""""
12878
12879The condition which the optimizer may assume is always true.
12880
12881Semantics:
12882""""""""""
12883
12884The intrinsic allows the optimizer to assume that the provided condition is
12885always true whenever the control flow reaches the intrinsic call. No code is
12886generated for this intrinsic, and instructions that contribute only to the
12887provided condition are not used for code generation. If the condition is
12888violated during execution, the behavior is undefined.
12889
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012890Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012891used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12892only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012893if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012894sufficient overall improvement in code quality. For this reason,
12895``llvm.assume`` should not be used to document basic mathematical invariants
12896that the optimizer can otherwise deduce or facts that are of little use to the
12897optimizer.
12898
Daniel Berlin2c438a32017-02-07 19:29:25 +000012899.. _int_ssa_copy:
12900
12901'``llvm.ssa_copy``' Intrinsic
12902^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12903
12904Syntax:
12905"""""""
12906
12907::
12908
12909 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
12910
12911Arguments:
12912""""""""""
12913
12914The first argument is an operand which is used as the returned value.
12915
12916Overview:
12917""""""""""
12918
12919The ``llvm.ssa_copy`` intrinsic can be used to attach information to
12920operations by copying them and giving them new names. For example,
12921the PredicateInfo utility uses it to build Extended SSA form, and
12922attach various forms of information to operands that dominate specific
12923uses. It is not meant for general use, only for building temporary
12924renaming forms that require value splits at certain points.
12925
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012926.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000012927
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012928'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000012929^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12930
12931Syntax:
12932"""""""
12933
12934::
12935
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012936 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000012937
12938
12939Arguments:
12940""""""""""
12941
12942The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012943metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012944
12945Overview:
12946"""""""""
12947
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012948The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
12949with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012950
Peter Collingbourne0312f612016-06-25 00:23:04 +000012951'``llvm.type.checked.load``' Intrinsic
12952^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12953
12954Syntax:
12955"""""""
12956
12957::
12958
12959 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
12960
12961
12962Arguments:
12963""""""""""
12964
12965The first argument is a pointer from which to load a function pointer. The
12966second argument is the byte offset from which to load the function pointer. The
12967third argument is a metadata object representing a :doc:`type identifier
12968<TypeMetadata>`.
12969
12970Overview:
12971"""""""""
12972
12973The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
12974virtual table pointer using type metadata. This intrinsic is used to implement
12975control flow integrity in conjunction with virtual call optimization. The
12976virtual call optimization pass will optimize away ``llvm.type.checked.load``
12977intrinsics associated with devirtualized calls, thereby removing the type
12978check in cases where it is not needed to enforce the control flow integrity
12979constraint.
12980
12981If the given pointer is associated with a type metadata identifier, this
12982function returns true as the second element of its return value. (Note that
12983the function may also return true if the given pointer is not associated
12984with a type metadata identifier.) If the function's return value's second
12985element is true, the following rules apply to the first element:
12986
12987- If the given pointer is associated with the given type metadata identifier,
12988 it is the function pointer loaded from the given byte offset from the given
12989 pointer.
12990
12991- If the given pointer is not associated with the given type metadata
12992 identifier, it is one of the following (the choice of which is unspecified):
12993
12994 1. The function pointer that would have been loaded from an arbitrarily chosen
12995 (through an unspecified mechanism) pointer associated with the type
12996 metadata.
12997
12998 2. If the function has a non-void return type, a pointer to a function that
12999 returns an unspecified value without causing side effects.
13000
13001If the function's return value's second element is false, the value of the
13002first element is undefined.
13003
13004
Sean Silvab084af42012-12-07 10:36:55 +000013005'``llvm.donothing``' Intrinsic
13006^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13007
13008Syntax:
13009"""""""
13010
13011::
13012
13013 declare void @llvm.donothing() nounwind readnone
13014
13015Overview:
13016"""""""""
13017
Juergen Ributzkac9161192014-10-23 22:36:13 +000013018The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000013019three intrinsics (besides ``llvm.experimental.patchpoint`` and
13020``llvm.experimental.gc.statepoint``) that can be called with an invoke
13021instruction.
Sean Silvab084af42012-12-07 10:36:55 +000013022
13023Arguments:
13024""""""""""
13025
13026None.
13027
13028Semantics:
13029""""""""""
13030
13031This intrinsic does nothing, and it's removed by optimizers and ignored
13032by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000013033
Sanjoy Dasb51325d2016-03-11 19:08:34 +000013034'``llvm.experimental.deoptimize``' Intrinsic
13035^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13036
13037Syntax:
13038"""""""
13039
13040::
13041
13042 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
13043
13044Overview:
13045"""""""""
13046
13047This intrinsic, together with :ref:`deoptimization operand bundles
13048<deopt_opbundles>`, allow frontends to express transfer of control and
13049frame-local state from the currently executing (typically more specialized,
13050hence faster) version of a function into another (typically more generic, hence
13051slower) version.
13052
13053In languages with a fully integrated managed runtime like Java and JavaScript
13054this intrinsic can be used to implement "uncommon trap" or "side exit" like
13055functionality. In unmanaged languages like C and C++, this intrinsic can be
13056used to represent the slow paths of specialized functions.
13057
13058
13059Arguments:
13060""""""""""
13061
13062The intrinsic takes an arbitrary number of arguments, whose meaning is
13063decided by the :ref:`lowering strategy<deoptimize_lowering>`.
13064
13065Semantics:
13066""""""""""
13067
13068The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
13069deoptimization continuation (denoted using a :ref:`deoptimization
13070operand bundle <deopt_opbundles>`) and returns the value returned by
13071the deoptimization continuation. Defining the semantic properties of
13072the continuation itself is out of scope of the language reference --
13073as far as LLVM is concerned, the deoptimization continuation can
13074invoke arbitrary side effects, including reading from and writing to
13075the entire heap.
13076
13077Deoptimization continuations expressed using ``"deopt"`` operand bundles always
13078continue execution to the end of the physical frame containing them, so all
13079calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
13080
13081 - ``@llvm.experimental.deoptimize`` cannot be invoked.
13082 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
13083 - The ``ret`` instruction must return the value produced by the
13084 ``@llvm.experimental.deoptimize`` call if there is one, or void.
13085
13086Note that the above restrictions imply that the return type for a call to
13087``@llvm.experimental.deoptimize`` will match the return type of its immediate
13088caller.
13089
13090The inliner composes the ``"deopt"`` continuations of the caller into the
13091``"deopt"`` continuations present in the inlinee, and also updates calls to this
13092intrinsic to return directly from the frame of the function it inlined into.
13093
Sanjoy Dase0aa4142016-05-12 01:17:38 +000013094All declarations of ``@llvm.experimental.deoptimize`` must share the
13095same calling convention.
13096
Sanjoy Dasb51325d2016-03-11 19:08:34 +000013097.. _deoptimize_lowering:
13098
13099Lowering:
13100"""""""""
13101
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000013102Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
13103symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
13104ensure that this symbol is defined). The call arguments to
13105``@llvm.experimental.deoptimize`` are lowered as if they were formal
13106arguments of the specified types, and not as varargs.
13107
Sanjoy Dasb51325d2016-03-11 19:08:34 +000013108
Sanjoy Das021de052016-03-31 00:18:46 +000013109'``llvm.experimental.guard``' Intrinsic
13110^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13111
13112Syntax:
13113"""""""
13114
13115::
13116
13117 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
13118
13119Overview:
13120"""""""""
13121
13122This intrinsic, together with :ref:`deoptimization operand bundles
13123<deopt_opbundles>`, allows frontends to express guards or checks on
13124optimistic assumptions made during compilation. The semantics of
13125``@llvm.experimental.guard`` is defined in terms of
13126``@llvm.experimental.deoptimize`` -- its body is defined to be
13127equivalent to:
13128
Renato Golin124f2592016-07-20 12:16:38 +000013129.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000013130
Renato Golin124f2592016-07-20 12:16:38 +000013131 define void @llvm.experimental.guard(i1 %pred, <args...>) {
13132 %realPred = and i1 %pred, undef
13133 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000013134
Renato Golin124f2592016-07-20 12:16:38 +000013135 leave:
13136 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
13137 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000013138
Renato Golin124f2592016-07-20 12:16:38 +000013139 continue:
13140 ret void
13141 }
Sanjoy Das021de052016-03-31 00:18:46 +000013142
Sanjoy Das47cf2af2016-04-30 00:55:59 +000013143
13144with the optional ``[, !make.implicit !{}]`` present if and only if it
13145is present on the call site. For more details on ``!make.implicit``,
13146see :doc:`FaultMaps`.
13147
Sanjoy Das021de052016-03-31 00:18:46 +000013148In words, ``@llvm.experimental.guard`` executes the attached
13149``"deopt"`` continuation if (but **not** only if) its first argument
13150is ``false``. Since the optimizer is allowed to replace the ``undef``
13151with an arbitrary value, it can optimize guard to fail "spuriously",
13152i.e. without the original condition being false (hence the "not only
13153if"); and this allows for "check widening" type optimizations.
13154
13155``@llvm.experimental.guard`` cannot be invoked.
13156
13157
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000013158'``llvm.load.relative``' Intrinsic
13159^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13160
13161Syntax:
13162"""""""
13163
13164::
13165
13166 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
13167
13168Overview:
13169"""""""""
13170
13171This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
13172adds ``%ptr`` to that value and returns it. The constant folder specifically
13173recognizes the form of this intrinsic and the constant initializers it may
13174load from; if a loaded constant initializer is known to have the form
13175``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
13176
13177LLVM provides that the calculation of such a constant initializer will
13178not overflow at link time under the medium code model if ``x`` is an
13179``unnamed_addr`` function. However, it does not provide this guarantee for
13180a constant initializer folded into a function body. This intrinsic can be
13181used to avoid the possibility of overflows when loading from such a constant.
13182
Andrew Trick5e029ce2013-12-24 02:57:25 +000013183Stack Map Intrinsics
13184--------------------
13185
13186LLVM provides experimental intrinsics to support runtime patching
13187mechanisms commonly desired in dynamic language JITs. These intrinsics
13188are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000013189
13190Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000013191-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000013192
13193These intrinsics are similar to the standard library memory intrinsics except
13194that they perform memory transfer as a sequence of atomic memory accesses.
13195
13196.. _int_memcpy_element_atomic:
13197
13198'``llvm.memcpy.element.atomic``' Intrinsic
Igor Laevskyfedab152016-12-29 15:08:57 +000013199^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000013200
13201Syntax:
13202"""""""
13203
13204This is an overloaded intrinsic. You can use ``llvm.memcpy.element.atomic`` on
13205any integer bit width and for different address spaces. Not all targets
13206support all bit widths however.
13207
13208::
13209
13210 declare void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* <dest>, i8* <src>,
13211 i64 <num_elements>, i32 <element_size>)
13212
13213Overview:
13214"""""""""
13215
13216The '``llvm.memcpy.element.atomic.*``' intrinsic performs copy of a block of
13217memory from the source location to the destination location as a sequence of
13218unordered atomic memory accesses where each access is a multiple of
13219``element_size`` bytes wide and aligned at an element size boundary. For example
13220each element is accessed atomically in source and destination buffers.
13221
13222Arguments:
13223""""""""""
13224
13225The first argument is a pointer to the destination, the second is a
13226pointer to the source. The third argument is an integer argument
13227specifying the number of elements to copy, the fourth argument is size of
13228the single element in bytes.
13229
13230``element_size`` should be a power of two, greater than zero and less than
13231a target-specific atomic access size limit.
13232
13233For each of the input pointers ``align`` parameter attribute must be specified.
13234It must be a power of two and greater than or equal to the ``element_size``.
13235Caller guarantees that both the source and destination pointers are aligned to
13236that boundary.
13237
13238Semantics:
13239""""""""""
13240
13241The '``llvm.memcpy.element.atomic.*``' intrinsic copies
13242'``num_elements`` * ``element_size``' bytes of memory from the source location to
13243the destination location. These locations are not allowed to overlap. Memory copy
13244is performed as a sequence of unordered atomic memory accesses where each access
13245is guaranteed to be a multiple of ``element_size`` bytes wide and aligned at an
13246element size boundary.
13247
13248The order of the copy is unspecified. The same value may be read from the source
13249buffer many times, but only one write is issued to the destination buffer per
13250element. It is well defined to have concurrent reads and writes to both source
13251and destination provided those reads and writes are at least unordered atomic.
13252
13253This intrinsic does not provide any additional ordering guarantees over those
13254provided by a set of unordered loads from the source location and stores to the
13255destination.
13256
13257Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000013258"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000013259
13260In the most general case call to the '``llvm.memcpy.element.atomic.*``' is lowered
13261to a call to the symbol ``__llvm_memcpy_element_atomic_*``. Where '*' is replaced
13262with an actual element size.
13263
13264Optimizer is allowed to inline memory copy when it's profitable to do so.