blob: b097230591fac155ba2c8e58a4edd3f39313f4a8 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
George Burgess IVfbc34982017-05-20 04:52:29 +0000164 ; Convert [13 x i8]* to i8*...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledru0604c5c2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvab084af42012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Sean Fertilec70d28b2017-10-26 15:00:26 +0000530.. _runtime_preemption_model:
531
532Runtime Preemption Specifiers
533-----------------------------
534
535Global variables, functions and aliases may have an optional runtime preemption
536specifier. If a preemption specifier isn't given explicitly, then a
537symbol is assumed to be ``dso_preemptable``.
538
539``dso_preemptable``
540 Indicates that the function or variable may be replaced by a symbol from
541 outside the linkage unit at runtime.
542
543``dso_local``
544 The compiler may assume that a function or variable marked as ``dso_local``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000545 will resolve to a symbol within the same linkage unit. Direct access will
Sean Fertilec70d28b2017-10-26 15:00:26 +0000546 be generated even if the definition is not within this compilation unit.
547
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000548.. _namedtypes:
549
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000550Structure Types
551---------------
Sean Silvab084af42012-12-07 10:36:55 +0000552
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000553LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000554types <t_struct>`. Literal types are uniqued structurally, but identified types
555are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000556to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000557
Sean Silva706fba52015-08-06 22:56:24 +0000558An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000559
560.. code-block:: llvm
561
562 %mytype = type { %mytype*, i32 }
563
Sean Silvaa1190322015-08-06 22:56:48 +0000564Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000565literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000566
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000567.. _nointptrtype:
568
569Non-Integral Pointer Type
570-------------------------
571
572Note: non-integral pointer types are a work in progress, and they should be
573considered experimental at this time.
574
575LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000576spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
577Non-integral pointer types represent pointers that have an *unspecified* bitwise
578representation; that is, the integral representation may be target dependent or
579unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000580
581``inttoptr`` instructions converting integers to non-integral pointer types are
582ill-typed, and so are ``ptrtoint`` instructions converting values of
583non-integral pointer types to integers. Vector versions of said instructions
584are ill-typed as well.
585
Sean Silvab084af42012-12-07 10:36:55 +0000586.. _globalvars:
587
588Global Variables
589----------------
590
591Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000592instead of run-time.
593
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000594Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000595
596Global variables in other translation units can also be declared, in which
597case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000598
Bob Wilson85b24f22014-06-12 20:40:33 +0000599Either global variable definitions or declarations may have an explicit section
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000600to be placed in and may have an optional explicit alignment specified. If there
601is a mismatch between the explicit or inferred section information for the
602variable declaration and its definition the resulting behavior is undefined.
Bob Wilson85b24f22014-06-12 20:40:33 +0000603
Michael Gottesman006039c2013-01-31 05:48:48 +0000604A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000605the contents of the variable will **never** be modified (enabling better
606optimization, allowing the global data to be placed in the read-only
607section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000608initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000609variable.
610
611LLVM explicitly allows *declarations* of global variables to be marked
612constant, even if the final definition of the global is not. This
613capability can be used to enable slightly better optimization of the
614program, but requires the language definition to guarantee that
615optimizations based on the 'constantness' are valid for the translation
616units that do not include the definition.
617
618As SSA values, global variables define pointer values that are in scope
619(i.e. they dominate) all basic blocks in the program. Global variables
620always define a pointer to their "content" type because they describe a
621region of memory, and all memory objects in LLVM are accessed through
622pointers.
623
624Global variables can be marked with ``unnamed_addr`` which indicates
625that the address is not significant, only the content. Constants marked
626like this can be merged with other constants if they have the same
627initializer. Note that a constant with significant address *can* be
628merged with a ``unnamed_addr`` constant, the result being a constant
629whose address is significant.
630
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000631If the ``local_unnamed_addr`` attribute is given, the address is known to
632not be significant within the module.
633
Sean Silvab084af42012-12-07 10:36:55 +0000634A global variable may be declared to reside in a target-specific
635numbered address space. For targets that support them, address spaces
636may affect how optimizations are performed and/or what target
637instructions are used to access the variable. The default address space
638is zero. The address space qualifier must precede any other attributes.
639
640LLVM allows an explicit section to be specified for globals. If the
641target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000642Additionally, the global can placed in a comdat if the target has the necessary
643support.
Sean Silvab084af42012-12-07 10:36:55 +0000644
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000645External declarations may have an explicit section specified. Section
646information is retained in LLVM IR for targets that make use of this
647information. Attaching section information to an external declaration is an
648assertion that its definition is located in the specified section. If the
649definition is located in a different section, the behavior is undefined.
Erich Keane0343ef82017-08-22 15:30:43 +0000650
Michael Gottesmane743a302013-02-04 03:22:00 +0000651By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000652variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000653initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000654true even for variables potentially accessible from outside the
655module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000656``@llvm.used`` or dllexported variables. This assumption may be suppressed
657by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659An explicit alignment may be specified for a global, which must be a
660power of 2. If not present, or if the alignment is set to zero, the
661alignment of the global is set by the target to whatever it feels
662convenient. If an explicit alignment is specified, the global is forced
663to have exactly that alignment. Targets and optimizers are not allowed
664to over-align the global if the global has an assigned section. In this
665case, the extra alignment could be observable: for example, code could
666assume that the globals are densely packed in their section and try to
667iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000668iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000669
Javed Absarf3d79042017-05-11 12:28:08 +0000670Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
Sean Fertilec70d28b2017-10-26 15:00:26 +0000671an optional :ref:`runtime preemption specifier <runtime_preemption_model>`,
Javed Absarf3d79042017-05-11 12:28:08 +0000672an optional :ref:`global attributes <glattrs>` and
673an optional list of attached :ref:`metadata <metadata>`.
Nico Rieck7157bb72014-01-14 15:22:47 +0000674
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000675Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000676:ref:`Thread Local Storage Model <tls_model>`.
677
Nico Rieck7157bb72014-01-14 15:22:47 +0000678Syntax::
679
Sean Fertilec70d28b2017-10-26 15:00:26 +0000680 @<GlobalVarName> = [Linkage] [PreemptionSpecifier] [Visibility]
681 [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000682 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
683 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000684 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000685 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000686 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000687
Sean Silvab084af42012-12-07 10:36:55 +0000688For example, the following defines a global in a numbered address space
689with an initializer, section, and alignment:
690
691.. code-block:: llvm
692
693 @G = addrspace(5) constant float 1.0, section "foo", align 4
694
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000695The following example just declares a global variable
696
697.. code-block:: llvm
698
699 @G = external global i32
700
Sean Silvab084af42012-12-07 10:36:55 +0000701The following example defines a thread-local global with the
702``initialexec`` TLS model:
703
704.. code-block:: llvm
705
706 @G = thread_local(initialexec) global i32 0, align 4
707
708.. _functionstructure:
709
710Functions
711---------
712
713LLVM function definitions consist of the "``define``" keyword, an
Sean Fertilec70d28b2017-10-26 15:00:26 +0000714optional :ref:`linkage type <linkage>`, an optional :ref:`runtime preemption
715specifier <runtime_preemption_model>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000716style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
717an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000718an optional ``unnamed_addr`` attribute, a return type, an optional
719:ref:`parameter attribute <paramattrs>` for the return type, a function
720name, a (possibly empty) argument list (each with optional :ref:`parameter
721attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000722an optional section, an optional alignment,
723an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000724an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000725an optional :ref:`prologue <prologuedata>`,
726an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000727an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000728an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000731optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
732<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
733optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
734or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
735attribute <paramattrs>` for the return type, a function name, a possibly
736empty list of arguments, an optional alignment, an optional :ref:`garbage
737collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
738:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000739
Bill Wendling6822ecb2013-10-27 05:09:12 +0000740A function definition contains a list of basic blocks, forming the CFG (Control
741Flow Graph) for the function. Each basic block may optionally start with a label
742(giving the basic block a symbol table entry), contains a list of instructions,
743and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
744function return). If an explicit label is not provided, a block is assigned an
745implicit numbered label, using the next value from the same counter as used for
746unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
747entry block does not have an explicit label, it will be assigned label "%0",
748then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000749
750The first basic block in a function is special in two ways: it is
751immediately executed on entrance to the function, and it is not allowed
752to have predecessor basic blocks (i.e. there can not be any branches to
753the entry block of a function). Because the block can have no
754predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
755
756LLVM allows an explicit section to be specified for functions. If the
757target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000758Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000759
760An explicit alignment may be specified for a function. If not present,
761or if the alignment is set to zero, the alignment of the function is set
762by the target to whatever it feels convenient. If an explicit alignment
763is specified, the function is forced to have at least that much
764alignment. All alignments must be a power of 2.
765
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000766If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000767be significant and two identical functions can be merged.
768
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000769If the ``local_unnamed_addr`` attribute is given, the address is known to
770not be significant within the module.
771
Sean Silvab084af42012-12-07 10:36:55 +0000772Syntax::
773
Sean Fertilec70d28b2017-10-26 15:00:26 +0000774 define [linkage] [PreemptionSpecifier] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000775 [cconv] [ret attrs]
776 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000777 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
778 [comdat [($name)]] [align N] [gc] [prefix Constant]
779 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000780
Sean Silva706fba52015-08-06 22:56:24 +0000781The argument list is a comma separated sequence of arguments where each
782argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000783
784Syntax::
785
786 <type> [parameter Attrs] [name]
787
788
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000789.. _langref_aliases:
790
Sean Silvab084af42012-12-07 10:36:55 +0000791Aliases
792-------
793
Rafael Espindola64c1e182014-06-03 02:41:57 +0000794Aliases, unlike function or variables, don't create any new data. They
795are just a new symbol and metadata for an existing position.
796
797Aliases have a name and an aliasee that is either a global value or a
798constant expression.
799
Nico Rieck7157bb72014-01-14 15:22:47 +0000800Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Sean Fertilec70d28b2017-10-26 15:00:26 +0000801:ref:`runtime preemption specifier <runtime_preemption_model>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000802:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
803<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000804
805Syntax::
806
Sean Fertilec70d28b2017-10-26 15:00:26 +0000807 @<Name> = [Linkage] [PreemptionSpecifier] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000808
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000809The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000810``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000811might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000812
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000813Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000814the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
815to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000816
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000817If the ``local_unnamed_addr`` attribute is given, the address is known to
818not be significant within the module.
819
Rafael Espindola64c1e182014-06-03 02:41:57 +0000820Since aliases are only a second name, some restrictions apply, of which
821some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000822
Rafael Espindola64c1e182014-06-03 02:41:57 +0000823* The expression defining the aliasee must be computable at assembly
824 time. Since it is just a name, no relocations can be used.
825
826* No alias in the expression can be weak as the possibility of the
827 intermediate alias being overridden cannot be represented in an
828 object file.
829
830* No global value in the expression can be a declaration, since that
831 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000832
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000833.. _langref_ifunc:
834
835IFuncs
836-------
837
838IFuncs, like as aliases, don't create any new data or func. They are just a new
839symbol that dynamic linker resolves at runtime by calling a resolver function.
840
841IFuncs have a name and a resolver that is a function called by dynamic linker
842that returns address of another function associated with the name.
843
844IFunc may have an optional :ref:`linkage type <linkage>` and an optional
845:ref:`visibility style <visibility>`.
846
847Syntax::
848
849 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
850
851
David Majnemerdad0a642014-06-27 18:19:56 +0000852.. _langref_comdats:
853
854Comdats
855-------
856
857Comdat IR provides access to COFF and ELF object file COMDAT functionality.
858
Sean Silvaa1190322015-08-06 22:56:48 +0000859Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000860specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000861that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000862aliasee computes to, if any.
863
864Comdats have a selection kind to provide input on how the linker should
865choose between keys in two different object files.
866
867Syntax::
868
869 $<Name> = comdat SelectionKind
870
871The selection kind must be one of the following:
872
873``any``
874 The linker may choose any COMDAT key, the choice is arbitrary.
875``exactmatch``
876 The linker may choose any COMDAT key but the sections must contain the
877 same data.
878``largest``
879 The linker will choose the section containing the largest COMDAT key.
880``noduplicates``
881 The linker requires that only section with this COMDAT key exist.
882``samesize``
883 The linker may choose any COMDAT key but the sections must contain the
884 same amount of data.
885
886Note that the Mach-O platform doesn't support COMDATs and ELF only supports
887``any`` as a selection kind.
888
889Here is an example of a COMDAT group where a function will only be selected if
890the COMDAT key's section is the largest:
891
Renato Golin124f2592016-07-20 12:16:38 +0000892.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000893
894 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000895 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000896
Rafael Espindola83a362c2015-01-06 22:55:16 +0000897 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000898 ret void
899 }
900
Rafael Espindola83a362c2015-01-06 22:55:16 +0000901As a syntactic sugar the ``$name`` can be omitted if the name is the same as
902the global name:
903
Renato Golin124f2592016-07-20 12:16:38 +0000904.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000905
906 $foo = comdat any
907 @foo = global i32 2, comdat
908
909
David Majnemerdad0a642014-06-27 18:19:56 +0000910In a COFF object file, this will create a COMDAT section with selection kind
911``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
912and another COMDAT section with selection kind
913``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000914section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000915
916There are some restrictions on the properties of the global object.
917It, or an alias to it, must have the same name as the COMDAT group when
918targeting COFF.
919The contents and size of this object may be used during link-time to determine
920which COMDAT groups get selected depending on the selection kind.
921Because the name of the object must match the name of the COMDAT group, the
922linkage of the global object must not be local; local symbols can get renamed
923if a collision occurs in the symbol table.
924
925The combined use of COMDATS and section attributes may yield surprising results.
926For example:
927
Renato Golin124f2592016-07-20 12:16:38 +0000928.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000929
930 $foo = comdat any
931 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000932 @g1 = global i32 42, section "sec", comdat($foo)
933 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000934
935From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000936with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000937COMDAT groups and COMDATs, at the object file level, are represented by
938sections.
939
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000940Note that certain IR constructs like global variables and functions may
941create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000942COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000943in individual sections (e.g. when `-data-sections` or `-function-sections`
944is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000945
Sean Silvab084af42012-12-07 10:36:55 +0000946.. _namedmetadatastructure:
947
948Named Metadata
949--------------
950
951Named metadata is a collection of metadata. :ref:`Metadata
952nodes <metadata>` (but not metadata strings) are the only valid
953operands for a named metadata.
954
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000955#. Named metadata are represented as a string of characters with the
956 metadata prefix. The rules for metadata names are the same as for
957 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
958 are still valid, which allows any character to be part of a name.
959
Sean Silvab084af42012-12-07 10:36:55 +0000960Syntax::
961
962 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000963 !0 = !{!"zero"}
964 !1 = !{!"one"}
965 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000966 ; A named metadata.
967 !name = !{!0, !1, !2}
968
969.. _paramattrs:
970
971Parameter Attributes
972--------------------
973
974The return type and each parameter of a function type may have a set of
975*parameter attributes* associated with them. Parameter attributes are
976used to communicate additional information about the result or
977parameters of a function. Parameter attributes are considered to be part
978of the function, not of the function type, so functions with different
979parameter attributes can have the same function type.
980
981Parameter attributes are simple keywords that follow the type specified.
982If multiple parameter attributes are needed, they are space separated.
983For example:
984
985.. code-block:: llvm
986
987 declare i32 @printf(i8* noalias nocapture, ...)
988 declare i32 @atoi(i8 zeroext)
989 declare signext i8 @returns_signed_char()
990
991Note that any attributes for the function result (``nounwind``,
992``readonly``) come immediately after the argument list.
993
994Currently, only the following parameter attributes are defined:
995
996``zeroext``
997 This indicates to the code generator that the parameter or return
998 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000999 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +00001000``signext``
1001 This indicates to the code generator that the parameter or return
1002 value should be sign-extended to the extent required by the target's
1003 ABI (which is usually 32-bits) by the caller (for a parameter) or
1004 the callee (for a return value).
1005``inreg``
1006 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +00001007 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +00001008 a function call or return (usually, by putting it in a register as
1009 opposed to memory, though some targets use it to distinguish between
1010 two different kinds of registers). Use of this attribute is
1011 target-specific.
1012``byval``
1013 This indicates that the pointer parameter should really be passed by
1014 value to the function. The attribute implies that a hidden copy of
1015 the pointee is made between the caller and the callee, so the callee
1016 is unable to modify the value in the caller. This attribute is only
1017 valid on LLVM pointer arguments. It is generally used to pass
1018 structs and arrays by value, but is also valid on pointers to
1019 scalars. The copy is considered to belong to the caller not the
1020 callee (for example, ``readonly`` functions should not write to
1021 ``byval`` parameters). This is not a valid attribute for return
1022 values.
1023
1024 The byval attribute also supports specifying an alignment with the
1025 align attribute. It indicates the alignment of the stack slot to
1026 form and the known alignment of the pointer specified to the call
1027 site. If the alignment is not specified, then the code generator
1028 makes a target-specific assumption.
1029
Reid Klecknera534a382013-12-19 02:14:12 +00001030.. _attr_inalloca:
1031
1032``inalloca``
1033
Reid Kleckner60d3a832014-01-16 22:59:24 +00001034 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001035 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001036 be a pointer to stack memory produced by an ``alloca`` instruction.
1037 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001038 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001039 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001040
Reid Kleckner436c42e2014-01-17 23:58:17 +00001041 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001042 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001043 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001044 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001045 ``inalloca`` attribute also disables LLVM's implicit lowering of
1046 large aggregate return values, which means that frontend authors
1047 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001048
Reid Kleckner60d3a832014-01-16 22:59:24 +00001049 When the call site is reached, the argument allocation must have
1050 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001051 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001052 space after an argument allocation and before its call site, but it
1053 must be cleared off with :ref:`llvm.stackrestore
1054 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001055
1056 See :doc:`InAlloca` for more information on how to use this
1057 attribute.
1058
Sean Silvab084af42012-12-07 10:36:55 +00001059``sret``
1060 This indicates that the pointer parameter specifies the address of a
1061 structure that is the return value of the function in the source
1062 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001063 loads and stores to the structure may be assumed by the callee not
1064 to trap and to be properly aligned. This is not a valid attribute
1065 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001066
Hal Finkelccc70902014-07-22 16:58:55 +00001067``align <n>``
1068 This indicates that the pointer value may be assumed by the optimizer to
1069 have the specified alignment.
1070
1071 Note that this attribute has additional semantics when combined with the
1072 ``byval`` attribute.
1073
Sean Silva1703e702014-04-08 21:06:22 +00001074.. _noalias:
1075
Sean Silvab084af42012-12-07 10:36:55 +00001076``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001077 This indicates that objects accessed via pointer values
1078 :ref:`based <pointeraliasing>` on the argument or return value are not also
1079 accessed, during the execution of the function, via pointer values not
1080 *based* on the argument or return value. The attribute on a return value
1081 also has additional semantics described below. The caller shares the
1082 responsibility with the callee for ensuring that these requirements are met.
1083 For further details, please see the discussion of the NoAlias response in
1084 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001085
1086 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001087 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001088
1089 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001090 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1091 attribute on return values are stronger than the semantics of the attribute
1092 when used on function arguments. On function return values, the ``noalias``
1093 attribute indicates that the function acts like a system memory allocation
1094 function, returning a pointer to allocated storage disjoint from the
1095 storage for any other object accessible to the caller.
1096
Sean Silvab084af42012-12-07 10:36:55 +00001097``nocapture``
1098 This indicates that the callee does not make any copies of the
1099 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001100 attribute for return values. Addresses used in volatile operations
1101 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001102
1103.. _nest:
1104
1105``nest``
1106 This indicates that the pointer parameter can be excised using the
1107 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001108 attribute for return values and can only be applied to one parameter.
1109
1110``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001111 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001112 value. This is a hint to the optimizer and code generator used when
1113 generating the caller, allowing value propagation, tail call optimization,
1114 and omission of register saves and restores in some cases; it is not
1115 checked or enforced when generating the callee. The parameter and the
1116 function return type must be valid operands for the
1117 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1118 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001119
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001120``nonnull``
1121 This indicates that the parameter or return pointer is not null. This
1122 attribute may only be applied to pointer typed parameters. This is not
1123 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001124 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001125 is non-null.
1126
Hal Finkelb0407ba2014-07-18 15:51:28 +00001127``dereferenceable(<n>)``
1128 This indicates that the parameter or return pointer is dereferenceable. This
1129 attribute may only be applied to pointer typed parameters. A pointer that
1130 is dereferenceable can be loaded from speculatively without a risk of
1131 trapping. The number of bytes known to be dereferenceable must be provided
1132 in parentheses. It is legal for the number of bytes to be less than the
1133 size of the pointee type. The ``nonnull`` attribute does not imply
1134 dereferenceability (consider a pointer to one element past the end of an
1135 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1136 ``addrspace(0)`` (which is the default address space).
1137
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001138``dereferenceable_or_null(<n>)``
1139 This indicates that the parameter or return value isn't both
1140 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001141 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001142 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1143 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1144 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1145 and in other address spaces ``dereferenceable_or_null(<n>)``
1146 implies that a pointer is at least one of ``dereferenceable(<n>)``
1147 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001148 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001149 pointer typed parameters.
1150
Manman Renf46262e2016-03-29 17:37:21 +00001151``swiftself``
1152 This indicates that the parameter is the self/context parameter. This is not
1153 a valid attribute for return values and can only be applied to one
1154 parameter.
1155
Manman Ren9bfd0d02016-04-01 21:41:15 +00001156``swifterror``
1157 This attribute is motivated to model and optimize Swift error handling. It
1158 can be applied to a parameter with pointer to pointer type or a
1159 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001160 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1161 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1162 the parameter or the alloca) can only be loaded and stored from, or used as
1163 a ``swifterror`` argument. This is not a valid attribute for return values
1164 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001165
1166 These constraints allow the calling convention to optimize access to
1167 ``swifterror`` variables by associating them with a specific register at
1168 call boundaries rather than placing them in memory. Since this does change
1169 the calling convention, a function which uses the ``swifterror`` attribute
1170 on a parameter is not ABI-compatible with one which does not.
1171
1172 These constraints also allow LLVM to assume that a ``swifterror`` argument
1173 does not alias any other memory visible within a function and that a
1174 ``swifterror`` alloca passed as an argument does not escape.
1175
Sean Silvab084af42012-12-07 10:36:55 +00001176.. _gc:
1177
Philip Reamesf80bbff2015-02-25 23:45:20 +00001178Garbage Collector Strategy Names
1179--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001180
Philip Reamesf80bbff2015-02-25 23:45:20 +00001181Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001182string:
1183
1184.. code-block:: llvm
1185
1186 define void @f() gc "name" { ... }
1187
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001188The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001189<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001190strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001191named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001192garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001193which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001194
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001195.. _prefixdata:
1196
1197Prefix Data
1198-----------
1199
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001200Prefix data is data associated with a function which the code
1201generator will emit immediately before the function's entrypoint.
1202The purpose of this feature is to allow frontends to associate
1203language-specific runtime metadata with specific functions and make it
1204available through the function pointer while still allowing the
1205function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001206
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001207To access the data for a given function, a program may bitcast the
1208function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001209index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001210the prefix data. For instance, take the example of a function annotated
1211with a single ``i32``,
1212
1213.. code-block:: llvm
1214
1215 define void @f() prefix i32 123 { ... }
1216
1217The prefix data can be referenced as,
1218
1219.. code-block:: llvm
1220
David Blaikie16a97eb2015-03-04 22:02:58 +00001221 %0 = bitcast void* () @f to i32*
1222 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001223 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001224
1225Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001226of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001227beginning of the prefix data is aligned. This means that if the size
1228of the prefix data is not a multiple of the alignment size, the
1229function's entrypoint will not be aligned. If alignment of the
1230function's entrypoint is desired, padding must be added to the prefix
1231data.
1232
Sean Silvaa1190322015-08-06 22:56:48 +00001233A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001234to the ``available_externally`` linkage in that the data may be used by the
1235optimizers but will not be emitted in the object file.
1236
1237.. _prologuedata:
1238
1239Prologue Data
1240-------------
1241
1242The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1243be inserted prior to the function body. This can be used for enabling
1244function hot-patching and instrumentation.
1245
1246To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001247have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001248bytes which decode to a sequence of machine instructions, valid for the
1249module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001250the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001251the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001252definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001253makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001254
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001255A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001256which encodes the ``nop`` instruction:
1257
Renato Golin124f2592016-07-20 12:16:38 +00001258.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001259
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001260 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001261
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001262Generally prologue data can be formed by encoding a relative branch instruction
1263which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001264x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1265
Renato Golin124f2592016-07-20 12:16:38 +00001266.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001267
1268 %0 = type <{ i8, i8, i8* }>
1269
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001270 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001271
Sean Silvaa1190322015-08-06 22:56:48 +00001272A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001273to the ``available_externally`` linkage in that the data may be used by the
1274optimizers but will not be emitted in the object file.
1275
David Majnemer7fddecc2015-06-17 20:52:32 +00001276.. _personalityfn:
1277
1278Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001279--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001280
1281The ``personality`` attribute permits functions to specify what function
1282to use for exception handling.
1283
Bill Wendling63b88192013-02-06 06:52:58 +00001284.. _attrgrp:
1285
1286Attribute Groups
1287----------------
1288
1289Attribute groups are groups of attributes that are referenced by objects within
1290the IR. They are important for keeping ``.ll`` files readable, because a lot of
1291functions will use the same set of attributes. In the degenerative case of a
1292``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1293group will capture the important command line flags used to build that file.
1294
1295An attribute group is a module-level object. To use an attribute group, an
1296object references the attribute group's ID (e.g. ``#37``). An object may refer
1297to more than one attribute group. In that situation, the attributes from the
1298different groups are merged.
1299
1300Here is an example of attribute groups for a function that should always be
1301inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1302
1303.. code-block:: llvm
1304
1305 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001306 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001307
1308 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001309 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001310
1311 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1312 define void @f() #0 #1 { ... }
1313
Sean Silvab084af42012-12-07 10:36:55 +00001314.. _fnattrs:
1315
1316Function Attributes
1317-------------------
1318
1319Function attributes are set to communicate additional information about
1320a function. Function attributes are considered to be part of the
1321function, not of the function type, so functions with different function
1322attributes can have the same function type.
1323
1324Function attributes are simple keywords that follow the type specified.
1325If multiple attributes are needed, they are space separated. For
1326example:
1327
1328.. code-block:: llvm
1329
1330 define void @f() noinline { ... }
1331 define void @f() alwaysinline { ... }
1332 define void @f() alwaysinline optsize { ... }
1333 define void @f() optsize { ... }
1334
Sean Silvab084af42012-12-07 10:36:55 +00001335``alignstack(<n>)``
1336 This attribute indicates that, when emitting the prologue and
1337 epilogue, the backend should forcibly align the stack pointer.
1338 Specify the desired alignment, which must be a power of two, in
1339 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001340``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1341 This attribute indicates that the annotated function will always return at
1342 least a given number of bytes (or null). Its arguments are zero-indexed
1343 parameter numbers; if one argument is provided, then it's assumed that at
1344 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1345 returned pointer. If two are provided, then it's assumed that
1346 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1347 available. The referenced parameters must be integer types. No assumptions
1348 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001349``alwaysinline``
1350 This attribute indicates that the inliner should attempt to inline
1351 this function into callers whenever possible, ignoring any active
1352 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001353``builtin``
1354 This indicates that the callee function at a call site should be
1355 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001356 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001357 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001358 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001359``cold``
1360 This attribute indicates that this function is rarely called. When
1361 computing edge weights, basic blocks post-dominated by a cold
1362 function call are also considered to be cold; and, thus, given low
1363 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001364``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001365 In some parallel execution models, there exist operations that cannot be
1366 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001367 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001368
Justin Lebar58535b12016-02-17 17:46:41 +00001369 The ``convergent`` attribute may appear on functions or call/invoke
1370 instructions. When it appears on a function, it indicates that calls to
1371 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001372 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001373 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001374 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001375
Justin Lebar58535b12016-02-17 17:46:41 +00001376 When it appears on a call/invoke, the ``convergent`` attribute indicates
1377 that we should treat the call as though we're calling a convergent
1378 function. This is particularly useful on indirect calls; without this we
1379 may treat such calls as though the target is non-convergent.
1380
1381 The optimizer may remove the ``convergent`` attribute on functions when it
1382 can prove that the function does not execute any convergent operations.
1383 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1384 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001385``inaccessiblememonly``
1386 This attribute indicates that the function may only access memory that
1387 is not accessible by the module being compiled. This is a weaker form
1388 of ``readnone``.
1389``inaccessiblemem_or_argmemonly``
1390 This attribute indicates that the function may only access memory that is
1391 either not accessible by the module being compiled, or is pointed to
1392 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001393``inlinehint``
1394 This attribute indicates that the source code contained a hint that
1395 inlining this function is desirable (such as the "inline" keyword in
1396 C/C++). It is just a hint; it imposes no requirements on the
1397 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001398``jumptable``
1399 This attribute indicates that the function should be added to a
1400 jump-instruction table at code-generation time, and that all address-taken
1401 references to this function should be replaced with a reference to the
1402 appropriate jump-instruction-table function pointer. Note that this creates
1403 a new pointer for the original function, which means that code that depends
1404 on function-pointer identity can break. So, any function annotated with
1405 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001406``minsize``
1407 This attribute suggests that optimization passes and code generator
1408 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001409 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001410 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001411``naked``
1412 This attribute disables prologue / epilogue emission for the
1413 function. This can have very system-specific consequences.
Sumanth Gundapaneni6af104e2017-07-28 22:26:22 +00001414``no-jump-tables``
1415 When this attribute is set to true, the jump tables and lookup tables that
1416 can be generated from a switch case lowering are disabled.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001417``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001418 This indicates that the callee function at a call site is not recognized as
1419 a built-in function. LLVM will retain the original call and not replace it
1420 with equivalent code based on the semantics of the built-in function, unless
1421 the call site uses the ``builtin`` attribute. This is valid at call sites
1422 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001423``noduplicate``
1424 This attribute indicates that calls to the function cannot be
1425 duplicated. A call to a ``noduplicate`` function may be moved
1426 within its parent function, but may not be duplicated within
1427 its parent function.
1428
1429 A function containing a ``noduplicate`` call may still
1430 be an inlining candidate, provided that the call is not
1431 duplicated by inlining. That implies that the function has
1432 internal linkage and only has one call site, so the original
1433 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001434``noimplicitfloat``
1435 This attributes disables implicit floating point instructions.
1436``noinline``
1437 This attribute indicates that the inliner should never inline this
1438 function in any situation. This attribute may not be used together
1439 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001440``nonlazybind``
1441 This attribute suppresses lazy symbol binding for the function. This
1442 may make calls to the function faster, at the cost of extra program
1443 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001444``noredzone``
1445 This attribute indicates that the code generator should not use a
1446 red zone, even if the target-specific ABI normally permits it.
1447``noreturn``
1448 This function attribute indicates that the function never returns
1449 normally. This produces undefined behavior at runtime if the
1450 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001451``norecurse``
1452 This function attribute indicates that the function does not call itself
1453 either directly or indirectly down any possible call path. This produces
1454 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001455``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001456 This function attribute indicates that the function never raises an
1457 exception. If the function does raise an exception, its runtime
1458 behavior is undefined. However, functions marked nounwind may still
1459 trap or generate asynchronous exceptions. Exception handling schemes
1460 that are recognized by LLVM to handle asynchronous exceptions, such
1461 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001462``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001463 This function attribute indicates that most optimization passes will skip
1464 this function, with the exception of interprocedural optimization passes.
1465 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001466 This attribute cannot be used together with the ``alwaysinline``
1467 attribute; this attribute is also incompatible
1468 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001469
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001470 This attribute requires the ``noinline`` attribute to be specified on
1471 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001472 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001473 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001474``optsize``
1475 This attribute suggests that optimization passes and code generator
1476 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001477 and otherwise do optimizations specifically to reduce code size as
1478 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001479``"patchable-function"``
1480 This attribute tells the code generator that the code
1481 generated for this function needs to follow certain conventions that
1482 make it possible for a runtime function to patch over it later.
1483 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001484 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001485
1486 * ``"prologue-short-redirect"`` - This style of patchable
1487 function is intended to support patching a function prologue to
1488 redirect control away from the function in a thread safe
1489 manner. It guarantees that the first instruction of the
1490 function will be large enough to accommodate a short jump
1491 instruction, and will be sufficiently aligned to allow being
1492 fully changed via an atomic compare-and-swap instruction.
1493 While the first requirement can be satisfied by inserting large
1494 enough NOP, LLVM can and will try to re-purpose an existing
1495 instruction (i.e. one that would have to be emitted anyway) as
1496 the patchable instruction larger than a short jump.
1497
1498 ``"prologue-short-redirect"`` is currently only supported on
1499 x86-64.
1500
1501 This attribute by itself does not imply restrictions on
1502 inter-procedural optimizations. All of the semantic effects the
1503 patching may have to be separately conveyed via the linkage type.
whitequarked54b4a2017-06-21 18:46:50 +00001504``"probe-stack"``
1505 This attribute indicates that the function will trigger a guard region
1506 in the end of the stack. It ensures that accesses to the stack must be
1507 no further apart than the size of the guard region to a previous
1508 access of the stack. It takes one required string value, the name of
1509 the stack probing function that will be called.
1510
1511 If a function that has a ``"probe-stack"`` attribute is inlined into
1512 a function with another ``"probe-stack"`` attribute, the resulting
1513 function has the ``"probe-stack"`` attribute of the caller. If a
1514 function that has a ``"probe-stack"`` attribute is inlined into a
1515 function that has no ``"probe-stack"`` attribute at all, the resulting
1516 function has the ``"probe-stack"`` attribute of the callee.
Sean Silvab084af42012-12-07 10:36:55 +00001517``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001518 On a function, this attribute indicates that the function computes its
1519 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001520 without dereferencing any pointer arguments or otherwise accessing
1521 any mutable state (e.g. memory, control registers, etc) visible to
1522 caller functions. It does not write through any pointer arguments
1523 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das5be2e842017-02-13 23:19:07 +00001524 to callers. This means while it cannot unwind exceptions by calling
1525 the ``C++`` exception throwing methods (since they write to memory), there may
1526 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1527 visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001528
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001529 On an argument, this attribute indicates that the function does not
1530 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001531 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001532``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001533 On a function, this attribute indicates that the function does not write
1534 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001535 modify any state (e.g. memory, control registers, etc) visible to
1536 caller functions. It may dereference pointer arguments and read
1537 state that may be set in the caller. A readonly function always
1538 returns the same value (or unwinds an exception identically) when
Sanjoy Das5be2e842017-02-13 23:19:07 +00001539 called with the same set of arguments and global state. This means while it
1540 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1541 (since they write to memory), there may be non-``C++`` mechanisms that throw
1542 exceptions without writing to LLVM visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001543
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001544 On an argument, this attribute indicates that the function does not write
1545 through this pointer argument, even though it may write to the memory that
1546 the pointer points to.
whitequark08b20352017-06-22 23:22:36 +00001547``"stack-probe-size"``
1548 This attribute controls the behavior of stack probes: either
1549 the ``"probe-stack"`` attribute, or ABI-required stack probes, if any.
1550 It defines the size of the guard region. It ensures that if the function
1551 may use more stack space than the size of the guard region, stack probing
1552 sequence will be emitted. It takes one required integer value, which
1553 is 4096 by default.
1554
1555 If a function that has a ``"stack-probe-size"`` attribute is inlined into
1556 a function with another ``"stack-probe-size"`` attribute, the resulting
1557 function has the ``"stack-probe-size"`` attribute that has the lower
1558 numeric value. If a function that has a ``"stack-probe-size"`` attribute is
1559 inlined into a function that has no ``"stack-probe-size"`` attribute
1560 at all, the resulting function has the ``"stack-probe-size"`` attribute
1561 of the callee.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001562``writeonly``
1563 On a function, this attribute indicates that the function may write to but
1564 does not read from memory.
1565
1566 On an argument, this attribute indicates that the function may write to but
1567 does not read through this pointer argument (even though it may read from
1568 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001569``argmemonly``
1570 This attribute indicates that the only memory accesses inside function are
1571 loads and stores from objects pointed to by its pointer-typed arguments,
1572 with arbitrary offsets. Or in other words, all memory operations in the
1573 function can refer to memory only using pointers based on its function
1574 arguments.
1575 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1576 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001577``returns_twice``
1578 This attribute indicates that this function can return twice. The C
1579 ``setjmp`` is an example of such a function. The compiler disables
1580 some optimizations (like tail calls) in the caller of these
1581 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001582``safestack``
1583 This attribute indicates that
1584 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1585 protection is enabled for this function.
1586
1587 If a function that has a ``safestack`` attribute is inlined into a
1588 function that doesn't have a ``safestack`` attribute or which has an
1589 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1590 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001591``sanitize_address``
1592 This attribute indicates that AddressSanitizer checks
1593 (dynamic address safety analysis) are enabled for this function.
1594``sanitize_memory``
1595 This attribute indicates that MemorySanitizer checks (dynamic detection
1596 of accesses to uninitialized memory) are enabled for this function.
1597``sanitize_thread``
1598 This attribute indicates that ThreadSanitizer checks
1599 (dynamic thread safety analysis) are enabled for this function.
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001600``speculatable``
1601 This function attribute indicates that the function does not have any
1602 effects besides calculating its result and does not have undefined behavior.
1603 Note that ``speculatable`` is not enough to conclude that along any
Xin Tongc7180202017-05-02 23:24:12 +00001604 particular execution path the number of calls to this function will not be
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001605 externally observable. This attribute is only valid on functions
1606 and declarations, not on individual call sites. If a function is
1607 incorrectly marked as speculatable and really does exhibit
1608 undefined behavior, the undefined behavior may be observed even
1609 if the call site is dead code.
1610
Sean Silvab084af42012-12-07 10:36:55 +00001611``ssp``
1612 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001613 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001614 placed on the stack before the local variables that's checked upon
1615 return from the function to see if it has been overwritten. A
1616 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001617 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001618
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001619 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1620 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1621 - Calls to alloca() with variable sizes or constant sizes greater than
1622 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001623
Josh Magee24c7f062014-02-01 01:36:16 +00001624 Variables that are identified as requiring a protector will be arranged
1625 on the stack such that they are adjacent to the stack protector guard.
1626
Sean Silvab084af42012-12-07 10:36:55 +00001627 If a function that has an ``ssp`` attribute is inlined into a
1628 function that doesn't have an ``ssp`` attribute, then the resulting
1629 function will have an ``ssp`` attribute.
1630``sspreq``
1631 This attribute indicates that the function should *always* emit a
1632 stack smashing protector. This overrides the ``ssp`` function
1633 attribute.
1634
Josh Magee24c7f062014-02-01 01:36:16 +00001635 Variables that are identified as requiring a protector will be arranged
1636 on the stack such that they are adjacent to the stack protector guard.
1637 The specific layout rules are:
1638
1639 #. Large arrays and structures containing large arrays
1640 (``>= ssp-buffer-size``) are closest to the stack protector.
1641 #. Small arrays and structures containing small arrays
1642 (``< ssp-buffer-size``) are 2nd closest to the protector.
1643 #. Variables that have had their address taken are 3rd closest to the
1644 protector.
1645
Sean Silvab084af42012-12-07 10:36:55 +00001646 If a function that has an ``sspreq`` attribute is inlined into a
1647 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001648 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1649 an ``sspreq`` attribute.
1650``sspstrong``
1651 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001652 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001653 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001654 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001655
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001656 - Arrays of any size and type
1657 - Aggregates containing an array of any size and type.
1658 - Calls to alloca().
1659 - Local variables that have had their address taken.
1660
Josh Magee24c7f062014-02-01 01:36:16 +00001661 Variables that are identified as requiring a protector will be arranged
1662 on the stack such that they are adjacent to the stack protector guard.
1663 The specific layout rules are:
1664
1665 #. Large arrays and structures containing large arrays
1666 (``>= ssp-buffer-size``) are closest to the stack protector.
1667 #. Small arrays and structures containing small arrays
1668 (``< ssp-buffer-size``) are 2nd closest to the protector.
1669 #. Variables that have had their address taken are 3rd closest to the
1670 protector.
1671
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001672 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001673
1674 If a function that has an ``sspstrong`` attribute is inlined into a
1675 function that doesn't have an ``sspstrong`` attribute, then the
1676 resulting function will have an ``sspstrong`` attribute.
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001677``strictfp``
1678 This attribute indicates that the function was called from a scope that
1679 requires strict floating point semantics. LLVM will not attempt any
1680 optimizations that require assumptions about the floating point rounding
1681 mode or that might alter the state of floating point status flags that
1682 might otherwise be set or cleared by calling this function.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001683``"thunk"``
1684 This attribute indicates that the function will delegate to some other
1685 function with a tail call. The prototype of a thunk should not be used for
1686 optimization purposes. The caller is expected to cast the thunk prototype to
1687 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001688``uwtable``
1689 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001690 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001691 show that no exceptions passes by it. This is normally the case for
1692 the ELF x86-64 abi, but it can be disabled for some compilation
1693 units.
Sean Silvab084af42012-12-07 10:36:55 +00001694
Javed Absarf3d79042017-05-11 12:28:08 +00001695.. _glattrs:
1696
1697Global Attributes
1698-----------------
1699
1700Attributes may be set to communicate additional information about a global variable.
1701Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
1702are grouped into a single :ref:`attribute group <attrgrp>`.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001703
1704.. _opbundles:
1705
1706Operand Bundles
1707---------------
1708
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001709Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001710with certain LLVM instructions (currently only ``call`` s and
1711``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001712incorrect and will change program semantics.
1713
1714Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001715
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001716 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001717 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1718 bundle operand ::= SSA value
1719 tag ::= string constant
1720
1721Operand bundles are **not** part of a function's signature, and a
1722given function may be called from multiple places with different kinds
1723of operand bundles. This reflects the fact that the operand bundles
1724are conceptually a part of the ``call`` (or ``invoke``), not the
1725callee being dispatched to.
1726
1727Operand bundles are a generic mechanism intended to support
1728runtime-introspection-like functionality for managed languages. While
1729the exact semantics of an operand bundle depend on the bundle tag,
1730there are certain limitations to how much the presence of an operand
1731bundle can influence the semantics of a program. These restrictions
1732are described as the semantics of an "unknown" operand bundle. As
1733long as the behavior of an operand bundle is describable within these
1734restrictions, LLVM does not need to have special knowledge of the
1735operand bundle to not miscompile programs containing it.
1736
David Majnemer34cacb42015-10-22 01:46:38 +00001737- The bundle operands for an unknown operand bundle escape in unknown
1738 ways before control is transferred to the callee or invokee.
1739- Calls and invokes with operand bundles have unknown read / write
1740 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001741 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001742 callsite specific attributes.
1743- An operand bundle at a call site cannot change the implementation
1744 of the called function. Inter-procedural optimizations work as
1745 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001746
Sanjoy Dascdafd842015-11-11 21:38:02 +00001747More specific types of operand bundles are described below.
1748
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001749.. _deopt_opbundles:
1750
Sanjoy Dascdafd842015-11-11 21:38:02 +00001751Deoptimization Operand Bundles
1752^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1753
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001754Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001755operand bundle tag. These operand bundles represent an alternate
1756"safe" continuation for the call site they're attached to, and can be
1757used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001758specified call site. There can be at most one ``"deopt"`` operand
1759bundle attached to a call site. Exact details of deoptimization is
1760out of scope for the language reference, but it usually involves
1761rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001762
1763From the compiler's perspective, deoptimization operand bundles make
1764the call sites they're attached to at least ``readonly``. They read
1765through all of their pointer typed operands (even if they're not
1766otherwise escaped) and the entire visible heap. Deoptimization
1767operand bundles do not capture their operands except during
1768deoptimization, in which case control will not be returned to the
1769compiled frame.
1770
Sanjoy Das2d161452015-11-18 06:23:38 +00001771The inliner knows how to inline through calls that have deoptimization
1772operand bundles. Just like inlining through a normal call site
1773involves composing the normal and exceptional continuations, inlining
1774through a call site with a deoptimization operand bundle needs to
1775appropriately compose the "safe" deoptimization continuation. The
1776inliner does this by prepending the parent's deoptimization
1777continuation to every deoptimization continuation in the inlined body.
1778E.g. inlining ``@f`` into ``@g`` in the following example
1779
1780.. code-block:: llvm
1781
1782 define void @f() {
1783 call void @x() ;; no deopt state
1784 call void @y() [ "deopt"(i32 10) ]
1785 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1786 ret void
1787 }
1788
1789 define void @g() {
1790 call void @f() [ "deopt"(i32 20) ]
1791 ret void
1792 }
1793
1794will result in
1795
1796.. code-block:: llvm
1797
1798 define void @g() {
1799 call void @x() ;; still no deopt state
1800 call void @y() [ "deopt"(i32 20, i32 10) ]
1801 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1802 ret void
1803 }
1804
1805It is the frontend's responsibility to structure or encode the
1806deoptimization state in a way that syntactically prepending the
1807caller's deoptimization state to the callee's deoptimization state is
1808semantically equivalent to composing the caller's deoptimization
1809continuation after the callee's deoptimization continuation.
1810
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001811.. _ob_funclet:
1812
David Majnemer3bb88c02015-12-15 21:27:27 +00001813Funclet Operand Bundles
1814^^^^^^^^^^^^^^^^^^^^^^^
1815
1816Funclet operand bundles are characterized by the ``"funclet"``
1817operand bundle tag. These operand bundles indicate that a call site
1818is within a particular funclet. There can be at most one
1819``"funclet"`` operand bundle attached to a call site and it must have
1820exactly one bundle operand.
1821
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001822If any funclet EH pads have been "entered" but not "exited" (per the
1823`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1824it is undefined behavior to execute a ``call`` or ``invoke`` which:
1825
1826* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1827 intrinsic, or
1828* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1829 not-yet-exited funclet EH pad.
1830
1831Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1832executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1833
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001834GC Transition Operand Bundles
1835^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1836
1837GC transition operand bundles are characterized by the
1838``"gc-transition"`` operand bundle tag. These operand bundles mark a
1839call as a transition between a function with one GC strategy to a
1840function with a different GC strategy. If coordinating the transition
1841between GC strategies requires additional code generation at the call
1842site, these bundles may contain any values that are needed by the
1843generated code. For more details, see :ref:`GC Transitions
1844<gc_transition_args>`.
1845
Sean Silvab084af42012-12-07 10:36:55 +00001846.. _moduleasm:
1847
1848Module-Level Inline Assembly
1849----------------------------
1850
1851Modules may contain "module-level inline asm" blocks, which corresponds
1852to the GCC "file scope inline asm" blocks. These blocks are internally
1853concatenated by LLVM and treated as a single unit, but may be separated
1854in the ``.ll`` file if desired. The syntax is very simple:
1855
1856.. code-block:: llvm
1857
1858 module asm "inline asm code goes here"
1859 module asm "more can go here"
1860
1861The strings can contain any character by escaping non-printable
1862characters. The escape sequence used is simply "\\xx" where "xx" is the
1863two digit hex code for the number.
1864
James Y Knightbc832ed2015-07-08 18:08:36 +00001865Note that the assembly string *must* be parseable by LLVM's integrated assembler
1866(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001867
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001868.. _langref_datalayout:
1869
Sean Silvab084af42012-12-07 10:36:55 +00001870Data Layout
1871-----------
1872
1873A module may specify a target specific data layout string that specifies
1874how data is to be laid out in memory. The syntax for the data layout is
1875simply:
1876
1877.. code-block:: llvm
1878
1879 target datalayout = "layout specification"
1880
1881The *layout specification* consists of a list of specifications
1882separated by the minus sign character ('-'). Each specification starts
1883with a letter and may include other information after the letter to
1884define some aspect of the data layout. The specifications accepted are
1885as follows:
1886
1887``E``
1888 Specifies that the target lays out data in big-endian form. That is,
1889 the bits with the most significance have the lowest address
1890 location.
1891``e``
1892 Specifies that the target lays out data in little-endian form. That
1893 is, the bits with the least significance have the lowest address
1894 location.
1895``S<size>``
1896 Specifies the natural alignment of the stack in bits. Alignment
1897 promotion of stack variables is limited to the natural stack
1898 alignment to avoid dynamic stack realignment. The stack alignment
1899 must be a multiple of 8-bits. If omitted, the natural stack
1900 alignment defaults to "unspecified", which does not prevent any
1901 alignment promotions.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001902``A<address space>``
1903 Specifies the address space of objects created by '``alloca``'.
1904 Defaults to the default address space of 0.
Sean Silvab084af42012-12-07 10:36:55 +00001905``p[n]:<size>:<abi>:<pref>``
1906 This specifies the *size* of a pointer and its ``<abi>`` and
1907 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001908 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001909 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001910 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001911``i<size>:<abi>:<pref>``
1912 This specifies the alignment for an integer type of a given bit
1913 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1914``v<size>:<abi>:<pref>``
1915 This specifies the alignment for a vector type of a given bit
1916 ``<size>``.
1917``f<size>:<abi>:<pref>``
1918 This specifies the alignment for a floating point type of a given bit
1919 ``<size>``. Only values of ``<size>`` that are supported by the target
1920 will work. 32 (float) and 64 (double) are supported on all targets; 80
1921 or 128 (different flavors of long double) are also supported on some
1922 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001923``a:<abi>:<pref>``
1924 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001925``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001926 If present, specifies that llvm names are mangled in the output. The
1927 options are
1928
1929 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1930 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1931 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1932 symbols get a ``_`` prefix.
1933 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1934 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001935 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1936 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001937``n<size1>:<size2>:<size3>...``
1938 This specifies a set of native integer widths for the target CPU in
1939 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1940 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1941 this set are considered to support most general arithmetic operations
1942 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001943``ni:<address space0>:<address space1>:<address space2>...``
1944 This specifies pointer types with the specified address spaces
1945 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1946 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001947
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001948On every specification that takes a ``<abi>:<pref>``, specifying the
1949``<pref>`` alignment is optional. If omitted, the preceding ``:``
1950should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1951
Sean Silvab084af42012-12-07 10:36:55 +00001952When constructing the data layout for a given target, LLVM starts with a
1953default set of specifications which are then (possibly) overridden by
1954the specifications in the ``datalayout`` keyword. The default
1955specifications are given in this list:
1956
1957- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001958- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1959- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1960 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001961- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001962- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1963- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1964- ``i16:16:16`` - i16 is 16-bit aligned
1965- ``i32:32:32`` - i32 is 32-bit aligned
1966- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1967 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001968- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001969- ``f32:32:32`` - float is 32-bit aligned
1970- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001971- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001972- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1973- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001974- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001975
1976When LLVM is determining the alignment for a given type, it uses the
1977following rules:
1978
1979#. If the type sought is an exact match for one of the specifications,
1980 that specification is used.
1981#. If no match is found, and the type sought is an integer type, then
1982 the smallest integer type that is larger than the bitwidth of the
1983 sought type is used. If none of the specifications are larger than
1984 the bitwidth then the largest integer type is used. For example,
1985 given the default specifications above, the i7 type will use the
1986 alignment of i8 (next largest) while both i65 and i256 will use the
1987 alignment of i64 (largest specified).
1988#. If no match is found, and the type sought is a vector type, then the
1989 largest vector type that is smaller than the sought vector type will
1990 be used as a fall back. This happens because <128 x double> can be
1991 implemented in terms of 64 <2 x double>, for example.
1992
1993The function of the data layout string may not be what you expect.
1994Notably, this is not a specification from the frontend of what alignment
1995the code generator should use.
1996
1997Instead, if specified, the target data layout is required to match what
1998the ultimate *code generator* expects. This string is used by the
1999mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00002000what the ultimate code generator uses. There is no way to generate IR
2001that does not embed this target-specific detail into the IR. If you
2002don't specify the string, the default specifications will be used to
2003generate a Data Layout and the optimization phases will operate
2004accordingly and introduce target specificity into the IR with respect to
2005these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00002006
Bill Wendling5cc90842013-10-18 23:41:25 +00002007.. _langref_triple:
2008
2009Target Triple
2010-------------
2011
2012A module may specify a target triple string that describes the target
2013host. The syntax for the target triple is simply:
2014
2015.. code-block:: llvm
2016
2017 target triple = "x86_64-apple-macosx10.7.0"
2018
2019The *target triple* string consists of a series of identifiers delimited
2020by the minus sign character ('-'). The canonical forms are:
2021
2022::
2023
2024 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
2025 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
2026
2027This information is passed along to the backend so that it generates
2028code for the proper architecture. It's possible to override this on the
2029command line with the ``-mtriple`` command line option.
2030
Sean Silvab084af42012-12-07 10:36:55 +00002031.. _pointeraliasing:
2032
2033Pointer Aliasing Rules
2034----------------------
2035
2036Any memory access must be done through a pointer value associated with
2037an address range of the memory access, otherwise the behavior is
2038undefined. Pointer values are associated with address ranges according
2039to the following rules:
2040
2041- A pointer value is associated with the addresses associated with any
2042 value it is *based* on.
2043- An address of a global variable is associated with the address range
2044 of the variable's storage.
2045- The result value of an allocation instruction is associated with the
2046 address range of the allocated storage.
2047- A null pointer in the default address-space is associated with no
2048 address.
2049- An integer constant other than zero or a pointer value returned from
2050 a function not defined within LLVM may be associated with address
2051 ranges allocated through mechanisms other than those provided by
2052 LLVM. Such ranges shall not overlap with any ranges of addresses
2053 allocated by mechanisms provided by LLVM.
2054
2055A pointer value is *based* on another pointer value according to the
2056following rules:
2057
Sanjoy Das6d489492017-09-13 18:49:22 +00002058- A pointer value formed from a scalar ``getelementptr`` operation is *based* on
2059 the pointer-typed operand of the ``getelementptr``.
2060- The pointer in lane *l* of the result of a vector ``getelementptr`` operation
2061 is *based* on the pointer in lane *l* of the vector-of-pointers-typed operand
2062 of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00002063- The result value of a ``bitcast`` is *based* on the operand of the
2064 ``bitcast``.
2065- A pointer value formed by an ``inttoptr`` is *based* on all pointer
2066 values that contribute (directly or indirectly) to the computation of
2067 the pointer's value.
2068- The "*based* on" relationship is transitive.
2069
2070Note that this definition of *"based"* is intentionally similar to the
2071definition of *"based"* in C99, though it is slightly weaker.
2072
2073LLVM IR does not associate types with memory. The result type of a
2074``load`` merely indicates the size and alignment of the memory from
2075which to load, as well as the interpretation of the value. The first
2076operand type of a ``store`` similarly only indicates the size and
2077alignment of the store.
2078
2079Consequently, type-based alias analysis, aka TBAA, aka
2080``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2081:ref:`Metadata <metadata>` may be used to encode additional information
2082which specialized optimization passes may use to implement type-based
2083alias analysis.
2084
2085.. _volatile:
2086
2087Volatile Memory Accesses
2088------------------------
2089
2090Certain memory accesses, such as :ref:`load <i_load>`'s,
2091:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2092marked ``volatile``. The optimizers must not change the number of
2093volatile operations or change their order of execution relative to other
2094volatile operations. The optimizers *may* change the order of volatile
2095operations relative to non-volatile operations. This is not Java's
2096"volatile" and has no cross-thread synchronization behavior.
2097
Andrew Trick89fc5a62013-01-30 21:19:35 +00002098IR-level volatile loads and stores cannot safely be optimized into
2099llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2100flagged volatile. Likewise, the backend should never split or merge
2101target-legal volatile load/store instructions.
2102
Andrew Trick7e6f9282013-01-31 00:49:39 +00002103.. admonition:: Rationale
2104
2105 Platforms may rely on volatile loads and stores of natively supported
2106 data width to be executed as single instruction. For example, in C
2107 this holds for an l-value of volatile primitive type with native
2108 hardware support, but not necessarily for aggregate types. The
2109 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002110 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002111 do not violate the frontend's contract with the language.
2112
Sean Silvab084af42012-12-07 10:36:55 +00002113.. _memmodel:
2114
2115Memory Model for Concurrent Operations
2116--------------------------------------
2117
2118The LLVM IR does not define any way to start parallel threads of
2119execution or to register signal handlers. Nonetheless, there are
2120platform-specific ways to create them, and we define LLVM IR's behavior
2121in their presence. This model is inspired by the C++0x memory model.
2122
2123For a more informal introduction to this model, see the :doc:`Atomics`.
2124
2125We define a *happens-before* partial order as the least partial order
2126that
2127
2128- Is a superset of single-thread program order, and
2129- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2130 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2131 techniques, like pthread locks, thread creation, thread joining,
2132 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2133 Constraints <ordering>`).
2134
2135Note that program order does not introduce *happens-before* edges
2136between a thread and signals executing inside that thread.
2137
2138Every (defined) read operation (load instructions, memcpy, atomic
2139loads/read-modify-writes, etc.) R reads a series of bytes written by
2140(defined) write operations (store instructions, atomic
2141stores/read-modify-writes, memcpy, etc.). For the purposes of this
2142section, initialized globals are considered to have a write of the
2143initializer which is atomic and happens before any other read or write
2144of the memory in question. For each byte of a read R, R\ :sub:`byte`
2145may see any write to the same byte, except:
2146
2147- If write\ :sub:`1` happens before write\ :sub:`2`, and
2148 write\ :sub:`2` happens before R\ :sub:`byte`, then
2149 R\ :sub:`byte` does not see write\ :sub:`1`.
2150- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2151 R\ :sub:`byte` does not see write\ :sub:`3`.
2152
2153Given that definition, R\ :sub:`byte` is defined as follows:
2154
2155- If R is volatile, the result is target-dependent. (Volatile is
2156 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002157 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002158 like normal memory. It does not generally provide cross-thread
2159 synchronization.)
2160- Otherwise, if there is no write to the same byte that happens before
2161 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2162- Otherwise, if R\ :sub:`byte` may see exactly one write,
2163 R\ :sub:`byte` returns the value written by that write.
2164- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2165 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2166 Memory Ordering Constraints <ordering>` section for additional
2167 constraints on how the choice is made.
2168- Otherwise R\ :sub:`byte` returns ``undef``.
2169
2170R returns the value composed of the series of bytes it read. This
2171implies that some bytes within the value may be ``undef`` **without**
2172the entire value being ``undef``. Note that this only defines the
2173semantics of the operation; it doesn't mean that targets will emit more
2174than one instruction to read the series of bytes.
2175
2176Note that in cases where none of the atomic intrinsics are used, this
2177model places only one restriction on IR transformations on top of what
2178is required for single-threaded execution: introducing a store to a byte
2179which might not otherwise be stored is not allowed in general.
2180(Specifically, in the case where another thread might write to and read
2181from an address, introducing a store can change a load that may see
2182exactly one write into a load that may see multiple writes.)
2183
2184.. _ordering:
2185
2186Atomic Memory Ordering Constraints
2187----------------------------------
2188
2189Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2190:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2191:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002192ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002193the same address they *synchronize with*. These semantics are borrowed
2194from Java and C++0x, but are somewhat more colloquial. If these
2195descriptions aren't precise enough, check those specs (see spec
2196references in the :doc:`atomics guide <Atomics>`).
2197:ref:`fence <i_fence>` instructions treat these orderings somewhat
2198differently since they don't take an address. See that instruction's
2199documentation for details.
2200
2201For a simpler introduction to the ordering constraints, see the
2202:doc:`Atomics`.
2203
2204``unordered``
2205 The set of values that can be read is governed by the happens-before
2206 partial order. A value cannot be read unless some operation wrote
2207 it. This is intended to provide a guarantee strong enough to model
2208 Java's non-volatile shared variables. This ordering cannot be
2209 specified for read-modify-write operations; it is not strong enough
2210 to make them atomic in any interesting way.
2211``monotonic``
2212 In addition to the guarantees of ``unordered``, there is a single
2213 total order for modifications by ``monotonic`` operations on each
2214 address. All modification orders must be compatible with the
2215 happens-before order. There is no guarantee that the modification
2216 orders can be combined to a global total order for the whole program
2217 (and this often will not be possible). The read in an atomic
2218 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2219 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2220 order immediately before the value it writes. If one atomic read
2221 happens before another atomic read of the same address, the later
2222 read must see the same value or a later value in the address's
2223 modification order. This disallows reordering of ``monotonic`` (or
2224 stronger) operations on the same address. If an address is written
2225 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2226 read that address repeatedly, the other threads must eventually see
2227 the write. This corresponds to the C++0x/C1x
2228 ``memory_order_relaxed``.
2229``acquire``
2230 In addition to the guarantees of ``monotonic``, a
2231 *synchronizes-with* edge may be formed with a ``release`` operation.
2232 This is intended to model C++'s ``memory_order_acquire``.
2233``release``
2234 In addition to the guarantees of ``monotonic``, if this operation
2235 writes a value which is subsequently read by an ``acquire``
2236 operation, it *synchronizes-with* that operation. (This isn't a
2237 complete description; see the C++0x definition of a release
2238 sequence.) This corresponds to the C++0x/C1x
2239 ``memory_order_release``.
2240``acq_rel`` (acquire+release)
2241 Acts as both an ``acquire`` and ``release`` operation on its
2242 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2243``seq_cst`` (sequentially consistent)
2244 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002245 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002246 writes), there is a global total order on all
2247 sequentially-consistent operations on all addresses, which is
2248 consistent with the *happens-before* partial order and with the
2249 modification orders of all the affected addresses. Each
2250 sequentially-consistent read sees the last preceding write to the
2251 same address in this global order. This corresponds to the C++0x/C1x
2252 ``memory_order_seq_cst`` and Java volatile.
2253
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002254.. _syncscope:
Sean Silvab084af42012-12-07 10:36:55 +00002255
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002256If an atomic operation is marked ``syncscope("singlethread")``, it only
2257*synchronizes with* and only participates in the seq\_cst total orderings of
2258other operations running in the same thread (for example, in signal handlers).
2259
2260If an atomic operation is marked ``syncscope("<target-scope>")``, where
2261``<target-scope>`` is a target specific synchronization scope, then it is target
2262dependent if it *synchronizes with* and participates in the seq\_cst total
2263orderings of other operations.
2264
2265Otherwise, an atomic operation that is not marked ``syncscope("singlethread")``
2266or ``syncscope("<target-scope>")`` *synchronizes with* and participates in the
2267seq\_cst total orderings of other operations that are not marked
2268``syncscope("singlethread")`` or ``syncscope("<target-scope>")``.
Sean Silvab084af42012-12-07 10:36:55 +00002269
2270.. _fastmath:
2271
2272Fast-Math Flags
2273---------------
2274
Sanjay Patel629c4112017-11-06 16:27:15 +00002275LLVM IR floating-point operations (:ref:`fadd <i_fadd>`,
Sean Silvab084af42012-12-07 10:36:55 +00002276:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002277:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
Sanjay Patel629c4112017-11-06 16:27:15 +00002278may use the following flags to enable otherwise unsafe
2279floating-point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002280
2281``nnan``
2282 No NaNs - Allow optimizations to assume the arguments and result are not
2283 NaN. Such optimizations are required to retain defined behavior over
2284 NaNs, but the value of the result is undefined.
2285
2286``ninf``
2287 No Infs - Allow optimizations to assume the arguments and result are not
2288 +/-Inf. Such optimizations are required to retain defined behavior over
2289 +/-Inf, but the value of the result is undefined.
2290
2291``nsz``
2292 No Signed Zeros - Allow optimizations to treat the sign of a zero
2293 argument or result as insignificant.
2294
2295``arcp``
2296 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2297 argument rather than perform division.
2298
Adam Nemetcd847a82017-03-28 20:11:52 +00002299``contract``
2300 Allow floating-point contraction (e.g. fusing a multiply followed by an
2301 addition into a fused multiply-and-add).
2302
Sanjay Patel629c4112017-11-06 16:27:15 +00002303``afn``
2304 Approximate functions - Allow substitution of approximate calculations for
2305 functions (sin, log, sqrt, etc). See floating-point intrinsic definitions
2306 for places where this can apply to LLVM's intrinsic math functions.
2307
2308``reassoc``
2309 Allow reassociation transformations for floating-point instructions.
2310 This may dramatically change results in floating point.
2311
Sean Silvab084af42012-12-07 10:36:55 +00002312``fast``
Sanjay Patel629c4112017-11-06 16:27:15 +00002313 This flag implies all of the others.
Sean Silvab084af42012-12-07 10:36:55 +00002314
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002315.. _uselistorder:
2316
2317Use-list Order Directives
2318-------------------------
2319
2320Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002321order to be recreated. ``<order-indexes>`` is a comma-separated list of
2322indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002323value's use-list is immediately sorted by these indexes.
2324
Sean Silvaa1190322015-08-06 22:56:48 +00002325Use-list directives may appear at function scope or global scope. They are not
2326instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002327function scope, they must appear after the terminator of the final basic block.
2328
2329If basic blocks have their address taken via ``blockaddress()`` expressions,
2330``uselistorder_bb`` can be used to reorder their use-lists from outside their
2331function's scope.
2332
2333:Syntax:
2334
2335::
2336
2337 uselistorder <ty> <value>, { <order-indexes> }
2338 uselistorder_bb @function, %block { <order-indexes> }
2339
2340:Examples:
2341
2342::
2343
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002344 define void @foo(i32 %arg1, i32 %arg2) {
2345 entry:
2346 ; ... instructions ...
2347 bb:
2348 ; ... instructions ...
2349
2350 ; At function scope.
2351 uselistorder i32 %arg1, { 1, 0, 2 }
2352 uselistorder label %bb, { 1, 0 }
2353 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002354
2355 ; At global scope.
2356 uselistorder i32* @global, { 1, 2, 0 }
2357 uselistorder i32 7, { 1, 0 }
2358 uselistorder i32 (i32) @bar, { 1, 0 }
2359 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2360
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002361.. _source_filename:
2362
2363Source Filename
2364---------------
2365
2366The *source filename* string is set to the original module identifier,
2367which will be the name of the compiled source file when compiling from
2368source through the clang front end, for example. It is then preserved through
2369the IR and bitcode.
2370
2371This is currently necessary to generate a consistent unique global
2372identifier for local functions used in profile data, which prepends the
2373source file name to the local function name.
2374
2375The syntax for the source file name is simply:
2376
Renato Golin124f2592016-07-20 12:16:38 +00002377.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002378
2379 source_filename = "/path/to/source.c"
2380
Sean Silvab084af42012-12-07 10:36:55 +00002381.. _typesystem:
2382
2383Type System
2384===========
2385
2386The LLVM type system is one of the most important features of the
2387intermediate representation. Being typed enables a number of
2388optimizations to be performed on the intermediate representation
2389directly, without having to do extra analyses on the side before the
2390transformation. A strong type system makes it easier to read the
2391generated code and enables novel analyses and transformations that are
2392not feasible to perform on normal three address code representations.
2393
Rafael Espindola08013342013-12-07 19:34:20 +00002394.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002395
Rafael Espindola08013342013-12-07 19:34:20 +00002396Void Type
2397---------
Sean Silvab084af42012-12-07 10:36:55 +00002398
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002399:Overview:
2400
Rafael Espindola08013342013-12-07 19:34:20 +00002401
2402The void type does not represent any value and has no size.
2403
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002404:Syntax:
2405
Rafael Espindola08013342013-12-07 19:34:20 +00002406
2407::
2408
2409 void
Sean Silvab084af42012-12-07 10:36:55 +00002410
2411
Rafael Espindola08013342013-12-07 19:34:20 +00002412.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002413
Rafael Espindola08013342013-12-07 19:34:20 +00002414Function Type
2415-------------
Sean Silvab084af42012-12-07 10:36:55 +00002416
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002417:Overview:
2418
Sean Silvab084af42012-12-07 10:36:55 +00002419
Rafael Espindola08013342013-12-07 19:34:20 +00002420The function type can be thought of as a function signature. It consists of a
2421return type and a list of formal parameter types. The return type of a function
2422type is a void type or first class type --- except for :ref:`label <t_label>`
2423and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002424
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002425:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002426
Rafael Espindola08013342013-12-07 19:34:20 +00002427::
Sean Silvab084af42012-12-07 10:36:55 +00002428
Rafael Espindola08013342013-12-07 19:34:20 +00002429 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002430
Rafael Espindola08013342013-12-07 19:34:20 +00002431...where '``<parameter list>``' is a comma-separated list of type
2432specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002433indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002434argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002435handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002436except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002437
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002438:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002439
Rafael Espindola08013342013-12-07 19:34:20 +00002440+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2441| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2442+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2443| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2444+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2445| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2446+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2447| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2448+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2449
2450.. _t_firstclass:
2451
2452First Class Types
2453-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002454
2455The :ref:`first class <t_firstclass>` types are perhaps the most important.
2456Values of these types are the only ones which can be produced by
2457instructions.
2458
Rafael Espindola08013342013-12-07 19:34:20 +00002459.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002460
Rafael Espindola08013342013-12-07 19:34:20 +00002461Single Value Types
2462^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002463
Rafael Espindola08013342013-12-07 19:34:20 +00002464These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002465
2466.. _t_integer:
2467
2468Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002469""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002470
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002471:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002472
2473The integer type is a very simple type that simply specifies an
2474arbitrary bit width for the integer type desired. Any bit width from 1
2475bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2476
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002477:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002478
2479::
2480
2481 iN
2482
2483The number of bits the integer will occupy is specified by the ``N``
2484value.
2485
2486Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002487*********
Sean Silvab084af42012-12-07 10:36:55 +00002488
2489+----------------+------------------------------------------------+
2490| ``i1`` | a single-bit integer. |
2491+----------------+------------------------------------------------+
2492| ``i32`` | a 32-bit integer. |
2493+----------------+------------------------------------------------+
2494| ``i1942652`` | a really big integer of over 1 million bits. |
2495+----------------+------------------------------------------------+
2496
2497.. _t_floating:
2498
2499Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002500""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002501
2502.. list-table::
2503 :header-rows: 1
2504
2505 * - Type
2506 - Description
2507
2508 * - ``half``
2509 - 16-bit floating point value
2510
2511 * - ``float``
2512 - 32-bit floating point value
2513
2514 * - ``double``
2515 - 64-bit floating point value
2516
2517 * - ``fp128``
2518 - 128-bit floating point value (112-bit mantissa)
2519
2520 * - ``x86_fp80``
2521 - 80-bit floating point value (X87)
2522
2523 * - ``ppc_fp128``
2524 - 128-bit floating point value (two 64-bits)
2525
Reid Kleckner9a16d082014-03-05 02:41:37 +00002526X86_mmx Type
2527""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002528
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002529:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002530
Reid Kleckner9a16d082014-03-05 02:41:37 +00002531The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002532machine. The operations allowed on it are quite limited: parameters and
2533return values, load and store, and bitcast. User-specified MMX
2534instructions are represented as intrinsic or asm calls with arguments
2535and/or results of this type. There are no arrays, vectors or constants
2536of this type.
2537
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002538:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002539
2540::
2541
Reid Kleckner9a16d082014-03-05 02:41:37 +00002542 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002543
Sean Silvab084af42012-12-07 10:36:55 +00002544
Rafael Espindola08013342013-12-07 19:34:20 +00002545.. _t_pointer:
2546
2547Pointer Type
2548""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002549
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002550:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002551
Rafael Espindola08013342013-12-07 19:34:20 +00002552The pointer type is used to specify memory locations. Pointers are
2553commonly used to reference objects in memory.
2554
2555Pointer types may have an optional address space attribute defining the
2556numbered address space where the pointed-to object resides. The default
2557address space is number zero. The semantics of non-zero address spaces
2558are target-specific.
2559
2560Note that LLVM does not permit pointers to void (``void*``) nor does it
2561permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002562
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002563:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002564
2565::
2566
Rafael Espindola08013342013-12-07 19:34:20 +00002567 <type> *
2568
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002569:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002570
2571+-------------------------+--------------------------------------------------------------------------------------------------------------+
2572| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2573+-------------------------+--------------------------------------------------------------------------------------------------------------+
2574| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2575+-------------------------+--------------------------------------------------------------------------------------------------------------+
2576| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2577+-------------------------+--------------------------------------------------------------------------------------------------------------+
2578
2579.. _t_vector:
2580
2581Vector Type
2582"""""""""""
2583
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002584:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002585
2586A vector type is a simple derived type that represents a vector of
2587elements. Vector types are used when multiple primitive data are
2588operated in parallel using a single instruction (SIMD). A vector type
2589requires a size (number of elements) and an underlying primitive data
2590type. Vector types are considered :ref:`first class <t_firstclass>`.
2591
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002592:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002593
2594::
2595
2596 < <# elements> x <elementtype> >
2597
2598The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002599elementtype may be any integer, floating point or pointer type. Vectors
2600of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002601
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002602:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002603
2604+-------------------+--------------------------------------------------+
2605| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2606+-------------------+--------------------------------------------------+
2607| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2608+-------------------+--------------------------------------------------+
2609| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2610+-------------------+--------------------------------------------------+
2611| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2612+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002613
2614.. _t_label:
2615
2616Label Type
2617^^^^^^^^^^
2618
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002619:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002620
2621The label type represents code labels.
2622
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002623:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002624
2625::
2626
2627 label
2628
David Majnemerb611e3f2015-08-14 05:09:07 +00002629.. _t_token:
2630
2631Token Type
2632^^^^^^^^^^
2633
2634:Overview:
2635
2636The token type is used when a value is associated with an instruction
2637but all uses of the value must not attempt to introspect or obscure it.
2638As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2639:ref:`select <i_select>` of type token.
2640
2641:Syntax:
2642
2643::
2644
2645 token
2646
2647
2648
Sean Silvab084af42012-12-07 10:36:55 +00002649.. _t_metadata:
2650
2651Metadata Type
2652^^^^^^^^^^^^^
2653
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002654:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002655
2656The metadata type represents embedded metadata. No derived types may be
2657created from metadata except for :ref:`function <t_function>` arguments.
2658
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002659:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002660
2661::
2662
2663 metadata
2664
Sean Silvab084af42012-12-07 10:36:55 +00002665.. _t_aggregate:
2666
2667Aggregate Types
2668^^^^^^^^^^^^^^^
2669
2670Aggregate Types are a subset of derived types that can contain multiple
2671member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2672aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2673aggregate types.
2674
2675.. _t_array:
2676
2677Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002678""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002679
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002680:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002681
2682The array type is a very simple derived type that arranges elements
2683sequentially in memory. The array type requires a size (number of
2684elements) and an underlying data type.
2685
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002686:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002687
2688::
2689
2690 [<# elements> x <elementtype>]
2691
2692The number of elements is a constant integer value; ``elementtype`` may
2693be any type with a size.
2694
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002695:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002696
2697+------------------+--------------------------------------+
2698| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2699+------------------+--------------------------------------+
2700| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2701+------------------+--------------------------------------+
2702| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2703+------------------+--------------------------------------+
2704
2705Here are some examples of multidimensional arrays:
2706
2707+-----------------------------+----------------------------------------------------------+
2708| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2709+-----------------------------+----------------------------------------------------------+
2710| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2711+-----------------------------+----------------------------------------------------------+
2712| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2713+-----------------------------+----------------------------------------------------------+
2714
2715There is no restriction on indexing beyond the end of the array implied
2716by a static type (though there are restrictions on indexing beyond the
2717bounds of an allocated object in some cases). This means that
2718single-dimension 'variable sized array' addressing can be implemented in
2719LLVM with a zero length array type. An implementation of 'pascal style
2720arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2721example.
2722
Sean Silvab084af42012-12-07 10:36:55 +00002723.. _t_struct:
2724
2725Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002726""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002727
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002728:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002729
2730The structure type is used to represent a collection of data members
2731together in memory. The elements of a structure may be any type that has
2732a size.
2733
2734Structures in memory are accessed using '``load``' and '``store``' by
2735getting a pointer to a field with the '``getelementptr``' instruction.
2736Structures in registers are accessed using the '``extractvalue``' and
2737'``insertvalue``' instructions.
2738
2739Structures may optionally be "packed" structures, which indicate that
2740the alignment of the struct is one byte, and that there is no padding
2741between the elements. In non-packed structs, padding between field types
2742is inserted as defined by the DataLayout string in the module, which is
2743required to match what the underlying code generator expects.
2744
2745Structures can either be "literal" or "identified". A literal structure
2746is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2747identified types are always defined at the top level with a name.
2748Literal types are uniqued by their contents and can never be recursive
2749or opaque since there is no way to write one. Identified types can be
2750recursive, can be opaqued, and are never uniqued.
2751
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002752:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002753
2754::
2755
2756 %T1 = type { <type list> } ; Identified normal struct type
2757 %T2 = type <{ <type list> }> ; Identified packed struct type
2758
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002759:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002760
2761+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2762| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2763+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002764| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002765+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2766| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2767+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2768
2769.. _t_opaque:
2770
2771Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002772""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002773
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002774:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002775
2776Opaque structure types are used to represent named structure types that
2777do not have a body specified. This corresponds (for example) to the C
2778notion of a forward declared structure.
2779
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002780:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002781
2782::
2783
2784 %X = type opaque
2785 %52 = type opaque
2786
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002787:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002788
2789+--------------+-------------------+
2790| ``opaque`` | An opaque type. |
2791+--------------+-------------------+
2792
Sean Silva1703e702014-04-08 21:06:22 +00002793.. _constants:
2794
Sean Silvab084af42012-12-07 10:36:55 +00002795Constants
2796=========
2797
2798LLVM has several different basic types of constants. This section
2799describes them all and their syntax.
2800
2801Simple Constants
2802----------------
2803
2804**Boolean constants**
2805 The two strings '``true``' and '``false``' are both valid constants
2806 of the ``i1`` type.
2807**Integer constants**
2808 Standard integers (such as '4') are constants of the
2809 :ref:`integer <t_integer>` type. Negative numbers may be used with
2810 integer types.
2811**Floating point constants**
2812 Floating point constants use standard decimal notation (e.g.
2813 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2814 hexadecimal notation (see below). The assembler requires the exact
2815 decimal value of a floating-point constant. For example, the
2816 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2817 decimal in binary. Floating point constants must have a :ref:`floating
2818 point <t_floating>` type.
2819**Null pointer constants**
2820 The identifier '``null``' is recognized as a null pointer constant
2821 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002822**Token constants**
2823 The identifier '``none``' is recognized as an empty token constant
2824 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002825
2826The one non-intuitive notation for constants is the hexadecimal form of
2827floating point constants. For example, the form
2828'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2829than) '``double 4.5e+15``'. The only time hexadecimal floating point
2830constants are required (and the only time that they are generated by the
2831disassembler) is when a floating point constant must be emitted but it
2832cannot be represented as a decimal floating point number in a reasonable
2833number of digits. For example, NaN's, infinities, and other special
2834values are represented in their IEEE hexadecimal format so that assembly
2835and disassembly do not cause any bits to change in the constants.
2836
2837When using the hexadecimal form, constants of types half, float, and
2838double are represented using the 16-digit form shown above (which
2839matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002840must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002841precision, respectively. Hexadecimal format is always used for long
2842double, and there are three forms of long double. The 80-bit format used
2843by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2844128-bit format used by PowerPC (two adjacent doubles) is represented by
2845``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002846represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2847will only work if they match the long double format on your target.
2848The IEEE 16-bit format (half precision) is represented by ``0xH``
2849followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2850(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002851
Reid Kleckner9a16d082014-03-05 02:41:37 +00002852There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002853
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002854.. _complexconstants:
2855
Sean Silvab084af42012-12-07 10:36:55 +00002856Complex Constants
2857-----------------
2858
2859Complex constants are a (potentially recursive) combination of simple
2860constants and smaller complex constants.
2861
2862**Structure constants**
2863 Structure constants are represented with notation similar to
2864 structure type definitions (a comma separated list of elements,
2865 surrounded by braces (``{}``)). For example:
2866 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2867 "``@G = external global i32``". Structure constants must have
2868 :ref:`structure type <t_struct>`, and the number and types of elements
2869 must match those specified by the type.
2870**Array constants**
2871 Array constants are represented with notation similar to array type
2872 definitions (a comma separated list of elements, surrounded by
2873 square brackets (``[]``)). For example:
2874 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2875 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002876 match those specified by the type. As a special case, character array
2877 constants may also be represented as a double-quoted string using the ``c``
2878 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002879**Vector constants**
2880 Vector constants are represented with notation similar to vector
2881 type definitions (a comma separated list of elements, surrounded by
2882 less-than/greater-than's (``<>``)). For example:
2883 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2884 must have :ref:`vector type <t_vector>`, and the number and types of
2885 elements must match those specified by the type.
2886**Zero initialization**
2887 The string '``zeroinitializer``' can be used to zero initialize a
2888 value to zero of *any* type, including scalar and
2889 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2890 having to print large zero initializers (e.g. for large arrays) and
2891 is always exactly equivalent to using explicit zero initializers.
2892**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002893 A metadata node is a constant tuple without types. For example:
2894 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002895 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2896 Unlike other typed constants that are meant to be interpreted as part of
2897 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002898 information such as debug info.
2899
2900Global Variable and Function Addresses
2901--------------------------------------
2902
2903The addresses of :ref:`global variables <globalvars>` and
2904:ref:`functions <functionstructure>` are always implicitly valid
2905(link-time) constants. These constants are explicitly referenced when
2906the :ref:`identifier for the global <identifiers>` is used and always have
2907:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2908file:
2909
2910.. code-block:: llvm
2911
2912 @X = global i32 17
2913 @Y = global i32 42
2914 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2915
2916.. _undefvalues:
2917
2918Undefined Values
2919----------------
2920
2921The string '``undef``' can be used anywhere a constant is expected, and
2922indicates that the user of the value may receive an unspecified
2923bit-pattern. Undefined values may be of any type (other than '``label``'
2924or '``void``') and be used anywhere a constant is permitted.
2925
2926Undefined values are useful because they indicate to the compiler that
2927the program is well defined no matter what value is used. This gives the
2928compiler more freedom to optimize. Here are some examples of
2929(potentially surprising) transformations that are valid (in pseudo IR):
2930
2931.. code-block:: llvm
2932
2933 %A = add %X, undef
2934 %B = sub %X, undef
2935 %C = xor %X, undef
2936 Safe:
2937 %A = undef
2938 %B = undef
2939 %C = undef
2940
2941This is safe because all of the output bits are affected by the undef
2942bits. Any output bit can have a zero or one depending on the input bits.
2943
2944.. code-block:: llvm
2945
2946 %A = or %X, undef
2947 %B = and %X, undef
2948 Safe:
2949 %A = -1
2950 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00002951 Safe:
2952 %A = %X ;; By choosing undef as 0
2953 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00002954 Unsafe:
2955 %A = undef
2956 %B = undef
2957
2958These logical operations have bits that are not always affected by the
2959input. For example, if ``%X`` has a zero bit, then the output of the
2960'``and``' operation will always be a zero for that bit, no matter what
2961the corresponding bit from the '``undef``' is. As such, it is unsafe to
2962optimize or assume that the result of the '``and``' is '``undef``'.
2963However, it is safe to assume that all bits of the '``undef``' could be
29640, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2965all the bits of the '``undef``' operand to the '``or``' could be set,
2966allowing the '``or``' to be folded to -1.
2967
2968.. code-block:: llvm
2969
2970 %A = select undef, %X, %Y
2971 %B = select undef, 42, %Y
2972 %C = select %X, %Y, undef
2973 Safe:
2974 %A = %X (or %Y)
2975 %B = 42 (or %Y)
2976 %C = %Y
2977 Unsafe:
2978 %A = undef
2979 %B = undef
2980 %C = undef
2981
2982This set of examples shows that undefined '``select``' (and conditional
2983branch) conditions can go *either way*, but they have to come from one
2984of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2985both known to have a clear low bit, then ``%A`` would have to have a
2986cleared low bit. However, in the ``%C`` example, the optimizer is
2987allowed to assume that the '``undef``' operand could be the same as
2988``%Y``, allowing the whole '``select``' to be eliminated.
2989
Renato Golin124f2592016-07-20 12:16:38 +00002990.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002991
2992 %A = xor undef, undef
2993
2994 %B = undef
2995 %C = xor %B, %B
2996
2997 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002998 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002999 %F = icmp gte %D, 4
3000
3001 Safe:
3002 %A = undef
3003 %B = undef
3004 %C = undef
3005 %D = undef
3006 %E = undef
3007 %F = undef
3008
3009This example points out that two '``undef``' operands are not
3010necessarily the same. This can be surprising to people (and also matches
3011C semantics) where they assume that "``X^X``" is always zero, even if
3012``X`` is undefined. This isn't true for a number of reasons, but the
3013short answer is that an '``undef``' "variable" can arbitrarily change
3014its value over its "live range". This is true because the variable
3015doesn't actually *have a live range*. Instead, the value is logically
3016read from arbitrary registers that happen to be around when needed, so
3017the value is not necessarily consistent over time. In fact, ``%A`` and
3018``%C`` need to have the same semantics or the core LLVM "replace all
3019uses with" concept would not hold.
3020
3021.. code-block:: llvm
3022
3023 %A = fdiv undef, %X
3024 %B = fdiv %X, undef
3025 Safe:
3026 %A = undef
3027 b: unreachable
3028
3029These examples show the crucial difference between an *undefined value*
3030and *undefined behavior*. An undefined value (like '``undef``') is
3031allowed to have an arbitrary bit-pattern. This means that the ``%A``
3032operation can be constant folded to '``undef``', because the '``undef``'
3033could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
3034However, in the second example, we can make a more aggressive
3035assumption: because the ``undef`` is allowed to be an arbitrary value,
3036we are allowed to assume that it could be zero. Since a divide by zero
3037has *undefined behavior*, we are allowed to assume that the operation
3038does not execute at all. This allows us to delete the divide and all
3039code after it. Because the undefined operation "can't happen", the
3040optimizer can assume that it occurs in dead code.
3041
Renato Golin124f2592016-07-20 12:16:38 +00003042.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003043
3044 a: store undef -> %X
3045 b: store %X -> undef
3046 Safe:
3047 a: <deleted>
3048 b: unreachable
3049
3050These examples reiterate the ``fdiv`` example: a store *of* an undefined
3051value can be assumed to not have any effect; we can assume that the
3052value is overwritten with bits that happen to match what was already
3053there. However, a store *to* an undefined location could clobber
3054arbitrary memory, therefore, it has undefined behavior.
3055
3056.. _poisonvalues:
3057
3058Poison Values
3059-------------
3060
3061Poison values are similar to :ref:`undef values <undefvalues>`, however
3062they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00003063that cannot evoke side effects has nevertheless detected a condition
3064that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003065
3066There is currently no way of representing a poison value in the IR; they
3067only exist when produced by operations such as :ref:`add <i_add>` with
3068the ``nsw`` flag.
3069
3070Poison value behavior is defined in terms of value *dependence*:
3071
3072- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
3073- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
3074 their dynamic predecessor basic block.
3075- Function arguments depend on the corresponding actual argument values
3076 in the dynamic callers of their functions.
3077- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
3078 instructions that dynamically transfer control back to them.
3079- :ref:`Invoke <i_invoke>` instructions depend on the
3080 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
3081 call instructions that dynamically transfer control back to them.
3082- Non-volatile loads and stores depend on the most recent stores to all
3083 of the referenced memory addresses, following the order in the IR
3084 (including loads and stores implied by intrinsics such as
3085 :ref:`@llvm.memcpy <int_memcpy>`.)
3086- An instruction with externally visible side effects depends on the
3087 most recent preceding instruction with externally visible side
3088 effects, following the order in the IR. (This includes :ref:`volatile
3089 operations <volatile>`.)
3090- An instruction *control-depends* on a :ref:`terminator
3091 instruction <terminators>` if the terminator instruction has
3092 multiple successors and the instruction is always executed when
3093 control transfers to one of the successors, and may not be executed
3094 when control is transferred to another.
3095- Additionally, an instruction also *control-depends* on a terminator
3096 instruction if the set of instructions it otherwise depends on would
3097 be different if the terminator had transferred control to a different
3098 successor.
3099- Dependence is transitive.
3100
Richard Smith32dbdf62014-07-31 04:25:36 +00003101Poison values have the same behavior as :ref:`undef values <undefvalues>`,
3102with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00003103on a poison value has undefined behavior.
3104
3105Here are some examples:
3106
3107.. code-block:: llvm
3108
3109 entry:
3110 %poison = sub nuw i32 0, 1 ; Results in a poison value.
3111 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00003112 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00003113 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3114
3115 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003116 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003117
3118 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3119
3120 %narrowaddr = bitcast i32* @g to i16*
3121 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003122 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3123 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003124
3125 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3126 br i1 %cmp, label %true, label %end ; Branch to either destination.
3127
3128 true:
3129 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3130 ; it has undefined behavior.
3131 br label %end
3132
3133 end:
3134 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3135 ; Both edges into this PHI are
3136 ; control-dependent on %cmp, so this
3137 ; always results in a poison value.
3138
3139 store volatile i32 0, i32* @g ; This would depend on the store in %true
3140 ; if %cmp is true, or the store in %entry
3141 ; otherwise, so this is undefined behavior.
3142
3143 br i1 %cmp, label %second_true, label %second_end
3144 ; The same branch again, but this time the
3145 ; true block doesn't have side effects.
3146
3147 second_true:
3148 ; No side effects!
3149 ret void
3150
3151 second_end:
3152 store volatile i32 0, i32* @g ; This time, the instruction always depends
3153 ; on the store in %end. Also, it is
3154 ; control-equivalent to %end, so this is
3155 ; well-defined (ignoring earlier undefined
3156 ; behavior in this example).
3157
3158.. _blockaddress:
3159
3160Addresses of Basic Blocks
3161-------------------------
3162
3163``blockaddress(@function, %block)``
3164
3165The '``blockaddress``' constant computes the address of the specified
3166basic block in the specified function, and always has an ``i8*`` type.
3167Taking the address of the entry block is illegal.
3168
3169This value only has defined behavior when used as an operand to the
3170':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3171against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003172undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003173no label is equal to the null pointer. This may be passed around as an
3174opaque pointer sized value as long as the bits are not inspected. This
3175allows ``ptrtoint`` and arithmetic to be performed on these values so
3176long as the original value is reconstituted before the ``indirectbr``
3177instruction.
3178
3179Finally, some targets may provide defined semantics when using the value
3180as the operand to an inline assembly, but that is target specific.
3181
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003182.. _constantexprs:
3183
Sean Silvab084af42012-12-07 10:36:55 +00003184Constant Expressions
3185--------------------
3186
3187Constant expressions are used to allow expressions involving other
3188constants to be used as constants. Constant expressions may be of any
3189:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3190that does not have side effects (e.g. load and call are not supported).
3191The following is the syntax for constant expressions:
3192
3193``trunc (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003194 Perform the :ref:`trunc operation <i_trunc>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003195``zext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003196 Perform the :ref:`zext operation <i_zext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003197``sext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003198 Perform the :ref:`sext operation <i_sext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003199``fptrunc (CST to TYPE)``
3200 Truncate a floating point constant to another floating point type.
3201 The size of CST must be larger than the size of TYPE. Both types
3202 must be floating point.
3203``fpext (CST to TYPE)``
3204 Floating point extend a constant to another type. The size of CST
3205 must be smaller or equal to the size of TYPE. Both types must be
3206 floating point.
3207``fptoui (CST to TYPE)``
3208 Convert a floating point constant to the corresponding unsigned
3209 integer constant. TYPE must be a scalar or vector integer type. CST
3210 must be of scalar or vector floating point type. Both CST and TYPE
3211 must be scalars, or vectors of the same number of elements. If the
3212 value won't fit in the integer type, the results are undefined.
3213``fptosi (CST to TYPE)``
3214 Convert a floating point constant to the corresponding signed
3215 integer constant. TYPE must be a scalar or vector integer type. CST
3216 must be of scalar or vector floating point type. Both CST and TYPE
3217 must be scalars, or vectors of the same number of elements. If the
3218 value won't fit in the integer type, the results are undefined.
3219``uitofp (CST to TYPE)``
3220 Convert an unsigned integer constant to the corresponding floating
3221 point constant. TYPE must be a scalar or vector floating point type.
3222 CST must be of scalar or vector integer type. Both CST and TYPE must
3223 be scalars, or vectors of the same number of elements. If the value
3224 won't fit in the floating point type, the results are undefined.
3225``sitofp (CST to TYPE)``
3226 Convert a signed integer constant to the corresponding floating
3227 point constant. TYPE must be a scalar or vector floating point type.
3228 CST must be of scalar or vector integer type. Both CST and TYPE must
3229 be scalars, or vectors of the same number of elements. If the value
3230 won't fit in the floating point type, the results are undefined.
3231``ptrtoint (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003232 Perform the :ref:`ptrtoint operation <i_ptrtoint>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003233``inttoptr (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003234 Perform the :ref:`inttoptr operation <i_inttoptr>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003235 This one is *really* dangerous!
3236``bitcast (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003237 Convert a constant, CST, to another TYPE.
3238 The constraints of the operands are the same as those for the
3239 :ref:`bitcast instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003240``addrspacecast (CST to TYPE)``
3241 Convert a constant pointer or constant vector of pointer, CST, to another
3242 TYPE in a different address space. The constraints of the operands are the
3243 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003244``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003245 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3246 constants. As with the :ref:`getelementptr <i_getelementptr>`
David Blaikief91b0302017-06-19 05:34:21 +00003247 instruction, the index list may have one or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003248 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003249``select (COND, VAL1, VAL2)``
3250 Perform the :ref:`select operation <i_select>` on constants.
3251``icmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003252 Perform the :ref:`icmp operation <i_icmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003253``fcmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003254 Perform the :ref:`fcmp operation <i_fcmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003255``extractelement (VAL, IDX)``
3256 Perform the :ref:`extractelement operation <i_extractelement>` on
3257 constants.
3258``insertelement (VAL, ELT, IDX)``
3259 Perform the :ref:`insertelement operation <i_insertelement>` on
3260 constants.
3261``shufflevector (VEC1, VEC2, IDXMASK)``
3262 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3263 constants.
3264``extractvalue (VAL, IDX0, IDX1, ...)``
3265 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3266 constants. The index list is interpreted in a similar manner as
3267 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3268 least one index value must be specified.
3269``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3270 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3271 The index list is interpreted in a similar manner as indices in a
3272 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3273 value must be specified.
3274``OPCODE (LHS, RHS)``
3275 Perform the specified operation of the LHS and RHS constants. OPCODE
3276 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3277 binary <bitwiseops>` operations. The constraints on operands are
3278 the same as those for the corresponding instruction (e.g. no bitwise
3279 operations on floating point values are allowed).
3280
3281Other Values
3282============
3283
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003284.. _inlineasmexprs:
3285
Sean Silvab084af42012-12-07 10:36:55 +00003286Inline Assembler Expressions
3287----------------------------
3288
3289LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003290Inline Assembly <moduleasm>`) through the use of a special value. This value
3291represents the inline assembler as a template string (containing the
3292instructions to emit), a list of operand constraints (stored as a string), a
3293flag that indicates whether or not the inline asm expression has side effects,
3294and a flag indicating whether the function containing the asm needs to align its
3295stack conservatively.
3296
3297The template string supports argument substitution of the operands using "``$``"
3298followed by a number, to indicate substitution of the given register/memory
3299location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3300be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3301operand (See :ref:`inline-asm-modifiers`).
3302
3303A literal "``$``" may be included by using "``$$``" in the template. To include
3304other special characters into the output, the usual "``\XX``" escapes may be
3305used, just as in other strings. Note that after template substitution, the
3306resulting assembly string is parsed by LLVM's integrated assembler unless it is
3307disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3308syntax known to LLVM.
3309
Reid Kleckner71cb1642017-02-06 18:08:45 +00003310LLVM also supports a few more substitions useful for writing inline assembly:
3311
3312- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3313 This substitution is useful when declaring a local label. Many standard
3314 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3315 Adding a blob-unique identifier ensures that the two labels will not conflict
3316 during assembly. This is used to implement `GCC's %= special format
3317 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3318- ``${:comment}``: Expands to the comment character of the current target's
3319 assembly dialect. This is usually ``#``, but many targets use other strings,
3320 such as ``;``, ``//``, or ``!``.
3321- ``${:private}``: Expands to the assembler private label prefix. Labels with
3322 this prefix will not appear in the symbol table of the assembled object.
3323 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3324 relatively popular.
3325
James Y Knightbc832ed2015-07-08 18:08:36 +00003326LLVM's support for inline asm is modeled closely on the requirements of Clang's
3327GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3328modifier codes listed here are similar or identical to those in GCC's inline asm
3329support. However, to be clear, the syntax of the template and constraint strings
3330described here is *not* the same as the syntax accepted by GCC and Clang, and,
3331while most constraint letters are passed through as-is by Clang, some get
3332translated to other codes when converting from the C source to the LLVM
3333assembly.
3334
3335An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003336
3337.. code-block:: llvm
3338
3339 i32 (i32) asm "bswap $0", "=r,r"
3340
3341Inline assembler expressions may **only** be used as the callee operand
3342of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3343Thus, typically we have:
3344
3345.. code-block:: llvm
3346
3347 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3348
3349Inline asms with side effects not visible in the constraint list must be
3350marked as having side effects. This is done through the use of the
3351'``sideeffect``' keyword, like so:
3352
3353.. code-block:: llvm
3354
3355 call void asm sideeffect "eieio", ""()
3356
3357In some cases inline asms will contain code that will not work unless
3358the stack is aligned in some way, such as calls or SSE instructions on
3359x86, yet will not contain code that does that alignment within the asm.
3360The compiler should make conservative assumptions about what the asm
3361might contain and should generate its usual stack alignment code in the
3362prologue if the '``alignstack``' keyword is present:
3363
3364.. code-block:: llvm
3365
3366 call void asm alignstack "eieio", ""()
3367
3368Inline asms also support using non-standard assembly dialects. The
3369assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3370the inline asm is using the Intel dialect. Currently, ATT and Intel are
3371the only supported dialects. An example is:
3372
3373.. code-block:: llvm
3374
3375 call void asm inteldialect "eieio", ""()
3376
3377If multiple keywords appear the '``sideeffect``' keyword must come
3378first, the '``alignstack``' keyword second and the '``inteldialect``'
3379keyword last.
3380
James Y Knightbc832ed2015-07-08 18:08:36 +00003381Inline Asm Constraint String
3382^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3383
3384The constraint list is a comma-separated string, each element containing one or
3385more constraint codes.
3386
3387For each element in the constraint list an appropriate register or memory
3388operand will be chosen, and it will be made available to assembly template
3389string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3390second, etc.
3391
3392There are three different types of constraints, which are distinguished by a
3393prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3394constraints must always be given in that order: outputs first, then inputs, then
3395clobbers. They cannot be intermingled.
3396
3397There are also three different categories of constraint codes:
3398
3399- Register constraint. This is either a register class, or a fixed physical
3400 register. This kind of constraint will allocate a register, and if necessary,
3401 bitcast the argument or result to the appropriate type.
3402- Memory constraint. This kind of constraint is for use with an instruction
3403 taking a memory operand. Different constraints allow for different addressing
3404 modes used by the target.
3405- Immediate value constraint. This kind of constraint is for an integer or other
3406 immediate value which can be rendered directly into an instruction. The
3407 various target-specific constraints allow the selection of a value in the
3408 proper range for the instruction you wish to use it with.
3409
3410Output constraints
3411""""""""""""""""""
3412
3413Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3414indicates that the assembly will write to this operand, and the operand will
3415then be made available as a return value of the ``asm`` expression. Output
3416constraints do not consume an argument from the call instruction. (Except, see
3417below about indirect outputs).
3418
3419Normally, it is expected that no output locations are written to by the assembly
3420expression until *all* of the inputs have been read. As such, LLVM may assign
3421the same register to an output and an input. If this is not safe (e.g. if the
3422assembly contains two instructions, where the first writes to one output, and
3423the second reads an input and writes to a second output), then the "``&``"
3424modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003425"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003426will not use the same register for any inputs (other than an input tied to this
3427output).
3428
3429Input constraints
3430"""""""""""""""""
3431
3432Input constraints do not have a prefix -- just the constraint codes. Each input
3433constraint will consume one argument from the call instruction. It is not
3434permitted for the asm to write to any input register or memory location (unless
3435that input is tied to an output). Note also that multiple inputs may all be
3436assigned to the same register, if LLVM can determine that they necessarily all
3437contain the same value.
3438
3439Instead of providing a Constraint Code, input constraints may also "tie"
3440themselves to an output constraint, by providing an integer as the constraint
3441string. Tied inputs still consume an argument from the call instruction, and
3442take up a position in the asm template numbering as is usual -- they will simply
3443be constrained to always use the same register as the output they've been tied
3444to. For example, a constraint string of "``=r,0``" says to assign a register for
3445output, and use that register as an input as well (it being the 0'th
3446constraint).
3447
3448It is permitted to tie an input to an "early-clobber" output. In that case, no
3449*other* input may share the same register as the input tied to the early-clobber
3450(even when the other input has the same value).
3451
3452You may only tie an input to an output which has a register constraint, not a
3453memory constraint. Only a single input may be tied to an output.
3454
3455There is also an "interesting" feature which deserves a bit of explanation: if a
3456register class constraint allocates a register which is too small for the value
3457type operand provided as input, the input value will be split into multiple
3458registers, and all of them passed to the inline asm.
3459
3460However, this feature is often not as useful as you might think.
3461
3462Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3463architectures that have instructions which operate on multiple consecutive
3464instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3465SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3466hardware then loads into both the named register, and the next register. This
3467feature of inline asm would not be useful to support that.)
3468
3469A few of the targets provide a template string modifier allowing explicit access
3470to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3471``D``). On such an architecture, you can actually access the second allocated
3472register (yet, still, not any subsequent ones). But, in that case, you're still
3473probably better off simply splitting the value into two separate operands, for
3474clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3475despite existing only for use with this feature, is not really a good idea to
3476use)
3477
3478Indirect inputs and outputs
3479"""""""""""""""""""""""""""
3480
3481Indirect output or input constraints can be specified by the "``*``" modifier
3482(which goes after the "``=``" in case of an output). This indicates that the asm
3483will write to or read from the contents of an *address* provided as an input
3484argument. (Note that in this way, indirect outputs act more like an *input* than
3485an output: just like an input, they consume an argument of the call expression,
3486rather than producing a return value. An indirect output constraint is an
3487"output" only in that the asm is expected to write to the contents of the input
3488memory location, instead of just read from it).
3489
3490This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3491address of a variable as a value.
3492
3493It is also possible to use an indirect *register* constraint, but only on output
3494(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3495value normally, and then, separately emit a store to the address provided as
3496input, after the provided inline asm. (It's not clear what value this
3497functionality provides, compared to writing the store explicitly after the asm
3498statement, and it can only produce worse code, since it bypasses many
3499optimization passes. I would recommend not using it.)
3500
3501
3502Clobber constraints
3503"""""""""""""""""""
3504
3505A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3506consume an input operand, nor generate an output. Clobbers cannot use any of the
3507general constraint code letters -- they may use only explicit register
3508constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3509"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3510memory locations -- not only the memory pointed to by a declared indirect
3511output.
3512
Peter Zotov00257232016-08-30 10:48:31 +00003513Note that clobbering named registers that are also present in output
3514constraints is not legal.
3515
James Y Knightbc832ed2015-07-08 18:08:36 +00003516
3517Constraint Codes
3518""""""""""""""""
3519After a potential prefix comes constraint code, or codes.
3520
3521A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3522followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3523(e.g. "``{eax}``").
3524
3525The one and two letter constraint codes are typically chosen to be the same as
3526GCC's constraint codes.
3527
3528A single constraint may include one or more than constraint code in it, leaving
3529it up to LLVM to choose which one to use. This is included mainly for
3530compatibility with the translation of GCC inline asm coming from clang.
3531
3532There are two ways to specify alternatives, and either or both may be used in an
3533inline asm constraint list:
3534
35351) Append the codes to each other, making a constraint code set. E.g. "``im``"
3536 or "``{eax}m``". This means "choose any of the options in the set". The
3537 choice of constraint is made independently for each constraint in the
3538 constraint list.
3539
35402) Use "``|``" between constraint code sets, creating alternatives. Every
3541 constraint in the constraint list must have the same number of alternative
3542 sets. With this syntax, the same alternative in *all* of the items in the
3543 constraint list will be chosen together.
3544
3545Putting those together, you might have a two operand constraint string like
3546``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3547operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3548may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3549
3550However, the use of either of the alternatives features is *NOT* recommended, as
3551LLVM is not able to make an intelligent choice about which one to use. (At the
3552point it currently needs to choose, not enough information is available to do so
3553in a smart way.) Thus, it simply tries to make a choice that's most likely to
3554compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3555always choose to use memory, not registers). And, if given multiple registers,
3556or multiple register classes, it will simply choose the first one. (In fact, it
3557doesn't currently even ensure explicitly specified physical registers are
3558unique, so specifying multiple physical registers as alternatives, like
3559``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3560intended.)
3561
3562Supported Constraint Code List
3563""""""""""""""""""""""""""""""
3564
3565The constraint codes are, in general, expected to behave the same way they do in
3566GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3567inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3568and GCC likely indicates a bug in LLVM.
3569
3570Some constraint codes are typically supported by all targets:
3571
3572- ``r``: A register in the target's general purpose register class.
3573- ``m``: A memory address operand. It is target-specific what addressing modes
3574 are supported, typical examples are register, or register + register offset,
3575 or register + immediate offset (of some target-specific size).
3576- ``i``: An integer constant (of target-specific width). Allows either a simple
3577 immediate, or a relocatable value.
3578- ``n``: An integer constant -- *not* including relocatable values.
3579- ``s``: An integer constant, but allowing *only* relocatable values.
3580- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3581 useful to pass a label for an asm branch or call.
3582
3583 .. FIXME: but that surely isn't actually okay to jump out of an asm
3584 block without telling llvm about the control transfer???)
3585
3586- ``{register-name}``: Requires exactly the named physical register.
3587
3588Other constraints are target-specific:
3589
3590AArch64:
3591
3592- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3593- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3594 i.e. 0 to 4095 with optional shift by 12.
3595- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3596 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3597- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3598 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3599- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3600 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3601- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3602 32-bit register. This is a superset of ``K``: in addition to the bitmask
3603 immediate, also allows immediate integers which can be loaded with a single
3604 ``MOVZ`` or ``MOVL`` instruction.
3605- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3606 64-bit register. This is a superset of ``L``.
3607- ``Q``: Memory address operand must be in a single register (no
3608 offsets). (However, LLVM currently does this for the ``m`` constraint as
3609 well.)
3610- ``r``: A 32 or 64-bit integer register (W* or X*).
3611- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3612- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3613
3614AMDGPU:
3615
3616- ``r``: A 32 or 64-bit integer register.
3617- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3618- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3619
3620
3621All ARM modes:
3622
3623- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3624 operand. Treated the same as operand ``m``, at the moment.
3625
3626ARM and ARM's Thumb2 mode:
3627
3628- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3629- ``I``: An immediate integer valid for a data-processing instruction.
3630- ``J``: An immediate integer between -4095 and 4095.
3631- ``K``: An immediate integer whose bitwise inverse is valid for a
3632 data-processing instruction. (Can be used with template modifier "``B``" to
3633 print the inverted value).
3634- ``L``: An immediate integer whose negation is valid for a data-processing
3635 instruction. (Can be used with template modifier "``n``" to print the negated
3636 value).
3637- ``M``: A power of two or a integer between 0 and 32.
3638- ``N``: Invalid immediate constraint.
3639- ``O``: Invalid immediate constraint.
3640- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3641- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3642 as ``r``.
3643- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3644 invalid.
3645- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3646 ``d0-d31``, or ``q0-q15``.
3647- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3648 ``d0-d7``, or ``q0-q3``.
3649- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3650 ``s0-s31``.
3651
3652ARM's Thumb1 mode:
3653
3654- ``I``: An immediate integer between 0 and 255.
3655- ``J``: An immediate integer between -255 and -1.
3656- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3657 some amount.
3658- ``L``: An immediate integer between -7 and 7.
3659- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3660- ``N``: An immediate integer between 0 and 31.
3661- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3662- ``r``: A low 32-bit GPR register (``r0-r7``).
3663- ``l``: A low 32-bit GPR register (``r0-r7``).
3664- ``h``: A high GPR register (``r0-r7``).
3665- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3666 ``d0-d31``, or ``q0-q15``.
3667- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3668 ``d0-d7``, or ``q0-q3``.
3669- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3670 ``s0-s31``.
3671
3672
3673Hexagon:
3674
3675- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3676 at the moment.
3677- ``r``: A 32 or 64-bit register.
3678
3679MSP430:
3680
3681- ``r``: An 8 or 16-bit register.
3682
3683MIPS:
3684
3685- ``I``: An immediate signed 16-bit integer.
3686- ``J``: An immediate integer zero.
3687- ``K``: An immediate unsigned 16-bit integer.
3688- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3689- ``N``: An immediate integer between -65535 and -1.
3690- ``O``: An immediate signed 15-bit integer.
3691- ``P``: An immediate integer between 1 and 65535.
3692- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3693 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3694- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3695 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3696 ``m``.
3697- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3698 ``sc`` instruction on the given subtarget (details vary).
3699- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3700- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003701 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3702 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003703- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3704 ``25``).
3705- ``l``: The ``lo`` register, 32 or 64-bit.
3706- ``x``: Invalid.
3707
3708NVPTX:
3709
3710- ``b``: A 1-bit integer register.
3711- ``c`` or ``h``: A 16-bit integer register.
3712- ``r``: A 32-bit integer register.
3713- ``l`` or ``N``: A 64-bit integer register.
3714- ``f``: A 32-bit float register.
3715- ``d``: A 64-bit float register.
3716
3717
3718PowerPC:
3719
3720- ``I``: An immediate signed 16-bit integer.
3721- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3722- ``K``: An immediate unsigned 16-bit integer.
3723- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3724- ``M``: An immediate integer greater than 31.
3725- ``N``: An immediate integer that is an exact power of 2.
3726- ``O``: The immediate integer constant 0.
3727- ``P``: An immediate integer constant whose negation is a signed 16-bit
3728 constant.
3729- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3730 treated the same as ``m``.
3731- ``r``: A 32 or 64-bit integer register.
3732- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3733 ``R1-R31``).
3734- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3735 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3736- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3737 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3738 altivec vector register (``V0-V31``).
3739
3740 .. FIXME: is this a bug that v accepts QPX registers? I think this
3741 is supposed to only use the altivec vector registers?
3742
3743- ``y``: Condition register (``CR0-CR7``).
3744- ``wc``: An individual CR bit in a CR register.
3745- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3746 register set (overlapping both the floating-point and vector register files).
3747- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3748 set.
3749
3750Sparc:
3751
3752- ``I``: An immediate 13-bit signed integer.
3753- ``r``: A 32-bit integer register.
James Y Knightd4e1b002017-05-12 15:59:10 +00003754- ``f``: Any floating-point register on SparcV8, or a floating point
3755 register in the "low" half of the registers on SparcV9.
3756- ``e``: Any floating point register. (Same as ``f`` on SparcV8.)
James Y Knightbc832ed2015-07-08 18:08:36 +00003757
3758SystemZ:
3759
3760- ``I``: An immediate unsigned 8-bit integer.
3761- ``J``: An immediate unsigned 12-bit integer.
3762- ``K``: An immediate signed 16-bit integer.
3763- ``L``: An immediate signed 20-bit integer.
3764- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003765- ``Q``: A memory address operand with a base address and a 12-bit immediate
3766 unsigned displacement.
3767- ``R``: A memory address operand with a base address, a 12-bit immediate
3768 unsigned displacement, and an index register.
3769- ``S``: A memory address operand with a base address and a 20-bit immediate
3770 signed displacement.
3771- ``T``: A memory address operand with a base address, a 20-bit immediate
3772 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003773- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3774- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3775 address context evaluates as zero).
3776- ``h``: A 32-bit value in the high part of a 64bit data register
3777 (LLVM-specific)
3778- ``f``: A 32, 64, or 128-bit floating point register.
3779
3780X86:
3781
3782- ``I``: An immediate integer between 0 and 31.
3783- ``J``: An immediate integer between 0 and 64.
3784- ``K``: An immediate signed 8-bit integer.
3785- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3786 0xffffffff.
3787- ``M``: An immediate integer between 0 and 3.
3788- ``N``: An immediate unsigned 8-bit integer.
3789- ``O``: An immediate integer between 0 and 127.
3790- ``e``: An immediate 32-bit signed integer.
3791- ``Z``: An immediate 32-bit unsigned integer.
3792- ``o``, ``v``: Treated the same as ``m``, at the moment.
3793- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3794 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3795 registers, and on X86-64, it is all of the integer registers.
3796- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3797 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3798- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3799- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3800 existed since i386, and can be accessed without the REX prefix.
3801- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3802- ``y``: A 64-bit MMX register, if MMX is enabled.
3803- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3804 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3805 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3806 512-bit vector operand in an AVX512 register, Otherwise, an error.
3807- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3808- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3809 32-bit mode, a 64-bit integer operand will get split into two registers). It
3810 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3811 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3812 you're better off splitting it yourself, before passing it to the asm
3813 statement.
3814
3815XCore:
3816
3817- ``r``: A 32-bit integer register.
3818
3819
3820.. _inline-asm-modifiers:
3821
3822Asm template argument modifiers
3823^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3824
3825In the asm template string, modifiers can be used on the operand reference, like
3826"``${0:n}``".
3827
3828The modifiers are, in general, expected to behave the same way they do in
3829GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3830inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3831and GCC likely indicates a bug in LLVM.
3832
3833Target-independent:
3834
Sean Silvaa1190322015-08-06 22:56:48 +00003835- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003836 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3837- ``n``: Negate and print immediate integer constant unadorned, without the
3838 target-specific immediate punctuation (e.g. no ``$`` prefix).
3839- ``l``: Print as an unadorned label, without the target-specific label
3840 punctuation (e.g. no ``$`` prefix).
3841
3842AArch64:
3843
3844- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3845 instead of ``x30``, print ``w30``.
3846- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3847- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3848 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3849 ``v*``.
3850
3851AMDGPU:
3852
3853- ``r``: No effect.
3854
3855ARM:
3856
3857- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3858 register).
3859- ``P``: No effect.
3860- ``q``: No effect.
3861- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3862 as ``d4[1]`` instead of ``s9``)
3863- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3864 prefix.
3865- ``L``: Print the low 16-bits of an immediate integer constant.
3866- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3867 register operands subsequent to the specified one (!), so use carefully.
3868- ``Q``: Print the low-order register of a register-pair, or the low-order
3869 register of a two-register operand.
3870- ``R``: Print the high-order register of a register-pair, or the high-order
3871 register of a two-register operand.
3872- ``H``: Print the second register of a register-pair. (On a big-endian system,
3873 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3874 to ``R``.)
3875
3876 .. FIXME: H doesn't currently support printing the second register
3877 of a two-register operand.
3878
3879- ``e``: Print the low doubleword register of a NEON quad register.
3880- ``f``: Print the high doubleword register of a NEON quad register.
3881- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3882 adornment.
3883
3884Hexagon:
3885
3886- ``L``: Print the second register of a two-register operand. Requires that it
3887 has been allocated consecutively to the first.
3888
3889 .. FIXME: why is it restricted to consecutive ones? And there's
3890 nothing that ensures that happens, is there?
3891
3892- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3893 nothing. Used to print 'addi' vs 'add' instructions.
3894
3895MSP430:
3896
3897No additional modifiers.
3898
3899MIPS:
3900
3901- ``X``: Print an immediate integer as hexadecimal
3902- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3903- ``d``: Print an immediate integer as decimal.
3904- ``m``: Subtract one and print an immediate integer as decimal.
3905- ``z``: Print $0 if an immediate zero, otherwise print normally.
3906- ``L``: Print the low-order register of a two-register operand, or prints the
3907 address of the low-order word of a double-word memory operand.
3908
3909 .. FIXME: L seems to be missing memory operand support.
3910
3911- ``M``: Print the high-order register of a two-register operand, or prints the
3912 address of the high-order word of a double-word memory operand.
3913
3914 .. FIXME: M seems to be missing memory operand support.
3915
3916- ``D``: Print the second register of a two-register operand, or prints the
3917 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3918 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3919 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003920- ``w``: No effect. Provided for compatibility with GCC which requires this
3921 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3922 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003923
3924NVPTX:
3925
3926- ``r``: No effect.
3927
3928PowerPC:
3929
3930- ``L``: Print the second register of a two-register operand. Requires that it
3931 has been allocated consecutively to the first.
3932
3933 .. FIXME: why is it restricted to consecutive ones? And there's
3934 nothing that ensures that happens, is there?
3935
3936- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3937 nothing. Used to print 'addi' vs 'add' instructions.
3938- ``y``: For a memory operand, prints formatter for a two-register X-form
3939 instruction. (Currently always prints ``r0,OPERAND``).
3940- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3941 otherwise. (NOTE: LLVM does not support update form, so this will currently
3942 always print nothing)
3943- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3944 not support indexed form, so this will currently always print nothing)
3945
3946Sparc:
3947
3948- ``r``: No effect.
3949
3950SystemZ:
3951
3952SystemZ implements only ``n``, and does *not* support any of the other
3953target-independent modifiers.
3954
3955X86:
3956
3957- ``c``: Print an unadorned integer or symbol name. (The latter is
3958 target-specific behavior for this typically target-independent modifier).
3959- ``A``: Print a register name with a '``*``' before it.
3960- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3961 operand.
3962- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3963 memory operand.
3964- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3965 operand.
3966- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3967 operand.
3968- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3969 available, otherwise the 32-bit register name; do nothing on a memory operand.
3970- ``n``: Negate and print an unadorned integer, or, for operands other than an
3971 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3972 the operand. (The behavior for relocatable symbol expressions is a
3973 target-specific behavior for this typically target-independent modifier)
3974- ``H``: Print a memory reference with additional offset +8.
3975- ``P``: Print a memory reference or operand for use as the argument of a call
3976 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3977
3978XCore:
3979
3980No additional modifiers.
3981
3982
Sean Silvab084af42012-12-07 10:36:55 +00003983Inline Asm Metadata
3984^^^^^^^^^^^^^^^^^^^
3985
3986The call instructions that wrap inline asm nodes may have a
3987"``!srcloc``" MDNode attached to it that contains a list of constant
3988integers. If present, the code generator will use the integer as the
3989location cookie value when report errors through the ``LLVMContext``
3990error reporting mechanisms. This allows a front-end to correlate backend
3991errors that occur with inline asm back to the source code that produced
3992it. For example:
3993
3994.. code-block:: llvm
3995
3996 call void asm sideeffect "something bad", ""(), !srcloc !42
3997 ...
3998 !42 = !{ i32 1234567 }
3999
4000It is up to the front-end to make sense of the magic numbers it places
4001in the IR. If the MDNode contains multiple constants, the code generator
4002will use the one that corresponds to the line of the asm that the error
4003occurs on.
4004
4005.. _metadata:
4006
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004007Metadata
4008========
Sean Silvab084af42012-12-07 10:36:55 +00004009
4010LLVM IR allows metadata to be attached to instructions in the program
4011that can convey extra information about the code to the optimizers and
4012code generator. One example application of metadata is source-level
4013debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004014
Sean Silvaa1190322015-08-06 22:56:48 +00004015Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004016``call`` instruction, it uses the ``metadata`` type.
4017
4018All metadata are identified in syntax by a exclamation point ('``!``').
4019
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004020.. _metadata-string:
4021
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004022Metadata Nodes and Metadata Strings
4023-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00004024
4025A metadata string is a string surrounded by double quotes. It can
4026contain any character by escaping non-printable characters with
4027"``\xx``" where "``xx``" is the two digit hex code. For example:
4028"``!"test\00"``".
4029
4030Metadata nodes are represented with notation similar to structure
4031constants (a comma separated list of elements, surrounded by braces and
4032preceded by an exclamation point). Metadata nodes can have any values as
4033their operand. For example:
4034
4035.. code-block:: llvm
4036
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004037 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00004038
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004039Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
4040
Renato Golin124f2592016-07-20 12:16:38 +00004041.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004042
4043 !0 = distinct !{!"test\00", i32 10}
4044
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004045``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00004046content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004047when metadata operands change.
4048
Sean Silvab084af42012-12-07 10:36:55 +00004049A :ref:`named metadata <namedmetadatastructure>` is a collection of
4050metadata nodes, which can be looked up in the module symbol table. For
4051example:
4052
4053.. code-block:: llvm
4054
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004055 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00004056
Adrian Prantl1b842da2017-07-28 20:44:29 +00004057Metadata can be used as function arguments. Here the ``llvm.dbg.value``
4058intrinsic is using three metadata arguments:
Sean Silvab084af42012-12-07 10:36:55 +00004059
4060.. code-block:: llvm
4061
Adrian Prantlabe04752017-07-28 20:21:02 +00004062 call void @llvm.dbg.value(metadata !24, metadata !25, metadata !26)
Sean Silvab084af42012-12-07 10:36:55 +00004063
Peter Collingbourne50108682015-11-06 02:41:02 +00004064Metadata can be attached to an instruction. Here metadata ``!21`` is attached
4065to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00004066
4067.. code-block:: llvm
4068
4069 %indvar.next = add i64 %indvar, 1, !dbg !21
4070
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004071Metadata can also be attached to a function or a global variable. Here metadata
4072``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
4073and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00004074
4075.. code-block:: llvm
4076
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004077 declare !dbg !22 void @f1()
4078 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00004079 ret void
4080 }
4081
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004082 @g1 = global i32 0, !dbg !22
4083 @g2 = external global i32, !dbg !22
4084
4085A transformation is required to drop any metadata attachment that it does not
4086know or know it can't preserve. Currently there is an exception for metadata
4087attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
4088unconditionally dropped unless the global is itself deleted.
4089
4090Metadata attached to a module using named metadata may not be dropped, with
4091the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
4092
Sean Silvab084af42012-12-07 10:36:55 +00004093More information about specific metadata nodes recognized by the
4094optimizers and code generator is found below.
4095
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004096.. _specialized-metadata:
4097
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004098Specialized Metadata Nodes
4099^^^^^^^^^^^^^^^^^^^^^^^^^^
4100
4101Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00004102to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004103order.
4104
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004105These aren't inherently debug info centric, but currently all the specialized
4106metadata nodes are related to debug info.
4107
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004108.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004109
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004110DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004111"""""""""""""
4112
Sean Silvaa1190322015-08-06 22:56:48 +00004113``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004114``retainedTypes:``, ``globals:``, ``imports:`` and ``macros:`` fields are tuples
4115containing the debug info to be emitted along with the compile unit, regardless
4116of code optimizations (some nodes are only emitted if there are references to
4117them from instructions). The ``debugInfoForProfiling:`` field is a boolean
4118indicating whether or not line-table discriminators are updated to provide
4119more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004120
Renato Golin124f2592016-07-20 12:16:38 +00004121.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004122
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004123 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004124 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004125 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004126 enums: !2, retainedTypes: !3, globals: !4, imports: !5,
4127 macros: !6, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004128
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004129Compile unit descriptors provide the root scope for objects declared in a
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004130specific compilation unit. File descriptors are defined using this scope. These
4131descriptors are collected by a named metadata node ``!llvm.dbg.cu``. They keep
4132track of global variables, type information, and imported entities (declarations
4133and namespaces).
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004134
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004135.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004136
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004137DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004138""""""
4139
Sean Silvaa1190322015-08-06 22:56:48 +00004140``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004141
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004142.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004143
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004144 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4145 checksumkind: CSK_MD5,
4146 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004147
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004148Files are sometimes used in ``scope:`` fields, and are the only valid target
4149for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004150Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004151
Michael Kuperstein605308a2015-05-14 10:58:59 +00004152.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004153
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004154DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004155"""""""""""
4156
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004157``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004158``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004159
Renato Golin124f2592016-07-20 12:16:38 +00004160.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004161
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004162 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004163 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004164 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004165
Sean Silvaa1190322015-08-06 22:56:48 +00004166The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004167following:
4168
Renato Golin124f2592016-07-20 12:16:38 +00004169.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004170
4171 DW_ATE_address = 1
4172 DW_ATE_boolean = 2
4173 DW_ATE_float = 4
4174 DW_ATE_signed = 5
4175 DW_ATE_signed_char = 6
4176 DW_ATE_unsigned = 7
4177 DW_ATE_unsigned_char = 8
4178
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004179.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004180
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004181DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004182""""""""""""""""
4183
Sean Silvaa1190322015-08-06 22:56:48 +00004184``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004185refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004186types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004187represents a function with no return value (such as ``void foo() {}`` in C++).
4188
Renato Golin124f2592016-07-20 12:16:38 +00004189.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004190
4191 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4192 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004193 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004194
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004195.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004196
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004197DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004198"""""""""""""
4199
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004200``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004201qualified types.
4202
Renato Golin124f2592016-07-20 12:16:38 +00004203.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004204
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004205 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004206 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004207 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004208 align: 32)
4209
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004210The following ``tag:`` values are valid:
4211
Renato Golin124f2592016-07-20 12:16:38 +00004212.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004213
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004214 DW_TAG_member = 13
4215 DW_TAG_pointer_type = 15
4216 DW_TAG_reference_type = 16
4217 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004218 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004219 DW_TAG_ptr_to_member_type = 31
4220 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004221 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004222 DW_TAG_volatile_type = 53
4223 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004224 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004225
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004226.. _DIDerivedTypeMember:
4227
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004228``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004229<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004230``offset:`` is the member's bit offset. If the composite type has an ODR
4231``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4232uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004233
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004234``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4235field of :ref:`composite types <DICompositeType>` to describe parents and
4236friends.
4237
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004238``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4239
4240``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004241``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4242are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004243
4244Note that the ``void *`` type is expressed as a type derived from NULL.
4245
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004246.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004247
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004248DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004249"""""""""""""""
4250
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004251``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004252structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004253
4254If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004255identifier used for type merging between modules. When specified,
4256:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4257derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4258``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004259
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004260For a given ``identifier:``, there should only be a single composite type that
4261does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4262together will unique such definitions at parse time via the ``identifier:``
4263field, even if the nodes are ``distinct``.
4264
Renato Golin124f2592016-07-20 12:16:38 +00004265.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004266
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004267 !0 = !DIEnumerator(name: "SixKind", value: 7)
4268 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4269 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4270 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004271 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4272 elements: !{!0, !1, !2})
4273
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004274The following ``tag:`` values are valid:
4275
Renato Golin124f2592016-07-20 12:16:38 +00004276.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004277
4278 DW_TAG_array_type = 1
4279 DW_TAG_class_type = 2
4280 DW_TAG_enumeration_type = 4
4281 DW_TAG_structure_type = 19
4282 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004283
4284For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004285descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004286level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004287array type is a native packed vector.
4288
4289For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004290descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004291value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004292``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004293
4294For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4295``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004296<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4297``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4298``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004299
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004300.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004301
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004302DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004303""""""""""
4304
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004305``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004306:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004307
4308.. code-block:: llvm
4309
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004310 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4311 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4312 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004313
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004314.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004315
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004316DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004317""""""""""""
4318
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004319``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4320variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004321
4322.. code-block:: llvm
4323
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004324 !0 = !DIEnumerator(name: "SixKind", value: 7)
4325 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4326 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004327
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004328DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004329"""""""""""""""""""""""
4330
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004331``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004332language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004333:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004334
4335.. code-block:: llvm
4336
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004337 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004338
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004339DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004340""""""""""""""""""""""""
4341
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004342``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004343language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004344but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004345``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004346:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004347
4348.. code-block:: llvm
4349
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004350 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004351
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004352DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004353"""""""""""
4354
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004355``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004356
4357.. code-block:: llvm
4358
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004359 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004360
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004361DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004362""""""""""""""""
4363
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004364``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004365
4366.. code-block:: llvm
4367
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004368 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004369 file: !2, line: 7, type: !3, isLocal: true,
4370 isDefinition: false, variable: i32* @foo,
4371 declaration: !4)
4372
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004373All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004374:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004375
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004376.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004377
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004378DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004379""""""""""""
4380
Peter Collingbourne50108682015-11-06 02:41:02 +00004381``DISubprogram`` nodes represent functions from the source language. A
4382``DISubprogram`` may be attached to a function definition using ``!dbg``
4383metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4384that must be retained, even if their IR counterparts are optimized out of
4385the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004386
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004387.. _DISubprogramDeclaration:
4388
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004389When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004390tree as opposed to a definition of a function. If the scope is a composite
4391type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4392then the subprogram declaration is uniqued based only on its ``linkageName:``
4393and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004394
Renato Golin124f2592016-07-20 12:16:38 +00004395.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004396
Peter Collingbourne50108682015-11-06 02:41:02 +00004397 define void @_Z3foov() !dbg !0 {
4398 ...
4399 }
4400
4401 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4402 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004403 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004404 containingType: !4,
4405 virtuality: DW_VIRTUALITY_pure_virtual,
4406 virtualIndex: 10, flags: DIFlagPrototyped,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004407 isOptimized: true, unit: !5, templateParams: !6,
4408 declaration: !7, variables: !8, thrownTypes: !9)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004409
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004410.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004411
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004412DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004413""""""""""""""
4414
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004415``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004416<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004417two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004418fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004419
Renato Golin124f2592016-07-20 12:16:38 +00004420.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004421
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004422 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004423
4424Usually lexical blocks are ``distinct`` to prevent node merging based on
4425operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004426
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004427.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004428
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004429DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004430""""""""""""""""""
4431
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004432``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004433:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004434indicate textual inclusion, or the ``discriminator:`` field can be used to
4435discriminate between control flow within a single block in the source language.
4436
4437.. code-block:: llvm
4438
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004439 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4440 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4441 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004442
Michael Kuperstein605308a2015-05-14 10:58:59 +00004443.. _DILocation:
4444
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004445DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004446""""""""""
4447
Sean Silvaa1190322015-08-06 22:56:48 +00004448``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004449mandatory, and points at an :ref:`DILexicalBlockFile`, an
4450:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004451
4452.. code-block:: llvm
4453
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004454 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004455
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004456.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004457
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004458DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004459"""""""""""""""
4460
Sean Silvaa1190322015-08-06 22:56:48 +00004461``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004462the ``arg:`` field is set to non-zero, then this variable is a subprogram
4463parameter, and it will be included in the ``variables:`` field of its
4464:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004465
Renato Golin124f2592016-07-20 12:16:38 +00004466.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004467
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004468 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4469 type: !3, flags: DIFlagArtificial)
4470 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4471 type: !3)
4472 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004473
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004474DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004475""""""""""""
4476
Adrian Prantlb44c7762017-03-22 18:01:01 +00004477``DIExpression`` nodes represent expressions that are inspired by the DWARF
4478expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
4479(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
4480referenced LLVM variable relates to the source language variable.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004481
4482The current supported vocabulary is limited:
4483
Adrian Prantl6825fb62017-04-18 01:21:53 +00004484- ``DW_OP_deref`` dereferences the top of the expression stack.
Florian Hahnffc498d2017-06-14 13:14:38 +00004485- ``DW_OP_plus`` pops the last two entries from the expression stack, adds
4486 them together and appends the result to the expression stack.
4487- ``DW_OP_minus`` pops the last two entries from the expression stack, subtracts
4488 the last entry from the second last entry and appends the result to the
4489 expression stack.
Florian Hahnc9c403c2017-06-13 16:54:44 +00004490- ``DW_OP_plus_uconst, 93`` adds ``93`` to the working expression.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004491- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
4492 here, respectively) of the variable fragment from the working expression. Note
4493 that contrary to DW_OP_bit_piece, the offset is describing the the location
4494 within the described source variable.
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004495- ``DW_OP_swap`` swaps top two stack entries.
4496- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
4497 of the stack is treated as an address. The second stack entry is treated as an
4498 address space identifier.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004499- ``DW_OP_stack_value`` marks a constant value.
4500
Adrian Prantl6825fb62017-04-18 01:21:53 +00004501DWARF specifies three kinds of simple location descriptions: Register, memory,
4502and implicit location descriptions. Register and memory location descriptions
4503describe the *location* of a source variable (in the sense that a debugger might
4504modify its value), whereas implicit locations describe merely the *value* of a
4505source variable. DIExpressions also follow this model: A DIExpression that
4506doesn't have a trailing ``DW_OP_stack_value`` will describe an *address* when
4507combined with a concrete location.
4508
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004509.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004510
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004511 !0 = !DIExpression(DW_OP_deref)
Florian Hahnc9c403c2017-06-13 16:54:44 +00004512 !1 = !DIExpression(DW_OP_plus_uconst, 3)
Florian Hahnffc498d2017-06-14 13:14:38 +00004513 !1 = !DIExpression(DW_OP_constu, 3, DW_OP_plus)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004514 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
Florian Hahnffc498d2017-06-14 13:14:38 +00004515 !3 = !DIExpression(DW_OP_deref, DW_OP_constu, 3, DW_OP_plus, DW_OP_LLVM_fragment, 3, 7)
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004516 !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004517 !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004518
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004519DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004520""""""""""""""
4521
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004522``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004523
4524.. code-block:: llvm
4525
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004526 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004527 getter: "getFoo", attributes: 7, type: !2)
4528
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004529DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004530""""""""""""""""
4531
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004532``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004533compile unit.
4534
Renato Golin124f2592016-07-20 12:16:38 +00004535.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004536
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004537 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004538 entity: !1, line: 7)
4539
Amjad Abouda9bcf162015-12-10 12:56:35 +00004540DIMacro
4541"""""""
4542
4543``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4544The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004545defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004546used to expand the macro identifier.
4547
Renato Golin124f2592016-07-20 12:16:38 +00004548.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004549
4550 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4551 value: "((x) + 1)")
4552 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4553
4554DIMacroFile
4555"""""""""""
4556
4557``DIMacroFile`` nodes represent inclusion of source files.
4558The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4559appear in the included source file.
4560
Renato Golin124f2592016-07-20 12:16:38 +00004561.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004562
4563 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4564 nodes: !3)
4565
Sean Silvab084af42012-12-07 10:36:55 +00004566'``tbaa``' Metadata
4567^^^^^^^^^^^^^^^^^^^
4568
4569In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004570suitable for doing type based alias analysis (TBAA). Instead, metadata is
4571added to the IR to describe a type system of a higher level language. This
4572can be used to implement C/C++ strict type aliasing rules, but it can also
4573be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004574
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004575This description of LLVM's TBAA system is broken into two parts:
4576:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4577:ref:`Representation<tbaa_node_representation>` talks about the metadata
4578encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004579
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004580It is always possible to trace any TBAA node to a "root" TBAA node (details
4581in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4582nodes with different roots have an unknown aliasing relationship, and LLVM
4583conservatively infers ``MayAlias`` between them. The rules mentioned in
4584this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004585
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004586.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004587
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004588Semantics
4589"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004590
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004591The TBAA metadata system, referred to as "struct path TBAA" (not to be
4592confused with ``tbaa.struct``), consists of the following high level
4593concepts: *Type Descriptors*, further subdivided into scalar type
4594descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004595
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004596**Type descriptors** describe the type system of the higher level language
4597being compiled. **Scalar type descriptors** describe types that do not
4598contain other types. Each scalar type has a parent type, which must also
4599be a scalar type or the TBAA root. Via this parent relation, scalar types
4600within a TBAA root form a tree. **Struct type descriptors** denote types
4601that contain a sequence of other type descriptors, at known offsets. These
4602contained type descriptors can either be struct type descriptors themselves
4603or scalar type descriptors.
4604
4605**Access tags** are metadata nodes attached to load and store instructions.
4606Access tags use type descriptors to describe the *location* being accessed
4607in terms of the type system of the higher level language. Access tags are
4608tuples consisting of a base type, an access type and an offset. The base
4609type is a scalar type descriptor or a struct type descriptor, the access
4610type is a scalar type descriptor, and the offset is a constant integer.
4611
4612The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4613things:
4614
4615 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4616 or store) of a value of type ``AccessTy`` contained in the struct type
4617 ``BaseTy`` at offset ``Offset``.
4618
4619 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4620 ``AccessTy`` must be the same; and the access tag describes a scalar
4621 access with scalar type ``AccessTy``.
4622
4623We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4624tuples this way:
4625
4626 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4627 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4628 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4629 undefined if ``Offset`` is non-zero.
4630
4631 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4632 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4633 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4634 to be relative within that inner type.
4635
4636A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4637aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4638Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4639Offset2)`` via the ``Parent`` relation or vice versa.
4640
4641As a concrete example, the type descriptor graph for the following program
4642
4643.. code-block:: c
4644
4645 struct Inner {
4646 int i; // offset 0
4647 float f; // offset 4
4648 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004649
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004650 struct Outer {
4651 float f; // offset 0
4652 double d; // offset 4
4653 struct Inner inner_a; // offset 12
4654 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004655
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004656 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4657 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4658 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
4659 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, IntScalarTy, 16)
4660 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4661 }
4662
4663is (note that in C and C++, ``char`` can be used to access any arbitrary
4664type):
4665
4666.. code-block:: text
4667
4668 Root = "TBAA Root"
4669 CharScalarTy = ("char", Root, 0)
4670 FloatScalarTy = ("float", CharScalarTy, 0)
4671 DoubleScalarTy = ("double", CharScalarTy, 0)
4672 IntScalarTy = ("int", CharScalarTy, 0)
4673 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4674 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4675 (InnerStructTy, 12)}
4676
4677
4678with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
46790)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4680``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4681
4682.. _tbaa_node_representation:
4683
4684Representation
4685""""""""""""""
4686
4687The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4688with exactly one ``MDString`` operand.
4689
4690Scalar type descriptors are represented as an ``MDNode`` s with two
4691operands. The first operand is an ``MDString`` denoting the name of the
4692struct type. LLVM does not assign meaning to the value of this operand, it
4693only cares about it being an ``MDString``. The second operand is an
4694``MDNode`` which points to the parent for said scalar type descriptor,
4695which is either another scalar type descriptor or the TBAA root. Scalar
4696type descriptors can have an optional third argument, but that must be the
4697constant integer zero.
4698
4699Struct type descriptors are represented as ``MDNode`` s with an odd number
4700of operands greater than 1. The first operand is an ``MDString`` denoting
4701the name of the struct type. Like in scalar type descriptors the actual
4702value of this name operand is irrelevant to LLVM. After the name operand,
4703the struct type descriptors have a sequence of alternating ``MDNode`` and
4704``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4705an ``MDNode``, denotes a contained field, and the 2N th operand, a
4706``ConstantInt``, is the offset of the said contained field. The offsets
4707must be in non-decreasing order.
4708
4709Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4710The first operand is an ``MDNode`` pointing to the node representing the
4711base type. The second operand is an ``MDNode`` pointing to the node
4712representing the access type. The third operand is a ``ConstantInt`` that
4713states the offset of the access. If a fourth field is present, it must be
4714a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4715that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004716``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004717AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4718the access type and the base type of an access tag must be the same, and
4719that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004720
4721'``tbaa.struct``' Metadata
4722^^^^^^^^^^^^^^^^^^^^^^^^^^
4723
4724The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4725aggregate assignment operations in C and similar languages, however it
4726is defined to copy a contiguous region of memory, which is more than
4727strictly necessary for aggregate types which contain holes due to
4728padding. Also, it doesn't contain any TBAA information about the fields
4729of the aggregate.
4730
4731``!tbaa.struct`` metadata can describe which memory subregions in a
4732memcpy are padding and what the TBAA tags of the struct are.
4733
4734The current metadata format is very simple. ``!tbaa.struct`` metadata
4735nodes are a list of operands which are in conceptual groups of three.
4736For each group of three, the first operand gives the byte offset of a
4737field in bytes, the second gives its size in bytes, and the third gives
4738its tbaa tag. e.g.:
4739
4740.. code-block:: llvm
4741
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004742 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004743
4744This describes a struct with two fields. The first is at offset 0 bytes
4745with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4746and has size 4 bytes and has tbaa tag !2.
4747
4748Note that the fields need not be contiguous. In this example, there is a
47494 byte gap between the two fields. This gap represents padding which
4750does not carry useful data and need not be preserved.
4751
Hal Finkel94146652014-07-24 14:25:39 +00004752'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004753^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004754
4755``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4756noalias memory-access sets. This means that some collection of memory access
4757instructions (loads, stores, memory-accessing calls, etc.) that carry
4758``noalias`` metadata can specifically be specified not to alias with some other
4759collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004760Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004761a domain.
4762
4763When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004764of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004765subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004766instruction's ``noalias`` list, then the two memory accesses are assumed not to
4767alias.
Hal Finkel94146652014-07-24 14:25:39 +00004768
Adam Nemet569a5b32016-04-27 00:52:48 +00004769Because scopes in one domain don't affect scopes in other domains, separate
4770domains can be used to compose multiple independent noalias sets. This is
4771used for example during inlining. As the noalias function parameters are
4772turned into noalias scope metadata, a new domain is used every time the
4773function is inlined.
4774
Hal Finkel029cde62014-07-25 15:50:02 +00004775The metadata identifying each domain is itself a list containing one or two
4776entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004777string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004778self-reference can be used to create globally unique domain names. A
4779descriptive string may optionally be provided as a second list entry.
4780
4781The metadata identifying each scope is also itself a list containing two or
4782three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004783is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004784self-reference can be used to create globally unique scope names. A metadata
4785reference to the scope's domain is the second entry. A descriptive string may
4786optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004787
4788For example,
4789
4790.. code-block:: llvm
4791
Hal Finkel029cde62014-07-25 15:50:02 +00004792 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004793 !0 = !{!0}
4794 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004795
Hal Finkel029cde62014-07-25 15:50:02 +00004796 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004797 !2 = !{!2, !0}
4798 !3 = !{!3, !0}
4799 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004800
Hal Finkel029cde62014-07-25 15:50:02 +00004801 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004802 !5 = !{!4} ; A list containing only scope !4
4803 !6 = !{!4, !3, !2}
4804 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004805
4806 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004807 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004808 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004809
Hal Finkel029cde62014-07-25 15:50:02 +00004810 ; These two instructions also don't alias (for domain !1, the set of scopes
4811 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004812 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004813 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004814
Adam Nemet0a8416f2015-05-11 08:30:28 +00004815 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004816 ; the !noalias list is not a superset of, or equal to, the scopes in the
4817 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004818 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004819 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004820
Sean Silvab084af42012-12-07 10:36:55 +00004821'``fpmath``' Metadata
4822^^^^^^^^^^^^^^^^^^^^^
4823
4824``fpmath`` metadata may be attached to any instruction of floating point
4825type. It can be used to express the maximum acceptable error in the
4826result of that instruction, in ULPs, thus potentially allowing the
4827compiler to use a more efficient but less accurate method of computing
4828it. ULP is defined as follows:
4829
4830 If ``x`` is a real number that lies between two finite consecutive
4831 floating-point numbers ``a`` and ``b``, without being equal to one
4832 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4833 distance between the two non-equal finite floating-point numbers
4834 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4835
Matt Arsenault82f41512016-06-27 19:43:15 +00004836The metadata node shall consist of a single positive float type number
4837representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004838
4839.. code-block:: llvm
4840
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004841 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004842
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004843.. _range-metadata:
4844
Sean Silvab084af42012-12-07 10:36:55 +00004845'``range``' Metadata
4846^^^^^^^^^^^^^^^^^^^^
4847
Jingyue Wu37fcb592014-06-19 16:50:16 +00004848``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4849integer types. It expresses the possible ranges the loaded value or the value
4850returned by the called function at this call site is in. The ranges are
4851represented with a flattened list of integers. The loaded value or the value
4852returned is known to be in the union of the ranges defined by each consecutive
4853pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004854
4855- The type must match the type loaded by the instruction.
4856- The pair ``a,b`` represents the range ``[a,b)``.
4857- Both ``a`` and ``b`` are constants.
4858- The range is allowed to wrap.
4859- The range should not represent the full or empty set. That is,
4860 ``a!=b``.
4861
4862In addition, the pairs must be in signed order of the lower bound and
4863they must be non-contiguous.
4864
4865Examples:
4866
4867.. code-block:: llvm
4868
David Blaikiec7aabbb2015-03-04 22:06:14 +00004869 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4870 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004871 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4872 %d = invoke i8 @bar() to label %cont
4873 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004874 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004875 !0 = !{ i8 0, i8 2 }
4876 !1 = !{ i8 255, i8 2 }
4877 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4878 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004879
Peter Collingbourne235c2752016-12-08 19:01:00 +00004880'``absolute_symbol``' Metadata
4881^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4882
4883``absolute_symbol`` metadata may be attached to a global variable
4884declaration. It marks the declaration as a reference to an absolute symbol,
4885which causes the backend to use absolute relocations for the symbol even
4886in position independent code, and expresses the possible ranges that the
4887global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00004888``range`` metadata, with the extension that the pair ``all-ones,all-ones``
4889may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00004890
Peter Collingbourned88f9282017-01-20 21:56:37 +00004891Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00004892
4893.. code-block:: llvm
4894
4895 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00004896 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00004897
4898 ...
4899 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00004900 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00004901
Matthew Simpson36bbc8c2017-10-16 22:22:11 +00004902'``callees``' Metadata
4903^^^^^^^^^^^^^^^^^^^^^^
4904
4905``callees`` metadata may be attached to indirect call sites. If ``callees``
4906metadata is attached to a call site, and any callee is not among the set of
4907functions provided by the metadata, the behavior is undefined. The intent of
4908this metadata is to facilitate optimizations such as indirect-call promotion.
4909For example, in the code below, the call instruction may only target the
4910``add`` or ``sub`` functions:
4911
4912.. code-block:: llvm
4913
4914 %result = call i64 %binop(i64 %x, i64 %y), !callees !0
4915
4916 ...
4917 !0 = !{i64 (i64, i64)* @add, i64 (i64, i64)* @sub}
4918
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004919'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004920^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004921
4922``unpredictable`` metadata may be attached to any branch or switch
4923instruction. It can be used to express the unpredictability of control
4924flow. Similar to the llvm.expect intrinsic, it may be used to alter
4925optimizations related to compare and branch instructions. The metadata
4926is treated as a boolean value; if it exists, it signals that the branch
4927or switch that it is attached to is completely unpredictable.
4928
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004929'``llvm.loop``'
4930^^^^^^^^^^^^^^^
4931
4932It is sometimes useful to attach information to loop constructs. Currently,
4933loop metadata is implemented as metadata attached to the branch instruction
4934in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004935guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004936specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004937
4938The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004939itself to avoid merging it with any other identifier metadata, e.g.,
4940during module linkage or function inlining. That is, each loop should refer
4941to their own identification metadata even if they reside in separate functions.
4942The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004943constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004944
4945.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004946
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004947 !0 = !{!0}
4948 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004949
Mark Heffernan893752a2014-07-18 19:24:51 +00004950The loop identifier metadata can be used to specify additional
4951per-loop metadata. Any operands after the first operand can be treated
4952as user-defined metadata. For example the ``llvm.loop.unroll.count``
4953suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004954
Paul Redmond5fdf8362013-05-28 20:00:34 +00004955.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004956
Paul Redmond5fdf8362013-05-28 20:00:34 +00004957 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4958 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004959 !0 = !{!0, !1}
4960 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004961
Mark Heffernan9d20e422014-07-21 23:11:03 +00004962'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4963^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004964
Mark Heffernan9d20e422014-07-21 23:11:03 +00004965Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4966used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004967vectorization width and interleave count. These metadata should be used in
4968conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004969``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4970optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004971it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004972which contains information about loop-carried memory dependencies can be helpful
4973in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004974
Mark Heffernan9d20e422014-07-21 23:11:03 +00004975'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004976^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4977
Mark Heffernan9d20e422014-07-21 23:11:03 +00004978This metadata suggests an interleave count to the loop interleaver.
4979The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004980second operand is an integer specifying the interleave count. For
4981example:
4982
4983.. code-block:: llvm
4984
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004985 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004986
Mark Heffernan9d20e422014-07-21 23:11:03 +00004987Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004988multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004989then the interleave count will be determined automatically.
4990
4991'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004992^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004993
4994This metadata selectively enables or disables vectorization for the loop. The
4995first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004996is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000049970 disables vectorization:
4998
4999.. code-block:: llvm
5000
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005001 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
5002 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00005003
5004'``llvm.loop.vectorize.width``' Metadata
5005^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5006
5007This metadata sets the target width of the vectorizer. The first
5008operand is the string ``llvm.loop.vectorize.width`` and the second
5009operand is an integer specifying the width. For example:
5010
5011.. code-block:: llvm
5012
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005013 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005014
5015Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00005016vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000050170 or if the loop does not have this metadata the width will be
5018determined automatically.
5019
5020'``llvm.loop.unroll``'
5021^^^^^^^^^^^^^^^^^^^^^^
5022
5023Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
5024optimization hints such as the unroll factor. ``llvm.loop.unroll``
5025metadata should be used in conjunction with ``llvm.loop`` loop
5026identification metadata. The ``llvm.loop.unroll`` metadata are only
5027optimization hints and the unrolling will only be performed if the
5028optimizer believes it is safe to do so.
5029
Mark Heffernan893752a2014-07-18 19:24:51 +00005030'``llvm.loop.unroll.count``' Metadata
5031^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5032
5033This metadata suggests an unroll factor to the loop unroller. The
5034first operand is the string ``llvm.loop.unroll.count`` and the second
5035operand is a positive integer specifying the unroll factor. For
5036example:
5037
5038.. code-block:: llvm
5039
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005040 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005041
5042If the trip count of the loop is less than the unroll count the loop
5043will be partially unrolled.
5044
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005045'``llvm.loop.unroll.disable``' Metadata
5046^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5047
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005048This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00005049which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005050
5051.. code-block:: llvm
5052
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005053 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005054
Kevin Qin715b01e2015-03-09 06:14:18 +00005055'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00005056^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00005057
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005058This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00005059operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00005060
5061.. code-block:: llvm
5062
5063 !0 = !{!"llvm.loop.unroll.runtime.disable"}
5064
Mark Heffernan89391542015-08-10 17:28:08 +00005065'``llvm.loop.unroll.enable``' Metadata
5066^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5067
5068This metadata suggests that the loop should be fully unrolled if the trip count
5069is known at compile time and partially unrolled if the trip count is not known
5070at compile time. The metadata has a single operand which is the string
5071``llvm.loop.unroll.enable``. For example:
5072
5073.. code-block:: llvm
5074
5075 !0 = !{!"llvm.loop.unroll.enable"}
5076
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005077'``llvm.loop.unroll.full``' Metadata
5078^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5079
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005080This metadata suggests that the loop should be unrolled fully. The
5081metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005082For example:
5083
5084.. code-block:: llvm
5085
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005086 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005087
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005088'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00005089^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005090
5091This metadata indicates that the loop should not be versioned for the purpose
5092of enabling loop-invariant code motion (LICM). The metadata has a single operand
5093which is the string ``llvm.loop.licm_versioning.disable``. For example:
5094
5095.. code-block:: llvm
5096
5097 !0 = !{!"llvm.loop.licm_versioning.disable"}
5098
Adam Nemetd2fa4142016-04-27 05:28:18 +00005099'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00005100^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00005101
5102Loop distribution allows splitting a loop into multiple loops. Currently,
5103this is only performed if the entire loop cannot be vectorized due to unsafe
Hiroshi Inoueb93daec2017-07-02 12:44:27 +00005104memory dependencies. The transformation will attempt to isolate the unsafe
Adam Nemetd2fa4142016-04-27 05:28:18 +00005105dependencies into their own loop.
5106
5107This metadata can be used to selectively enable or disable distribution of the
5108loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
5109second operand is a bit. If the bit operand value is 1 distribution is
5110enabled. A value of 0 disables distribution:
5111
5112.. code-block:: llvm
5113
5114 !0 = !{!"llvm.loop.distribute.enable", i1 0}
5115 !1 = !{!"llvm.loop.distribute.enable", i1 1}
5116
5117This metadata should be used in conjunction with ``llvm.loop`` loop
5118identification metadata.
5119
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005120'``llvm.mem``'
5121^^^^^^^^^^^^^^^
5122
5123Metadata types used to annotate memory accesses with information helpful
5124for optimizations are prefixed with ``llvm.mem``.
5125
5126'``llvm.mem.parallel_loop_access``' Metadata
5127^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5128
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005129The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
5130or metadata containing a list of loop identifiers for nested loops.
5131The metadata is attached to memory accessing instructions and denotes that
5132no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00005133with the same loop identifier. The metadata on memory reads also implies that
5134if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005135
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005136Precisely, given two instructions ``m1`` and ``m2`` that both have the
5137``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
5138set of loops associated with that metadata, respectively, then there is no loop
5139carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005140``L2``.
5141
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005142As a special case, if all memory accessing instructions in a loop have
5143``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
5144loop has no loop carried memory dependences and is considered to be a parallel
5145loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005146
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005147Note that if not all memory access instructions have such metadata referring to
5148the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00005149memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005150safe mechanism, this causes loops that were originally parallel to be considered
5151sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005152insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005153
5154Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00005155both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005156metadata types that refer to the same loop identifier metadata.
5157
5158.. code-block:: llvm
5159
5160 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005161 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005162 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005163 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005164 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005165 ...
5166 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005167
5168 for.end:
5169 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005170 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005171
5172It is also possible to have nested parallel loops. In that case the
5173memory accesses refer to a list of loop identifier metadata nodes instead of
5174the loop identifier metadata node directly:
5175
5176.. code-block:: llvm
5177
5178 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005179 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005180 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005181 ...
5182 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005183
5184 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005185 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005186 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005187 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005188 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005189 ...
5190 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005191
5192 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005193 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005194 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00005195 ...
5196 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005197
5198 outer.for.end: ; preds = %for.body
5199 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005200 !0 = !{!1, !2} ; a list of loop identifiers
5201 !1 = !{!1} ; an identifier for the inner loop
5202 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005203
Hiroshi Yamauchidce9def2017-11-02 22:26:51 +00005204'``irr_loop``' Metadata
5205^^^^^^^^^^^^^^^^^^^^^^^
5206
5207``irr_loop`` metadata may be attached to the terminator instruction of a basic
5208block that's an irreducible loop header (note that an irreducible loop has more
5209than once header basic blocks.) If ``irr_loop`` metadata is attached to the
5210terminator instruction of a basic block that is not really an irreducible loop
5211header, the behavior is undefined. The intent of this metadata is to improve the
5212accuracy of the block frequency propagation. For example, in the code below, the
5213block ``header0`` may have a loop header weight (relative to the other headers of
5214the irreducible loop) of 100:
5215
5216.. code-block:: llvm
5217
5218 header0:
5219 ...
5220 br i1 %cmp, label %t1, label %t2, !irr_loop !0
5221
5222 ...
5223 !0 = !{"loop_header_weight", i64 100}
5224
5225Irreducible loop header weights are typically based on profile data.
5226
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005227'``invariant.group``' Metadata
5228^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5229
5230The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005231The existence of the ``invariant.group`` metadata on the instruction tells
5232the optimizer that every ``load`` and ``store`` to the same pointer operand
5233within the same invariant group can be assumed to load or store the same
5234value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005235when two pointers are considered the same). Pointers returned by bitcast or
5236getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005237
5238Examples:
5239
5240.. code-block:: llvm
5241
5242 @unknownPtr = external global i8
5243 ...
5244 %ptr = alloca i8
5245 store i8 42, i8* %ptr, !invariant.group !0
5246 call void @foo(i8* %ptr)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005247
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005248 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5249 call void @foo(i8* %ptr)
5250 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005251
5252 %newPtr = call i8* @getPointer(i8* %ptr)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005253 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005254
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005255 %unknownValue = load i8, i8* @unknownPtr
5256 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005257
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005258 call void @foo(i8* %ptr)
5259 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
5260 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005261
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005262 ...
5263 declare void @foo(i8*)
5264 declare i8* @getPointer(i8*)
5265 declare i8* @llvm.invariant.group.barrier(i8*)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005266
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005267 !0 = !{!"magic ptr"}
5268 !1 = !{!"other ptr"}
5269
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005270The invariant.group metadata must be dropped when replacing one pointer by
5271another based on aliasing information. This is because invariant.group is tied
5272to the SSA value of the pointer operand.
5273
5274.. code-block:: llvm
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005275
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005276 %v = load i8, i8* %x, !invariant.group !0
5277 ; if %x mustalias %y then we can replace the above instruction with
5278 %v = load i8, i8* %y
5279
5280
Peter Collingbournea333db82016-07-26 22:31:30 +00005281'``type``' Metadata
5282^^^^^^^^^^^^^^^^^^^
5283
5284See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005285
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005286'``associated``' Metadata
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005287^^^^^^^^^^^^^^^^^^^^^^^^^
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005288
5289The ``associated`` metadata may be attached to a global object
5290declaration with a single argument that references another global object.
5291
5292This metadata prevents discarding of the global object in linker GC
5293unless the referenced object is also discarded. The linker support for
5294this feature is spotty. For best compatibility, globals carrying this
5295metadata may also:
5296
5297- Be in a comdat with the referenced global.
5298- Be in @llvm.compiler.used.
5299- Have an explicit section with a name which is a valid C identifier.
5300
5301It does not have any effect on non-ELF targets.
5302
5303Example:
5304
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005305.. code-block:: text
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005306
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005307 $a = comdat any
5308 @a = global i32 1, comdat $a
5309 @b = internal global i32 2, comdat $a, section "abc", !associated !0
5310 !0 = !{i32* @a}
5311
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005312
Teresa Johnsond72f51c2017-06-15 15:57:12 +00005313'``prof``' Metadata
5314^^^^^^^^^^^^^^^^^^^
5315
5316The ``prof`` metadata is used to record profile data in the IR.
5317The first operand of the metadata node indicates the profile metadata
5318type. There are currently 3 types:
5319:ref:`branch_weights<prof_node_branch_weights>`,
5320:ref:`function_entry_count<prof_node_function_entry_count>`, and
5321:ref:`VP<prof_node_VP>`.
5322
5323.. _prof_node_branch_weights:
5324
5325branch_weights
5326""""""""""""""
5327
5328Branch weight metadata attached to a branch, select, switch or call instruction
5329represents the likeliness of the associated branch being taken.
5330For more information, see :doc:`BranchWeightMetadata`.
5331
5332.. _prof_node_function_entry_count:
5333
5334function_entry_count
5335""""""""""""""""""""
5336
5337Function entry count metadata can be attached to function definitions
5338to record the number of times the function is called. Used with BFI
5339information, it is also used to derive the basic block profile count.
5340For more information, see :doc:`BranchWeightMetadata`.
5341
5342.. _prof_node_VP:
5343
5344VP
5345""
5346
5347VP (value profile) metadata can be attached to instructions that have
5348value profile information. Currently this is indirect calls (where it
5349records the hottest callees) and calls to memory intrinsics such as memcpy,
5350memmove, and memset (where it records the hottest byte lengths).
5351
5352Each VP metadata node contains "VP" string, then a uint32_t value for the value
5353profiling kind, a uint64_t value for the total number of times the instruction
5354is executed, followed by uint64_t value and execution count pairs.
5355The value profiling kind is 0 for indirect call targets and 1 for memory
5356operations. For indirect call targets, each profile value is a hash
5357of the callee function name, and for memory operations each value is the
5358byte length.
5359
5360Note that the value counts do not need to add up to the total count
5361listed in the third operand (in practice only the top hottest values
5362are tracked and reported).
5363
5364Indirect call example:
5365
5366.. code-block:: llvm
5367
5368 call void %f(), !prof !1
5369 !1 = !{!"VP", i32 0, i64 1600, i64 7651369219802541373, i64 1030, i64 -4377547752858689819, i64 410}
5370
5371Note that the VP type is 0 (the second operand), which indicates this is
5372an indirect call value profile data. The third operand indicates that the
5373indirect call executed 1600 times. The 4th and 6th operands give the
5374hashes of the 2 hottest target functions' names (this is the same hash used
5375to represent function names in the profile database), and the 5th and 7th
5376operands give the execution count that each of the respective prior target
5377functions was called.
5378
Sean Silvab084af42012-12-07 10:36:55 +00005379Module Flags Metadata
5380=====================
5381
5382Information about the module as a whole is difficult to convey to LLVM's
5383subsystems. The LLVM IR isn't sufficient to transmit this information.
5384The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005385this. These flags are in the form of key / value pairs --- much like a
5386dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005387look it up.
5388
5389The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5390Each triplet has the following form:
5391
5392- The first element is a *behavior* flag, which specifies the behavior
5393 when two (or more) modules are merged together, and it encounters two
5394 (or more) metadata with the same ID. The supported behaviors are
5395 described below.
5396- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005397 metadata. Each module may only have one flag entry for each unique ID (not
5398 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005399- The third element is the value of the flag.
5400
5401When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005402``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5403each unique metadata ID string, there will be exactly one entry in the merged
5404modules ``llvm.module.flags`` metadata table, and the value for that entry will
5405be determined by the merge behavior flag, as described below. The only exception
5406is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005407
5408The following behaviors are supported:
5409
5410.. list-table::
5411 :header-rows: 1
5412 :widths: 10 90
5413
5414 * - Value
5415 - Behavior
5416
5417 * - 1
5418 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005419 Emits an error if two values disagree, otherwise the resulting value
5420 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005421
5422 * - 2
5423 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005424 Emits a warning if two values disagree. The result value will be the
5425 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005426
5427 * - 3
5428 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005429 Adds a requirement that another module flag be present and have a
5430 specified value after linking is performed. The value must be a
5431 metadata pair, where the first element of the pair is the ID of the
5432 module flag to be restricted, and the second element of the pair is
5433 the value the module flag should be restricted to. This behavior can
5434 be used to restrict the allowable results (via triggering of an
5435 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005436
5437 * - 4
5438 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005439 Uses the specified value, regardless of the behavior or value of the
5440 other module. If both modules specify **Override**, but the values
5441 differ, an error will be emitted.
5442
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005443 * - 5
5444 - **Append**
5445 Appends the two values, which are required to be metadata nodes.
5446
5447 * - 6
5448 - **AppendUnique**
5449 Appends the two values, which are required to be metadata
5450 nodes. However, duplicate entries in the second list are dropped
5451 during the append operation.
5452
Steven Wu86a511e2017-08-15 16:16:33 +00005453 * - 7
5454 - **Max**
5455 Takes the max of the two values, which are required to be integers.
5456
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005457It is an error for a particular unique flag ID to have multiple behaviors,
5458except in the case of **Require** (which adds restrictions on another metadata
5459value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005460
5461An example of module flags:
5462
5463.. code-block:: llvm
5464
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005465 !0 = !{ i32 1, !"foo", i32 1 }
5466 !1 = !{ i32 4, !"bar", i32 37 }
5467 !2 = !{ i32 2, !"qux", i32 42 }
5468 !3 = !{ i32 3, !"qux",
5469 !{
5470 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005471 }
5472 }
5473 !llvm.module.flags = !{ !0, !1, !2, !3 }
5474
5475- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5476 if two or more ``!"foo"`` flags are seen is to emit an error if their
5477 values are not equal.
5478
5479- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5480 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005481 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005482
5483- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5484 behavior if two or more ``!"qux"`` flags are seen is to emit a
5485 warning if their values are not equal.
5486
5487- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5488
5489 ::
5490
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005491 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005492
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005493 The behavior is to emit an error if the ``llvm.module.flags`` does not
5494 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5495 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005496
5497Objective-C Garbage Collection Module Flags Metadata
5498----------------------------------------------------
5499
5500On the Mach-O platform, Objective-C stores metadata about garbage
5501collection in a special section called "image info". The metadata
5502consists of a version number and a bitmask specifying what types of
5503garbage collection are supported (if any) by the file. If two or more
5504modules are linked together their garbage collection metadata needs to
5505be merged rather than appended together.
5506
5507The Objective-C garbage collection module flags metadata consists of the
5508following key-value pairs:
5509
5510.. list-table::
5511 :header-rows: 1
5512 :widths: 30 70
5513
5514 * - Key
5515 - Value
5516
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005517 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005518 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005519
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005520 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005521 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005522 always 0.
5523
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005524 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005525 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005526 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5527 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5528 Objective-C ABI version 2.
5529
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005530 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005531 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005532 not. Valid values are 0, for no garbage collection, and 2, for garbage
5533 collection supported.
5534
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005535 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005536 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005537 If present, its value must be 6. This flag requires that the
5538 ``Objective-C Garbage Collection`` flag have the value 2.
5539
5540Some important flag interactions:
5541
5542- If a module with ``Objective-C Garbage Collection`` set to 0 is
5543 merged with a module with ``Objective-C Garbage Collection`` set to
5544 2, then the resulting module has the
5545 ``Objective-C Garbage Collection`` flag set to 0.
5546- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5547 merged with a module with ``Objective-C GC Only`` set to 6.
5548
Oliver Stannard5dc29342014-06-20 10:08:11 +00005549C type width Module Flags Metadata
5550----------------------------------
5551
5552The ARM backend emits a section into each generated object file describing the
5553options that it was compiled with (in a compiler-independent way) to prevent
5554linking incompatible objects, and to allow automatic library selection. Some
5555of these options are not visible at the IR level, namely wchar_t width and enum
5556width.
5557
5558To pass this information to the backend, these options are encoded in module
5559flags metadata, using the following key-value pairs:
5560
5561.. list-table::
5562 :header-rows: 1
5563 :widths: 30 70
5564
5565 * - Key
5566 - Value
5567
5568 * - short_wchar
5569 - * 0 --- sizeof(wchar_t) == 4
5570 * 1 --- sizeof(wchar_t) == 2
5571
5572 * - short_enum
5573 - * 0 --- Enums are at least as large as an ``int``.
5574 * 1 --- Enums are stored in the smallest integer type which can
5575 represent all of its values.
5576
5577For example, the following metadata section specifies that the module was
5578compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5579enum is the smallest type which can represent all of its values::
5580
5581 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005582 !0 = !{i32 1, !"short_wchar", i32 1}
5583 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005584
Peter Collingbourne89061b22017-06-12 20:10:48 +00005585Automatic Linker Flags Named Metadata
5586=====================================
5587
5588Some targets support embedding flags to the linker inside individual object
5589files. Typically this is used in conjunction with language extensions which
5590allow source files to explicitly declare the libraries they depend on, and have
5591these automatically be transmitted to the linker via object files.
5592
5593These flags are encoded in the IR using named metadata with the name
5594``!llvm.linker.options``. Each operand is expected to be a metadata node
5595which should be a list of other metadata nodes, each of which should be a
5596list of metadata strings defining linker options.
5597
5598For example, the following metadata section specifies two separate sets of
5599linker options, presumably to link against ``libz`` and the ``Cocoa``
5600framework::
5601
5602 !0 = !{ !"-lz" },
5603 !1 = !{ !"-framework", !"Cocoa" } } }
5604 !llvm.linker.options = !{ !0, !1 }
5605
5606The metadata encoding as lists of lists of options, as opposed to a collapsed
5607list of options, is chosen so that the IR encoding can use multiple option
5608strings to specify e.g., a single library, while still having that specifier be
5609preserved as an atomic element that can be recognized by a target specific
5610assembly writer or object file emitter.
5611
5612Each individual option is required to be either a valid option for the target's
5613linker, or an option that is reserved by the target specific assembly writer or
5614object file emitter. No other aspect of these options is defined by the IR.
5615
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005616.. _intrinsicglobalvariables:
5617
Sean Silvab084af42012-12-07 10:36:55 +00005618Intrinsic Global Variables
5619==========================
5620
5621LLVM has a number of "magic" global variables that contain data that
5622affect code generation or other IR semantics. These are documented here.
5623All globals of this sort should have a section specified as
5624"``llvm.metadata``". This section and all globals that start with
5625"``llvm.``" are reserved for use by LLVM.
5626
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005627.. _gv_llvmused:
5628
Sean Silvab084af42012-12-07 10:36:55 +00005629The '``llvm.used``' Global Variable
5630-----------------------------------
5631
Rafael Espindola74f2e462013-04-22 14:58:02 +00005632The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005633:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005634pointers to named global variables, functions and aliases which may optionally
5635have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005636use of it is:
5637
5638.. code-block:: llvm
5639
5640 @X = global i8 4
5641 @Y = global i32 123
5642
5643 @llvm.used = appending global [2 x i8*] [
5644 i8* @X,
5645 i8* bitcast (i32* @Y to i8*)
5646 ], section "llvm.metadata"
5647
Rafael Espindola74f2e462013-04-22 14:58:02 +00005648If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5649and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005650symbol that it cannot see (which is why they have to be named). For example, if
5651a variable has internal linkage and no references other than that from the
5652``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5653references from inline asms and other things the compiler cannot "see", and
5654corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005655
5656On some targets, the code generator must emit a directive to the
5657assembler or object file to prevent the assembler and linker from
5658molesting the symbol.
5659
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005660.. _gv_llvmcompilerused:
5661
Sean Silvab084af42012-12-07 10:36:55 +00005662The '``llvm.compiler.used``' Global Variable
5663--------------------------------------------
5664
5665The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5666directive, except that it only prevents the compiler from touching the
5667symbol. On targets that support it, this allows an intelligent linker to
5668optimize references to the symbol without being impeded as it would be
5669by ``@llvm.used``.
5670
5671This is a rare construct that should only be used in rare circumstances,
5672and should not be exposed to source languages.
5673
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005674.. _gv_llvmglobalctors:
5675
Sean Silvab084af42012-12-07 10:36:55 +00005676The '``llvm.global_ctors``' Global Variable
5677-------------------------------------------
5678
5679.. code-block:: llvm
5680
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005681 %0 = type { i32, void ()*, i8* }
5682 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005683
5684The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005685functions, priorities, and an optional associated global or function.
5686The functions referenced by this array will be called in ascending order
5687of priority (i.e. lowest first) when the module is loaded. The order of
5688functions with the same priority is not defined.
5689
5690If the third field is present, non-null, and points to a global variable
5691or function, the initializer function will only run if the associated
5692data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005693
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005694.. _llvmglobaldtors:
5695
Sean Silvab084af42012-12-07 10:36:55 +00005696The '``llvm.global_dtors``' Global Variable
5697-------------------------------------------
5698
5699.. code-block:: llvm
5700
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005701 %0 = type { i32, void ()*, i8* }
5702 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005703
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005704The ``@llvm.global_dtors`` array contains a list of destructor
5705functions, priorities, and an optional associated global or function.
5706The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005707order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005708order of functions with the same priority is not defined.
5709
5710If the third field is present, non-null, and points to a global variable
5711or function, the destructor function will only run if the associated
5712data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005713
5714Instruction Reference
5715=====================
5716
5717The LLVM instruction set consists of several different classifications
5718of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5719instructions <binaryops>`, :ref:`bitwise binary
5720instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5721:ref:`other instructions <otherops>`.
5722
5723.. _terminators:
5724
5725Terminator Instructions
5726-----------------------
5727
5728As mentioned :ref:`previously <functionstructure>`, every basic block in a
5729program ends with a "Terminator" instruction, which indicates which
5730block should be executed after the current block is finished. These
5731terminator instructions typically yield a '``void``' value: they produce
5732control flow, not values (the one exception being the
5733':ref:`invoke <i_invoke>`' instruction).
5734
5735The terminator instructions are: ':ref:`ret <i_ret>`',
5736':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5737':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005738':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005739':ref:`catchret <i_catchret>`',
5740':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005741and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005742
5743.. _i_ret:
5744
5745'``ret``' Instruction
5746^^^^^^^^^^^^^^^^^^^^^
5747
5748Syntax:
5749"""""""
5750
5751::
5752
5753 ret <type> <value> ; Return a value from a non-void function
5754 ret void ; Return from void function
5755
5756Overview:
5757"""""""""
5758
5759The '``ret``' instruction is used to return control flow (and optionally
5760a value) from a function back to the caller.
5761
5762There are two forms of the '``ret``' instruction: one that returns a
5763value and then causes control flow, and one that just causes control
5764flow to occur.
5765
5766Arguments:
5767""""""""""
5768
5769The '``ret``' instruction optionally accepts a single argument, the
5770return value. The type of the return value must be a ':ref:`first
5771class <t_firstclass>`' type.
5772
5773A function is not :ref:`well formed <wellformed>` if it it has a non-void
5774return type and contains a '``ret``' instruction with no return value or
5775a return value with a type that does not match its type, or if it has a
5776void return type and contains a '``ret``' instruction with a return
5777value.
5778
5779Semantics:
5780""""""""""
5781
5782When the '``ret``' instruction is executed, control flow returns back to
5783the calling function's context. If the caller is a
5784":ref:`call <i_call>`" instruction, execution continues at the
5785instruction after the call. If the caller was an
5786":ref:`invoke <i_invoke>`" instruction, execution continues at the
5787beginning of the "normal" destination block. If the instruction returns
5788a value, that value shall set the call or invoke instruction's return
5789value.
5790
5791Example:
5792""""""""
5793
5794.. code-block:: llvm
5795
5796 ret i32 5 ; Return an integer value of 5
5797 ret void ; Return from a void function
5798 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5799
5800.. _i_br:
5801
5802'``br``' Instruction
5803^^^^^^^^^^^^^^^^^^^^
5804
5805Syntax:
5806"""""""
5807
5808::
5809
5810 br i1 <cond>, label <iftrue>, label <iffalse>
5811 br label <dest> ; Unconditional branch
5812
5813Overview:
5814"""""""""
5815
5816The '``br``' instruction is used to cause control flow to transfer to a
5817different basic block in the current function. There are two forms of
5818this instruction, corresponding to a conditional branch and an
5819unconditional branch.
5820
5821Arguments:
5822""""""""""
5823
5824The conditional branch form of the '``br``' instruction takes a single
5825'``i1``' value and two '``label``' values. The unconditional form of the
5826'``br``' instruction takes a single '``label``' value as a target.
5827
5828Semantics:
5829""""""""""
5830
5831Upon execution of a conditional '``br``' instruction, the '``i1``'
5832argument is evaluated. If the value is ``true``, control flows to the
5833'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5834to the '``iffalse``' ``label`` argument.
5835
5836Example:
5837""""""""
5838
5839.. code-block:: llvm
5840
5841 Test:
5842 %cond = icmp eq i32 %a, %b
5843 br i1 %cond, label %IfEqual, label %IfUnequal
5844 IfEqual:
5845 ret i32 1
5846 IfUnequal:
5847 ret i32 0
5848
5849.. _i_switch:
5850
5851'``switch``' Instruction
5852^^^^^^^^^^^^^^^^^^^^^^^^
5853
5854Syntax:
5855"""""""
5856
5857::
5858
5859 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5860
5861Overview:
5862"""""""""
5863
5864The '``switch``' instruction is used to transfer control flow to one of
5865several different places. It is a generalization of the '``br``'
5866instruction, allowing a branch to occur to one of many possible
5867destinations.
5868
5869Arguments:
5870""""""""""
5871
5872The '``switch``' instruction uses three parameters: an integer
5873comparison value '``value``', a default '``label``' destination, and an
5874array of pairs of comparison value constants and '``label``'s. The table
5875is not allowed to contain duplicate constant entries.
5876
5877Semantics:
5878""""""""""
5879
5880The ``switch`` instruction specifies a table of values and destinations.
5881When the '``switch``' instruction is executed, this table is searched
5882for the given value. If the value is found, control flow is transferred
5883to the corresponding destination; otherwise, control flow is transferred
5884to the default destination.
5885
5886Implementation:
5887"""""""""""""""
5888
5889Depending on properties of the target machine and the particular
5890``switch`` instruction, this instruction may be code generated in
5891different ways. For example, it could be generated as a series of
5892chained conditional branches or with a lookup table.
5893
5894Example:
5895""""""""
5896
5897.. code-block:: llvm
5898
5899 ; Emulate a conditional br instruction
5900 %Val = zext i1 %value to i32
5901 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5902
5903 ; Emulate an unconditional br instruction
5904 switch i32 0, label %dest [ ]
5905
5906 ; Implement a jump table:
5907 switch i32 %val, label %otherwise [ i32 0, label %onzero
5908 i32 1, label %onone
5909 i32 2, label %ontwo ]
5910
5911.. _i_indirectbr:
5912
5913'``indirectbr``' Instruction
5914^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5915
5916Syntax:
5917"""""""
5918
5919::
5920
5921 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5922
5923Overview:
5924"""""""""
5925
5926The '``indirectbr``' instruction implements an indirect branch to a
5927label within the current function, whose address is specified by
5928"``address``". Address must be derived from a
5929:ref:`blockaddress <blockaddress>` constant.
5930
5931Arguments:
5932""""""""""
5933
5934The '``address``' argument is the address of the label to jump to. The
5935rest of the arguments indicate the full set of possible destinations
5936that the address may point to. Blocks are allowed to occur multiple
5937times in the destination list, though this isn't particularly useful.
5938
5939This destination list is required so that dataflow analysis has an
5940accurate understanding of the CFG.
5941
5942Semantics:
5943""""""""""
5944
5945Control transfers to the block specified in the address argument. All
5946possible destination blocks must be listed in the label list, otherwise
5947this instruction has undefined behavior. This implies that jumps to
5948labels defined in other functions have undefined behavior as well.
5949
5950Implementation:
5951"""""""""""""""
5952
5953This is typically implemented with a jump through a register.
5954
5955Example:
5956""""""""
5957
5958.. code-block:: llvm
5959
5960 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5961
5962.. _i_invoke:
5963
5964'``invoke``' Instruction
5965^^^^^^^^^^^^^^^^^^^^^^^^
5966
5967Syntax:
5968"""""""
5969
5970::
5971
David Blaikieb83cf102016-07-13 17:21:34 +00005972 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005973 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005974
5975Overview:
5976"""""""""
5977
5978The '``invoke``' instruction causes control to transfer to a specified
5979function, with the possibility of control flow transfer to either the
5980'``normal``' label or the '``exception``' label. If the callee function
5981returns with the "``ret``" instruction, control flow will return to the
5982"normal" label. If the callee (or any indirect callees) returns via the
5983":ref:`resume <i_resume>`" instruction or other exception handling
5984mechanism, control is interrupted and continued at the dynamically
5985nearest "exception" label.
5986
5987The '``exception``' label is a `landing
5988pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5989'``exception``' label is required to have the
5990":ref:`landingpad <i_landingpad>`" instruction, which contains the
5991information about the behavior of the program after unwinding happens,
5992as its first non-PHI instruction. The restrictions on the
5993"``landingpad``" instruction's tightly couples it to the "``invoke``"
5994instruction, so that the important information contained within the
5995"``landingpad``" instruction can't be lost through normal code motion.
5996
5997Arguments:
5998""""""""""
5999
6000This instruction requires several arguments:
6001
6002#. The optional "cconv" marker indicates which :ref:`calling
6003 convention <callingconv>` the call should use. If none is
6004 specified, the call defaults to using C calling conventions.
6005#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6006 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6007 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00006008#. '``ty``': the type of the call instruction itself which is also the
6009 type of the return value. Functions that return no value are marked
6010 ``void``.
6011#. '``fnty``': shall be the signature of the function being invoked. The
6012 argument types must match the types implied by this signature. This
6013 type can be omitted if the function is not varargs.
6014#. '``fnptrval``': An LLVM value containing a pointer to a function to
6015 be invoked. In most cases, this is a direct function invocation, but
6016 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
6017 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00006018#. '``function args``': argument list whose types match the function
6019 signature argument types and parameter attributes. All arguments must
6020 be of :ref:`first class <t_firstclass>` type. If the function signature
6021 indicates the function accepts a variable number of arguments, the
6022 extra arguments can be specified.
6023#. '``normal label``': the label reached when the called function
6024 executes a '``ret``' instruction.
6025#. '``exception label``': the label reached when a callee returns via
6026 the :ref:`resume <i_resume>` instruction or other exception handling
6027 mechanism.
George Burgess IV8a464a72017-04-13 05:00:31 +00006028#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006029#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00006030
6031Semantics:
6032""""""""""
6033
6034This instruction is designed to operate as a standard '``call``'
6035instruction in most regards. The primary difference is that it
6036establishes an association with a label, which is used by the runtime
6037library to unwind the stack.
6038
6039This instruction is used in languages with destructors to ensure that
6040proper cleanup is performed in the case of either a ``longjmp`` or a
6041thrown exception. Additionally, this is important for implementation of
6042'``catch``' clauses in high-level languages that support them.
6043
6044For the purposes of the SSA form, the definition of the value returned
6045by the '``invoke``' instruction is deemed to occur on the edge from the
6046current block to the "normal" label. If the callee unwinds then no
6047return value is available.
6048
6049Example:
6050""""""""
6051
6052.. code-block:: llvm
6053
6054 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006055 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006056 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006057 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006058
6059.. _i_resume:
6060
6061'``resume``' Instruction
6062^^^^^^^^^^^^^^^^^^^^^^^^
6063
6064Syntax:
6065"""""""
6066
6067::
6068
6069 resume <type> <value>
6070
6071Overview:
6072"""""""""
6073
6074The '``resume``' instruction is a terminator instruction that has no
6075successors.
6076
6077Arguments:
6078""""""""""
6079
6080The '``resume``' instruction requires one argument, which must have the
6081same type as the result of any '``landingpad``' instruction in the same
6082function.
6083
6084Semantics:
6085""""""""""
6086
6087The '``resume``' instruction resumes propagation of an existing
6088(in-flight) exception whose unwinding was interrupted with a
6089:ref:`landingpad <i_landingpad>` instruction.
6090
6091Example:
6092""""""""
6093
6094.. code-block:: llvm
6095
6096 resume { i8*, i32 } %exn
6097
David Majnemer8a1c45d2015-12-12 05:38:55 +00006098.. _i_catchswitch:
6099
6100'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00006101^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00006102
6103Syntax:
6104"""""""
6105
6106::
6107
6108 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
6109 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
6110
6111Overview:
6112"""""""""
6113
6114The '``catchswitch``' instruction is used by `LLVM's exception handling system
6115<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
6116that may be executed by the :ref:`EH personality routine <personalityfn>`.
6117
6118Arguments:
6119""""""""""
6120
6121The ``parent`` argument is the token of the funclet that contains the
6122``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
6123this operand may be the token ``none``.
6124
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006125The ``default`` argument is the label of another basic block beginning with
6126either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
6127must be a legal target with respect to the ``parent`` links, as described in
6128the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00006129
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006130The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00006131:ref:`catchpad <i_catchpad>` instruction.
6132
6133Semantics:
6134""""""""""
6135
6136Executing this instruction transfers control to one of the successors in
6137``handlers``, if appropriate, or continues to unwind via the unwind label if
6138present.
6139
6140The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
6141it must be both the first non-phi instruction and last instruction in the basic
6142block. Therefore, it must be the only non-phi instruction in the block.
6143
6144Example:
6145""""""""
6146
Renato Golin124f2592016-07-20 12:16:38 +00006147.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00006148
6149 dispatch1:
6150 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
6151 dispatch2:
6152 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
6153
David Majnemer654e1302015-07-31 17:58:14 +00006154.. _i_catchret:
6155
6156'``catchret``' Instruction
6157^^^^^^^^^^^^^^^^^^^^^^^^^^
6158
6159Syntax:
6160"""""""
6161
6162::
6163
David Majnemer8a1c45d2015-12-12 05:38:55 +00006164 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00006165
6166Overview:
6167"""""""""
6168
6169The '``catchret``' instruction is a terminator instruction that has a
6170single successor.
6171
6172
6173Arguments:
6174""""""""""
6175
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006176The first argument to a '``catchret``' indicates which ``catchpad`` it
6177exits. It must be a :ref:`catchpad <i_catchpad>`.
6178The second argument to a '``catchret``' specifies where control will
6179transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00006180
6181Semantics:
6182""""""""""
6183
David Majnemer8a1c45d2015-12-12 05:38:55 +00006184The '``catchret``' instruction ends an existing (in-flight) exception whose
6185unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
6186:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
6187code to, for example, destroy the active exception. Control then transfers to
6188``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006189
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006190The ``token`` argument must be a token produced by a ``catchpad`` instruction.
6191If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
6192funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6193the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00006194
6195Example:
6196""""""""
6197
Renato Golin124f2592016-07-20 12:16:38 +00006198.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006199
David Majnemer8a1c45d2015-12-12 05:38:55 +00006200 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006201
David Majnemer654e1302015-07-31 17:58:14 +00006202.. _i_cleanupret:
6203
6204'``cleanupret``' Instruction
6205^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6206
6207Syntax:
6208"""""""
6209
6210::
6211
David Majnemer8a1c45d2015-12-12 05:38:55 +00006212 cleanupret from <value> unwind label <continue>
6213 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00006214
6215Overview:
6216"""""""""
6217
6218The '``cleanupret``' instruction is a terminator instruction that has
6219an optional successor.
6220
6221
6222Arguments:
6223""""""""""
6224
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006225The '``cleanupret``' instruction requires one argument, which indicates
6226which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006227If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
6228funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6229the ``cleanupret``'s behavior is undefined.
6230
6231The '``cleanupret``' instruction also has an optional successor, ``continue``,
6232which must be the label of another basic block beginning with either a
6233``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
6234be a legal target with respect to the ``parent`` links, as described in the
6235`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00006236
6237Semantics:
6238""""""""""
6239
6240The '``cleanupret``' instruction indicates to the
6241:ref:`personality function <personalityfn>` that one
6242:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
6243It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006244
David Majnemer654e1302015-07-31 17:58:14 +00006245Example:
6246""""""""
6247
Renato Golin124f2592016-07-20 12:16:38 +00006248.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006249
David Majnemer8a1c45d2015-12-12 05:38:55 +00006250 cleanupret from %cleanup unwind to caller
6251 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00006252
Sean Silvab084af42012-12-07 10:36:55 +00006253.. _i_unreachable:
6254
6255'``unreachable``' Instruction
6256^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6257
6258Syntax:
6259"""""""
6260
6261::
6262
6263 unreachable
6264
6265Overview:
6266"""""""""
6267
6268The '``unreachable``' instruction has no defined semantics. This
6269instruction is used to inform the optimizer that a particular portion of
6270the code is not reachable. This can be used to indicate that the code
6271after a no-return function cannot be reached, and other facts.
6272
6273Semantics:
6274""""""""""
6275
6276The '``unreachable``' instruction has no defined semantics.
6277
6278.. _binaryops:
6279
6280Binary Operations
6281-----------------
6282
6283Binary operators are used to do most of the computation in a program.
6284They require two operands of the same type, execute an operation on
6285them, and produce a single value. The operands might represent multiple
6286data, as is the case with the :ref:`vector <t_vector>` data type. The
6287result value has the same type as its operands.
6288
6289There are several different binary operators:
6290
6291.. _i_add:
6292
6293'``add``' Instruction
6294^^^^^^^^^^^^^^^^^^^^^
6295
6296Syntax:
6297"""""""
6298
6299::
6300
Tim Northover675a0962014-06-13 14:24:23 +00006301 <result> = add <ty> <op1>, <op2> ; yields ty:result
6302 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
6303 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
6304 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006305
6306Overview:
6307"""""""""
6308
6309The '``add``' instruction returns the sum of its two operands.
6310
6311Arguments:
6312""""""""""
6313
6314The two arguments to the '``add``' instruction must be
6315:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6316arguments must have identical types.
6317
6318Semantics:
6319""""""""""
6320
6321The value produced is the integer sum of the two operands.
6322
6323If the sum has unsigned overflow, the result returned is the
6324mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6325the result.
6326
6327Because LLVM integers use a two's complement representation, this
6328instruction is appropriate for both signed and unsigned integers.
6329
6330``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6331respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6332result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
6333unsigned and/or signed overflow, respectively, occurs.
6334
6335Example:
6336""""""""
6337
Renato Golin124f2592016-07-20 12:16:38 +00006338.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006339
Tim Northover675a0962014-06-13 14:24:23 +00006340 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006341
6342.. _i_fadd:
6343
6344'``fadd``' Instruction
6345^^^^^^^^^^^^^^^^^^^^^^
6346
6347Syntax:
6348"""""""
6349
6350::
6351
Tim Northover675a0962014-06-13 14:24:23 +00006352 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006353
6354Overview:
6355"""""""""
6356
6357The '``fadd``' instruction returns the sum of its two operands.
6358
6359Arguments:
6360""""""""""
6361
6362The two arguments to the '``fadd``' instruction must be :ref:`floating
6363point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6364Both arguments must have identical types.
6365
6366Semantics:
6367""""""""""
6368
6369The value produced is the floating point sum of the two operands. This
6370instruction can also take any number of :ref:`fast-math flags <fastmath>`,
6371which are optimization hints to enable otherwise unsafe floating point
6372optimizations:
6373
6374Example:
6375""""""""
6376
Renato Golin124f2592016-07-20 12:16:38 +00006377.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006378
Tim Northover675a0962014-06-13 14:24:23 +00006379 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006380
6381'``sub``' Instruction
6382^^^^^^^^^^^^^^^^^^^^^
6383
6384Syntax:
6385"""""""
6386
6387::
6388
Tim Northover675a0962014-06-13 14:24:23 +00006389 <result> = sub <ty> <op1>, <op2> ; yields ty:result
6390 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
6391 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
6392 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006393
6394Overview:
6395"""""""""
6396
6397The '``sub``' instruction returns the difference of its two operands.
6398
6399Note that the '``sub``' instruction is used to represent the '``neg``'
6400instruction present in most other intermediate representations.
6401
6402Arguments:
6403""""""""""
6404
6405The two arguments to the '``sub``' instruction must be
6406:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6407arguments must have identical types.
6408
6409Semantics:
6410""""""""""
6411
6412The value produced is the integer difference of the two operands.
6413
6414If the difference has unsigned overflow, the result returned is the
6415mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6416the result.
6417
6418Because LLVM integers use a two's complement representation, this
6419instruction is appropriate for both signed and unsigned integers.
6420
6421``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6422respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6423result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
6424unsigned and/or signed overflow, respectively, occurs.
6425
6426Example:
6427""""""""
6428
Renato Golin124f2592016-07-20 12:16:38 +00006429.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006430
Tim Northover675a0962014-06-13 14:24:23 +00006431 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6432 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006433
6434.. _i_fsub:
6435
6436'``fsub``' Instruction
6437^^^^^^^^^^^^^^^^^^^^^^
6438
6439Syntax:
6440"""""""
6441
6442::
6443
Tim Northover675a0962014-06-13 14:24:23 +00006444 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006445
6446Overview:
6447"""""""""
6448
6449The '``fsub``' instruction returns the difference of its two operands.
6450
6451Note that the '``fsub``' instruction is used to represent the '``fneg``'
6452instruction present in most other intermediate representations.
6453
6454Arguments:
6455""""""""""
6456
6457The two arguments to the '``fsub``' instruction must be :ref:`floating
6458point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6459Both arguments must have identical types.
6460
6461Semantics:
6462""""""""""
6463
6464The value produced is the floating point difference of the two operands.
6465This instruction can also take any number of :ref:`fast-math
6466flags <fastmath>`, which are optimization hints to enable otherwise
6467unsafe floating point optimizations:
6468
6469Example:
6470""""""""
6471
Renato Golin124f2592016-07-20 12:16:38 +00006472.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006473
Tim Northover675a0962014-06-13 14:24:23 +00006474 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6475 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006476
6477'``mul``' Instruction
6478^^^^^^^^^^^^^^^^^^^^^
6479
6480Syntax:
6481"""""""
6482
6483::
6484
Tim Northover675a0962014-06-13 14:24:23 +00006485 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6486 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6487 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6488 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006489
6490Overview:
6491"""""""""
6492
6493The '``mul``' instruction returns the product of its two operands.
6494
6495Arguments:
6496""""""""""
6497
6498The two arguments to the '``mul``' instruction must be
6499:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6500arguments must have identical types.
6501
6502Semantics:
6503""""""""""
6504
6505The value produced is the integer product of the two operands.
6506
6507If the result of the multiplication has unsigned overflow, the result
6508returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6509bit width of the result.
6510
6511Because LLVM integers use a two's complement representation, and the
6512result is the same width as the operands, this instruction returns the
6513correct result for both signed and unsigned integers. If a full product
6514(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6515sign-extended or zero-extended as appropriate to the width of the full
6516product.
6517
6518``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6519respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6520result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6521unsigned and/or signed overflow, respectively, occurs.
6522
6523Example:
6524""""""""
6525
Renato Golin124f2592016-07-20 12:16:38 +00006526.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006527
Tim Northover675a0962014-06-13 14:24:23 +00006528 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006529
6530.. _i_fmul:
6531
6532'``fmul``' Instruction
6533^^^^^^^^^^^^^^^^^^^^^^
6534
6535Syntax:
6536"""""""
6537
6538::
6539
Tim Northover675a0962014-06-13 14:24:23 +00006540 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006541
6542Overview:
6543"""""""""
6544
6545The '``fmul``' instruction returns the product of its two operands.
6546
6547Arguments:
6548""""""""""
6549
6550The two arguments to the '``fmul``' instruction must be :ref:`floating
6551point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6552Both arguments must have identical types.
6553
6554Semantics:
6555""""""""""
6556
6557The value produced is the floating point product of the two operands.
6558This instruction can also take any number of :ref:`fast-math
6559flags <fastmath>`, which are optimization hints to enable otherwise
6560unsafe floating point optimizations:
6561
6562Example:
6563""""""""
6564
Renato Golin124f2592016-07-20 12:16:38 +00006565.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006566
Tim Northover675a0962014-06-13 14:24:23 +00006567 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006568
6569'``udiv``' Instruction
6570^^^^^^^^^^^^^^^^^^^^^^
6571
6572Syntax:
6573"""""""
6574
6575::
6576
Tim Northover675a0962014-06-13 14:24:23 +00006577 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6578 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006579
6580Overview:
6581"""""""""
6582
6583The '``udiv``' instruction returns the quotient of its two operands.
6584
6585Arguments:
6586""""""""""
6587
6588The two arguments to the '``udiv``' instruction must be
6589:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6590arguments must have identical types.
6591
6592Semantics:
6593""""""""""
6594
6595The value produced is the unsigned integer quotient of the two operands.
6596
6597Note that unsigned integer division and signed integer division are
6598distinct operations; for signed integer division, use '``sdiv``'.
6599
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006600Division by zero is undefined behavior. For vectors, if any element
6601of the divisor is zero, the operation has undefined behavior.
6602
Sean Silvab084af42012-12-07 10:36:55 +00006603
6604If the ``exact`` keyword is present, the result value of the ``udiv`` is
6605a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6606such, "((a udiv exact b) mul b) == a").
6607
6608Example:
6609""""""""
6610
Renato Golin124f2592016-07-20 12:16:38 +00006611.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006612
Tim Northover675a0962014-06-13 14:24:23 +00006613 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006614
6615'``sdiv``' Instruction
6616^^^^^^^^^^^^^^^^^^^^^^
6617
6618Syntax:
6619"""""""
6620
6621::
6622
Tim Northover675a0962014-06-13 14:24:23 +00006623 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6624 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006625
6626Overview:
6627"""""""""
6628
6629The '``sdiv``' instruction returns the quotient of its two operands.
6630
6631Arguments:
6632""""""""""
6633
6634The two arguments to the '``sdiv``' instruction must be
6635:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6636arguments must have identical types.
6637
6638Semantics:
6639""""""""""
6640
6641The value produced is the signed integer quotient of the two operands
6642rounded towards zero.
6643
6644Note that signed integer division and unsigned integer division are
6645distinct operations; for unsigned integer division, use '``udiv``'.
6646
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006647Division by zero is undefined behavior. For vectors, if any element
6648of the divisor is zero, the operation has undefined behavior.
6649Overflow also leads to undefined behavior; this is a rare case, but can
6650occur, for example, by doing a 32-bit division of -2147483648 by -1.
Sean Silvab084af42012-12-07 10:36:55 +00006651
6652If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6653a :ref:`poison value <poisonvalues>` if the result would be rounded.
6654
6655Example:
6656""""""""
6657
Renato Golin124f2592016-07-20 12:16:38 +00006658.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006659
Tim Northover675a0962014-06-13 14:24:23 +00006660 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006661
6662.. _i_fdiv:
6663
6664'``fdiv``' Instruction
6665^^^^^^^^^^^^^^^^^^^^^^
6666
6667Syntax:
6668"""""""
6669
6670::
6671
Tim Northover675a0962014-06-13 14:24:23 +00006672 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006673
6674Overview:
6675"""""""""
6676
6677The '``fdiv``' instruction returns the quotient of its two operands.
6678
6679Arguments:
6680""""""""""
6681
6682The two arguments to the '``fdiv``' instruction must be :ref:`floating
6683point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6684Both arguments must have identical types.
6685
6686Semantics:
6687""""""""""
6688
6689The value produced is the floating point quotient of the two operands.
6690This instruction can also take any number of :ref:`fast-math
6691flags <fastmath>`, which are optimization hints to enable otherwise
6692unsafe floating point optimizations:
6693
6694Example:
6695""""""""
6696
Renato Golin124f2592016-07-20 12:16:38 +00006697.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006698
Tim Northover675a0962014-06-13 14:24:23 +00006699 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006700
6701'``urem``' Instruction
6702^^^^^^^^^^^^^^^^^^^^^^
6703
6704Syntax:
6705"""""""
6706
6707::
6708
Tim Northover675a0962014-06-13 14:24:23 +00006709 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006710
6711Overview:
6712"""""""""
6713
6714The '``urem``' instruction returns the remainder from the unsigned
6715division of its two arguments.
6716
6717Arguments:
6718""""""""""
6719
6720The two arguments to the '``urem``' instruction must be
6721:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6722arguments must have identical types.
6723
6724Semantics:
6725""""""""""
6726
6727This instruction returns the unsigned integer *remainder* of a division.
6728This instruction always performs an unsigned division to get the
6729remainder.
6730
6731Note that unsigned integer remainder and signed integer remainder are
6732distinct operations; for signed integer remainder, use '``srem``'.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00006733
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006734Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00006735For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006736undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006737
6738Example:
6739""""""""
6740
Renato Golin124f2592016-07-20 12:16:38 +00006741.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006742
Tim Northover675a0962014-06-13 14:24:23 +00006743 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006744
6745'``srem``' Instruction
6746^^^^^^^^^^^^^^^^^^^^^^
6747
6748Syntax:
6749"""""""
6750
6751::
6752
Tim Northover675a0962014-06-13 14:24:23 +00006753 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006754
6755Overview:
6756"""""""""
6757
6758The '``srem``' instruction returns the remainder from the signed
6759division of its two operands. This instruction can also take
6760:ref:`vector <t_vector>` versions of the values in which case the elements
6761must be integers.
6762
6763Arguments:
6764""""""""""
6765
6766The two arguments to the '``srem``' instruction must be
6767:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6768arguments must have identical types.
6769
6770Semantics:
6771""""""""""
6772
6773This instruction returns the *remainder* of a division (where the result
6774is either zero or has the same sign as the dividend, ``op1``), not the
6775*modulo* operator (where the result is either zero or has the same sign
6776as the divisor, ``op2``) of a value. For more information about the
6777difference, see `The Math
6778Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6779table of how this is implemented in various languages, please see
6780`Wikipedia: modulo
6781operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6782
6783Note that signed integer remainder and unsigned integer remainder are
6784distinct operations; for unsigned integer remainder, use '``urem``'.
6785
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006786Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00006787For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006788undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006789Overflow also leads to undefined behavior; this is a rare case, but can
6790occur, for example, by taking the remainder of a 32-bit division of
6791-2147483648 by -1. (The remainder doesn't actually overflow, but this
6792rule lets srem be implemented using instructions that return both the
6793result of the division and the remainder.)
6794
6795Example:
6796""""""""
6797
Renato Golin124f2592016-07-20 12:16:38 +00006798.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006799
Tim Northover675a0962014-06-13 14:24:23 +00006800 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006801
6802.. _i_frem:
6803
6804'``frem``' Instruction
6805^^^^^^^^^^^^^^^^^^^^^^
6806
6807Syntax:
6808"""""""
6809
6810::
6811
Tim Northover675a0962014-06-13 14:24:23 +00006812 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006813
6814Overview:
6815"""""""""
6816
6817The '``frem``' instruction returns the remainder from the division of
6818its two operands.
6819
6820Arguments:
6821""""""""""
6822
6823The two arguments to the '``frem``' instruction must be :ref:`floating
6824point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6825Both arguments must have identical types.
6826
6827Semantics:
6828""""""""""
6829
6830This instruction returns the *remainder* of a division. The remainder
6831has the same sign as the dividend. This instruction can also take any
6832number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6833to enable otherwise unsafe floating point optimizations:
6834
6835Example:
6836""""""""
6837
Renato Golin124f2592016-07-20 12:16:38 +00006838.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006839
Tim Northover675a0962014-06-13 14:24:23 +00006840 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006841
6842.. _bitwiseops:
6843
6844Bitwise Binary Operations
6845-------------------------
6846
6847Bitwise binary operators are used to do various forms of bit-twiddling
6848in a program. They are generally very efficient instructions and can
6849commonly be strength reduced from other instructions. They require two
6850operands of the same type, execute an operation on them, and produce a
6851single value. The resulting value is the same type as its operands.
6852
6853'``shl``' Instruction
6854^^^^^^^^^^^^^^^^^^^^^
6855
6856Syntax:
6857"""""""
6858
6859::
6860
Tim Northover675a0962014-06-13 14:24:23 +00006861 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6862 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6863 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6864 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006865
6866Overview:
6867"""""""""
6868
6869The '``shl``' instruction returns the first operand shifted to the left
6870a specified number of bits.
6871
6872Arguments:
6873""""""""""
6874
6875Both arguments to the '``shl``' instruction must be the same
6876:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6877'``op2``' is treated as an unsigned value.
6878
6879Semantics:
6880""""""""""
6881
6882The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6883where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006884dynamically) equal to or larger than the number of bits in
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006885``op1``, this instruction returns a :ref:`poison value <poisonvalues>`.
6886If the arguments are vectors, each vector element of ``op1`` is shifted
6887by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006888
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006889If the ``nuw`` keyword is present, then the shift produces a poison
6890value if it shifts out any non-zero bits.
6891If the ``nsw`` keyword is present, then the shift produces a poison
6892value it shifts out any bits that disagree with the resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00006893
6894Example:
6895""""""""
6896
Renato Golin124f2592016-07-20 12:16:38 +00006897.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006898
Tim Northover675a0962014-06-13 14:24:23 +00006899 <result> = shl i32 4, %var ; yields i32: 4 << %var
6900 <result> = shl i32 4, 2 ; yields i32: 16
6901 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006902 <result> = shl i32 1, 32 ; undefined
6903 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6904
6905'``lshr``' Instruction
6906^^^^^^^^^^^^^^^^^^^^^^
6907
6908Syntax:
6909"""""""
6910
6911::
6912
Tim Northover675a0962014-06-13 14:24:23 +00006913 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6914 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006915
6916Overview:
6917"""""""""
6918
6919The '``lshr``' instruction (logical shift right) returns the first
6920operand shifted to the right a specified number of bits with zero fill.
6921
6922Arguments:
6923""""""""""
6924
6925Both arguments to the '``lshr``' instruction must be the same
6926:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6927'``op2``' is treated as an unsigned value.
6928
6929Semantics:
6930""""""""""
6931
6932This instruction always performs a logical shift right operation. The
6933most significant bits of the result will be filled with zero bits after
6934the shift. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006935than the number of bits in ``op1``, this instruction returns a :ref:`poison
6936value <poisonvalues>`. If the arguments are vectors, each vector element
6937of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006938
6939If the ``exact`` keyword is present, the result value of the ``lshr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006940a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00006941
6942Example:
6943""""""""
6944
Renato Golin124f2592016-07-20 12:16:38 +00006945.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006946
Tim Northover675a0962014-06-13 14:24:23 +00006947 <result> = lshr i32 4, 1 ; yields i32:result = 2
6948 <result> = lshr i32 4, 2 ; yields i32:result = 1
6949 <result> = lshr i8 4, 3 ; yields i8:result = 0
6950 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006951 <result> = lshr i32 1, 32 ; undefined
6952 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6953
6954'``ashr``' Instruction
6955^^^^^^^^^^^^^^^^^^^^^^
6956
6957Syntax:
6958"""""""
6959
6960::
6961
Tim Northover675a0962014-06-13 14:24:23 +00006962 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6963 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006964
6965Overview:
6966"""""""""
6967
6968The '``ashr``' instruction (arithmetic shift right) returns the first
6969operand shifted to the right a specified number of bits with sign
6970extension.
6971
6972Arguments:
6973""""""""""
6974
6975Both arguments to the '``ashr``' instruction must be the same
6976:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6977'``op2``' is treated as an unsigned value.
6978
6979Semantics:
6980""""""""""
6981
6982This instruction always performs an arithmetic shift right operation,
6983The most significant bits of the result will be filled with the sign bit
6984of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006985than the number of bits in ``op1``, this instruction returns a :ref:`poison
6986value <poisonvalues>`. If the arguments are vectors, each vector element
6987of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006988
6989If the ``exact`` keyword is present, the result value of the ``ashr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006990a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00006991
6992Example:
6993""""""""
6994
Renato Golin124f2592016-07-20 12:16:38 +00006995.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006996
Tim Northover675a0962014-06-13 14:24:23 +00006997 <result> = ashr i32 4, 1 ; yields i32:result = 2
6998 <result> = ashr i32 4, 2 ; yields i32:result = 1
6999 <result> = ashr i8 4, 3 ; yields i8:result = 0
7000 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00007001 <result> = ashr i32 1, 32 ; undefined
7002 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
7003
7004'``and``' Instruction
7005^^^^^^^^^^^^^^^^^^^^^
7006
7007Syntax:
7008"""""""
7009
7010::
7011
Tim Northover675a0962014-06-13 14:24:23 +00007012 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007013
7014Overview:
7015"""""""""
7016
7017The '``and``' instruction returns the bitwise logical and of its two
7018operands.
7019
7020Arguments:
7021""""""""""
7022
7023The two arguments to the '``and``' instruction must be
7024:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7025arguments must have identical types.
7026
7027Semantics:
7028""""""""""
7029
7030The truth table used for the '``and``' instruction is:
7031
7032+-----+-----+-----+
7033| In0 | In1 | Out |
7034+-----+-----+-----+
7035| 0 | 0 | 0 |
7036+-----+-----+-----+
7037| 0 | 1 | 0 |
7038+-----+-----+-----+
7039| 1 | 0 | 0 |
7040+-----+-----+-----+
7041| 1 | 1 | 1 |
7042+-----+-----+-----+
7043
7044Example:
7045""""""""
7046
Renato Golin124f2592016-07-20 12:16:38 +00007047.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007048
Tim Northover675a0962014-06-13 14:24:23 +00007049 <result> = and i32 4, %var ; yields i32:result = 4 & %var
7050 <result> = and i32 15, 40 ; yields i32:result = 8
7051 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00007052
7053'``or``' Instruction
7054^^^^^^^^^^^^^^^^^^^^
7055
7056Syntax:
7057"""""""
7058
7059::
7060
Tim Northover675a0962014-06-13 14:24:23 +00007061 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007062
7063Overview:
7064"""""""""
7065
7066The '``or``' instruction returns the bitwise logical inclusive or of its
7067two operands.
7068
7069Arguments:
7070""""""""""
7071
7072The two arguments to the '``or``' instruction must be
7073:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7074arguments must have identical types.
7075
7076Semantics:
7077""""""""""
7078
7079The truth table used for the '``or``' instruction is:
7080
7081+-----+-----+-----+
7082| In0 | In1 | Out |
7083+-----+-----+-----+
7084| 0 | 0 | 0 |
7085+-----+-----+-----+
7086| 0 | 1 | 1 |
7087+-----+-----+-----+
7088| 1 | 0 | 1 |
7089+-----+-----+-----+
7090| 1 | 1 | 1 |
7091+-----+-----+-----+
7092
7093Example:
7094""""""""
7095
7096::
7097
Tim Northover675a0962014-06-13 14:24:23 +00007098 <result> = or i32 4, %var ; yields i32:result = 4 | %var
7099 <result> = or i32 15, 40 ; yields i32:result = 47
7100 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00007101
7102'``xor``' Instruction
7103^^^^^^^^^^^^^^^^^^^^^
7104
7105Syntax:
7106"""""""
7107
7108::
7109
Tim Northover675a0962014-06-13 14:24:23 +00007110 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007111
7112Overview:
7113"""""""""
7114
7115The '``xor``' instruction returns the bitwise logical exclusive or of
7116its two operands. The ``xor`` is used to implement the "one's
7117complement" operation, which is the "~" operator in C.
7118
7119Arguments:
7120""""""""""
7121
7122The two arguments to the '``xor``' instruction must be
7123:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7124arguments must have identical types.
7125
7126Semantics:
7127""""""""""
7128
7129The truth table used for the '``xor``' instruction is:
7130
7131+-----+-----+-----+
7132| In0 | In1 | Out |
7133+-----+-----+-----+
7134| 0 | 0 | 0 |
7135+-----+-----+-----+
7136| 0 | 1 | 1 |
7137+-----+-----+-----+
7138| 1 | 0 | 1 |
7139+-----+-----+-----+
7140| 1 | 1 | 0 |
7141+-----+-----+-----+
7142
7143Example:
7144""""""""
7145
Renato Golin124f2592016-07-20 12:16:38 +00007146.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007147
Tim Northover675a0962014-06-13 14:24:23 +00007148 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
7149 <result> = xor i32 15, 40 ; yields i32:result = 39
7150 <result> = xor i32 4, 8 ; yields i32:result = 12
7151 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00007152
7153Vector Operations
7154-----------------
7155
7156LLVM supports several instructions to represent vector operations in a
7157target-independent manner. These instructions cover the element-access
7158and vector-specific operations needed to process vectors effectively.
7159While LLVM does directly support these vector operations, many
7160sophisticated algorithms will want to use target-specific intrinsics to
7161take full advantage of a specific target.
7162
7163.. _i_extractelement:
7164
7165'``extractelement``' Instruction
7166^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7167
7168Syntax:
7169"""""""
7170
7171::
7172
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007173 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00007174
7175Overview:
7176"""""""""
7177
7178The '``extractelement``' instruction extracts a single scalar element
7179from a vector at a specified index.
7180
7181Arguments:
7182""""""""""
7183
7184The first operand of an '``extractelement``' instruction is a value of
7185:ref:`vector <t_vector>` type. The second operand is an index indicating
7186the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007187variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007188
7189Semantics:
7190""""""""""
7191
7192The result is a scalar of the same type as the element type of ``val``.
7193Its value is the value at position ``idx`` of ``val``. If ``idx``
7194exceeds the length of ``val``, the results are undefined.
7195
7196Example:
7197""""""""
7198
Renato Golin124f2592016-07-20 12:16:38 +00007199.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007200
7201 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
7202
7203.. _i_insertelement:
7204
7205'``insertelement``' Instruction
7206^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7207
7208Syntax:
7209"""""""
7210
7211::
7212
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007213 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00007214
7215Overview:
7216"""""""""
7217
7218The '``insertelement``' instruction inserts a scalar element into a
7219vector at a specified index.
7220
7221Arguments:
7222""""""""""
7223
7224The first operand of an '``insertelement``' instruction is a value of
7225:ref:`vector <t_vector>` type. The second operand is a scalar value whose
7226type must equal the element type of the first operand. The third operand
7227is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007228index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007229
7230Semantics:
7231""""""""""
7232
7233The result is a vector of the same type as ``val``. Its element values
7234are those of ``val`` except at position ``idx``, where it gets the value
7235``elt``. If ``idx`` exceeds the length of ``val``, the results are
7236undefined.
7237
7238Example:
7239""""""""
7240
Renato Golin124f2592016-07-20 12:16:38 +00007241.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007242
7243 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
7244
7245.. _i_shufflevector:
7246
7247'``shufflevector``' Instruction
7248^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7249
7250Syntax:
7251"""""""
7252
7253::
7254
7255 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
7256
7257Overview:
7258"""""""""
7259
7260The '``shufflevector``' instruction constructs a permutation of elements
7261from two input vectors, returning a vector with the same element type as
7262the input and length that is the same as the shuffle mask.
7263
7264Arguments:
7265""""""""""
7266
7267The first two operands of a '``shufflevector``' instruction are vectors
7268with the same type. The third argument is a shuffle mask whose element
7269type is always 'i32'. The result of the instruction is a vector whose
7270length is the same as the shuffle mask and whose element type is the
7271same as the element type of the first two operands.
7272
7273The shuffle mask operand is required to be a constant vector with either
7274constant integer or undef values.
7275
7276Semantics:
7277""""""""""
7278
7279The elements of the two input vectors are numbered from left to right
7280across both of the vectors. The shuffle mask operand specifies, for each
7281element of the result vector, which element of the two input vectors the
Sanjay Patel6e410182017-04-12 18:39:53 +00007282result element gets. If the shuffle mask is undef, the result vector is
7283undef. If any element of the mask operand is undef, that element of the
7284result is undef. If the shuffle mask selects an undef element from one
7285of the input vectors, the resulting element is undef.
Sean Silvab084af42012-12-07 10:36:55 +00007286
7287Example:
7288""""""""
7289
Renato Golin124f2592016-07-20 12:16:38 +00007290.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007291
7292 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7293 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
7294 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
7295 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
7296 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
7297 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
7298 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7299 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
7300
7301Aggregate Operations
7302--------------------
7303
7304LLVM supports several instructions for working with
7305:ref:`aggregate <t_aggregate>` values.
7306
7307.. _i_extractvalue:
7308
7309'``extractvalue``' Instruction
7310^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7311
7312Syntax:
7313"""""""
7314
7315::
7316
7317 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
7318
7319Overview:
7320"""""""""
7321
7322The '``extractvalue``' instruction extracts the value of a member field
7323from an :ref:`aggregate <t_aggregate>` value.
7324
7325Arguments:
7326""""""""""
7327
7328The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00007329:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00007330constant indices to specify which value to extract in a similar manner
7331as indices in a '``getelementptr``' instruction.
7332
7333The major differences to ``getelementptr`` indexing are:
7334
7335- Since the value being indexed is not a pointer, the first index is
7336 omitted and assumed to be zero.
7337- At least one index must be specified.
7338- Not only struct indices but also array indices must be in bounds.
7339
7340Semantics:
7341""""""""""
7342
7343The result is the value at the position in the aggregate specified by
7344the index operands.
7345
7346Example:
7347""""""""
7348
Renato Golin124f2592016-07-20 12:16:38 +00007349.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007350
7351 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
7352
7353.. _i_insertvalue:
7354
7355'``insertvalue``' Instruction
7356^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7357
7358Syntax:
7359"""""""
7360
7361::
7362
7363 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
7364
7365Overview:
7366"""""""""
7367
7368The '``insertvalue``' instruction inserts a value into a member field in
7369an :ref:`aggregate <t_aggregate>` value.
7370
7371Arguments:
7372""""""""""
7373
7374The first operand of an '``insertvalue``' instruction is a value of
7375:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
7376a first-class value to insert. The following operands are constant
7377indices indicating the position at which to insert the value in a
7378similar manner as indices in a '``extractvalue``' instruction. The value
7379to insert must have the same type as the value identified by the
7380indices.
7381
7382Semantics:
7383""""""""""
7384
7385The result is an aggregate of the same type as ``val``. Its value is
7386that of ``val`` except that the value at the position specified by the
7387indices is that of ``elt``.
7388
7389Example:
7390""""""""
7391
7392.. code-block:: llvm
7393
7394 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
7395 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00007396 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00007397
7398.. _memoryops:
7399
7400Memory Access and Addressing Operations
7401---------------------------------------
7402
7403A key design point of an SSA-based representation is how it represents
7404memory. In LLVM, no memory locations are in SSA form, which makes things
7405very simple. This section describes how to read, write, and allocate
7406memory in LLVM.
7407
7408.. _i_alloca:
7409
7410'``alloca``' Instruction
7411^^^^^^^^^^^^^^^^^^^^^^^^
7412
7413Syntax:
7414"""""""
7415
7416::
7417
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007418 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result
Sean Silvab084af42012-12-07 10:36:55 +00007419
7420Overview:
7421"""""""""
7422
7423The '``alloca``' instruction allocates memory on the stack frame of the
7424currently executing function, to be automatically released when this
7425function returns to its caller. The object is always allocated in the
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007426address space for allocas indicated in the datalayout.
Sean Silvab084af42012-12-07 10:36:55 +00007427
7428Arguments:
7429""""""""""
7430
7431The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7432bytes of memory on the runtime stack, returning a pointer of the
7433appropriate type to the program. If "NumElements" is specified, it is
7434the number of elements allocated, otherwise "NumElements" is defaulted
7435to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007436allocation is guaranteed to be aligned to at least that boundary. The
7437alignment may not be greater than ``1 << 29``. If not specified, or if
7438zero, the target can choose to align the allocation on any convenient
7439boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007440
7441'``type``' may be any sized type.
7442
7443Semantics:
7444""""""""""
7445
7446Memory is allocated; a pointer is returned. The operation is undefined
7447if there is insufficient stack space for the allocation. '``alloca``'d
7448memory is automatically released when the function returns. The
7449'``alloca``' instruction is commonly used to represent automatic
7450variables that must have an address available. When the function returns
7451(either with the ``ret`` or ``resume`` instructions), the memory is
7452reclaimed. Allocating zero bytes is legal, but the result is undefined.
7453The order in which memory is allocated (ie., which way the stack grows)
7454is not specified.
7455
7456Example:
7457""""""""
7458
7459.. code-block:: llvm
7460
Tim Northover675a0962014-06-13 14:24:23 +00007461 %ptr = alloca i32 ; yields i32*:ptr
7462 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7463 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7464 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007465
7466.. _i_load:
7467
7468'``load``' Instruction
7469^^^^^^^^^^^^^^^^^^^^^^
7470
7471Syntax:
7472"""""""
7473
7474::
7475
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007476 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007477 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007478 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007479 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007480 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007481
7482Overview:
7483"""""""""
7484
7485The '``load``' instruction is used to read from memory.
7486
7487Arguments:
7488""""""""""
7489
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007490The argument to the ``load`` instruction specifies the memory address from which
7491to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7492known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7493the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7494modify the number or order of execution of this ``load`` with other
7495:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007496
JF Bastiend1fb5852015-12-17 22:09:19 +00007497If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007498<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
7499``release`` and ``acq_rel`` orderings are not valid on ``load`` instructions.
7500Atomic loads produce :ref:`defined <memmodel>` results when they may see
7501multiple atomic stores. The type of the pointee must be an integer, pointer, or
7502floating-point type whose bit width is a power of two greater than or equal to
7503eight and less than or equal to a target-specific size limit. ``align`` must be
7504explicitly specified on atomic loads, and the load has undefined behavior if the
7505alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00007506pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007507
7508The optional constant ``align`` argument specifies the alignment of the
7509operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007510or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007511alignment for the target. It is the responsibility of the code emitter
7512to ensure that the alignment information is correct. Overestimating the
7513alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007514may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007515maximum possible alignment is ``1 << 29``. An alignment value higher
7516than the size of the loaded type implies memory up to the alignment
7517value bytes can be safely loaded without trapping in the default
7518address space. Access of the high bytes can interfere with debugging
7519tools, so should not be accessed if the function has the
7520``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007521
7522The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007523metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007524``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007525metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007526that this load is not expected to be reused in the cache. The code
7527generator may select special instructions to save cache bandwidth, such
7528as the ``MOVNT`` instruction on x86.
7529
7530The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007531metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007532entries. If a load instruction tagged with the ``!invariant.load``
7533metadata is executed, the optimizer may assume the memory location
7534referenced by the load contains the same value at all points in the
7535program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007536
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007537The optional ``!invariant.group`` metadata must reference a single metadata name
7538 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7539
Philip Reamescdb72f32014-10-20 22:40:55 +00007540The optional ``!nonnull`` metadata must reference a single
7541metadata name ``<index>`` corresponding to a metadata node with no
7542entries. The existence of the ``!nonnull`` metadata on the
7543instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007544never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007545on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007546to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007547
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007548The optional ``!dereferenceable`` metadata must reference a single metadata
7549name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007550entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007551tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007552The number of bytes known to be dereferenceable is specified by the integer
7553value in the metadata node. This is analogous to the ''dereferenceable''
7554attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007555to loads of a pointer type.
7556
7557The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007558metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7559``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007560instruction tells the optimizer that the value loaded is known to be either
7561dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007562The number of bytes known to be dereferenceable is specified by the integer
7563value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7564attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007565to loads of a pointer type.
7566
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007567The optional ``!align`` metadata must reference a single metadata name
7568``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7569The existence of the ``!align`` metadata on the instruction tells the
7570optimizer that the value loaded is known to be aligned to a boundary specified
7571by the integer value in the metadata node. The alignment must be a power of 2.
7572This is analogous to the ''align'' attribute on parameters and return values.
7573This metadata can only be applied to loads of a pointer type.
7574
Sean Silvab084af42012-12-07 10:36:55 +00007575Semantics:
7576""""""""""
7577
7578The location of memory pointed to is loaded. If the value being loaded
7579is of scalar type then the number of bytes read does not exceed the
7580minimum number of bytes needed to hold all bits of the type. For
7581example, loading an ``i24`` reads at most three bytes. When loading a
7582value of a type like ``i20`` with a size that is not an integral number
7583of bytes, the result is undefined if the value was not originally
7584written using a store of the same type.
7585
7586Examples:
7587"""""""""
7588
7589.. code-block:: llvm
7590
Tim Northover675a0962014-06-13 14:24:23 +00007591 %ptr = alloca i32 ; yields i32*:ptr
7592 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007593 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007594
7595.. _i_store:
7596
7597'``store``' Instruction
7598^^^^^^^^^^^^^^^^^^^^^^^
7599
7600Syntax:
7601"""""""
7602
7603::
7604
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007605 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007606 store atomic [volatile] <ty> <value>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007607
7608Overview:
7609"""""""""
7610
7611The '``store``' instruction is used to write to memory.
7612
7613Arguments:
7614""""""""""
7615
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007616There are two arguments to the ``store`` instruction: a value to store and an
7617address at which to store it. The type of the ``<pointer>`` operand must be a
7618pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7619operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7620allowed to modify the number or order of execution of this ``store`` with other
7621:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7622<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7623structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007624
JF Bastiend1fb5852015-12-17 22:09:19 +00007625If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007626<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
7627``acquire`` and ``acq_rel`` orderings aren't valid on ``store`` instructions.
7628Atomic loads produce :ref:`defined <memmodel>` results when they may see
7629multiple atomic stores. The type of the pointee must be an integer, pointer, or
7630floating-point type whose bit width is a power of two greater than or equal to
7631eight and less than or equal to a target-specific size limit. ``align`` must be
7632explicitly specified on atomic stores, and the store has undefined behavior if
7633the alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00007634pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007635
Eli Benderskyca380842013-04-17 17:17:20 +00007636The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007637operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007638or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007639alignment for the target. It is the responsibility of the code emitter
7640to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007641alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007642alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007643safe. The maximum possible alignment is ``1 << 29``. An alignment
7644value higher than the size of the stored type implies memory up to the
7645alignment value bytes can be stored to without trapping in the default
7646address space. Storing to the higher bytes however may result in data
7647races if another thread can access the same address. Introducing a
7648data race is not allowed. Storing to the extra bytes is not allowed
7649even in situations where a data race is known to not exist if the
7650function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007651
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007652The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007653name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007654value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007655tells the optimizer and code generator that this load is not expected to
7656be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007657instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007658x86.
7659
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007660The optional ``!invariant.group`` metadata must reference a
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007661single metadata name ``<index>``. See ``invariant.group`` metadata.
7662
Sean Silvab084af42012-12-07 10:36:55 +00007663Semantics:
7664""""""""""
7665
Eli Benderskyca380842013-04-17 17:17:20 +00007666The contents of memory are updated to contain ``<value>`` at the
7667location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007668of scalar type then the number of bytes written does not exceed the
7669minimum number of bytes needed to hold all bits of the type. For
7670example, storing an ``i24`` writes at most three bytes. When writing a
7671value of a type like ``i20`` with a size that is not an integral number
7672of bytes, it is unspecified what happens to the extra bits that do not
7673belong to the type, but they will typically be overwritten.
7674
7675Example:
7676""""""""
7677
7678.. code-block:: llvm
7679
Tim Northover675a0962014-06-13 14:24:23 +00007680 %ptr = alloca i32 ; yields i32*:ptr
7681 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007682 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007683
7684.. _i_fence:
7685
7686'``fence``' Instruction
7687^^^^^^^^^^^^^^^^^^^^^^^
7688
7689Syntax:
7690"""""""
7691
7692::
7693
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007694 fence [syncscope("<target-scope>")] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007695
7696Overview:
7697"""""""""
7698
7699The '``fence``' instruction is used to introduce happens-before edges
7700between operations.
7701
7702Arguments:
7703""""""""""
7704
7705'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7706defines what *synchronizes-with* edges they add. They can only be given
7707``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7708
7709Semantics:
7710""""""""""
7711
7712A fence A which has (at least) ``release`` ordering semantics
7713*synchronizes with* a fence B with (at least) ``acquire`` ordering
7714semantics if and only if there exist atomic operations X and Y, both
7715operating on some atomic object M, such that A is sequenced before X, X
7716modifies M (either directly or through some side effect of a sequence
7717headed by X), Y is sequenced before B, and Y observes M. This provides a
7718*happens-before* dependency between A and B. Rather than an explicit
7719``fence``, one (but not both) of the atomic operations X or Y might
7720provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7721still *synchronize-with* the explicit ``fence`` and establish the
7722*happens-before* edge.
7723
7724A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7725``acquire`` and ``release`` semantics specified above, participates in
7726the global program order of other ``seq_cst`` operations and/or fences.
7727
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007728A ``fence`` instruction can also take an optional
7729":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00007730
7731Example:
7732""""""""
7733
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007734.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007735
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007736 fence acquire ; yields void
7737 fence syncscope("singlethread") seq_cst ; yields void
7738 fence syncscope("agent") seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007739
7740.. _i_cmpxchg:
7741
7742'``cmpxchg``' Instruction
7743^^^^^^^^^^^^^^^^^^^^^^^^^
7744
7745Syntax:
7746"""""""
7747
7748::
7749
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007750 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [syncscope("<target-scope>")] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007751
7752Overview:
7753"""""""""
7754
7755The '``cmpxchg``' instruction is used to atomically modify memory. It
7756loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007757equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007758
7759Arguments:
7760""""""""""
7761
7762There are three arguments to the '``cmpxchg``' instruction: an address
7763to operate on, a value to compare to the value currently be at that
7764address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007765are equal. The type of '<cmp>' must be an integer or pointer type whose
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007766bit width is a power of two greater than or equal to eight and less
Philip Reames1960cfd2016-02-19 00:06:41 +00007767than or equal to a target-specific size limit. '<cmp>' and '<new>' must
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007768have the same type, and the type of '<pointer>' must be a pointer to
7769that type. If the ``cmpxchg`` is marked as ``volatile``, then the
Philip Reames1960cfd2016-02-19 00:06:41 +00007770optimizer is not allowed to modify the number or order of execution of
7771this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007772
Tim Northovere94a5182014-03-11 10:48:52 +00007773The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007774``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7775must be at least ``monotonic``, the ordering constraint on failure must be no
7776stronger than that on success, and the failure ordering cannot be either
7777``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007778
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007779A ``cmpxchg`` instruction can also take an optional
7780":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00007781
7782The pointer passed into cmpxchg must have alignment greater than or
7783equal to the size in memory of the operand.
7784
7785Semantics:
7786""""""""""
7787
Tim Northover420a2162014-06-13 14:24:07 +00007788The contents of memory at the location specified by the '``<pointer>``' operand
Matthias Braun93f2b4b2017-08-09 22:22:04 +00007789is read and compared to '``<cmp>``'; if the values are equal, '``<new>``' is
7790written to the location. The original value at the location is returned,
7791together with a flag indicating success (true) or failure (false).
Tim Northover420a2162014-06-13 14:24:07 +00007792
7793If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7794permitted: the operation may not write ``<new>`` even if the comparison
7795matched.
7796
7797If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7798if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007799
Tim Northovere94a5182014-03-11 10:48:52 +00007800A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7801identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7802load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007803
7804Example:
7805""""""""
7806
7807.. code-block:: llvm
7808
7809 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007810 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007811 br label %loop
7812
7813 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007814 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007815 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007816 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007817 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7818 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007819 br i1 %success, label %done, label %loop
7820
7821 done:
7822 ...
7823
7824.. _i_atomicrmw:
7825
7826'``atomicrmw``' Instruction
7827^^^^^^^^^^^^^^^^^^^^^^^^^^^
7828
7829Syntax:
7830"""""""
7831
7832::
7833
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007834 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [syncscope("<target-scope>")] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007835
7836Overview:
7837"""""""""
7838
7839The '``atomicrmw``' instruction is used to atomically modify memory.
7840
7841Arguments:
7842""""""""""
7843
7844There are three arguments to the '``atomicrmw``' instruction: an
7845operation to apply, an address whose value to modify, an argument to the
7846operation. The operation must be one of the following keywords:
7847
7848- xchg
7849- add
7850- sub
7851- and
7852- nand
7853- or
7854- xor
7855- max
7856- min
7857- umax
7858- umin
7859
7860The type of '<value>' must be an integer type whose bit width is a power
7861of two greater than or equal to eight and less than or equal to a
7862target-specific size limit. The type of the '``<pointer>``' operand must
7863be a pointer to that type. If the ``atomicrmw`` is marked as
7864``volatile``, then the optimizer is not allowed to modify the number or
7865order of execution of this ``atomicrmw`` with other :ref:`volatile
7866operations <volatile>`.
7867
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007868A ``atomicrmw`` instruction can also take an optional
7869":ref:`syncscope <syncscope>`" argument.
7870
Sean Silvab084af42012-12-07 10:36:55 +00007871Semantics:
7872""""""""""
7873
7874The contents of memory at the location specified by the '``<pointer>``'
7875operand are atomically read, modified, and written back. The original
7876value at the location is returned. The modification is specified by the
7877operation argument:
7878
7879- xchg: ``*ptr = val``
7880- add: ``*ptr = *ptr + val``
7881- sub: ``*ptr = *ptr - val``
7882- and: ``*ptr = *ptr & val``
7883- nand: ``*ptr = ~(*ptr & val)``
7884- or: ``*ptr = *ptr | val``
7885- xor: ``*ptr = *ptr ^ val``
7886- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7887- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7888- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7889 comparison)
7890- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7891 comparison)
7892
7893Example:
7894""""""""
7895
7896.. code-block:: llvm
7897
Tim Northover675a0962014-06-13 14:24:23 +00007898 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007899
7900.. _i_getelementptr:
7901
7902'``getelementptr``' Instruction
7903^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7904
7905Syntax:
7906"""""""
7907
7908::
7909
Peter Collingbourned93620b2016-11-10 22:34:55 +00007910 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7911 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7912 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007913
7914Overview:
7915"""""""""
7916
7917The '``getelementptr``' instruction is used to get the address of a
7918subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007919address calculation only and does not access memory. The instruction can also
7920be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007921
7922Arguments:
7923""""""""""
7924
David Blaikie16a97eb2015-03-04 22:02:58 +00007925The first argument is always a type used as the basis for the calculations.
7926The second argument is always a pointer or a vector of pointers, and is the
7927base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007928that indicate which of the elements of the aggregate object are indexed.
7929The interpretation of each index is dependent on the type being indexed
7930into. The first index always indexes the pointer value given as the
David Blaikief91b0302017-06-19 05:34:21 +00007931second argument, the second index indexes a value of the type pointed to
Sean Silvab084af42012-12-07 10:36:55 +00007932(not necessarily the value directly pointed to, since the first index
7933can be non-zero), etc. The first type indexed into must be a pointer
7934value, subsequent types can be arrays, vectors, and structs. Note that
7935subsequent types being indexed into can never be pointers, since that
7936would require loading the pointer before continuing calculation.
7937
7938The type of each index argument depends on the type it is indexing into.
7939When indexing into a (optionally packed) structure, only ``i32`` integer
7940**constants** are allowed (when using a vector of indices they must all
7941be the **same** ``i32`` integer constant). When indexing into an array,
7942pointer or vector, integers of any width are allowed, and they are not
7943required to be constant. These integers are treated as signed values
7944where relevant.
7945
7946For example, let's consider a C code fragment and how it gets compiled
7947to LLVM:
7948
7949.. code-block:: c
7950
7951 struct RT {
7952 char A;
7953 int B[10][20];
7954 char C;
7955 };
7956 struct ST {
7957 int X;
7958 double Y;
7959 struct RT Z;
7960 };
7961
7962 int *foo(struct ST *s) {
7963 return &s[1].Z.B[5][13];
7964 }
7965
7966The LLVM code generated by Clang is:
7967
7968.. code-block:: llvm
7969
7970 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7971 %struct.ST = type { i32, double, %struct.RT }
7972
7973 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7974 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007975 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007976 ret i32* %arrayidx
7977 }
7978
7979Semantics:
7980""""""""""
7981
7982In the example above, the first index is indexing into the
7983'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7984= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7985indexes into the third element of the structure, yielding a
7986'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7987structure. The third index indexes into the second element of the
7988structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7989dimensions of the array are subscripted into, yielding an '``i32``'
7990type. The '``getelementptr``' instruction returns a pointer to this
7991element, thus computing a value of '``i32*``' type.
7992
7993Note that it is perfectly legal to index partially through a structure,
7994returning a pointer to an inner element. Because of this, the LLVM code
7995for the given testcase is equivalent to:
7996
7997.. code-block:: llvm
7998
7999 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00008000 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
8001 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
8002 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
8003 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
8004 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00008005 ret i32* %t5
8006 }
8007
8008If the ``inbounds`` keyword is present, the result value of the
8009``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
8010pointer is not an *in bounds* address of an allocated object, or if any
8011of the addresses that would be formed by successive addition of the
8012offsets implied by the indices to the base address with infinitely
8013precise signed arithmetic are not an *in bounds* address of that
8014allocated object. The *in bounds* addresses for an allocated object are
8015all the addresses that point into the object, plus the address one byte
Eli Friedman13f2e352017-02-23 00:48:18 +00008016past the end. The only *in bounds* address for a null pointer in the
8017default address-space is the null pointer itself. In cases where the
8018base is a vector of pointers the ``inbounds`` keyword applies to each
8019of the computations element-wise.
Sean Silvab084af42012-12-07 10:36:55 +00008020
8021If the ``inbounds`` keyword is not present, the offsets are added to the
8022base address with silently-wrapping two's complement arithmetic. If the
8023offsets have a different width from the pointer, they are sign-extended
8024or truncated to the width of the pointer. The result value of the
8025``getelementptr`` may be outside the object pointed to by the base
8026pointer. The result value may not necessarily be used to access memory
8027though, even if it happens to point into allocated storage. See the
8028:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
8029information.
8030
Peter Collingbourned93620b2016-11-10 22:34:55 +00008031If the ``inrange`` keyword is present before any index, loading from or
8032storing to any pointer derived from the ``getelementptr`` has undefined
8033behavior if the load or store would access memory outside of the bounds of
8034the element selected by the index marked as ``inrange``. The result of a
8035pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
8036involving memory) involving a pointer derived from a ``getelementptr`` with
8037the ``inrange`` keyword is undefined, with the exception of comparisons
8038in the case where both operands are in the range of the element selected
8039by the ``inrange`` keyword, inclusive of the address one past the end of
8040that element. Note that the ``inrange`` keyword is currently only allowed
8041in constant ``getelementptr`` expressions.
8042
Sean Silvab084af42012-12-07 10:36:55 +00008043The getelementptr instruction is often confusing. For some more insight
8044into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
8045
8046Example:
8047""""""""
8048
8049.. code-block:: llvm
8050
8051 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008052 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008053 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008054 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008055 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008056 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008057 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008058 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00008059
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008060Vector of pointers:
8061"""""""""""""""""""
8062
8063The ``getelementptr`` returns a vector of pointers, instead of a single address,
8064when one or more of its arguments is a vector. In such cases, all vector
8065arguments should have the same number of elements, and every scalar argument
8066will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00008067
8068.. code-block:: llvm
8069
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008070 ; All arguments are vectors:
8071 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
8072 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008073
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008074 ; Add the same scalar offset to each pointer of a vector:
8075 ; A[i] = ptrs[i] + offset*sizeof(i8)
8076 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00008077
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008078 ; Add distinct offsets to the same pointer:
8079 ; A[i] = ptr + offsets[i]*sizeof(i8)
8080 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008081
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008082 ; In all cases described above the type of the result is <4 x i8*>
8083
8084The two following instructions are equivalent:
8085
8086.. code-block:: llvm
8087
8088 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8089 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
8090 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
8091 <4 x i32> %ind4,
8092 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00008093
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008094 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8095 i32 2, i32 1, <4 x i32> %ind4, i64 13
8096
8097Let's look at the C code, where the vector version of ``getelementptr``
8098makes sense:
8099
8100.. code-block:: c
8101
8102 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00008103 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008104 for (int i = 0; i < size; ++i) {
8105 A[i] = B[C[i]];
8106 }
8107
8108.. code-block:: llvm
8109
8110 ; get pointers for 8 elements from array B
8111 %ptrs = getelementptr double, double* %B, <8 x i32> %C
8112 ; load 8 elements from array B into A
Elad Cohenef5798a2017-05-03 12:28:54 +00008113 %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008114 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00008115
8116Conversion Operations
8117---------------------
8118
8119The instructions in this category are the conversion instructions
8120(casting) which all take a single operand and a type. They perform
8121various bit conversions on the operand.
8122
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008123.. _i_trunc:
8124
Sean Silvab084af42012-12-07 10:36:55 +00008125'``trunc .. to``' Instruction
8126^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8127
8128Syntax:
8129"""""""
8130
8131::
8132
8133 <result> = trunc <ty> <value> to <ty2> ; yields ty2
8134
8135Overview:
8136"""""""""
8137
8138The '``trunc``' instruction truncates its operand to the type ``ty2``.
8139
8140Arguments:
8141""""""""""
8142
8143The '``trunc``' instruction takes a value to trunc, and a type to trunc
8144it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
8145of the same number of integers. The bit size of the ``value`` must be
8146larger than the bit size of the destination type, ``ty2``. Equal sized
8147types are not allowed.
8148
8149Semantics:
8150""""""""""
8151
8152The '``trunc``' instruction truncates the high order bits in ``value``
8153and converts the remaining bits to ``ty2``. Since the source size must
8154be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
8155It will always truncate bits.
8156
8157Example:
8158""""""""
8159
8160.. code-block:: llvm
8161
8162 %X = trunc i32 257 to i8 ; yields i8:1
8163 %Y = trunc i32 123 to i1 ; yields i1:true
8164 %Z = trunc i32 122 to i1 ; yields i1:false
8165 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
8166
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008167.. _i_zext:
8168
Sean Silvab084af42012-12-07 10:36:55 +00008169'``zext .. to``' Instruction
8170^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8171
8172Syntax:
8173"""""""
8174
8175::
8176
8177 <result> = zext <ty> <value> to <ty2> ; yields ty2
8178
8179Overview:
8180"""""""""
8181
8182The '``zext``' instruction zero extends its operand to type ``ty2``.
8183
8184Arguments:
8185""""""""""
8186
8187The '``zext``' instruction takes a value to cast, and a type to cast it
8188to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8189the same number of integers. The bit size of the ``value`` must be
8190smaller than the bit size of the destination type, ``ty2``.
8191
8192Semantics:
8193""""""""""
8194
8195The ``zext`` fills the high order bits of the ``value`` with zero bits
8196until it reaches the size of the destination type, ``ty2``.
8197
8198When zero extending from i1, the result will always be either 0 or 1.
8199
8200Example:
8201""""""""
8202
8203.. code-block:: llvm
8204
8205 %X = zext i32 257 to i64 ; yields i64:257
8206 %Y = zext i1 true to i32 ; yields i32:1
8207 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8208
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008209.. _i_sext:
8210
Sean Silvab084af42012-12-07 10:36:55 +00008211'``sext .. to``' Instruction
8212^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8213
8214Syntax:
8215"""""""
8216
8217::
8218
8219 <result> = sext <ty> <value> to <ty2> ; yields ty2
8220
8221Overview:
8222"""""""""
8223
8224The '``sext``' sign extends ``value`` to the type ``ty2``.
8225
8226Arguments:
8227""""""""""
8228
8229The '``sext``' instruction takes a value to cast, and a type to cast it
8230to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8231the same number of integers. The bit size of the ``value`` must be
8232smaller than the bit size of the destination type, ``ty2``.
8233
8234Semantics:
8235""""""""""
8236
8237The '``sext``' instruction performs a sign extension by copying the sign
8238bit (highest order bit) of the ``value`` until it reaches the bit size
8239of the type ``ty2``.
8240
8241When sign extending from i1, the extension always results in -1 or 0.
8242
8243Example:
8244""""""""
8245
8246.. code-block:: llvm
8247
8248 %X = sext i8 -1 to i16 ; yields i16 :65535
8249 %Y = sext i1 true to i32 ; yields i32:-1
8250 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8251
8252'``fptrunc .. to``' Instruction
8253^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8254
8255Syntax:
8256"""""""
8257
8258::
8259
8260 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
8261
8262Overview:
8263"""""""""
8264
8265The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
8266
8267Arguments:
8268""""""""""
8269
8270The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
8271value to cast and a :ref:`floating point <t_floating>` type to cast it to.
8272The size of ``value`` must be larger than the size of ``ty2``. This
8273implies that ``fptrunc`` cannot be used to make a *no-op cast*.
8274
8275Semantics:
8276""""""""""
8277
Dan Liew50456fb2015-09-03 18:43:56 +00008278The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00008279:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00008280point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
8281destination type, ``ty2``, then the results are undefined. If the cast produces
8282an inexact result, how rounding is performed (e.g. truncation, also known as
8283round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00008284
8285Example:
8286""""""""
8287
8288.. code-block:: llvm
8289
8290 %X = fptrunc double 123.0 to float ; yields float:123.0
8291 %Y = fptrunc double 1.0E+300 to float ; yields undefined
8292
8293'``fpext .. to``' Instruction
8294^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8295
8296Syntax:
8297"""""""
8298
8299::
8300
8301 <result> = fpext <ty> <value> to <ty2> ; yields ty2
8302
8303Overview:
8304"""""""""
8305
8306The '``fpext``' extends a floating point ``value`` to a larger floating
8307point value.
8308
8309Arguments:
8310""""""""""
8311
8312The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
8313``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
8314to. The source type must be smaller than the destination type.
8315
8316Semantics:
8317""""""""""
8318
8319The '``fpext``' instruction extends the ``value`` from a smaller
8320:ref:`floating point <t_floating>` type to a larger :ref:`floating
8321point <t_floating>` type. The ``fpext`` cannot be used to make a
8322*no-op cast* because it always changes bits. Use ``bitcast`` to make a
8323*no-op cast* for a floating point cast.
8324
8325Example:
8326""""""""
8327
8328.. code-block:: llvm
8329
8330 %X = fpext float 3.125 to double ; yields double:3.125000e+00
8331 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
8332
8333'``fptoui .. to``' Instruction
8334^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8335
8336Syntax:
8337"""""""
8338
8339::
8340
8341 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
8342
8343Overview:
8344"""""""""
8345
8346The '``fptoui``' converts a floating point ``value`` to its unsigned
8347integer equivalent of type ``ty2``.
8348
8349Arguments:
8350""""""""""
8351
8352The '``fptoui``' instruction takes a value to cast, which must be a
8353scalar or vector :ref:`floating point <t_floating>` value, and a type to
8354cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8355``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8356type with the same number of elements as ``ty``
8357
8358Semantics:
8359""""""""""
8360
8361The '``fptoui``' instruction converts its :ref:`floating
8362point <t_floating>` operand into the nearest (rounding towards zero)
8363unsigned integer value. If the value cannot fit in ``ty2``, the results
8364are undefined.
8365
8366Example:
8367""""""""
8368
8369.. code-block:: llvm
8370
8371 %X = fptoui double 123.0 to i32 ; yields i32:123
8372 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
8373 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
8374
8375'``fptosi .. to``' Instruction
8376^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8377
8378Syntax:
8379"""""""
8380
8381::
8382
8383 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
8384
8385Overview:
8386"""""""""
8387
8388The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
8389``value`` to type ``ty2``.
8390
8391Arguments:
8392""""""""""
8393
8394The '``fptosi``' instruction takes a value to cast, which must be a
8395scalar or vector :ref:`floating point <t_floating>` value, and a type to
8396cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8397``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8398type with the same number of elements as ``ty``
8399
8400Semantics:
8401""""""""""
8402
8403The '``fptosi``' instruction converts its :ref:`floating
8404point <t_floating>` operand into the nearest (rounding towards zero)
8405signed integer value. If the value cannot fit in ``ty2``, the results
8406are undefined.
8407
8408Example:
8409""""""""
8410
8411.. code-block:: llvm
8412
8413 %X = fptosi double -123.0 to i32 ; yields i32:-123
8414 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
8415 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
8416
8417'``uitofp .. to``' Instruction
8418^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8419
8420Syntax:
8421"""""""
8422
8423::
8424
8425 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
8426
8427Overview:
8428"""""""""
8429
8430The '``uitofp``' instruction regards ``value`` as an unsigned integer
8431and converts that value to the ``ty2`` type.
8432
8433Arguments:
8434""""""""""
8435
8436The '``uitofp``' instruction takes a value to cast, which must be a
8437scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8438``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8439``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8440type with the same number of elements as ``ty``
8441
8442Semantics:
8443""""""""""
8444
8445The '``uitofp``' instruction interprets its operand as an unsigned
8446integer quantity and converts it to the corresponding floating point
8447value. If the value cannot fit in the floating point value, the results
8448are undefined.
8449
8450Example:
8451""""""""
8452
8453.. code-block:: llvm
8454
8455 %X = uitofp i32 257 to float ; yields float:257.0
8456 %Y = uitofp i8 -1 to double ; yields double:255.0
8457
8458'``sitofp .. to``' Instruction
8459^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8460
8461Syntax:
8462"""""""
8463
8464::
8465
8466 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8467
8468Overview:
8469"""""""""
8470
8471The '``sitofp``' instruction regards ``value`` as a signed integer and
8472converts that value to the ``ty2`` type.
8473
8474Arguments:
8475""""""""""
8476
8477The '``sitofp``' instruction takes a value to cast, which must be a
8478scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8479``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8480``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8481type with the same number of elements as ``ty``
8482
8483Semantics:
8484""""""""""
8485
8486The '``sitofp``' instruction interprets its operand as a signed integer
8487quantity and converts it to the corresponding floating point value. If
8488the value cannot fit in the floating point value, the results are
8489undefined.
8490
8491Example:
8492""""""""
8493
8494.. code-block:: llvm
8495
8496 %X = sitofp i32 257 to float ; yields float:257.0
8497 %Y = sitofp i8 -1 to double ; yields double:-1.0
8498
8499.. _i_ptrtoint:
8500
8501'``ptrtoint .. to``' Instruction
8502^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8503
8504Syntax:
8505"""""""
8506
8507::
8508
8509 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8510
8511Overview:
8512"""""""""
8513
8514The '``ptrtoint``' instruction converts the pointer or a vector of
8515pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8516
8517Arguments:
8518""""""""""
8519
8520The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008521a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008522type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8523a vector of integers type.
8524
8525Semantics:
8526""""""""""
8527
8528The '``ptrtoint``' instruction converts ``value`` to integer type
8529``ty2`` by interpreting the pointer value as an integer and either
8530truncating or zero extending that value to the size of the integer type.
8531If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8532``value`` is larger than ``ty2`` then a truncation is done. If they are
8533the same size, then nothing is done (*no-op cast*) other than a type
8534change.
8535
8536Example:
8537""""""""
8538
8539.. code-block:: llvm
8540
8541 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8542 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8543 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8544
8545.. _i_inttoptr:
8546
8547'``inttoptr .. to``' Instruction
8548^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8549
8550Syntax:
8551"""""""
8552
8553::
8554
8555 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8556
8557Overview:
8558"""""""""
8559
8560The '``inttoptr``' instruction converts an integer ``value`` to a
8561pointer type, ``ty2``.
8562
8563Arguments:
8564""""""""""
8565
8566The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8567cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8568type.
8569
8570Semantics:
8571""""""""""
8572
8573The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8574applying either a zero extension or a truncation depending on the size
8575of the integer ``value``. If ``value`` is larger than the size of a
8576pointer then a truncation is done. If ``value`` is smaller than the size
8577of a pointer then a zero extension is done. If they are the same size,
8578nothing is done (*no-op cast*).
8579
8580Example:
8581""""""""
8582
8583.. code-block:: llvm
8584
8585 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8586 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8587 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8588 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8589
8590.. _i_bitcast:
8591
8592'``bitcast .. to``' Instruction
8593^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8594
8595Syntax:
8596"""""""
8597
8598::
8599
8600 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8601
8602Overview:
8603"""""""""
8604
8605The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8606changing any bits.
8607
8608Arguments:
8609""""""""""
8610
8611The '``bitcast``' instruction takes a value to cast, which must be a
8612non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008613also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8614bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008615identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008616also be a pointer of the same size. This instruction supports bitwise
8617conversion of vectors to integers and to vectors of other types (as
8618long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008619
8620Semantics:
8621""""""""""
8622
Matt Arsenault24b49c42013-07-31 17:49:08 +00008623The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8624is always a *no-op cast* because no bits change with this
8625conversion. The conversion is done as if the ``value`` had been stored
8626to memory and read back as type ``ty2``. Pointer (or vector of
8627pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008628pointers) types with the same address space through this instruction.
8629To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8630or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008631
8632Example:
8633""""""""
8634
Renato Golin124f2592016-07-20 12:16:38 +00008635.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008636
8637 %X = bitcast i8 255 to i8 ; yields i8 :-1
8638 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8639 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8640 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8641
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008642.. _i_addrspacecast:
8643
8644'``addrspacecast .. to``' Instruction
8645^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8646
8647Syntax:
8648"""""""
8649
8650::
8651
8652 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8653
8654Overview:
8655"""""""""
8656
8657The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8658address space ``n`` to type ``pty2`` in address space ``m``.
8659
8660Arguments:
8661""""""""""
8662
8663The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8664to cast and a pointer type to cast it to, which must have a different
8665address space.
8666
8667Semantics:
8668""""""""""
8669
8670The '``addrspacecast``' instruction converts the pointer value
8671``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008672value modification, depending on the target and the address space
8673pair. Pointer conversions within the same address space must be
8674performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008675conversion is legal then both result and operand refer to the same memory
8676location.
8677
8678Example:
8679""""""""
8680
8681.. code-block:: llvm
8682
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008683 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8684 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8685 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008686
Sean Silvab084af42012-12-07 10:36:55 +00008687.. _otherops:
8688
8689Other Operations
8690----------------
8691
8692The instructions in this category are the "miscellaneous" instructions,
8693which defy better classification.
8694
8695.. _i_icmp:
8696
8697'``icmp``' Instruction
8698^^^^^^^^^^^^^^^^^^^^^^
8699
8700Syntax:
8701"""""""
8702
8703::
8704
Tim Northover675a0962014-06-13 14:24:23 +00008705 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008706
8707Overview:
8708"""""""""
8709
8710The '``icmp``' instruction returns a boolean value or a vector of
8711boolean values based on comparison of its two integer, integer vector,
8712pointer, or pointer vector operands.
8713
8714Arguments:
8715""""""""""
8716
8717The '``icmp``' instruction takes three operands. The first operand is
8718the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008719not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008720
8721#. ``eq``: equal
8722#. ``ne``: not equal
8723#. ``ugt``: unsigned greater than
8724#. ``uge``: unsigned greater or equal
8725#. ``ult``: unsigned less than
8726#. ``ule``: unsigned less or equal
8727#. ``sgt``: signed greater than
8728#. ``sge``: signed greater or equal
8729#. ``slt``: signed less than
8730#. ``sle``: signed less or equal
8731
8732The remaining two arguments must be :ref:`integer <t_integer>` or
8733:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8734must also be identical types.
8735
8736Semantics:
8737""""""""""
8738
8739The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8740code given as ``cond``. The comparison performed always yields either an
8741:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8742
8743#. ``eq``: yields ``true`` if the operands are equal, ``false``
8744 otherwise. No sign interpretation is necessary or performed.
8745#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8746 otherwise. No sign interpretation is necessary or performed.
8747#. ``ugt``: interprets the operands as unsigned values and yields
8748 ``true`` if ``op1`` is greater than ``op2``.
8749#. ``uge``: interprets the operands as unsigned values and yields
8750 ``true`` if ``op1`` is greater than or equal to ``op2``.
8751#. ``ult``: interprets the operands as unsigned values and yields
8752 ``true`` if ``op1`` is less than ``op2``.
8753#. ``ule``: interprets the operands as unsigned values and yields
8754 ``true`` if ``op1`` is less than or equal to ``op2``.
8755#. ``sgt``: interprets the operands as signed values and yields ``true``
8756 if ``op1`` is greater than ``op2``.
8757#. ``sge``: interprets the operands as signed values and yields ``true``
8758 if ``op1`` is greater than or equal to ``op2``.
8759#. ``slt``: interprets the operands as signed values and yields ``true``
8760 if ``op1`` is less than ``op2``.
8761#. ``sle``: interprets the operands as signed values and yields ``true``
8762 if ``op1`` is less than or equal to ``op2``.
8763
8764If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8765are compared as if they were integers.
8766
8767If the operands are integer vectors, then they are compared element by
8768element. The result is an ``i1`` vector with the same number of elements
8769as the values being compared. Otherwise, the result is an ``i1``.
8770
8771Example:
8772""""""""
8773
Renato Golin124f2592016-07-20 12:16:38 +00008774.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008775
8776 <result> = icmp eq i32 4, 5 ; yields: result=false
8777 <result> = icmp ne float* %X, %X ; yields: result=false
8778 <result> = icmp ult i16 4, 5 ; yields: result=true
8779 <result> = icmp sgt i16 4, 5 ; yields: result=false
8780 <result> = icmp ule i16 -4, 5 ; yields: result=false
8781 <result> = icmp sge i16 4, 5 ; yields: result=false
8782
Sean Silvab084af42012-12-07 10:36:55 +00008783.. _i_fcmp:
8784
8785'``fcmp``' Instruction
8786^^^^^^^^^^^^^^^^^^^^^^
8787
8788Syntax:
8789"""""""
8790
8791::
8792
James Molloy88eb5352015-07-10 12:52:00 +00008793 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008794
8795Overview:
8796"""""""""
8797
8798The '``fcmp``' instruction returns a boolean value or vector of boolean
8799values based on comparison of its operands.
8800
8801If the operands are floating point scalars, then the result type is a
8802boolean (:ref:`i1 <t_integer>`).
8803
8804If the operands are floating point vectors, then the result type is a
8805vector of boolean with the same number of elements as the operands being
8806compared.
8807
8808Arguments:
8809""""""""""
8810
8811The '``fcmp``' instruction takes three operands. The first operand is
8812the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008813not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008814
8815#. ``false``: no comparison, always returns false
8816#. ``oeq``: ordered and equal
8817#. ``ogt``: ordered and greater than
8818#. ``oge``: ordered and greater than or equal
8819#. ``olt``: ordered and less than
8820#. ``ole``: ordered and less than or equal
8821#. ``one``: ordered and not equal
8822#. ``ord``: ordered (no nans)
8823#. ``ueq``: unordered or equal
8824#. ``ugt``: unordered or greater than
8825#. ``uge``: unordered or greater than or equal
8826#. ``ult``: unordered or less than
8827#. ``ule``: unordered or less than or equal
8828#. ``une``: unordered or not equal
8829#. ``uno``: unordered (either nans)
8830#. ``true``: no comparison, always returns true
8831
8832*Ordered* means that neither operand is a QNAN while *unordered* means
8833that either operand may be a QNAN.
8834
8835Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8836point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8837type. They must have identical types.
8838
8839Semantics:
8840""""""""""
8841
8842The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8843condition code given as ``cond``. If the operands are vectors, then the
8844vectors are compared element by element. Each comparison performed
8845always yields an :ref:`i1 <t_integer>` result, as follows:
8846
8847#. ``false``: always yields ``false``, regardless of operands.
8848#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8849 is equal to ``op2``.
8850#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8851 is greater than ``op2``.
8852#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8853 is greater than or equal to ``op2``.
8854#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8855 is less than ``op2``.
8856#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8857 is less than or equal to ``op2``.
8858#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8859 is not equal to ``op2``.
8860#. ``ord``: yields ``true`` if both operands are not a QNAN.
8861#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8862 equal to ``op2``.
8863#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8864 greater than ``op2``.
8865#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8866 greater than or equal to ``op2``.
8867#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8868 less than ``op2``.
8869#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8870 less than or equal to ``op2``.
8871#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8872 not equal to ``op2``.
8873#. ``uno``: yields ``true`` if either operand is a QNAN.
8874#. ``true``: always yields ``true``, regardless of operands.
8875
James Molloy88eb5352015-07-10 12:52:00 +00008876The ``fcmp`` instruction can also optionally take any number of
8877:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8878otherwise unsafe floating point optimizations.
8879
8880Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8881only flags that have any effect on its semantics are those that allow
8882assumptions to be made about the values of input arguments; namely
8883``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8884
Sean Silvab084af42012-12-07 10:36:55 +00008885Example:
8886""""""""
8887
Renato Golin124f2592016-07-20 12:16:38 +00008888.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008889
8890 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8891 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8892 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8893 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8894
Sean Silvab084af42012-12-07 10:36:55 +00008895.. _i_phi:
8896
8897'``phi``' Instruction
8898^^^^^^^^^^^^^^^^^^^^^
8899
8900Syntax:
8901"""""""
8902
8903::
8904
8905 <result> = phi <ty> [ <val0>, <label0>], ...
8906
8907Overview:
8908"""""""""
8909
8910The '``phi``' instruction is used to implement the φ node in the SSA
8911graph representing the function.
8912
8913Arguments:
8914""""""""""
8915
8916The type of the incoming values is specified with the first type field.
8917After this, the '``phi``' instruction takes a list of pairs as
8918arguments, with one pair for each predecessor basic block of the current
8919block. Only values of :ref:`first class <t_firstclass>` type may be used as
8920the value arguments to the PHI node. Only labels may be used as the
8921label arguments.
8922
8923There must be no non-phi instructions between the start of a basic block
8924and the PHI instructions: i.e. PHI instructions must be first in a basic
8925block.
8926
8927For the purposes of the SSA form, the use of each incoming value is
8928deemed to occur on the edge from the corresponding predecessor block to
8929the current block (but after any definition of an '``invoke``'
8930instruction's return value on the same edge).
8931
8932Semantics:
8933""""""""""
8934
8935At runtime, the '``phi``' instruction logically takes on the value
8936specified by the pair corresponding to the predecessor basic block that
8937executed just prior to the current block.
8938
8939Example:
8940""""""""
8941
8942.. code-block:: llvm
8943
8944 Loop: ; Infinite loop that counts from 0 on up...
8945 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8946 %nextindvar = add i32 %indvar, 1
8947 br label %Loop
8948
8949.. _i_select:
8950
8951'``select``' Instruction
8952^^^^^^^^^^^^^^^^^^^^^^^^
8953
8954Syntax:
8955"""""""
8956
8957::
8958
8959 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8960
8961 selty is either i1 or {<N x i1>}
8962
8963Overview:
8964"""""""""
8965
8966The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008967condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008968
8969Arguments:
8970""""""""""
8971
8972The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8973values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008974class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008975
8976Semantics:
8977""""""""""
8978
8979If the condition is an i1 and it evaluates to 1, the instruction returns
8980the first value argument; otherwise, it returns the second value
8981argument.
8982
8983If the condition is a vector of i1, then the value arguments must be
8984vectors of the same size, and the selection is done element by element.
8985
David Majnemer40a0b592015-03-03 22:45:47 +00008986If the condition is an i1 and the value arguments are vectors of the
8987same size, then an entire vector is selected.
8988
Sean Silvab084af42012-12-07 10:36:55 +00008989Example:
8990""""""""
8991
8992.. code-block:: llvm
8993
8994 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8995
8996.. _i_call:
8997
8998'``call``' Instruction
8999^^^^^^^^^^^^^^^^^^^^^^
9000
9001Syntax:
9002"""""""
9003
9004::
9005
David Blaikieb83cf102016-07-13 17:21:34 +00009006 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00009007 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00009008
9009Overview:
9010"""""""""
9011
9012The '``call``' instruction represents a simple function call.
9013
9014Arguments:
9015""""""""""
9016
9017This instruction requires several arguments:
9018
Reid Kleckner5772b772014-04-24 20:14:34 +00009019#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00009020 should perform tail call optimization. The ``tail`` marker is a hint that
9021 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00009022 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00009023 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00009024
9025 #. The call will not cause unbounded stack growth if it is part of a
9026 recursive cycle in the call graph.
9027 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
9028 forwarded in place.
9029
9030 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00009031 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00009032 rules:
9033
9034 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
9035 or a pointer bitcast followed by a ret instruction.
9036 - The ret instruction must return the (possibly bitcasted) value
9037 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00009038 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00009039 parameters or return types may differ in pointee type, but not
9040 in address space.
9041 - The calling conventions of the caller and callee must match.
9042 - All ABI-impacting function attributes, such as sret, byval, inreg,
9043 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00009044 - The callee must be varargs iff the caller is varargs. Bitcasting a
9045 non-varargs function to the appropriate varargs type is legal so
9046 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00009047
9048 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
9049 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00009050
9051 - Caller and callee both have the calling convention ``fastcc``.
9052 - The call is in tail position (ret immediately follows call and ret
9053 uses value of call or is void).
9054 - Option ``-tailcallopt`` is enabled, or
9055 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00009056 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00009057 met. <CodeGenerator.html#tailcallopt>`_
9058
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00009059#. The optional ``notail`` marker indicates that the optimizers should not add
9060 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
9061 call optimization from being performed on the call.
9062
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00009063#. The optional ``fast-math flags`` marker indicates that the call has one or more
Sanjay Patelfa54ace2015-12-14 21:59:03 +00009064 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
9065 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
9066 for calls that return a floating-point scalar or vector type.
9067
Sean Silvab084af42012-12-07 10:36:55 +00009068#. The optional "cconv" marker indicates which :ref:`calling
9069 convention <callingconv>` the call should use. If none is
9070 specified, the call defaults to using C calling conventions. The
9071 calling convention of the call must match the calling convention of
9072 the target function, or else the behavior is undefined.
9073#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
9074 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
9075 are valid here.
9076#. '``ty``': the type of the call instruction itself which is also the
9077 type of the return value. Functions that return no value are marked
9078 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00009079#. '``fnty``': shall be the signature of the function being called. The
9080 argument types must match the types implied by this signature. This
9081 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00009082#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00009083 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00009084 indirect ``call``'s are just as possible, calling an arbitrary pointer
9085 to function value.
9086#. '``function args``': argument list whose types match the function
9087 signature argument types and parameter attributes. All arguments must
9088 be of :ref:`first class <t_firstclass>` type. If the function signature
9089 indicates the function accepts a variable number of arguments, the
9090 extra arguments can be specified.
George Burgess IV39c91052017-04-13 04:01:55 +00009091#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00009092#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00009093
9094Semantics:
9095""""""""""
9096
9097The '``call``' instruction is used to cause control flow to transfer to
9098a specified function, with its incoming arguments bound to the specified
9099values. Upon a '``ret``' instruction in the called function, control
9100flow continues with the instruction after the function call, and the
9101return value of the function is bound to the result argument.
9102
9103Example:
9104""""""""
9105
9106.. code-block:: llvm
9107
9108 %retval = call i32 @test(i32 %argc)
9109 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
9110 %X = tail call i32 @foo() ; yields i32
9111 %Y = tail call fastcc i32 @foo() ; yields i32
9112 call void %foo(i8 97 signext)
9113
9114 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00009115 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00009116 %gr = extractvalue %struct.A %r, 0 ; yields i32
9117 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
9118 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
9119 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
9120
9121llvm treats calls to some functions with names and arguments that match
9122the standard C99 library as being the C99 library functions, and may
9123perform optimizations or generate code for them under that assumption.
9124This is something we'd like to change in the future to provide better
9125support for freestanding environments and non-C-based languages.
9126
9127.. _i_va_arg:
9128
9129'``va_arg``' Instruction
9130^^^^^^^^^^^^^^^^^^^^^^^^
9131
9132Syntax:
9133"""""""
9134
9135::
9136
9137 <resultval> = va_arg <va_list*> <arglist>, <argty>
9138
9139Overview:
9140"""""""""
9141
9142The '``va_arg``' instruction is used to access arguments passed through
9143the "variable argument" area of a function call. It is used to implement
9144the ``va_arg`` macro in C.
9145
9146Arguments:
9147""""""""""
9148
9149This instruction takes a ``va_list*`` value and the type of the
9150argument. It returns a value of the specified argument type and
9151increments the ``va_list`` to point to the next argument. The actual
9152type of ``va_list`` is target specific.
9153
9154Semantics:
9155""""""""""
9156
9157The '``va_arg``' instruction loads an argument of the specified type
9158from the specified ``va_list`` and causes the ``va_list`` to point to
9159the next argument. For more information, see the variable argument
9160handling :ref:`Intrinsic Functions <int_varargs>`.
9161
9162It is legal for this instruction to be called in a function which does
9163not take a variable number of arguments, for example, the ``vfprintf``
9164function.
9165
9166``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
9167function <intrinsics>` because it takes a type as an argument.
9168
9169Example:
9170""""""""
9171
9172See the :ref:`variable argument processing <int_varargs>` section.
9173
9174Note that the code generator does not yet fully support va\_arg on many
9175targets. Also, it does not currently support va\_arg with aggregate
9176types on any target.
9177
9178.. _i_landingpad:
9179
9180'``landingpad``' Instruction
9181^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9182
9183Syntax:
9184"""""""
9185
9186::
9187
David Majnemer7fddecc2015-06-17 20:52:32 +00009188 <resultval> = landingpad <resultty> <clause>+
9189 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00009190
9191 <clause> := catch <type> <value>
9192 <clause> := filter <array constant type> <array constant>
9193
9194Overview:
9195"""""""""
9196
9197The '``landingpad``' instruction is used by `LLVM's exception handling
9198system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009199is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00009200code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00009201defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00009202re-entry to the function. The ``resultval`` has the type ``resultty``.
9203
9204Arguments:
9205""""""""""
9206
David Majnemer7fddecc2015-06-17 20:52:32 +00009207The optional
Sean Silvab084af42012-12-07 10:36:55 +00009208``cleanup`` flag indicates that the landing pad block is a cleanup.
9209
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009210A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00009211contains the global variable representing the "type" that may be caught
9212or filtered respectively. Unlike the ``catch`` clause, the ``filter``
9213clause takes an array constant as its argument. Use
9214"``[0 x i8**] undef``" for a filter which cannot throw. The
9215'``landingpad``' instruction must contain *at least* one ``clause`` or
9216the ``cleanup`` flag.
9217
9218Semantics:
9219""""""""""
9220
9221The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00009222:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00009223therefore the "result type" of the ``landingpad`` instruction. As with
9224calling conventions, how the personality function results are
9225represented in LLVM IR is target specific.
9226
9227The clauses are applied in order from top to bottom. If two
9228``landingpad`` instructions are merged together through inlining, the
9229clauses from the calling function are appended to the list of clauses.
9230When the call stack is being unwound due to an exception being thrown,
9231the exception is compared against each ``clause`` in turn. If it doesn't
9232match any of the clauses, and the ``cleanup`` flag is not set, then
9233unwinding continues further up the call stack.
9234
9235The ``landingpad`` instruction has several restrictions:
9236
9237- A landing pad block is a basic block which is the unwind destination
9238 of an '``invoke``' instruction.
9239- A landing pad block must have a '``landingpad``' instruction as its
9240 first non-PHI instruction.
9241- There can be only one '``landingpad``' instruction within the landing
9242 pad block.
9243- A basic block that is not a landing pad block may not include a
9244 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009245
9246Example:
9247""""""""
9248
9249.. code-block:: llvm
9250
9251 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00009252 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009253 catch i8** @_ZTIi
9254 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00009255 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009256 cleanup
9257 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00009258 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009259 catch i8** @_ZTIi
9260 filter [1 x i8**] [@_ZTId]
9261
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009262.. _i_catchpad:
9263
9264'``catchpad``' Instruction
9265^^^^^^^^^^^^^^^^^^^^^^^^^^
9266
9267Syntax:
9268"""""""
9269
9270::
9271
9272 <resultval> = catchpad within <catchswitch> [<args>*]
9273
9274Overview:
9275"""""""""
9276
9277The '``catchpad``' instruction is used by `LLVM's exception handling
9278system <ExceptionHandling.html#overview>`_ to specify that a basic block
9279begins a catch handler --- one where a personality routine attempts to transfer
9280control to catch an exception.
9281
9282Arguments:
9283""""""""""
9284
9285The ``catchswitch`` operand must always be a token produced by a
9286:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
9287ensures that each ``catchpad`` has exactly one predecessor block, and it always
9288terminates in a ``catchswitch``.
9289
9290The ``args`` correspond to whatever information the personality routine
9291requires to know if this is an appropriate handler for the exception. Control
9292will transfer to the ``catchpad`` if this is the first appropriate handler for
9293the exception.
9294
9295The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
9296``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
9297pads.
9298
9299Semantics:
9300""""""""""
9301
9302When the call stack is being unwound due to an exception being thrown, the
9303exception is compared against the ``args``. If it doesn't match, control will
9304not reach the ``catchpad`` instruction. The representation of ``args`` is
9305entirely target and personality function-specific.
9306
9307Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
9308instruction must be the first non-phi of its parent basic block.
9309
9310The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
9311instructions is described in the
9312`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
9313
9314When a ``catchpad`` has been "entered" but not yet "exited" (as
9315described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9316it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9317that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
9318
9319Example:
9320""""""""
9321
Renato Golin124f2592016-07-20 12:16:38 +00009322.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009323
9324 dispatch:
9325 %cs = catchswitch within none [label %handler0] unwind to caller
9326 ;; A catch block which can catch an integer.
9327 handler0:
9328 %tok = catchpad within %cs [i8** @_ZTIi]
9329
David Majnemer654e1302015-07-31 17:58:14 +00009330.. _i_cleanuppad:
9331
9332'``cleanuppad``' Instruction
9333^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9334
9335Syntax:
9336"""""""
9337
9338::
9339
David Majnemer8a1c45d2015-12-12 05:38:55 +00009340 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00009341
9342Overview:
9343"""""""""
9344
9345The '``cleanuppad``' instruction is used by `LLVM's exception handling
9346system <ExceptionHandling.html#overview>`_ to specify that a basic block
9347is a cleanup block --- one where a personality routine attempts to
9348transfer control to run cleanup actions.
9349The ``args`` correspond to whatever additional
9350information the :ref:`personality function <personalityfn>` requires to
9351execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00009352The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00009353match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
9354The ``parent`` argument is the token of the funclet that contains the
9355``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
9356this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00009357
9358Arguments:
9359""""""""""
9360
9361The instruction takes a list of arbitrary values which are interpreted
9362by the :ref:`personality function <personalityfn>`.
9363
9364Semantics:
9365""""""""""
9366
David Majnemer654e1302015-07-31 17:58:14 +00009367When the call stack is being unwound due to an exception being thrown,
9368the :ref:`personality function <personalityfn>` transfers control to the
9369``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00009370As with calling conventions, how the personality function results are
9371represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00009372
9373The ``cleanuppad`` instruction has several restrictions:
9374
9375- A cleanup block is a basic block which is the unwind destination of
9376 an exceptional instruction.
9377- A cleanup block must have a '``cleanuppad``' instruction as its
9378 first non-PHI instruction.
9379- There can be only one '``cleanuppad``' instruction within the
9380 cleanup block.
9381- A basic block that is not a cleanup block may not include a
9382 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009383
Joseph Tremoulete28885e2016-01-10 04:28:38 +00009384When a ``cleanuppad`` has been "entered" but not yet "exited" (as
9385described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9386it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9387that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009388
David Majnemer654e1302015-07-31 17:58:14 +00009389Example:
9390""""""""
9391
Renato Golin124f2592016-07-20 12:16:38 +00009392.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00009393
David Majnemer8a1c45d2015-12-12 05:38:55 +00009394 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00009395
Sean Silvab084af42012-12-07 10:36:55 +00009396.. _intrinsics:
9397
9398Intrinsic Functions
9399===================
9400
9401LLVM supports the notion of an "intrinsic function". These functions
9402have well known names and semantics and are required to follow certain
9403restrictions. Overall, these intrinsics represent an extension mechanism
9404for the LLVM language that does not require changing all of the
9405transformations in LLVM when adding to the language (or the bitcode
9406reader/writer, the parser, etc...).
9407
9408Intrinsic function names must all start with an "``llvm.``" prefix. This
9409prefix is reserved in LLVM for intrinsic names; thus, function names may
9410not begin with this prefix. Intrinsic functions must always be external
9411functions: you cannot define the body of intrinsic functions. Intrinsic
9412functions may only be used in call or invoke instructions: it is illegal
9413to take the address of an intrinsic function. Additionally, because
9414intrinsic functions are part of the LLVM language, it is required if any
9415are added that they be documented here.
9416
9417Some intrinsic functions can be overloaded, i.e., the intrinsic
9418represents a family of functions that perform the same operation but on
9419different data types. Because LLVM can represent over 8 million
9420different integer types, overloading is used commonly to allow an
9421intrinsic function to operate on any integer type. One or more of the
9422argument types or the result type can be overloaded to accept any
9423integer type. Argument types may also be defined as exactly matching a
9424previous argument's type or the result type. This allows an intrinsic
9425function which accepts multiple arguments, but needs all of them to be
9426of the same type, to only be overloaded with respect to a single
9427argument or the result.
9428
9429Overloaded intrinsics will have the names of its overloaded argument
9430types encoded into its function name, each preceded by a period. Only
9431those types which are overloaded result in a name suffix. Arguments
9432whose type is matched against another type do not. For example, the
9433``llvm.ctpop`` function can take an integer of any width and returns an
9434integer of exactly the same integer width. This leads to a family of
9435functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
9436``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
9437overloaded, and only one type suffix is required. Because the argument's
9438type is matched against the return type, it does not require its own
9439name suffix.
9440
9441To learn how to add an intrinsic function, please see the `Extending
9442LLVM Guide <ExtendingLLVM.html>`_.
9443
9444.. _int_varargs:
9445
9446Variable Argument Handling Intrinsics
9447-------------------------------------
9448
9449Variable argument support is defined in LLVM with the
9450:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9451functions. These functions are related to the similarly named macros
9452defined in the ``<stdarg.h>`` header file.
9453
9454All of these functions operate on arguments that use a target-specific
9455value type "``va_list``". The LLVM assembly language reference manual
9456does not define what this type is, so all transformations should be
9457prepared to handle these functions regardless of the type used.
9458
9459This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9460variable argument handling intrinsic functions are used.
9461
9462.. code-block:: llvm
9463
Tim Northoverab60bb92014-11-02 01:21:51 +00009464 ; This struct is different for every platform. For most platforms,
9465 ; it is merely an i8*.
9466 %struct.va_list = type { i8* }
9467
9468 ; For Unix x86_64 platforms, va_list is the following struct:
9469 ; %struct.va_list = type { i32, i32, i8*, i8* }
9470
Sean Silvab084af42012-12-07 10:36:55 +00009471 define i32 @test(i32 %X, ...) {
9472 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009473 %ap = alloca %struct.va_list
9474 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009475 call void @llvm.va_start(i8* %ap2)
9476
9477 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009478 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009479
9480 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9481 %aq = alloca i8*
9482 %aq2 = bitcast i8** %aq to i8*
9483 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9484 call void @llvm.va_end(i8* %aq2)
9485
9486 ; Stop processing of arguments.
9487 call void @llvm.va_end(i8* %ap2)
9488 ret i32 %tmp
9489 }
9490
9491 declare void @llvm.va_start(i8*)
9492 declare void @llvm.va_copy(i8*, i8*)
9493 declare void @llvm.va_end(i8*)
9494
9495.. _int_va_start:
9496
9497'``llvm.va_start``' Intrinsic
9498^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9499
9500Syntax:
9501"""""""
9502
9503::
9504
Nick Lewycky04f6de02013-09-11 22:04:52 +00009505 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009506
9507Overview:
9508"""""""""
9509
9510The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9511subsequent use by ``va_arg``.
9512
9513Arguments:
9514""""""""""
9515
9516The argument is a pointer to a ``va_list`` element to initialize.
9517
9518Semantics:
9519""""""""""
9520
9521The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9522available in C. In a target-dependent way, it initializes the
9523``va_list`` element to which the argument points, so that the next call
9524to ``va_arg`` will produce the first variable argument passed to the
9525function. Unlike the C ``va_start`` macro, this intrinsic does not need
9526to know the last argument of the function as the compiler can figure
9527that out.
9528
9529'``llvm.va_end``' Intrinsic
9530^^^^^^^^^^^^^^^^^^^^^^^^^^^
9531
9532Syntax:
9533"""""""
9534
9535::
9536
9537 declare void @llvm.va_end(i8* <arglist>)
9538
9539Overview:
9540"""""""""
9541
9542The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9543initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9544
9545Arguments:
9546""""""""""
9547
9548The argument is a pointer to a ``va_list`` to destroy.
9549
9550Semantics:
9551""""""""""
9552
9553The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9554available in C. In a target-dependent way, it destroys the ``va_list``
9555element to which the argument points. Calls to
9556:ref:`llvm.va_start <int_va_start>` and
9557:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9558``llvm.va_end``.
9559
9560.. _int_va_copy:
9561
9562'``llvm.va_copy``' Intrinsic
9563^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9564
9565Syntax:
9566"""""""
9567
9568::
9569
9570 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9571
9572Overview:
9573"""""""""
9574
9575The '``llvm.va_copy``' intrinsic copies the current argument position
9576from the source argument list to the destination argument list.
9577
9578Arguments:
9579""""""""""
9580
9581The first argument is a pointer to a ``va_list`` element to initialize.
9582The second argument is a pointer to a ``va_list`` element to copy from.
9583
9584Semantics:
9585""""""""""
9586
9587The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9588available in C. In a target-dependent way, it copies the source
9589``va_list`` element into the destination ``va_list`` element. This
9590intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9591arbitrarily complex and require, for example, memory allocation.
9592
9593Accurate Garbage Collection Intrinsics
9594--------------------------------------
9595
Philip Reamesc5b0f562015-02-25 23:52:06 +00009596LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009597(GC) requires the frontend to generate code containing appropriate intrinsic
9598calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009599intrinsics in a manner which is appropriate for the target collector.
9600
Sean Silvab084af42012-12-07 10:36:55 +00009601These intrinsics allow identification of :ref:`GC roots on the
9602stack <int_gcroot>`, as well as garbage collector implementations that
9603require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009604Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009605these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009606details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009607
Philip Reamesf80bbff2015-02-25 23:45:20 +00009608Experimental Statepoint Intrinsics
9609^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9610
9611LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009612collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009613to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009614:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009615differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009616<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009617described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009618
9619.. _int_gcroot:
9620
9621'``llvm.gcroot``' Intrinsic
9622^^^^^^^^^^^^^^^^^^^^^^^^^^^
9623
9624Syntax:
9625"""""""
9626
9627::
9628
9629 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9630
9631Overview:
9632"""""""""
9633
9634The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9635the code generator, and allows some metadata to be associated with it.
9636
9637Arguments:
9638""""""""""
9639
9640The first argument specifies the address of a stack object that contains
9641the root pointer. The second pointer (which must be either a constant or
9642a global value address) contains the meta-data to be associated with the
9643root.
9644
9645Semantics:
9646""""""""""
9647
9648At runtime, a call to this intrinsic stores a null pointer into the
9649"ptrloc" location. At compile-time, the code generator generates
9650information to allow the runtime to find the pointer at GC safe points.
9651The '``llvm.gcroot``' intrinsic may only be used in a function which
9652:ref:`specifies a GC algorithm <gc>`.
9653
9654.. _int_gcread:
9655
9656'``llvm.gcread``' Intrinsic
9657^^^^^^^^^^^^^^^^^^^^^^^^^^^
9658
9659Syntax:
9660"""""""
9661
9662::
9663
9664 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9665
9666Overview:
9667"""""""""
9668
9669The '``llvm.gcread``' intrinsic identifies reads of references from heap
9670locations, allowing garbage collector implementations that require read
9671barriers.
9672
9673Arguments:
9674""""""""""
9675
9676The second argument is the address to read from, which should be an
9677address allocated from the garbage collector. The first object is a
9678pointer to the start of the referenced object, if needed by the language
9679runtime (otherwise null).
9680
9681Semantics:
9682""""""""""
9683
9684The '``llvm.gcread``' intrinsic has the same semantics as a load
9685instruction, but may be replaced with substantially more complex code by
9686the garbage collector runtime, as needed. The '``llvm.gcread``'
9687intrinsic may only be used in a function which :ref:`specifies a GC
9688algorithm <gc>`.
9689
9690.. _int_gcwrite:
9691
9692'``llvm.gcwrite``' Intrinsic
9693^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9694
9695Syntax:
9696"""""""
9697
9698::
9699
9700 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9701
9702Overview:
9703"""""""""
9704
9705The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9706locations, allowing garbage collector implementations that require write
9707barriers (such as generational or reference counting collectors).
9708
9709Arguments:
9710""""""""""
9711
9712The first argument is the reference to store, the second is the start of
9713the object to store it to, and the third is the address of the field of
9714Obj to store to. If the runtime does not require a pointer to the
9715object, Obj may be null.
9716
9717Semantics:
9718""""""""""
9719
9720The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9721instruction, but may be replaced with substantially more complex code by
9722the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9723intrinsic may only be used in a function which :ref:`specifies a GC
9724algorithm <gc>`.
9725
9726Code Generator Intrinsics
9727-------------------------
9728
9729These intrinsics are provided by LLVM to expose special features that
9730may only be implemented with code generator support.
9731
9732'``llvm.returnaddress``' Intrinsic
9733^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9734
9735Syntax:
9736"""""""
9737
9738::
9739
George Burgess IVfbc34982017-05-20 04:52:29 +00009740 declare i8* @llvm.returnaddress(i32 <level>)
Sean Silvab084af42012-12-07 10:36:55 +00009741
9742Overview:
9743"""""""""
9744
9745The '``llvm.returnaddress``' intrinsic attempts to compute a
9746target-specific value indicating the return address of the current
9747function or one of its callers.
9748
9749Arguments:
9750""""""""""
9751
9752The argument to this intrinsic indicates which function to return the
9753address for. Zero indicates the calling function, one indicates its
9754caller, etc. The argument is **required** to be a constant integer
9755value.
9756
9757Semantics:
9758""""""""""
9759
9760The '``llvm.returnaddress``' intrinsic either returns a pointer
9761indicating the return address of the specified call frame, or zero if it
9762cannot be identified. The value returned by this intrinsic is likely to
9763be incorrect or 0 for arguments other than zero, so it should only be
9764used for debugging purposes.
9765
9766Note that calling this intrinsic does not prevent function inlining or
9767other aggressive transformations, so the value returned may not be that
9768of the obvious source-language caller.
9769
Albert Gutowski795d7d62016-10-12 22:13:19 +00009770'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +00009771^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +00009772
9773Syntax:
9774"""""""
9775
9776::
9777
George Burgess IVfbc34982017-05-20 04:52:29 +00009778 declare i8* @llvm.addressofreturnaddress()
Albert Gutowski795d7d62016-10-12 22:13:19 +00009779
9780Overview:
9781"""""""""
9782
9783The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
9784pointer to the place in the stack frame where the return address of the
9785current function is stored.
9786
9787Semantics:
9788""""""""""
9789
9790Note that calling this intrinsic does not prevent function inlining or
9791other aggressive transformations, so the value returned may not be that
9792of the obvious source-language caller.
9793
9794This intrinsic is only implemented for x86.
9795
Sean Silvab084af42012-12-07 10:36:55 +00009796'``llvm.frameaddress``' Intrinsic
9797^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9798
9799Syntax:
9800"""""""
9801
9802::
9803
9804 declare i8* @llvm.frameaddress(i32 <level>)
9805
9806Overview:
9807"""""""""
9808
9809The '``llvm.frameaddress``' intrinsic attempts to return the
9810target-specific frame pointer value for the specified stack frame.
9811
9812Arguments:
9813""""""""""
9814
9815The argument to this intrinsic indicates which function to return the
9816frame pointer for. Zero indicates the calling function, one indicates
9817its caller, etc. The argument is **required** to be a constant integer
9818value.
9819
9820Semantics:
9821""""""""""
9822
9823The '``llvm.frameaddress``' intrinsic either returns a pointer
9824indicating the frame address of the specified call frame, or zero if it
9825cannot be identified. The value returned by this intrinsic is likely to
9826be incorrect or 0 for arguments other than zero, so it should only be
9827used for debugging purposes.
9828
9829Note that calling this intrinsic does not prevent function inlining or
9830other aggressive transformations, so the value returned may not be that
9831of the obvious source-language caller.
9832
Reid Kleckner60381792015-07-07 22:25:32 +00009833'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009834^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9835
9836Syntax:
9837"""""""
9838
9839::
9840
Reid Kleckner60381792015-07-07 22:25:32 +00009841 declare void @llvm.localescape(...)
9842 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009843
9844Overview:
9845"""""""""
9846
Reid Kleckner60381792015-07-07 22:25:32 +00009847The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9848allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009849live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009850computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009851
9852Arguments:
9853""""""""""
9854
Reid Kleckner60381792015-07-07 22:25:32 +00009855All arguments to '``llvm.localescape``' must be pointers to static allocas or
9856casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009857once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009858
Reid Kleckner60381792015-07-07 22:25:32 +00009859The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009860bitcasted pointer to a function defined in the current module. The code
9861generator cannot determine the frame allocation offset of functions defined in
9862other modules.
9863
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009864The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9865call frame that is currently live. The return value of '``llvm.localaddress``'
9866is one way to produce such a value, but various runtimes also expose a suitable
9867pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009868
Reid Kleckner60381792015-07-07 22:25:32 +00009869The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9870'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009871
Reid Klecknere9b89312015-01-13 00:48:10 +00009872Semantics:
9873""""""""""
9874
Reid Kleckner60381792015-07-07 22:25:32 +00009875These intrinsics allow a group of functions to share access to a set of local
9876stack allocations of a one parent function. The parent function may call the
9877'``llvm.localescape``' intrinsic once from the function entry block, and the
9878child functions can use '``llvm.localrecover``' to access the escaped allocas.
9879The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9880the escaped allocas are allocated, which would break attempts to use
9881'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009882
Renato Golinc7aea402014-05-06 16:51:25 +00009883.. _int_read_register:
9884.. _int_write_register:
9885
9886'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9887^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9888
9889Syntax:
9890"""""""
9891
9892::
9893
9894 declare i32 @llvm.read_register.i32(metadata)
9895 declare i64 @llvm.read_register.i64(metadata)
9896 declare void @llvm.write_register.i32(metadata, i32 @value)
9897 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009898 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009899
9900Overview:
9901"""""""""
9902
9903The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9904provides access to the named register. The register must be valid on
9905the architecture being compiled to. The type needs to be compatible
9906with the register being read.
9907
9908Semantics:
9909""""""""""
9910
9911The '``llvm.read_register``' intrinsic returns the current value of the
9912register, where possible. The '``llvm.write_register``' intrinsic sets
9913the current value of the register, where possible.
9914
9915This is useful to implement named register global variables that need
9916to always be mapped to a specific register, as is common practice on
9917bare-metal programs including OS kernels.
9918
9919The compiler doesn't check for register availability or use of the used
9920register in surrounding code, including inline assembly. Because of that,
9921allocatable registers are not supported.
9922
9923Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009924architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009925work is needed to support other registers and even more so, allocatable
9926registers.
9927
Sean Silvab084af42012-12-07 10:36:55 +00009928.. _int_stacksave:
9929
9930'``llvm.stacksave``' Intrinsic
9931^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9932
9933Syntax:
9934"""""""
9935
9936::
9937
9938 declare i8* @llvm.stacksave()
9939
9940Overview:
9941"""""""""
9942
9943The '``llvm.stacksave``' intrinsic is used to remember the current state
9944of the function stack, for use with
9945:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9946implementing language features like scoped automatic variable sized
9947arrays in C99.
9948
9949Semantics:
9950""""""""""
9951
9952This intrinsic returns a opaque pointer value that can be passed to
9953:ref:`llvm.stackrestore <int_stackrestore>`. When an
9954``llvm.stackrestore`` intrinsic is executed with a value saved from
9955``llvm.stacksave``, it effectively restores the state of the stack to
9956the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9957practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9958were allocated after the ``llvm.stacksave`` was executed.
9959
9960.. _int_stackrestore:
9961
9962'``llvm.stackrestore``' Intrinsic
9963^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9964
9965Syntax:
9966"""""""
9967
9968::
9969
9970 declare void @llvm.stackrestore(i8* %ptr)
9971
9972Overview:
9973"""""""""
9974
9975The '``llvm.stackrestore``' intrinsic is used to restore the state of
9976the function stack to the state it was in when the corresponding
9977:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9978useful for implementing language features like scoped automatic variable
9979sized arrays in C99.
9980
9981Semantics:
9982""""""""""
9983
9984See the description for :ref:`llvm.stacksave <int_stacksave>`.
9985
Yury Gribovd7dbb662015-12-01 11:40:55 +00009986.. _int_get_dynamic_area_offset:
9987
9988'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009989^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009990
9991Syntax:
9992"""""""
9993
9994::
9995
9996 declare i32 @llvm.get.dynamic.area.offset.i32()
9997 declare i64 @llvm.get.dynamic.area.offset.i64()
9998
Lang Hames10239932016-10-08 00:20:42 +00009999Overview:
10000"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +000010001
10002 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
10003 get the offset from native stack pointer to the address of the most
10004 recent dynamic alloca on the caller's stack. These intrinsics are
10005 intendend for use in combination with
10006 :ref:`llvm.stacksave <int_stacksave>` to get a
10007 pointer to the most recent dynamic alloca. This is useful, for example,
10008 for AddressSanitizer's stack unpoisoning routines.
10009
10010Semantics:
10011""""""""""
10012
10013 These intrinsics return a non-negative integer value that can be used to
10014 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
10015 on the caller's stack. In particular, for targets where stack grows downwards,
10016 adding this offset to the native stack pointer would get the address of the most
10017 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +000010018 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +000010019 one past the end of the most recent dynamic alloca.
10020
10021 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
10022 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
10023 compile-time-known constant value.
10024
10025 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
Matt Arsenaultc749bdc2017-03-30 23:36:47 +000010026 must match the target's default address space's (address space 0) pointer type.
Yury Gribovd7dbb662015-12-01 11:40:55 +000010027
Sean Silvab084af42012-12-07 10:36:55 +000010028'``llvm.prefetch``' Intrinsic
10029^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10030
10031Syntax:
10032"""""""
10033
10034::
10035
10036 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
10037
10038Overview:
10039"""""""""
10040
10041The '``llvm.prefetch``' intrinsic is a hint to the code generator to
10042insert a prefetch instruction if supported; otherwise, it is a noop.
10043Prefetches have no effect on the behavior of the program but can change
10044its performance characteristics.
10045
10046Arguments:
10047""""""""""
10048
10049``address`` is the address to be prefetched, ``rw`` is the specifier
10050determining if the fetch should be for a read (0) or write (1), and
10051``locality`` is a temporal locality specifier ranging from (0) - no
10052locality, to (3) - extremely local keep in cache. The ``cache type``
10053specifies whether the prefetch is performed on the data (1) or
10054instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
10055arguments must be constant integers.
10056
10057Semantics:
10058""""""""""
10059
10060This intrinsic does not modify the behavior of the program. In
10061particular, prefetches cannot trap and do not produce a value. On
10062targets that support this intrinsic, the prefetch can provide hints to
10063the processor cache for better performance.
10064
10065'``llvm.pcmarker``' Intrinsic
10066^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10067
10068Syntax:
10069"""""""
10070
10071::
10072
10073 declare void @llvm.pcmarker(i32 <id>)
10074
10075Overview:
10076"""""""""
10077
10078The '``llvm.pcmarker``' intrinsic is a method to export a Program
10079Counter (PC) in a region of code to simulators and other tools. The
10080method is target specific, but it is expected that the marker will use
10081exported symbols to transmit the PC of the marker. The marker makes no
10082guarantees that it will remain with any specific instruction after
10083optimizations. It is possible that the presence of a marker will inhibit
10084optimizations. The intended use is to be inserted after optimizations to
10085allow correlations of simulation runs.
10086
10087Arguments:
10088""""""""""
10089
10090``id`` is a numerical id identifying the marker.
10091
10092Semantics:
10093""""""""""
10094
10095This intrinsic does not modify the behavior of the program. Backends
10096that do not support this intrinsic may ignore it.
10097
10098'``llvm.readcyclecounter``' Intrinsic
10099^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10100
10101Syntax:
10102"""""""
10103
10104::
10105
10106 declare i64 @llvm.readcyclecounter()
10107
10108Overview:
10109"""""""""
10110
10111The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
10112counter register (or similar low latency, high accuracy clocks) on those
10113targets that support it. On X86, it should map to RDTSC. On Alpha, it
10114should map to RPCC. As the backing counters overflow quickly (on the
10115order of 9 seconds on alpha), this should only be used for small
10116timings.
10117
10118Semantics:
10119""""""""""
10120
10121When directly supported, reading the cycle counter should not modify any
10122memory. Implementations are allowed to either return a application
10123specific value or a system wide value. On backends without support, this
10124is lowered to a constant 0.
10125
Tim Northoverbc933082013-05-23 19:11:20 +000010126Note that runtime support may be conditional on the privilege-level code is
10127running at and the host platform.
10128
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010129'``llvm.clear_cache``' Intrinsic
10130^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10131
10132Syntax:
10133"""""""
10134
10135::
10136
10137 declare void @llvm.clear_cache(i8*, i8*)
10138
10139Overview:
10140"""""""""
10141
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010142The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
10143in the specified range to the execution unit of the processor. On
10144targets with non-unified instruction and data cache, the implementation
10145flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010146
10147Semantics:
10148""""""""""
10149
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010150On platforms with coherent instruction and data caches (e.g. x86), this
10151intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +000010152cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010153instructions or a system call, if cache flushing requires special
10154privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010155
Sean Silvad02bf3e2014-04-07 22:29:53 +000010156The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010157time library.
Renato Golin93010e62014-03-26 14:01:32 +000010158
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010159This instrinsic does *not* empty the instruction pipeline. Modifications
10160of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010161
Justin Bogner61ba2e32014-12-08 18:02:35 +000010162'``llvm.instrprof_increment``' Intrinsic
10163^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10164
10165Syntax:
10166"""""""
10167
10168::
10169
10170 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
10171 i32 <num-counters>, i32 <index>)
10172
10173Overview:
10174"""""""""
10175
10176The '``llvm.instrprof_increment``' intrinsic can be emitted by a
10177frontend for use with instrumentation based profiling. These will be
10178lowered by the ``-instrprof`` pass to generate execution counts of a
10179program at runtime.
10180
10181Arguments:
10182""""""""""
10183
10184The first argument is a pointer to a global variable containing the
10185name of the entity being instrumented. This should generally be the
10186(mangled) function name for a set of counters.
10187
10188The second argument is a hash value that can be used by the consumer
10189of the profile data to detect changes to the instrumented source, and
10190the third is the number of counters associated with ``name``. It is an
10191error if ``hash`` or ``num-counters`` differ between two instances of
10192``instrprof_increment`` that refer to the same name.
10193
10194The last argument refers to which of the counters for ``name`` should
10195be incremented. It should be a value between 0 and ``num-counters``.
10196
10197Semantics:
10198""""""""""
10199
10200This intrinsic represents an increment of a profiling counter. It will
10201cause the ``-instrprof`` pass to generate the appropriate data
10202structures and the code to increment the appropriate value, in a
10203format that can be written out by a compiler runtime and consumed via
10204the ``llvm-profdata`` tool.
10205
Xinliang David Li4ca17332016-09-18 18:34:07 +000010206'``llvm.instrprof_increment_step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +000010207^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +000010208
10209Syntax:
10210"""""""
10211
10212::
10213
10214 declare void @llvm.instrprof_increment_step(i8* <name>, i64 <hash>,
10215 i32 <num-counters>,
10216 i32 <index>, i64 <step>)
10217
10218Overview:
10219"""""""""
10220
10221The '``llvm.instrprof_increment_step``' intrinsic is an extension to
10222the '``llvm.instrprof_increment``' intrinsic with an additional fifth
10223argument to specify the step of the increment.
10224
10225Arguments:
10226""""""""""
10227The first four arguments are the same as '``llvm.instrprof_increment``'
Pete Couperused9569d2017-08-23 20:58:22 +000010228intrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000010229
10230The last argument specifies the value of the increment of the counter variable.
10231
10232Semantics:
10233""""""""""
10234See description of '``llvm.instrprof_increment``' instrinsic.
10235
10236
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010237'``llvm.instrprof_value_profile``' Intrinsic
10238^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10239
10240Syntax:
10241"""""""
10242
10243::
10244
10245 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
10246 i64 <value>, i32 <value_kind>,
10247 i32 <index>)
10248
10249Overview:
10250"""""""""
10251
10252The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
10253frontend for use with instrumentation based profiling. This will be
10254lowered by the ``-instrprof`` pass to find out the target values,
10255instrumented expressions take in a program at runtime.
10256
10257Arguments:
10258""""""""""
10259
10260The first argument is a pointer to a global variable containing the
10261name of the entity being instrumented. ``name`` should generally be the
10262(mangled) function name for a set of counters.
10263
10264The second argument is a hash value that can be used by the consumer
10265of the profile data to detect changes to the instrumented source. It
10266is an error if ``hash`` differs between two instances of
10267``llvm.instrprof_*`` that refer to the same name.
10268
10269The third argument is the value of the expression being profiled. The profiled
10270expression's value should be representable as an unsigned 64-bit value. The
10271fourth argument represents the kind of value profiling that is being done. The
10272supported value profiling kinds are enumerated through the
10273``InstrProfValueKind`` type declared in the
10274``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
10275index of the instrumented expression within ``name``. It should be >= 0.
10276
10277Semantics:
10278""""""""""
10279
10280This intrinsic represents the point where a call to a runtime routine
10281should be inserted for value profiling of target expressions. ``-instrprof``
10282pass will generate the appropriate data structures and replace the
10283``llvm.instrprof_value_profile`` intrinsic with the call to the profile
10284runtime library with proper arguments.
10285
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000010286'``llvm.thread.pointer``' Intrinsic
10287^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10288
10289Syntax:
10290"""""""
10291
10292::
10293
10294 declare i8* @llvm.thread.pointer()
10295
10296Overview:
10297"""""""""
10298
10299The '``llvm.thread.pointer``' intrinsic returns the value of the thread
10300pointer.
10301
10302Semantics:
10303""""""""""
10304
10305The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
10306for the current thread. The exact semantics of this value are target
10307specific: it may point to the start of TLS area, to the end, or somewhere
10308in the middle. Depending on the target, this intrinsic may read a register,
10309call a helper function, read from an alternate memory space, or perform
10310other operations necessary to locate the TLS area. Not all targets support
10311this intrinsic.
10312
Sean Silvab084af42012-12-07 10:36:55 +000010313Standard C Library Intrinsics
10314-----------------------------
10315
10316LLVM provides intrinsics for a few important standard C library
10317functions. These intrinsics allow source-language front-ends to pass
10318information about the alignment of the pointer arguments to the code
10319generator, providing opportunity for more efficient code generation.
10320
10321.. _int_memcpy:
10322
10323'``llvm.memcpy``' Intrinsic
10324^^^^^^^^^^^^^^^^^^^^^^^^^^^
10325
10326Syntax:
10327"""""""
10328
10329This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
10330integer bit width and for different address spaces. Not all targets
10331support all bit widths however.
10332
10333::
10334
10335 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
10336 i32 <len>, i32 <align>, i1 <isvolatile>)
10337 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
10338 i64 <len>, i32 <align>, i1 <isvolatile>)
10339
10340Overview:
10341"""""""""
10342
10343The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10344source location to the destination location.
10345
10346Note that, unlike the standard libc function, the ``llvm.memcpy.*``
10347intrinsics do not return a value, takes extra alignment/isvolatile
10348arguments and the pointers can be in specified address spaces.
10349
10350Arguments:
10351""""""""""
10352
10353The first argument is a pointer to the destination, the second is a
10354pointer to the source. The third argument is an integer argument
10355specifying the number of bytes to copy, the fourth argument is the
10356alignment of the source and destination locations, and the fifth is a
10357boolean indicating a volatile access.
10358
10359If the call to this intrinsic has an alignment value that is not 0 or 1,
10360then the caller guarantees that both the source and destination pointers
10361are aligned to that boundary.
10362
10363If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
10364a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10365very cleanly specified and it is unwise to depend on it.
10366
10367Semantics:
10368""""""""""
10369
10370The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10371source location to the destination location, which are not allowed to
10372overlap. It copies "len" bytes of memory over. If the argument is known
10373to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +000010374argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010375
Daniel Neilson57226ef2017-07-12 15:25:26 +000010376.. _int_memmove:
10377
Sean Silvab084af42012-12-07 10:36:55 +000010378'``llvm.memmove``' Intrinsic
10379^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10380
10381Syntax:
10382"""""""
10383
10384This is an overloaded intrinsic. You can use llvm.memmove on any integer
10385bit width and for different address space. Not all targets support all
10386bit widths however.
10387
10388::
10389
10390 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
10391 i32 <len>, i32 <align>, i1 <isvolatile>)
10392 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
10393 i64 <len>, i32 <align>, i1 <isvolatile>)
10394
10395Overview:
10396"""""""""
10397
10398The '``llvm.memmove.*``' intrinsics move a block of memory from the
10399source location to the destination location. It is similar to the
10400'``llvm.memcpy``' intrinsic but allows the two memory locations to
10401overlap.
10402
10403Note that, unlike the standard libc function, the ``llvm.memmove.*``
10404intrinsics do not return a value, takes extra alignment/isvolatile
10405arguments and the pointers can be in specified address spaces.
10406
10407Arguments:
10408""""""""""
10409
10410The first argument is a pointer to the destination, the second is a
10411pointer to the source. The third argument is an integer argument
10412specifying the number of bytes to copy, the fourth argument is the
10413alignment of the source and destination locations, and the fifth is a
10414boolean indicating a volatile access.
10415
10416If the call to this intrinsic has an alignment value that is not 0 or 1,
10417then the caller guarantees that the source and destination pointers are
10418aligned to that boundary.
10419
10420If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
10421is a :ref:`volatile operation <volatile>`. The detailed access behavior is
10422not very cleanly specified and it is unwise to depend on it.
10423
10424Semantics:
10425""""""""""
10426
10427The '``llvm.memmove.*``' intrinsics copy a block of memory from the
10428source location to the destination location, which may overlap. It
10429copies "len" bytes of memory over. If the argument is known to be
10430aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000010431otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010432
Daniel Neilson965613e2017-07-12 21:57:23 +000010433.. _int_memset:
10434
Sean Silvab084af42012-12-07 10:36:55 +000010435'``llvm.memset.*``' Intrinsics
10436^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10437
10438Syntax:
10439"""""""
10440
10441This is an overloaded intrinsic. You can use llvm.memset on any integer
10442bit width and for different address spaces. However, not all targets
10443support all bit widths.
10444
10445::
10446
10447 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
10448 i32 <len>, i32 <align>, i1 <isvolatile>)
10449 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
10450 i64 <len>, i32 <align>, i1 <isvolatile>)
10451
10452Overview:
10453"""""""""
10454
10455The '``llvm.memset.*``' intrinsics fill a block of memory with a
10456particular byte value.
10457
10458Note that, unlike the standard libc function, the ``llvm.memset``
10459intrinsic does not return a value and takes extra alignment/volatile
10460arguments. Also, the destination can be in an arbitrary address space.
10461
10462Arguments:
10463""""""""""
10464
10465The first argument is a pointer to the destination to fill, the second
10466is the byte value with which to fill it, the third argument is an
10467integer argument specifying the number of bytes to fill, and the fourth
10468argument is the known alignment of the destination location.
10469
10470If the call to this intrinsic has an alignment value that is not 0 or 1,
10471then the caller guarantees that the destination pointer is aligned to
10472that boundary.
10473
10474If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10475a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10476very cleanly specified and it is unwise to depend on it.
10477
10478Semantics:
10479""""""""""
10480
10481The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
10482at the destination location. If the argument is known to be aligned to
10483some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +000010484it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010485
10486'``llvm.sqrt.*``' Intrinsic
10487^^^^^^^^^^^^^^^^^^^^^^^^^^^
10488
10489Syntax:
10490"""""""
10491
10492This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010493floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010494all types however.
10495
10496::
10497
10498 declare float @llvm.sqrt.f32(float %Val)
10499 declare double @llvm.sqrt.f64(double %Val)
10500 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10501 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10502 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10503
10504Overview:
10505"""""""""
10506
Sanjay Patel629c4112017-11-06 16:27:15 +000010507The '``llvm.sqrt``' intrinsics return the square root of the specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010508
10509Arguments:
10510""""""""""
10511
Sanjay Patel629c4112017-11-06 16:27:15 +000010512The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010513
10514Semantics:
10515""""""""""
10516
Sanjay Patel629c4112017-11-06 16:27:15 +000010517Return the same value as a corresponding libm '``sqrt``' function but without
10518trapping or setting ``errno``. For types specified by IEEE-754, the result
10519matches a conforming libm implementation.
10520
10521When specified with the fast-math-flag 'afn', the result may be approximated
10522using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010523
10524'``llvm.powi.*``' Intrinsic
10525^^^^^^^^^^^^^^^^^^^^^^^^^^^
10526
10527Syntax:
10528"""""""
10529
10530This is an overloaded intrinsic. You can use ``llvm.powi`` on any
10531floating point or vector of floating point type. Not all targets support
10532all types however.
10533
10534::
10535
10536 declare float @llvm.powi.f32(float %Val, i32 %power)
10537 declare double @llvm.powi.f64(double %Val, i32 %power)
10538 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10539 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10540 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10541
10542Overview:
10543"""""""""
10544
10545The '``llvm.powi.*``' intrinsics return the first operand raised to the
10546specified (positive or negative) power. The order of evaluation of
10547multiplications is not defined. When a vector of floating point type is
10548used, the second argument remains a scalar integer value.
10549
10550Arguments:
10551""""""""""
10552
10553The second argument is an integer power, and the first is a value to
10554raise to that power.
10555
10556Semantics:
10557""""""""""
10558
10559This function returns the first value raised to the second power with an
10560unspecified sequence of rounding operations.
10561
10562'``llvm.sin.*``' Intrinsic
10563^^^^^^^^^^^^^^^^^^^^^^^^^^
10564
10565Syntax:
10566"""""""
10567
10568This is an overloaded intrinsic. You can use ``llvm.sin`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010569floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010570all types however.
10571
10572::
10573
10574 declare float @llvm.sin.f32(float %Val)
10575 declare double @llvm.sin.f64(double %Val)
10576 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10577 declare fp128 @llvm.sin.f128(fp128 %Val)
10578 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10579
10580Overview:
10581"""""""""
10582
10583The '``llvm.sin.*``' intrinsics return the sine of the operand.
10584
10585Arguments:
10586""""""""""
10587
Sanjay Patel629c4112017-11-06 16:27:15 +000010588The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010589
10590Semantics:
10591""""""""""
10592
Sanjay Patel629c4112017-11-06 16:27:15 +000010593Return the same value as a corresponding libm '``sin``' function but without
10594trapping or setting ``errno``.
10595
10596When specified with the fast-math-flag 'afn', the result may be approximated
10597using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010598
10599'``llvm.cos.*``' Intrinsic
10600^^^^^^^^^^^^^^^^^^^^^^^^^^
10601
10602Syntax:
10603"""""""
10604
10605This is an overloaded intrinsic. You can use ``llvm.cos`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010606floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010607all types however.
10608
10609::
10610
10611 declare float @llvm.cos.f32(float %Val)
10612 declare double @llvm.cos.f64(double %Val)
10613 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10614 declare fp128 @llvm.cos.f128(fp128 %Val)
10615 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10616
10617Overview:
10618"""""""""
10619
10620The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10621
10622Arguments:
10623""""""""""
10624
Sanjay Patel629c4112017-11-06 16:27:15 +000010625The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010626
10627Semantics:
10628""""""""""
10629
Sanjay Patel629c4112017-11-06 16:27:15 +000010630Return the same value as a corresponding libm '``cos``' function but without
10631trapping or setting ``errno``.
10632
10633When specified with the fast-math-flag 'afn', the result may be approximated
10634using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010635
10636'``llvm.pow.*``' Intrinsic
10637^^^^^^^^^^^^^^^^^^^^^^^^^^
10638
10639Syntax:
10640"""""""
10641
10642This is an overloaded intrinsic. You can use ``llvm.pow`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010643floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010644all types however.
10645
10646::
10647
10648 declare float @llvm.pow.f32(float %Val, float %Power)
10649 declare double @llvm.pow.f64(double %Val, double %Power)
10650 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10651 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10652 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10653
10654Overview:
10655"""""""""
10656
10657The '``llvm.pow.*``' intrinsics return the first operand raised to the
10658specified (positive or negative) power.
10659
10660Arguments:
10661""""""""""
10662
Sanjay Patel629c4112017-11-06 16:27:15 +000010663The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010664
10665Semantics:
10666""""""""""
10667
Sanjay Patel629c4112017-11-06 16:27:15 +000010668Return the same value as a corresponding libm '``pow``' function but without
10669trapping or setting ``errno``.
10670
10671When specified with the fast-math-flag 'afn', the result may be approximated
10672using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010673
10674'``llvm.exp.*``' Intrinsic
10675^^^^^^^^^^^^^^^^^^^^^^^^^^
10676
10677Syntax:
10678"""""""
10679
10680This is an overloaded intrinsic. You can use ``llvm.exp`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010681floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010682all types however.
10683
10684::
10685
10686 declare float @llvm.exp.f32(float %Val)
10687 declare double @llvm.exp.f64(double %Val)
10688 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10689 declare fp128 @llvm.exp.f128(fp128 %Val)
10690 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10691
10692Overview:
10693"""""""""
10694
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010695The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
10696value.
Sean Silvab084af42012-12-07 10:36:55 +000010697
10698Arguments:
10699""""""""""
10700
Sanjay Patel629c4112017-11-06 16:27:15 +000010701The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010702
10703Semantics:
10704""""""""""
10705
Sanjay Patel629c4112017-11-06 16:27:15 +000010706Return the same value as a corresponding libm '``exp``' function but without
10707trapping or setting ``errno``.
10708
10709When specified with the fast-math-flag 'afn', the result may be approximated
10710using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010711
10712'``llvm.exp2.*``' Intrinsic
10713^^^^^^^^^^^^^^^^^^^^^^^^^^^
10714
10715Syntax:
10716"""""""
10717
10718This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010719floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010720all types however.
10721
10722::
10723
10724 declare float @llvm.exp2.f32(float %Val)
10725 declare double @llvm.exp2.f64(double %Val)
10726 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10727 declare fp128 @llvm.exp2.f128(fp128 %Val)
10728 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10729
10730Overview:
10731"""""""""
10732
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010733The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
10734specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010735
10736Arguments:
10737""""""""""
10738
Sanjay Patel629c4112017-11-06 16:27:15 +000010739The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010740
10741Semantics:
10742""""""""""
10743
Sanjay Patel629c4112017-11-06 16:27:15 +000010744Return the same value as a corresponding libm '``exp2``' function but without
10745trapping or setting ``errno``.
10746
10747When specified with the fast-math-flag 'afn', the result may be approximated
10748using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010749
10750'``llvm.log.*``' Intrinsic
10751^^^^^^^^^^^^^^^^^^^^^^^^^^
10752
10753Syntax:
10754"""""""
10755
10756This is an overloaded intrinsic. You can use ``llvm.log`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010757floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010758all types however.
10759
10760::
10761
10762 declare float @llvm.log.f32(float %Val)
10763 declare double @llvm.log.f64(double %Val)
10764 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10765 declare fp128 @llvm.log.f128(fp128 %Val)
10766 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10767
10768Overview:
10769"""""""""
10770
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010771The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
10772value.
Sean Silvab084af42012-12-07 10:36:55 +000010773
10774Arguments:
10775""""""""""
10776
Sanjay Patel629c4112017-11-06 16:27:15 +000010777The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010778
10779Semantics:
10780""""""""""
10781
Sanjay Patel629c4112017-11-06 16:27:15 +000010782Return the same value as a corresponding libm '``log``' function but without
10783trapping or setting ``errno``.
10784
10785When specified with the fast-math-flag 'afn', the result may be approximated
10786using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010787
10788'``llvm.log10.*``' Intrinsic
10789^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10790
10791Syntax:
10792"""""""
10793
10794This is an overloaded intrinsic. You can use ``llvm.log10`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010795floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010796all types however.
10797
10798::
10799
10800 declare float @llvm.log10.f32(float %Val)
10801 declare double @llvm.log10.f64(double %Val)
10802 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10803 declare fp128 @llvm.log10.f128(fp128 %Val)
10804 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10805
10806Overview:
10807"""""""""
10808
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010809The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
10810specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010811
10812Arguments:
10813""""""""""
10814
Sanjay Patel629c4112017-11-06 16:27:15 +000010815The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010816
10817Semantics:
10818""""""""""
10819
Sanjay Patel629c4112017-11-06 16:27:15 +000010820Return the same value as a corresponding libm '``log10``' function but without
10821trapping or setting ``errno``.
10822
10823When specified with the fast-math-flag 'afn', the result may be approximated
10824using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010825
10826'``llvm.log2.*``' Intrinsic
10827^^^^^^^^^^^^^^^^^^^^^^^^^^^
10828
10829Syntax:
10830"""""""
10831
10832This is an overloaded intrinsic. You can use ``llvm.log2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010833floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010834all types however.
10835
10836::
10837
10838 declare float @llvm.log2.f32(float %Val)
10839 declare double @llvm.log2.f64(double %Val)
10840 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10841 declare fp128 @llvm.log2.f128(fp128 %Val)
10842 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10843
10844Overview:
10845"""""""""
10846
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010847The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
10848value.
Sean Silvab084af42012-12-07 10:36:55 +000010849
10850Arguments:
10851""""""""""
10852
Sanjay Patel629c4112017-11-06 16:27:15 +000010853The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010854
10855Semantics:
10856""""""""""
10857
Sanjay Patel629c4112017-11-06 16:27:15 +000010858Return the same value as a corresponding libm '``log2``' function but without
10859trapping or setting ``errno``.
10860
10861When specified with the fast-math-flag 'afn', the result may be approximated
10862using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010863
10864'``llvm.fma.*``' Intrinsic
10865^^^^^^^^^^^^^^^^^^^^^^^^^^
10866
10867Syntax:
10868"""""""
10869
10870This is an overloaded intrinsic. You can use ``llvm.fma`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010871floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010872all types however.
10873
10874::
10875
10876 declare float @llvm.fma.f32(float %a, float %b, float %c)
10877 declare double @llvm.fma.f64(double %a, double %b, double %c)
10878 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10879 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10880 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10881
10882Overview:
10883"""""""""
10884
Sanjay Patel629c4112017-11-06 16:27:15 +000010885The '``llvm.fma.*``' intrinsics perform the fused multiply-add operation.
Sean Silvab084af42012-12-07 10:36:55 +000010886
10887Arguments:
10888""""""""""
10889
Sanjay Patel629c4112017-11-06 16:27:15 +000010890The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010891
10892Semantics:
10893""""""""""
10894
Sanjay Patel629c4112017-11-06 16:27:15 +000010895Return the same value as a corresponding libm '``fma``' function but without
10896trapping or setting ``errno``.
10897
10898When specified with the fast-math-flag 'afn', the result may be approximated
10899using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010900
10901'``llvm.fabs.*``' Intrinsic
10902^^^^^^^^^^^^^^^^^^^^^^^^^^^
10903
10904Syntax:
10905"""""""
10906
10907This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10908floating point or vector of floating point type. Not all targets support
10909all types however.
10910
10911::
10912
10913 declare float @llvm.fabs.f32(float %Val)
10914 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010915 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010916 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010917 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010918
10919Overview:
10920"""""""""
10921
10922The '``llvm.fabs.*``' intrinsics return the absolute value of the
10923operand.
10924
10925Arguments:
10926""""""""""
10927
10928The argument and return value are floating point numbers of the same
10929type.
10930
10931Semantics:
10932""""""""""
10933
10934This function returns the same values as the libm ``fabs`` functions
10935would, and handles error conditions in the same way.
10936
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010937'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010938^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010939
10940Syntax:
10941"""""""
10942
10943This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10944floating point or vector of floating point type. Not all targets support
10945all types however.
10946
10947::
10948
Matt Arsenault64313c92014-10-22 18:25:02 +000010949 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10950 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10951 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10952 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10953 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010954
10955Overview:
10956"""""""""
10957
10958The '``llvm.minnum.*``' intrinsics return the minimum of the two
10959arguments.
10960
10961
10962Arguments:
10963""""""""""
10964
10965The arguments and return value are floating point numbers of the same
10966type.
10967
10968Semantics:
10969""""""""""
10970
10971Follows the IEEE-754 semantics for minNum, which also match for libm's
10972fmin.
10973
10974If either operand is a NaN, returns the other non-NaN operand. Returns
10975NaN only if both operands are NaN. If the operands compare equal,
10976returns a value that compares equal to both operands. This means that
10977fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10978
10979'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010980^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010981
10982Syntax:
10983"""""""
10984
10985This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10986floating point or vector of floating point type. Not all targets support
10987all types however.
10988
10989::
10990
Matt Arsenault64313c92014-10-22 18:25:02 +000010991 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10992 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10993 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10994 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10995 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010996
10997Overview:
10998"""""""""
10999
11000The '``llvm.maxnum.*``' intrinsics return the maximum of the two
11001arguments.
11002
11003
11004Arguments:
11005""""""""""
11006
11007The arguments and return value are floating point numbers of the same
11008type.
11009
11010Semantics:
11011""""""""""
11012Follows the IEEE-754 semantics for maxNum, which also match for libm's
11013fmax.
11014
11015If either operand is a NaN, returns the other non-NaN operand. Returns
11016NaN only if both operands are NaN. If the operands compare equal,
11017returns a value that compares equal to both operands. This means that
11018fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
11019
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011020'``llvm.copysign.*``' Intrinsic
11021^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11022
11023Syntax:
11024"""""""
11025
11026This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
11027floating point or vector of floating point type. Not all targets support
11028all types however.
11029
11030::
11031
11032 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
11033 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
11034 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
11035 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
11036 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
11037
11038Overview:
11039"""""""""
11040
11041The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
11042first operand and the sign of the second operand.
11043
11044Arguments:
11045""""""""""
11046
11047The arguments and return value are floating point numbers of the same
11048type.
11049
11050Semantics:
11051""""""""""
11052
11053This function returns the same values as the libm ``copysign``
11054functions would, and handles error conditions in the same way.
11055
Sean Silvab084af42012-12-07 10:36:55 +000011056'``llvm.floor.*``' Intrinsic
11057^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11058
11059Syntax:
11060"""""""
11061
11062This is an overloaded intrinsic. You can use ``llvm.floor`` on any
11063floating point or vector of floating point type. Not all targets support
11064all types however.
11065
11066::
11067
11068 declare float @llvm.floor.f32(float %Val)
11069 declare double @llvm.floor.f64(double %Val)
11070 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
11071 declare fp128 @llvm.floor.f128(fp128 %Val)
11072 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
11073
11074Overview:
11075"""""""""
11076
11077The '``llvm.floor.*``' intrinsics return the floor of the operand.
11078
11079Arguments:
11080""""""""""
11081
11082The argument and return value are floating point numbers of the same
11083type.
11084
11085Semantics:
11086""""""""""
11087
11088This function returns the same values as the libm ``floor`` functions
11089would, and handles error conditions in the same way.
11090
11091'``llvm.ceil.*``' Intrinsic
11092^^^^^^^^^^^^^^^^^^^^^^^^^^^
11093
11094Syntax:
11095"""""""
11096
11097This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
11098floating point or vector of floating point type. Not all targets support
11099all types however.
11100
11101::
11102
11103 declare float @llvm.ceil.f32(float %Val)
11104 declare double @llvm.ceil.f64(double %Val)
11105 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
11106 declare fp128 @llvm.ceil.f128(fp128 %Val)
11107 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
11108
11109Overview:
11110"""""""""
11111
11112The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
11113
11114Arguments:
11115""""""""""
11116
11117The argument and return value are floating point numbers of the same
11118type.
11119
11120Semantics:
11121""""""""""
11122
11123This function returns the same values as the libm ``ceil`` functions
11124would, and handles error conditions in the same way.
11125
11126'``llvm.trunc.*``' Intrinsic
11127^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11128
11129Syntax:
11130"""""""
11131
11132This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
11133floating point or vector of floating point type. Not all targets support
11134all types however.
11135
11136::
11137
11138 declare float @llvm.trunc.f32(float %Val)
11139 declare double @llvm.trunc.f64(double %Val)
11140 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
11141 declare fp128 @llvm.trunc.f128(fp128 %Val)
11142 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
11143
11144Overview:
11145"""""""""
11146
11147The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
11148nearest integer not larger in magnitude than the operand.
11149
11150Arguments:
11151""""""""""
11152
11153The argument and return value are floating point numbers of the same
11154type.
11155
11156Semantics:
11157""""""""""
11158
11159This function returns the same values as the libm ``trunc`` functions
11160would, and handles error conditions in the same way.
11161
11162'``llvm.rint.*``' Intrinsic
11163^^^^^^^^^^^^^^^^^^^^^^^^^^^
11164
11165Syntax:
11166"""""""
11167
11168This is an overloaded intrinsic. You can use ``llvm.rint`` on any
11169floating point or vector of floating point type. Not all targets support
11170all types however.
11171
11172::
11173
11174 declare float @llvm.rint.f32(float %Val)
11175 declare double @llvm.rint.f64(double %Val)
11176 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
11177 declare fp128 @llvm.rint.f128(fp128 %Val)
11178 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
11179
11180Overview:
11181"""""""""
11182
11183The '``llvm.rint.*``' intrinsics returns the operand rounded to the
11184nearest integer. It may raise an inexact floating-point exception if the
11185operand isn't an integer.
11186
11187Arguments:
11188""""""""""
11189
11190The argument and return value are floating point numbers of the same
11191type.
11192
11193Semantics:
11194""""""""""
11195
11196This function returns the same values as the libm ``rint`` functions
11197would, and handles error conditions in the same way.
11198
11199'``llvm.nearbyint.*``' Intrinsic
11200^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11201
11202Syntax:
11203"""""""
11204
11205This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
11206floating point or vector of floating point type. Not all targets support
11207all types however.
11208
11209::
11210
11211 declare float @llvm.nearbyint.f32(float %Val)
11212 declare double @llvm.nearbyint.f64(double %Val)
11213 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
11214 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
11215 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
11216
11217Overview:
11218"""""""""
11219
11220The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
11221nearest integer.
11222
11223Arguments:
11224""""""""""
11225
11226The argument and return value are floating point numbers of the same
11227type.
11228
11229Semantics:
11230""""""""""
11231
11232This function returns the same values as the libm ``nearbyint``
11233functions would, and handles error conditions in the same way.
11234
Hal Finkel171817e2013-08-07 22:49:12 +000011235'``llvm.round.*``' Intrinsic
11236^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11237
11238Syntax:
11239"""""""
11240
11241This is an overloaded intrinsic. You can use ``llvm.round`` on any
11242floating point or vector of floating point type. Not all targets support
11243all types however.
11244
11245::
11246
11247 declare float @llvm.round.f32(float %Val)
11248 declare double @llvm.round.f64(double %Val)
11249 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
11250 declare fp128 @llvm.round.f128(fp128 %Val)
11251 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
11252
11253Overview:
11254"""""""""
11255
11256The '``llvm.round.*``' intrinsics returns the operand rounded to the
11257nearest integer.
11258
11259Arguments:
11260""""""""""
11261
11262The argument and return value are floating point numbers of the same
11263type.
11264
11265Semantics:
11266""""""""""
11267
11268This function returns the same values as the libm ``round``
11269functions would, and handles error conditions in the same way.
11270
Sean Silvab084af42012-12-07 10:36:55 +000011271Bit Manipulation Intrinsics
11272---------------------------
11273
11274LLVM provides intrinsics for a few important bit manipulation
11275operations. These allow efficient code generation for some algorithms.
11276
James Molloy90111f72015-11-12 12:29:09 +000011277'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000011278^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000011279
11280Syntax:
11281"""""""
11282
11283This is an overloaded intrinsic function. You can use bitreverse on any
11284integer type.
11285
11286::
11287
11288 declare i16 @llvm.bitreverse.i16(i16 <id>)
11289 declare i32 @llvm.bitreverse.i32(i32 <id>)
11290 declare i64 @llvm.bitreverse.i64(i64 <id>)
11291
11292Overview:
11293"""""""""
11294
11295The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000011296bitpattern of an integer value; for example ``0b10110110`` becomes
11297``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000011298
11299Semantics:
11300""""""""""
11301
Yichao Yu5abf14b2016-11-23 16:25:31 +000011302The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000011303``M`` in the input moved to bit ``N-M`` in the output.
11304
Sean Silvab084af42012-12-07 10:36:55 +000011305'``llvm.bswap.*``' Intrinsics
11306^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11307
11308Syntax:
11309"""""""
11310
11311This is an overloaded intrinsic function. You can use bswap on any
11312integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
11313
11314::
11315
11316 declare i16 @llvm.bswap.i16(i16 <id>)
11317 declare i32 @llvm.bswap.i32(i32 <id>)
11318 declare i64 @llvm.bswap.i64(i64 <id>)
11319
11320Overview:
11321"""""""""
11322
11323The '``llvm.bswap``' family of intrinsics is used to byte swap integer
11324values with an even number of bytes (positive multiple of 16 bits).
11325These are useful for performing operations on data that is not in the
11326target's native byte order.
11327
11328Semantics:
11329""""""""""
11330
11331The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
11332and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
11333intrinsic returns an i32 value that has the four bytes of the input i32
11334swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
11335returned i32 will have its bytes in 3, 2, 1, 0 order. The
11336``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
11337concept to additional even-byte lengths (6 bytes, 8 bytes and more,
11338respectively).
11339
11340'``llvm.ctpop.*``' Intrinsic
11341^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11342
11343Syntax:
11344"""""""
11345
11346This is an overloaded intrinsic. You can use llvm.ctpop on any integer
11347bit width, or on any vector with integer elements. Not all targets
11348support all bit widths or vector types, however.
11349
11350::
11351
11352 declare i8 @llvm.ctpop.i8(i8 <src>)
11353 declare i16 @llvm.ctpop.i16(i16 <src>)
11354 declare i32 @llvm.ctpop.i32(i32 <src>)
11355 declare i64 @llvm.ctpop.i64(i64 <src>)
11356 declare i256 @llvm.ctpop.i256(i256 <src>)
11357 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
11358
11359Overview:
11360"""""""""
11361
11362The '``llvm.ctpop``' family of intrinsics counts the number of bits set
11363in a value.
11364
11365Arguments:
11366""""""""""
11367
11368The only argument is the value to be counted. The argument may be of any
11369integer type, or a vector with integer elements. The return type must
11370match the argument type.
11371
11372Semantics:
11373""""""""""
11374
11375The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
11376each element of a vector.
11377
11378'``llvm.ctlz.*``' Intrinsic
11379^^^^^^^^^^^^^^^^^^^^^^^^^^^
11380
11381Syntax:
11382"""""""
11383
11384This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
11385integer bit width, or any vector whose elements are integers. Not all
11386targets support all bit widths or vector types, however.
11387
11388::
11389
11390 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
11391 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
11392 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
11393 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
11394 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011395 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011396
11397Overview:
11398"""""""""
11399
11400The '``llvm.ctlz``' family of intrinsic functions counts the number of
11401leading zeros in a variable.
11402
11403Arguments:
11404""""""""""
11405
11406The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011407any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011408type must match the first argument type.
11409
11410The second argument must be a constant and is a flag to indicate whether
11411the intrinsic should ensure that a zero as the first argument produces a
11412defined result. Historically some architectures did not provide a
11413defined result for zero values as efficiently, and many algorithms are
11414now predicated on avoiding zero-value inputs.
11415
11416Semantics:
11417""""""""""
11418
11419The '``llvm.ctlz``' intrinsic counts the leading (most significant)
11420zeros in a variable, or within each element of the vector. If
11421``src == 0`` then the result is the size in bits of the type of ``src``
11422if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11423``llvm.ctlz(i32 2) = 30``.
11424
11425'``llvm.cttz.*``' Intrinsic
11426^^^^^^^^^^^^^^^^^^^^^^^^^^^
11427
11428Syntax:
11429"""""""
11430
11431This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
11432integer bit width, or any vector of integer elements. Not all targets
11433support all bit widths or vector types, however.
11434
11435::
11436
11437 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
11438 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
11439 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
11440 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
11441 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011442 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011443
11444Overview:
11445"""""""""
11446
11447The '``llvm.cttz``' family of intrinsic functions counts the number of
11448trailing zeros.
11449
11450Arguments:
11451""""""""""
11452
11453The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011454any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011455type must match the first argument type.
11456
11457The second argument must be a constant and is a flag to indicate whether
11458the intrinsic should ensure that a zero as the first argument produces a
11459defined result. Historically some architectures did not provide a
11460defined result for zero values as efficiently, and many algorithms are
11461now predicated on avoiding zero-value inputs.
11462
11463Semantics:
11464""""""""""
11465
11466The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11467zeros in a variable, or within each element of a vector. If ``src == 0``
11468then the result is the size in bits of the type of ``src`` if
11469``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11470``llvm.cttz(2) = 1``.
11471
Philip Reames34843ae2015-03-05 05:55:55 +000011472.. _int_overflow:
11473
Sean Silvab084af42012-12-07 10:36:55 +000011474Arithmetic with Overflow Intrinsics
11475-----------------------------------
11476
John Regehr6a493f22016-05-12 20:55:09 +000011477LLVM provides intrinsics for fast arithmetic overflow checking.
11478
11479Each of these intrinsics returns a two-element struct. The first
11480element of this struct contains the result of the corresponding
11481arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
11482the result. Therefore, for example, the first element of the struct
11483returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
11484result of a 32-bit ``add`` instruction with the same operands, where
11485the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
11486
11487The second element of the result is an ``i1`` that is 1 if the
11488arithmetic operation overflowed and 0 otherwise. An operation
11489overflows if, for any values of its operands ``A`` and ``B`` and for
11490any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
11491not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
11492``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11493``op`` is the underlying arithmetic operation.
11494
11495The behavior of these intrinsics is well-defined for all argument
11496values.
Sean Silvab084af42012-12-07 10:36:55 +000011497
11498'``llvm.sadd.with.overflow.*``' Intrinsics
11499^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11500
11501Syntax:
11502"""""""
11503
11504This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11505on any integer bit width.
11506
11507::
11508
11509 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11510 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11511 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11512
11513Overview:
11514"""""""""
11515
11516The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11517a signed addition of the two arguments, and indicate whether an overflow
11518occurred during the signed summation.
11519
11520Arguments:
11521""""""""""
11522
11523The arguments (%a and %b) and the first element of the result structure
11524may be of integer types of any bit width, but they must have the same
11525bit width. The second element of the result structure must be of type
11526``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11527addition.
11528
11529Semantics:
11530""""""""""
11531
11532The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011533a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011534first element of which is the signed summation, and the second element
11535of which is a bit specifying if the signed summation resulted in an
11536overflow.
11537
11538Examples:
11539"""""""""
11540
11541.. code-block:: llvm
11542
11543 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11544 %sum = extractvalue {i32, i1} %res, 0
11545 %obit = extractvalue {i32, i1} %res, 1
11546 br i1 %obit, label %overflow, label %normal
11547
11548'``llvm.uadd.with.overflow.*``' Intrinsics
11549^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11550
11551Syntax:
11552"""""""
11553
11554This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11555on any integer bit width.
11556
11557::
11558
11559 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11560 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11561 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11562
11563Overview:
11564"""""""""
11565
11566The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11567an unsigned addition of the two arguments, and indicate whether a carry
11568occurred during the unsigned summation.
11569
11570Arguments:
11571""""""""""
11572
11573The arguments (%a and %b) and the first element of the result structure
11574may be of integer types of any bit width, but they must have the same
11575bit width. The second element of the result structure must be of type
11576``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11577addition.
11578
11579Semantics:
11580""""""""""
11581
11582The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011583an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011584first element of which is the sum, and the second element of which is a
11585bit specifying if the unsigned summation resulted in a carry.
11586
11587Examples:
11588"""""""""
11589
11590.. code-block:: llvm
11591
11592 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11593 %sum = extractvalue {i32, i1} %res, 0
11594 %obit = extractvalue {i32, i1} %res, 1
11595 br i1 %obit, label %carry, label %normal
11596
11597'``llvm.ssub.with.overflow.*``' Intrinsics
11598^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11599
11600Syntax:
11601"""""""
11602
11603This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11604on any integer bit width.
11605
11606::
11607
11608 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11609 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11610 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11611
11612Overview:
11613"""""""""
11614
11615The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11616a signed subtraction of the two arguments, and indicate whether an
11617overflow occurred during the signed subtraction.
11618
11619Arguments:
11620""""""""""
11621
11622The arguments (%a and %b) and the first element of the result structure
11623may be of integer types of any bit width, but they must have the same
11624bit width. The second element of the result structure must be of type
11625``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11626subtraction.
11627
11628Semantics:
11629""""""""""
11630
11631The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011632a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011633first element of which is the subtraction, and the second element of
11634which is a bit specifying if the signed subtraction resulted in an
11635overflow.
11636
11637Examples:
11638"""""""""
11639
11640.. code-block:: llvm
11641
11642 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11643 %sum = extractvalue {i32, i1} %res, 0
11644 %obit = extractvalue {i32, i1} %res, 1
11645 br i1 %obit, label %overflow, label %normal
11646
11647'``llvm.usub.with.overflow.*``' Intrinsics
11648^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11649
11650Syntax:
11651"""""""
11652
11653This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11654on any integer bit width.
11655
11656::
11657
11658 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11659 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11660 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11661
11662Overview:
11663"""""""""
11664
11665The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11666an unsigned subtraction of the two arguments, and indicate whether an
11667overflow occurred during the unsigned subtraction.
11668
11669Arguments:
11670""""""""""
11671
11672The arguments (%a and %b) and the first element of the result structure
11673may be of integer types of any bit width, but they must have the same
11674bit width. The second element of the result structure must be of type
11675``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11676subtraction.
11677
11678Semantics:
11679""""""""""
11680
11681The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011682an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011683the first element of which is the subtraction, and the second element of
11684which is a bit specifying if the unsigned subtraction resulted in an
11685overflow.
11686
11687Examples:
11688"""""""""
11689
11690.. code-block:: llvm
11691
11692 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11693 %sum = extractvalue {i32, i1} %res, 0
11694 %obit = extractvalue {i32, i1} %res, 1
11695 br i1 %obit, label %overflow, label %normal
11696
11697'``llvm.smul.with.overflow.*``' Intrinsics
11698^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11699
11700Syntax:
11701"""""""
11702
11703This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11704on any integer bit width.
11705
11706::
11707
11708 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11709 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11710 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11711
11712Overview:
11713"""""""""
11714
11715The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11716a signed multiplication of the two arguments, and indicate whether an
11717overflow occurred during the signed multiplication.
11718
11719Arguments:
11720""""""""""
11721
11722The arguments (%a and %b) and the first element of the result structure
11723may be of integer types of any bit width, but they must have the same
11724bit width. The second element of the result structure must be of type
11725``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11726multiplication.
11727
11728Semantics:
11729""""""""""
11730
11731The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011732a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011733the first element of which is the multiplication, and the second element
11734of which is a bit specifying if the signed multiplication resulted in an
11735overflow.
11736
11737Examples:
11738"""""""""
11739
11740.. code-block:: llvm
11741
11742 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11743 %sum = extractvalue {i32, i1} %res, 0
11744 %obit = extractvalue {i32, i1} %res, 1
11745 br i1 %obit, label %overflow, label %normal
11746
11747'``llvm.umul.with.overflow.*``' Intrinsics
11748^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11749
11750Syntax:
11751"""""""
11752
11753This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11754on any integer bit width.
11755
11756::
11757
11758 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11759 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11760 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11761
11762Overview:
11763"""""""""
11764
11765The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11766a unsigned multiplication of the two arguments, and indicate whether an
11767overflow occurred during the unsigned multiplication.
11768
11769Arguments:
11770""""""""""
11771
11772The arguments (%a and %b) and the first element of the result structure
11773may be of integer types of any bit width, but they must have the same
11774bit width. The second element of the result structure must be of type
11775``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11776multiplication.
11777
11778Semantics:
11779""""""""""
11780
11781The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011782an unsigned multiplication of the two arguments. They return a structure ---
11783the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011784element of which is a bit specifying if the unsigned multiplication
11785resulted in an overflow.
11786
11787Examples:
11788"""""""""
11789
11790.. code-block:: llvm
11791
11792 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11793 %sum = extractvalue {i32, i1} %res, 0
11794 %obit = extractvalue {i32, i1} %res, 1
11795 br i1 %obit, label %overflow, label %normal
11796
11797Specialised Arithmetic Intrinsics
11798---------------------------------
11799
Owen Anderson1056a922015-07-11 07:01:27 +000011800'``llvm.canonicalize.*``' Intrinsic
11801^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11802
11803Syntax:
11804"""""""
11805
11806::
11807
11808 declare float @llvm.canonicalize.f32(float %a)
11809 declare double @llvm.canonicalize.f64(double %b)
11810
11811Overview:
11812"""""""""
11813
11814The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011815encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011816implementing certain numeric primitives such as frexp. The canonical encoding is
11817defined by IEEE-754-2008 to be:
11818
11819::
11820
11821 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011822 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011823 numbers, infinities, and NaNs, especially in decimal formats.
11824
11825This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011826conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011827according to section 6.2.
11828
11829Examples of non-canonical encodings:
11830
Sean Silvaa1190322015-08-06 22:56:48 +000011831- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011832 converted to a canonical representation per hardware-specific protocol.
11833- Many normal decimal floating point numbers have non-canonical alternative
11834 encodings.
11835- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011836 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011837 a zero of the same sign by this operation.
11838
11839Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11840default exception handling must signal an invalid exception, and produce a
11841quiet NaN result.
11842
11843This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011844that the compiler does not constant fold the operation. Likewise, division by
118451.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011846-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11847
Sean Silvaa1190322015-08-06 22:56:48 +000011848``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011849
11850- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11851- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11852 to ``(x == y)``
11853
11854Additionally, the sign of zero must be conserved:
11855``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11856
11857The payload bits of a NaN must be conserved, with two exceptions.
11858First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011859must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011860usual methods.
11861
11862The canonicalization operation may be optimized away if:
11863
Sean Silvaa1190322015-08-06 22:56:48 +000011864- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011865 floating-point operation that is required by the standard to be canonical.
11866- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011867 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011868
Sean Silvab084af42012-12-07 10:36:55 +000011869'``llvm.fmuladd.*``' Intrinsic
11870^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11871
11872Syntax:
11873"""""""
11874
11875::
11876
11877 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11878 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11879
11880Overview:
11881"""""""""
11882
11883The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011884expressions that can be fused if the code generator determines that (a) the
11885target instruction set has support for a fused operation, and (b) that the
11886fused operation is more efficient than the equivalent, separate pair of mul
11887and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011888
11889Arguments:
11890""""""""""
11891
11892The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11893multiplicands, a and b, and an addend c.
11894
11895Semantics:
11896""""""""""
11897
11898The expression:
11899
11900::
11901
11902 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11903
11904is equivalent to the expression a \* b + c, except that rounding will
11905not be performed between the multiplication and addition steps if the
11906code generator fuses the operations. Fusion is not guaranteed, even if
11907the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011908corresponding llvm.fma.\* intrinsic function should be used
11909instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011910
11911Examples:
11912"""""""""
11913
11914.. code-block:: llvm
11915
Tim Northover675a0962014-06-13 14:24:23 +000011916 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011917
Amara Emersoncf9daa32017-05-09 10:43:25 +000011918
11919Experimental Vector Reduction Intrinsics
11920----------------------------------------
11921
11922Horizontal reductions of vectors can be expressed using the following
11923intrinsics. Each one takes a vector operand as an input and applies its
11924respective operation across all elements of the vector, returning a single
11925scalar result of the same element type.
11926
11927
11928'``llvm.experimental.vector.reduce.add.*``' Intrinsic
11929^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11930
11931Syntax:
11932"""""""
11933
11934::
11935
11936 declare i32 @llvm.experimental.vector.reduce.add.i32.v4i32(<4 x i32> %a)
11937 declare i64 @llvm.experimental.vector.reduce.add.i64.v2i64(<2 x i64> %a)
11938
11939Overview:
11940"""""""""
11941
11942The '``llvm.experimental.vector.reduce.add.*``' intrinsics do an integer ``ADD``
11943reduction of a vector, returning the result as a scalar. The return type matches
11944the element-type of the vector input.
11945
11946Arguments:
11947""""""""""
11948The argument to this intrinsic must be a vector of integer values.
11949
11950'``llvm.experimental.vector.reduce.fadd.*``' Intrinsic
11951^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11952
11953Syntax:
11954"""""""
11955
11956::
11957
11958 declare float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %a)
11959 declare double @llvm.experimental.vector.reduce.fadd.f64.v2f64(double %acc, <2 x double> %a)
11960
11961Overview:
11962"""""""""
11963
11964The '``llvm.experimental.vector.reduce.fadd.*``' intrinsics do a floating point
11965``ADD`` reduction of a vector, returning the result as a scalar. The return type
11966matches the element-type of the vector input.
11967
11968If the intrinsic call has fast-math flags, then the reduction will not preserve
11969the associativity of an equivalent scalarized counterpart. If it does not have
11970fast-math flags, then the reduction will be *ordered*, implying that the
11971operation respects the associativity of a scalarized reduction.
11972
11973
11974Arguments:
11975""""""""""
11976The first argument to this intrinsic is a scalar accumulator value, which is
11977only used when there are no fast-math flags attached. This argument may be undef
11978when fast-math flags are used.
11979
11980The second argument must be a vector of floating point values.
11981
11982Examples:
11983"""""""""
11984
11985.. code-block:: llvm
11986
11987 %fast = call fast float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
11988 %ord = call float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
11989
11990
11991'``llvm.experimental.vector.reduce.mul.*``' Intrinsic
11992^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11993
11994Syntax:
11995"""""""
11996
11997::
11998
11999 declare i32 @llvm.experimental.vector.reduce.mul.i32.v4i32(<4 x i32> %a)
12000 declare i64 @llvm.experimental.vector.reduce.mul.i64.v2i64(<2 x i64> %a)
12001
12002Overview:
12003"""""""""
12004
12005The '``llvm.experimental.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
12006reduction of a vector, returning the result as a scalar. The return type matches
12007the element-type of the vector input.
12008
12009Arguments:
12010""""""""""
12011The argument to this intrinsic must be a vector of integer values.
12012
12013'``llvm.experimental.vector.reduce.fmul.*``' Intrinsic
12014^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12015
12016Syntax:
12017"""""""
12018
12019::
12020
12021 declare float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %a)
12022 declare double @llvm.experimental.vector.reduce.fmul.f64.v2f64(double %acc, <2 x double> %a)
12023
12024Overview:
12025"""""""""
12026
12027The '``llvm.experimental.vector.reduce.fmul.*``' intrinsics do a floating point
12028``MUL`` reduction of a vector, returning the result as a scalar. The return type
12029matches the element-type of the vector input.
12030
12031If the intrinsic call has fast-math flags, then the reduction will not preserve
12032the associativity of an equivalent scalarized counterpart. If it does not have
12033fast-math flags, then the reduction will be *ordered*, implying that the
12034operation respects the associativity of a scalarized reduction.
12035
12036
12037Arguments:
12038""""""""""
12039The first argument to this intrinsic is a scalar accumulator value, which is
12040only used when there are no fast-math flags attached. This argument may be undef
12041when fast-math flags are used.
12042
12043The second argument must be a vector of floating point values.
12044
12045Examples:
12046"""""""""
12047
12048.. code-block:: llvm
12049
12050 %fast = call fast float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
12051 %ord = call float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
12052
12053'``llvm.experimental.vector.reduce.and.*``' Intrinsic
12054^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12055
12056Syntax:
12057"""""""
12058
12059::
12060
12061 declare i32 @llvm.experimental.vector.reduce.and.i32.v4i32(<4 x i32> %a)
12062
12063Overview:
12064"""""""""
12065
12066The '``llvm.experimental.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
12067reduction of a vector, returning the result as a scalar. The return type matches
12068the element-type of the vector input.
12069
12070Arguments:
12071""""""""""
12072The argument to this intrinsic must be a vector of integer values.
12073
12074'``llvm.experimental.vector.reduce.or.*``' Intrinsic
12075^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12076
12077Syntax:
12078"""""""
12079
12080::
12081
12082 declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
12083
12084Overview:
12085"""""""""
12086
12087The '``llvm.experimental.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
12088of a vector, returning the result as a scalar. The return type matches the
12089element-type of the vector input.
12090
12091Arguments:
12092""""""""""
12093The argument to this intrinsic must be a vector of integer values.
12094
12095'``llvm.experimental.vector.reduce.xor.*``' Intrinsic
12096^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12097
12098Syntax:
12099"""""""
12100
12101::
12102
12103 declare i32 @llvm.experimental.vector.reduce.xor.i32.v4i32(<4 x i32> %a)
12104
12105Overview:
12106"""""""""
12107
12108The '``llvm.experimental.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
12109reduction of a vector, returning the result as a scalar. The return type matches
12110the element-type of the vector input.
12111
12112Arguments:
12113""""""""""
12114The argument to this intrinsic must be a vector of integer values.
12115
12116'``llvm.experimental.vector.reduce.smax.*``' Intrinsic
12117^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12118
12119Syntax:
12120"""""""
12121
12122::
12123
12124 declare i32 @llvm.experimental.vector.reduce.smax.i32.v4i32(<4 x i32> %a)
12125
12126Overview:
12127"""""""""
12128
12129The '``llvm.experimental.vector.reduce.smax.*``' intrinsics do a signed integer
12130``MAX`` reduction of a vector, returning the result as a scalar. The return type
12131matches the element-type of the vector input.
12132
12133Arguments:
12134""""""""""
12135The argument to this intrinsic must be a vector of integer values.
12136
12137'``llvm.experimental.vector.reduce.smin.*``' Intrinsic
12138^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12139
12140Syntax:
12141"""""""
12142
12143::
12144
12145 declare i32 @llvm.experimental.vector.reduce.smin.i32.v4i32(<4 x i32> %a)
12146
12147Overview:
12148"""""""""
12149
12150The '``llvm.experimental.vector.reduce.smin.*``' intrinsics do a signed integer
12151``MIN`` reduction of a vector, returning the result as a scalar. The return type
12152matches the element-type of the vector input.
12153
12154Arguments:
12155""""""""""
12156The argument to this intrinsic must be a vector of integer values.
12157
12158'``llvm.experimental.vector.reduce.umax.*``' Intrinsic
12159^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12160
12161Syntax:
12162"""""""
12163
12164::
12165
12166 declare i32 @llvm.experimental.vector.reduce.umax.i32.v4i32(<4 x i32> %a)
12167
12168Overview:
12169"""""""""
12170
12171The '``llvm.experimental.vector.reduce.umax.*``' intrinsics do an unsigned
12172integer ``MAX`` reduction of a vector, returning the result as a scalar. The
12173return type matches the element-type of the vector input.
12174
12175Arguments:
12176""""""""""
12177The argument to this intrinsic must be a vector of integer values.
12178
12179'``llvm.experimental.vector.reduce.umin.*``' Intrinsic
12180^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12181
12182Syntax:
12183"""""""
12184
12185::
12186
12187 declare i32 @llvm.experimental.vector.reduce.umin.i32.v4i32(<4 x i32> %a)
12188
12189Overview:
12190"""""""""
12191
12192The '``llvm.experimental.vector.reduce.umin.*``' intrinsics do an unsigned
12193integer ``MIN`` reduction of a vector, returning the result as a scalar. The
12194return type matches the element-type of the vector input.
12195
12196Arguments:
12197""""""""""
12198The argument to this intrinsic must be a vector of integer values.
12199
12200'``llvm.experimental.vector.reduce.fmax.*``' Intrinsic
12201^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12202
12203Syntax:
12204"""""""
12205
12206::
12207
12208 declare float @llvm.experimental.vector.reduce.fmax.f32.v4f32(<4 x float> %a)
12209 declare double @llvm.experimental.vector.reduce.fmax.f64.v2f64(<2 x double> %a)
12210
12211Overview:
12212"""""""""
12213
12214The '``llvm.experimental.vector.reduce.fmax.*``' intrinsics do a floating point
12215``MAX`` reduction of a vector, returning the result as a scalar. The return type
12216matches the element-type of the vector input.
12217
12218If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12219assume that NaNs are not present in the input vector.
12220
12221Arguments:
12222""""""""""
12223The argument to this intrinsic must be a vector of floating point values.
12224
12225'``llvm.experimental.vector.reduce.fmin.*``' Intrinsic
12226^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12227
12228Syntax:
12229"""""""
12230
12231::
12232
12233 declare float @llvm.experimental.vector.reduce.fmin.f32.v4f32(<4 x float> %a)
12234 declare double @llvm.experimental.vector.reduce.fmin.f64.v2f64(<2 x double> %a)
12235
12236Overview:
12237"""""""""
12238
12239The '``llvm.experimental.vector.reduce.fmin.*``' intrinsics do a floating point
12240``MIN`` reduction of a vector, returning the result as a scalar. The return type
12241matches the element-type of the vector input.
12242
12243If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12244assume that NaNs are not present in the input vector.
12245
12246Arguments:
12247""""""""""
12248The argument to this intrinsic must be a vector of floating point values.
12249
Sean Silvab084af42012-12-07 10:36:55 +000012250Half Precision Floating Point Intrinsics
12251----------------------------------------
12252
12253For most target platforms, half precision floating point is a
12254storage-only format. This means that it is a dense encoding (in memory)
12255but does not support computation in the format.
12256
12257This means that code must first load the half-precision floating point
12258value as an i16, then convert it to float with
12259:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
12260then be performed on the float value (including extending to double
12261etc). To store the value back to memory, it is first converted to float
12262if needed, then converted to i16 with
12263:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
12264i16 value.
12265
12266.. _int_convert_to_fp16:
12267
12268'``llvm.convert.to.fp16``' Intrinsic
12269^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12270
12271Syntax:
12272"""""""
12273
12274::
12275
Tim Northoverfd7e4242014-07-17 10:51:23 +000012276 declare i16 @llvm.convert.to.fp16.f32(float %a)
12277 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000012278
12279Overview:
12280"""""""""
12281
Tim Northoverfd7e4242014-07-17 10:51:23 +000012282The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
12283conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000012284
12285Arguments:
12286""""""""""
12287
12288The intrinsic function contains single argument - the value to be
12289converted.
12290
12291Semantics:
12292""""""""""
12293
Tim Northoverfd7e4242014-07-17 10:51:23 +000012294The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
12295conventional floating point format to half precision floating point format. The
12296return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000012297
12298Examples:
12299"""""""""
12300
12301.. code-block:: llvm
12302
Tim Northoverfd7e4242014-07-17 10:51:23 +000012303 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000012304 store i16 %res, i16* @x, align 2
12305
12306.. _int_convert_from_fp16:
12307
12308'``llvm.convert.from.fp16``' Intrinsic
12309^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12310
12311Syntax:
12312"""""""
12313
12314::
12315
Tim Northoverfd7e4242014-07-17 10:51:23 +000012316 declare float @llvm.convert.from.fp16.f32(i16 %a)
12317 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012318
12319Overview:
12320"""""""""
12321
12322The '``llvm.convert.from.fp16``' intrinsic function performs a
12323conversion from half precision floating point format to single precision
12324floating point format.
12325
12326Arguments:
12327""""""""""
12328
12329The intrinsic function contains single argument - the value to be
12330converted.
12331
12332Semantics:
12333""""""""""
12334
12335The '``llvm.convert.from.fp16``' intrinsic function performs a
12336conversion from half single precision floating point format to single
12337precision floating point format. The input half-float value is
12338represented by an ``i16`` value.
12339
12340Examples:
12341"""""""""
12342
12343.. code-block:: llvm
12344
David Blaikiec7aabbb2015-03-04 22:06:14 +000012345 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000012346 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012347
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000012348.. _dbg_intrinsics:
12349
Sean Silvab084af42012-12-07 10:36:55 +000012350Debugger Intrinsics
12351-------------------
12352
12353The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
12354prefix), are described in the `LLVM Source Level
Hans Wennborg65195622017-09-28 15:16:37 +000012355Debugging <SourceLevelDebugging.html#format-common-intrinsics>`_
Sean Silvab084af42012-12-07 10:36:55 +000012356document.
12357
12358Exception Handling Intrinsics
12359-----------------------------
12360
12361The LLVM exception handling intrinsics (which all start with
12362``llvm.eh.`` prefix), are described in the `LLVM Exception
Hans Wennborg65195622017-09-28 15:16:37 +000012363Handling <ExceptionHandling.html#format-common-intrinsics>`_ document.
Sean Silvab084af42012-12-07 10:36:55 +000012364
12365.. _int_trampoline:
12366
12367Trampoline Intrinsics
12368---------------------
12369
12370These intrinsics make it possible to excise one parameter, marked with
12371the :ref:`nest <nest>` attribute, from a function. The result is a
12372callable function pointer lacking the nest parameter - the caller does
12373not need to provide a value for it. Instead, the value to use is stored
12374in advance in a "trampoline", a block of memory usually allocated on the
12375stack, which also contains code to splice the nest value into the
12376argument list. This is used to implement the GCC nested function address
12377extension.
12378
12379For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
12380then the resulting function pointer has signature ``i32 (i32, i32)*``.
12381It can be created as follows:
12382
12383.. code-block:: llvm
12384
12385 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000012386 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000012387 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
12388 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
12389 %fp = bitcast i8* %p to i32 (i32, i32)*
12390
12391The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
12392``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
12393
12394.. _int_it:
12395
12396'``llvm.init.trampoline``' Intrinsic
12397^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12398
12399Syntax:
12400"""""""
12401
12402::
12403
12404 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
12405
12406Overview:
12407"""""""""
12408
12409This fills the memory pointed to by ``tramp`` with executable code,
12410turning it into a trampoline.
12411
12412Arguments:
12413""""""""""
12414
12415The ``llvm.init.trampoline`` intrinsic takes three arguments, all
12416pointers. The ``tramp`` argument must point to a sufficiently large and
12417sufficiently aligned block of memory; this memory is written to by the
12418intrinsic. Note that the size and the alignment are target-specific -
12419LLVM currently provides no portable way of determining them, so a
12420front-end that generates this intrinsic needs to have some
12421target-specific knowledge. The ``func`` argument must hold a function
12422bitcast to an ``i8*``.
12423
12424Semantics:
12425""""""""""
12426
12427The block of memory pointed to by ``tramp`` is filled with target
12428dependent code, turning it into a function. Then ``tramp`` needs to be
12429passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
12430be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
12431function's signature is the same as that of ``func`` with any arguments
12432marked with the ``nest`` attribute removed. At most one such ``nest``
12433argument is allowed, and it must be of pointer type. Calling the new
12434function is equivalent to calling ``func`` with the same argument list,
12435but with ``nval`` used for the missing ``nest`` argument. If, after
12436calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
12437modified, then the effect of any later call to the returned function
12438pointer is undefined.
12439
12440.. _int_at:
12441
12442'``llvm.adjust.trampoline``' Intrinsic
12443^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12444
12445Syntax:
12446"""""""
12447
12448::
12449
12450 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
12451
12452Overview:
12453"""""""""
12454
12455This performs any required machine-specific adjustment to the address of
12456a trampoline (passed as ``tramp``).
12457
12458Arguments:
12459""""""""""
12460
12461``tramp`` must point to a block of memory which already has trampoline
12462code filled in by a previous call to
12463:ref:`llvm.init.trampoline <int_it>`.
12464
12465Semantics:
12466""""""""""
12467
12468On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012469different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000012470intrinsic returns the executable address corresponding to ``tramp``
12471after performing the required machine specific adjustments. The pointer
12472returned can then be :ref:`bitcast and executed <int_trampoline>`.
12473
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012474.. _int_mload_mstore:
12475
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012476Masked Vector Load and Store Intrinsics
12477---------------------------------------
12478
12479LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
12480
12481.. _int_mload:
12482
12483'``llvm.masked.load.*``' Intrinsics
12484^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12485
12486Syntax:
12487"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012488This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012489
12490::
12491
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012492 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12493 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012494 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012495 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012496 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012497 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012498
12499Overview:
12500"""""""""
12501
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012502Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012503
12504
12505Arguments:
12506""""""""""
12507
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012508The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012509
12510
12511Semantics:
12512""""""""""
12513
12514The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
12515The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
12516
12517
12518::
12519
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012520 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012521
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012522 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000012523 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012524 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012525
12526.. _int_mstore:
12527
12528'``llvm.masked.store.*``' Intrinsics
12529^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12530
12531Syntax:
12532"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012533This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012534
12535::
12536
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012537 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
12538 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012539 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012540 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012541 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012542 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012543
12544Overview:
12545"""""""""
12546
12547Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12548
12549Arguments:
12550""""""""""
12551
12552The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12553
12554
12555Semantics:
12556""""""""""
12557
12558The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
12559The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
12560
12561::
12562
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012563 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012564
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012565 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000012566 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012567 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
12568 store <16 x float> %res, <16 x float>* %ptr, align 4
12569
12570
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012571Masked Vector Gather and Scatter Intrinsics
12572-------------------------------------------
12573
12574LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
12575
12576.. _int_mgather:
12577
12578'``llvm.masked.gather.*``' Intrinsics
12579^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12580
12581Syntax:
12582"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012583This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012584
12585::
12586
Elad Cohenef5798a2017-05-03 12:28:54 +000012587 declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12588 declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64 (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
12589 declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012590
12591Overview:
12592"""""""""
12593
12594Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
12595
12596
12597Arguments:
12598""""""""""
12599
12600The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
12601
12602
12603Semantics:
12604""""""""""
12605
12606The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
12607The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
12608
12609
12610::
12611
Elad Cohenef5798a2017-05-03 12:28:54 +000012612 %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012613
12614 ;; The gather with all-true mask is equivalent to the following instruction sequence
12615 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
12616 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
12617 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
12618 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
12619
12620 %val0 = load double, double* %ptr0, align 8
12621 %val1 = load double, double* %ptr1, align 8
12622 %val2 = load double, double* %ptr2, align 8
12623 %val3 = load double, double* %ptr3, align 8
12624
12625 %vec0 = insertelement <4 x double>undef, %val0, 0
12626 %vec01 = insertelement <4 x double>%vec0, %val1, 1
12627 %vec012 = insertelement <4 x double>%vec01, %val2, 2
12628 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
12629
12630.. _int_mscatter:
12631
12632'``llvm.masked.scatter.*``' Intrinsics
12633^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12634
12635Syntax:
12636"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012637This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012638
12639::
12640
Elad Cohenef5798a2017-05-03 12:28:54 +000012641 declare void @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
12642 declare void @llvm.masked.scatter.v16f32.v16p1f32 (<16 x float> <value>, <16 x float addrspace(1)*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
12643 declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012644
12645Overview:
12646"""""""""
12647
12648Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12649
12650Arguments:
12651""""""""""
12652
12653The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12654
12655
12656Semantics:
12657""""""""""
12658
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000012659The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012660
12661::
12662
Sylvestre Ledru84666a12016-02-14 20:16:22 +000012663 ;; This instruction unconditionally stores data vector in multiple addresses
Elad Cohenef5798a2017-05-03 12:28:54 +000012664 call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012665
12666 ;; It is equivalent to a list of scalar stores
12667 %val0 = extractelement <8 x i32> %value, i32 0
12668 %val1 = extractelement <8 x i32> %value, i32 1
12669 ..
12670 %val7 = extractelement <8 x i32> %value, i32 7
12671 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
12672 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
12673 ..
12674 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
12675 ;; Note: the order of the following stores is important when they overlap:
12676 store i32 %val0, i32* %ptr0, align 4
12677 store i32 %val1, i32* %ptr1, align 4
12678 ..
12679 store i32 %val7, i32* %ptr7, align 4
12680
12681
Sean Silvab084af42012-12-07 10:36:55 +000012682Memory Use Markers
12683------------------
12684
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012685This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000012686memory objects and ranges where variables are immutable.
12687
Reid Klecknera534a382013-12-19 02:14:12 +000012688.. _int_lifestart:
12689
Sean Silvab084af42012-12-07 10:36:55 +000012690'``llvm.lifetime.start``' Intrinsic
12691^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12692
12693Syntax:
12694"""""""
12695
12696::
12697
12698 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
12699
12700Overview:
12701"""""""""
12702
12703The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
12704object's lifetime.
12705
12706Arguments:
12707""""""""""
12708
12709The first argument is a constant integer representing the size of the
12710object, or -1 if it is variable sized. The second argument is a pointer
12711to the object.
12712
12713Semantics:
12714""""""""""
12715
12716This intrinsic indicates that before this point in the code, the value
12717of the memory pointed to by ``ptr`` is dead. This means that it is known
12718to never be used and has an undefined value. A load from the pointer
12719that precedes this intrinsic can be replaced with ``'undef'``.
12720
Reid Klecknera534a382013-12-19 02:14:12 +000012721.. _int_lifeend:
12722
Sean Silvab084af42012-12-07 10:36:55 +000012723'``llvm.lifetime.end``' Intrinsic
12724^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12725
12726Syntax:
12727"""""""
12728
12729::
12730
12731 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
12732
12733Overview:
12734"""""""""
12735
12736The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
12737object's lifetime.
12738
12739Arguments:
12740""""""""""
12741
12742The first argument is a constant integer representing the size of the
12743object, or -1 if it is variable sized. The second argument is a pointer
12744to the object.
12745
12746Semantics:
12747""""""""""
12748
12749This intrinsic indicates that after this point in the code, the value of
12750the memory pointed to by ``ptr`` is dead. This means that it is known to
12751never be used and has an undefined value. Any stores into the memory
12752object following this intrinsic may be removed as dead.
12753
12754'``llvm.invariant.start``' Intrinsic
12755^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12756
12757Syntax:
12758"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012759This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012760
12761::
12762
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012763 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012764
12765Overview:
12766"""""""""
12767
12768The '``llvm.invariant.start``' intrinsic specifies that the contents of
12769a memory object will not change.
12770
12771Arguments:
12772""""""""""
12773
12774The first argument is a constant integer representing the size of the
12775object, or -1 if it is variable sized. The second argument is a pointer
12776to the object.
12777
12778Semantics:
12779""""""""""
12780
12781This intrinsic indicates that until an ``llvm.invariant.end`` that uses
12782the return value, the referenced memory location is constant and
12783unchanging.
12784
12785'``llvm.invariant.end``' Intrinsic
12786^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12787
12788Syntax:
12789"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012790This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012791
12792::
12793
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012794 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012795
12796Overview:
12797"""""""""
12798
12799The '``llvm.invariant.end``' intrinsic specifies that the contents of a
12800memory object are mutable.
12801
12802Arguments:
12803""""""""""
12804
12805The first argument is the matching ``llvm.invariant.start`` intrinsic.
12806The second argument is a constant integer representing the size of the
12807object, or -1 if it is variable sized and the third argument is a
12808pointer to the object.
12809
12810Semantics:
12811""""""""""
12812
12813This intrinsic indicates that the memory is mutable again.
12814
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012815'``llvm.invariant.group.barrier``' Intrinsic
12816^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12817
12818Syntax:
12819"""""""
12820
12821::
12822
12823 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
12824
12825Overview:
12826"""""""""
12827
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000012828The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012829established by invariant.group metadata no longer holds, to obtain a new pointer
12830value that does not carry the invariant information.
12831
12832
12833Arguments:
12834""""""""""
12835
12836The ``llvm.invariant.group.barrier`` takes only one argument, which is
12837the pointer to the memory for which the ``invariant.group`` no longer holds.
12838
12839Semantics:
12840""""""""""
12841
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000012842Returns another pointer that aliases its argument but which is considered different
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012843for the purposes of ``load``/``store`` ``invariant.group`` metadata.
12844
Andrew Kaylora0a11642017-01-26 23:27:59 +000012845Constrained Floating Point Intrinsics
12846-------------------------------------
12847
12848These intrinsics are used to provide special handling of floating point
12849operations when specific rounding mode or floating point exception behavior is
12850required. By default, LLVM optimization passes assume that the rounding mode is
12851round-to-nearest and that floating point exceptions will not be monitored.
12852Constrained FP intrinsics are used to support non-default rounding modes and
12853accurately preserve exception behavior without compromising LLVM's ability to
12854optimize FP code when the default behavior is used.
12855
12856Each of these intrinsics corresponds to a normal floating point operation. The
12857first two arguments and the return value are the same as the corresponding FP
12858operation.
12859
12860The third argument is a metadata argument specifying the rounding mode to be
12861assumed. This argument must be one of the following strings:
12862
12863::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012864
Andrew Kaylora0a11642017-01-26 23:27:59 +000012865 "round.dynamic"
12866 "round.tonearest"
12867 "round.downward"
12868 "round.upward"
12869 "round.towardzero"
12870
12871If this argument is "round.dynamic" optimization passes must assume that the
12872rounding mode is unknown and may change at runtime. No transformations that
12873depend on rounding mode may be performed in this case.
12874
12875The other possible values for the rounding mode argument correspond to the
12876similarly named IEEE rounding modes. If the argument is any of these values
12877optimization passes may perform transformations as long as they are consistent
12878with the specified rounding mode.
12879
12880For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
12881"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
12882'x-0' should evaluate to '-0' when rounding downward. However, this
12883transformation is legal for all other rounding modes.
12884
12885For values other than "round.dynamic" optimization passes may assume that the
12886actual runtime rounding mode (as defined in a target-specific manner) matches
12887the specified rounding mode, but this is not guaranteed. Using a specific
12888non-dynamic rounding mode which does not match the actual rounding mode at
12889runtime results in undefined behavior.
12890
12891The fourth argument to the constrained floating point intrinsics specifies the
12892required exception behavior. This argument must be one of the following
12893strings:
12894
12895::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012896
Andrew Kaylora0a11642017-01-26 23:27:59 +000012897 "fpexcept.ignore"
12898 "fpexcept.maytrap"
12899 "fpexcept.strict"
12900
12901If this argument is "fpexcept.ignore" optimization passes may assume that the
12902exception status flags will not be read and that floating point exceptions will
12903be masked. This allows transformations to be performed that may change the
12904exception semantics of the original code. For example, FP operations may be
12905speculatively executed in this case whereas they must not be for either of the
12906other possible values of this argument.
12907
12908If the exception behavior argument is "fpexcept.maytrap" optimization passes
12909must avoid transformations that may raise exceptions that would not have been
12910raised by the original code (such as speculatively executing FP operations), but
12911passes are not required to preserve all exceptions that are implied by the
12912original code. For example, exceptions may be potentially hidden by constant
12913folding.
12914
12915If the exception behavior argument is "fpexcept.strict" all transformations must
12916strictly preserve the floating point exception semantics of the original code.
12917Any FP exception that would have been raised by the original code must be raised
12918by the transformed code, and the transformed code must not raise any FP
12919exceptions that would not have been raised by the original code. This is the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000012920exception behavior argument that will be used if the code being compiled reads
Andrew Kaylora0a11642017-01-26 23:27:59 +000012921the FP exception status flags, but this mode can also be used with code that
12922unmasks FP exceptions.
12923
12924The number and order of floating point exceptions is NOT guaranteed. For
12925example, a series of FP operations that each may raise exceptions may be
12926vectorized into a single instruction that raises each unique exception a single
12927time.
12928
12929
12930'``llvm.experimental.constrained.fadd``' Intrinsic
12931^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12932
12933Syntax:
12934"""""""
12935
12936::
12937
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000012938 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000012939 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
12940 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012941 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012942
12943Overview:
12944"""""""""
12945
12946The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
12947two operands.
12948
12949
12950Arguments:
12951""""""""""
12952
12953The first two arguments to the '``llvm.experimental.constrained.fadd``'
12954intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12955of floating point values. Both arguments must have identical types.
12956
12957The third and fourth arguments specify the rounding mode and exception
12958behavior as described above.
12959
12960Semantics:
12961""""""""""
12962
12963The value produced is the floating point sum of the two value operands and has
12964the same type as the operands.
12965
12966
12967'``llvm.experimental.constrained.fsub``' Intrinsic
12968^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12969
12970Syntax:
12971"""""""
12972
12973::
12974
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000012975 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000012976 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
12977 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012978 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012979
12980Overview:
12981"""""""""
12982
12983The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
12984of its two operands.
12985
12986
12987Arguments:
12988""""""""""
12989
12990The first two arguments to the '``llvm.experimental.constrained.fsub``'
12991intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12992of floating point values. Both arguments must have identical types.
12993
12994The third and fourth arguments specify the rounding mode and exception
12995behavior as described above.
12996
12997Semantics:
12998""""""""""
12999
13000The value produced is the floating point difference of the two value operands
13001and has the same type as the operands.
13002
13003
13004'``llvm.experimental.constrained.fmul``' Intrinsic
13005^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13006
13007Syntax:
13008"""""""
13009
13010::
13011
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013012 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013013 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
13014 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013015 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013016
13017Overview:
13018"""""""""
13019
13020The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
13021its two operands.
13022
13023
13024Arguments:
13025""""""""""
13026
13027The first two arguments to the '``llvm.experimental.constrained.fmul``'
13028intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
13029of floating point values. Both arguments must have identical types.
13030
13031The third and fourth arguments specify the rounding mode and exception
13032behavior as described above.
13033
13034Semantics:
13035""""""""""
13036
13037The value produced is the floating point product of the two value operands and
13038has the same type as the operands.
13039
13040
13041'``llvm.experimental.constrained.fdiv``' Intrinsic
13042^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13043
13044Syntax:
13045"""""""
13046
13047::
13048
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013049 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013050 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
13051 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013052 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013053
13054Overview:
13055"""""""""
13056
13057The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
13058its two operands.
13059
13060
13061Arguments:
13062""""""""""
13063
13064The first two arguments to the '``llvm.experimental.constrained.fdiv``'
13065intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
13066of floating point values. Both arguments must have identical types.
13067
13068The third and fourth arguments specify the rounding mode and exception
13069behavior as described above.
13070
13071Semantics:
13072""""""""""
13073
13074The value produced is the floating point quotient of the two value operands and
13075has the same type as the operands.
13076
13077
13078'``llvm.experimental.constrained.frem``' Intrinsic
13079^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13080
13081Syntax:
13082"""""""
13083
13084::
13085
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013086 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013087 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
13088 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013089 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013090
13091Overview:
13092"""""""""
13093
13094The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
13095from the division of its two operands.
13096
13097
13098Arguments:
13099""""""""""
13100
13101The first two arguments to the '``llvm.experimental.constrained.frem``'
13102intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
13103of floating point values. Both arguments must have identical types.
13104
13105The third and fourth arguments specify the rounding mode and exception
13106behavior as described above. The rounding mode argument has no effect, since
13107the result of frem is never rounded, but the argument is included for
13108consistency with the other constrained floating point intrinsics.
13109
13110Semantics:
13111""""""""""
13112
13113The value produced is the floating point remainder from the division of the two
13114value operands and has the same type as the operands. The remainder has the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013115same sign as the dividend.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013116
Wei Dinga131d3f2017-08-24 04:18:24 +000013117'``llvm.experimental.constrained.fma``' Intrinsic
13118^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13119
13120Syntax:
13121"""""""
13122
13123::
13124
13125 declare <type>
13126 @llvm.experimental.constrained.fma(<type> <op1>, <type> <op2>, <type> <op3>,
13127 metadata <rounding mode>,
13128 metadata <exception behavior>)
13129
13130Overview:
13131"""""""""
13132
13133The '``llvm.experimental.constrained.fma``' intrinsic returns the result of a
13134fused-multiply-add operation on its operands.
13135
13136Arguments:
13137""""""""""
13138
13139The first three arguments to the '``llvm.experimental.constrained.fma``'
13140intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector
13141<t_vector>` of floating point values. All arguments must have identical types.
13142
13143The fourth and fifth arguments specify the rounding mode and exception behavior
13144as described above.
13145
13146Semantics:
13147""""""""""
13148
13149The result produced is the product of the first two operands added to the third
13150operand computed with infinite precision, and then rounded to the target
13151precision.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013152
Andrew Kaylorf4660012017-05-25 21:31:00 +000013153Constrained libm-equivalent Intrinsics
13154--------------------------------------
13155
13156In addition to the basic floating point operations for which constrained
13157intrinsics are described above, there are constrained versions of various
13158operations which provide equivalent behavior to a corresponding libm function.
13159These intrinsics allow the precise behavior of these operations with respect to
13160rounding mode and exception behavior to be controlled.
13161
13162As with the basic constrained floating point intrinsics, the rounding mode
13163and exception behavior arguments only control the behavior of the optimizer.
13164They do not change the runtime floating point environment.
13165
13166
13167'``llvm.experimental.constrained.sqrt``' Intrinsic
13168^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13169
13170Syntax:
13171"""""""
13172
13173::
13174
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013175 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013176 @llvm.experimental.constrained.sqrt(<type> <op1>,
13177 metadata <rounding mode>,
13178 metadata <exception behavior>)
13179
13180Overview:
13181"""""""""
13182
13183The '``llvm.experimental.constrained.sqrt``' intrinsic returns the square root
13184of the specified value, returning the same value as the libm '``sqrt``'
13185functions would, but without setting ``errno``.
13186
13187Arguments:
13188""""""""""
13189
13190The first argument and the return type are floating point numbers of the same
13191type.
13192
13193The second and third arguments specify the rounding mode and exception
13194behavior as described above.
13195
13196Semantics:
13197""""""""""
13198
13199This function returns the nonnegative square root of the specified value.
13200If the value is less than negative zero, a floating point exception occurs
13201and the the return value is architecture specific.
13202
13203
13204'``llvm.experimental.constrained.pow``' Intrinsic
13205^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13206
13207Syntax:
13208"""""""
13209
13210::
13211
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013212 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013213 @llvm.experimental.constrained.pow(<type> <op1>, <type> <op2>,
13214 metadata <rounding mode>,
13215 metadata <exception behavior>)
13216
13217Overview:
13218"""""""""
13219
13220The '``llvm.experimental.constrained.pow``' intrinsic returns the first operand
13221raised to the (positive or negative) power specified by the second operand.
13222
13223Arguments:
13224""""""""""
13225
13226The first two arguments and the return value are floating point numbers of the
13227same type. The second argument specifies the power to which the first argument
13228should be raised.
13229
13230The third and fourth arguments specify the rounding mode and exception
13231behavior as described above.
13232
13233Semantics:
13234""""""""""
13235
13236This function returns the first value raised to the second power,
13237returning the same values as the libm ``pow`` functions would, and
13238handles error conditions in the same way.
13239
13240
13241'``llvm.experimental.constrained.powi``' Intrinsic
13242^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13243
13244Syntax:
13245"""""""
13246
13247::
13248
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013249 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013250 @llvm.experimental.constrained.powi(<type> <op1>, i32 <op2>,
13251 metadata <rounding mode>,
13252 metadata <exception behavior>)
13253
13254Overview:
13255"""""""""
13256
13257The '``llvm.experimental.constrained.powi``' intrinsic returns the first operand
13258raised to the (positive or negative) power specified by the second operand. The
13259order of evaluation of multiplications is not defined. When a vector of floating
13260point type is used, the second argument remains a scalar integer value.
13261
13262
13263Arguments:
13264""""""""""
13265
13266The first argument and the return value are floating point numbers of the same
13267type. The second argument is a 32-bit signed integer specifying the power to
13268which the first argument should be raised.
13269
13270The third and fourth arguments specify the rounding mode and exception
13271behavior as described above.
13272
13273Semantics:
13274""""""""""
13275
13276This function returns the first value raised to the second power with an
13277unspecified sequence of rounding operations.
13278
13279
13280'``llvm.experimental.constrained.sin``' Intrinsic
13281^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13282
13283Syntax:
13284"""""""
13285
13286::
13287
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013288 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013289 @llvm.experimental.constrained.sin(<type> <op1>,
13290 metadata <rounding mode>,
13291 metadata <exception behavior>)
13292
13293Overview:
13294"""""""""
13295
13296The '``llvm.experimental.constrained.sin``' intrinsic returns the sine of the
13297first operand.
13298
13299Arguments:
13300""""""""""
13301
13302The first argument and the return type are floating point numbers of the same
13303type.
13304
13305The second and third arguments specify the rounding mode and exception
13306behavior as described above.
13307
13308Semantics:
13309""""""""""
13310
13311This function returns the sine of the specified operand, returning the
13312same values as the libm ``sin`` functions would, and handles error
13313conditions in the same way.
13314
13315
13316'``llvm.experimental.constrained.cos``' Intrinsic
13317^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13318
13319Syntax:
13320"""""""
13321
13322::
13323
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013324 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013325 @llvm.experimental.constrained.cos(<type> <op1>,
13326 metadata <rounding mode>,
13327 metadata <exception behavior>)
13328
13329Overview:
13330"""""""""
13331
13332The '``llvm.experimental.constrained.cos``' intrinsic returns the cosine of the
13333first operand.
13334
13335Arguments:
13336""""""""""
13337
13338The first argument and the return type are floating point numbers of the same
13339type.
13340
13341The second and third arguments specify the rounding mode and exception
13342behavior as described above.
13343
13344Semantics:
13345""""""""""
13346
13347This function returns the cosine of the specified operand, returning the
13348same values as the libm ``cos`` functions would, and handles error
13349conditions in the same way.
13350
13351
13352'``llvm.experimental.constrained.exp``' Intrinsic
13353^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13354
13355Syntax:
13356"""""""
13357
13358::
13359
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013360 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013361 @llvm.experimental.constrained.exp(<type> <op1>,
13362 metadata <rounding mode>,
13363 metadata <exception behavior>)
13364
13365Overview:
13366"""""""""
13367
13368The '``llvm.experimental.constrained.exp``' intrinsic computes the base-e
13369exponential of the specified value.
13370
13371Arguments:
13372""""""""""
13373
13374The first argument and the return value are floating point numbers of the same
13375type.
13376
13377The second and third arguments specify the rounding mode and exception
13378behavior as described above.
13379
13380Semantics:
13381""""""""""
13382
13383This function returns the same values as the libm ``exp`` functions
13384would, and handles error conditions in the same way.
13385
13386
13387'``llvm.experimental.constrained.exp2``' Intrinsic
13388^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13389
13390Syntax:
13391"""""""
13392
13393::
13394
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013395 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013396 @llvm.experimental.constrained.exp2(<type> <op1>,
13397 metadata <rounding mode>,
13398 metadata <exception behavior>)
13399
13400Overview:
13401"""""""""
13402
13403The '``llvm.experimental.constrained.exp2``' intrinsic computes the base-2
13404exponential of the specified value.
13405
13406
13407Arguments:
13408""""""""""
13409
13410The first argument and the return value are floating point numbers of the same
13411type.
13412
13413The second and third arguments specify the rounding mode and exception
13414behavior as described above.
13415
13416Semantics:
13417""""""""""
13418
13419This function returns the same values as the libm ``exp2`` functions
13420would, and handles error conditions in the same way.
13421
13422
13423'``llvm.experimental.constrained.log``' Intrinsic
13424^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13425
13426Syntax:
13427"""""""
13428
13429::
13430
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013431 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013432 @llvm.experimental.constrained.log(<type> <op1>,
13433 metadata <rounding mode>,
13434 metadata <exception behavior>)
13435
13436Overview:
13437"""""""""
13438
13439The '``llvm.experimental.constrained.log``' intrinsic computes the base-e
13440logarithm of the specified value.
13441
13442Arguments:
13443""""""""""
13444
13445The first argument and the return value are floating point numbers of the same
13446type.
13447
13448The second and third arguments specify the rounding mode and exception
13449behavior as described above.
13450
13451
13452Semantics:
13453""""""""""
13454
13455This function returns the same values as the libm ``log`` functions
13456would, and handles error conditions in the same way.
13457
13458
13459'``llvm.experimental.constrained.log10``' Intrinsic
13460^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13461
13462Syntax:
13463"""""""
13464
13465::
13466
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013467 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013468 @llvm.experimental.constrained.log10(<type> <op1>,
13469 metadata <rounding mode>,
13470 metadata <exception behavior>)
13471
13472Overview:
13473"""""""""
13474
13475The '``llvm.experimental.constrained.log10``' intrinsic computes the base-10
13476logarithm of the specified value.
13477
13478Arguments:
13479""""""""""
13480
13481The first argument and the return value are floating point numbers of the same
13482type.
13483
13484The second and third arguments specify the rounding mode and exception
13485behavior as described above.
13486
13487Semantics:
13488""""""""""
13489
13490This function returns the same values as the libm ``log10`` functions
13491would, and handles error conditions in the same way.
13492
13493
13494'``llvm.experimental.constrained.log2``' Intrinsic
13495^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13496
13497Syntax:
13498"""""""
13499
13500::
13501
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013502 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013503 @llvm.experimental.constrained.log2(<type> <op1>,
13504 metadata <rounding mode>,
13505 metadata <exception behavior>)
13506
13507Overview:
13508"""""""""
13509
13510The '``llvm.experimental.constrained.log2``' intrinsic computes the base-2
13511logarithm of the specified value.
13512
13513Arguments:
13514""""""""""
13515
13516The first argument and the return value are floating point numbers of the same
13517type.
13518
13519The second and third arguments specify the rounding mode and exception
13520behavior as described above.
13521
13522Semantics:
13523""""""""""
13524
13525This function returns the same values as the libm ``log2`` functions
13526would, and handles error conditions in the same way.
13527
13528
13529'``llvm.experimental.constrained.rint``' Intrinsic
13530^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13531
13532Syntax:
13533"""""""
13534
13535::
13536
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013537 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013538 @llvm.experimental.constrained.rint(<type> <op1>,
13539 metadata <rounding mode>,
13540 metadata <exception behavior>)
13541
13542Overview:
13543"""""""""
13544
13545The '``llvm.experimental.constrained.rint``' intrinsic returns the first
13546operand rounded to the nearest integer. It may raise an inexact floating point
13547exception if the operand is not an integer.
13548
13549Arguments:
13550""""""""""
13551
13552The first argument and the return value are floating point numbers of the same
13553type.
13554
13555The second and third arguments specify the rounding mode and exception
13556behavior as described above.
13557
13558Semantics:
13559""""""""""
13560
13561This function returns the same values as the libm ``rint`` functions
13562would, and handles error conditions in the same way. The rounding mode is
13563described, not determined, by the rounding mode argument. The actual rounding
13564mode is determined by the runtime floating point environment. The rounding
13565mode argument is only intended as information to the compiler.
13566
13567
13568'``llvm.experimental.constrained.nearbyint``' Intrinsic
13569^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13570
13571Syntax:
13572"""""""
13573
13574::
13575
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013576 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013577 @llvm.experimental.constrained.nearbyint(<type> <op1>,
13578 metadata <rounding mode>,
13579 metadata <exception behavior>)
13580
13581Overview:
13582"""""""""
13583
13584The '``llvm.experimental.constrained.nearbyint``' intrinsic returns the first
13585operand rounded to the nearest integer. It will not raise an inexact floating
13586point exception if the operand is not an integer.
13587
13588
13589Arguments:
13590""""""""""
13591
13592The first argument and the return value are floating point numbers of the same
13593type.
13594
13595The second and third arguments specify the rounding mode and exception
13596behavior as described above.
13597
13598Semantics:
13599""""""""""
13600
13601This function returns the same values as the libm ``nearbyint`` functions
13602would, and handles error conditions in the same way. The rounding mode is
13603described, not determined, by the rounding mode argument. The actual rounding
13604mode is determined by the runtime floating point environment. The rounding
13605mode argument is only intended as information to the compiler.
13606
13607
Sean Silvab084af42012-12-07 10:36:55 +000013608General Intrinsics
13609------------------
13610
13611This class of intrinsics is designed to be generic and has no specific
13612purpose.
13613
13614'``llvm.var.annotation``' Intrinsic
13615^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13616
13617Syntax:
13618"""""""
13619
13620::
13621
13622 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
13623
13624Overview:
13625"""""""""
13626
13627The '``llvm.var.annotation``' intrinsic.
13628
13629Arguments:
13630""""""""""
13631
13632The first argument is a pointer to a value, the second is a pointer to a
13633global string, the third is a pointer to a global string which is the
13634source file name, and the last argument is the line number.
13635
13636Semantics:
13637""""""""""
13638
13639This intrinsic allows annotation of local variables with arbitrary
13640strings. This can be useful for special purpose optimizations that want
13641to look for these annotations. These have no other defined use; they are
13642ignored by code generation and optimization.
13643
Michael Gottesman88d18832013-03-26 00:34:27 +000013644'``llvm.ptr.annotation.*``' Intrinsic
13645^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13646
13647Syntax:
13648"""""""
13649
13650This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
13651pointer to an integer of any width. *NOTE* you must specify an address space for
13652the pointer. The identifier for the default address space is the integer
13653'``0``'.
13654
13655::
13656
13657 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
13658 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
13659 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
13660 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
13661 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
13662
13663Overview:
13664"""""""""
13665
13666The '``llvm.ptr.annotation``' intrinsic.
13667
13668Arguments:
13669""""""""""
13670
13671The first argument is a pointer to an integer value of arbitrary bitwidth
13672(result of some expression), the second is a pointer to a global string, the
13673third is a pointer to a global string which is the source file name, and the
13674last argument is the line number. It returns the value of the first argument.
13675
13676Semantics:
13677""""""""""
13678
13679This intrinsic allows annotation of a pointer to an integer with arbitrary
13680strings. This can be useful for special purpose optimizations that want to look
13681for these annotations. These have no other defined use; they are ignored by code
13682generation and optimization.
13683
Sean Silvab084af42012-12-07 10:36:55 +000013684'``llvm.annotation.*``' Intrinsic
13685^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13686
13687Syntax:
13688"""""""
13689
13690This is an overloaded intrinsic. You can use '``llvm.annotation``' on
13691any integer bit width.
13692
13693::
13694
13695 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
13696 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
13697 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
13698 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
13699 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
13700
13701Overview:
13702"""""""""
13703
13704The '``llvm.annotation``' intrinsic.
13705
13706Arguments:
13707""""""""""
13708
13709The first argument is an integer value (result of some expression), the
13710second is a pointer to a global string, the third is a pointer to a
13711global string which is the source file name, and the last argument is
13712the line number. It returns the value of the first argument.
13713
13714Semantics:
13715""""""""""
13716
13717This intrinsic allows annotations to be put on arbitrary expressions
13718with arbitrary strings. This can be useful for special purpose
13719optimizations that want to look for these annotations. These have no
13720other defined use; they are ignored by code generation and optimization.
13721
Reid Klecknere33c94f2017-09-05 20:14:58 +000013722'``llvm.codeview.annotation``' Intrinsic
Reid Klecknerd4523682017-09-05 20:26:25 +000013723^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Reid Klecknere33c94f2017-09-05 20:14:58 +000013724
13725Syntax:
13726"""""""
13727
13728This annotation emits a label at its program point and an associated
13729``S_ANNOTATION`` codeview record with some additional string metadata. This is
13730used to implement MSVC's ``__annotation`` intrinsic. It is marked
13731``noduplicate``, so calls to this intrinsic prevent inlining and should be
13732considered expensive.
13733
13734::
13735
13736 declare void @llvm.codeview.annotation(metadata)
13737
13738Arguments:
13739""""""""""
13740
13741The argument should be an MDTuple containing any number of MDStrings.
13742
Sean Silvab084af42012-12-07 10:36:55 +000013743'``llvm.trap``' Intrinsic
13744^^^^^^^^^^^^^^^^^^^^^^^^^
13745
13746Syntax:
13747"""""""
13748
13749::
13750
13751 declare void @llvm.trap() noreturn nounwind
13752
13753Overview:
13754"""""""""
13755
13756The '``llvm.trap``' intrinsic.
13757
13758Arguments:
13759""""""""""
13760
13761None.
13762
13763Semantics:
13764""""""""""
13765
13766This intrinsic is lowered to the target dependent trap instruction. If
13767the target does not have a trap instruction, this intrinsic will be
13768lowered to a call of the ``abort()`` function.
13769
13770'``llvm.debugtrap``' Intrinsic
13771^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13772
13773Syntax:
13774"""""""
13775
13776::
13777
13778 declare void @llvm.debugtrap() nounwind
13779
13780Overview:
13781"""""""""
13782
13783The '``llvm.debugtrap``' intrinsic.
13784
13785Arguments:
13786""""""""""
13787
13788None.
13789
13790Semantics:
13791""""""""""
13792
13793This intrinsic is lowered to code which is intended to cause an
13794execution trap with the intention of requesting the attention of a
13795debugger.
13796
13797'``llvm.stackprotector``' Intrinsic
13798^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13799
13800Syntax:
13801"""""""
13802
13803::
13804
13805 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
13806
13807Overview:
13808"""""""""
13809
13810The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
13811onto the stack at ``slot``. The stack slot is adjusted to ensure that it
13812is placed on the stack before local variables.
13813
13814Arguments:
13815""""""""""
13816
13817The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
13818The first argument is the value loaded from the stack guard
13819``@__stack_chk_guard``. The second variable is an ``alloca`` that has
13820enough space to hold the value of the guard.
13821
13822Semantics:
13823""""""""""
13824
Michael Gottesmandafc7d92013-08-12 18:35:32 +000013825This intrinsic causes the prologue/epilogue inserter to force the position of
13826the ``AllocaInst`` stack slot to be before local variables on the stack. This is
13827to ensure that if a local variable on the stack is overwritten, it will destroy
13828the value of the guard. When the function exits, the guard on the stack is
13829checked against the original guard by ``llvm.stackprotectorcheck``. If they are
13830different, then ``llvm.stackprotectorcheck`` causes the program to abort by
13831calling the ``__stack_chk_fail()`` function.
13832
Tim Shene885d5e2016-04-19 19:40:37 +000013833'``llvm.stackguard``' Intrinsic
13834^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13835
13836Syntax:
13837"""""""
13838
13839::
13840
13841 declare i8* @llvm.stackguard()
13842
13843Overview:
13844"""""""""
13845
13846The ``llvm.stackguard`` intrinsic returns the system stack guard value.
13847
13848It should not be generated by frontends, since it is only for internal usage.
13849The reason why we create this intrinsic is that we still support IR form Stack
13850Protector in FastISel.
13851
13852Arguments:
13853""""""""""
13854
13855None.
13856
13857Semantics:
13858""""""""""
13859
13860On some platforms, the value returned by this intrinsic remains unchanged
13861between loads in the same thread. On other platforms, it returns the same
13862global variable value, if any, e.g. ``@__stack_chk_guard``.
13863
13864Currently some platforms have IR-level customized stack guard loading (e.g.
13865X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
13866in the future.
13867
Sean Silvab084af42012-12-07 10:36:55 +000013868'``llvm.objectsize``' Intrinsic
13869^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13870
13871Syntax:
13872"""""""
13873
13874::
13875
George Burgess IV56c7e882017-03-21 20:08:59 +000013876 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>)
13877 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>)
Sean Silvab084af42012-12-07 10:36:55 +000013878
13879Overview:
13880"""""""""
13881
13882The ``llvm.objectsize`` intrinsic is designed to provide information to
13883the optimizers to determine at compile time whether a) an operation
13884(like memcpy) will overflow a buffer that corresponds to an object, or
13885b) that a runtime check for overflow isn't necessary. An object in this
13886context means an allocation of a specific class, structure, array, or
13887other object.
13888
13889Arguments:
13890""""""""""
13891
George Burgess IV56c7e882017-03-21 20:08:59 +000013892The ``llvm.objectsize`` intrinsic takes three arguments. The first argument is
13893a pointer to or into the ``object``. The second argument determines whether
13894``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size
13895is unknown. The third argument controls how ``llvm.objectsize`` acts when
13896``null`` is used as its pointer argument. If it's true and the pointer is in
13897address space 0, ``null`` is treated as an opaque value with an unknown number
13898of bytes. Otherwise, ``llvm.objectsize`` reports 0 bytes available when given
13899``null``.
13900
13901The second and third arguments only accept constants.
Sean Silvab084af42012-12-07 10:36:55 +000013902
13903Semantics:
13904""""""""""
13905
13906The ``llvm.objectsize`` intrinsic is lowered to a constant representing
13907the size of the object concerned. If the size cannot be determined at
13908compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
13909on the ``min`` argument).
13910
13911'``llvm.expect``' Intrinsic
13912^^^^^^^^^^^^^^^^^^^^^^^^^^^
13913
13914Syntax:
13915"""""""
13916
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000013917This is an overloaded intrinsic. You can use ``llvm.expect`` on any
13918integer bit width.
13919
Sean Silvab084af42012-12-07 10:36:55 +000013920::
13921
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000013922 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000013923 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
13924 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
13925
13926Overview:
13927"""""""""
13928
13929The ``llvm.expect`` intrinsic provides information about expected (the
13930most probable) value of ``val``, which can be used by optimizers.
13931
13932Arguments:
13933""""""""""
13934
13935The ``llvm.expect`` intrinsic takes two arguments. The first argument is
13936a value. The second argument is an expected value, this needs to be a
13937constant value, variables are not allowed.
13938
13939Semantics:
13940""""""""""
13941
13942This intrinsic is lowered to the ``val``.
13943
Philip Reamese0e90832015-04-26 22:23:12 +000013944.. _int_assume:
13945
Hal Finkel93046912014-07-25 21:13:35 +000013946'``llvm.assume``' Intrinsic
13947^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13948
13949Syntax:
13950"""""""
13951
13952::
13953
13954 declare void @llvm.assume(i1 %cond)
13955
13956Overview:
13957"""""""""
13958
13959The ``llvm.assume`` allows the optimizer to assume that the provided
13960condition is true. This information can then be used in simplifying other parts
13961of the code.
13962
13963Arguments:
13964""""""""""
13965
13966The condition which the optimizer may assume is always true.
13967
13968Semantics:
13969""""""""""
13970
13971The intrinsic allows the optimizer to assume that the provided condition is
13972always true whenever the control flow reaches the intrinsic call. No code is
13973generated for this intrinsic, and instructions that contribute only to the
13974provided condition are not used for code generation. If the condition is
13975violated during execution, the behavior is undefined.
13976
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000013977Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000013978used by the ``llvm.assume`` intrinsic in order to preserve the instructions
13979only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000013980if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000013981sufficient overall improvement in code quality. For this reason,
13982``llvm.assume`` should not be used to document basic mathematical invariants
13983that the optimizer can otherwise deduce or facts that are of little use to the
13984optimizer.
13985
Daniel Berlin2c438a32017-02-07 19:29:25 +000013986.. _int_ssa_copy:
13987
13988'``llvm.ssa_copy``' Intrinsic
13989^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13990
13991Syntax:
13992"""""""
13993
13994::
13995
13996 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
13997
13998Arguments:
13999""""""""""
14000
14001The first argument is an operand which is used as the returned value.
14002
14003Overview:
14004""""""""""
14005
14006The ``llvm.ssa_copy`` intrinsic can be used to attach information to
14007operations by copying them and giving them new names. For example,
14008the PredicateInfo utility uses it to build Extended SSA form, and
14009attach various forms of information to operands that dominate specific
14010uses. It is not meant for general use, only for building temporary
14011renaming forms that require value splits at certain points.
14012
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014013.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000014014
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014015'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000014016^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14017
14018Syntax:
14019"""""""
14020
14021::
14022
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014023 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000014024
14025
14026Arguments:
14027""""""""""
14028
14029The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014030metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000014031
14032Overview:
14033"""""""""
14034
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014035The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
14036with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000014037
Peter Collingbourne0312f612016-06-25 00:23:04 +000014038'``llvm.type.checked.load``' Intrinsic
14039^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14040
14041Syntax:
14042"""""""
14043
14044::
14045
14046 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
14047
14048
14049Arguments:
14050""""""""""
14051
14052The first argument is a pointer from which to load a function pointer. The
14053second argument is the byte offset from which to load the function pointer. The
14054third argument is a metadata object representing a :doc:`type identifier
14055<TypeMetadata>`.
14056
14057Overview:
14058"""""""""
14059
14060The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
14061virtual table pointer using type metadata. This intrinsic is used to implement
14062control flow integrity in conjunction with virtual call optimization. The
14063virtual call optimization pass will optimize away ``llvm.type.checked.load``
14064intrinsics associated with devirtualized calls, thereby removing the type
14065check in cases where it is not needed to enforce the control flow integrity
14066constraint.
14067
14068If the given pointer is associated with a type metadata identifier, this
14069function returns true as the second element of its return value. (Note that
14070the function may also return true if the given pointer is not associated
14071with a type metadata identifier.) If the function's return value's second
14072element is true, the following rules apply to the first element:
14073
14074- If the given pointer is associated with the given type metadata identifier,
14075 it is the function pointer loaded from the given byte offset from the given
14076 pointer.
14077
14078- If the given pointer is not associated with the given type metadata
14079 identifier, it is one of the following (the choice of which is unspecified):
14080
14081 1. The function pointer that would have been loaded from an arbitrarily chosen
14082 (through an unspecified mechanism) pointer associated with the type
14083 metadata.
14084
14085 2. If the function has a non-void return type, a pointer to a function that
14086 returns an unspecified value without causing side effects.
14087
14088If the function's return value's second element is false, the value of the
14089first element is undefined.
14090
14091
Sean Silvab084af42012-12-07 10:36:55 +000014092'``llvm.donothing``' Intrinsic
14093^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14094
14095Syntax:
14096"""""""
14097
14098::
14099
14100 declare void @llvm.donothing() nounwind readnone
14101
14102Overview:
14103"""""""""
14104
Juergen Ributzkac9161192014-10-23 22:36:13 +000014105The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000014106three intrinsics (besides ``llvm.experimental.patchpoint`` and
14107``llvm.experimental.gc.statepoint``) that can be called with an invoke
14108instruction.
Sean Silvab084af42012-12-07 10:36:55 +000014109
14110Arguments:
14111""""""""""
14112
14113None.
14114
14115Semantics:
14116""""""""""
14117
14118This intrinsic does nothing, and it's removed by optimizers and ignored
14119by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000014120
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014121'``llvm.experimental.deoptimize``' Intrinsic
14122^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14123
14124Syntax:
14125"""""""
14126
14127::
14128
14129 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
14130
14131Overview:
14132"""""""""
14133
14134This intrinsic, together with :ref:`deoptimization operand bundles
14135<deopt_opbundles>`, allow frontends to express transfer of control and
14136frame-local state from the currently executing (typically more specialized,
14137hence faster) version of a function into another (typically more generic, hence
14138slower) version.
14139
14140In languages with a fully integrated managed runtime like Java and JavaScript
14141this intrinsic can be used to implement "uncommon trap" or "side exit" like
14142functionality. In unmanaged languages like C and C++, this intrinsic can be
14143used to represent the slow paths of specialized functions.
14144
14145
14146Arguments:
14147""""""""""
14148
14149The intrinsic takes an arbitrary number of arguments, whose meaning is
14150decided by the :ref:`lowering strategy<deoptimize_lowering>`.
14151
14152Semantics:
14153""""""""""
14154
14155The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
14156deoptimization continuation (denoted using a :ref:`deoptimization
14157operand bundle <deopt_opbundles>`) and returns the value returned by
14158the deoptimization continuation. Defining the semantic properties of
14159the continuation itself is out of scope of the language reference --
14160as far as LLVM is concerned, the deoptimization continuation can
14161invoke arbitrary side effects, including reading from and writing to
14162the entire heap.
14163
14164Deoptimization continuations expressed using ``"deopt"`` operand bundles always
14165continue execution to the end of the physical frame containing them, so all
14166calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
14167
14168 - ``@llvm.experimental.deoptimize`` cannot be invoked.
14169 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
14170 - The ``ret`` instruction must return the value produced by the
14171 ``@llvm.experimental.deoptimize`` call if there is one, or void.
14172
14173Note that the above restrictions imply that the return type for a call to
14174``@llvm.experimental.deoptimize`` will match the return type of its immediate
14175caller.
14176
14177The inliner composes the ``"deopt"`` continuations of the caller into the
14178``"deopt"`` continuations present in the inlinee, and also updates calls to this
14179intrinsic to return directly from the frame of the function it inlined into.
14180
Sanjoy Dase0aa4142016-05-12 01:17:38 +000014181All declarations of ``@llvm.experimental.deoptimize`` must share the
14182same calling convention.
14183
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014184.. _deoptimize_lowering:
14185
14186Lowering:
14187"""""""""
14188
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000014189Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
14190symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
14191ensure that this symbol is defined). The call arguments to
14192``@llvm.experimental.deoptimize`` are lowered as if they were formal
14193arguments of the specified types, and not as varargs.
14194
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014195
Sanjoy Das021de052016-03-31 00:18:46 +000014196'``llvm.experimental.guard``' Intrinsic
14197^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14198
14199Syntax:
14200"""""""
14201
14202::
14203
14204 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
14205
14206Overview:
14207"""""""""
14208
14209This intrinsic, together with :ref:`deoptimization operand bundles
14210<deopt_opbundles>`, allows frontends to express guards or checks on
14211optimistic assumptions made during compilation. The semantics of
14212``@llvm.experimental.guard`` is defined in terms of
14213``@llvm.experimental.deoptimize`` -- its body is defined to be
14214equivalent to:
14215
Renato Golin124f2592016-07-20 12:16:38 +000014216.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000014217
Renato Golin124f2592016-07-20 12:16:38 +000014218 define void @llvm.experimental.guard(i1 %pred, <args...>) {
14219 %realPred = and i1 %pred, undef
14220 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000014221
Renato Golin124f2592016-07-20 12:16:38 +000014222 leave:
14223 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
14224 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000014225
Renato Golin124f2592016-07-20 12:16:38 +000014226 continue:
14227 ret void
14228 }
Sanjoy Das021de052016-03-31 00:18:46 +000014229
Sanjoy Das47cf2af2016-04-30 00:55:59 +000014230
14231with the optional ``[, !make.implicit !{}]`` present if and only if it
14232is present on the call site. For more details on ``!make.implicit``,
14233see :doc:`FaultMaps`.
14234
Sanjoy Das021de052016-03-31 00:18:46 +000014235In words, ``@llvm.experimental.guard`` executes the attached
14236``"deopt"`` continuation if (but **not** only if) its first argument
14237is ``false``. Since the optimizer is allowed to replace the ``undef``
14238with an arbitrary value, it can optimize guard to fail "spuriously",
14239i.e. without the original condition being false (hence the "not only
14240if"); and this allows for "check widening" type optimizations.
14241
14242``@llvm.experimental.guard`` cannot be invoked.
14243
14244
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000014245'``llvm.load.relative``' Intrinsic
14246^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14247
14248Syntax:
14249"""""""
14250
14251::
14252
14253 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
14254
14255Overview:
14256"""""""""
14257
14258This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
14259adds ``%ptr`` to that value and returns it. The constant folder specifically
14260recognizes the form of this intrinsic and the constant initializers it may
14261load from; if a loaded constant initializer is known to have the form
14262``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
14263
14264LLVM provides that the calculation of such a constant initializer will
14265not overflow at link time under the medium code model if ``x`` is an
14266``unnamed_addr`` function. However, it does not provide this guarantee for
14267a constant initializer folded into a function body. This intrinsic can be
14268used to avoid the possibility of overflows when loading from such a constant.
14269
Dan Gohman2c74fe92017-11-08 21:59:51 +000014270'``llvm.sideeffect``' Intrinsic
14271^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14272
14273Syntax:
14274"""""""
14275
14276::
14277
14278 declare void @llvm.sideeffect() inaccessiblememonly nounwind
14279
14280Overview:
14281"""""""""
14282
14283The ``llvm.sideeffect`` intrinsic doesn't perform any operation. Optimizers
14284treat it as having side effects, so it can be inserted into a loop to
14285indicate that the loop shouldn't be assumed to terminate (which could
14286potentially lead to the loop being optimized away entirely), even if it's
14287an infinite loop with no other side effects.
14288
14289Arguments:
14290""""""""""
14291
14292None.
14293
14294Semantics:
14295""""""""""
14296
14297This intrinsic actually does nothing, but optimizers must assume that it
14298has externally observable side effects.
14299
Andrew Trick5e029ce2013-12-24 02:57:25 +000014300Stack Map Intrinsics
14301--------------------
14302
14303LLVM provides experimental intrinsics to support runtime patching
14304mechanisms commonly desired in dynamic language JITs. These intrinsics
14305are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014306
14307Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000014308-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000014309
14310These intrinsics are similar to the standard library memory intrinsics except
14311that they perform memory transfer as a sequence of atomic memory accesses.
14312
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014313.. _int_memcpy_element_unordered_atomic:
Igor Laevsky4f31e522016-12-29 14:31:07 +000014314
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014315'``llvm.memcpy.element.unordered.atomic``' Intrinsic
14316^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000014317
14318Syntax:
14319"""""""
14320
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014321This is an overloaded intrinsic. You can use ``llvm.memcpy.element.unordered.atomic`` on
Igor Laevsky4f31e522016-12-29 14:31:07 +000014322any integer bit width and for different address spaces. Not all targets
14323support all bit widths however.
14324
14325::
14326
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014327 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
14328 i8* <src>,
14329 i32 <len>,
14330 i32 <element_size>)
14331 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
14332 i8* <src>,
14333 i64 <len>,
14334 i32 <element_size>)
Igor Laevsky4f31e522016-12-29 14:31:07 +000014335
14336Overview:
14337"""""""""
14338
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014339The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic is a specialization of the
14340'``llvm.memcpy.*``' intrinsic. It differs in that the ``dest`` and ``src`` are treated
14341as arrays with elements that are exactly ``element_size`` bytes, and the copy between
14342buffers uses a sequence of :ref:`unordered atomic <ordering>` load/store operations
14343that are a positive integer multiple of the ``element_size`` in size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014344
14345Arguments:
14346""""""""""
14347
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014348The first three arguments are the same as they are in the :ref:`@llvm.memcpy <int_memcpy>`
14349intrinsic, with the added constraint that ``len`` is required to be a positive integer
14350multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
14351``element_size``, then the behaviour of the intrinsic is undefined.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014352
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014353``element_size`` must be a compile-time constant positive power of two no greater than
14354target-specific atomic access size limit.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014355
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014356For each of the input pointers ``align`` parameter attribute must be specified. It
14357must be a power of two no less than the ``element_size``. Caller guarantees that
14358both the source and destination pointers are aligned to that boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014359
14360Semantics:
14361""""""""""
14362
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014363The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic copies ``len`` bytes of
14364memory from the source location to the destination location. These locations are not
14365allowed to overlap. The memory copy is performed as a sequence of load/store operations
14366where each access is guaranteed to be a multiple of ``element_size`` bytes wide and
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014367aligned at an ``element_size`` boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014368
14369The order of the copy is unspecified. The same value may be read from the source
14370buffer many times, but only one write is issued to the destination buffer per
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014371element. It is well defined to have concurrent reads and writes to both source and
14372destination provided those reads and writes are unordered atomic when specified.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014373
14374This intrinsic does not provide any additional ordering guarantees over those
14375provided by a set of unordered loads from the source location and stores to the
14376destination.
14377
14378Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000014379"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000014380
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014381In the most general case call to the '``llvm.memcpy.element.unordered.atomic.*``' is
14382lowered to a call to the symbol ``__llvm_memcpy_element_unordered_atomic_*``. Where '*'
14383is replaced with an actual element size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014384
Daniel Neilson57226ef2017-07-12 15:25:26 +000014385Optimizer is allowed to inline memory copy when it's profitable to do so.
14386
14387'``llvm.memmove.element.unordered.atomic``' Intrinsic
14388^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14389
14390Syntax:
14391"""""""
14392
14393This is an overloaded intrinsic. You can use
14394``llvm.memmove.element.unordered.atomic`` on any integer bit width and for
14395different address spaces. Not all targets support all bit widths however.
14396
14397::
14398
14399 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
14400 i8* <src>,
14401 i32 <len>,
14402 i32 <element_size>)
14403 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
14404 i8* <src>,
14405 i64 <len>,
14406 i32 <element_size>)
14407
14408Overview:
14409"""""""""
14410
14411The '``llvm.memmove.element.unordered.atomic.*``' intrinsic is a specialization
14412of the '``llvm.memmove.*``' intrinsic. It differs in that the ``dest`` and
14413``src`` are treated as arrays with elements that are exactly ``element_size``
14414bytes, and the copy between buffers uses a sequence of
14415:ref:`unordered atomic <ordering>` load/store operations that are a positive
14416integer multiple of the ``element_size`` in size.
14417
14418Arguments:
14419""""""""""
14420
14421The first three arguments are the same as they are in the
14422:ref:`@llvm.memmove <int_memmove>` intrinsic, with the added constraint that
14423``len`` is required to be a positive integer multiple of the ``element_size``.
14424If ``len`` is not a positive integer multiple of ``element_size``, then the
14425behaviour of the intrinsic is undefined.
14426
14427``element_size`` must be a compile-time constant positive power of two no
14428greater than a target-specific atomic access size limit.
14429
14430For each of the input pointers the ``align`` parameter attribute must be
14431specified. It must be a power of two no less than the ``element_size``. Caller
14432guarantees that both the source and destination pointers are aligned to that
14433boundary.
14434
14435Semantics:
14436""""""""""
14437
14438The '``llvm.memmove.element.unordered.atomic.*``' intrinsic copies ``len`` bytes
14439of memory from the source location to the destination location. These locations
14440are allowed to overlap. The memory copy is performed as a sequence of load/store
14441operations where each access is guaranteed to be a multiple of ``element_size``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014442bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson57226ef2017-07-12 15:25:26 +000014443
14444The order of the copy is unspecified. The same value may be read from the source
14445buffer many times, but only one write is issued to the destination buffer per
14446element. It is well defined to have concurrent reads and writes to both source
14447and destination provided those reads and writes are unordered atomic when
14448specified.
14449
14450This intrinsic does not provide any additional ordering guarantees over those
14451provided by a set of unordered loads from the source location and stores to the
14452destination.
14453
14454Lowering:
14455"""""""""
14456
14457In the most general case call to the
14458'``llvm.memmove.element.unordered.atomic.*``' is lowered to a call to the symbol
14459``__llvm_memmove_element_unordered_atomic_*``. Where '*' is replaced with an
14460actual element size.
14461
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014462The optimizer is allowed to inline the memory copy when it's profitable to do so.
Daniel Neilson965613e2017-07-12 21:57:23 +000014463
14464.. _int_memset_element_unordered_atomic:
14465
14466'``llvm.memset.element.unordered.atomic``' Intrinsic
14467^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14468
14469Syntax:
14470"""""""
14471
14472This is an overloaded intrinsic. You can use ``llvm.memset.element.unordered.atomic`` on
14473any integer bit width and for different address spaces. Not all targets
14474support all bit widths however.
14475
14476::
14477
14478 declare void @llvm.memset.element.unordered.atomic.p0i8.i32(i8* <dest>,
14479 i8 <value>,
14480 i32 <len>,
14481 i32 <element_size>)
14482 declare void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* <dest>,
14483 i8 <value>,
14484 i64 <len>,
14485 i32 <element_size>)
14486
14487Overview:
14488"""""""""
14489
14490The '``llvm.memset.element.unordered.atomic.*``' intrinsic is a specialization of the
14491'``llvm.memset.*``' intrinsic. It differs in that the ``dest`` is treated as an array
14492with elements that are exactly ``element_size`` bytes, and the assignment to that array
14493uses uses a sequence of :ref:`unordered atomic <ordering>` store operations
14494that are a positive integer multiple of the ``element_size`` in size.
14495
14496Arguments:
14497""""""""""
14498
14499The first three arguments are the same as they are in the :ref:`@llvm.memset <int_memset>`
14500intrinsic, with the added constraint that ``len`` is required to be a positive integer
14501multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
14502``element_size``, then the behaviour of the intrinsic is undefined.
14503
14504``element_size`` must be a compile-time constant positive power of two no greater than
14505target-specific atomic access size limit.
14506
14507The ``dest`` input pointer must have the ``align`` parameter attribute specified. It
14508must be a power of two no less than the ``element_size``. Caller guarantees that
14509the destination pointer is aligned to that boundary.
14510
14511Semantics:
14512""""""""""
14513
14514The '``llvm.memset.element.unordered.atomic.*``' intrinsic sets the ``len`` bytes of
14515memory starting at the destination location to the given ``value``. The memory is
14516set with a sequence of store operations where each access is guaranteed to be a
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014517multiple of ``element_size`` bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson965613e2017-07-12 21:57:23 +000014518
14519The order of the assignment is unspecified. Only one write is issued to the
14520destination buffer per element. It is well defined to have concurrent reads and
14521writes to the destination provided those reads and writes are unordered atomic
14522when specified.
14523
14524This intrinsic does not provide any additional ordering guarantees over those
14525provided by a set of unordered stores to the destination.
14526
14527Lowering:
14528"""""""""
14529
14530In the most general case call to the '``llvm.memset.element.unordered.atomic.*``' is
14531lowered to a call to the symbol ``__llvm_memset_element_unordered_atomic_*``. Where '*'
14532is replaced with an actual element size.
14533
14534The optimizer is allowed to inline the memory assignment when it's profitable to do so.
14535