blob: 9fd7965cb51eb5370007e08ea9effbc2d473a952 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
George Burgess IVfbc34982017-05-20 04:52:29 +0000164 ; Convert [13 x i8]* to i8*...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledru0604c5c2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvab084af42012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000530.. _namedtypes:
531
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000532Structure Types
533---------------
Sean Silvab084af42012-12-07 10:36:55 +0000534
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000535LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000536types <t_struct>`. Literal types are uniqued structurally, but identified types
537are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000538to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000539
Sean Silva706fba52015-08-06 22:56:24 +0000540An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000541
542.. code-block:: llvm
543
544 %mytype = type { %mytype*, i32 }
545
Sean Silvaa1190322015-08-06 22:56:48 +0000546Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000547literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000548
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000549.. _nointptrtype:
550
551Non-Integral Pointer Type
552-------------------------
553
554Note: non-integral pointer types are a work in progress, and they should be
555considered experimental at this time.
556
557LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000558spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
559Non-integral pointer types represent pointers that have an *unspecified* bitwise
560representation; that is, the integral representation may be target dependent or
561unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000562
563``inttoptr`` instructions converting integers to non-integral pointer types are
564ill-typed, and so are ``ptrtoint`` instructions converting values of
565non-integral pointer types to integers. Vector versions of said instructions
566are ill-typed as well.
567
Sean Silvab084af42012-12-07 10:36:55 +0000568.. _globalvars:
569
570Global Variables
571----------------
572
573Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000574instead of run-time.
575
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000576Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000577
578Global variables in other translation units can also be declared, in which
579case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000580
Bob Wilson85b24f22014-06-12 20:40:33 +0000581Either global variable definitions or declarations may have an explicit section
Erich Keane0343ef82017-08-22 15:30:43 +0000582to be placed in and may have an optional explicit alignment specified. If there
583is a mismatch between the explicit or inferred section information for the
584variable declaration and its definition the resulting behavior is undefined.
Bob Wilson85b24f22014-06-12 20:40:33 +0000585
Michael Gottesman006039c2013-01-31 05:48:48 +0000586A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000587the contents of the variable will **never** be modified (enabling better
588optimization, allowing the global data to be placed in the read-only
589section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000590initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000591variable.
592
593LLVM explicitly allows *declarations* of global variables to be marked
594constant, even if the final definition of the global is not. This
595capability can be used to enable slightly better optimization of the
596program, but requires the language definition to guarantee that
597optimizations based on the 'constantness' are valid for the translation
598units that do not include the definition.
599
600As SSA values, global variables define pointer values that are in scope
601(i.e. they dominate) all basic blocks in the program. Global variables
602always define a pointer to their "content" type because they describe a
603region of memory, and all memory objects in LLVM are accessed through
604pointers.
605
606Global variables can be marked with ``unnamed_addr`` which indicates
607that the address is not significant, only the content. Constants marked
608like this can be merged with other constants if they have the same
609initializer. Note that a constant with significant address *can* be
610merged with a ``unnamed_addr`` constant, the result being a constant
611whose address is significant.
612
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000613If the ``local_unnamed_addr`` attribute is given, the address is known to
614not be significant within the module.
615
Sean Silvab084af42012-12-07 10:36:55 +0000616A global variable may be declared to reside in a target-specific
617numbered address space. For targets that support them, address spaces
618may affect how optimizations are performed and/or what target
619instructions are used to access the variable. The default address space
620is zero. The address space qualifier must precede any other attributes.
621
622LLVM allows an explicit section to be specified for globals. If the
623target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000624Additionally, the global can placed in a comdat if the target has the necessary
625support.
Sean Silvab084af42012-12-07 10:36:55 +0000626
Erich Keane0343ef82017-08-22 15:30:43 +0000627External declarations may have an explicit section specified. Section
628information is retained in LLVM IR for targets that make use of this
629information. Attaching section information to an external declaration is an
630assertion that its definition is located in the specified section. If the
631definition is located in a different section, the behavior is undefined.
632
Michael Gottesmane743a302013-02-04 03:22:00 +0000633By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000634variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000635initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000636true even for variables potentially accessible from outside the
637module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000638``@llvm.used`` or dllexported variables. This assumption may be suppressed
639by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000640
Sean Silvab084af42012-12-07 10:36:55 +0000641An explicit alignment may be specified for a global, which must be a
642power of 2. If not present, or if the alignment is set to zero, the
643alignment of the global is set by the target to whatever it feels
644convenient. If an explicit alignment is specified, the global is forced
645to have exactly that alignment. Targets and optimizers are not allowed
646to over-align the global if the global has an assigned section. In this
647case, the extra alignment could be observable: for example, code could
648assume that the globals are densely packed in their section and try to
649iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000650iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000651
Javed Absarf3d79042017-05-11 12:28:08 +0000652Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
653an optional :ref:`global attributes <glattrs>` and
654an optional list of attached :ref:`metadata <metadata>`.
Nico Rieck7157bb72014-01-14 15:22:47 +0000655
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000656Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000657:ref:`Thread Local Storage Model <tls_model>`.
658
Nico Rieck7157bb72014-01-14 15:22:47 +0000659Syntax::
660
Rafael Espindola32483a72016-05-10 18:22:45 +0000661 @<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000662 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
663 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000664 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000665 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000666 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000667
Sean Silvab084af42012-12-07 10:36:55 +0000668For example, the following defines a global in a numbered address space
669with an initializer, section, and alignment:
670
671.. code-block:: llvm
672
673 @G = addrspace(5) constant float 1.0, section "foo", align 4
674
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000675The following example just declares a global variable
676
677.. code-block:: llvm
678
679 @G = external global i32
680
Sean Silvab084af42012-12-07 10:36:55 +0000681The following example defines a thread-local global with the
682``initialexec`` TLS model:
683
684.. code-block:: llvm
685
686 @G = thread_local(initialexec) global i32 0, align 4
687
688.. _functionstructure:
689
690Functions
691---------
692
693LLVM function definitions consist of the "``define``" keyword, an
694optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000695style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
696an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000697an optional ``unnamed_addr`` attribute, a return type, an optional
698:ref:`parameter attribute <paramattrs>` for the return type, a function
699name, a (possibly empty) argument list (each with optional :ref:`parameter
700attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000701an optional section, an optional alignment,
702an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000703an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000704an optional :ref:`prologue <prologuedata>`,
705an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000706an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000707an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000708
709LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000710optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
711<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
712optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
713or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
714attribute <paramattrs>` for the return type, a function name, a possibly
715empty list of arguments, an optional alignment, an optional :ref:`garbage
716collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
717:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000718
Bill Wendling6822ecb2013-10-27 05:09:12 +0000719A function definition contains a list of basic blocks, forming the CFG (Control
720Flow Graph) for the function. Each basic block may optionally start with a label
721(giving the basic block a symbol table entry), contains a list of instructions,
722and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
723function return). If an explicit label is not provided, a block is assigned an
724implicit numbered label, using the next value from the same counter as used for
725unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
726entry block does not have an explicit label, it will be assigned label "%0",
727then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000728
729The first basic block in a function is special in two ways: it is
730immediately executed on entrance to the function, and it is not allowed
731to have predecessor basic blocks (i.e. there can not be any branches to
732the entry block of a function). Because the block can have no
733predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
734
735LLVM allows an explicit section to be specified for functions. If the
736target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000737Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000738
739An explicit alignment may be specified for a function. If not present,
740or if the alignment is set to zero, the alignment of the function is set
741by the target to whatever it feels convenient. If an explicit alignment
742is specified, the function is forced to have at least that much
743alignment. All alignments must be a power of 2.
744
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000745If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000746be significant and two identical functions can be merged.
747
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000748If the ``local_unnamed_addr`` attribute is given, the address is known to
749not be significant within the module.
750
Sean Silvab084af42012-12-07 10:36:55 +0000751Syntax::
752
Nico Rieck7157bb72014-01-14 15:22:47 +0000753 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000754 [cconv] [ret attrs]
755 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000756 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
757 [comdat [($name)]] [align N] [gc] [prefix Constant]
758 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000759
Sean Silva706fba52015-08-06 22:56:24 +0000760The argument list is a comma separated sequence of arguments where each
761argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000762
763Syntax::
764
765 <type> [parameter Attrs] [name]
766
767
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000768.. _langref_aliases:
769
Sean Silvab084af42012-12-07 10:36:55 +0000770Aliases
771-------
772
Rafael Espindola64c1e182014-06-03 02:41:57 +0000773Aliases, unlike function or variables, don't create any new data. They
774are just a new symbol and metadata for an existing position.
775
776Aliases have a name and an aliasee that is either a global value or a
777constant expression.
778
Nico Rieck7157bb72014-01-14 15:22:47 +0000779Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000780:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
781<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000782
783Syntax::
784
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000785 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000786
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000787The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000788``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000789might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000790
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000791Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000792the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
793to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000794
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000795If the ``local_unnamed_addr`` attribute is given, the address is known to
796not be significant within the module.
797
Rafael Espindola64c1e182014-06-03 02:41:57 +0000798Since aliases are only a second name, some restrictions apply, of which
799some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000800
Rafael Espindola64c1e182014-06-03 02:41:57 +0000801* The expression defining the aliasee must be computable at assembly
802 time. Since it is just a name, no relocations can be used.
803
804* No alias in the expression can be weak as the possibility of the
805 intermediate alias being overridden cannot be represented in an
806 object file.
807
808* No global value in the expression can be a declaration, since that
809 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000810
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000811.. _langref_ifunc:
812
813IFuncs
814-------
815
816IFuncs, like as aliases, don't create any new data or func. They are just a new
817symbol that dynamic linker resolves at runtime by calling a resolver function.
818
819IFuncs have a name and a resolver that is a function called by dynamic linker
820that returns address of another function associated with the name.
821
822IFunc may have an optional :ref:`linkage type <linkage>` and an optional
823:ref:`visibility style <visibility>`.
824
825Syntax::
826
827 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
828
829
David Majnemerdad0a642014-06-27 18:19:56 +0000830.. _langref_comdats:
831
832Comdats
833-------
834
835Comdat IR provides access to COFF and ELF object file COMDAT functionality.
836
Sean Silvaa1190322015-08-06 22:56:48 +0000837Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000838specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000839that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000840aliasee computes to, if any.
841
842Comdats have a selection kind to provide input on how the linker should
843choose between keys in two different object files.
844
845Syntax::
846
847 $<Name> = comdat SelectionKind
848
849The selection kind must be one of the following:
850
851``any``
852 The linker may choose any COMDAT key, the choice is arbitrary.
853``exactmatch``
854 The linker may choose any COMDAT key but the sections must contain the
855 same data.
856``largest``
857 The linker will choose the section containing the largest COMDAT key.
858``noduplicates``
859 The linker requires that only section with this COMDAT key exist.
860``samesize``
861 The linker may choose any COMDAT key but the sections must contain the
862 same amount of data.
863
864Note that the Mach-O platform doesn't support COMDATs and ELF only supports
865``any`` as a selection kind.
866
867Here is an example of a COMDAT group where a function will only be selected if
868the COMDAT key's section is the largest:
869
Renato Golin124f2592016-07-20 12:16:38 +0000870.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000871
872 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000873 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000874
Rafael Espindola83a362c2015-01-06 22:55:16 +0000875 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000876 ret void
877 }
878
Rafael Espindola83a362c2015-01-06 22:55:16 +0000879As a syntactic sugar the ``$name`` can be omitted if the name is the same as
880the global name:
881
Renato Golin124f2592016-07-20 12:16:38 +0000882.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000883
884 $foo = comdat any
885 @foo = global i32 2, comdat
886
887
David Majnemerdad0a642014-06-27 18:19:56 +0000888In a COFF object file, this will create a COMDAT section with selection kind
889``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
890and another COMDAT section with selection kind
891``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000892section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000893
894There are some restrictions on the properties of the global object.
895It, or an alias to it, must have the same name as the COMDAT group when
896targeting COFF.
897The contents and size of this object may be used during link-time to determine
898which COMDAT groups get selected depending on the selection kind.
899Because the name of the object must match the name of the COMDAT group, the
900linkage of the global object must not be local; local symbols can get renamed
901if a collision occurs in the symbol table.
902
903The combined use of COMDATS and section attributes may yield surprising results.
904For example:
905
Renato Golin124f2592016-07-20 12:16:38 +0000906.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000907
908 $foo = comdat any
909 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000910 @g1 = global i32 42, section "sec", comdat($foo)
911 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000912
913From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000914with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000915COMDAT groups and COMDATs, at the object file level, are represented by
916sections.
917
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000918Note that certain IR constructs like global variables and functions may
919create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000920COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000921in individual sections (e.g. when `-data-sections` or `-function-sections`
922is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000923
Sean Silvab084af42012-12-07 10:36:55 +0000924.. _namedmetadatastructure:
925
926Named Metadata
927--------------
928
929Named metadata is a collection of metadata. :ref:`Metadata
930nodes <metadata>` (but not metadata strings) are the only valid
931operands for a named metadata.
932
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000933#. Named metadata are represented as a string of characters with the
934 metadata prefix. The rules for metadata names are the same as for
935 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
936 are still valid, which allows any character to be part of a name.
937
Sean Silvab084af42012-12-07 10:36:55 +0000938Syntax::
939
940 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000941 !0 = !{!"zero"}
942 !1 = !{!"one"}
943 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000944 ; A named metadata.
945 !name = !{!0, !1, !2}
946
947.. _paramattrs:
948
949Parameter Attributes
950--------------------
951
952The return type and each parameter of a function type may have a set of
953*parameter attributes* associated with them. Parameter attributes are
954used to communicate additional information about the result or
955parameters of a function. Parameter attributes are considered to be part
956of the function, not of the function type, so functions with different
957parameter attributes can have the same function type.
958
959Parameter attributes are simple keywords that follow the type specified.
960If multiple parameter attributes are needed, they are space separated.
961For example:
962
963.. code-block:: llvm
964
965 declare i32 @printf(i8* noalias nocapture, ...)
966 declare i32 @atoi(i8 zeroext)
967 declare signext i8 @returns_signed_char()
968
969Note that any attributes for the function result (``nounwind``,
970``readonly``) come immediately after the argument list.
971
972Currently, only the following parameter attributes are defined:
973
974``zeroext``
975 This indicates to the code generator that the parameter or return
976 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000977 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000978``signext``
979 This indicates to the code generator that the parameter or return
980 value should be sign-extended to the extent required by the target's
981 ABI (which is usually 32-bits) by the caller (for a parameter) or
982 the callee (for a return value).
983``inreg``
984 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000985 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000986 a function call or return (usually, by putting it in a register as
987 opposed to memory, though some targets use it to distinguish between
988 two different kinds of registers). Use of this attribute is
989 target-specific.
990``byval``
991 This indicates that the pointer parameter should really be passed by
992 value to the function. The attribute implies that a hidden copy of
993 the pointee is made between the caller and the callee, so the callee
994 is unable to modify the value in the caller. This attribute is only
995 valid on LLVM pointer arguments. It is generally used to pass
996 structs and arrays by value, but is also valid on pointers to
997 scalars. The copy is considered to belong to the caller not the
998 callee (for example, ``readonly`` functions should not write to
999 ``byval`` parameters). This is not a valid attribute for return
1000 values.
1001
1002 The byval attribute also supports specifying an alignment with the
1003 align attribute. It indicates the alignment of the stack slot to
1004 form and the known alignment of the pointer specified to the call
1005 site. If the alignment is not specified, then the code generator
1006 makes a target-specific assumption.
1007
Reid Klecknera534a382013-12-19 02:14:12 +00001008.. _attr_inalloca:
1009
1010``inalloca``
1011
Reid Kleckner60d3a832014-01-16 22:59:24 +00001012 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001013 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001014 be a pointer to stack memory produced by an ``alloca`` instruction.
1015 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001016 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001017 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001018
Reid Kleckner436c42e2014-01-17 23:58:17 +00001019 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001020 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001021 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001022 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001023 ``inalloca`` attribute also disables LLVM's implicit lowering of
1024 large aggregate return values, which means that frontend authors
1025 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001026
Reid Kleckner60d3a832014-01-16 22:59:24 +00001027 When the call site is reached, the argument allocation must have
1028 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001029 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001030 space after an argument allocation and before its call site, but it
1031 must be cleared off with :ref:`llvm.stackrestore
1032 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001033
1034 See :doc:`InAlloca` for more information on how to use this
1035 attribute.
1036
Sean Silvab084af42012-12-07 10:36:55 +00001037``sret``
1038 This indicates that the pointer parameter specifies the address of a
1039 structure that is the return value of the function in the source
1040 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001041 loads and stores to the structure may be assumed by the callee not
1042 to trap and to be properly aligned. This is not a valid attribute
1043 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001044
Hal Finkelccc70902014-07-22 16:58:55 +00001045``align <n>``
1046 This indicates that the pointer value may be assumed by the optimizer to
1047 have the specified alignment.
1048
1049 Note that this attribute has additional semantics when combined with the
1050 ``byval`` attribute.
1051
Sean Silva1703e702014-04-08 21:06:22 +00001052.. _noalias:
1053
Sean Silvab084af42012-12-07 10:36:55 +00001054``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001055 This indicates that objects accessed via pointer values
1056 :ref:`based <pointeraliasing>` on the argument or return value are not also
1057 accessed, during the execution of the function, via pointer values not
1058 *based* on the argument or return value. The attribute on a return value
1059 also has additional semantics described below. The caller shares the
1060 responsibility with the callee for ensuring that these requirements are met.
1061 For further details, please see the discussion of the NoAlias response in
1062 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001063
1064 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001065 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001066
1067 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001068 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1069 attribute on return values are stronger than the semantics of the attribute
1070 when used on function arguments. On function return values, the ``noalias``
1071 attribute indicates that the function acts like a system memory allocation
1072 function, returning a pointer to allocated storage disjoint from the
1073 storage for any other object accessible to the caller.
1074
Sean Silvab084af42012-12-07 10:36:55 +00001075``nocapture``
1076 This indicates that the callee does not make any copies of the
1077 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001078 attribute for return values. Addresses used in volatile operations
1079 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001080
1081.. _nest:
1082
1083``nest``
1084 This indicates that the pointer parameter can be excised using the
1085 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001086 attribute for return values and can only be applied to one parameter.
1087
1088``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001089 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001090 value. This is a hint to the optimizer and code generator used when
1091 generating the caller, allowing value propagation, tail call optimization,
1092 and omission of register saves and restores in some cases; it is not
1093 checked or enforced when generating the callee. The parameter and the
1094 function return type must be valid operands for the
1095 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1096 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001097
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001098``nonnull``
1099 This indicates that the parameter or return pointer is not null. This
1100 attribute may only be applied to pointer typed parameters. This is not
1101 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001102 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001103 is non-null.
1104
Hal Finkelb0407ba2014-07-18 15:51:28 +00001105``dereferenceable(<n>)``
1106 This indicates that the parameter or return pointer is dereferenceable. This
1107 attribute may only be applied to pointer typed parameters. A pointer that
1108 is dereferenceable can be loaded from speculatively without a risk of
1109 trapping. The number of bytes known to be dereferenceable must be provided
1110 in parentheses. It is legal for the number of bytes to be less than the
1111 size of the pointee type. The ``nonnull`` attribute does not imply
1112 dereferenceability (consider a pointer to one element past the end of an
1113 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1114 ``addrspace(0)`` (which is the default address space).
1115
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001116``dereferenceable_or_null(<n>)``
1117 This indicates that the parameter or return value isn't both
1118 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001119 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001120 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1121 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1122 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1123 and in other address spaces ``dereferenceable_or_null(<n>)``
1124 implies that a pointer is at least one of ``dereferenceable(<n>)``
1125 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001126 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001127 pointer typed parameters.
1128
Manman Renf46262e2016-03-29 17:37:21 +00001129``swiftself``
1130 This indicates that the parameter is the self/context parameter. This is not
1131 a valid attribute for return values and can only be applied to one
1132 parameter.
1133
Manman Ren9bfd0d02016-04-01 21:41:15 +00001134``swifterror``
1135 This attribute is motivated to model and optimize Swift error handling. It
1136 can be applied to a parameter with pointer to pointer type or a
1137 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001138 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1139 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1140 the parameter or the alloca) can only be loaded and stored from, or used as
1141 a ``swifterror`` argument. This is not a valid attribute for return values
1142 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001143
1144 These constraints allow the calling convention to optimize access to
1145 ``swifterror`` variables by associating them with a specific register at
1146 call boundaries rather than placing them in memory. Since this does change
1147 the calling convention, a function which uses the ``swifterror`` attribute
1148 on a parameter is not ABI-compatible with one which does not.
1149
1150 These constraints also allow LLVM to assume that a ``swifterror`` argument
1151 does not alias any other memory visible within a function and that a
1152 ``swifterror`` alloca passed as an argument does not escape.
1153
Sean Silvab084af42012-12-07 10:36:55 +00001154.. _gc:
1155
Philip Reamesf80bbff2015-02-25 23:45:20 +00001156Garbage Collector Strategy Names
1157--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001158
Philip Reamesf80bbff2015-02-25 23:45:20 +00001159Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001160string:
1161
1162.. code-block:: llvm
1163
1164 define void @f() gc "name" { ... }
1165
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001166The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001167<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001168strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001169named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001170garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001171which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001172
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001173.. _prefixdata:
1174
1175Prefix Data
1176-----------
1177
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001178Prefix data is data associated with a function which the code
1179generator will emit immediately before the function's entrypoint.
1180The purpose of this feature is to allow frontends to associate
1181language-specific runtime metadata with specific functions and make it
1182available through the function pointer while still allowing the
1183function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001184
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001185To access the data for a given function, a program may bitcast the
1186function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001187index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001188the prefix data. For instance, take the example of a function annotated
1189with a single ``i32``,
1190
1191.. code-block:: llvm
1192
1193 define void @f() prefix i32 123 { ... }
1194
1195The prefix data can be referenced as,
1196
1197.. code-block:: llvm
1198
David Blaikie16a97eb2015-03-04 22:02:58 +00001199 %0 = bitcast void* () @f to i32*
1200 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001201 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001202
1203Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001204of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001205beginning of the prefix data is aligned. This means that if the size
1206of the prefix data is not a multiple of the alignment size, the
1207function's entrypoint will not be aligned. If alignment of the
1208function's entrypoint is desired, padding must be added to the prefix
1209data.
1210
Sean Silvaa1190322015-08-06 22:56:48 +00001211A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001212to the ``available_externally`` linkage in that the data may be used by the
1213optimizers but will not be emitted in the object file.
1214
1215.. _prologuedata:
1216
1217Prologue Data
1218-------------
1219
1220The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1221be inserted prior to the function body. This can be used for enabling
1222function hot-patching and instrumentation.
1223
1224To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001225have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001226bytes which decode to a sequence of machine instructions, valid for the
1227module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001228the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001229the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001230definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001231makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001232
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001233A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001234which encodes the ``nop`` instruction:
1235
Renato Golin124f2592016-07-20 12:16:38 +00001236.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001237
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001238 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001239
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001240Generally prologue data can be formed by encoding a relative branch instruction
1241which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001242x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1243
Renato Golin124f2592016-07-20 12:16:38 +00001244.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001245
1246 %0 = type <{ i8, i8, i8* }>
1247
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001248 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001249
Sean Silvaa1190322015-08-06 22:56:48 +00001250A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001251to the ``available_externally`` linkage in that the data may be used by the
1252optimizers but will not be emitted in the object file.
1253
David Majnemer7fddecc2015-06-17 20:52:32 +00001254.. _personalityfn:
1255
1256Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001257--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001258
1259The ``personality`` attribute permits functions to specify what function
1260to use for exception handling.
1261
Bill Wendling63b88192013-02-06 06:52:58 +00001262.. _attrgrp:
1263
1264Attribute Groups
1265----------------
1266
1267Attribute groups are groups of attributes that are referenced by objects within
1268the IR. They are important for keeping ``.ll`` files readable, because a lot of
1269functions will use the same set of attributes. In the degenerative case of a
1270``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1271group will capture the important command line flags used to build that file.
1272
1273An attribute group is a module-level object. To use an attribute group, an
1274object references the attribute group's ID (e.g. ``#37``). An object may refer
1275to more than one attribute group. In that situation, the attributes from the
1276different groups are merged.
1277
1278Here is an example of attribute groups for a function that should always be
1279inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1280
1281.. code-block:: llvm
1282
1283 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001284 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001285
1286 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001287 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001288
1289 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1290 define void @f() #0 #1 { ... }
1291
Sean Silvab084af42012-12-07 10:36:55 +00001292.. _fnattrs:
1293
1294Function Attributes
1295-------------------
1296
1297Function attributes are set to communicate additional information about
1298a function. Function attributes are considered to be part of the
1299function, not of the function type, so functions with different function
1300attributes can have the same function type.
1301
1302Function attributes are simple keywords that follow the type specified.
1303If multiple attributes are needed, they are space separated. For
1304example:
1305
1306.. code-block:: llvm
1307
1308 define void @f() noinline { ... }
1309 define void @f() alwaysinline { ... }
1310 define void @f() alwaysinline optsize { ... }
1311 define void @f() optsize { ... }
1312
Sean Silvab084af42012-12-07 10:36:55 +00001313``alignstack(<n>)``
1314 This attribute indicates that, when emitting the prologue and
1315 epilogue, the backend should forcibly align the stack pointer.
1316 Specify the desired alignment, which must be a power of two, in
1317 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001318``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1319 This attribute indicates that the annotated function will always return at
1320 least a given number of bytes (or null). Its arguments are zero-indexed
1321 parameter numbers; if one argument is provided, then it's assumed that at
1322 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1323 returned pointer. If two are provided, then it's assumed that
1324 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1325 available. The referenced parameters must be integer types. No assumptions
1326 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001327``alwaysinline``
1328 This attribute indicates that the inliner should attempt to inline
1329 this function into callers whenever possible, ignoring any active
1330 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001331``builtin``
1332 This indicates that the callee function at a call site should be
1333 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001334 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001335 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001336 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001337``cold``
1338 This attribute indicates that this function is rarely called. When
1339 computing edge weights, basic blocks post-dominated by a cold
1340 function call are also considered to be cold; and, thus, given low
1341 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001342``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001343 In some parallel execution models, there exist operations that cannot be
1344 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001345 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001346
Justin Lebar58535b12016-02-17 17:46:41 +00001347 The ``convergent`` attribute may appear on functions or call/invoke
1348 instructions. When it appears on a function, it indicates that calls to
1349 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001350 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001351 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001352 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001353
Justin Lebar58535b12016-02-17 17:46:41 +00001354 When it appears on a call/invoke, the ``convergent`` attribute indicates
1355 that we should treat the call as though we're calling a convergent
1356 function. This is particularly useful on indirect calls; without this we
1357 may treat such calls as though the target is non-convergent.
1358
1359 The optimizer may remove the ``convergent`` attribute on functions when it
1360 can prove that the function does not execute any convergent operations.
1361 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1362 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001363``inaccessiblememonly``
1364 This attribute indicates that the function may only access memory that
1365 is not accessible by the module being compiled. This is a weaker form
1366 of ``readnone``.
1367``inaccessiblemem_or_argmemonly``
1368 This attribute indicates that the function may only access memory that is
1369 either not accessible by the module being compiled, or is pointed to
1370 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001371``inlinehint``
1372 This attribute indicates that the source code contained a hint that
1373 inlining this function is desirable (such as the "inline" keyword in
1374 C/C++). It is just a hint; it imposes no requirements on the
1375 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001376``jumptable``
1377 This attribute indicates that the function should be added to a
1378 jump-instruction table at code-generation time, and that all address-taken
1379 references to this function should be replaced with a reference to the
1380 appropriate jump-instruction-table function pointer. Note that this creates
1381 a new pointer for the original function, which means that code that depends
1382 on function-pointer identity can break. So, any function annotated with
1383 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001384``minsize``
1385 This attribute suggests that optimization passes and code generator
1386 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001387 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001388 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001389``naked``
1390 This attribute disables prologue / epilogue emission for the
1391 function. This can have very system-specific consequences.
Sumanth Gundapaneni6af104e2017-07-28 22:26:22 +00001392``no-jump-tables``
1393 When this attribute is set to true, the jump tables and lookup tables that
1394 can be generated from a switch case lowering are disabled.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001395``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001396 This indicates that the callee function at a call site is not recognized as
1397 a built-in function. LLVM will retain the original call and not replace it
1398 with equivalent code based on the semantics of the built-in function, unless
1399 the call site uses the ``builtin`` attribute. This is valid at call sites
1400 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001401``noduplicate``
1402 This attribute indicates that calls to the function cannot be
1403 duplicated. A call to a ``noduplicate`` function may be moved
1404 within its parent function, but may not be duplicated within
1405 its parent function.
1406
1407 A function containing a ``noduplicate`` call may still
1408 be an inlining candidate, provided that the call is not
1409 duplicated by inlining. That implies that the function has
1410 internal linkage and only has one call site, so the original
1411 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001412``noimplicitfloat``
1413 This attributes disables implicit floating point instructions.
1414``noinline``
1415 This attribute indicates that the inliner should never inline this
1416 function in any situation. This attribute may not be used together
1417 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001418``nonlazybind``
1419 This attribute suppresses lazy symbol binding for the function. This
1420 may make calls to the function faster, at the cost of extra program
1421 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001422``noredzone``
1423 This attribute indicates that the code generator should not use a
1424 red zone, even if the target-specific ABI normally permits it.
1425``noreturn``
1426 This function attribute indicates that the function never returns
1427 normally. This produces undefined behavior at runtime if the
1428 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001429``norecurse``
1430 This function attribute indicates that the function does not call itself
1431 either directly or indirectly down any possible call path. This produces
1432 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001433``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001434 This function attribute indicates that the function never raises an
1435 exception. If the function does raise an exception, its runtime
1436 behavior is undefined. However, functions marked nounwind may still
1437 trap or generate asynchronous exceptions. Exception handling schemes
1438 that are recognized by LLVM to handle asynchronous exceptions, such
1439 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001440``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001441 This function attribute indicates that most optimization passes will skip
1442 this function, with the exception of interprocedural optimization passes.
1443 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001444 This attribute cannot be used together with the ``alwaysinline``
1445 attribute; this attribute is also incompatible
1446 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001447
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001448 This attribute requires the ``noinline`` attribute to be specified on
1449 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001450 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001451 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001452``optsize``
1453 This attribute suggests that optimization passes and code generator
1454 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001455 and otherwise do optimizations specifically to reduce code size as
1456 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001457``"patchable-function"``
1458 This attribute tells the code generator that the code
1459 generated for this function needs to follow certain conventions that
1460 make it possible for a runtime function to patch over it later.
1461 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001462 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001463
1464 * ``"prologue-short-redirect"`` - This style of patchable
1465 function is intended to support patching a function prologue to
1466 redirect control away from the function in a thread safe
1467 manner. It guarantees that the first instruction of the
1468 function will be large enough to accommodate a short jump
1469 instruction, and will be sufficiently aligned to allow being
1470 fully changed via an atomic compare-and-swap instruction.
1471 While the first requirement can be satisfied by inserting large
1472 enough NOP, LLVM can and will try to re-purpose an existing
1473 instruction (i.e. one that would have to be emitted anyway) as
1474 the patchable instruction larger than a short jump.
1475
1476 ``"prologue-short-redirect"`` is currently only supported on
1477 x86-64.
1478
1479 This attribute by itself does not imply restrictions on
1480 inter-procedural optimizations. All of the semantic effects the
1481 patching may have to be separately conveyed via the linkage type.
whitequarked54b4a2017-06-21 18:46:50 +00001482``"probe-stack"``
1483 This attribute indicates that the function will trigger a guard region
1484 in the end of the stack. It ensures that accesses to the stack must be
1485 no further apart than the size of the guard region to a previous
1486 access of the stack. It takes one required string value, the name of
1487 the stack probing function that will be called.
1488
1489 If a function that has a ``"probe-stack"`` attribute is inlined into
1490 a function with another ``"probe-stack"`` attribute, the resulting
1491 function has the ``"probe-stack"`` attribute of the caller. If a
1492 function that has a ``"probe-stack"`` attribute is inlined into a
1493 function that has no ``"probe-stack"`` attribute at all, the resulting
1494 function has the ``"probe-stack"`` attribute of the callee.
Sean Silvab084af42012-12-07 10:36:55 +00001495``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001496 On a function, this attribute indicates that the function computes its
1497 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001498 without dereferencing any pointer arguments or otherwise accessing
1499 any mutable state (e.g. memory, control registers, etc) visible to
1500 caller functions. It does not write through any pointer arguments
1501 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das5be2e842017-02-13 23:19:07 +00001502 to callers. This means while it cannot unwind exceptions by calling
1503 the ``C++`` exception throwing methods (since they write to memory), there may
1504 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1505 visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001506
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001507 On an argument, this attribute indicates that the function does not
1508 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001509 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001510``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001511 On a function, this attribute indicates that the function does not write
1512 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001513 modify any state (e.g. memory, control registers, etc) visible to
1514 caller functions. It may dereference pointer arguments and read
1515 state that may be set in the caller. A readonly function always
1516 returns the same value (or unwinds an exception identically) when
Sanjoy Das5be2e842017-02-13 23:19:07 +00001517 called with the same set of arguments and global state. This means while it
1518 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1519 (since they write to memory), there may be non-``C++`` mechanisms that throw
1520 exceptions without writing to LLVM visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001521
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001522 On an argument, this attribute indicates that the function does not write
1523 through this pointer argument, even though it may write to the memory that
1524 the pointer points to.
whitequark08b20352017-06-22 23:22:36 +00001525``"stack-probe-size"``
1526 This attribute controls the behavior of stack probes: either
1527 the ``"probe-stack"`` attribute, or ABI-required stack probes, if any.
1528 It defines the size of the guard region. It ensures that if the function
1529 may use more stack space than the size of the guard region, stack probing
1530 sequence will be emitted. It takes one required integer value, which
1531 is 4096 by default.
1532
1533 If a function that has a ``"stack-probe-size"`` attribute is inlined into
1534 a function with another ``"stack-probe-size"`` attribute, the resulting
1535 function has the ``"stack-probe-size"`` attribute that has the lower
1536 numeric value. If a function that has a ``"stack-probe-size"`` attribute is
1537 inlined into a function that has no ``"stack-probe-size"`` attribute
1538 at all, the resulting function has the ``"stack-probe-size"`` attribute
1539 of the callee.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001540``writeonly``
1541 On a function, this attribute indicates that the function may write to but
1542 does not read from memory.
1543
1544 On an argument, this attribute indicates that the function may write to but
1545 does not read through this pointer argument (even though it may read from
1546 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001547``argmemonly``
1548 This attribute indicates that the only memory accesses inside function are
1549 loads and stores from objects pointed to by its pointer-typed arguments,
1550 with arbitrary offsets. Or in other words, all memory operations in the
1551 function can refer to memory only using pointers based on its function
1552 arguments.
1553 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1554 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001555``returns_twice``
1556 This attribute indicates that this function can return twice. The C
1557 ``setjmp`` is an example of such a function. The compiler disables
1558 some optimizations (like tail calls) in the caller of these
1559 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001560``safestack``
1561 This attribute indicates that
1562 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1563 protection is enabled for this function.
1564
1565 If a function that has a ``safestack`` attribute is inlined into a
1566 function that doesn't have a ``safestack`` attribute or which has an
1567 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1568 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001569``sanitize_address``
1570 This attribute indicates that AddressSanitizer checks
1571 (dynamic address safety analysis) are enabled for this function.
1572``sanitize_memory``
1573 This attribute indicates that MemorySanitizer checks (dynamic detection
1574 of accesses to uninitialized memory) are enabled for this function.
1575``sanitize_thread``
1576 This attribute indicates that ThreadSanitizer checks
1577 (dynamic thread safety analysis) are enabled for this function.
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001578``speculatable``
1579 This function attribute indicates that the function does not have any
1580 effects besides calculating its result and does not have undefined behavior.
1581 Note that ``speculatable`` is not enough to conclude that along any
Xin Tongc7180202017-05-02 23:24:12 +00001582 particular execution path the number of calls to this function will not be
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001583 externally observable. This attribute is only valid on functions
1584 and declarations, not on individual call sites. If a function is
1585 incorrectly marked as speculatable and really does exhibit
1586 undefined behavior, the undefined behavior may be observed even
1587 if the call site is dead code.
1588
Sean Silvab084af42012-12-07 10:36:55 +00001589``ssp``
1590 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001591 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001592 placed on the stack before the local variables that's checked upon
1593 return from the function to see if it has been overwritten. A
1594 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001595 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001596
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001597 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1598 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1599 - Calls to alloca() with variable sizes or constant sizes greater than
1600 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001601
Josh Magee24c7f062014-02-01 01:36:16 +00001602 Variables that are identified as requiring a protector will be arranged
1603 on the stack such that they are adjacent to the stack protector guard.
1604
Sean Silvab084af42012-12-07 10:36:55 +00001605 If a function that has an ``ssp`` attribute is inlined into a
1606 function that doesn't have an ``ssp`` attribute, then the resulting
1607 function will have an ``ssp`` attribute.
1608``sspreq``
1609 This attribute indicates that the function should *always* emit a
1610 stack smashing protector. This overrides the ``ssp`` function
1611 attribute.
1612
Josh Magee24c7f062014-02-01 01:36:16 +00001613 Variables that are identified as requiring a protector will be arranged
1614 on the stack such that they are adjacent to the stack protector guard.
1615 The specific layout rules are:
1616
1617 #. Large arrays and structures containing large arrays
1618 (``>= ssp-buffer-size``) are closest to the stack protector.
1619 #. Small arrays and structures containing small arrays
1620 (``< ssp-buffer-size``) are 2nd closest to the protector.
1621 #. Variables that have had their address taken are 3rd closest to the
1622 protector.
1623
Sean Silvab084af42012-12-07 10:36:55 +00001624 If a function that has an ``sspreq`` attribute is inlined into a
1625 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001626 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1627 an ``sspreq`` attribute.
1628``sspstrong``
1629 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001630 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001631 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001632 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001633
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001634 - Arrays of any size and type
1635 - Aggregates containing an array of any size and type.
1636 - Calls to alloca().
1637 - Local variables that have had their address taken.
1638
Josh Magee24c7f062014-02-01 01:36:16 +00001639 Variables that are identified as requiring a protector will be arranged
1640 on the stack such that they are adjacent to the stack protector guard.
1641 The specific layout rules are:
1642
1643 #. Large arrays and structures containing large arrays
1644 (``>= ssp-buffer-size``) are closest to the stack protector.
1645 #. Small arrays and structures containing small arrays
1646 (``< ssp-buffer-size``) are 2nd closest to the protector.
1647 #. Variables that have had their address taken are 3rd closest to the
1648 protector.
1649
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001650 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001651
1652 If a function that has an ``sspstrong`` attribute is inlined into a
1653 function that doesn't have an ``sspstrong`` attribute, then the
1654 resulting function will have an ``sspstrong`` attribute.
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001655``strictfp``
1656 This attribute indicates that the function was called from a scope that
1657 requires strict floating point semantics. LLVM will not attempt any
1658 optimizations that require assumptions about the floating point rounding
1659 mode or that might alter the state of floating point status flags that
1660 might otherwise be set or cleared by calling this function.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001661``"thunk"``
1662 This attribute indicates that the function will delegate to some other
1663 function with a tail call. The prototype of a thunk should not be used for
1664 optimization purposes. The caller is expected to cast the thunk prototype to
1665 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001666``uwtable``
1667 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001668 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001669 show that no exceptions passes by it. This is normally the case for
1670 the ELF x86-64 abi, but it can be disabled for some compilation
1671 units.
Sean Silvab084af42012-12-07 10:36:55 +00001672
Javed Absarf3d79042017-05-11 12:28:08 +00001673.. _glattrs:
1674
1675Global Attributes
1676-----------------
1677
1678Attributes may be set to communicate additional information about a global variable.
1679Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
1680are grouped into a single :ref:`attribute group <attrgrp>`.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001681
1682.. _opbundles:
1683
1684Operand Bundles
1685---------------
1686
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001687Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001688with certain LLVM instructions (currently only ``call`` s and
1689``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001690incorrect and will change program semantics.
1691
1692Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001693
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001694 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001695 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1696 bundle operand ::= SSA value
1697 tag ::= string constant
1698
1699Operand bundles are **not** part of a function's signature, and a
1700given function may be called from multiple places with different kinds
1701of operand bundles. This reflects the fact that the operand bundles
1702are conceptually a part of the ``call`` (or ``invoke``), not the
1703callee being dispatched to.
1704
1705Operand bundles are a generic mechanism intended to support
1706runtime-introspection-like functionality for managed languages. While
1707the exact semantics of an operand bundle depend on the bundle tag,
1708there are certain limitations to how much the presence of an operand
1709bundle can influence the semantics of a program. These restrictions
1710are described as the semantics of an "unknown" operand bundle. As
1711long as the behavior of an operand bundle is describable within these
1712restrictions, LLVM does not need to have special knowledge of the
1713operand bundle to not miscompile programs containing it.
1714
David Majnemer34cacb42015-10-22 01:46:38 +00001715- The bundle operands for an unknown operand bundle escape in unknown
1716 ways before control is transferred to the callee or invokee.
1717- Calls and invokes with operand bundles have unknown read / write
1718 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001719 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001720 callsite specific attributes.
1721- An operand bundle at a call site cannot change the implementation
1722 of the called function. Inter-procedural optimizations work as
1723 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001724
Sanjoy Dascdafd842015-11-11 21:38:02 +00001725More specific types of operand bundles are described below.
1726
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001727.. _deopt_opbundles:
1728
Sanjoy Dascdafd842015-11-11 21:38:02 +00001729Deoptimization Operand Bundles
1730^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1731
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001732Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001733operand bundle tag. These operand bundles represent an alternate
1734"safe" continuation for the call site they're attached to, and can be
1735used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001736specified call site. There can be at most one ``"deopt"`` operand
1737bundle attached to a call site. Exact details of deoptimization is
1738out of scope for the language reference, but it usually involves
1739rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001740
1741From the compiler's perspective, deoptimization operand bundles make
1742the call sites they're attached to at least ``readonly``. They read
1743through all of their pointer typed operands (even if they're not
1744otherwise escaped) and the entire visible heap. Deoptimization
1745operand bundles do not capture their operands except during
1746deoptimization, in which case control will not be returned to the
1747compiled frame.
1748
Sanjoy Das2d161452015-11-18 06:23:38 +00001749The inliner knows how to inline through calls that have deoptimization
1750operand bundles. Just like inlining through a normal call site
1751involves composing the normal and exceptional continuations, inlining
1752through a call site with a deoptimization operand bundle needs to
1753appropriately compose the "safe" deoptimization continuation. The
1754inliner does this by prepending the parent's deoptimization
1755continuation to every deoptimization continuation in the inlined body.
1756E.g. inlining ``@f`` into ``@g`` in the following example
1757
1758.. code-block:: llvm
1759
1760 define void @f() {
1761 call void @x() ;; no deopt state
1762 call void @y() [ "deopt"(i32 10) ]
1763 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1764 ret void
1765 }
1766
1767 define void @g() {
1768 call void @f() [ "deopt"(i32 20) ]
1769 ret void
1770 }
1771
1772will result in
1773
1774.. code-block:: llvm
1775
1776 define void @g() {
1777 call void @x() ;; still no deopt state
1778 call void @y() [ "deopt"(i32 20, i32 10) ]
1779 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1780 ret void
1781 }
1782
1783It is the frontend's responsibility to structure or encode the
1784deoptimization state in a way that syntactically prepending the
1785caller's deoptimization state to the callee's deoptimization state is
1786semantically equivalent to composing the caller's deoptimization
1787continuation after the callee's deoptimization continuation.
1788
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001789.. _ob_funclet:
1790
David Majnemer3bb88c02015-12-15 21:27:27 +00001791Funclet Operand Bundles
1792^^^^^^^^^^^^^^^^^^^^^^^
1793
1794Funclet operand bundles are characterized by the ``"funclet"``
1795operand bundle tag. These operand bundles indicate that a call site
1796is within a particular funclet. There can be at most one
1797``"funclet"`` operand bundle attached to a call site and it must have
1798exactly one bundle operand.
1799
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001800If any funclet EH pads have been "entered" but not "exited" (per the
1801`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1802it is undefined behavior to execute a ``call`` or ``invoke`` which:
1803
1804* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1805 intrinsic, or
1806* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1807 not-yet-exited funclet EH pad.
1808
1809Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1810executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1811
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001812GC Transition Operand Bundles
1813^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1814
1815GC transition operand bundles are characterized by the
1816``"gc-transition"`` operand bundle tag. These operand bundles mark a
1817call as a transition between a function with one GC strategy to a
1818function with a different GC strategy. If coordinating the transition
1819between GC strategies requires additional code generation at the call
1820site, these bundles may contain any values that are needed by the
1821generated code. For more details, see :ref:`GC Transitions
1822<gc_transition_args>`.
1823
Sean Silvab084af42012-12-07 10:36:55 +00001824.. _moduleasm:
1825
1826Module-Level Inline Assembly
1827----------------------------
1828
1829Modules may contain "module-level inline asm" blocks, which corresponds
1830to the GCC "file scope inline asm" blocks. These blocks are internally
1831concatenated by LLVM and treated as a single unit, but may be separated
1832in the ``.ll`` file if desired. The syntax is very simple:
1833
1834.. code-block:: llvm
1835
1836 module asm "inline asm code goes here"
1837 module asm "more can go here"
1838
1839The strings can contain any character by escaping non-printable
1840characters. The escape sequence used is simply "\\xx" where "xx" is the
1841two digit hex code for the number.
1842
James Y Knightbc832ed2015-07-08 18:08:36 +00001843Note that the assembly string *must* be parseable by LLVM's integrated assembler
1844(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001845
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001846.. _langref_datalayout:
1847
Sean Silvab084af42012-12-07 10:36:55 +00001848Data Layout
1849-----------
1850
1851A module may specify a target specific data layout string that specifies
1852how data is to be laid out in memory. The syntax for the data layout is
1853simply:
1854
1855.. code-block:: llvm
1856
1857 target datalayout = "layout specification"
1858
1859The *layout specification* consists of a list of specifications
1860separated by the minus sign character ('-'). Each specification starts
1861with a letter and may include other information after the letter to
1862define some aspect of the data layout. The specifications accepted are
1863as follows:
1864
1865``E``
1866 Specifies that the target lays out data in big-endian form. That is,
1867 the bits with the most significance have the lowest address
1868 location.
1869``e``
1870 Specifies that the target lays out data in little-endian form. That
1871 is, the bits with the least significance have the lowest address
1872 location.
1873``S<size>``
1874 Specifies the natural alignment of the stack in bits. Alignment
1875 promotion of stack variables is limited to the natural stack
1876 alignment to avoid dynamic stack realignment. The stack alignment
1877 must be a multiple of 8-bits. If omitted, the natural stack
1878 alignment defaults to "unspecified", which does not prevent any
1879 alignment promotions.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001880``A<address space>``
1881 Specifies the address space of objects created by '``alloca``'.
1882 Defaults to the default address space of 0.
Sean Silvab084af42012-12-07 10:36:55 +00001883``p[n]:<size>:<abi>:<pref>``
1884 This specifies the *size* of a pointer and its ``<abi>`` and
1885 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001886 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001887 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001888 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001889``i<size>:<abi>:<pref>``
1890 This specifies the alignment for an integer type of a given bit
1891 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1892``v<size>:<abi>:<pref>``
1893 This specifies the alignment for a vector type of a given bit
1894 ``<size>``.
1895``f<size>:<abi>:<pref>``
1896 This specifies the alignment for a floating point type of a given bit
1897 ``<size>``. Only values of ``<size>`` that are supported by the target
1898 will work. 32 (float) and 64 (double) are supported on all targets; 80
1899 or 128 (different flavors of long double) are also supported on some
1900 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001901``a:<abi>:<pref>``
1902 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001903``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001904 If present, specifies that llvm names are mangled in the output. The
1905 options are
1906
1907 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1908 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1909 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1910 symbols get a ``_`` prefix.
1911 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1912 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001913 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1914 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001915``n<size1>:<size2>:<size3>...``
1916 This specifies a set of native integer widths for the target CPU in
1917 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1918 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1919 this set are considered to support most general arithmetic operations
1920 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001921``ni:<address space0>:<address space1>:<address space2>...``
1922 This specifies pointer types with the specified address spaces
1923 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1924 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001925
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001926On every specification that takes a ``<abi>:<pref>``, specifying the
1927``<pref>`` alignment is optional. If omitted, the preceding ``:``
1928should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1929
Sean Silvab084af42012-12-07 10:36:55 +00001930When constructing the data layout for a given target, LLVM starts with a
1931default set of specifications which are then (possibly) overridden by
1932the specifications in the ``datalayout`` keyword. The default
1933specifications are given in this list:
1934
1935- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001936- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1937- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1938 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001939- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001940- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1941- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1942- ``i16:16:16`` - i16 is 16-bit aligned
1943- ``i32:32:32`` - i32 is 32-bit aligned
1944- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1945 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001946- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001947- ``f32:32:32`` - float is 32-bit aligned
1948- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001949- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001950- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1951- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001952- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001953
1954When LLVM is determining the alignment for a given type, it uses the
1955following rules:
1956
1957#. If the type sought is an exact match for one of the specifications,
1958 that specification is used.
1959#. If no match is found, and the type sought is an integer type, then
1960 the smallest integer type that is larger than the bitwidth of the
1961 sought type is used. If none of the specifications are larger than
1962 the bitwidth then the largest integer type is used. For example,
1963 given the default specifications above, the i7 type will use the
1964 alignment of i8 (next largest) while both i65 and i256 will use the
1965 alignment of i64 (largest specified).
1966#. If no match is found, and the type sought is a vector type, then the
1967 largest vector type that is smaller than the sought vector type will
1968 be used as a fall back. This happens because <128 x double> can be
1969 implemented in terms of 64 <2 x double>, for example.
1970
1971The function of the data layout string may not be what you expect.
1972Notably, this is not a specification from the frontend of what alignment
1973the code generator should use.
1974
1975Instead, if specified, the target data layout is required to match what
1976the ultimate *code generator* expects. This string is used by the
1977mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001978what the ultimate code generator uses. There is no way to generate IR
1979that does not embed this target-specific detail into the IR. If you
1980don't specify the string, the default specifications will be used to
1981generate a Data Layout and the optimization phases will operate
1982accordingly and introduce target specificity into the IR with respect to
1983these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001984
Bill Wendling5cc90842013-10-18 23:41:25 +00001985.. _langref_triple:
1986
1987Target Triple
1988-------------
1989
1990A module may specify a target triple string that describes the target
1991host. The syntax for the target triple is simply:
1992
1993.. code-block:: llvm
1994
1995 target triple = "x86_64-apple-macosx10.7.0"
1996
1997The *target triple* string consists of a series of identifiers delimited
1998by the minus sign character ('-'). The canonical forms are:
1999
2000::
2001
2002 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
2003 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
2004
2005This information is passed along to the backend so that it generates
2006code for the proper architecture. It's possible to override this on the
2007command line with the ``-mtriple`` command line option.
2008
Sean Silvab084af42012-12-07 10:36:55 +00002009.. _pointeraliasing:
2010
2011Pointer Aliasing Rules
2012----------------------
2013
2014Any memory access must be done through a pointer value associated with
2015an address range of the memory access, otherwise the behavior is
2016undefined. Pointer values are associated with address ranges according
2017to the following rules:
2018
2019- A pointer value is associated with the addresses associated with any
2020 value it is *based* on.
2021- An address of a global variable is associated with the address range
2022 of the variable's storage.
2023- The result value of an allocation instruction is associated with the
2024 address range of the allocated storage.
2025- A null pointer in the default address-space is associated with no
2026 address.
2027- An integer constant other than zero or a pointer value returned from
2028 a function not defined within LLVM may be associated with address
2029 ranges allocated through mechanisms other than those provided by
2030 LLVM. Such ranges shall not overlap with any ranges of addresses
2031 allocated by mechanisms provided by LLVM.
2032
2033A pointer value is *based* on another pointer value according to the
2034following rules:
2035
Sanjoy Das6d489492017-09-13 18:49:22 +00002036- A pointer value formed from a scalar ``getelementptr`` operation is *based* on
2037 the pointer-typed operand of the ``getelementptr``.
2038- The pointer in lane *l* of the result of a vector ``getelementptr`` operation
2039 is *based* on the pointer in lane *l* of the vector-of-pointers-typed operand
2040 of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00002041- The result value of a ``bitcast`` is *based* on the operand of the
2042 ``bitcast``.
2043- A pointer value formed by an ``inttoptr`` is *based* on all pointer
2044 values that contribute (directly or indirectly) to the computation of
2045 the pointer's value.
2046- The "*based* on" relationship is transitive.
2047
2048Note that this definition of *"based"* is intentionally similar to the
2049definition of *"based"* in C99, though it is slightly weaker.
2050
2051LLVM IR does not associate types with memory. The result type of a
2052``load`` merely indicates the size and alignment of the memory from
2053which to load, as well as the interpretation of the value. The first
2054operand type of a ``store`` similarly only indicates the size and
2055alignment of the store.
2056
2057Consequently, type-based alias analysis, aka TBAA, aka
2058``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2059:ref:`Metadata <metadata>` may be used to encode additional information
2060which specialized optimization passes may use to implement type-based
2061alias analysis.
2062
2063.. _volatile:
2064
2065Volatile Memory Accesses
2066------------------------
2067
2068Certain memory accesses, such as :ref:`load <i_load>`'s,
2069:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2070marked ``volatile``. The optimizers must not change the number of
2071volatile operations or change their order of execution relative to other
2072volatile operations. The optimizers *may* change the order of volatile
2073operations relative to non-volatile operations. This is not Java's
2074"volatile" and has no cross-thread synchronization behavior.
2075
Andrew Trick89fc5a62013-01-30 21:19:35 +00002076IR-level volatile loads and stores cannot safely be optimized into
2077llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2078flagged volatile. Likewise, the backend should never split or merge
2079target-legal volatile load/store instructions.
2080
Andrew Trick7e6f9282013-01-31 00:49:39 +00002081.. admonition:: Rationale
2082
2083 Platforms may rely on volatile loads and stores of natively supported
2084 data width to be executed as single instruction. For example, in C
2085 this holds for an l-value of volatile primitive type with native
2086 hardware support, but not necessarily for aggregate types. The
2087 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002088 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002089 do not violate the frontend's contract with the language.
2090
Sean Silvab084af42012-12-07 10:36:55 +00002091.. _memmodel:
2092
2093Memory Model for Concurrent Operations
2094--------------------------------------
2095
2096The LLVM IR does not define any way to start parallel threads of
2097execution or to register signal handlers. Nonetheless, there are
2098platform-specific ways to create them, and we define LLVM IR's behavior
2099in their presence. This model is inspired by the C++0x memory model.
2100
2101For a more informal introduction to this model, see the :doc:`Atomics`.
2102
2103We define a *happens-before* partial order as the least partial order
2104that
2105
2106- Is a superset of single-thread program order, and
2107- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2108 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2109 techniques, like pthread locks, thread creation, thread joining,
2110 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2111 Constraints <ordering>`).
2112
2113Note that program order does not introduce *happens-before* edges
2114between a thread and signals executing inside that thread.
2115
2116Every (defined) read operation (load instructions, memcpy, atomic
2117loads/read-modify-writes, etc.) R reads a series of bytes written by
2118(defined) write operations (store instructions, atomic
2119stores/read-modify-writes, memcpy, etc.). For the purposes of this
2120section, initialized globals are considered to have a write of the
2121initializer which is atomic and happens before any other read or write
2122of the memory in question. For each byte of a read R, R\ :sub:`byte`
2123may see any write to the same byte, except:
2124
2125- If write\ :sub:`1` happens before write\ :sub:`2`, and
2126 write\ :sub:`2` happens before R\ :sub:`byte`, then
2127 R\ :sub:`byte` does not see write\ :sub:`1`.
2128- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2129 R\ :sub:`byte` does not see write\ :sub:`3`.
2130
2131Given that definition, R\ :sub:`byte` is defined as follows:
2132
2133- If R is volatile, the result is target-dependent. (Volatile is
2134 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002135 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002136 like normal memory. It does not generally provide cross-thread
2137 synchronization.)
2138- Otherwise, if there is no write to the same byte that happens before
2139 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2140- Otherwise, if R\ :sub:`byte` may see exactly one write,
2141 R\ :sub:`byte` returns the value written by that write.
2142- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2143 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2144 Memory Ordering Constraints <ordering>` section for additional
2145 constraints on how the choice is made.
2146- Otherwise R\ :sub:`byte` returns ``undef``.
2147
2148R returns the value composed of the series of bytes it read. This
2149implies that some bytes within the value may be ``undef`` **without**
2150the entire value being ``undef``. Note that this only defines the
2151semantics of the operation; it doesn't mean that targets will emit more
2152than one instruction to read the series of bytes.
2153
2154Note that in cases where none of the atomic intrinsics are used, this
2155model places only one restriction on IR transformations on top of what
2156is required for single-threaded execution: introducing a store to a byte
2157which might not otherwise be stored is not allowed in general.
2158(Specifically, in the case where another thread might write to and read
2159from an address, introducing a store can change a load that may see
2160exactly one write into a load that may see multiple writes.)
2161
2162.. _ordering:
2163
2164Atomic Memory Ordering Constraints
2165----------------------------------
2166
2167Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2168:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2169:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002170ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002171the same address they *synchronize with*. These semantics are borrowed
2172from Java and C++0x, but are somewhat more colloquial. If these
2173descriptions aren't precise enough, check those specs (see spec
2174references in the :doc:`atomics guide <Atomics>`).
2175:ref:`fence <i_fence>` instructions treat these orderings somewhat
2176differently since they don't take an address. See that instruction's
2177documentation for details.
2178
2179For a simpler introduction to the ordering constraints, see the
2180:doc:`Atomics`.
2181
2182``unordered``
2183 The set of values that can be read is governed by the happens-before
2184 partial order. A value cannot be read unless some operation wrote
2185 it. This is intended to provide a guarantee strong enough to model
2186 Java's non-volatile shared variables. This ordering cannot be
2187 specified for read-modify-write operations; it is not strong enough
2188 to make them atomic in any interesting way.
2189``monotonic``
2190 In addition to the guarantees of ``unordered``, there is a single
2191 total order for modifications by ``monotonic`` operations on each
2192 address. All modification orders must be compatible with the
2193 happens-before order. There is no guarantee that the modification
2194 orders can be combined to a global total order for the whole program
2195 (and this often will not be possible). The read in an atomic
2196 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2197 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2198 order immediately before the value it writes. If one atomic read
2199 happens before another atomic read of the same address, the later
2200 read must see the same value or a later value in the address's
2201 modification order. This disallows reordering of ``monotonic`` (or
2202 stronger) operations on the same address. If an address is written
2203 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2204 read that address repeatedly, the other threads must eventually see
2205 the write. This corresponds to the C++0x/C1x
2206 ``memory_order_relaxed``.
2207``acquire``
2208 In addition to the guarantees of ``monotonic``, a
2209 *synchronizes-with* edge may be formed with a ``release`` operation.
2210 This is intended to model C++'s ``memory_order_acquire``.
2211``release``
2212 In addition to the guarantees of ``monotonic``, if this operation
2213 writes a value which is subsequently read by an ``acquire``
2214 operation, it *synchronizes-with* that operation. (This isn't a
2215 complete description; see the C++0x definition of a release
2216 sequence.) This corresponds to the C++0x/C1x
2217 ``memory_order_release``.
2218``acq_rel`` (acquire+release)
2219 Acts as both an ``acquire`` and ``release`` operation on its
2220 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2221``seq_cst`` (sequentially consistent)
2222 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002223 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002224 writes), there is a global total order on all
2225 sequentially-consistent operations on all addresses, which is
2226 consistent with the *happens-before* partial order and with the
2227 modification orders of all the affected addresses. Each
2228 sequentially-consistent read sees the last preceding write to the
2229 same address in this global order. This corresponds to the C++0x/C1x
2230 ``memory_order_seq_cst`` and Java volatile.
2231
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002232.. _syncscope:
Sean Silvab084af42012-12-07 10:36:55 +00002233
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002234If an atomic operation is marked ``syncscope("singlethread")``, it only
2235*synchronizes with* and only participates in the seq\_cst total orderings of
2236other operations running in the same thread (for example, in signal handlers).
2237
2238If an atomic operation is marked ``syncscope("<target-scope>")``, where
2239``<target-scope>`` is a target specific synchronization scope, then it is target
2240dependent if it *synchronizes with* and participates in the seq\_cst total
2241orderings of other operations.
2242
2243Otherwise, an atomic operation that is not marked ``syncscope("singlethread")``
2244or ``syncscope("<target-scope>")`` *synchronizes with* and participates in the
2245seq\_cst total orderings of other operations that are not marked
2246``syncscope("singlethread")`` or ``syncscope("<target-scope>")``.
Sean Silvab084af42012-12-07 10:36:55 +00002247
2248.. _fastmath:
2249
2250Fast-Math Flags
2251---------------
2252
2253LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2254:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002255:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
2256instructions have the following flags that can be set to enable
2257otherwise unsafe floating point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002258
2259``nnan``
2260 No NaNs - Allow optimizations to assume the arguments and result are not
2261 NaN. Such optimizations are required to retain defined behavior over
2262 NaNs, but the value of the result is undefined.
2263
2264``ninf``
2265 No Infs - Allow optimizations to assume the arguments and result are not
2266 +/-Inf. Such optimizations are required to retain defined behavior over
2267 +/-Inf, but the value of the result is undefined.
2268
2269``nsz``
2270 No Signed Zeros - Allow optimizations to treat the sign of a zero
2271 argument or result as insignificant.
2272
2273``arcp``
2274 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2275 argument rather than perform division.
2276
Adam Nemetcd847a82017-03-28 20:11:52 +00002277``contract``
2278 Allow floating-point contraction (e.g. fusing a multiply followed by an
2279 addition into a fused multiply-and-add).
2280
Sean Silvab084af42012-12-07 10:36:55 +00002281``fast``
2282 Fast - Allow algebraically equivalent transformations that may
2283 dramatically change results in floating point (e.g. reassociate). This
2284 flag implies all the others.
2285
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002286.. _uselistorder:
2287
2288Use-list Order Directives
2289-------------------------
2290
2291Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002292order to be recreated. ``<order-indexes>`` is a comma-separated list of
2293indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002294value's use-list is immediately sorted by these indexes.
2295
Sean Silvaa1190322015-08-06 22:56:48 +00002296Use-list directives may appear at function scope or global scope. They are not
2297instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002298function scope, they must appear after the terminator of the final basic block.
2299
2300If basic blocks have their address taken via ``blockaddress()`` expressions,
2301``uselistorder_bb`` can be used to reorder their use-lists from outside their
2302function's scope.
2303
2304:Syntax:
2305
2306::
2307
2308 uselistorder <ty> <value>, { <order-indexes> }
2309 uselistorder_bb @function, %block { <order-indexes> }
2310
2311:Examples:
2312
2313::
2314
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002315 define void @foo(i32 %arg1, i32 %arg2) {
2316 entry:
2317 ; ... instructions ...
2318 bb:
2319 ; ... instructions ...
2320
2321 ; At function scope.
2322 uselistorder i32 %arg1, { 1, 0, 2 }
2323 uselistorder label %bb, { 1, 0 }
2324 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002325
2326 ; At global scope.
2327 uselistorder i32* @global, { 1, 2, 0 }
2328 uselistorder i32 7, { 1, 0 }
2329 uselistorder i32 (i32) @bar, { 1, 0 }
2330 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2331
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002332.. _source_filename:
2333
2334Source Filename
2335---------------
2336
2337The *source filename* string is set to the original module identifier,
2338which will be the name of the compiled source file when compiling from
2339source through the clang front end, for example. It is then preserved through
2340the IR and bitcode.
2341
2342This is currently necessary to generate a consistent unique global
2343identifier for local functions used in profile data, which prepends the
2344source file name to the local function name.
2345
2346The syntax for the source file name is simply:
2347
Renato Golin124f2592016-07-20 12:16:38 +00002348.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002349
2350 source_filename = "/path/to/source.c"
2351
Sean Silvab084af42012-12-07 10:36:55 +00002352.. _typesystem:
2353
2354Type System
2355===========
2356
2357The LLVM type system is one of the most important features of the
2358intermediate representation. Being typed enables a number of
2359optimizations to be performed on the intermediate representation
2360directly, without having to do extra analyses on the side before the
2361transformation. A strong type system makes it easier to read the
2362generated code and enables novel analyses and transformations that are
2363not feasible to perform on normal three address code representations.
2364
Rafael Espindola08013342013-12-07 19:34:20 +00002365.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002366
Rafael Espindola08013342013-12-07 19:34:20 +00002367Void Type
2368---------
Sean Silvab084af42012-12-07 10:36:55 +00002369
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002370:Overview:
2371
Rafael Espindola08013342013-12-07 19:34:20 +00002372
2373The void type does not represent any value and has no size.
2374
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002375:Syntax:
2376
Rafael Espindola08013342013-12-07 19:34:20 +00002377
2378::
2379
2380 void
Sean Silvab084af42012-12-07 10:36:55 +00002381
2382
Rafael Espindola08013342013-12-07 19:34:20 +00002383.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002384
Rafael Espindola08013342013-12-07 19:34:20 +00002385Function Type
2386-------------
Sean Silvab084af42012-12-07 10:36:55 +00002387
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002388:Overview:
2389
Sean Silvab084af42012-12-07 10:36:55 +00002390
Rafael Espindola08013342013-12-07 19:34:20 +00002391The function type can be thought of as a function signature. It consists of a
2392return type and a list of formal parameter types. The return type of a function
2393type is a void type or first class type --- except for :ref:`label <t_label>`
2394and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002395
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002396:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002397
Rafael Espindola08013342013-12-07 19:34:20 +00002398::
Sean Silvab084af42012-12-07 10:36:55 +00002399
Rafael Espindola08013342013-12-07 19:34:20 +00002400 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002401
Rafael Espindola08013342013-12-07 19:34:20 +00002402...where '``<parameter list>``' is a comma-separated list of type
2403specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002404indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002405argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002406handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002407except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002408
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002409:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002410
Rafael Espindola08013342013-12-07 19:34:20 +00002411+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2412| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2413+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2414| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2415+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2416| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2417+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2418| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2419+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2420
2421.. _t_firstclass:
2422
2423First Class Types
2424-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002425
2426The :ref:`first class <t_firstclass>` types are perhaps the most important.
2427Values of these types are the only ones which can be produced by
2428instructions.
2429
Rafael Espindola08013342013-12-07 19:34:20 +00002430.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002431
Rafael Espindola08013342013-12-07 19:34:20 +00002432Single Value Types
2433^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002434
Rafael Espindola08013342013-12-07 19:34:20 +00002435These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002436
2437.. _t_integer:
2438
2439Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002440""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002441
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002442:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002443
2444The integer type is a very simple type that simply specifies an
2445arbitrary bit width for the integer type desired. Any bit width from 1
2446bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2447
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002448:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002449
2450::
2451
2452 iN
2453
2454The number of bits the integer will occupy is specified by the ``N``
2455value.
2456
2457Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002458*********
Sean Silvab084af42012-12-07 10:36:55 +00002459
2460+----------------+------------------------------------------------+
2461| ``i1`` | a single-bit integer. |
2462+----------------+------------------------------------------------+
2463| ``i32`` | a 32-bit integer. |
2464+----------------+------------------------------------------------+
2465| ``i1942652`` | a really big integer of over 1 million bits. |
2466+----------------+------------------------------------------------+
2467
2468.. _t_floating:
2469
2470Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002471""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002472
2473.. list-table::
2474 :header-rows: 1
2475
2476 * - Type
2477 - Description
2478
2479 * - ``half``
2480 - 16-bit floating point value
2481
2482 * - ``float``
2483 - 32-bit floating point value
2484
2485 * - ``double``
2486 - 64-bit floating point value
2487
2488 * - ``fp128``
2489 - 128-bit floating point value (112-bit mantissa)
2490
2491 * - ``x86_fp80``
2492 - 80-bit floating point value (X87)
2493
2494 * - ``ppc_fp128``
2495 - 128-bit floating point value (two 64-bits)
2496
Reid Kleckner9a16d082014-03-05 02:41:37 +00002497X86_mmx Type
2498""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002499
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002500:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002501
Reid Kleckner9a16d082014-03-05 02:41:37 +00002502The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002503machine. The operations allowed on it are quite limited: parameters and
2504return values, load and store, and bitcast. User-specified MMX
2505instructions are represented as intrinsic or asm calls with arguments
2506and/or results of this type. There are no arrays, vectors or constants
2507of this type.
2508
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002509:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002510
2511::
2512
Reid Kleckner9a16d082014-03-05 02:41:37 +00002513 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002514
Sean Silvab084af42012-12-07 10:36:55 +00002515
Rafael Espindola08013342013-12-07 19:34:20 +00002516.. _t_pointer:
2517
2518Pointer Type
2519""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002520
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002521:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002522
Rafael Espindola08013342013-12-07 19:34:20 +00002523The pointer type is used to specify memory locations. Pointers are
2524commonly used to reference objects in memory.
2525
2526Pointer types may have an optional address space attribute defining the
2527numbered address space where the pointed-to object resides. The default
2528address space is number zero. The semantics of non-zero address spaces
2529are target-specific.
2530
2531Note that LLVM does not permit pointers to void (``void*``) nor does it
2532permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002533
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002534:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002535
2536::
2537
Rafael Espindola08013342013-12-07 19:34:20 +00002538 <type> *
2539
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002540:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002541
2542+-------------------------+--------------------------------------------------------------------------------------------------------------+
2543| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2544+-------------------------+--------------------------------------------------------------------------------------------------------------+
2545| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2546+-------------------------+--------------------------------------------------------------------------------------------------------------+
2547| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2548+-------------------------+--------------------------------------------------------------------------------------------------------------+
2549
2550.. _t_vector:
2551
2552Vector Type
2553"""""""""""
2554
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002555:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002556
2557A vector type is a simple derived type that represents a vector of
2558elements. Vector types are used when multiple primitive data are
2559operated in parallel using a single instruction (SIMD). A vector type
2560requires a size (number of elements) and an underlying primitive data
2561type. Vector types are considered :ref:`first class <t_firstclass>`.
2562
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002563:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002564
2565::
2566
2567 < <# elements> x <elementtype> >
2568
2569The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002570elementtype may be any integer, floating point or pointer type. Vectors
2571of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002572
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002573:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002574
2575+-------------------+--------------------------------------------------+
2576| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2577+-------------------+--------------------------------------------------+
2578| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2579+-------------------+--------------------------------------------------+
2580| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2581+-------------------+--------------------------------------------------+
2582| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2583+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002584
2585.. _t_label:
2586
2587Label Type
2588^^^^^^^^^^
2589
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002590:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002591
2592The label type represents code labels.
2593
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002594:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002595
2596::
2597
2598 label
2599
David Majnemerb611e3f2015-08-14 05:09:07 +00002600.. _t_token:
2601
2602Token Type
2603^^^^^^^^^^
2604
2605:Overview:
2606
2607The token type is used when a value is associated with an instruction
2608but all uses of the value must not attempt to introspect or obscure it.
2609As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2610:ref:`select <i_select>` of type token.
2611
2612:Syntax:
2613
2614::
2615
2616 token
2617
2618
2619
Sean Silvab084af42012-12-07 10:36:55 +00002620.. _t_metadata:
2621
2622Metadata Type
2623^^^^^^^^^^^^^
2624
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002625:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002626
2627The metadata type represents embedded metadata. No derived types may be
2628created from metadata except for :ref:`function <t_function>` arguments.
2629
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002630:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002631
2632::
2633
2634 metadata
2635
Sean Silvab084af42012-12-07 10:36:55 +00002636.. _t_aggregate:
2637
2638Aggregate Types
2639^^^^^^^^^^^^^^^
2640
2641Aggregate Types are a subset of derived types that can contain multiple
2642member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2643aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2644aggregate types.
2645
2646.. _t_array:
2647
2648Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002649""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002650
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002651:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002652
2653The array type is a very simple derived type that arranges elements
2654sequentially in memory. The array type requires a size (number of
2655elements) and an underlying data type.
2656
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002657:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002658
2659::
2660
2661 [<# elements> x <elementtype>]
2662
2663The number of elements is a constant integer value; ``elementtype`` may
2664be any type with a size.
2665
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002666:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002667
2668+------------------+--------------------------------------+
2669| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2670+------------------+--------------------------------------+
2671| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2672+------------------+--------------------------------------+
2673| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2674+------------------+--------------------------------------+
2675
2676Here are some examples of multidimensional arrays:
2677
2678+-----------------------------+----------------------------------------------------------+
2679| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2680+-----------------------------+----------------------------------------------------------+
2681| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2682+-----------------------------+----------------------------------------------------------+
2683| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2684+-----------------------------+----------------------------------------------------------+
2685
2686There is no restriction on indexing beyond the end of the array implied
2687by a static type (though there are restrictions on indexing beyond the
2688bounds of an allocated object in some cases). This means that
2689single-dimension 'variable sized array' addressing can be implemented in
2690LLVM with a zero length array type. An implementation of 'pascal style
2691arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2692example.
2693
Sean Silvab084af42012-12-07 10:36:55 +00002694.. _t_struct:
2695
2696Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002697""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002698
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002699:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002700
2701The structure type is used to represent a collection of data members
2702together in memory. The elements of a structure may be any type that has
2703a size.
2704
2705Structures in memory are accessed using '``load``' and '``store``' by
2706getting a pointer to a field with the '``getelementptr``' instruction.
2707Structures in registers are accessed using the '``extractvalue``' and
2708'``insertvalue``' instructions.
2709
2710Structures may optionally be "packed" structures, which indicate that
2711the alignment of the struct is one byte, and that there is no padding
2712between the elements. In non-packed structs, padding between field types
2713is inserted as defined by the DataLayout string in the module, which is
2714required to match what the underlying code generator expects.
2715
2716Structures can either be "literal" or "identified". A literal structure
2717is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2718identified types are always defined at the top level with a name.
2719Literal types are uniqued by their contents and can never be recursive
2720or opaque since there is no way to write one. Identified types can be
2721recursive, can be opaqued, and are never uniqued.
2722
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002723:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002724
2725::
2726
2727 %T1 = type { <type list> } ; Identified normal struct type
2728 %T2 = type <{ <type list> }> ; Identified packed struct type
2729
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002730:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002731
2732+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2733| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2734+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002735| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002736+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2737| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2738+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2739
2740.. _t_opaque:
2741
2742Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002743""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002744
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002745:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002746
2747Opaque structure types are used to represent named structure types that
2748do not have a body specified. This corresponds (for example) to the C
2749notion of a forward declared structure.
2750
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002751:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002752
2753::
2754
2755 %X = type opaque
2756 %52 = type opaque
2757
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002758:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002759
2760+--------------+-------------------+
2761| ``opaque`` | An opaque type. |
2762+--------------+-------------------+
2763
Sean Silva1703e702014-04-08 21:06:22 +00002764.. _constants:
2765
Sean Silvab084af42012-12-07 10:36:55 +00002766Constants
2767=========
2768
2769LLVM has several different basic types of constants. This section
2770describes them all and their syntax.
2771
2772Simple Constants
2773----------------
2774
2775**Boolean constants**
2776 The two strings '``true``' and '``false``' are both valid constants
2777 of the ``i1`` type.
2778**Integer constants**
2779 Standard integers (such as '4') are constants of the
2780 :ref:`integer <t_integer>` type. Negative numbers may be used with
2781 integer types.
2782**Floating point constants**
2783 Floating point constants use standard decimal notation (e.g.
2784 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2785 hexadecimal notation (see below). The assembler requires the exact
2786 decimal value of a floating-point constant. For example, the
2787 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2788 decimal in binary. Floating point constants must have a :ref:`floating
2789 point <t_floating>` type.
2790**Null pointer constants**
2791 The identifier '``null``' is recognized as a null pointer constant
2792 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002793**Token constants**
2794 The identifier '``none``' is recognized as an empty token constant
2795 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002796
2797The one non-intuitive notation for constants is the hexadecimal form of
2798floating point constants. For example, the form
2799'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2800than) '``double 4.5e+15``'. The only time hexadecimal floating point
2801constants are required (and the only time that they are generated by the
2802disassembler) is when a floating point constant must be emitted but it
2803cannot be represented as a decimal floating point number in a reasonable
2804number of digits. For example, NaN's, infinities, and other special
2805values are represented in their IEEE hexadecimal format so that assembly
2806and disassembly do not cause any bits to change in the constants.
2807
2808When using the hexadecimal form, constants of types half, float, and
2809double are represented using the 16-digit form shown above (which
2810matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002811must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002812precision, respectively. Hexadecimal format is always used for long
2813double, and there are three forms of long double. The 80-bit format used
2814by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2815128-bit format used by PowerPC (two adjacent doubles) is represented by
2816``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002817represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2818will only work if they match the long double format on your target.
2819The IEEE 16-bit format (half precision) is represented by ``0xH``
2820followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2821(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002822
Reid Kleckner9a16d082014-03-05 02:41:37 +00002823There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002824
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002825.. _complexconstants:
2826
Sean Silvab084af42012-12-07 10:36:55 +00002827Complex Constants
2828-----------------
2829
2830Complex constants are a (potentially recursive) combination of simple
2831constants and smaller complex constants.
2832
2833**Structure constants**
2834 Structure constants are represented with notation similar to
2835 structure type definitions (a comma separated list of elements,
2836 surrounded by braces (``{}``)). For example:
2837 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2838 "``@G = external global i32``". Structure constants must have
2839 :ref:`structure type <t_struct>`, and the number and types of elements
2840 must match those specified by the type.
2841**Array constants**
2842 Array constants are represented with notation similar to array type
2843 definitions (a comma separated list of elements, surrounded by
2844 square brackets (``[]``)). For example:
2845 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2846 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002847 match those specified by the type. As a special case, character array
2848 constants may also be represented as a double-quoted string using the ``c``
2849 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002850**Vector constants**
2851 Vector constants are represented with notation similar to vector
2852 type definitions (a comma separated list of elements, surrounded by
2853 less-than/greater-than's (``<>``)). For example:
2854 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2855 must have :ref:`vector type <t_vector>`, and the number and types of
2856 elements must match those specified by the type.
2857**Zero initialization**
2858 The string '``zeroinitializer``' can be used to zero initialize a
2859 value to zero of *any* type, including scalar and
2860 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2861 having to print large zero initializers (e.g. for large arrays) and
2862 is always exactly equivalent to using explicit zero initializers.
2863**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002864 A metadata node is a constant tuple without types. For example:
2865 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002866 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2867 Unlike other typed constants that are meant to be interpreted as part of
2868 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002869 information such as debug info.
2870
2871Global Variable and Function Addresses
2872--------------------------------------
2873
2874The addresses of :ref:`global variables <globalvars>` and
2875:ref:`functions <functionstructure>` are always implicitly valid
2876(link-time) constants. These constants are explicitly referenced when
2877the :ref:`identifier for the global <identifiers>` is used and always have
2878:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2879file:
2880
2881.. code-block:: llvm
2882
2883 @X = global i32 17
2884 @Y = global i32 42
2885 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2886
2887.. _undefvalues:
2888
2889Undefined Values
2890----------------
2891
2892The string '``undef``' can be used anywhere a constant is expected, and
2893indicates that the user of the value may receive an unspecified
2894bit-pattern. Undefined values may be of any type (other than '``label``'
2895or '``void``') and be used anywhere a constant is permitted.
2896
2897Undefined values are useful because they indicate to the compiler that
2898the program is well defined no matter what value is used. This gives the
2899compiler more freedom to optimize. Here are some examples of
2900(potentially surprising) transformations that are valid (in pseudo IR):
2901
2902.. code-block:: llvm
2903
2904 %A = add %X, undef
2905 %B = sub %X, undef
2906 %C = xor %X, undef
2907 Safe:
2908 %A = undef
2909 %B = undef
2910 %C = undef
2911
2912This is safe because all of the output bits are affected by the undef
2913bits. Any output bit can have a zero or one depending on the input bits.
2914
2915.. code-block:: llvm
2916
2917 %A = or %X, undef
2918 %B = and %X, undef
2919 Safe:
2920 %A = -1
2921 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00002922 Safe:
2923 %A = %X ;; By choosing undef as 0
2924 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00002925 Unsafe:
2926 %A = undef
2927 %B = undef
2928
2929These logical operations have bits that are not always affected by the
2930input. For example, if ``%X`` has a zero bit, then the output of the
2931'``and``' operation will always be a zero for that bit, no matter what
2932the corresponding bit from the '``undef``' is. As such, it is unsafe to
2933optimize or assume that the result of the '``and``' is '``undef``'.
2934However, it is safe to assume that all bits of the '``undef``' could be
29350, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2936all the bits of the '``undef``' operand to the '``or``' could be set,
2937allowing the '``or``' to be folded to -1.
2938
2939.. code-block:: llvm
2940
2941 %A = select undef, %X, %Y
2942 %B = select undef, 42, %Y
2943 %C = select %X, %Y, undef
2944 Safe:
2945 %A = %X (or %Y)
2946 %B = 42 (or %Y)
2947 %C = %Y
2948 Unsafe:
2949 %A = undef
2950 %B = undef
2951 %C = undef
2952
2953This set of examples shows that undefined '``select``' (and conditional
2954branch) conditions can go *either way*, but they have to come from one
2955of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2956both known to have a clear low bit, then ``%A`` would have to have a
2957cleared low bit. However, in the ``%C`` example, the optimizer is
2958allowed to assume that the '``undef``' operand could be the same as
2959``%Y``, allowing the whole '``select``' to be eliminated.
2960
Renato Golin124f2592016-07-20 12:16:38 +00002961.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002962
2963 %A = xor undef, undef
2964
2965 %B = undef
2966 %C = xor %B, %B
2967
2968 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002969 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002970 %F = icmp gte %D, 4
2971
2972 Safe:
2973 %A = undef
2974 %B = undef
2975 %C = undef
2976 %D = undef
2977 %E = undef
2978 %F = undef
2979
2980This example points out that two '``undef``' operands are not
2981necessarily the same. This can be surprising to people (and also matches
2982C semantics) where they assume that "``X^X``" is always zero, even if
2983``X`` is undefined. This isn't true for a number of reasons, but the
2984short answer is that an '``undef``' "variable" can arbitrarily change
2985its value over its "live range". This is true because the variable
2986doesn't actually *have a live range*. Instead, the value is logically
2987read from arbitrary registers that happen to be around when needed, so
2988the value is not necessarily consistent over time. In fact, ``%A`` and
2989``%C`` need to have the same semantics or the core LLVM "replace all
2990uses with" concept would not hold.
2991
2992.. code-block:: llvm
2993
2994 %A = fdiv undef, %X
2995 %B = fdiv %X, undef
2996 Safe:
2997 %A = undef
2998 b: unreachable
2999
3000These examples show the crucial difference between an *undefined value*
3001and *undefined behavior*. An undefined value (like '``undef``') is
3002allowed to have an arbitrary bit-pattern. This means that the ``%A``
3003operation can be constant folded to '``undef``', because the '``undef``'
3004could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
3005However, in the second example, we can make a more aggressive
3006assumption: because the ``undef`` is allowed to be an arbitrary value,
3007we are allowed to assume that it could be zero. Since a divide by zero
3008has *undefined behavior*, we are allowed to assume that the operation
3009does not execute at all. This allows us to delete the divide and all
3010code after it. Because the undefined operation "can't happen", the
3011optimizer can assume that it occurs in dead code.
3012
Renato Golin124f2592016-07-20 12:16:38 +00003013.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003014
3015 a: store undef -> %X
3016 b: store %X -> undef
3017 Safe:
3018 a: <deleted>
3019 b: unreachable
3020
3021These examples reiterate the ``fdiv`` example: a store *of* an undefined
3022value can be assumed to not have any effect; we can assume that the
3023value is overwritten with bits that happen to match what was already
3024there. However, a store *to* an undefined location could clobber
3025arbitrary memory, therefore, it has undefined behavior.
3026
3027.. _poisonvalues:
3028
3029Poison Values
3030-------------
3031
3032Poison values are similar to :ref:`undef values <undefvalues>`, however
3033they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00003034that cannot evoke side effects has nevertheless detected a condition
3035that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003036
3037There is currently no way of representing a poison value in the IR; they
3038only exist when produced by operations such as :ref:`add <i_add>` with
3039the ``nsw`` flag.
3040
3041Poison value behavior is defined in terms of value *dependence*:
3042
3043- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
3044- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
3045 their dynamic predecessor basic block.
3046- Function arguments depend on the corresponding actual argument values
3047 in the dynamic callers of their functions.
3048- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
3049 instructions that dynamically transfer control back to them.
3050- :ref:`Invoke <i_invoke>` instructions depend on the
3051 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
3052 call instructions that dynamically transfer control back to them.
3053- Non-volatile loads and stores depend on the most recent stores to all
3054 of the referenced memory addresses, following the order in the IR
3055 (including loads and stores implied by intrinsics such as
3056 :ref:`@llvm.memcpy <int_memcpy>`.)
3057- An instruction with externally visible side effects depends on the
3058 most recent preceding instruction with externally visible side
3059 effects, following the order in the IR. (This includes :ref:`volatile
3060 operations <volatile>`.)
3061- An instruction *control-depends* on a :ref:`terminator
3062 instruction <terminators>` if the terminator instruction has
3063 multiple successors and the instruction is always executed when
3064 control transfers to one of the successors, and may not be executed
3065 when control is transferred to another.
3066- Additionally, an instruction also *control-depends* on a terminator
3067 instruction if the set of instructions it otherwise depends on would
3068 be different if the terminator had transferred control to a different
3069 successor.
3070- Dependence is transitive.
3071
Richard Smith32dbdf62014-07-31 04:25:36 +00003072Poison values have the same behavior as :ref:`undef values <undefvalues>`,
3073with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00003074on a poison value has undefined behavior.
3075
3076Here are some examples:
3077
3078.. code-block:: llvm
3079
3080 entry:
3081 %poison = sub nuw i32 0, 1 ; Results in a poison value.
3082 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00003083 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00003084 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3085
3086 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003087 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003088
3089 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3090
3091 %narrowaddr = bitcast i32* @g to i16*
3092 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003093 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3094 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003095
3096 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3097 br i1 %cmp, label %true, label %end ; Branch to either destination.
3098
3099 true:
3100 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3101 ; it has undefined behavior.
3102 br label %end
3103
3104 end:
3105 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3106 ; Both edges into this PHI are
3107 ; control-dependent on %cmp, so this
3108 ; always results in a poison value.
3109
3110 store volatile i32 0, i32* @g ; This would depend on the store in %true
3111 ; if %cmp is true, or the store in %entry
3112 ; otherwise, so this is undefined behavior.
3113
3114 br i1 %cmp, label %second_true, label %second_end
3115 ; The same branch again, but this time the
3116 ; true block doesn't have side effects.
3117
3118 second_true:
3119 ; No side effects!
3120 ret void
3121
3122 second_end:
3123 store volatile i32 0, i32* @g ; This time, the instruction always depends
3124 ; on the store in %end. Also, it is
3125 ; control-equivalent to %end, so this is
3126 ; well-defined (ignoring earlier undefined
3127 ; behavior in this example).
3128
3129.. _blockaddress:
3130
3131Addresses of Basic Blocks
3132-------------------------
3133
3134``blockaddress(@function, %block)``
3135
3136The '``blockaddress``' constant computes the address of the specified
3137basic block in the specified function, and always has an ``i8*`` type.
3138Taking the address of the entry block is illegal.
3139
3140This value only has defined behavior when used as an operand to the
3141':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3142against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003143undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003144no label is equal to the null pointer. This may be passed around as an
3145opaque pointer sized value as long as the bits are not inspected. This
3146allows ``ptrtoint`` and arithmetic to be performed on these values so
3147long as the original value is reconstituted before the ``indirectbr``
3148instruction.
3149
3150Finally, some targets may provide defined semantics when using the value
3151as the operand to an inline assembly, but that is target specific.
3152
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003153.. _constantexprs:
3154
Sean Silvab084af42012-12-07 10:36:55 +00003155Constant Expressions
3156--------------------
3157
3158Constant expressions are used to allow expressions involving other
3159constants to be used as constants. Constant expressions may be of any
3160:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3161that does not have side effects (e.g. load and call are not supported).
3162The following is the syntax for constant expressions:
3163
3164``trunc (CST to TYPE)``
3165 Truncate a constant to another type. The bit size of CST must be
3166 larger than the bit size of TYPE. Both types must be integers.
3167``zext (CST to TYPE)``
3168 Zero extend a constant to another type. The bit size of CST must be
3169 smaller than the bit size of TYPE. Both types must be integers.
3170``sext (CST to TYPE)``
3171 Sign extend a constant to another type. The bit size of CST must be
3172 smaller than the bit size of TYPE. Both types must be integers.
3173``fptrunc (CST to TYPE)``
3174 Truncate a floating point constant to another floating point type.
3175 The size of CST must be larger than the size of TYPE. Both types
3176 must be floating point.
3177``fpext (CST to TYPE)``
3178 Floating point extend a constant to another type. The size of CST
3179 must be smaller or equal to the size of TYPE. Both types must be
3180 floating point.
3181``fptoui (CST to TYPE)``
3182 Convert a floating point constant to the corresponding unsigned
3183 integer constant. TYPE must be a scalar or vector integer type. CST
3184 must be of scalar or vector floating point type. Both CST and TYPE
3185 must be scalars, or vectors of the same number of elements. If the
3186 value won't fit in the integer type, the results are undefined.
3187``fptosi (CST to TYPE)``
3188 Convert a floating point constant to the corresponding signed
3189 integer constant. TYPE must be a scalar or vector integer type. CST
3190 must be of scalar or vector floating point type. Both CST and TYPE
3191 must be scalars, or vectors of the same number of elements. If the
3192 value won't fit in the integer type, the results are undefined.
3193``uitofp (CST to TYPE)``
3194 Convert an unsigned integer constant to the corresponding floating
3195 point constant. TYPE must be a scalar or vector floating point type.
3196 CST must be of scalar or vector integer type. Both CST and TYPE must
3197 be scalars, or vectors of the same number of elements. If the value
3198 won't fit in the floating point type, the results are undefined.
3199``sitofp (CST to TYPE)``
3200 Convert a signed integer constant to the corresponding floating
3201 point constant. TYPE must be a scalar or vector floating point type.
3202 CST must be of scalar or vector integer type. Both CST and TYPE must
3203 be scalars, or vectors of the same number of elements. If the value
3204 won't fit in the floating point type, the results are undefined.
3205``ptrtoint (CST to TYPE)``
3206 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003207 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003208 pointer type. The ``CST`` value is zero extended, truncated, or
3209 unchanged to make it fit in ``TYPE``.
3210``inttoptr (CST to TYPE)``
3211 Convert an integer constant to a pointer constant. TYPE must be a
3212 pointer type. CST must be of integer type. The CST value is zero
3213 extended, truncated, or unchanged to make it fit in a pointer size.
3214 This one is *really* dangerous!
3215``bitcast (CST to TYPE)``
3216 Convert a constant, CST, to another TYPE. The constraints of the
3217 operands are the same as those for the :ref:`bitcast
3218 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003219``addrspacecast (CST to TYPE)``
3220 Convert a constant pointer or constant vector of pointer, CST, to another
3221 TYPE in a different address space. The constraints of the operands are the
3222 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003223``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003224 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3225 constants. As with the :ref:`getelementptr <i_getelementptr>`
David Blaikief91b0302017-06-19 05:34:21 +00003226 instruction, the index list may have one or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003227 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003228``select (COND, VAL1, VAL2)``
3229 Perform the :ref:`select operation <i_select>` on constants.
3230``icmp COND (VAL1, VAL2)``
3231 Performs the :ref:`icmp operation <i_icmp>` on constants.
3232``fcmp COND (VAL1, VAL2)``
3233 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3234``extractelement (VAL, IDX)``
3235 Perform the :ref:`extractelement operation <i_extractelement>` on
3236 constants.
3237``insertelement (VAL, ELT, IDX)``
3238 Perform the :ref:`insertelement operation <i_insertelement>` on
3239 constants.
3240``shufflevector (VEC1, VEC2, IDXMASK)``
3241 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3242 constants.
3243``extractvalue (VAL, IDX0, IDX1, ...)``
3244 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3245 constants. The index list is interpreted in a similar manner as
3246 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3247 least one index value must be specified.
3248``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3249 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3250 The index list is interpreted in a similar manner as indices in a
3251 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3252 value must be specified.
3253``OPCODE (LHS, RHS)``
3254 Perform the specified operation of the LHS and RHS constants. OPCODE
3255 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3256 binary <bitwiseops>` operations. The constraints on operands are
3257 the same as those for the corresponding instruction (e.g. no bitwise
3258 operations on floating point values are allowed).
3259
3260Other Values
3261============
3262
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003263.. _inlineasmexprs:
3264
Sean Silvab084af42012-12-07 10:36:55 +00003265Inline Assembler Expressions
3266----------------------------
3267
3268LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003269Inline Assembly <moduleasm>`) through the use of a special value. This value
3270represents the inline assembler as a template string (containing the
3271instructions to emit), a list of operand constraints (stored as a string), a
3272flag that indicates whether or not the inline asm expression has side effects,
3273and a flag indicating whether the function containing the asm needs to align its
3274stack conservatively.
3275
3276The template string supports argument substitution of the operands using "``$``"
3277followed by a number, to indicate substitution of the given register/memory
3278location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3279be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3280operand (See :ref:`inline-asm-modifiers`).
3281
3282A literal "``$``" may be included by using "``$$``" in the template. To include
3283other special characters into the output, the usual "``\XX``" escapes may be
3284used, just as in other strings. Note that after template substitution, the
3285resulting assembly string is parsed by LLVM's integrated assembler unless it is
3286disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3287syntax known to LLVM.
3288
Reid Kleckner71cb1642017-02-06 18:08:45 +00003289LLVM also supports a few more substitions useful for writing inline assembly:
3290
3291- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3292 This substitution is useful when declaring a local label. Many standard
3293 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3294 Adding a blob-unique identifier ensures that the two labels will not conflict
3295 during assembly. This is used to implement `GCC's %= special format
3296 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3297- ``${:comment}``: Expands to the comment character of the current target's
3298 assembly dialect. This is usually ``#``, but many targets use other strings,
3299 such as ``;``, ``//``, or ``!``.
3300- ``${:private}``: Expands to the assembler private label prefix. Labels with
3301 this prefix will not appear in the symbol table of the assembled object.
3302 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3303 relatively popular.
3304
James Y Knightbc832ed2015-07-08 18:08:36 +00003305LLVM's support for inline asm is modeled closely on the requirements of Clang's
3306GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3307modifier codes listed here are similar or identical to those in GCC's inline asm
3308support. However, to be clear, the syntax of the template and constraint strings
3309described here is *not* the same as the syntax accepted by GCC and Clang, and,
3310while most constraint letters are passed through as-is by Clang, some get
3311translated to other codes when converting from the C source to the LLVM
3312assembly.
3313
3314An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003315
3316.. code-block:: llvm
3317
3318 i32 (i32) asm "bswap $0", "=r,r"
3319
3320Inline assembler expressions may **only** be used as the callee operand
3321of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3322Thus, typically we have:
3323
3324.. code-block:: llvm
3325
3326 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3327
3328Inline asms with side effects not visible in the constraint list must be
3329marked as having side effects. This is done through the use of the
3330'``sideeffect``' keyword, like so:
3331
3332.. code-block:: llvm
3333
3334 call void asm sideeffect "eieio", ""()
3335
3336In some cases inline asms will contain code that will not work unless
3337the stack is aligned in some way, such as calls or SSE instructions on
3338x86, yet will not contain code that does that alignment within the asm.
3339The compiler should make conservative assumptions about what the asm
3340might contain and should generate its usual stack alignment code in the
3341prologue if the '``alignstack``' keyword is present:
3342
3343.. code-block:: llvm
3344
3345 call void asm alignstack "eieio", ""()
3346
3347Inline asms also support using non-standard assembly dialects. The
3348assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3349the inline asm is using the Intel dialect. Currently, ATT and Intel are
3350the only supported dialects. An example is:
3351
3352.. code-block:: llvm
3353
3354 call void asm inteldialect "eieio", ""()
3355
3356If multiple keywords appear the '``sideeffect``' keyword must come
3357first, the '``alignstack``' keyword second and the '``inteldialect``'
3358keyword last.
3359
James Y Knightbc832ed2015-07-08 18:08:36 +00003360Inline Asm Constraint String
3361^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3362
3363The constraint list is a comma-separated string, each element containing one or
3364more constraint codes.
3365
3366For each element in the constraint list an appropriate register or memory
3367operand will be chosen, and it will be made available to assembly template
3368string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3369second, etc.
3370
3371There are three different types of constraints, which are distinguished by a
3372prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3373constraints must always be given in that order: outputs first, then inputs, then
3374clobbers. They cannot be intermingled.
3375
3376There are also three different categories of constraint codes:
3377
3378- Register constraint. This is either a register class, or a fixed physical
3379 register. This kind of constraint will allocate a register, and if necessary,
3380 bitcast the argument or result to the appropriate type.
3381- Memory constraint. This kind of constraint is for use with an instruction
3382 taking a memory operand. Different constraints allow for different addressing
3383 modes used by the target.
3384- Immediate value constraint. This kind of constraint is for an integer or other
3385 immediate value which can be rendered directly into an instruction. The
3386 various target-specific constraints allow the selection of a value in the
3387 proper range for the instruction you wish to use it with.
3388
3389Output constraints
3390""""""""""""""""""
3391
3392Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3393indicates that the assembly will write to this operand, and the operand will
3394then be made available as a return value of the ``asm`` expression. Output
3395constraints do not consume an argument from the call instruction. (Except, see
3396below about indirect outputs).
3397
3398Normally, it is expected that no output locations are written to by the assembly
3399expression until *all* of the inputs have been read. As such, LLVM may assign
3400the same register to an output and an input. If this is not safe (e.g. if the
3401assembly contains two instructions, where the first writes to one output, and
3402the second reads an input and writes to a second output), then the "``&``"
3403modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003404"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003405will not use the same register for any inputs (other than an input tied to this
3406output).
3407
3408Input constraints
3409"""""""""""""""""
3410
3411Input constraints do not have a prefix -- just the constraint codes. Each input
3412constraint will consume one argument from the call instruction. It is not
3413permitted for the asm to write to any input register or memory location (unless
3414that input is tied to an output). Note also that multiple inputs may all be
3415assigned to the same register, if LLVM can determine that they necessarily all
3416contain the same value.
3417
3418Instead of providing a Constraint Code, input constraints may also "tie"
3419themselves to an output constraint, by providing an integer as the constraint
3420string. Tied inputs still consume an argument from the call instruction, and
3421take up a position in the asm template numbering as is usual -- they will simply
3422be constrained to always use the same register as the output they've been tied
3423to. For example, a constraint string of "``=r,0``" says to assign a register for
3424output, and use that register as an input as well (it being the 0'th
3425constraint).
3426
3427It is permitted to tie an input to an "early-clobber" output. In that case, no
3428*other* input may share the same register as the input tied to the early-clobber
3429(even when the other input has the same value).
3430
3431You may only tie an input to an output which has a register constraint, not a
3432memory constraint. Only a single input may be tied to an output.
3433
3434There is also an "interesting" feature which deserves a bit of explanation: if a
3435register class constraint allocates a register which is too small for the value
3436type operand provided as input, the input value will be split into multiple
3437registers, and all of them passed to the inline asm.
3438
3439However, this feature is often not as useful as you might think.
3440
3441Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3442architectures that have instructions which operate on multiple consecutive
3443instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3444SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3445hardware then loads into both the named register, and the next register. This
3446feature of inline asm would not be useful to support that.)
3447
3448A few of the targets provide a template string modifier allowing explicit access
3449to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3450``D``). On such an architecture, you can actually access the second allocated
3451register (yet, still, not any subsequent ones). But, in that case, you're still
3452probably better off simply splitting the value into two separate operands, for
3453clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3454despite existing only for use with this feature, is not really a good idea to
3455use)
3456
3457Indirect inputs and outputs
3458"""""""""""""""""""""""""""
3459
3460Indirect output or input constraints can be specified by the "``*``" modifier
3461(which goes after the "``=``" in case of an output). This indicates that the asm
3462will write to or read from the contents of an *address* provided as an input
3463argument. (Note that in this way, indirect outputs act more like an *input* than
3464an output: just like an input, they consume an argument of the call expression,
3465rather than producing a return value. An indirect output constraint is an
3466"output" only in that the asm is expected to write to the contents of the input
3467memory location, instead of just read from it).
3468
3469This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3470address of a variable as a value.
3471
3472It is also possible to use an indirect *register* constraint, but only on output
3473(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3474value normally, and then, separately emit a store to the address provided as
3475input, after the provided inline asm. (It's not clear what value this
3476functionality provides, compared to writing the store explicitly after the asm
3477statement, and it can only produce worse code, since it bypasses many
3478optimization passes. I would recommend not using it.)
3479
3480
3481Clobber constraints
3482"""""""""""""""""""
3483
3484A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3485consume an input operand, nor generate an output. Clobbers cannot use any of the
3486general constraint code letters -- they may use only explicit register
3487constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3488"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3489memory locations -- not only the memory pointed to by a declared indirect
3490output.
3491
Peter Zotov00257232016-08-30 10:48:31 +00003492Note that clobbering named registers that are also present in output
3493constraints is not legal.
3494
James Y Knightbc832ed2015-07-08 18:08:36 +00003495
3496Constraint Codes
3497""""""""""""""""
3498After a potential prefix comes constraint code, or codes.
3499
3500A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3501followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3502(e.g. "``{eax}``").
3503
3504The one and two letter constraint codes are typically chosen to be the same as
3505GCC's constraint codes.
3506
3507A single constraint may include one or more than constraint code in it, leaving
3508it up to LLVM to choose which one to use. This is included mainly for
3509compatibility with the translation of GCC inline asm coming from clang.
3510
3511There are two ways to specify alternatives, and either or both may be used in an
3512inline asm constraint list:
3513
35141) Append the codes to each other, making a constraint code set. E.g. "``im``"
3515 or "``{eax}m``". This means "choose any of the options in the set". The
3516 choice of constraint is made independently for each constraint in the
3517 constraint list.
3518
35192) Use "``|``" between constraint code sets, creating alternatives. Every
3520 constraint in the constraint list must have the same number of alternative
3521 sets. With this syntax, the same alternative in *all* of the items in the
3522 constraint list will be chosen together.
3523
3524Putting those together, you might have a two operand constraint string like
3525``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3526operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3527may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3528
3529However, the use of either of the alternatives features is *NOT* recommended, as
3530LLVM is not able to make an intelligent choice about which one to use. (At the
3531point it currently needs to choose, not enough information is available to do so
3532in a smart way.) Thus, it simply tries to make a choice that's most likely to
3533compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3534always choose to use memory, not registers). And, if given multiple registers,
3535or multiple register classes, it will simply choose the first one. (In fact, it
3536doesn't currently even ensure explicitly specified physical registers are
3537unique, so specifying multiple physical registers as alternatives, like
3538``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3539intended.)
3540
3541Supported Constraint Code List
3542""""""""""""""""""""""""""""""
3543
3544The constraint codes are, in general, expected to behave the same way they do in
3545GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3546inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3547and GCC likely indicates a bug in LLVM.
3548
3549Some constraint codes are typically supported by all targets:
3550
3551- ``r``: A register in the target's general purpose register class.
3552- ``m``: A memory address operand. It is target-specific what addressing modes
3553 are supported, typical examples are register, or register + register offset,
3554 or register + immediate offset (of some target-specific size).
3555- ``i``: An integer constant (of target-specific width). Allows either a simple
3556 immediate, or a relocatable value.
3557- ``n``: An integer constant -- *not* including relocatable values.
3558- ``s``: An integer constant, but allowing *only* relocatable values.
3559- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3560 useful to pass a label for an asm branch or call.
3561
3562 .. FIXME: but that surely isn't actually okay to jump out of an asm
3563 block without telling llvm about the control transfer???)
3564
3565- ``{register-name}``: Requires exactly the named physical register.
3566
3567Other constraints are target-specific:
3568
3569AArch64:
3570
3571- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3572- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3573 i.e. 0 to 4095 with optional shift by 12.
3574- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3575 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3576- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3577 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3578- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3579 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3580- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3581 32-bit register. This is a superset of ``K``: in addition to the bitmask
3582 immediate, also allows immediate integers which can be loaded with a single
3583 ``MOVZ`` or ``MOVL`` instruction.
3584- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3585 64-bit register. This is a superset of ``L``.
3586- ``Q``: Memory address operand must be in a single register (no
3587 offsets). (However, LLVM currently does this for the ``m`` constraint as
3588 well.)
3589- ``r``: A 32 or 64-bit integer register (W* or X*).
3590- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3591- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3592
3593AMDGPU:
3594
3595- ``r``: A 32 or 64-bit integer register.
3596- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3597- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3598
3599
3600All ARM modes:
3601
3602- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3603 operand. Treated the same as operand ``m``, at the moment.
3604
3605ARM and ARM's Thumb2 mode:
3606
3607- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3608- ``I``: An immediate integer valid for a data-processing instruction.
3609- ``J``: An immediate integer between -4095 and 4095.
3610- ``K``: An immediate integer whose bitwise inverse is valid for a
3611 data-processing instruction. (Can be used with template modifier "``B``" to
3612 print the inverted value).
3613- ``L``: An immediate integer whose negation is valid for a data-processing
3614 instruction. (Can be used with template modifier "``n``" to print the negated
3615 value).
3616- ``M``: A power of two or a integer between 0 and 32.
3617- ``N``: Invalid immediate constraint.
3618- ``O``: Invalid immediate constraint.
3619- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3620- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3621 as ``r``.
3622- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3623 invalid.
3624- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3625 ``d0-d31``, or ``q0-q15``.
3626- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3627 ``d0-d7``, or ``q0-q3``.
3628- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3629 ``s0-s31``.
3630
3631ARM's Thumb1 mode:
3632
3633- ``I``: An immediate integer between 0 and 255.
3634- ``J``: An immediate integer between -255 and -1.
3635- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3636 some amount.
3637- ``L``: An immediate integer between -7 and 7.
3638- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3639- ``N``: An immediate integer between 0 and 31.
3640- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3641- ``r``: A low 32-bit GPR register (``r0-r7``).
3642- ``l``: A low 32-bit GPR register (``r0-r7``).
3643- ``h``: A high GPR register (``r0-r7``).
3644- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3645 ``d0-d31``, or ``q0-q15``.
3646- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3647 ``d0-d7``, or ``q0-q3``.
3648- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3649 ``s0-s31``.
3650
3651
3652Hexagon:
3653
3654- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3655 at the moment.
3656- ``r``: A 32 or 64-bit register.
3657
3658MSP430:
3659
3660- ``r``: An 8 or 16-bit register.
3661
3662MIPS:
3663
3664- ``I``: An immediate signed 16-bit integer.
3665- ``J``: An immediate integer zero.
3666- ``K``: An immediate unsigned 16-bit integer.
3667- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3668- ``N``: An immediate integer between -65535 and -1.
3669- ``O``: An immediate signed 15-bit integer.
3670- ``P``: An immediate integer between 1 and 65535.
3671- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3672 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3673- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3674 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3675 ``m``.
3676- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3677 ``sc`` instruction on the given subtarget (details vary).
3678- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3679- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003680 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3681 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003682- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3683 ``25``).
3684- ``l``: The ``lo`` register, 32 or 64-bit.
3685- ``x``: Invalid.
3686
3687NVPTX:
3688
3689- ``b``: A 1-bit integer register.
3690- ``c`` or ``h``: A 16-bit integer register.
3691- ``r``: A 32-bit integer register.
3692- ``l`` or ``N``: A 64-bit integer register.
3693- ``f``: A 32-bit float register.
3694- ``d``: A 64-bit float register.
3695
3696
3697PowerPC:
3698
3699- ``I``: An immediate signed 16-bit integer.
3700- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3701- ``K``: An immediate unsigned 16-bit integer.
3702- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3703- ``M``: An immediate integer greater than 31.
3704- ``N``: An immediate integer that is an exact power of 2.
3705- ``O``: The immediate integer constant 0.
3706- ``P``: An immediate integer constant whose negation is a signed 16-bit
3707 constant.
3708- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3709 treated the same as ``m``.
3710- ``r``: A 32 or 64-bit integer register.
3711- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3712 ``R1-R31``).
3713- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3714 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3715- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3716 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3717 altivec vector register (``V0-V31``).
3718
3719 .. FIXME: is this a bug that v accepts QPX registers? I think this
3720 is supposed to only use the altivec vector registers?
3721
3722- ``y``: Condition register (``CR0-CR7``).
3723- ``wc``: An individual CR bit in a CR register.
3724- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3725 register set (overlapping both the floating-point and vector register files).
3726- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3727 set.
3728
3729Sparc:
3730
3731- ``I``: An immediate 13-bit signed integer.
3732- ``r``: A 32-bit integer register.
James Y Knightd4e1b002017-05-12 15:59:10 +00003733- ``f``: Any floating-point register on SparcV8, or a floating point
3734 register in the "low" half of the registers on SparcV9.
3735- ``e``: Any floating point register. (Same as ``f`` on SparcV8.)
James Y Knightbc832ed2015-07-08 18:08:36 +00003736
3737SystemZ:
3738
3739- ``I``: An immediate unsigned 8-bit integer.
3740- ``J``: An immediate unsigned 12-bit integer.
3741- ``K``: An immediate signed 16-bit integer.
3742- ``L``: An immediate signed 20-bit integer.
3743- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003744- ``Q``: A memory address operand with a base address and a 12-bit immediate
3745 unsigned displacement.
3746- ``R``: A memory address operand with a base address, a 12-bit immediate
3747 unsigned displacement, and an index register.
3748- ``S``: A memory address operand with a base address and a 20-bit immediate
3749 signed displacement.
3750- ``T``: A memory address operand with a base address, a 20-bit immediate
3751 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003752- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3753- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3754 address context evaluates as zero).
3755- ``h``: A 32-bit value in the high part of a 64bit data register
3756 (LLVM-specific)
3757- ``f``: A 32, 64, or 128-bit floating point register.
3758
3759X86:
3760
3761- ``I``: An immediate integer between 0 and 31.
3762- ``J``: An immediate integer between 0 and 64.
3763- ``K``: An immediate signed 8-bit integer.
3764- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3765 0xffffffff.
3766- ``M``: An immediate integer between 0 and 3.
3767- ``N``: An immediate unsigned 8-bit integer.
3768- ``O``: An immediate integer between 0 and 127.
3769- ``e``: An immediate 32-bit signed integer.
3770- ``Z``: An immediate 32-bit unsigned integer.
3771- ``o``, ``v``: Treated the same as ``m``, at the moment.
3772- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3773 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3774 registers, and on X86-64, it is all of the integer registers.
3775- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3776 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3777- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3778- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3779 existed since i386, and can be accessed without the REX prefix.
3780- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3781- ``y``: A 64-bit MMX register, if MMX is enabled.
3782- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3783 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3784 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3785 512-bit vector operand in an AVX512 register, Otherwise, an error.
3786- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3787- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3788 32-bit mode, a 64-bit integer operand will get split into two registers). It
3789 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3790 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3791 you're better off splitting it yourself, before passing it to the asm
3792 statement.
3793
3794XCore:
3795
3796- ``r``: A 32-bit integer register.
3797
3798
3799.. _inline-asm-modifiers:
3800
3801Asm template argument modifiers
3802^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3803
3804In the asm template string, modifiers can be used on the operand reference, like
3805"``${0:n}``".
3806
3807The modifiers are, in general, expected to behave the same way they do in
3808GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3809inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3810and GCC likely indicates a bug in LLVM.
3811
3812Target-independent:
3813
Sean Silvaa1190322015-08-06 22:56:48 +00003814- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003815 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3816- ``n``: Negate and print immediate integer constant unadorned, without the
3817 target-specific immediate punctuation (e.g. no ``$`` prefix).
3818- ``l``: Print as an unadorned label, without the target-specific label
3819 punctuation (e.g. no ``$`` prefix).
3820
3821AArch64:
3822
3823- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3824 instead of ``x30``, print ``w30``.
3825- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3826- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3827 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3828 ``v*``.
3829
3830AMDGPU:
3831
3832- ``r``: No effect.
3833
3834ARM:
3835
3836- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3837 register).
3838- ``P``: No effect.
3839- ``q``: No effect.
3840- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3841 as ``d4[1]`` instead of ``s9``)
3842- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3843 prefix.
3844- ``L``: Print the low 16-bits of an immediate integer constant.
3845- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3846 register operands subsequent to the specified one (!), so use carefully.
3847- ``Q``: Print the low-order register of a register-pair, or the low-order
3848 register of a two-register operand.
3849- ``R``: Print the high-order register of a register-pair, or the high-order
3850 register of a two-register operand.
3851- ``H``: Print the second register of a register-pair. (On a big-endian system,
3852 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3853 to ``R``.)
3854
3855 .. FIXME: H doesn't currently support printing the second register
3856 of a two-register operand.
3857
3858- ``e``: Print the low doubleword register of a NEON quad register.
3859- ``f``: Print the high doubleword register of a NEON quad register.
3860- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3861 adornment.
3862
3863Hexagon:
3864
3865- ``L``: Print the second register of a two-register operand. Requires that it
3866 has been allocated consecutively to the first.
3867
3868 .. FIXME: why is it restricted to consecutive ones? And there's
3869 nothing that ensures that happens, is there?
3870
3871- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3872 nothing. Used to print 'addi' vs 'add' instructions.
3873
3874MSP430:
3875
3876No additional modifiers.
3877
3878MIPS:
3879
3880- ``X``: Print an immediate integer as hexadecimal
3881- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3882- ``d``: Print an immediate integer as decimal.
3883- ``m``: Subtract one and print an immediate integer as decimal.
3884- ``z``: Print $0 if an immediate zero, otherwise print normally.
3885- ``L``: Print the low-order register of a two-register operand, or prints the
3886 address of the low-order word of a double-word memory operand.
3887
3888 .. FIXME: L seems to be missing memory operand support.
3889
3890- ``M``: Print the high-order register of a two-register operand, or prints the
3891 address of the high-order word of a double-word memory operand.
3892
3893 .. FIXME: M seems to be missing memory operand support.
3894
3895- ``D``: Print the second register of a two-register operand, or prints the
3896 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3897 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3898 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003899- ``w``: No effect. Provided for compatibility with GCC which requires this
3900 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3901 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003902
3903NVPTX:
3904
3905- ``r``: No effect.
3906
3907PowerPC:
3908
3909- ``L``: Print the second register of a two-register operand. Requires that it
3910 has been allocated consecutively to the first.
3911
3912 .. FIXME: why is it restricted to consecutive ones? And there's
3913 nothing that ensures that happens, is there?
3914
3915- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3916 nothing. Used to print 'addi' vs 'add' instructions.
3917- ``y``: For a memory operand, prints formatter for a two-register X-form
3918 instruction. (Currently always prints ``r0,OPERAND``).
3919- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3920 otherwise. (NOTE: LLVM does not support update form, so this will currently
3921 always print nothing)
3922- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3923 not support indexed form, so this will currently always print nothing)
3924
3925Sparc:
3926
3927- ``r``: No effect.
3928
3929SystemZ:
3930
3931SystemZ implements only ``n``, and does *not* support any of the other
3932target-independent modifiers.
3933
3934X86:
3935
3936- ``c``: Print an unadorned integer or symbol name. (The latter is
3937 target-specific behavior for this typically target-independent modifier).
3938- ``A``: Print a register name with a '``*``' before it.
3939- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3940 operand.
3941- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3942 memory operand.
3943- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3944 operand.
3945- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3946 operand.
3947- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3948 available, otherwise the 32-bit register name; do nothing on a memory operand.
3949- ``n``: Negate and print an unadorned integer, or, for operands other than an
3950 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3951 the operand. (The behavior for relocatable symbol expressions is a
3952 target-specific behavior for this typically target-independent modifier)
3953- ``H``: Print a memory reference with additional offset +8.
3954- ``P``: Print a memory reference or operand for use as the argument of a call
3955 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3956
3957XCore:
3958
3959No additional modifiers.
3960
3961
Sean Silvab084af42012-12-07 10:36:55 +00003962Inline Asm Metadata
3963^^^^^^^^^^^^^^^^^^^
3964
3965The call instructions that wrap inline asm nodes may have a
3966"``!srcloc``" MDNode attached to it that contains a list of constant
3967integers. If present, the code generator will use the integer as the
3968location cookie value when report errors through the ``LLVMContext``
3969error reporting mechanisms. This allows a front-end to correlate backend
3970errors that occur with inline asm back to the source code that produced
3971it. For example:
3972
3973.. code-block:: llvm
3974
3975 call void asm sideeffect "something bad", ""(), !srcloc !42
3976 ...
3977 !42 = !{ i32 1234567 }
3978
3979It is up to the front-end to make sense of the magic numbers it places
3980in the IR. If the MDNode contains multiple constants, the code generator
3981will use the one that corresponds to the line of the asm that the error
3982occurs on.
3983
3984.. _metadata:
3985
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003986Metadata
3987========
Sean Silvab084af42012-12-07 10:36:55 +00003988
3989LLVM IR allows metadata to be attached to instructions in the program
3990that can convey extra information about the code to the optimizers and
3991code generator. One example application of metadata is source-level
3992debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003993
Sean Silvaa1190322015-08-06 22:56:48 +00003994Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003995``call`` instruction, it uses the ``metadata`` type.
3996
3997All metadata are identified in syntax by a exclamation point ('``!``').
3998
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003999.. _metadata-string:
4000
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004001Metadata Nodes and Metadata Strings
4002-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00004003
4004A metadata string is a string surrounded by double quotes. It can
4005contain any character by escaping non-printable characters with
4006"``\xx``" where "``xx``" is the two digit hex code. For example:
4007"``!"test\00"``".
4008
4009Metadata nodes are represented with notation similar to structure
4010constants (a comma separated list of elements, surrounded by braces and
4011preceded by an exclamation point). Metadata nodes can have any values as
4012their operand. For example:
4013
4014.. code-block:: llvm
4015
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004016 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00004017
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004018Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
4019
Renato Golin124f2592016-07-20 12:16:38 +00004020.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004021
4022 !0 = distinct !{!"test\00", i32 10}
4023
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004024``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00004025content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004026when metadata operands change.
4027
Sean Silvab084af42012-12-07 10:36:55 +00004028A :ref:`named metadata <namedmetadatastructure>` is a collection of
4029metadata nodes, which can be looked up in the module symbol table. For
4030example:
4031
4032.. code-block:: llvm
4033
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004034 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00004035
Adrian Prantl1b842da2017-07-28 20:44:29 +00004036Metadata can be used as function arguments. Here the ``llvm.dbg.value``
4037intrinsic is using three metadata arguments:
Sean Silvab084af42012-12-07 10:36:55 +00004038
4039.. code-block:: llvm
4040
Adrian Prantlabe04752017-07-28 20:21:02 +00004041 call void @llvm.dbg.value(metadata !24, metadata !25, metadata !26)
Sean Silvab084af42012-12-07 10:36:55 +00004042
Peter Collingbourne50108682015-11-06 02:41:02 +00004043Metadata can be attached to an instruction. Here metadata ``!21`` is attached
4044to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00004045
4046.. code-block:: llvm
4047
4048 %indvar.next = add i64 %indvar, 1, !dbg !21
4049
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004050Metadata can also be attached to a function or a global variable. Here metadata
4051``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
4052and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00004053
4054.. code-block:: llvm
4055
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004056 declare !dbg !22 void @f1()
4057 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00004058 ret void
4059 }
4060
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004061 @g1 = global i32 0, !dbg !22
4062 @g2 = external global i32, !dbg !22
4063
4064A transformation is required to drop any metadata attachment that it does not
4065know or know it can't preserve. Currently there is an exception for metadata
4066attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
4067unconditionally dropped unless the global is itself deleted.
4068
4069Metadata attached to a module using named metadata may not be dropped, with
4070the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
4071
Sean Silvab084af42012-12-07 10:36:55 +00004072More information about specific metadata nodes recognized by the
4073optimizers and code generator is found below.
4074
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004075.. _specialized-metadata:
4076
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004077Specialized Metadata Nodes
4078^^^^^^^^^^^^^^^^^^^^^^^^^^
4079
4080Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00004081to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004082order.
4083
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004084These aren't inherently debug info centric, but currently all the specialized
4085metadata nodes are related to debug info.
4086
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004087.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004088
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004089DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004090"""""""""""""
4091
Sean Silvaa1190322015-08-06 22:56:48 +00004092``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004093``retainedTypes:``, ``globals:``, ``imports:`` and ``macros:`` fields are tuples
4094containing the debug info to be emitted along with the compile unit, regardless
4095of code optimizations (some nodes are only emitted if there are references to
4096them from instructions). The ``debugInfoForProfiling:`` field is a boolean
4097indicating whether or not line-table discriminators are updated to provide
4098more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004099
Renato Golin124f2592016-07-20 12:16:38 +00004100.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004101
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004102 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004103 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004104 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004105 enums: !2, retainedTypes: !3, globals: !4, imports: !5,
4106 macros: !6, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004107
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004108Compile unit descriptors provide the root scope for objects declared in a
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004109specific compilation unit. File descriptors are defined using this scope. These
4110descriptors are collected by a named metadata node ``!llvm.dbg.cu``. They keep
4111track of global variables, type information, and imported entities (declarations
4112and namespaces).
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004113
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004114.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004115
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004116DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004117""""""
4118
Sean Silvaa1190322015-08-06 22:56:48 +00004119``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004120
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004121.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004122
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004123 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4124 checksumkind: CSK_MD5,
4125 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004126
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004127Files are sometimes used in ``scope:`` fields, and are the only valid target
4128for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004129Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004130
Michael Kuperstein605308a2015-05-14 10:58:59 +00004131.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004132
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004133DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004134"""""""""""
4135
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004136``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004137``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004138
Renato Golin124f2592016-07-20 12:16:38 +00004139.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004140
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004141 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004142 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004143 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004144
Sean Silvaa1190322015-08-06 22:56:48 +00004145The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004146following:
4147
Renato Golin124f2592016-07-20 12:16:38 +00004148.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004149
4150 DW_ATE_address = 1
4151 DW_ATE_boolean = 2
4152 DW_ATE_float = 4
4153 DW_ATE_signed = 5
4154 DW_ATE_signed_char = 6
4155 DW_ATE_unsigned = 7
4156 DW_ATE_unsigned_char = 8
4157
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004158.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004159
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004160DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004161""""""""""""""""
4162
Sean Silvaa1190322015-08-06 22:56:48 +00004163``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004164refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004165types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004166represents a function with no return value (such as ``void foo() {}`` in C++).
4167
Renato Golin124f2592016-07-20 12:16:38 +00004168.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004169
4170 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4171 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004172 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004173
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004174.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004175
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004176DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004177"""""""""""""
4178
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004179``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004180qualified types.
4181
Renato Golin124f2592016-07-20 12:16:38 +00004182.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004183
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004184 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004185 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004186 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004187 align: 32)
4188
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004189The following ``tag:`` values are valid:
4190
Renato Golin124f2592016-07-20 12:16:38 +00004191.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004192
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004193 DW_TAG_member = 13
4194 DW_TAG_pointer_type = 15
4195 DW_TAG_reference_type = 16
4196 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004197 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004198 DW_TAG_ptr_to_member_type = 31
4199 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004200 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004201 DW_TAG_volatile_type = 53
4202 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004203 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004204
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004205.. _DIDerivedTypeMember:
4206
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004207``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004208<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004209``offset:`` is the member's bit offset. If the composite type has an ODR
4210``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4211uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004212
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004213``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4214field of :ref:`composite types <DICompositeType>` to describe parents and
4215friends.
4216
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004217``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4218
4219``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004220``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4221are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004222
4223Note that the ``void *`` type is expressed as a type derived from NULL.
4224
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004225.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004226
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004227DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004228"""""""""""""""
4229
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004230``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004231structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004232
4233If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004234identifier used for type merging between modules. When specified,
4235:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4236derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4237``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004238
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004239For a given ``identifier:``, there should only be a single composite type that
4240does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4241together will unique such definitions at parse time via the ``identifier:``
4242field, even if the nodes are ``distinct``.
4243
Renato Golin124f2592016-07-20 12:16:38 +00004244.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004245
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004246 !0 = !DIEnumerator(name: "SixKind", value: 7)
4247 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4248 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4249 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004250 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4251 elements: !{!0, !1, !2})
4252
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004253The following ``tag:`` values are valid:
4254
Renato Golin124f2592016-07-20 12:16:38 +00004255.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004256
4257 DW_TAG_array_type = 1
4258 DW_TAG_class_type = 2
4259 DW_TAG_enumeration_type = 4
4260 DW_TAG_structure_type = 19
4261 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004262
4263For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004264descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004265level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004266array type is a native packed vector.
4267
4268For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004269descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004270value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004271``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004272
4273For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4274``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004275<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4276``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4277``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004278
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004279.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004280
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004281DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004282""""""""""
4283
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004284``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004285:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004286
4287.. code-block:: llvm
4288
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004289 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4290 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4291 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004292
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004293.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004294
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004295DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004296""""""""""""
4297
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004298``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4299variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004300
4301.. code-block:: llvm
4302
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004303 !0 = !DIEnumerator(name: "SixKind", value: 7)
4304 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4305 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004306
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004307DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004308"""""""""""""""""""""""
4309
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004310``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004311language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004312:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004313
4314.. code-block:: llvm
4315
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004316 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004317
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004318DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004319""""""""""""""""""""""""
4320
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004321``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004322language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004323but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004324``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004325:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004326
4327.. code-block:: llvm
4328
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004329 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004330
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004331DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004332"""""""""""
4333
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004334``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004335
4336.. code-block:: llvm
4337
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004338 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004339
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004340DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004341""""""""""""""""
4342
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004343``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004344
4345.. code-block:: llvm
4346
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004347 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004348 file: !2, line: 7, type: !3, isLocal: true,
4349 isDefinition: false, variable: i32* @foo,
4350 declaration: !4)
4351
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004352All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004353:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004354
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004355.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004356
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004357DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004358""""""""""""
4359
Peter Collingbourne50108682015-11-06 02:41:02 +00004360``DISubprogram`` nodes represent functions from the source language. A
4361``DISubprogram`` may be attached to a function definition using ``!dbg``
4362metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4363that must be retained, even if their IR counterparts are optimized out of
4364the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004365
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004366.. _DISubprogramDeclaration:
4367
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004368When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004369tree as opposed to a definition of a function. If the scope is a composite
4370type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4371then the subprogram declaration is uniqued based only on its ``linkageName:``
4372and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004373
Renato Golin124f2592016-07-20 12:16:38 +00004374.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004375
Peter Collingbourne50108682015-11-06 02:41:02 +00004376 define void @_Z3foov() !dbg !0 {
4377 ...
4378 }
4379
4380 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4381 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004382 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004383 containingType: !4,
4384 virtuality: DW_VIRTUALITY_pure_virtual,
4385 virtualIndex: 10, flags: DIFlagPrototyped,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004386 isOptimized: true, unit: !5, templateParams: !6,
4387 declaration: !7, variables: !8, thrownTypes: !9)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004388
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004389.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004390
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004391DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004392""""""""""""""
4393
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004394``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004395<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004396two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004397fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004398
Renato Golin124f2592016-07-20 12:16:38 +00004399.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004400
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004401 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004402
4403Usually lexical blocks are ``distinct`` to prevent node merging based on
4404operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004405
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004406.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004407
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004408DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004409""""""""""""""""""
4410
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004411``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004412:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004413indicate textual inclusion, or the ``discriminator:`` field can be used to
4414discriminate between control flow within a single block in the source language.
4415
4416.. code-block:: llvm
4417
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004418 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4419 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4420 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004421
Michael Kuperstein605308a2015-05-14 10:58:59 +00004422.. _DILocation:
4423
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004424DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004425""""""""""
4426
Sean Silvaa1190322015-08-06 22:56:48 +00004427``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004428mandatory, and points at an :ref:`DILexicalBlockFile`, an
4429:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004430
4431.. code-block:: llvm
4432
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004433 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004434
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004435.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004436
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004437DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004438"""""""""""""""
4439
Sean Silvaa1190322015-08-06 22:56:48 +00004440``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004441the ``arg:`` field is set to non-zero, then this variable is a subprogram
4442parameter, and it will be included in the ``variables:`` field of its
4443:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004444
Renato Golin124f2592016-07-20 12:16:38 +00004445.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004446
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004447 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4448 type: !3, flags: DIFlagArtificial)
4449 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4450 type: !3)
4451 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004452
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004453DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004454""""""""""""
4455
Adrian Prantlb44c7762017-03-22 18:01:01 +00004456``DIExpression`` nodes represent expressions that are inspired by the DWARF
4457expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
4458(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
4459referenced LLVM variable relates to the source language variable.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004460
4461The current supported vocabulary is limited:
4462
Adrian Prantl6825fb62017-04-18 01:21:53 +00004463- ``DW_OP_deref`` dereferences the top of the expression stack.
Florian Hahnffc498d2017-06-14 13:14:38 +00004464- ``DW_OP_plus`` pops the last two entries from the expression stack, adds
4465 them together and appends the result to the expression stack.
4466- ``DW_OP_minus`` pops the last two entries from the expression stack, subtracts
4467 the last entry from the second last entry and appends the result to the
4468 expression stack.
Florian Hahnc9c403c2017-06-13 16:54:44 +00004469- ``DW_OP_plus_uconst, 93`` adds ``93`` to the working expression.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004470- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
4471 here, respectively) of the variable fragment from the working expression. Note
4472 that contrary to DW_OP_bit_piece, the offset is describing the the location
4473 within the described source variable.
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004474- ``DW_OP_swap`` swaps top two stack entries.
4475- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
4476 of the stack is treated as an address. The second stack entry is treated as an
4477 address space identifier.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004478- ``DW_OP_stack_value`` marks a constant value.
4479
Adrian Prantl6825fb62017-04-18 01:21:53 +00004480DWARF specifies three kinds of simple location descriptions: Register, memory,
4481and implicit location descriptions. Register and memory location descriptions
4482describe the *location* of a source variable (in the sense that a debugger might
4483modify its value), whereas implicit locations describe merely the *value* of a
4484source variable. DIExpressions also follow this model: A DIExpression that
4485doesn't have a trailing ``DW_OP_stack_value`` will describe an *address* when
4486combined with a concrete location.
4487
4488.. code-block:: llvm
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004489
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004490 !0 = !DIExpression(DW_OP_deref)
Florian Hahnc9c403c2017-06-13 16:54:44 +00004491 !1 = !DIExpression(DW_OP_plus_uconst, 3)
Florian Hahnffc498d2017-06-14 13:14:38 +00004492 !1 = !DIExpression(DW_OP_constu, 3, DW_OP_plus)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004493 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
Florian Hahnffc498d2017-06-14 13:14:38 +00004494 !3 = !DIExpression(DW_OP_deref, DW_OP_constu, 3, DW_OP_plus, DW_OP_LLVM_fragment, 3, 7)
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004495 !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004496 !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004497
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004498DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004499""""""""""""""
4500
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004501``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004502
4503.. code-block:: llvm
4504
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004505 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004506 getter: "getFoo", attributes: 7, type: !2)
4507
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004508DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004509""""""""""""""""
4510
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004511``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004512compile unit.
4513
Renato Golin124f2592016-07-20 12:16:38 +00004514.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004515
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004516 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004517 entity: !1, line: 7)
4518
Amjad Abouda9bcf162015-12-10 12:56:35 +00004519DIMacro
4520"""""""
4521
4522``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4523The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004524defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004525used to expand the macro identifier.
4526
Renato Golin124f2592016-07-20 12:16:38 +00004527.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004528
4529 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4530 value: "((x) + 1)")
4531 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4532
4533DIMacroFile
4534"""""""""""
4535
4536``DIMacroFile`` nodes represent inclusion of source files.
4537The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4538appear in the included source file.
4539
Renato Golin124f2592016-07-20 12:16:38 +00004540.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004541
4542 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4543 nodes: !3)
4544
Sean Silvab084af42012-12-07 10:36:55 +00004545'``tbaa``' Metadata
4546^^^^^^^^^^^^^^^^^^^
4547
4548In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004549suitable for doing type based alias analysis (TBAA). Instead, metadata is
4550added to the IR to describe a type system of a higher level language. This
4551can be used to implement C/C++ strict type aliasing rules, but it can also
4552be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004553
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004554This description of LLVM's TBAA system is broken into two parts:
4555:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4556:ref:`Representation<tbaa_node_representation>` talks about the metadata
4557encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004558
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004559It is always possible to trace any TBAA node to a "root" TBAA node (details
4560in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4561nodes with different roots have an unknown aliasing relationship, and LLVM
4562conservatively infers ``MayAlias`` between them. The rules mentioned in
4563this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004564
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004565.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004566
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004567Semantics
4568"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004569
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004570The TBAA metadata system, referred to as "struct path TBAA" (not to be
4571confused with ``tbaa.struct``), consists of the following high level
4572concepts: *Type Descriptors*, further subdivided into scalar type
4573descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004574
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004575**Type descriptors** describe the type system of the higher level language
4576being compiled. **Scalar type descriptors** describe types that do not
4577contain other types. Each scalar type has a parent type, which must also
4578be a scalar type or the TBAA root. Via this parent relation, scalar types
4579within a TBAA root form a tree. **Struct type descriptors** denote types
4580that contain a sequence of other type descriptors, at known offsets. These
4581contained type descriptors can either be struct type descriptors themselves
4582or scalar type descriptors.
4583
4584**Access tags** are metadata nodes attached to load and store instructions.
4585Access tags use type descriptors to describe the *location* being accessed
4586in terms of the type system of the higher level language. Access tags are
4587tuples consisting of a base type, an access type and an offset. The base
4588type is a scalar type descriptor or a struct type descriptor, the access
4589type is a scalar type descriptor, and the offset is a constant integer.
4590
4591The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4592things:
4593
4594 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4595 or store) of a value of type ``AccessTy`` contained in the struct type
4596 ``BaseTy`` at offset ``Offset``.
4597
4598 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4599 ``AccessTy`` must be the same; and the access tag describes a scalar
4600 access with scalar type ``AccessTy``.
4601
4602We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4603tuples this way:
4604
4605 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4606 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4607 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4608 undefined if ``Offset`` is non-zero.
4609
4610 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4611 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4612 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4613 to be relative within that inner type.
4614
4615A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4616aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4617Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4618Offset2)`` via the ``Parent`` relation or vice versa.
4619
4620As a concrete example, the type descriptor graph for the following program
4621
4622.. code-block:: c
4623
4624 struct Inner {
4625 int i; // offset 0
4626 float f; // offset 4
4627 };
4628
4629 struct Outer {
4630 float f; // offset 0
4631 double d; // offset 4
4632 struct Inner inner_a; // offset 12
4633 };
4634
4635 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4636 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4637 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
4638 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, IntScalarTy, 16)
4639 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4640 }
4641
4642is (note that in C and C++, ``char`` can be used to access any arbitrary
4643type):
4644
4645.. code-block:: text
4646
4647 Root = "TBAA Root"
4648 CharScalarTy = ("char", Root, 0)
4649 FloatScalarTy = ("float", CharScalarTy, 0)
4650 DoubleScalarTy = ("double", CharScalarTy, 0)
4651 IntScalarTy = ("int", CharScalarTy, 0)
4652 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4653 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4654 (InnerStructTy, 12)}
4655
4656
4657with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
46580)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4659``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4660
4661.. _tbaa_node_representation:
4662
4663Representation
4664""""""""""""""
4665
4666The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4667with exactly one ``MDString`` operand.
4668
4669Scalar type descriptors are represented as an ``MDNode`` s with two
4670operands. The first operand is an ``MDString`` denoting the name of the
4671struct type. LLVM does not assign meaning to the value of this operand, it
4672only cares about it being an ``MDString``. The second operand is an
4673``MDNode`` which points to the parent for said scalar type descriptor,
4674which is either another scalar type descriptor or the TBAA root. Scalar
4675type descriptors can have an optional third argument, but that must be the
4676constant integer zero.
4677
4678Struct type descriptors are represented as ``MDNode`` s with an odd number
4679of operands greater than 1. The first operand is an ``MDString`` denoting
4680the name of the struct type. Like in scalar type descriptors the actual
4681value of this name operand is irrelevant to LLVM. After the name operand,
4682the struct type descriptors have a sequence of alternating ``MDNode`` and
4683``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4684an ``MDNode``, denotes a contained field, and the 2N th operand, a
4685``ConstantInt``, is the offset of the said contained field. The offsets
4686must be in non-decreasing order.
4687
4688Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4689The first operand is an ``MDNode`` pointing to the node representing the
4690base type. The second operand is an ``MDNode`` pointing to the node
4691representing the access type. The third operand is a ``ConstantInt`` that
4692states the offset of the access. If a fourth field is present, it must be
4693a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4694that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004695``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004696AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4697the access type and the base type of an access tag must be the same, and
4698that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004699
4700'``tbaa.struct``' Metadata
4701^^^^^^^^^^^^^^^^^^^^^^^^^^
4702
4703The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4704aggregate assignment operations in C and similar languages, however it
4705is defined to copy a contiguous region of memory, which is more than
4706strictly necessary for aggregate types which contain holes due to
4707padding. Also, it doesn't contain any TBAA information about the fields
4708of the aggregate.
4709
4710``!tbaa.struct`` metadata can describe which memory subregions in a
4711memcpy are padding and what the TBAA tags of the struct are.
4712
4713The current metadata format is very simple. ``!tbaa.struct`` metadata
4714nodes are a list of operands which are in conceptual groups of three.
4715For each group of three, the first operand gives the byte offset of a
4716field in bytes, the second gives its size in bytes, and the third gives
4717its tbaa tag. e.g.:
4718
4719.. code-block:: llvm
4720
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004721 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004722
4723This describes a struct with two fields. The first is at offset 0 bytes
4724with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4725and has size 4 bytes and has tbaa tag !2.
4726
4727Note that the fields need not be contiguous. In this example, there is a
47284 byte gap between the two fields. This gap represents padding which
4729does not carry useful data and need not be preserved.
4730
Hal Finkel94146652014-07-24 14:25:39 +00004731'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004732^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004733
4734``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4735noalias memory-access sets. This means that some collection of memory access
4736instructions (loads, stores, memory-accessing calls, etc.) that carry
4737``noalias`` metadata can specifically be specified not to alias with some other
4738collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004739Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004740a domain.
4741
4742When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004743of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004744subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004745instruction's ``noalias`` list, then the two memory accesses are assumed not to
4746alias.
Hal Finkel94146652014-07-24 14:25:39 +00004747
Adam Nemet569a5b32016-04-27 00:52:48 +00004748Because scopes in one domain don't affect scopes in other domains, separate
4749domains can be used to compose multiple independent noalias sets. This is
4750used for example during inlining. As the noalias function parameters are
4751turned into noalias scope metadata, a new domain is used every time the
4752function is inlined.
4753
Hal Finkel029cde62014-07-25 15:50:02 +00004754The metadata identifying each domain is itself a list containing one or two
4755entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004756string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004757self-reference can be used to create globally unique domain names. A
4758descriptive string may optionally be provided as a second list entry.
4759
4760The metadata identifying each scope is also itself a list containing two or
4761three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004762is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004763self-reference can be used to create globally unique scope names. A metadata
4764reference to the scope's domain is the second entry. A descriptive string may
4765optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004766
4767For example,
4768
4769.. code-block:: llvm
4770
Hal Finkel029cde62014-07-25 15:50:02 +00004771 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004772 !0 = !{!0}
4773 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004774
Hal Finkel029cde62014-07-25 15:50:02 +00004775 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004776 !2 = !{!2, !0}
4777 !3 = !{!3, !0}
4778 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004779
Hal Finkel029cde62014-07-25 15:50:02 +00004780 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004781 !5 = !{!4} ; A list containing only scope !4
4782 !6 = !{!4, !3, !2}
4783 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004784
4785 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004786 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004787 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004788
Hal Finkel029cde62014-07-25 15:50:02 +00004789 ; These two instructions also don't alias (for domain !1, the set of scopes
4790 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004791 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004792 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004793
Adam Nemet0a8416f2015-05-11 08:30:28 +00004794 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004795 ; the !noalias list is not a superset of, or equal to, the scopes in the
4796 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004797 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004798 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004799
Sean Silvab084af42012-12-07 10:36:55 +00004800'``fpmath``' Metadata
4801^^^^^^^^^^^^^^^^^^^^^
4802
4803``fpmath`` metadata may be attached to any instruction of floating point
4804type. It can be used to express the maximum acceptable error in the
4805result of that instruction, in ULPs, thus potentially allowing the
4806compiler to use a more efficient but less accurate method of computing
4807it. ULP is defined as follows:
4808
4809 If ``x`` is a real number that lies between two finite consecutive
4810 floating-point numbers ``a`` and ``b``, without being equal to one
4811 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4812 distance between the two non-equal finite floating-point numbers
4813 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4814
Matt Arsenault82f41512016-06-27 19:43:15 +00004815The metadata node shall consist of a single positive float type number
4816representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004817
4818.. code-block:: llvm
4819
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004820 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004821
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004822.. _range-metadata:
4823
Sean Silvab084af42012-12-07 10:36:55 +00004824'``range``' Metadata
4825^^^^^^^^^^^^^^^^^^^^
4826
Jingyue Wu37fcb592014-06-19 16:50:16 +00004827``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4828integer types. It expresses the possible ranges the loaded value or the value
4829returned by the called function at this call site is in. The ranges are
4830represented with a flattened list of integers. The loaded value or the value
4831returned is known to be in the union of the ranges defined by each consecutive
4832pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004833
4834- The type must match the type loaded by the instruction.
4835- The pair ``a,b`` represents the range ``[a,b)``.
4836- Both ``a`` and ``b`` are constants.
4837- The range is allowed to wrap.
4838- The range should not represent the full or empty set. That is,
4839 ``a!=b``.
4840
4841In addition, the pairs must be in signed order of the lower bound and
4842they must be non-contiguous.
4843
4844Examples:
4845
4846.. code-block:: llvm
4847
David Blaikiec7aabbb2015-03-04 22:06:14 +00004848 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4849 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004850 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4851 %d = invoke i8 @bar() to label %cont
4852 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004853 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004854 !0 = !{ i8 0, i8 2 }
4855 !1 = !{ i8 255, i8 2 }
4856 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4857 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004858
Peter Collingbourne235c2752016-12-08 19:01:00 +00004859'``absolute_symbol``' Metadata
4860^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4861
4862``absolute_symbol`` metadata may be attached to a global variable
4863declaration. It marks the declaration as a reference to an absolute symbol,
4864which causes the backend to use absolute relocations for the symbol even
4865in position independent code, and expresses the possible ranges that the
4866global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00004867``range`` metadata, with the extension that the pair ``all-ones,all-ones``
4868may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00004869
Peter Collingbourned88f9282017-01-20 21:56:37 +00004870Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00004871
4872.. code-block:: llvm
4873
4874 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00004875 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00004876
4877 ...
4878 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00004879 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00004880
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004881'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004882^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004883
4884``unpredictable`` metadata may be attached to any branch or switch
4885instruction. It can be used to express the unpredictability of control
4886flow. Similar to the llvm.expect intrinsic, it may be used to alter
4887optimizations related to compare and branch instructions. The metadata
4888is treated as a boolean value; if it exists, it signals that the branch
4889or switch that it is attached to is completely unpredictable.
4890
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004891'``llvm.loop``'
4892^^^^^^^^^^^^^^^
4893
4894It is sometimes useful to attach information to loop constructs. Currently,
4895loop metadata is implemented as metadata attached to the branch instruction
4896in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004897guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004898specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004899
4900The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004901itself to avoid merging it with any other identifier metadata, e.g.,
4902during module linkage or function inlining. That is, each loop should refer
4903to their own identification metadata even if they reside in separate functions.
4904The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004905constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004906
4907.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004908
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004909 !0 = !{!0}
4910 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004911
Mark Heffernan893752a2014-07-18 19:24:51 +00004912The loop identifier metadata can be used to specify additional
4913per-loop metadata. Any operands after the first operand can be treated
4914as user-defined metadata. For example the ``llvm.loop.unroll.count``
4915suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004916
Paul Redmond5fdf8362013-05-28 20:00:34 +00004917.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004918
Paul Redmond5fdf8362013-05-28 20:00:34 +00004919 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4920 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004921 !0 = !{!0, !1}
4922 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004923
Mark Heffernan9d20e422014-07-21 23:11:03 +00004924'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4925^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004926
Mark Heffernan9d20e422014-07-21 23:11:03 +00004927Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4928used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004929vectorization width and interleave count. These metadata should be used in
4930conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004931``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4932optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004933it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004934which contains information about loop-carried memory dependencies can be helpful
4935in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004936
Mark Heffernan9d20e422014-07-21 23:11:03 +00004937'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004938^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4939
Mark Heffernan9d20e422014-07-21 23:11:03 +00004940This metadata suggests an interleave count to the loop interleaver.
4941The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004942second operand is an integer specifying the interleave count. For
4943example:
4944
4945.. code-block:: llvm
4946
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004947 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004948
Mark Heffernan9d20e422014-07-21 23:11:03 +00004949Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004950multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004951then the interleave count will be determined automatically.
4952
4953'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004954^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004955
4956This metadata selectively enables or disables vectorization for the loop. The
4957first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004958is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000049590 disables vectorization:
4960
4961.. code-block:: llvm
4962
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004963 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4964 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004965
4966'``llvm.loop.vectorize.width``' Metadata
4967^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4968
4969This metadata sets the target width of the vectorizer. The first
4970operand is the string ``llvm.loop.vectorize.width`` and the second
4971operand is an integer specifying the width. For example:
4972
4973.. code-block:: llvm
4974
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004975 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004976
4977Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004978vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000049790 or if the loop does not have this metadata the width will be
4980determined automatically.
4981
4982'``llvm.loop.unroll``'
4983^^^^^^^^^^^^^^^^^^^^^^
4984
4985Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4986optimization hints such as the unroll factor. ``llvm.loop.unroll``
4987metadata should be used in conjunction with ``llvm.loop`` loop
4988identification metadata. The ``llvm.loop.unroll`` metadata are only
4989optimization hints and the unrolling will only be performed if the
4990optimizer believes it is safe to do so.
4991
Mark Heffernan893752a2014-07-18 19:24:51 +00004992'``llvm.loop.unroll.count``' Metadata
4993^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4994
4995This metadata suggests an unroll factor to the loop unroller. The
4996first operand is the string ``llvm.loop.unroll.count`` and the second
4997operand is a positive integer specifying the unroll factor. For
4998example:
4999
5000.. code-block:: llvm
5001
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005002 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005003
5004If the trip count of the loop is less than the unroll count the loop
5005will be partially unrolled.
5006
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005007'``llvm.loop.unroll.disable``' Metadata
5008^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5009
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005010This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00005011which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005012
5013.. code-block:: llvm
5014
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005015 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005016
Kevin Qin715b01e2015-03-09 06:14:18 +00005017'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00005018^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00005019
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005020This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00005021operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00005022
5023.. code-block:: llvm
5024
5025 !0 = !{!"llvm.loop.unroll.runtime.disable"}
5026
Mark Heffernan89391542015-08-10 17:28:08 +00005027'``llvm.loop.unroll.enable``' Metadata
5028^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5029
5030This metadata suggests that the loop should be fully unrolled if the trip count
5031is known at compile time and partially unrolled if the trip count is not known
5032at compile time. The metadata has a single operand which is the string
5033``llvm.loop.unroll.enable``. For example:
5034
5035.. code-block:: llvm
5036
5037 !0 = !{!"llvm.loop.unroll.enable"}
5038
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005039'``llvm.loop.unroll.full``' Metadata
5040^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5041
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005042This metadata suggests that the loop should be unrolled fully. The
5043metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005044For example:
5045
5046.. code-block:: llvm
5047
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005048 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005049
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005050'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00005051^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005052
5053This metadata indicates that the loop should not be versioned for the purpose
5054of enabling loop-invariant code motion (LICM). The metadata has a single operand
5055which is the string ``llvm.loop.licm_versioning.disable``. For example:
5056
5057.. code-block:: llvm
5058
5059 !0 = !{!"llvm.loop.licm_versioning.disable"}
5060
Adam Nemetd2fa4142016-04-27 05:28:18 +00005061'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00005062^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00005063
5064Loop distribution allows splitting a loop into multiple loops. Currently,
5065this is only performed if the entire loop cannot be vectorized due to unsafe
Hiroshi Inoueb93daec2017-07-02 12:44:27 +00005066memory dependencies. The transformation will attempt to isolate the unsafe
Adam Nemetd2fa4142016-04-27 05:28:18 +00005067dependencies into their own loop.
5068
5069This metadata can be used to selectively enable or disable distribution of the
5070loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
5071second operand is a bit. If the bit operand value is 1 distribution is
5072enabled. A value of 0 disables distribution:
5073
5074.. code-block:: llvm
5075
5076 !0 = !{!"llvm.loop.distribute.enable", i1 0}
5077 !1 = !{!"llvm.loop.distribute.enable", i1 1}
5078
5079This metadata should be used in conjunction with ``llvm.loop`` loop
5080identification metadata.
5081
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005082'``llvm.mem``'
5083^^^^^^^^^^^^^^^
5084
5085Metadata types used to annotate memory accesses with information helpful
5086for optimizations are prefixed with ``llvm.mem``.
5087
5088'``llvm.mem.parallel_loop_access``' Metadata
5089^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5090
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005091The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
5092or metadata containing a list of loop identifiers for nested loops.
5093The metadata is attached to memory accessing instructions and denotes that
5094no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00005095with the same loop identifier. The metadata on memory reads also implies that
5096if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005097
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005098Precisely, given two instructions ``m1`` and ``m2`` that both have the
5099``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
5100set of loops associated with that metadata, respectively, then there is no loop
5101carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005102``L2``.
5103
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005104As a special case, if all memory accessing instructions in a loop have
5105``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
5106loop has no loop carried memory dependences and is considered to be a parallel
5107loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005108
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005109Note that if not all memory access instructions have such metadata referring to
5110the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00005111memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005112safe mechanism, this causes loops that were originally parallel to be considered
5113sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005114insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005115
5116Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00005117both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005118metadata types that refer to the same loop identifier metadata.
5119
5120.. code-block:: llvm
5121
5122 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005123 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005124 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005125 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005126 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005127 ...
5128 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005129
5130 for.end:
5131 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005132 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005133
5134It is also possible to have nested parallel loops. In that case the
5135memory accesses refer to a list of loop identifier metadata nodes instead of
5136the loop identifier metadata node directly:
5137
5138.. code-block:: llvm
5139
5140 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005141 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005142 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005143 ...
5144 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005145
5146 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005147 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005148 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005149 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005150 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005151 ...
5152 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005153
5154 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005155 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005156 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00005157 ...
5158 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005159
5160 outer.for.end: ; preds = %for.body
5161 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005162 !0 = !{!1, !2} ; a list of loop identifiers
5163 !1 = !{!1} ; an identifier for the inner loop
5164 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005165
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005166'``invariant.group``' Metadata
5167^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5168
5169The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
5170The existence of the ``invariant.group`` metadata on the instruction tells
5171the optimizer that every ``load`` and ``store`` to the same pointer operand
5172within the same invariant group can be assumed to load or store the same
5173value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005174when two pointers are considered the same). Pointers returned by bitcast or
5175getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005176
5177Examples:
5178
5179.. code-block:: llvm
5180
5181 @unknownPtr = external global i8
5182 ...
5183 %ptr = alloca i8
5184 store i8 42, i8* %ptr, !invariant.group !0
5185 call void @foo(i8* %ptr)
5186
5187 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5188 call void @foo(i8* %ptr)
5189 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
5190
5191 %newPtr = call i8* @getPointer(i8* %ptr)
5192 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
5193
5194 %unknownValue = load i8, i8* @unknownPtr
5195 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
5196
5197 call void @foo(i8* %ptr)
5198 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
5199 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
5200
5201 ...
5202 declare void @foo(i8*)
5203 declare i8* @getPointer(i8*)
5204 declare i8* @llvm.invariant.group.barrier(i8*)
5205
5206 !0 = !{!"magic ptr"}
5207 !1 = !{!"other ptr"}
5208
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005209The invariant.group metadata must be dropped when replacing one pointer by
5210another based on aliasing information. This is because invariant.group is tied
5211to the SSA value of the pointer operand.
5212
5213.. code-block:: llvm
Piotr Padlewskiaa1b2412017-04-12 11:18:19 +00005214
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005215 %v = load i8, i8* %x, !invariant.group !0
5216 ; if %x mustalias %y then we can replace the above instruction with
5217 %v = load i8, i8* %y
5218
5219
Peter Collingbournea333db82016-07-26 22:31:30 +00005220'``type``' Metadata
5221^^^^^^^^^^^^^^^^^^^
5222
5223See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005224
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005225'``associated``' Metadata
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005226^^^^^^^^^^^^^^^^^^^^^^^^^
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005227
5228The ``associated`` metadata may be attached to a global object
5229declaration with a single argument that references another global object.
5230
5231This metadata prevents discarding of the global object in linker GC
5232unless the referenced object is also discarded. The linker support for
5233this feature is spotty. For best compatibility, globals carrying this
5234metadata may also:
5235
5236- Be in a comdat with the referenced global.
5237- Be in @llvm.compiler.used.
5238- Have an explicit section with a name which is a valid C identifier.
5239
5240It does not have any effect on non-ELF targets.
5241
5242Example:
5243
5244.. code-block:: llvm
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005245
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005246 $a = comdat any
5247 @a = global i32 1, comdat $a
5248 @b = internal global i32 2, comdat $a, section "abc", !associated !0
5249 !0 = !{i32* @a}
5250
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005251
Teresa Johnsond72f51c2017-06-15 15:57:12 +00005252'``prof``' Metadata
5253^^^^^^^^^^^^^^^^^^^
5254
5255The ``prof`` metadata is used to record profile data in the IR.
5256The first operand of the metadata node indicates the profile metadata
5257type. There are currently 3 types:
5258:ref:`branch_weights<prof_node_branch_weights>`,
5259:ref:`function_entry_count<prof_node_function_entry_count>`, and
5260:ref:`VP<prof_node_VP>`.
5261
5262.. _prof_node_branch_weights:
5263
5264branch_weights
5265""""""""""""""
5266
5267Branch weight metadata attached to a branch, select, switch or call instruction
5268represents the likeliness of the associated branch being taken.
5269For more information, see :doc:`BranchWeightMetadata`.
5270
5271.. _prof_node_function_entry_count:
5272
5273function_entry_count
5274""""""""""""""""""""
5275
5276Function entry count metadata can be attached to function definitions
5277to record the number of times the function is called. Used with BFI
5278information, it is also used to derive the basic block profile count.
5279For more information, see :doc:`BranchWeightMetadata`.
5280
5281.. _prof_node_VP:
5282
5283VP
5284""
5285
5286VP (value profile) metadata can be attached to instructions that have
5287value profile information. Currently this is indirect calls (where it
5288records the hottest callees) and calls to memory intrinsics such as memcpy,
5289memmove, and memset (where it records the hottest byte lengths).
5290
5291Each VP metadata node contains "VP" string, then a uint32_t value for the value
5292profiling kind, a uint64_t value for the total number of times the instruction
5293is executed, followed by uint64_t value and execution count pairs.
5294The value profiling kind is 0 for indirect call targets and 1 for memory
5295operations. For indirect call targets, each profile value is a hash
5296of the callee function name, and for memory operations each value is the
5297byte length.
5298
5299Note that the value counts do not need to add up to the total count
5300listed in the third operand (in practice only the top hottest values
5301are tracked and reported).
5302
5303Indirect call example:
5304
5305.. code-block:: llvm
5306
5307 call void %f(), !prof !1
5308 !1 = !{!"VP", i32 0, i64 1600, i64 7651369219802541373, i64 1030, i64 -4377547752858689819, i64 410}
5309
5310Note that the VP type is 0 (the second operand), which indicates this is
5311an indirect call value profile data. The third operand indicates that the
5312indirect call executed 1600 times. The 4th and 6th operands give the
5313hashes of the 2 hottest target functions' names (this is the same hash used
5314to represent function names in the profile database), and the 5th and 7th
5315operands give the execution count that each of the respective prior target
5316functions was called.
5317
Sean Silvab084af42012-12-07 10:36:55 +00005318Module Flags Metadata
5319=====================
5320
5321Information about the module as a whole is difficult to convey to LLVM's
5322subsystems. The LLVM IR isn't sufficient to transmit this information.
5323The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005324this. These flags are in the form of key / value pairs --- much like a
5325dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005326look it up.
5327
5328The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5329Each triplet has the following form:
5330
5331- The first element is a *behavior* flag, which specifies the behavior
5332 when two (or more) modules are merged together, and it encounters two
5333 (or more) metadata with the same ID. The supported behaviors are
5334 described below.
5335- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005336 metadata. Each module may only have one flag entry for each unique ID (not
5337 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005338- The third element is the value of the flag.
5339
5340When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005341``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5342each unique metadata ID string, there will be exactly one entry in the merged
5343modules ``llvm.module.flags`` metadata table, and the value for that entry will
5344be determined by the merge behavior flag, as described below. The only exception
5345is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005346
5347The following behaviors are supported:
5348
5349.. list-table::
5350 :header-rows: 1
5351 :widths: 10 90
5352
5353 * - Value
5354 - Behavior
5355
5356 * - 1
5357 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005358 Emits an error if two values disagree, otherwise the resulting value
5359 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005360
5361 * - 2
5362 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005363 Emits a warning if two values disagree. The result value will be the
5364 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005365
5366 * - 3
5367 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005368 Adds a requirement that another module flag be present and have a
5369 specified value after linking is performed. The value must be a
5370 metadata pair, where the first element of the pair is the ID of the
5371 module flag to be restricted, and the second element of the pair is
5372 the value the module flag should be restricted to. This behavior can
5373 be used to restrict the allowable results (via triggering of an
5374 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005375
5376 * - 4
5377 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005378 Uses the specified value, regardless of the behavior or value of the
5379 other module. If both modules specify **Override**, but the values
5380 differ, an error will be emitted.
5381
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005382 * - 5
5383 - **Append**
5384 Appends the two values, which are required to be metadata nodes.
5385
5386 * - 6
5387 - **AppendUnique**
5388 Appends the two values, which are required to be metadata
5389 nodes. However, duplicate entries in the second list are dropped
5390 during the append operation.
5391
Steven Wu86a511e2017-08-15 16:16:33 +00005392 * - 7
5393 - **Max**
5394 Takes the max of the two values, which are required to be integers.
5395
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005396It is an error for a particular unique flag ID to have multiple behaviors,
5397except in the case of **Require** (which adds restrictions on another metadata
5398value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005399
5400An example of module flags:
5401
5402.. code-block:: llvm
5403
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005404 !0 = !{ i32 1, !"foo", i32 1 }
5405 !1 = !{ i32 4, !"bar", i32 37 }
5406 !2 = !{ i32 2, !"qux", i32 42 }
5407 !3 = !{ i32 3, !"qux",
5408 !{
5409 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005410 }
5411 }
5412 !llvm.module.flags = !{ !0, !1, !2, !3 }
5413
5414- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5415 if two or more ``!"foo"`` flags are seen is to emit an error if their
5416 values are not equal.
5417
5418- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5419 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005420 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005421
5422- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5423 behavior if two or more ``!"qux"`` flags are seen is to emit a
5424 warning if their values are not equal.
5425
5426- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5427
5428 ::
5429
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005430 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005431
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005432 The behavior is to emit an error if the ``llvm.module.flags`` does not
5433 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5434 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005435
5436Objective-C Garbage Collection Module Flags Metadata
5437----------------------------------------------------
5438
5439On the Mach-O platform, Objective-C stores metadata about garbage
5440collection in a special section called "image info". The metadata
5441consists of a version number and a bitmask specifying what types of
5442garbage collection are supported (if any) by the file. If two or more
5443modules are linked together their garbage collection metadata needs to
5444be merged rather than appended together.
5445
5446The Objective-C garbage collection module flags metadata consists of the
5447following key-value pairs:
5448
5449.. list-table::
5450 :header-rows: 1
5451 :widths: 30 70
5452
5453 * - Key
5454 - Value
5455
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005456 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005457 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005458
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005459 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005460 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005461 always 0.
5462
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005463 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005464 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005465 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5466 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5467 Objective-C ABI version 2.
5468
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005469 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005470 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005471 not. Valid values are 0, for no garbage collection, and 2, for garbage
5472 collection supported.
5473
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005474 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005475 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005476 If present, its value must be 6. This flag requires that the
5477 ``Objective-C Garbage Collection`` flag have the value 2.
5478
5479Some important flag interactions:
5480
5481- If a module with ``Objective-C Garbage Collection`` set to 0 is
5482 merged with a module with ``Objective-C Garbage Collection`` set to
5483 2, then the resulting module has the
5484 ``Objective-C Garbage Collection`` flag set to 0.
5485- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5486 merged with a module with ``Objective-C GC Only`` set to 6.
5487
Oliver Stannard5dc29342014-06-20 10:08:11 +00005488C type width Module Flags Metadata
5489----------------------------------
5490
5491The ARM backend emits a section into each generated object file describing the
5492options that it was compiled with (in a compiler-independent way) to prevent
5493linking incompatible objects, and to allow automatic library selection. Some
5494of these options are not visible at the IR level, namely wchar_t width and enum
5495width.
5496
5497To pass this information to the backend, these options are encoded in module
5498flags metadata, using the following key-value pairs:
5499
5500.. list-table::
5501 :header-rows: 1
5502 :widths: 30 70
5503
5504 * - Key
5505 - Value
5506
5507 * - short_wchar
5508 - * 0 --- sizeof(wchar_t) == 4
5509 * 1 --- sizeof(wchar_t) == 2
5510
5511 * - short_enum
5512 - * 0 --- Enums are at least as large as an ``int``.
5513 * 1 --- Enums are stored in the smallest integer type which can
5514 represent all of its values.
5515
5516For example, the following metadata section specifies that the module was
5517compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5518enum is the smallest type which can represent all of its values::
5519
5520 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005521 !0 = !{i32 1, !"short_wchar", i32 1}
5522 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005523
Peter Collingbourne89061b22017-06-12 20:10:48 +00005524Automatic Linker Flags Named Metadata
5525=====================================
5526
5527Some targets support embedding flags to the linker inside individual object
5528files. Typically this is used in conjunction with language extensions which
5529allow source files to explicitly declare the libraries they depend on, and have
5530these automatically be transmitted to the linker via object files.
5531
5532These flags are encoded in the IR using named metadata with the name
5533``!llvm.linker.options``. Each operand is expected to be a metadata node
5534which should be a list of other metadata nodes, each of which should be a
5535list of metadata strings defining linker options.
5536
5537For example, the following metadata section specifies two separate sets of
5538linker options, presumably to link against ``libz`` and the ``Cocoa``
5539framework::
5540
5541 !0 = !{ !"-lz" },
5542 !1 = !{ !"-framework", !"Cocoa" } } }
5543 !llvm.linker.options = !{ !0, !1 }
5544
5545The metadata encoding as lists of lists of options, as opposed to a collapsed
5546list of options, is chosen so that the IR encoding can use multiple option
5547strings to specify e.g., a single library, while still having that specifier be
5548preserved as an atomic element that can be recognized by a target specific
5549assembly writer or object file emitter.
5550
5551Each individual option is required to be either a valid option for the target's
5552linker, or an option that is reserved by the target specific assembly writer or
5553object file emitter. No other aspect of these options is defined by the IR.
5554
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005555.. _intrinsicglobalvariables:
5556
Sean Silvab084af42012-12-07 10:36:55 +00005557Intrinsic Global Variables
5558==========================
5559
5560LLVM has a number of "magic" global variables that contain data that
5561affect code generation or other IR semantics. These are documented here.
5562All globals of this sort should have a section specified as
5563"``llvm.metadata``". This section and all globals that start with
5564"``llvm.``" are reserved for use by LLVM.
5565
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005566.. _gv_llvmused:
5567
Sean Silvab084af42012-12-07 10:36:55 +00005568The '``llvm.used``' Global Variable
5569-----------------------------------
5570
Rafael Espindola74f2e462013-04-22 14:58:02 +00005571The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005572:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005573pointers to named global variables, functions and aliases which may optionally
5574have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005575use of it is:
5576
5577.. code-block:: llvm
5578
5579 @X = global i8 4
5580 @Y = global i32 123
5581
5582 @llvm.used = appending global [2 x i8*] [
5583 i8* @X,
5584 i8* bitcast (i32* @Y to i8*)
5585 ], section "llvm.metadata"
5586
Rafael Espindola74f2e462013-04-22 14:58:02 +00005587If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5588and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005589symbol that it cannot see (which is why they have to be named). For example, if
5590a variable has internal linkage and no references other than that from the
5591``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5592references from inline asms and other things the compiler cannot "see", and
5593corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005594
5595On some targets, the code generator must emit a directive to the
5596assembler or object file to prevent the assembler and linker from
5597molesting the symbol.
5598
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005599.. _gv_llvmcompilerused:
5600
Sean Silvab084af42012-12-07 10:36:55 +00005601The '``llvm.compiler.used``' Global Variable
5602--------------------------------------------
5603
5604The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5605directive, except that it only prevents the compiler from touching the
5606symbol. On targets that support it, this allows an intelligent linker to
5607optimize references to the symbol without being impeded as it would be
5608by ``@llvm.used``.
5609
5610This is a rare construct that should only be used in rare circumstances,
5611and should not be exposed to source languages.
5612
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005613.. _gv_llvmglobalctors:
5614
Sean Silvab084af42012-12-07 10:36:55 +00005615The '``llvm.global_ctors``' Global Variable
5616-------------------------------------------
5617
5618.. code-block:: llvm
5619
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005620 %0 = type { i32, void ()*, i8* }
5621 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005622
5623The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005624functions, priorities, and an optional associated global or function.
5625The functions referenced by this array will be called in ascending order
5626of priority (i.e. lowest first) when the module is loaded. The order of
5627functions with the same priority is not defined.
5628
5629If the third field is present, non-null, and points to a global variable
5630or function, the initializer function will only run if the associated
5631data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005632
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005633.. _llvmglobaldtors:
5634
Sean Silvab084af42012-12-07 10:36:55 +00005635The '``llvm.global_dtors``' Global Variable
5636-------------------------------------------
5637
5638.. code-block:: llvm
5639
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005640 %0 = type { i32, void ()*, i8* }
5641 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005642
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005643The ``@llvm.global_dtors`` array contains a list of destructor
5644functions, priorities, and an optional associated global or function.
5645The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005646order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005647order of functions with the same priority is not defined.
5648
5649If the third field is present, non-null, and points to a global variable
5650or function, the destructor function will only run if the associated
5651data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005652
5653Instruction Reference
5654=====================
5655
5656The LLVM instruction set consists of several different classifications
5657of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5658instructions <binaryops>`, :ref:`bitwise binary
5659instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5660:ref:`other instructions <otherops>`.
5661
5662.. _terminators:
5663
5664Terminator Instructions
5665-----------------------
5666
5667As mentioned :ref:`previously <functionstructure>`, every basic block in a
5668program ends with a "Terminator" instruction, which indicates which
5669block should be executed after the current block is finished. These
5670terminator instructions typically yield a '``void``' value: they produce
5671control flow, not values (the one exception being the
5672':ref:`invoke <i_invoke>`' instruction).
5673
5674The terminator instructions are: ':ref:`ret <i_ret>`',
5675':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5676':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005677':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005678':ref:`catchret <i_catchret>`',
5679':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005680and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005681
5682.. _i_ret:
5683
5684'``ret``' Instruction
5685^^^^^^^^^^^^^^^^^^^^^
5686
5687Syntax:
5688"""""""
5689
5690::
5691
5692 ret <type> <value> ; Return a value from a non-void function
5693 ret void ; Return from void function
5694
5695Overview:
5696"""""""""
5697
5698The '``ret``' instruction is used to return control flow (and optionally
5699a value) from a function back to the caller.
5700
5701There are two forms of the '``ret``' instruction: one that returns a
5702value and then causes control flow, and one that just causes control
5703flow to occur.
5704
5705Arguments:
5706""""""""""
5707
5708The '``ret``' instruction optionally accepts a single argument, the
5709return value. The type of the return value must be a ':ref:`first
5710class <t_firstclass>`' type.
5711
5712A function is not :ref:`well formed <wellformed>` if it it has a non-void
5713return type and contains a '``ret``' instruction with no return value or
5714a return value with a type that does not match its type, or if it has a
5715void return type and contains a '``ret``' instruction with a return
5716value.
5717
5718Semantics:
5719""""""""""
5720
5721When the '``ret``' instruction is executed, control flow returns back to
5722the calling function's context. If the caller is a
5723":ref:`call <i_call>`" instruction, execution continues at the
5724instruction after the call. If the caller was an
5725":ref:`invoke <i_invoke>`" instruction, execution continues at the
5726beginning of the "normal" destination block. If the instruction returns
5727a value, that value shall set the call or invoke instruction's return
5728value.
5729
5730Example:
5731""""""""
5732
5733.. code-block:: llvm
5734
5735 ret i32 5 ; Return an integer value of 5
5736 ret void ; Return from a void function
5737 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5738
5739.. _i_br:
5740
5741'``br``' Instruction
5742^^^^^^^^^^^^^^^^^^^^
5743
5744Syntax:
5745"""""""
5746
5747::
5748
5749 br i1 <cond>, label <iftrue>, label <iffalse>
5750 br label <dest> ; Unconditional branch
5751
5752Overview:
5753"""""""""
5754
5755The '``br``' instruction is used to cause control flow to transfer to a
5756different basic block in the current function. There are two forms of
5757this instruction, corresponding to a conditional branch and an
5758unconditional branch.
5759
5760Arguments:
5761""""""""""
5762
5763The conditional branch form of the '``br``' instruction takes a single
5764'``i1``' value and two '``label``' values. The unconditional form of the
5765'``br``' instruction takes a single '``label``' value as a target.
5766
5767Semantics:
5768""""""""""
5769
5770Upon execution of a conditional '``br``' instruction, the '``i1``'
5771argument is evaluated. If the value is ``true``, control flows to the
5772'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5773to the '``iffalse``' ``label`` argument.
5774
5775Example:
5776""""""""
5777
5778.. code-block:: llvm
5779
5780 Test:
5781 %cond = icmp eq i32 %a, %b
5782 br i1 %cond, label %IfEqual, label %IfUnequal
5783 IfEqual:
5784 ret i32 1
5785 IfUnequal:
5786 ret i32 0
5787
5788.. _i_switch:
5789
5790'``switch``' Instruction
5791^^^^^^^^^^^^^^^^^^^^^^^^
5792
5793Syntax:
5794"""""""
5795
5796::
5797
5798 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5799
5800Overview:
5801"""""""""
5802
5803The '``switch``' instruction is used to transfer control flow to one of
5804several different places. It is a generalization of the '``br``'
5805instruction, allowing a branch to occur to one of many possible
5806destinations.
5807
5808Arguments:
5809""""""""""
5810
5811The '``switch``' instruction uses three parameters: an integer
5812comparison value '``value``', a default '``label``' destination, and an
5813array of pairs of comparison value constants and '``label``'s. The table
5814is not allowed to contain duplicate constant entries.
5815
5816Semantics:
5817""""""""""
5818
5819The ``switch`` instruction specifies a table of values and destinations.
5820When the '``switch``' instruction is executed, this table is searched
5821for the given value. If the value is found, control flow is transferred
5822to the corresponding destination; otherwise, control flow is transferred
5823to the default destination.
5824
5825Implementation:
5826"""""""""""""""
5827
5828Depending on properties of the target machine and the particular
5829``switch`` instruction, this instruction may be code generated in
5830different ways. For example, it could be generated as a series of
5831chained conditional branches or with a lookup table.
5832
5833Example:
5834""""""""
5835
5836.. code-block:: llvm
5837
5838 ; Emulate a conditional br instruction
5839 %Val = zext i1 %value to i32
5840 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5841
5842 ; Emulate an unconditional br instruction
5843 switch i32 0, label %dest [ ]
5844
5845 ; Implement a jump table:
5846 switch i32 %val, label %otherwise [ i32 0, label %onzero
5847 i32 1, label %onone
5848 i32 2, label %ontwo ]
5849
5850.. _i_indirectbr:
5851
5852'``indirectbr``' Instruction
5853^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5854
5855Syntax:
5856"""""""
5857
5858::
5859
5860 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5861
5862Overview:
5863"""""""""
5864
5865The '``indirectbr``' instruction implements an indirect branch to a
5866label within the current function, whose address is specified by
5867"``address``". Address must be derived from a
5868:ref:`blockaddress <blockaddress>` constant.
5869
5870Arguments:
5871""""""""""
5872
5873The '``address``' argument is the address of the label to jump to. The
5874rest of the arguments indicate the full set of possible destinations
5875that the address may point to. Blocks are allowed to occur multiple
5876times in the destination list, though this isn't particularly useful.
5877
5878This destination list is required so that dataflow analysis has an
5879accurate understanding of the CFG.
5880
5881Semantics:
5882""""""""""
5883
5884Control transfers to the block specified in the address argument. All
5885possible destination blocks must be listed in the label list, otherwise
5886this instruction has undefined behavior. This implies that jumps to
5887labels defined in other functions have undefined behavior as well.
5888
5889Implementation:
5890"""""""""""""""
5891
5892This is typically implemented with a jump through a register.
5893
5894Example:
5895""""""""
5896
5897.. code-block:: llvm
5898
5899 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5900
5901.. _i_invoke:
5902
5903'``invoke``' Instruction
5904^^^^^^^^^^^^^^^^^^^^^^^^
5905
5906Syntax:
5907"""""""
5908
5909::
5910
David Blaikieb83cf102016-07-13 17:21:34 +00005911 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005912 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005913
5914Overview:
5915"""""""""
5916
5917The '``invoke``' instruction causes control to transfer to a specified
5918function, with the possibility of control flow transfer to either the
5919'``normal``' label or the '``exception``' label. If the callee function
5920returns with the "``ret``" instruction, control flow will return to the
5921"normal" label. If the callee (or any indirect callees) returns via the
5922":ref:`resume <i_resume>`" instruction or other exception handling
5923mechanism, control is interrupted and continued at the dynamically
5924nearest "exception" label.
5925
5926The '``exception``' label is a `landing
5927pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5928'``exception``' label is required to have the
5929":ref:`landingpad <i_landingpad>`" instruction, which contains the
5930information about the behavior of the program after unwinding happens,
5931as its first non-PHI instruction. The restrictions on the
5932"``landingpad``" instruction's tightly couples it to the "``invoke``"
5933instruction, so that the important information contained within the
5934"``landingpad``" instruction can't be lost through normal code motion.
5935
5936Arguments:
5937""""""""""
5938
5939This instruction requires several arguments:
5940
5941#. The optional "cconv" marker indicates which :ref:`calling
5942 convention <callingconv>` the call should use. If none is
5943 specified, the call defaults to using C calling conventions.
5944#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5945 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5946 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00005947#. '``ty``': the type of the call instruction itself which is also the
5948 type of the return value. Functions that return no value are marked
5949 ``void``.
5950#. '``fnty``': shall be the signature of the function being invoked. The
5951 argument types must match the types implied by this signature. This
5952 type can be omitted if the function is not varargs.
5953#. '``fnptrval``': An LLVM value containing a pointer to a function to
5954 be invoked. In most cases, this is a direct function invocation, but
5955 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
5956 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00005957#. '``function args``': argument list whose types match the function
5958 signature argument types and parameter attributes. All arguments must
5959 be of :ref:`first class <t_firstclass>` type. If the function signature
5960 indicates the function accepts a variable number of arguments, the
5961 extra arguments can be specified.
5962#. '``normal label``': the label reached when the called function
5963 executes a '``ret``' instruction.
5964#. '``exception label``': the label reached when a callee returns via
5965 the :ref:`resume <i_resume>` instruction or other exception handling
5966 mechanism.
George Burgess IV8a464a72017-04-13 05:00:31 +00005967#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005968#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005969
5970Semantics:
5971""""""""""
5972
5973This instruction is designed to operate as a standard '``call``'
5974instruction in most regards. The primary difference is that it
5975establishes an association with a label, which is used by the runtime
5976library to unwind the stack.
5977
5978This instruction is used in languages with destructors to ensure that
5979proper cleanup is performed in the case of either a ``longjmp`` or a
5980thrown exception. Additionally, this is important for implementation of
5981'``catch``' clauses in high-level languages that support them.
5982
5983For the purposes of the SSA form, the definition of the value returned
5984by the '``invoke``' instruction is deemed to occur on the edge from the
5985current block to the "normal" label. If the callee unwinds then no
5986return value is available.
5987
5988Example:
5989""""""""
5990
5991.. code-block:: llvm
5992
5993 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005994 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005995 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005996 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005997
5998.. _i_resume:
5999
6000'``resume``' Instruction
6001^^^^^^^^^^^^^^^^^^^^^^^^
6002
6003Syntax:
6004"""""""
6005
6006::
6007
6008 resume <type> <value>
6009
6010Overview:
6011"""""""""
6012
6013The '``resume``' instruction is a terminator instruction that has no
6014successors.
6015
6016Arguments:
6017""""""""""
6018
6019The '``resume``' instruction requires one argument, which must have the
6020same type as the result of any '``landingpad``' instruction in the same
6021function.
6022
6023Semantics:
6024""""""""""
6025
6026The '``resume``' instruction resumes propagation of an existing
6027(in-flight) exception whose unwinding was interrupted with a
6028:ref:`landingpad <i_landingpad>` instruction.
6029
6030Example:
6031""""""""
6032
6033.. code-block:: llvm
6034
6035 resume { i8*, i32 } %exn
6036
David Majnemer8a1c45d2015-12-12 05:38:55 +00006037.. _i_catchswitch:
6038
6039'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00006040^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00006041
6042Syntax:
6043"""""""
6044
6045::
6046
6047 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
6048 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
6049
6050Overview:
6051"""""""""
6052
6053The '``catchswitch``' instruction is used by `LLVM's exception handling system
6054<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
6055that may be executed by the :ref:`EH personality routine <personalityfn>`.
6056
6057Arguments:
6058""""""""""
6059
6060The ``parent`` argument is the token of the funclet that contains the
6061``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
6062this operand may be the token ``none``.
6063
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006064The ``default`` argument is the label of another basic block beginning with
6065either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
6066must be a legal target with respect to the ``parent`` links, as described in
6067the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00006068
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006069The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00006070:ref:`catchpad <i_catchpad>` instruction.
6071
6072Semantics:
6073""""""""""
6074
6075Executing this instruction transfers control to one of the successors in
6076``handlers``, if appropriate, or continues to unwind via the unwind label if
6077present.
6078
6079The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
6080it must be both the first non-phi instruction and last instruction in the basic
6081block. Therefore, it must be the only non-phi instruction in the block.
6082
6083Example:
6084""""""""
6085
Renato Golin124f2592016-07-20 12:16:38 +00006086.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00006087
6088 dispatch1:
6089 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
6090 dispatch2:
6091 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
6092
David Majnemer654e1302015-07-31 17:58:14 +00006093.. _i_catchret:
6094
6095'``catchret``' Instruction
6096^^^^^^^^^^^^^^^^^^^^^^^^^^
6097
6098Syntax:
6099"""""""
6100
6101::
6102
David Majnemer8a1c45d2015-12-12 05:38:55 +00006103 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00006104
6105Overview:
6106"""""""""
6107
6108The '``catchret``' instruction is a terminator instruction that has a
6109single successor.
6110
6111
6112Arguments:
6113""""""""""
6114
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006115The first argument to a '``catchret``' indicates which ``catchpad`` it
6116exits. It must be a :ref:`catchpad <i_catchpad>`.
6117The second argument to a '``catchret``' specifies where control will
6118transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00006119
6120Semantics:
6121""""""""""
6122
David Majnemer8a1c45d2015-12-12 05:38:55 +00006123The '``catchret``' instruction ends an existing (in-flight) exception whose
6124unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
6125:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
6126code to, for example, destroy the active exception. Control then transfers to
6127``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006128
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006129The ``token`` argument must be a token produced by a ``catchpad`` instruction.
6130If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
6131funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6132the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00006133
6134Example:
6135""""""""
6136
Renato Golin124f2592016-07-20 12:16:38 +00006137.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006138
David Majnemer8a1c45d2015-12-12 05:38:55 +00006139 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006140
David Majnemer654e1302015-07-31 17:58:14 +00006141.. _i_cleanupret:
6142
6143'``cleanupret``' Instruction
6144^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6145
6146Syntax:
6147"""""""
6148
6149::
6150
David Majnemer8a1c45d2015-12-12 05:38:55 +00006151 cleanupret from <value> unwind label <continue>
6152 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00006153
6154Overview:
6155"""""""""
6156
6157The '``cleanupret``' instruction is a terminator instruction that has
6158an optional successor.
6159
6160
6161Arguments:
6162""""""""""
6163
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006164The '``cleanupret``' instruction requires one argument, which indicates
6165which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006166If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
6167funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6168the ``cleanupret``'s behavior is undefined.
6169
6170The '``cleanupret``' instruction also has an optional successor, ``continue``,
6171which must be the label of another basic block beginning with either a
6172``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
6173be a legal target with respect to the ``parent`` links, as described in the
6174`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00006175
6176Semantics:
6177""""""""""
6178
6179The '``cleanupret``' instruction indicates to the
6180:ref:`personality function <personalityfn>` that one
6181:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
6182It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006183
David Majnemer654e1302015-07-31 17:58:14 +00006184Example:
6185""""""""
6186
Renato Golin124f2592016-07-20 12:16:38 +00006187.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006188
David Majnemer8a1c45d2015-12-12 05:38:55 +00006189 cleanupret from %cleanup unwind to caller
6190 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00006191
Sean Silvab084af42012-12-07 10:36:55 +00006192.. _i_unreachable:
6193
6194'``unreachable``' Instruction
6195^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6196
6197Syntax:
6198"""""""
6199
6200::
6201
6202 unreachable
6203
6204Overview:
6205"""""""""
6206
6207The '``unreachable``' instruction has no defined semantics. This
6208instruction is used to inform the optimizer that a particular portion of
6209the code is not reachable. This can be used to indicate that the code
6210after a no-return function cannot be reached, and other facts.
6211
6212Semantics:
6213""""""""""
6214
6215The '``unreachable``' instruction has no defined semantics.
6216
6217.. _binaryops:
6218
6219Binary Operations
6220-----------------
6221
6222Binary operators are used to do most of the computation in a program.
6223They require two operands of the same type, execute an operation on
6224them, and produce a single value. The operands might represent multiple
6225data, as is the case with the :ref:`vector <t_vector>` data type. The
6226result value has the same type as its operands.
6227
6228There are several different binary operators:
6229
6230.. _i_add:
6231
6232'``add``' Instruction
6233^^^^^^^^^^^^^^^^^^^^^
6234
6235Syntax:
6236"""""""
6237
6238::
6239
Tim Northover675a0962014-06-13 14:24:23 +00006240 <result> = add <ty> <op1>, <op2> ; yields ty:result
6241 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
6242 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
6243 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006244
6245Overview:
6246"""""""""
6247
6248The '``add``' instruction returns the sum of its two operands.
6249
6250Arguments:
6251""""""""""
6252
6253The two arguments to the '``add``' instruction must be
6254:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6255arguments must have identical types.
6256
6257Semantics:
6258""""""""""
6259
6260The value produced is the integer sum of the two operands.
6261
6262If the sum has unsigned overflow, the result returned is the
6263mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6264the result.
6265
6266Because LLVM integers use a two's complement representation, this
6267instruction is appropriate for both signed and unsigned integers.
6268
6269``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6270respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6271result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
6272unsigned and/or signed overflow, respectively, occurs.
6273
6274Example:
6275""""""""
6276
Renato Golin124f2592016-07-20 12:16:38 +00006277.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006278
Tim Northover675a0962014-06-13 14:24:23 +00006279 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006280
6281.. _i_fadd:
6282
6283'``fadd``' Instruction
6284^^^^^^^^^^^^^^^^^^^^^^
6285
6286Syntax:
6287"""""""
6288
6289::
6290
Tim Northover675a0962014-06-13 14:24:23 +00006291 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006292
6293Overview:
6294"""""""""
6295
6296The '``fadd``' instruction returns the sum of its two operands.
6297
6298Arguments:
6299""""""""""
6300
6301The two arguments to the '``fadd``' instruction must be :ref:`floating
6302point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6303Both arguments must have identical types.
6304
6305Semantics:
6306""""""""""
6307
6308The value produced is the floating point sum of the two operands. This
6309instruction can also take any number of :ref:`fast-math flags <fastmath>`,
6310which are optimization hints to enable otherwise unsafe floating point
6311optimizations:
6312
6313Example:
6314""""""""
6315
Renato Golin124f2592016-07-20 12:16:38 +00006316.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006317
Tim Northover675a0962014-06-13 14:24:23 +00006318 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006319
6320'``sub``' Instruction
6321^^^^^^^^^^^^^^^^^^^^^
6322
6323Syntax:
6324"""""""
6325
6326::
6327
Tim Northover675a0962014-06-13 14:24:23 +00006328 <result> = sub <ty> <op1>, <op2> ; yields ty:result
6329 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
6330 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
6331 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006332
6333Overview:
6334"""""""""
6335
6336The '``sub``' instruction returns the difference of its two operands.
6337
6338Note that the '``sub``' instruction is used to represent the '``neg``'
6339instruction present in most other intermediate representations.
6340
6341Arguments:
6342""""""""""
6343
6344The two arguments to the '``sub``' instruction must be
6345:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6346arguments must have identical types.
6347
6348Semantics:
6349""""""""""
6350
6351The value produced is the integer difference of the two operands.
6352
6353If the difference has unsigned overflow, the result returned is the
6354mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6355the result.
6356
6357Because LLVM integers use a two's complement representation, this
6358instruction is appropriate for both signed and unsigned integers.
6359
6360``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6361respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6362result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
6363unsigned and/or signed overflow, respectively, occurs.
6364
6365Example:
6366""""""""
6367
Renato Golin124f2592016-07-20 12:16:38 +00006368.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006369
Tim Northover675a0962014-06-13 14:24:23 +00006370 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6371 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006372
6373.. _i_fsub:
6374
6375'``fsub``' Instruction
6376^^^^^^^^^^^^^^^^^^^^^^
6377
6378Syntax:
6379"""""""
6380
6381::
6382
Tim Northover675a0962014-06-13 14:24:23 +00006383 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006384
6385Overview:
6386"""""""""
6387
6388The '``fsub``' instruction returns the difference of its two operands.
6389
6390Note that the '``fsub``' instruction is used to represent the '``fneg``'
6391instruction present in most other intermediate representations.
6392
6393Arguments:
6394""""""""""
6395
6396The two arguments to the '``fsub``' instruction must be :ref:`floating
6397point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6398Both arguments must have identical types.
6399
6400Semantics:
6401""""""""""
6402
6403The value produced is the floating point difference of the two operands.
6404This instruction can also take any number of :ref:`fast-math
6405flags <fastmath>`, which are optimization hints to enable otherwise
6406unsafe floating point optimizations:
6407
6408Example:
6409""""""""
6410
Renato Golin124f2592016-07-20 12:16:38 +00006411.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006412
Tim Northover675a0962014-06-13 14:24:23 +00006413 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6414 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006415
6416'``mul``' Instruction
6417^^^^^^^^^^^^^^^^^^^^^
6418
6419Syntax:
6420"""""""
6421
6422::
6423
Tim Northover675a0962014-06-13 14:24:23 +00006424 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6425 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6426 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6427 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006428
6429Overview:
6430"""""""""
6431
6432The '``mul``' instruction returns the product of its two operands.
6433
6434Arguments:
6435""""""""""
6436
6437The two arguments to the '``mul``' instruction must be
6438:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6439arguments must have identical types.
6440
6441Semantics:
6442""""""""""
6443
6444The value produced is the integer product of the two operands.
6445
6446If the result of the multiplication has unsigned overflow, the result
6447returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6448bit width of the result.
6449
6450Because LLVM integers use a two's complement representation, and the
6451result is the same width as the operands, this instruction returns the
6452correct result for both signed and unsigned integers. If a full product
6453(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6454sign-extended or zero-extended as appropriate to the width of the full
6455product.
6456
6457``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6458respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6459result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6460unsigned and/or signed overflow, respectively, occurs.
6461
6462Example:
6463""""""""
6464
Renato Golin124f2592016-07-20 12:16:38 +00006465.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006466
Tim Northover675a0962014-06-13 14:24:23 +00006467 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006468
6469.. _i_fmul:
6470
6471'``fmul``' Instruction
6472^^^^^^^^^^^^^^^^^^^^^^
6473
6474Syntax:
6475"""""""
6476
6477::
6478
Tim Northover675a0962014-06-13 14:24:23 +00006479 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006480
6481Overview:
6482"""""""""
6483
6484The '``fmul``' instruction returns the product of its two operands.
6485
6486Arguments:
6487""""""""""
6488
6489The two arguments to the '``fmul``' instruction must be :ref:`floating
6490point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6491Both arguments must have identical types.
6492
6493Semantics:
6494""""""""""
6495
6496The value produced is the floating point product of the two operands.
6497This instruction can also take any number of :ref:`fast-math
6498flags <fastmath>`, which are optimization hints to enable otherwise
6499unsafe floating point optimizations:
6500
6501Example:
6502""""""""
6503
Renato Golin124f2592016-07-20 12:16:38 +00006504.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006505
Tim Northover675a0962014-06-13 14:24:23 +00006506 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006507
6508'``udiv``' Instruction
6509^^^^^^^^^^^^^^^^^^^^^^
6510
6511Syntax:
6512"""""""
6513
6514::
6515
Tim Northover675a0962014-06-13 14:24:23 +00006516 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6517 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006518
6519Overview:
6520"""""""""
6521
6522The '``udiv``' instruction returns the quotient of its two operands.
6523
6524Arguments:
6525""""""""""
6526
6527The two arguments to the '``udiv``' instruction must be
6528:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6529arguments must have identical types.
6530
6531Semantics:
6532""""""""""
6533
6534The value produced is the unsigned integer quotient of the two operands.
6535
6536Note that unsigned integer division and signed integer division are
6537distinct operations; for signed integer division, use '``sdiv``'.
6538
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006539Division by zero is undefined behavior. For vectors, if any element
6540of the divisor is zero, the operation has undefined behavior.
6541
Sean Silvab084af42012-12-07 10:36:55 +00006542
6543If the ``exact`` keyword is present, the result value of the ``udiv`` is
6544a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6545such, "((a udiv exact b) mul b) == a").
6546
6547Example:
6548""""""""
6549
Renato Golin124f2592016-07-20 12:16:38 +00006550.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006551
Tim Northover675a0962014-06-13 14:24:23 +00006552 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006553
6554'``sdiv``' Instruction
6555^^^^^^^^^^^^^^^^^^^^^^
6556
6557Syntax:
6558"""""""
6559
6560::
6561
Tim Northover675a0962014-06-13 14:24:23 +00006562 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6563 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006564
6565Overview:
6566"""""""""
6567
6568The '``sdiv``' instruction returns the quotient of its two operands.
6569
6570Arguments:
6571""""""""""
6572
6573The two arguments to the '``sdiv``' instruction must be
6574:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6575arguments must have identical types.
6576
6577Semantics:
6578""""""""""
6579
6580The value produced is the signed integer quotient of the two operands
6581rounded towards zero.
6582
6583Note that signed integer division and unsigned integer division are
6584distinct operations; for unsigned integer division, use '``udiv``'.
6585
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006586Division by zero is undefined behavior. For vectors, if any element
6587of the divisor is zero, the operation has undefined behavior.
6588Overflow also leads to undefined behavior; this is a rare case, but can
6589occur, for example, by doing a 32-bit division of -2147483648 by -1.
Sean Silvab084af42012-12-07 10:36:55 +00006590
6591If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6592a :ref:`poison value <poisonvalues>` if the result would be rounded.
6593
6594Example:
6595""""""""
6596
Renato Golin124f2592016-07-20 12:16:38 +00006597.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006598
Tim Northover675a0962014-06-13 14:24:23 +00006599 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006600
6601.. _i_fdiv:
6602
6603'``fdiv``' Instruction
6604^^^^^^^^^^^^^^^^^^^^^^
6605
6606Syntax:
6607"""""""
6608
6609::
6610
Tim Northover675a0962014-06-13 14:24:23 +00006611 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006612
6613Overview:
6614"""""""""
6615
6616The '``fdiv``' instruction returns the quotient of its two operands.
6617
6618Arguments:
6619""""""""""
6620
6621The two arguments to the '``fdiv``' instruction must be :ref:`floating
6622point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6623Both arguments must have identical types.
6624
6625Semantics:
6626""""""""""
6627
6628The value produced is the floating point quotient of the two operands.
6629This instruction can also take any number of :ref:`fast-math
6630flags <fastmath>`, which are optimization hints to enable otherwise
6631unsafe floating point optimizations:
6632
6633Example:
6634""""""""
6635
Renato Golin124f2592016-07-20 12:16:38 +00006636.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006637
Tim Northover675a0962014-06-13 14:24:23 +00006638 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006639
6640'``urem``' Instruction
6641^^^^^^^^^^^^^^^^^^^^^^
6642
6643Syntax:
6644"""""""
6645
6646::
6647
Tim Northover675a0962014-06-13 14:24:23 +00006648 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006649
6650Overview:
6651"""""""""
6652
6653The '``urem``' instruction returns the remainder from the unsigned
6654division of its two arguments.
6655
6656Arguments:
6657""""""""""
6658
6659The two arguments to the '``urem``' instruction must be
6660:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6661arguments must have identical types.
6662
6663Semantics:
6664""""""""""
6665
6666This instruction returns the unsigned integer *remainder* of a division.
6667This instruction always performs an unsigned division to get the
6668remainder.
6669
6670Note that unsigned integer remainder and signed integer remainder are
6671distinct operations; for signed integer remainder, use '``srem``'.
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006672
6673Taking the remainder of a division by zero is undefined behavior.
6674For vectors, if any element of the divisor is zero, the operation has
6675undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006676
6677Example:
6678""""""""
6679
Renato Golin124f2592016-07-20 12:16:38 +00006680.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006681
Tim Northover675a0962014-06-13 14:24:23 +00006682 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006683
6684'``srem``' Instruction
6685^^^^^^^^^^^^^^^^^^^^^^
6686
6687Syntax:
6688"""""""
6689
6690::
6691
Tim Northover675a0962014-06-13 14:24:23 +00006692 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006693
6694Overview:
6695"""""""""
6696
6697The '``srem``' instruction returns the remainder from the signed
6698division of its two operands. This instruction can also take
6699:ref:`vector <t_vector>` versions of the values in which case the elements
6700must be integers.
6701
6702Arguments:
6703""""""""""
6704
6705The two arguments to the '``srem``' instruction must be
6706:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6707arguments must have identical types.
6708
6709Semantics:
6710""""""""""
6711
6712This instruction returns the *remainder* of a division (where the result
6713is either zero or has the same sign as the dividend, ``op1``), not the
6714*modulo* operator (where the result is either zero or has the same sign
6715as the divisor, ``op2``) of a value. For more information about the
6716difference, see `The Math
6717Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6718table of how this is implemented in various languages, please see
6719`Wikipedia: modulo
6720operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6721
6722Note that signed integer remainder and unsigned integer remainder are
6723distinct operations; for unsigned integer remainder, use '``urem``'.
6724
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006725Taking the remainder of a division by zero is undefined behavior.
6726For vectors, if any element of the divisor is zero, the operation has
6727undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006728Overflow also leads to undefined behavior; this is a rare case, but can
6729occur, for example, by taking the remainder of a 32-bit division of
6730-2147483648 by -1. (The remainder doesn't actually overflow, but this
6731rule lets srem be implemented using instructions that return both the
6732result of the division and the remainder.)
6733
6734Example:
6735""""""""
6736
Renato Golin124f2592016-07-20 12:16:38 +00006737.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006738
Tim Northover675a0962014-06-13 14:24:23 +00006739 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006740
6741.. _i_frem:
6742
6743'``frem``' Instruction
6744^^^^^^^^^^^^^^^^^^^^^^
6745
6746Syntax:
6747"""""""
6748
6749::
6750
Tim Northover675a0962014-06-13 14:24:23 +00006751 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006752
6753Overview:
6754"""""""""
6755
6756The '``frem``' instruction returns the remainder from the division of
6757its two operands.
6758
6759Arguments:
6760""""""""""
6761
6762The two arguments to the '``frem``' instruction must be :ref:`floating
6763point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6764Both arguments must have identical types.
6765
6766Semantics:
6767""""""""""
6768
6769This instruction returns the *remainder* of a division. The remainder
6770has the same sign as the dividend. This instruction can also take any
6771number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6772to enable otherwise unsafe floating point optimizations:
6773
6774Example:
6775""""""""
6776
Renato Golin124f2592016-07-20 12:16:38 +00006777.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006778
Tim Northover675a0962014-06-13 14:24:23 +00006779 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006780
6781.. _bitwiseops:
6782
6783Bitwise Binary Operations
6784-------------------------
6785
6786Bitwise binary operators are used to do various forms of bit-twiddling
6787in a program. They are generally very efficient instructions and can
6788commonly be strength reduced from other instructions. They require two
6789operands of the same type, execute an operation on them, and produce a
6790single value. The resulting value is the same type as its operands.
6791
6792'``shl``' Instruction
6793^^^^^^^^^^^^^^^^^^^^^
6794
6795Syntax:
6796"""""""
6797
6798::
6799
Tim Northover675a0962014-06-13 14:24:23 +00006800 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6801 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6802 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6803 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006804
6805Overview:
6806"""""""""
6807
6808The '``shl``' instruction returns the first operand shifted to the left
6809a specified number of bits.
6810
6811Arguments:
6812""""""""""
6813
6814Both arguments to the '``shl``' instruction must be the same
6815:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6816'``op2``' is treated as an unsigned value.
6817
6818Semantics:
6819""""""""""
6820
6821The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6822where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006823dynamically) equal to or larger than the number of bits in
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006824``op1``, this instruction returns a :ref:`poison value <poisonvalues>`.
6825If the arguments are vectors, each vector element of ``op1`` is shifted
6826by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006827
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006828If the ``nuw`` keyword is present, then the shift produces a poison
6829value if it shifts out any non-zero bits.
6830If the ``nsw`` keyword is present, then the shift produces a poison
6831value it shifts out any bits that disagree with the resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00006832
6833Example:
6834""""""""
6835
Renato Golin124f2592016-07-20 12:16:38 +00006836.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006837
Tim Northover675a0962014-06-13 14:24:23 +00006838 <result> = shl i32 4, %var ; yields i32: 4 << %var
6839 <result> = shl i32 4, 2 ; yields i32: 16
6840 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006841 <result> = shl i32 1, 32 ; undefined
6842 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6843
6844'``lshr``' Instruction
6845^^^^^^^^^^^^^^^^^^^^^^
6846
6847Syntax:
6848"""""""
6849
6850::
6851
Tim Northover675a0962014-06-13 14:24:23 +00006852 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6853 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006854
6855Overview:
6856"""""""""
6857
6858The '``lshr``' instruction (logical shift right) returns the first
6859operand shifted to the right a specified number of bits with zero fill.
6860
6861Arguments:
6862""""""""""
6863
6864Both arguments to the '``lshr``' instruction must be the same
6865:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6866'``op2``' is treated as an unsigned value.
6867
6868Semantics:
6869""""""""""
6870
6871This instruction always performs a logical shift right operation. The
6872most significant bits of the result will be filled with zero bits after
6873the shift. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006874than the number of bits in ``op1``, this instruction returns a :ref:`poison
6875value <poisonvalues>`. If the arguments are vectors, each vector element
6876of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006877
6878If the ``exact`` keyword is present, the result value of the ``lshr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006879a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00006880
6881Example:
6882""""""""
6883
Renato Golin124f2592016-07-20 12:16:38 +00006884.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006885
Tim Northover675a0962014-06-13 14:24:23 +00006886 <result> = lshr i32 4, 1 ; yields i32:result = 2
6887 <result> = lshr i32 4, 2 ; yields i32:result = 1
6888 <result> = lshr i8 4, 3 ; yields i8:result = 0
6889 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006890 <result> = lshr i32 1, 32 ; undefined
6891 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6892
6893'``ashr``' Instruction
6894^^^^^^^^^^^^^^^^^^^^^^
6895
6896Syntax:
6897"""""""
6898
6899::
6900
Tim Northover675a0962014-06-13 14:24:23 +00006901 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6902 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006903
6904Overview:
6905"""""""""
6906
6907The '``ashr``' instruction (arithmetic shift right) returns the first
6908operand shifted to the right a specified number of bits with sign
6909extension.
6910
6911Arguments:
6912""""""""""
6913
6914Both arguments to the '``ashr``' instruction must be the same
6915:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6916'``op2``' is treated as an unsigned value.
6917
6918Semantics:
6919""""""""""
6920
6921This instruction always performs an arithmetic shift right operation,
6922The most significant bits of the result will be filled with the sign bit
6923of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006924than the number of bits in ``op1``, this instruction returns a :ref:`poison
6925value <poisonvalues>`. If the arguments are vectors, each vector element
6926of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006927
6928If the ``exact`` keyword is present, the result value of the ``ashr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006929a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00006930
6931Example:
6932""""""""
6933
Renato Golin124f2592016-07-20 12:16:38 +00006934.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006935
Tim Northover675a0962014-06-13 14:24:23 +00006936 <result> = ashr i32 4, 1 ; yields i32:result = 2
6937 <result> = ashr i32 4, 2 ; yields i32:result = 1
6938 <result> = ashr i8 4, 3 ; yields i8:result = 0
6939 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006940 <result> = ashr i32 1, 32 ; undefined
6941 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6942
6943'``and``' Instruction
6944^^^^^^^^^^^^^^^^^^^^^
6945
6946Syntax:
6947"""""""
6948
6949::
6950
Tim Northover675a0962014-06-13 14:24:23 +00006951 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006952
6953Overview:
6954"""""""""
6955
6956The '``and``' instruction returns the bitwise logical and of its two
6957operands.
6958
6959Arguments:
6960""""""""""
6961
6962The two arguments to the '``and``' instruction must be
6963:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6964arguments must have identical types.
6965
6966Semantics:
6967""""""""""
6968
6969The truth table used for the '``and``' instruction is:
6970
6971+-----+-----+-----+
6972| In0 | In1 | Out |
6973+-----+-----+-----+
6974| 0 | 0 | 0 |
6975+-----+-----+-----+
6976| 0 | 1 | 0 |
6977+-----+-----+-----+
6978| 1 | 0 | 0 |
6979+-----+-----+-----+
6980| 1 | 1 | 1 |
6981+-----+-----+-----+
6982
6983Example:
6984""""""""
6985
Renato Golin124f2592016-07-20 12:16:38 +00006986.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006987
Tim Northover675a0962014-06-13 14:24:23 +00006988 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6989 <result> = and i32 15, 40 ; yields i32:result = 8
6990 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006991
6992'``or``' Instruction
6993^^^^^^^^^^^^^^^^^^^^
6994
6995Syntax:
6996"""""""
6997
6998::
6999
Tim Northover675a0962014-06-13 14:24:23 +00007000 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007001
7002Overview:
7003"""""""""
7004
7005The '``or``' instruction returns the bitwise logical inclusive or of its
7006two operands.
7007
7008Arguments:
7009""""""""""
7010
7011The two arguments to the '``or``' instruction must be
7012:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7013arguments must have identical types.
7014
7015Semantics:
7016""""""""""
7017
7018The truth table used for the '``or``' instruction is:
7019
7020+-----+-----+-----+
7021| In0 | In1 | Out |
7022+-----+-----+-----+
7023| 0 | 0 | 0 |
7024+-----+-----+-----+
7025| 0 | 1 | 1 |
7026+-----+-----+-----+
7027| 1 | 0 | 1 |
7028+-----+-----+-----+
7029| 1 | 1 | 1 |
7030+-----+-----+-----+
7031
7032Example:
7033""""""""
7034
7035::
7036
Tim Northover675a0962014-06-13 14:24:23 +00007037 <result> = or i32 4, %var ; yields i32:result = 4 | %var
7038 <result> = or i32 15, 40 ; yields i32:result = 47
7039 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00007040
7041'``xor``' Instruction
7042^^^^^^^^^^^^^^^^^^^^^
7043
7044Syntax:
7045"""""""
7046
7047::
7048
Tim Northover675a0962014-06-13 14:24:23 +00007049 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007050
7051Overview:
7052"""""""""
7053
7054The '``xor``' instruction returns the bitwise logical exclusive or of
7055its two operands. The ``xor`` is used to implement the "one's
7056complement" operation, which is the "~" operator in C.
7057
7058Arguments:
7059""""""""""
7060
7061The two arguments to the '``xor``' instruction must be
7062:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7063arguments must have identical types.
7064
7065Semantics:
7066""""""""""
7067
7068The truth table used for the '``xor``' instruction is:
7069
7070+-----+-----+-----+
7071| In0 | In1 | Out |
7072+-----+-----+-----+
7073| 0 | 0 | 0 |
7074+-----+-----+-----+
7075| 0 | 1 | 1 |
7076+-----+-----+-----+
7077| 1 | 0 | 1 |
7078+-----+-----+-----+
7079| 1 | 1 | 0 |
7080+-----+-----+-----+
7081
7082Example:
7083""""""""
7084
Renato Golin124f2592016-07-20 12:16:38 +00007085.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007086
Tim Northover675a0962014-06-13 14:24:23 +00007087 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
7088 <result> = xor i32 15, 40 ; yields i32:result = 39
7089 <result> = xor i32 4, 8 ; yields i32:result = 12
7090 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00007091
7092Vector Operations
7093-----------------
7094
7095LLVM supports several instructions to represent vector operations in a
7096target-independent manner. These instructions cover the element-access
7097and vector-specific operations needed to process vectors effectively.
7098While LLVM does directly support these vector operations, many
7099sophisticated algorithms will want to use target-specific intrinsics to
7100take full advantage of a specific target.
7101
7102.. _i_extractelement:
7103
7104'``extractelement``' Instruction
7105^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7106
7107Syntax:
7108"""""""
7109
7110::
7111
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007112 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00007113
7114Overview:
7115"""""""""
7116
7117The '``extractelement``' instruction extracts a single scalar element
7118from a vector at a specified index.
7119
7120Arguments:
7121""""""""""
7122
7123The first operand of an '``extractelement``' instruction is a value of
7124:ref:`vector <t_vector>` type. The second operand is an index indicating
7125the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007126variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007127
7128Semantics:
7129""""""""""
7130
7131The result is a scalar of the same type as the element type of ``val``.
7132Its value is the value at position ``idx`` of ``val``. If ``idx``
7133exceeds the length of ``val``, the results are undefined.
7134
7135Example:
7136""""""""
7137
Renato Golin124f2592016-07-20 12:16:38 +00007138.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007139
7140 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
7141
7142.. _i_insertelement:
7143
7144'``insertelement``' Instruction
7145^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7146
7147Syntax:
7148"""""""
7149
7150::
7151
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007152 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00007153
7154Overview:
7155"""""""""
7156
7157The '``insertelement``' instruction inserts a scalar element into a
7158vector at a specified index.
7159
7160Arguments:
7161""""""""""
7162
7163The first operand of an '``insertelement``' instruction is a value of
7164:ref:`vector <t_vector>` type. The second operand is a scalar value whose
7165type must equal the element type of the first operand. The third operand
7166is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007167index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007168
7169Semantics:
7170""""""""""
7171
7172The result is a vector of the same type as ``val``. Its element values
7173are those of ``val`` except at position ``idx``, where it gets the value
7174``elt``. If ``idx`` exceeds the length of ``val``, the results are
7175undefined.
7176
7177Example:
7178""""""""
7179
Renato Golin124f2592016-07-20 12:16:38 +00007180.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007181
7182 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
7183
7184.. _i_shufflevector:
7185
7186'``shufflevector``' Instruction
7187^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7188
7189Syntax:
7190"""""""
7191
7192::
7193
7194 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
7195
7196Overview:
7197"""""""""
7198
7199The '``shufflevector``' instruction constructs a permutation of elements
7200from two input vectors, returning a vector with the same element type as
7201the input and length that is the same as the shuffle mask.
7202
7203Arguments:
7204""""""""""
7205
7206The first two operands of a '``shufflevector``' instruction are vectors
7207with the same type. The third argument is a shuffle mask whose element
7208type is always 'i32'. The result of the instruction is a vector whose
7209length is the same as the shuffle mask and whose element type is the
7210same as the element type of the first two operands.
7211
7212The shuffle mask operand is required to be a constant vector with either
7213constant integer or undef values.
7214
7215Semantics:
7216""""""""""
7217
7218The elements of the two input vectors are numbered from left to right
7219across both of the vectors. The shuffle mask operand specifies, for each
7220element of the result vector, which element of the two input vectors the
Sanjay Patel6e410182017-04-12 18:39:53 +00007221result element gets. If the shuffle mask is undef, the result vector is
7222undef. If any element of the mask operand is undef, that element of the
7223result is undef. If the shuffle mask selects an undef element from one
7224of the input vectors, the resulting element is undef.
Sean Silvab084af42012-12-07 10:36:55 +00007225
7226Example:
7227""""""""
7228
Renato Golin124f2592016-07-20 12:16:38 +00007229.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007230
7231 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7232 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
7233 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
7234 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
7235 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
7236 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
7237 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7238 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
7239
7240Aggregate Operations
7241--------------------
7242
7243LLVM supports several instructions for working with
7244:ref:`aggregate <t_aggregate>` values.
7245
7246.. _i_extractvalue:
7247
7248'``extractvalue``' Instruction
7249^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7250
7251Syntax:
7252"""""""
7253
7254::
7255
7256 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
7257
7258Overview:
7259"""""""""
7260
7261The '``extractvalue``' instruction extracts the value of a member field
7262from an :ref:`aggregate <t_aggregate>` value.
7263
7264Arguments:
7265""""""""""
7266
7267The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00007268:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00007269constant indices to specify which value to extract in a similar manner
7270as indices in a '``getelementptr``' instruction.
7271
7272The major differences to ``getelementptr`` indexing are:
7273
7274- Since the value being indexed is not a pointer, the first index is
7275 omitted and assumed to be zero.
7276- At least one index must be specified.
7277- Not only struct indices but also array indices must be in bounds.
7278
7279Semantics:
7280""""""""""
7281
7282The result is the value at the position in the aggregate specified by
7283the index operands.
7284
7285Example:
7286""""""""
7287
Renato Golin124f2592016-07-20 12:16:38 +00007288.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007289
7290 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
7291
7292.. _i_insertvalue:
7293
7294'``insertvalue``' Instruction
7295^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7296
7297Syntax:
7298"""""""
7299
7300::
7301
7302 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
7303
7304Overview:
7305"""""""""
7306
7307The '``insertvalue``' instruction inserts a value into a member field in
7308an :ref:`aggregate <t_aggregate>` value.
7309
7310Arguments:
7311""""""""""
7312
7313The first operand of an '``insertvalue``' instruction is a value of
7314:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
7315a first-class value to insert. The following operands are constant
7316indices indicating the position at which to insert the value in a
7317similar manner as indices in a '``extractvalue``' instruction. The value
7318to insert must have the same type as the value identified by the
7319indices.
7320
7321Semantics:
7322""""""""""
7323
7324The result is an aggregate of the same type as ``val``. Its value is
7325that of ``val`` except that the value at the position specified by the
7326indices is that of ``elt``.
7327
7328Example:
7329""""""""
7330
7331.. code-block:: llvm
7332
7333 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
7334 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00007335 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00007336
7337.. _memoryops:
7338
7339Memory Access and Addressing Operations
7340---------------------------------------
7341
7342A key design point of an SSA-based representation is how it represents
7343memory. In LLVM, no memory locations are in SSA form, which makes things
7344very simple. This section describes how to read, write, and allocate
7345memory in LLVM.
7346
7347.. _i_alloca:
7348
7349'``alloca``' Instruction
7350^^^^^^^^^^^^^^^^^^^^^^^^
7351
7352Syntax:
7353"""""""
7354
7355::
7356
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007357 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result
Sean Silvab084af42012-12-07 10:36:55 +00007358
7359Overview:
7360"""""""""
7361
7362The '``alloca``' instruction allocates memory on the stack frame of the
7363currently executing function, to be automatically released when this
7364function returns to its caller. The object is always allocated in the
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007365address space for allocas indicated in the datalayout.
Sean Silvab084af42012-12-07 10:36:55 +00007366
7367Arguments:
7368""""""""""
7369
7370The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7371bytes of memory on the runtime stack, returning a pointer of the
7372appropriate type to the program. If "NumElements" is specified, it is
7373the number of elements allocated, otherwise "NumElements" is defaulted
7374to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007375allocation is guaranteed to be aligned to at least that boundary. The
7376alignment may not be greater than ``1 << 29``. If not specified, or if
7377zero, the target can choose to align the allocation on any convenient
7378boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007379
7380'``type``' may be any sized type.
7381
7382Semantics:
7383""""""""""
7384
7385Memory is allocated; a pointer is returned. The operation is undefined
7386if there is insufficient stack space for the allocation. '``alloca``'d
7387memory is automatically released when the function returns. The
7388'``alloca``' instruction is commonly used to represent automatic
7389variables that must have an address available. When the function returns
7390(either with the ``ret`` or ``resume`` instructions), the memory is
7391reclaimed. Allocating zero bytes is legal, but the result is undefined.
7392The order in which memory is allocated (ie., which way the stack grows)
7393is not specified.
7394
7395Example:
7396""""""""
7397
7398.. code-block:: llvm
7399
Tim Northover675a0962014-06-13 14:24:23 +00007400 %ptr = alloca i32 ; yields i32*:ptr
7401 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7402 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7403 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007404
7405.. _i_load:
7406
7407'``load``' Instruction
7408^^^^^^^^^^^^^^^^^^^^^^
7409
7410Syntax:
7411"""""""
7412
7413::
7414
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007415 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007416 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007417 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007418 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007419 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007420
7421Overview:
7422"""""""""
7423
7424The '``load``' instruction is used to read from memory.
7425
7426Arguments:
7427""""""""""
7428
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007429The argument to the ``load`` instruction specifies the memory address from which
7430to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7431known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7432the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7433modify the number or order of execution of this ``load`` with other
7434:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007435
JF Bastiend1fb5852015-12-17 22:09:19 +00007436If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007437<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
7438``release`` and ``acq_rel`` orderings are not valid on ``load`` instructions.
7439Atomic loads produce :ref:`defined <memmodel>` results when they may see
7440multiple atomic stores. The type of the pointee must be an integer, pointer, or
7441floating-point type whose bit width is a power of two greater than or equal to
7442eight and less than or equal to a target-specific size limit. ``align`` must be
7443explicitly specified on atomic loads, and the load has undefined behavior if the
7444alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00007445pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007446
7447The optional constant ``align`` argument specifies the alignment of the
7448operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007449or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007450alignment for the target. It is the responsibility of the code emitter
7451to ensure that the alignment information is correct. Overestimating the
7452alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007453may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007454maximum possible alignment is ``1 << 29``. An alignment value higher
7455than the size of the loaded type implies memory up to the alignment
7456value bytes can be safely loaded without trapping in the default
7457address space. Access of the high bytes can interfere with debugging
7458tools, so should not be accessed if the function has the
7459``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007460
7461The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007462metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007463``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007464metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007465that this load is not expected to be reused in the cache. The code
7466generator may select special instructions to save cache bandwidth, such
7467as the ``MOVNT`` instruction on x86.
7468
7469The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007470metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007471entries. If a load instruction tagged with the ``!invariant.load``
7472metadata is executed, the optimizer may assume the memory location
7473referenced by the load contains the same value at all points in the
7474program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007475
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007476The optional ``!invariant.group`` metadata must reference a single metadata name
7477 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7478
Philip Reamescdb72f32014-10-20 22:40:55 +00007479The optional ``!nonnull`` metadata must reference a single
7480metadata name ``<index>`` corresponding to a metadata node with no
7481entries. The existence of the ``!nonnull`` metadata on the
7482instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007483never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007484on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007485to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007486
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007487The optional ``!dereferenceable`` metadata must reference a single metadata
7488name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007489entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007490tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007491The number of bytes known to be dereferenceable is specified by the integer
7492value in the metadata node. This is analogous to the ''dereferenceable''
7493attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007494to loads of a pointer type.
7495
7496The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007497metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7498``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007499instruction tells the optimizer that the value loaded is known to be either
7500dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007501The number of bytes known to be dereferenceable is specified by the integer
7502value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7503attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007504to loads of a pointer type.
7505
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007506The optional ``!align`` metadata must reference a single metadata name
7507``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7508The existence of the ``!align`` metadata on the instruction tells the
7509optimizer that the value loaded is known to be aligned to a boundary specified
7510by the integer value in the metadata node. The alignment must be a power of 2.
7511This is analogous to the ''align'' attribute on parameters and return values.
7512This metadata can only be applied to loads of a pointer type.
7513
Sean Silvab084af42012-12-07 10:36:55 +00007514Semantics:
7515""""""""""
7516
7517The location of memory pointed to is loaded. If the value being loaded
7518is of scalar type then the number of bytes read does not exceed the
7519minimum number of bytes needed to hold all bits of the type. For
7520example, loading an ``i24`` reads at most three bytes. When loading a
7521value of a type like ``i20`` with a size that is not an integral number
7522of bytes, the result is undefined if the value was not originally
7523written using a store of the same type.
7524
7525Examples:
7526"""""""""
7527
7528.. code-block:: llvm
7529
Tim Northover675a0962014-06-13 14:24:23 +00007530 %ptr = alloca i32 ; yields i32*:ptr
7531 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007532 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007533
7534.. _i_store:
7535
7536'``store``' Instruction
7537^^^^^^^^^^^^^^^^^^^^^^^
7538
7539Syntax:
7540"""""""
7541
7542::
7543
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007544 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007545 store atomic [volatile] <ty> <value>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007546
7547Overview:
7548"""""""""
7549
7550The '``store``' instruction is used to write to memory.
7551
7552Arguments:
7553""""""""""
7554
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007555There are two arguments to the ``store`` instruction: a value to store and an
7556address at which to store it. The type of the ``<pointer>`` operand must be a
7557pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7558operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7559allowed to modify the number or order of execution of this ``store`` with other
7560:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7561<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7562structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007563
JF Bastiend1fb5852015-12-17 22:09:19 +00007564If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007565<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
7566``acquire`` and ``acq_rel`` orderings aren't valid on ``store`` instructions.
7567Atomic loads produce :ref:`defined <memmodel>` results when they may see
7568multiple atomic stores. The type of the pointee must be an integer, pointer, or
7569floating-point type whose bit width is a power of two greater than or equal to
7570eight and less than or equal to a target-specific size limit. ``align`` must be
7571explicitly specified on atomic stores, and the store has undefined behavior if
7572the alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00007573pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007574
Eli Benderskyca380842013-04-17 17:17:20 +00007575The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007576operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007577or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007578alignment for the target. It is the responsibility of the code emitter
7579to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007580alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007581alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007582safe. The maximum possible alignment is ``1 << 29``. An alignment
7583value higher than the size of the stored type implies memory up to the
7584alignment value bytes can be stored to without trapping in the default
7585address space. Storing to the higher bytes however may result in data
7586races if another thread can access the same address. Introducing a
7587data race is not allowed. Storing to the extra bytes is not allowed
7588even in situations where a data race is known to not exist if the
7589function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007590
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007591The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007592name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007593value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007594tells the optimizer and code generator that this load is not expected to
7595be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007596instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007597x86.
7598
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007599The optional ``!invariant.group`` metadata must reference a
7600single metadata name ``<index>``. See ``invariant.group`` metadata.
7601
Sean Silvab084af42012-12-07 10:36:55 +00007602Semantics:
7603""""""""""
7604
Eli Benderskyca380842013-04-17 17:17:20 +00007605The contents of memory are updated to contain ``<value>`` at the
7606location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007607of scalar type then the number of bytes written does not exceed the
7608minimum number of bytes needed to hold all bits of the type. For
7609example, storing an ``i24`` writes at most three bytes. When writing a
7610value of a type like ``i20`` with a size that is not an integral number
7611of bytes, it is unspecified what happens to the extra bits that do not
7612belong to the type, but they will typically be overwritten.
7613
7614Example:
7615""""""""
7616
7617.. code-block:: llvm
7618
Tim Northover675a0962014-06-13 14:24:23 +00007619 %ptr = alloca i32 ; yields i32*:ptr
7620 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007621 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007622
7623.. _i_fence:
7624
7625'``fence``' Instruction
7626^^^^^^^^^^^^^^^^^^^^^^^
7627
7628Syntax:
7629"""""""
7630
7631::
7632
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007633 fence [syncscope("<target-scope>")] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007634
7635Overview:
7636"""""""""
7637
7638The '``fence``' instruction is used to introduce happens-before edges
7639between operations.
7640
7641Arguments:
7642""""""""""
7643
7644'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7645defines what *synchronizes-with* edges they add. They can only be given
7646``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7647
7648Semantics:
7649""""""""""
7650
7651A fence A which has (at least) ``release`` ordering semantics
7652*synchronizes with* a fence B with (at least) ``acquire`` ordering
7653semantics if and only if there exist atomic operations X and Y, both
7654operating on some atomic object M, such that A is sequenced before X, X
7655modifies M (either directly or through some side effect of a sequence
7656headed by X), Y is sequenced before B, and Y observes M. This provides a
7657*happens-before* dependency between A and B. Rather than an explicit
7658``fence``, one (but not both) of the atomic operations X or Y might
7659provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7660still *synchronize-with* the explicit ``fence`` and establish the
7661*happens-before* edge.
7662
7663A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7664``acquire`` and ``release`` semantics specified above, participates in
7665the global program order of other ``seq_cst`` operations and/or fences.
7666
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007667A ``fence`` instruction can also take an optional
7668":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00007669
7670Example:
7671""""""""
7672
7673.. code-block:: llvm
7674
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007675 fence acquire ; yields void
7676 fence syncscope("singlethread") seq_cst ; yields void
7677 fence syncscope("agent") seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007678
7679.. _i_cmpxchg:
7680
7681'``cmpxchg``' Instruction
7682^^^^^^^^^^^^^^^^^^^^^^^^^
7683
7684Syntax:
7685"""""""
7686
7687::
7688
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007689 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [syncscope("<target-scope>")] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007690
7691Overview:
7692"""""""""
7693
7694The '``cmpxchg``' instruction is used to atomically modify memory. It
7695loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007696equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007697
7698Arguments:
7699""""""""""
7700
7701There are three arguments to the '``cmpxchg``' instruction: an address
7702to operate on, a value to compare to the value currently be at that
7703address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007704are equal. The type of '<cmp>' must be an integer or pointer type whose
7705bit width is a power of two greater than or equal to eight and less
7706than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7707have the same type, and the type of '<pointer>' must be a pointer to
7708that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7709optimizer is not allowed to modify the number or order of execution of
7710this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007711
Tim Northovere94a5182014-03-11 10:48:52 +00007712The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007713``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7714must be at least ``monotonic``, the ordering constraint on failure must be no
7715stronger than that on success, and the failure ordering cannot be either
7716``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007717
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007718A ``cmpxchg`` instruction can also take an optional
7719":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00007720
7721The pointer passed into cmpxchg must have alignment greater than or
7722equal to the size in memory of the operand.
7723
7724Semantics:
7725""""""""""
7726
Tim Northover420a2162014-06-13 14:24:07 +00007727The contents of memory at the location specified by the '``<pointer>``' operand
Matthias Braun93f2b4b2017-08-09 22:22:04 +00007728is read and compared to '``<cmp>``'; if the values are equal, '``<new>``' is
7729written to the location. The original value at the location is returned,
7730together with a flag indicating success (true) or failure (false).
Tim Northover420a2162014-06-13 14:24:07 +00007731
7732If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7733permitted: the operation may not write ``<new>`` even if the comparison
7734matched.
7735
7736If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7737if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007738
Tim Northovere94a5182014-03-11 10:48:52 +00007739A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7740identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7741load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007742
7743Example:
7744""""""""
7745
7746.. code-block:: llvm
7747
7748 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007749 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007750 br label %loop
7751
7752 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007753 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007754 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007755 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007756 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7757 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007758 br i1 %success, label %done, label %loop
7759
7760 done:
7761 ...
7762
7763.. _i_atomicrmw:
7764
7765'``atomicrmw``' Instruction
7766^^^^^^^^^^^^^^^^^^^^^^^^^^^
7767
7768Syntax:
7769"""""""
7770
7771::
7772
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007773 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [syncscope("<target-scope>")] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007774
7775Overview:
7776"""""""""
7777
7778The '``atomicrmw``' instruction is used to atomically modify memory.
7779
7780Arguments:
7781""""""""""
7782
7783There are three arguments to the '``atomicrmw``' instruction: an
7784operation to apply, an address whose value to modify, an argument to the
7785operation. The operation must be one of the following keywords:
7786
7787- xchg
7788- add
7789- sub
7790- and
7791- nand
7792- or
7793- xor
7794- max
7795- min
7796- umax
7797- umin
7798
7799The type of '<value>' must be an integer type whose bit width is a power
7800of two greater than or equal to eight and less than or equal to a
7801target-specific size limit. The type of the '``<pointer>``' operand must
7802be a pointer to that type. If the ``atomicrmw`` is marked as
7803``volatile``, then the optimizer is not allowed to modify the number or
7804order of execution of this ``atomicrmw`` with other :ref:`volatile
7805operations <volatile>`.
7806
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007807A ``atomicrmw`` instruction can also take an optional
7808":ref:`syncscope <syncscope>`" argument.
7809
Sean Silvab084af42012-12-07 10:36:55 +00007810Semantics:
7811""""""""""
7812
7813The contents of memory at the location specified by the '``<pointer>``'
7814operand are atomically read, modified, and written back. The original
7815value at the location is returned. The modification is specified by the
7816operation argument:
7817
7818- xchg: ``*ptr = val``
7819- add: ``*ptr = *ptr + val``
7820- sub: ``*ptr = *ptr - val``
7821- and: ``*ptr = *ptr & val``
7822- nand: ``*ptr = ~(*ptr & val)``
7823- or: ``*ptr = *ptr | val``
7824- xor: ``*ptr = *ptr ^ val``
7825- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7826- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7827- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7828 comparison)
7829- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7830 comparison)
7831
7832Example:
7833""""""""
7834
7835.. code-block:: llvm
7836
Tim Northover675a0962014-06-13 14:24:23 +00007837 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007838
7839.. _i_getelementptr:
7840
7841'``getelementptr``' Instruction
7842^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7843
7844Syntax:
7845"""""""
7846
7847::
7848
Peter Collingbourned93620b2016-11-10 22:34:55 +00007849 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7850 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7851 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007852
7853Overview:
7854"""""""""
7855
7856The '``getelementptr``' instruction is used to get the address of a
7857subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007858address calculation only and does not access memory. The instruction can also
7859be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007860
7861Arguments:
7862""""""""""
7863
David Blaikie16a97eb2015-03-04 22:02:58 +00007864The first argument is always a type used as the basis for the calculations.
7865The second argument is always a pointer or a vector of pointers, and is the
7866base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007867that indicate which of the elements of the aggregate object are indexed.
7868The interpretation of each index is dependent on the type being indexed
7869into. The first index always indexes the pointer value given as the
David Blaikief91b0302017-06-19 05:34:21 +00007870second argument, the second index indexes a value of the type pointed to
Sean Silvab084af42012-12-07 10:36:55 +00007871(not necessarily the value directly pointed to, since the first index
7872can be non-zero), etc. The first type indexed into must be a pointer
7873value, subsequent types can be arrays, vectors, and structs. Note that
7874subsequent types being indexed into can never be pointers, since that
7875would require loading the pointer before continuing calculation.
7876
7877The type of each index argument depends on the type it is indexing into.
7878When indexing into a (optionally packed) structure, only ``i32`` integer
7879**constants** are allowed (when using a vector of indices they must all
7880be the **same** ``i32`` integer constant). When indexing into an array,
7881pointer or vector, integers of any width are allowed, and they are not
7882required to be constant. These integers are treated as signed values
7883where relevant.
7884
7885For example, let's consider a C code fragment and how it gets compiled
7886to LLVM:
7887
7888.. code-block:: c
7889
7890 struct RT {
7891 char A;
7892 int B[10][20];
7893 char C;
7894 };
7895 struct ST {
7896 int X;
7897 double Y;
7898 struct RT Z;
7899 };
7900
7901 int *foo(struct ST *s) {
7902 return &s[1].Z.B[5][13];
7903 }
7904
7905The LLVM code generated by Clang is:
7906
7907.. code-block:: llvm
7908
7909 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7910 %struct.ST = type { i32, double, %struct.RT }
7911
7912 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7913 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007914 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007915 ret i32* %arrayidx
7916 }
7917
7918Semantics:
7919""""""""""
7920
7921In the example above, the first index is indexing into the
7922'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7923= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7924indexes into the third element of the structure, yielding a
7925'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7926structure. The third index indexes into the second element of the
7927structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7928dimensions of the array are subscripted into, yielding an '``i32``'
7929type. The '``getelementptr``' instruction returns a pointer to this
7930element, thus computing a value of '``i32*``' type.
7931
7932Note that it is perfectly legal to index partially through a structure,
7933returning a pointer to an inner element. Because of this, the LLVM code
7934for the given testcase is equivalent to:
7935
7936.. code-block:: llvm
7937
7938 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007939 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7940 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7941 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7942 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7943 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007944 ret i32* %t5
7945 }
7946
7947If the ``inbounds`` keyword is present, the result value of the
7948``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7949pointer is not an *in bounds* address of an allocated object, or if any
7950of the addresses that would be formed by successive addition of the
7951offsets implied by the indices to the base address with infinitely
7952precise signed arithmetic are not an *in bounds* address of that
7953allocated object. The *in bounds* addresses for an allocated object are
7954all the addresses that point into the object, plus the address one byte
Eli Friedman13f2e352017-02-23 00:48:18 +00007955past the end. The only *in bounds* address for a null pointer in the
7956default address-space is the null pointer itself. In cases where the
7957base is a vector of pointers the ``inbounds`` keyword applies to each
7958of the computations element-wise.
Sean Silvab084af42012-12-07 10:36:55 +00007959
7960If the ``inbounds`` keyword is not present, the offsets are added to the
7961base address with silently-wrapping two's complement arithmetic. If the
7962offsets have a different width from the pointer, they are sign-extended
7963or truncated to the width of the pointer. The result value of the
7964``getelementptr`` may be outside the object pointed to by the base
7965pointer. The result value may not necessarily be used to access memory
7966though, even if it happens to point into allocated storage. See the
7967:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7968information.
7969
Peter Collingbourned93620b2016-11-10 22:34:55 +00007970If the ``inrange`` keyword is present before any index, loading from or
7971storing to any pointer derived from the ``getelementptr`` has undefined
7972behavior if the load or store would access memory outside of the bounds of
7973the element selected by the index marked as ``inrange``. The result of a
7974pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
7975involving memory) involving a pointer derived from a ``getelementptr`` with
7976the ``inrange`` keyword is undefined, with the exception of comparisons
7977in the case where both operands are in the range of the element selected
7978by the ``inrange`` keyword, inclusive of the address one past the end of
7979that element. Note that the ``inrange`` keyword is currently only allowed
7980in constant ``getelementptr`` expressions.
7981
Sean Silvab084af42012-12-07 10:36:55 +00007982The getelementptr instruction is often confusing. For some more insight
7983into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7984
7985Example:
7986""""""""
7987
7988.. code-block:: llvm
7989
7990 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007991 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007992 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007993 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007994 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007995 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007996 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007997 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007998
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007999Vector of pointers:
8000"""""""""""""""""""
8001
8002The ``getelementptr`` returns a vector of pointers, instead of a single address,
8003when one or more of its arguments is a vector. In such cases, all vector
8004arguments should have the same number of elements, and every scalar argument
8005will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00008006
8007.. code-block:: llvm
8008
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008009 ; All arguments are vectors:
8010 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
8011 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008012
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008013 ; Add the same scalar offset to each pointer of a vector:
8014 ; A[i] = ptrs[i] + offset*sizeof(i8)
8015 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00008016
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008017 ; Add distinct offsets to the same pointer:
8018 ; A[i] = ptr + offsets[i]*sizeof(i8)
8019 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008020
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008021 ; In all cases described above the type of the result is <4 x i8*>
8022
8023The two following instructions are equivalent:
8024
8025.. code-block:: llvm
8026
8027 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8028 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
8029 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
8030 <4 x i32> %ind4,
8031 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00008032
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008033 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8034 i32 2, i32 1, <4 x i32> %ind4, i64 13
8035
8036Let's look at the C code, where the vector version of ``getelementptr``
8037makes sense:
8038
8039.. code-block:: c
8040
8041 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00008042 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008043 for (int i = 0; i < size; ++i) {
8044 A[i] = B[C[i]];
8045 }
8046
8047.. code-block:: llvm
8048
8049 ; get pointers for 8 elements from array B
8050 %ptrs = getelementptr double, double* %B, <8 x i32> %C
8051 ; load 8 elements from array B into A
Elad Cohenef5798a2017-05-03 12:28:54 +00008052 %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008053 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00008054
8055Conversion Operations
8056---------------------
8057
8058The instructions in this category are the conversion instructions
8059(casting) which all take a single operand and a type. They perform
8060various bit conversions on the operand.
8061
8062'``trunc .. to``' Instruction
8063^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8064
8065Syntax:
8066"""""""
8067
8068::
8069
8070 <result> = trunc <ty> <value> to <ty2> ; yields ty2
8071
8072Overview:
8073"""""""""
8074
8075The '``trunc``' instruction truncates its operand to the type ``ty2``.
8076
8077Arguments:
8078""""""""""
8079
8080The '``trunc``' instruction takes a value to trunc, and a type to trunc
8081it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
8082of the same number of integers. The bit size of the ``value`` must be
8083larger than the bit size of the destination type, ``ty2``. Equal sized
8084types are not allowed.
8085
8086Semantics:
8087""""""""""
8088
8089The '``trunc``' instruction truncates the high order bits in ``value``
8090and converts the remaining bits to ``ty2``. Since the source size must
8091be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
8092It will always truncate bits.
8093
8094Example:
8095""""""""
8096
8097.. code-block:: llvm
8098
8099 %X = trunc i32 257 to i8 ; yields i8:1
8100 %Y = trunc i32 123 to i1 ; yields i1:true
8101 %Z = trunc i32 122 to i1 ; yields i1:false
8102 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
8103
8104'``zext .. to``' Instruction
8105^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8106
8107Syntax:
8108"""""""
8109
8110::
8111
8112 <result> = zext <ty> <value> to <ty2> ; yields ty2
8113
8114Overview:
8115"""""""""
8116
8117The '``zext``' instruction zero extends its operand to type ``ty2``.
8118
8119Arguments:
8120""""""""""
8121
8122The '``zext``' instruction takes a value to cast, and a type to cast it
8123to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8124the same number of integers. The bit size of the ``value`` must be
8125smaller than the bit size of the destination type, ``ty2``.
8126
8127Semantics:
8128""""""""""
8129
8130The ``zext`` fills the high order bits of the ``value`` with zero bits
8131until it reaches the size of the destination type, ``ty2``.
8132
8133When zero extending from i1, the result will always be either 0 or 1.
8134
8135Example:
8136""""""""
8137
8138.. code-block:: llvm
8139
8140 %X = zext i32 257 to i64 ; yields i64:257
8141 %Y = zext i1 true to i32 ; yields i32:1
8142 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8143
8144'``sext .. to``' Instruction
8145^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8146
8147Syntax:
8148"""""""
8149
8150::
8151
8152 <result> = sext <ty> <value> to <ty2> ; yields ty2
8153
8154Overview:
8155"""""""""
8156
8157The '``sext``' sign extends ``value`` to the type ``ty2``.
8158
8159Arguments:
8160""""""""""
8161
8162The '``sext``' instruction takes a value to cast, and a type to cast it
8163to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8164the same number of integers. The bit size of the ``value`` must be
8165smaller than the bit size of the destination type, ``ty2``.
8166
8167Semantics:
8168""""""""""
8169
8170The '``sext``' instruction performs a sign extension by copying the sign
8171bit (highest order bit) of the ``value`` until it reaches the bit size
8172of the type ``ty2``.
8173
8174When sign extending from i1, the extension always results in -1 or 0.
8175
8176Example:
8177""""""""
8178
8179.. code-block:: llvm
8180
8181 %X = sext i8 -1 to i16 ; yields i16 :65535
8182 %Y = sext i1 true to i32 ; yields i32:-1
8183 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8184
8185'``fptrunc .. to``' Instruction
8186^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8187
8188Syntax:
8189"""""""
8190
8191::
8192
8193 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
8194
8195Overview:
8196"""""""""
8197
8198The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
8199
8200Arguments:
8201""""""""""
8202
8203The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
8204value to cast and a :ref:`floating point <t_floating>` type to cast it to.
8205The size of ``value`` must be larger than the size of ``ty2``. This
8206implies that ``fptrunc`` cannot be used to make a *no-op cast*.
8207
8208Semantics:
8209""""""""""
8210
Dan Liew50456fb2015-09-03 18:43:56 +00008211The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00008212:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00008213point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
8214destination type, ``ty2``, then the results are undefined. If the cast produces
8215an inexact result, how rounding is performed (e.g. truncation, also known as
8216round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00008217
8218Example:
8219""""""""
8220
8221.. code-block:: llvm
8222
8223 %X = fptrunc double 123.0 to float ; yields float:123.0
8224 %Y = fptrunc double 1.0E+300 to float ; yields undefined
8225
8226'``fpext .. to``' Instruction
8227^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8228
8229Syntax:
8230"""""""
8231
8232::
8233
8234 <result> = fpext <ty> <value> to <ty2> ; yields ty2
8235
8236Overview:
8237"""""""""
8238
8239The '``fpext``' extends a floating point ``value`` to a larger floating
8240point value.
8241
8242Arguments:
8243""""""""""
8244
8245The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
8246``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
8247to. The source type must be smaller than the destination type.
8248
8249Semantics:
8250""""""""""
8251
8252The '``fpext``' instruction extends the ``value`` from a smaller
8253:ref:`floating point <t_floating>` type to a larger :ref:`floating
8254point <t_floating>` type. The ``fpext`` cannot be used to make a
8255*no-op cast* because it always changes bits. Use ``bitcast`` to make a
8256*no-op cast* for a floating point cast.
8257
8258Example:
8259""""""""
8260
8261.. code-block:: llvm
8262
8263 %X = fpext float 3.125 to double ; yields double:3.125000e+00
8264 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
8265
8266'``fptoui .. to``' Instruction
8267^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8268
8269Syntax:
8270"""""""
8271
8272::
8273
8274 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
8275
8276Overview:
8277"""""""""
8278
8279The '``fptoui``' converts a floating point ``value`` to its unsigned
8280integer equivalent of type ``ty2``.
8281
8282Arguments:
8283""""""""""
8284
8285The '``fptoui``' instruction takes a value to cast, which must be a
8286scalar or vector :ref:`floating point <t_floating>` value, and a type to
8287cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8288``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8289type with the same number of elements as ``ty``
8290
8291Semantics:
8292""""""""""
8293
8294The '``fptoui``' instruction converts its :ref:`floating
8295point <t_floating>` operand into the nearest (rounding towards zero)
8296unsigned integer value. If the value cannot fit in ``ty2``, the results
8297are undefined.
8298
8299Example:
8300""""""""
8301
8302.. code-block:: llvm
8303
8304 %X = fptoui double 123.0 to i32 ; yields i32:123
8305 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
8306 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
8307
8308'``fptosi .. to``' Instruction
8309^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8310
8311Syntax:
8312"""""""
8313
8314::
8315
8316 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
8317
8318Overview:
8319"""""""""
8320
8321The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
8322``value`` to type ``ty2``.
8323
8324Arguments:
8325""""""""""
8326
8327The '``fptosi``' instruction takes a value to cast, which must be a
8328scalar or vector :ref:`floating point <t_floating>` value, and a type to
8329cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8330``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8331type with the same number of elements as ``ty``
8332
8333Semantics:
8334""""""""""
8335
8336The '``fptosi``' instruction converts its :ref:`floating
8337point <t_floating>` operand into the nearest (rounding towards zero)
8338signed integer value. If the value cannot fit in ``ty2``, the results
8339are undefined.
8340
8341Example:
8342""""""""
8343
8344.. code-block:: llvm
8345
8346 %X = fptosi double -123.0 to i32 ; yields i32:-123
8347 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
8348 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
8349
8350'``uitofp .. to``' Instruction
8351^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8352
8353Syntax:
8354"""""""
8355
8356::
8357
8358 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
8359
8360Overview:
8361"""""""""
8362
8363The '``uitofp``' instruction regards ``value`` as an unsigned integer
8364and converts that value to the ``ty2`` type.
8365
8366Arguments:
8367""""""""""
8368
8369The '``uitofp``' instruction takes a value to cast, which must be a
8370scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8371``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8372``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8373type with the same number of elements as ``ty``
8374
8375Semantics:
8376""""""""""
8377
8378The '``uitofp``' instruction interprets its operand as an unsigned
8379integer quantity and converts it to the corresponding floating point
8380value. If the value cannot fit in the floating point value, the results
8381are undefined.
8382
8383Example:
8384""""""""
8385
8386.. code-block:: llvm
8387
8388 %X = uitofp i32 257 to float ; yields float:257.0
8389 %Y = uitofp i8 -1 to double ; yields double:255.0
8390
8391'``sitofp .. to``' Instruction
8392^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8393
8394Syntax:
8395"""""""
8396
8397::
8398
8399 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8400
8401Overview:
8402"""""""""
8403
8404The '``sitofp``' instruction regards ``value`` as a signed integer and
8405converts that value to the ``ty2`` type.
8406
8407Arguments:
8408""""""""""
8409
8410The '``sitofp``' instruction takes a value to cast, which must be a
8411scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8412``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8413``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8414type with the same number of elements as ``ty``
8415
8416Semantics:
8417""""""""""
8418
8419The '``sitofp``' instruction interprets its operand as a signed integer
8420quantity and converts it to the corresponding floating point value. If
8421the value cannot fit in the floating point value, the results are
8422undefined.
8423
8424Example:
8425""""""""
8426
8427.. code-block:: llvm
8428
8429 %X = sitofp i32 257 to float ; yields float:257.0
8430 %Y = sitofp i8 -1 to double ; yields double:-1.0
8431
8432.. _i_ptrtoint:
8433
8434'``ptrtoint .. to``' Instruction
8435^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8436
8437Syntax:
8438"""""""
8439
8440::
8441
8442 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8443
8444Overview:
8445"""""""""
8446
8447The '``ptrtoint``' instruction converts the pointer or a vector of
8448pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8449
8450Arguments:
8451""""""""""
8452
8453The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008454a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008455type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8456a vector of integers type.
8457
8458Semantics:
8459""""""""""
8460
8461The '``ptrtoint``' instruction converts ``value`` to integer type
8462``ty2`` by interpreting the pointer value as an integer and either
8463truncating or zero extending that value to the size of the integer type.
8464If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8465``value`` is larger than ``ty2`` then a truncation is done. If they are
8466the same size, then nothing is done (*no-op cast*) other than a type
8467change.
8468
8469Example:
8470""""""""
8471
8472.. code-block:: llvm
8473
8474 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8475 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8476 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8477
8478.. _i_inttoptr:
8479
8480'``inttoptr .. to``' Instruction
8481^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8482
8483Syntax:
8484"""""""
8485
8486::
8487
8488 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8489
8490Overview:
8491"""""""""
8492
8493The '``inttoptr``' instruction converts an integer ``value`` to a
8494pointer type, ``ty2``.
8495
8496Arguments:
8497""""""""""
8498
8499The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8500cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8501type.
8502
8503Semantics:
8504""""""""""
8505
8506The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8507applying either a zero extension or a truncation depending on the size
8508of the integer ``value``. If ``value`` is larger than the size of a
8509pointer then a truncation is done. If ``value`` is smaller than the size
8510of a pointer then a zero extension is done. If they are the same size,
8511nothing is done (*no-op cast*).
8512
8513Example:
8514""""""""
8515
8516.. code-block:: llvm
8517
8518 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8519 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8520 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8521 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8522
8523.. _i_bitcast:
8524
8525'``bitcast .. to``' Instruction
8526^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8527
8528Syntax:
8529"""""""
8530
8531::
8532
8533 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8534
8535Overview:
8536"""""""""
8537
8538The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8539changing any bits.
8540
8541Arguments:
8542""""""""""
8543
8544The '``bitcast``' instruction takes a value to cast, which must be a
8545non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008546also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8547bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008548identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008549also be a pointer of the same size. This instruction supports bitwise
8550conversion of vectors to integers and to vectors of other types (as
8551long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008552
8553Semantics:
8554""""""""""
8555
Matt Arsenault24b49c42013-07-31 17:49:08 +00008556The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8557is always a *no-op cast* because no bits change with this
8558conversion. The conversion is done as if the ``value`` had been stored
8559to memory and read back as type ``ty2``. Pointer (or vector of
8560pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008561pointers) types with the same address space through this instruction.
8562To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8563or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008564
8565Example:
8566""""""""
8567
Renato Golin124f2592016-07-20 12:16:38 +00008568.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008569
8570 %X = bitcast i8 255 to i8 ; yields i8 :-1
8571 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8572 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8573 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8574
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008575.. _i_addrspacecast:
8576
8577'``addrspacecast .. to``' Instruction
8578^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8579
8580Syntax:
8581"""""""
8582
8583::
8584
8585 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8586
8587Overview:
8588"""""""""
8589
8590The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8591address space ``n`` to type ``pty2`` in address space ``m``.
8592
8593Arguments:
8594""""""""""
8595
8596The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8597to cast and a pointer type to cast it to, which must have a different
8598address space.
8599
8600Semantics:
8601""""""""""
8602
8603The '``addrspacecast``' instruction converts the pointer value
8604``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008605value modification, depending on the target and the address space
8606pair. Pointer conversions within the same address space must be
8607performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008608conversion is legal then both result and operand refer to the same memory
8609location.
8610
8611Example:
8612""""""""
8613
8614.. code-block:: llvm
8615
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008616 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8617 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8618 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008619
Sean Silvab084af42012-12-07 10:36:55 +00008620.. _otherops:
8621
8622Other Operations
8623----------------
8624
8625The instructions in this category are the "miscellaneous" instructions,
8626which defy better classification.
8627
8628.. _i_icmp:
8629
8630'``icmp``' Instruction
8631^^^^^^^^^^^^^^^^^^^^^^
8632
8633Syntax:
8634"""""""
8635
8636::
8637
Tim Northover675a0962014-06-13 14:24:23 +00008638 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008639
8640Overview:
8641"""""""""
8642
8643The '``icmp``' instruction returns a boolean value or a vector of
8644boolean values based on comparison of its two integer, integer vector,
8645pointer, or pointer vector operands.
8646
8647Arguments:
8648""""""""""
8649
8650The '``icmp``' instruction takes three operands. The first operand is
8651the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008652not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008653
8654#. ``eq``: equal
8655#. ``ne``: not equal
8656#. ``ugt``: unsigned greater than
8657#. ``uge``: unsigned greater or equal
8658#. ``ult``: unsigned less than
8659#. ``ule``: unsigned less or equal
8660#. ``sgt``: signed greater than
8661#. ``sge``: signed greater or equal
8662#. ``slt``: signed less than
8663#. ``sle``: signed less or equal
8664
8665The remaining two arguments must be :ref:`integer <t_integer>` or
8666:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8667must also be identical types.
8668
8669Semantics:
8670""""""""""
8671
8672The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8673code given as ``cond``. The comparison performed always yields either an
8674:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8675
8676#. ``eq``: yields ``true`` if the operands are equal, ``false``
8677 otherwise. No sign interpretation is necessary or performed.
8678#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8679 otherwise. No sign interpretation is necessary or performed.
8680#. ``ugt``: interprets the operands as unsigned values and yields
8681 ``true`` if ``op1`` is greater than ``op2``.
8682#. ``uge``: interprets the operands as unsigned values and yields
8683 ``true`` if ``op1`` is greater than or equal to ``op2``.
8684#. ``ult``: interprets the operands as unsigned values and yields
8685 ``true`` if ``op1`` is less than ``op2``.
8686#. ``ule``: interprets the operands as unsigned values and yields
8687 ``true`` if ``op1`` is less than or equal to ``op2``.
8688#. ``sgt``: interprets the operands as signed values and yields ``true``
8689 if ``op1`` is greater than ``op2``.
8690#. ``sge``: interprets the operands as signed values and yields ``true``
8691 if ``op1`` is greater than or equal to ``op2``.
8692#. ``slt``: interprets the operands as signed values and yields ``true``
8693 if ``op1`` is less than ``op2``.
8694#. ``sle``: interprets the operands as signed values and yields ``true``
8695 if ``op1`` is less than or equal to ``op2``.
8696
8697If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8698are compared as if they were integers.
8699
8700If the operands are integer vectors, then they are compared element by
8701element. The result is an ``i1`` vector with the same number of elements
8702as the values being compared. Otherwise, the result is an ``i1``.
8703
8704Example:
8705""""""""
8706
Renato Golin124f2592016-07-20 12:16:38 +00008707.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008708
8709 <result> = icmp eq i32 4, 5 ; yields: result=false
8710 <result> = icmp ne float* %X, %X ; yields: result=false
8711 <result> = icmp ult i16 4, 5 ; yields: result=true
8712 <result> = icmp sgt i16 4, 5 ; yields: result=false
8713 <result> = icmp ule i16 -4, 5 ; yields: result=false
8714 <result> = icmp sge i16 4, 5 ; yields: result=false
8715
Sean Silvab084af42012-12-07 10:36:55 +00008716.. _i_fcmp:
8717
8718'``fcmp``' Instruction
8719^^^^^^^^^^^^^^^^^^^^^^
8720
8721Syntax:
8722"""""""
8723
8724::
8725
James Molloy88eb5352015-07-10 12:52:00 +00008726 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008727
8728Overview:
8729"""""""""
8730
8731The '``fcmp``' instruction returns a boolean value or vector of boolean
8732values based on comparison of its operands.
8733
8734If the operands are floating point scalars, then the result type is a
8735boolean (:ref:`i1 <t_integer>`).
8736
8737If the operands are floating point vectors, then the result type is a
8738vector of boolean with the same number of elements as the operands being
8739compared.
8740
8741Arguments:
8742""""""""""
8743
8744The '``fcmp``' instruction takes three operands. The first operand is
8745the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008746not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008747
8748#. ``false``: no comparison, always returns false
8749#. ``oeq``: ordered and equal
8750#. ``ogt``: ordered and greater than
8751#. ``oge``: ordered and greater than or equal
8752#. ``olt``: ordered and less than
8753#. ``ole``: ordered and less than or equal
8754#. ``one``: ordered and not equal
8755#. ``ord``: ordered (no nans)
8756#. ``ueq``: unordered or equal
8757#. ``ugt``: unordered or greater than
8758#. ``uge``: unordered or greater than or equal
8759#. ``ult``: unordered or less than
8760#. ``ule``: unordered or less than or equal
8761#. ``une``: unordered or not equal
8762#. ``uno``: unordered (either nans)
8763#. ``true``: no comparison, always returns true
8764
8765*Ordered* means that neither operand is a QNAN while *unordered* means
8766that either operand may be a QNAN.
8767
8768Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8769point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8770type. They must have identical types.
8771
8772Semantics:
8773""""""""""
8774
8775The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8776condition code given as ``cond``. If the operands are vectors, then the
8777vectors are compared element by element. Each comparison performed
8778always yields an :ref:`i1 <t_integer>` result, as follows:
8779
8780#. ``false``: always yields ``false``, regardless of operands.
8781#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8782 is equal to ``op2``.
8783#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8784 is greater than ``op2``.
8785#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8786 is greater than or equal to ``op2``.
8787#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8788 is less than ``op2``.
8789#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8790 is less than or equal to ``op2``.
8791#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8792 is not equal to ``op2``.
8793#. ``ord``: yields ``true`` if both operands are not a QNAN.
8794#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8795 equal to ``op2``.
8796#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8797 greater than ``op2``.
8798#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8799 greater than or equal to ``op2``.
8800#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8801 less than ``op2``.
8802#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8803 less than or equal to ``op2``.
8804#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8805 not equal to ``op2``.
8806#. ``uno``: yields ``true`` if either operand is a QNAN.
8807#. ``true``: always yields ``true``, regardless of operands.
8808
James Molloy88eb5352015-07-10 12:52:00 +00008809The ``fcmp`` instruction can also optionally take any number of
8810:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8811otherwise unsafe floating point optimizations.
8812
8813Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8814only flags that have any effect on its semantics are those that allow
8815assumptions to be made about the values of input arguments; namely
8816``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8817
Sean Silvab084af42012-12-07 10:36:55 +00008818Example:
8819""""""""
8820
Renato Golin124f2592016-07-20 12:16:38 +00008821.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008822
8823 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8824 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8825 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8826 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8827
Sean Silvab084af42012-12-07 10:36:55 +00008828.. _i_phi:
8829
8830'``phi``' Instruction
8831^^^^^^^^^^^^^^^^^^^^^
8832
8833Syntax:
8834"""""""
8835
8836::
8837
8838 <result> = phi <ty> [ <val0>, <label0>], ...
8839
8840Overview:
8841"""""""""
8842
8843The '``phi``' instruction is used to implement the φ node in the SSA
8844graph representing the function.
8845
8846Arguments:
8847""""""""""
8848
8849The type of the incoming values is specified with the first type field.
8850After this, the '``phi``' instruction takes a list of pairs as
8851arguments, with one pair for each predecessor basic block of the current
8852block. Only values of :ref:`first class <t_firstclass>` type may be used as
8853the value arguments to the PHI node. Only labels may be used as the
8854label arguments.
8855
8856There must be no non-phi instructions between the start of a basic block
8857and the PHI instructions: i.e. PHI instructions must be first in a basic
8858block.
8859
8860For the purposes of the SSA form, the use of each incoming value is
8861deemed to occur on the edge from the corresponding predecessor block to
8862the current block (but after any definition of an '``invoke``'
8863instruction's return value on the same edge).
8864
8865Semantics:
8866""""""""""
8867
8868At runtime, the '``phi``' instruction logically takes on the value
8869specified by the pair corresponding to the predecessor basic block that
8870executed just prior to the current block.
8871
8872Example:
8873""""""""
8874
8875.. code-block:: llvm
8876
8877 Loop: ; Infinite loop that counts from 0 on up...
8878 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8879 %nextindvar = add i32 %indvar, 1
8880 br label %Loop
8881
8882.. _i_select:
8883
8884'``select``' Instruction
8885^^^^^^^^^^^^^^^^^^^^^^^^
8886
8887Syntax:
8888"""""""
8889
8890::
8891
8892 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8893
8894 selty is either i1 or {<N x i1>}
8895
8896Overview:
8897"""""""""
8898
8899The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008900condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008901
8902Arguments:
8903""""""""""
8904
8905The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8906values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008907class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008908
8909Semantics:
8910""""""""""
8911
8912If the condition is an i1 and it evaluates to 1, the instruction returns
8913the first value argument; otherwise, it returns the second value
8914argument.
8915
8916If the condition is a vector of i1, then the value arguments must be
8917vectors of the same size, and the selection is done element by element.
8918
David Majnemer40a0b592015-03-03 22:45:47 +00008919If the condition is an i1 and the value arguments are vectors of the
8920same size, then an entire vector is selected.
8921
Sean Silvab084af42012-12-07 10:36:55 +00008922Example:
8923""""""""
8924
8925.. code-block:: llvm
8926
8927 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8928
8929.. _i_call:
8930
8931'``call``' Instruction
8932^^^^^^^^^^^^^^^^^^^^^^
8933
8934Syntax:
8935"""""""
8936
8937::
8938
David Blaikieb83cf102016-07-13 17:21:34 +00008939 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008940 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008941
8942Overview:
8943"""""""""
8944
8945The '``call``' instruction represents a simple function call.
8946
8947Arguments:
8948""""""""""
8949
8950This instruction requires several arguments:
8951
Reid Kleckner5772b772014-04-24 20:14:34 +00008952#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008953 should perform tail call optimization. The ``tail`` marker is a hint that
8954 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008955 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008956 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008957
8958 #. The call will not cause unbounded stack growth if it is part of a
8959 recursive cycle in the call graph.
8960 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8961 forwarded in place.
8962
8963 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008964 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008965 rules:
8966
8967 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8968 or a pointer bitcast followed by a ret instruction.
8969 - The ret instruction must return the (possibly bitcasted) value
8970 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008971 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008972 parameters or return types may differ in pointee type, but not
8973 in address space.
8974 - The calling conventions of the caller and callee must match.
8975 - All ABI-impacting function attributes, such as sret, byval, inreg,
8976 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008977 - The callee must be varargs iff the caller is varargs. Bitcasting a
8978 non-varargs function to the appropriate varargs type is legal so
8979 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008980
8981 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8982 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008983
8984 - Caller and callee both have the calling convention ``fastcc``.
8985 - The call is in tail position (ret immediately follows call and ret
8986 uses value of call or is void).
8987 - Option ``-tailcallopt`` is enabled, or
8988 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008989 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008990 met. <CodeGenerator.html#tailcallopt>`_
8991
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008992#. The optional ``notail`` marker indicates that the optimizers should not add
8993 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8994 call optimization from being performed on the call.
8995
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008996#. The optional ``fast-math flags`` marker indicates that the call has one or more
8997 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8998 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8999 for calls that return a floating-point scalar or vector type.
9000
Sean Silvab084af42012-12-07 10:36:55 +00009001#. The optional "cconv" marker indicates which :ref:`calling
9002 convention <callingconv>` the call should use. If none is
9003 specified, the call defaults to using C calling conventions. The
9004 calling convention of the call must match the calling convention of
9005 the target function, or else the behavior is undefined.
9006#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
9007 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
9008 are valid here.
9009#. '``ty``': the type of the call instruction itself which is also the
9010 type of the return value. Functions that return no value are marked
9011 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00009012#. '``fnty``': shall be the signature of the function being called. The
9013 argument types must match the types implied by this signature. This
9014 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00009015#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00009016 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00009017 indirect ``call``'s are just as possible, calling an arbitrary pointer
9018 to function value.
9019#. '``function args``': argument list whose types match the function
9020 signature argument types and parameter attributes. All arguments must
9021 be of :ref:`first class <t_firstclass>` type. If the function signature
9022 indicates the function accepts a variable number of arguments, the
9023 extra arguments can be specified.
George Burgess IV39c91052017-04-13 04:01:55 +00009024#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00009025#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00009026
9027Semantics:
9028""""""""""
9029
9030The '``call``' instruction is used to cause control flow to transfer to
9031a specified function, with its incoming arguments bound to the specified
9032values. Upon a '``ret``' instruction in the called function, control
9033flow continues with the instruction after the function call, and the
9034return value of the function is bound to the result argument.
9035
9036Example:
9037""""""""
9038
9039.. code-block:: llvm
9040
9041 %retval = call i32 @test(i32 %argc)
9042 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
9043 %X = tail call i32 @foo() ; yields i32
9044 %Y = tail call fastcc i32 @foo() ; yields i32
9045 call void %foo(i8 97 signext)
9046
9047 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00009048 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00009049 %gr = extractvalue %struct.A %r, 0 ; yields i32
9050 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
9051 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
9052 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
9053
9054llvm treats calls to some functions with names and arguments that match
9055the standard C99 library as being the C99 library functions, and may
9056perform optimizations or generate code for them under that assumption.
9057This is something we'd like to change in the future to provide better
9058support for freestanding environments and non-C-based languages.
9059
9060.. _i_va_arg:
9061
9062'``va_arg``' Instruction
9063^^^^^^^^^^^^^^^^^^^^^^^^
9064
9065Syntax:
9066"""""""
9067
9068::
9069
9070 <resultval> = va_arg <va_list*> <arglist>, <argty>
9071
9072Overview:
9073"""""""""
9074
9075The '``va_arg``' instruction is used to access arguments passed through
9076the "variable argument" area of a function call. It is used to implement
9077the ``va_arg`` macro in C.
9078
9079Arguments:
9080""""""""""
9081
9082This instruction takes a ``va_list*`` value and the type of the
9083argument. It returns a value of the specified argument type and
9084increments the ``va_list`` to point to the next argument. The actual
9085type of ``va_list`` is target specific.
9086
9087Semantics:
9088""""""""""
9089
9090The '``va_arg``' instruction loads an argument of the specified type
9091from the specified ``va_list`` and causes the ``va_list`` to point to
9092the next argument. For more information, see the variable argument
9093handling :ref:`Intrinsic Functions <int_varargs>`.
9094
9095It is legal for this instruction to be called in a function which does
9096not take a variable number of arguments, for example, the ``vfprintf``
9097function.
9098
9099``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
9100function <intrinsics>` because it takes a type as an argument.
9101
9102Example:
9103""""""""
9104
9105See the :ref:`variable argument processing <int_varargs>` section.
9106
9107Note that the code generator does not yet fully support va\_arg on many
9108targets. Also, it does not currently support va\_arg with aggregate
9109types on any target.
9110
9111.. _i_landingpad:
9112
9113'``landingpad``' Instruction
9114^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9115
9116Syntax:
9117"""""""
9118
9119::
9120
David Majnemer7fddecc2015-06-17 20:52:32 +00009121 <resultval> = landingpad <resultty> <clause>+
9122 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00009123
9124 <clause> := catch <type> <value>
9125 <clause> := filter <array constant type> <array constant>
9126
9127Overview:
9128"""""""""
9129
9130The '``landingpad``' instruction is used by `LLVM's exception handling
9131system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009132is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00009133code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00009134defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00009135re-entry to the function. The ``resultval`` has the type ``resultty``.
9136
9137Arguments:
9138""""""""""
9139
David Majnemer7fddecc2015-06-17 20:52:32 +00009140The optional
Sean Silvab084af42012-12-07 10:36:55 +00009141``cleanup`` flag indicates that the landing pad block is a cleanup.
9142
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009143A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00009144contains the global variable representing the "type" that may be caught
9145or filtered respectively. Unlike the ``catch`` clause, the ``filter``
9146clause takes an array constant as its argument. Use
9147"``[0 x i8**] undef``" for a filter which cannot throw. The
9148'``landingpad``' instruction must contain *at least* one ``clause`` or
9149the ``cleanup`` flag.
9150
9151Semantics:
9152""""""""""
9153
9154The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00009155:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00009156therefore the "result type" of the ``landingpad`` instruction. As with
9157calling conventions, how the personality function results are
9158represented in LLVM IR is target specific.
9159
9160The clauses are applied in order from top to bottom. If two
9161``landingpad`` instructions are merged together through inlining, the
9162clauses from the calling function are appended to the list of clauses.
9163When the call stack is being unwound due to an exception being thrown,
9164the exception is compared against each ``clause`` in turn. If it doesn't
9165match any of the clauses, and the ``cleanup`` flag is not set, then
9166unwinding continues further up the call stack.
9167
9168The ``landingpad`` instruction has several restrictions:
9169
9170- A landing pad block is a basic block which is the unwind destination
9171 of an '``invoke``' instruction.
9172- A landing pad block must have a '``landingpad``' instruction as its
9173 first non-PHI instruction.
9174- There can be only one '``landingpad``' instruction within the landing
9175 pad block.
9176- A basic block that is not a landing pad block may not include a
9177 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009178
9179Example:
9180""""""""
9181
9182.. code-block:: llvm
9183
9184 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00009185 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009186 catch i8** @_ZTIi
9187 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00009188 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009189 cleanup
9190 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00009191 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009192 catch i8** @_ZTIi
9193 filter [1 x i8**] [@_ZTId]
9194
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009195.. _i_catchpad:
9196
9197'``catchpad``' Instruction
9198^^^^^^^^^^^^^^^^^^^^^^^^^^
9199
9200Syntax:
9201"""""""
9202
9203::
9204
9205 <resultval> = catchpad within <catchswitch> [<args>*]
9206
9207Overview:
9208"""""""""
9209
9210The '``catchpad``' instruction is used by `LLVM's exception handling
9211system <ExceptionHandling.html#overview>`_ to specify that a basic block
9212begins a catch handler --- one where a personality routine attempts to transfer
9213control to catch an exception.
9214
9215Arguments:
9216""""""""""
9217
9218The ``catchswitch`` operand must always be a token produced by a
9219:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
9220ensures that each ``catchpad`` has exactly one predecessor block, and it always
9221terminates in a ``catchswitch``.
9222
9223The ``args`` correspond to whatever information the personality routine
9224requires to know if this is an appropriate handler for the exception. Control
9225will transfer to the ``catchpad`` if this is the first appropriate handler for
9226the exception.
9227
9228The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
9229``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
9230pads.
9231
9232Semantics:
9233""""""""""
9234
9235When the call stack is being unwound due to an exception being thrown, the
9236exception is compared against the ``args``. If it doesn't match, control will
9237not reach the ``catchpad`` instruction. The representation of ``args`` is
9238entirely target and personality function-specific.
9239
9240Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
9241instruction must be the first non-phi of its parent basic block.
9242
9243The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
9244instructions is described in the
9245`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
9246
9247When a ``catchpad`` has been "entered" but not yet "exited" (as
9248described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9249it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9250that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
9251
9252Example:
9253""""""""
9254
Renato Golin124f2592016-07-20 12:16:38 +00009255.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009256
9257 dispatch:
9258 %cs = catchswitch within none [label %handler0] unwind to caller
9259 ;; A catch block which can catch an integer.
9260 handler0:
9261 %tok = catchpad within %cs [i8** @_ZTIi]
9262
David Majnemer654e1302015-07-31 17:58:14 +00009263.. _i_cleanuppad:
9264
9265'``cleanuppad``' Instruction
9266^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9267
9268Syntax:
9269"""""""
9270
9271::
9272
David Majnemer8a1c45d2015-12-12 05:38:55 +00009273 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00009274
9275Overview:
9276"""""""""
9277
9278The '``cleanuppad``' instruction is used by `LLVM's exception handling
9279system <ExceptionHandling.html#overview>`_ to specify that a basic block
9280is a cleanup block --- one where a personality routine attempts to
9281transfer control to run cleanup actions.
9282The ``args`` correspond to whatever additional
9283information the :ref:`personality function <personalityfn>` requires to
9284execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00009285The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00009286match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
9287The ``parent`` argument is the token of the funclet that contains the
9288``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
9289this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00009290
9291Arguments:
9292""""""""""
9293
9294The instruction takes a list of arbitrary values which are interpreted
9295by the :ref:`personality function <personalityfn>`.
9296
9297Semantics:
9298""""""""""
9299
David Majnemer654e1302015-07-31 17:58:14 +00009300When the call stack is being unwound due to an exception being thrown,
9301the :ref:`personality function <personalityfn>` transfers control to the
9302``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00009303As with calling conventions, how the personality function results are
9304represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00009305
9306The ``cleanuppad`` instruction has several restrictions:
9307
9308- A cleanup block is a basic block which is the unwind destination of
9309 an exceptional instruction.
9310- A cleanup block must have a '``cleanuppad``' instruction as its
9311 first non-PHI instruction.
9312- There can be only one '``cleanuppad``' instruction within the
9313 cleanup block.
9314- A basic block that is not a cleanup block may not include a
9315 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009316
Joseph Tremoulete28885e2016-01-10 04:28:38 +00009317When a ``cleanuppad`` has been "entered" but not yet "exited" (as
9318described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9319it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9320that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009321
David Majnemer654e1302015-07-31 17:58:14 +00009322Example:
9323""""""""
9324
Renato Golin124f2592016-07-20 12:16:38 +00009325.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00009326
David Majnemer8a1c45d2015-12-12 05:38:55 +00009327 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00009328
Sean Silvab084af42012-12-07 10:36:55 +00009329.. _intrinsics:
9330
9331Intrinsic Functions
9332===================
9333
9334LLVM supports the notion of an "intrinsic function". These functions
9335have well known names and semantics and are required to follow certain
9336restrictions. Overall, these intrinsics represent an extension mechanism
9337for the LLVM language that does not require changing all of the
9338transformations in LLVM when adding to the language (or the bitcode
9339reader/writer, the parser, etc...).
9340
9341Intrinsic function names must all start with an "``llvm.``" prefix. This
9342prefix is reserved in LLVM for intrinsic names; thus, function names may
9343not begin with this prefix. Intrinsic functions must always be external
9344functions: you cannot define the body of intrinsic functions. Intrinsic
9345functions may only be used in call or invoke instructions: it is illegal
9346to take the address of an intrinsic function. Additionally, because
9347intrinsic functions are part of the LLVM language, it is required if any
9348are added that they be documented here.
9349
9350Some intrinsic functions can be overloaded, i.e., the intrinsic
9351represents a family of functions that perform the same operation but on
9352different data types. Because LLVM can represent over 8 million
9353different integer types, overloading is used commonly to allow an
9354intrinsic function to operate on any integer type. One or more of the
9355argument types or the result type can be overloaded to accept any
9356integer type. Argument types may also be defined as exactly matching a
9357previous argument's type or the result type. This allows an intrinsic
9358function which accepts multiple arguments, but needs all of them to be
9359of the same type, to only be overloaded with respect to a single
9360argument or the result.
9361
9362Overloaded intrinsics will have the names of its overloaded argument
9363types encoded into its function name, each preceded by a period. Only
9364those types which are overloaded result in a name suffix. Arguments
9365whose type is matched against another type do not. For example, the
9366``llvm.ctpop`` function can take an integer of any width and returns an
9367integer of exactly the same integer width. This leads to a family of
9368functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
9369``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
9370overloaded, and only one type suffix is required. Because the argument's
9371type is matched against the return type, it does not require its own
9372name suffix.
9373
9374To learn how to add an intrinsic function, please see the `Extending
9375LLVM Guide <ExtendingLLVM.html>`_.
9376
9377.. _int_varargs:
9378
9379Variable Argument Handling Intrinsics
9380-------------------------------------
9381
9382Variable argument support is defined in LLVM with the
9383:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9384functions. These functions are related to the similarly named macros
9385defined in the ``<stdarg.h>`` header file.
9386
9387All of these functions operate on arguments that use a target-specific
9388value type "``va_list``". The LLVM assembly language reference manual
9389does not define what this type is, so all transformations should be
9390prepared to handle these functions regardless of the type used.
9391
9392This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9393variable argument handling intrinsic functions are used.
9394
9395.. code-block:: llvm
9396
Tim Northoverab60bb92014-11-02 01:21:51 +00009397 ; This struct is different for every platform. For most platforms,
9398 ; it is merely an i8*.
9399 %struct.va_list = type { i8* }
9400
9401 ; For Unix x86_64 platforms, va_list is the following struct:
9402 ; %struct.va_list = type { i32, i32, i8*, i8* }
9403
Sean Silvab084af42012-12-07 10:36:55 +00009404 define i32 @test(i32 %X, ...) {
9405 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009406 %ap = alloca %struct.va_list
9407 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009408 call void @llvm.va_start(i8* %ap2)
9409
9410 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009411 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009412
9413 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9414 %aq = alloca i8*
9415 %aq2 = bitcast i8** %aq to i8*
9416 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9417 call void @llvm.va_end(i8* %aq2)
9418
9419 ; Stop processing of arguments.
9420 call void @llvm.va_end(i8* %ap2)
9421 ret i32 %tmp
9422 }
9423
9424 declare void @llvm.va_start(i8*)
9425 declare void @llvm.va_copy(i8*, i8*)
9426 declare void @llvm.va_end(i8*)
9427
9428.. _int_va_start:
9429
9430'``llvm.va_start``' Intrinsic
9431^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9432
9433Syntax:
9434"""""""
9435
9436::
9437
Nick Lewycky04f6de02013-09-11 22:04:52 +00009438 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009439
9440Overview:
9441"""""""""
9442
9443The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9444subsequent use by ``va_arg``.
9445
9446Arguments:
9447""""""""""
9448
9449The argument is a pointer to a ``va_list`` element to initialize.
9450
9451Semantics:
9452""""""""""
9453
9454The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9455available in C. In a target-dependent way, it initializes the
9456``va_list`` element to which the argument points, so that the next call
9457to ``va_arg`` will produce the first variable argument passed to the
9458function. Unlike the C ``va_start`` macro, this intrinsic does not need
9459to know the last argument of the function as the compiler can figure
9460that out.
9461
9462'``llvm.va_end``' Intrinsic
9463^^^^^^^^^^^^^^^^^^^^^^^^^^^
9464
9465Syntax:
9466"""""""
9467
9468::
9469
9470 declare void @llvm.va_end(i8* <arglist>)
9471
9472Overview:
9473"""""""""
9474
9475The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9476initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9477
9478Arguments:
9479""""""""""
9480
9481The argument is a pointer to a ``va_list`` to destroy.
9482
9483Semantics:
9484""""""""""
9485
9486The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9487available in C. In a target-dependent way, it destroys the ``va_list``
9488element to which the argument points. Calls to
9489:ref:`llvm.va_start <int_va_start>` and
9490:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9491``llvm.va_end``.
9492
9493.. _int_va_copy:
9494
9495'``llvm.va_copy``' Intrinsic
9496^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9497
9498Syntax:
9499"""""""
9500
9501::
9502
9503 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9504
9505Overview:
9506"""""""""
9507
9508The '``llvm.va_copy``' intrinsic copies the current argument position
9509from the source argument list to the destination argument list.
9510
9511Arguments:
9512""""""""""
9513
9514The first argument is a pointer to a ``va_list`` element to initialize.
9515The second argument is a pointer to a ``va_list`` element to copy from.
9516
9517Semantics:
9518""""""""""
9519
9520The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9521available in C. In a target-dependent way, it copies the source
9522``va_list`` element into the destination ``va_list`` element. This
9523intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9524arbitrarily complex and require, for example, memory allocation.
9525
9526Accurate Garbage Collection Intrinsics
9527--------------------------------------
9528
Philip Reamesc5b0f562015-02-25 23:52:06 +00009529LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009530(GC) requires the frontend to generate code containing appropriate intrinsic
9531calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009532intrinsics in a manner which is appropriate for the target collector.
9533
Sean Silvab084af42012-12-07 10:36:55 +00009534These intrinsics allow identification of :ref:`GC roots on the
9535stack <int_gcroot>`, as well as garbage collector implementations that
9536require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009537Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009538these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009539details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009540
Philip Reamesf80bbff2015-02-25 23:45:20 +00009541Experimental Statepoint Intrinsics
9542^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9543
9544LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009545collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009546to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009547:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009548differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009549<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009550described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009551
9552.. _int_gcroot:
9553
9554'``llvm.gcroot``' Intrinsic
9555^^^^^^^^^^^^^^^^^^^^^^^^^^^
9556
9557Syntax:
9558"""""""
9559
9560::
9561
9562 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9563
9564Overview:
9565"""""""""
9566
9567The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9568the code generator, and allows some metadata to be associated with it.
9569
9570Arguments:
9571""""""""""
9572
9573The first argument specifies the address of a stack object that contains
9574the root pointer. The second pointer (which must be either a constant or
9575a global value address) contains the meta-data to be associated with the
9576root.
9577
9578Semantics:
9579""""""""""
9580
9581At runtime, a call to this intrinsic stores a null pointer into the
9582"ptrloc" location. At compile-time, the code generator generates
9583information to allow the runtime to find the pointer at GC safe points.
9584The '``llvm.gcroot``' intrinsic may only be used in a function which
9585:ref:`specifies a GC algorithm <gc>`.
9586
9587.. _int_gcread:
9588
9589'``llvm.gcread``' Intrinsic
9590^^^^^^^^^^^^^^^^^^^^^^^^^^^
9591
9592Syntax:
9593"""""""
9594
9595::
9596
9597 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9598
9599Overview:
9600"""""""""
9601
9602The '``llvm.gcread``' intrinsic identifies reads of references from heap
9603locations, allowing garbage collector implementations that require read
9604barriers.
9605
9606Arguments:
9607""""""""""
9608
9609The second argument is the address to read from, which should be an
9610address allocated from the garbage collector. The first object is a
9611pointer to the start of the referenced object, if needed by the language
9612runtime (otherwise null).
9613
9614Semantics:
9615""""""""""
9616
9617The '``llvm.gcread``' intrinsic has the same semantics as a load
9618instruction, but may be replaced with substantially more complex code by
9619the garbage collector runtime, as needed. The '``llvm.gcread``'
9620intrinsic may only be used in a function which :ref:`specifies a GC
9621algorithm <gc>`.
9622
9623.. _int_gcwrite:
9624
9625'``llvm.gcwrite``' Intrinsic
9626^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9627
9628Syntax:
9629"""""""
9630
9631::
9632
9633 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9634
9635Overview:
9636"""""""""
9637
9638The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9639locations, allowing garbage collector implementations that require write
9640barriers (such as generational or reference counting collectors).
9641
9642Arguments:
9643""""""""""
9644
9645The first argument is the reference to store, the second is the start of
9646the object to store it to, and the third is the address of the field of
9647Obj to store to. If the runtime does not require a pointer to the
9648object, Obj may be null.
9649
9650Semantics:
9651""""""""""
9652
9653The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9654instruction, but may be replaced with substantially more complex code by
9655the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9656intrinsic may only be used in a function which :ref:`specifies a GC
9657algorithm <gc>`.
9658
9659Code Generator Intrinsics
9660-------------------------
9661
9662These intrinsics are provided by LLVM to expose special features that
9663may only be implemented with code generator support.
9664
9665'``llvm.returnaddress``' Intrinsic
9666^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9667
9668Syntax:
9669"""""""
9670
9671::
9672
George Burgess IVfbc34982017-05-20 04:52:29 +00009673 declare i8* @llvm.returnaddress(i32 <level>)
Sean Silvab084af42012-12-07 10:36:55 +00009674
9675Overview:
9676"""""""""
9677
9678The '``llvm.returnaddress``' intrinsic attempts to compute a
9679target-specific value indicating the return address of the current
9680function or one of its callers.
9681
9682Arguments:
9683""""""""""
9684
9685The argument to this intrinsic indicates which function to return the
9686address for. Zero indicates the calling function, one indicates its
9687caller, etc. The argument is **required** to be a constant integer
9688value.
9689
9690Semantics:
9691""""""""""
9692
9693The '``llvm.returnaddress``' intrinsic either returns a pointer
9694indicating the return address of the specified call frame, or zero if it
9695cannot be identified. The value returned by this intrinsic is likely to
9696be incorrect or 0 for arguments other than zero, so it should only be
9697used for debugging purposes.
9698
9699Note that calling this intrinsic does not prevent function inlining or
9700other aggressive transformations, so the value returned may not be that
9701of the obvious source-language caller.
9702
Albert Gutowski795d7d62016-10-12 22:13:19 +00009703'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +00009704^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +00009705
9706Syntax:
9707"""""""
9708
9709::
9710
George Burgess IVfbc34982017-05-20 04:52:29 +00009711 declare i8* @llvm.addressofreturnaddress()
Albert Gutowski795d7d62016-10-12 22:13:19 +00009712
9713Overview:
9714"""""""""
9715
9716The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
9717pointer to the place in the stack frame where the return address of the
9718current function is stored.
9719
9720Semantics:
9721""""""""""
9722
9723Note that calling this intrinsic does not prevent function inlining or
9724other aggressive transformations, so the value returned may not be that
9725of the obvious source-language caller.
9726
9727This intrinsic is only implemented for x86.
9728
Sean Silvab084af42012-12-07 10:36:55 +00009729'``llvm.frameaddress``' Intrinsic
9730^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9731
9732Syntax:
9733"""""""
9734
9735::
9736
9737 declare i8* @llvm.frameaddress(i32 <level>)
9738
9739Overview:
9740"""""""""
9741
9742The '``llvm.frameaddress``' intrinsic attempts to return the
9743target-specific frame pointer value for the specified stack frame.
9744
9745Arguments:
9746""""""""""
9747
9748The argument to this intrinsic indicates which function to return the
9749frame pointer for. Zero indicates the calling function, one indicates
9750its caller, etc. The argument is **required** to be a constant integer
9751value.
9752
9753Semantics:
9754""""""""""
9755
9756The '``llvm.frameaddress``' intrinsic either returns a pointer
9757indicating the frame address of the specified call frame, or zero if it
9758cannot be identified. The value returned by this intrinsic is likely to
9759be incorrect or 0 for arguments other than zero, so it should only be
9760used for debugging purposes.
9761
9762Note that calling this intrinsic does not prevent function inlining or
9763other aggressive transformations, so the value returned may not be that
9764of the obvious source-language caller.
9765
Reid Kleckner60381792015-07-07 22:25:32 +00009766'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009767^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9768
9769Syntax:
9770"""""""
9771
9772::
9773
Reid Kleckner60381792015-07-07 22:25:32 +00009774 declare void @llvm.localescape(...)
9775 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009776
9777Overview:
9778"""""""""
9779
Reid Kleckner60381792015-07-07 22:25:32 +00009780The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9781allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009782live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009783computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009784
9785Arguments:
9786""""""""""
9787
Reid Kleckner60381792015-07-07 22:25:32 +00009788All arguments to '``llvm.localescape``' must be pointers to static allocas or
9789casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009790once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009791
Reid Kleckner60381792015-07-07 22:25:32 +00009792The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009793bitcasted pointer to a function defined in the current module. The code
9794generator cannot determine the frame allocation offset of functions defined in
9795other modules.
9796
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009797The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9798call frame that is currently live. The return value of '``llvm.localaddress``'
9799is one way to produce such a value, but various runtimes also expose a suitable
9800pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009801
Reid Kleckner60381792015-07-07 22:25:32 +00009802The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9803'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009804
Reid Klecknere9b89312015-01-13 00:48:10 +00009805Semantics:
9806""""""""""
9807
Reid Kleckner60381792015-07-07 22:25:32 +00009808These intrinsics allow a group of functions to share access to a set of local
9809stack allocations of a one parent function. The parent function may call the
9810'``llvm.localescape``' intrinsic once from the function entry block, and the
9811child functions can use '``llvm.localrecover``' to access the escaped allocas.
9812The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9813the escaped allocas are allocated, which would break attempts to use
9814'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009815
Renato Golinc7aea402014-05-06 16:51:25 +00009816.. _int_read_register:
9817.. _int_write_register:
9818
9819'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9820^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9821
9822Syntax:
9823"""""""
9824
9825::
9826
9827 declare i32 @llvm.read_register.i32(metadata)
9828 declare i64 @llvm.read_register.i64(metadata)
9829 declare void @llvm.write_register.i32(metadata, i32 @value)
9830 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009831 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009832
9833Overview:
9834"""""""""
9835
9836The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9837provides access to the named register. The register must be valid on
9838the architecture being compiled to. The type needs to be compatible
9839with the register being read.
9840
9841Semantics:
9842""""""""""
9843
9844The '``llvm.read_register``' intrinsic returns the current value of the
9845register, where possible. The '``llvm.write_register``' intrinsic sets
9846the current value of the register, where possible.
9847
9848This is useful to implement named register global variables that need
9849to always be mapped to a specific register, as is common practice on
9850bare-metal programs including OS kernels.
9851
9852The compiler doesn't check for register availability or use of the used
9853register in surrounding code, including inline assembly. Because of that,
9854allocatable registers are not supported.
9855
9856Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009857architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009858work is needed to support other registers and even more so, allocatable
9859registers.
9860
Sean Silvab084af42012-12-07 10:36:55 +00009861.. _int_stacksave:
9862
9863'``llvm.stacksave``' Intrinsic
9864^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9865
9866Syntax:
9867"""""""
9868
9869::
9870
9871 declare i8* @llvm.stacksave()
9872
9873Overview:
9874"""""""""
9875
9876The '``llvm.stacksave``' intrinsic is used to remember the current state
9877of the function stack, for use with
9878:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9879implementing language features like scoped automatic variable sized
9880arrays in C99.
9881
9882Semantics:
9883""""""""""
9884
9885This intrinsic returns a opaque pointer value that can be passed to
9886:ref:`llvm.stackrestore <int_stackrestore>`. When an
9887``llvm.stackrestore`` intrinsic is executed with a value saved from
9888``llvm.stacksave``, it effectively restores the state of the stack to
9889the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9890practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9891were allocated after the ``llvm.stacksave`` was executed.
9892
9893.. _int_stackrestore:
9894
9895'``llvm.stackrestore``' Intrinsic
9896^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9897
9898Syntax:
9899"""""""
9900
9901::
9902
9903 declare void @llvm.stackrestore(i8* %ptr)
9904
9905Overview:
9906"""""""""
9907
9908The '``llvm.stackrestore``' intrinsic is used to restore the state of
9909the function stack to the state it was in when the corresponding
9910:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9911useful for implementing language features like scoped automatic variable
9912sized arrays in C99.
9913
9914Semantics:
9915""""""""""
9916
9917See the description for :ref:`llvm.stacksave <int_stacksave>`.
9918
Yury Gribovd7dbb662015-12-01 11:40:55 +00009919.. _int_get_dynamic_area_offset:
9920
9921'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009922^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009923
9924Syntax:
9925"""""""
9926
9927::
9928
9929 declare i32 @llvm.get.dynamic.area.offset.i32()
9930 declare i64 @llvm.get.dynamic.area.offset.i64()
9931
Lang Hames10239932016-10-08 00:20:42 +00009932Overview:
9933"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +00009934
9935 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9936 get the offset from native stack pointer to the address of the most
9937 recent dynamic alloca on the caller's stack. These intrinsics are
9938 intendend for use in combination with
9939 :ref:`llvm.stacksave <int_stacksave>` to get a
9940 pointer to the most recent dynamic alloca. This is useful, for example,
9941 for AddressSanitizer's stack unpoisoning routines.
9942
9943Semantics:
9944""""""""""
9945
9946 These intrinsics return a non-negative integer value that can be used to
9947 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9948 on the caller's stack. In particular, for targets where stack grows downwards,
9949 adding this offset to the native stack pointer would get the address of the most
9950 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +00009951 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +00009952 one past the end of the most recent dynamic alloca.
9953
9954 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9955 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9956 compile-time-known constant value.
9957
9958 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
Matt Arsenaultc749bdc2017-03-30 23:36:47 +00009959 must match the target's default address space's (address space 0) pointer type.
Yury Gribovd7dbb662015-12-01 11:40:55 +00009960
Sean Silvab084af42012-12-07 10:36:55 +00009961'``llvm.prefetch``' Intrinsic
9962^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9963
9964Syntax:
9965"""""""
9966
9967::
9968
9969 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9970
9971Overview:
9972"""""""""
9973
9974The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9975insert a prefetch instruction if supported; otherwise, it is a noop.
9976Prefetches have no effect on the behavior of the program but can change
9977its performance characteristics.
9978
9979Arguments:
9980""""""""""
9981
9982``address`` is the address to be prefetched, ``rw`` is the specifier
9983determining if the fetch should be for a read (0) or write (1), and
9984``locality`` is a temporal locality specifier ranging from (0) - no
9985locality, to (3) - extremely local keep in cache. The ``cache type``
9986specifies whether the prefetch is performed on the data (1) or
9987instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9988arguments must be constant integers.
9989
9990Semantics:
9991""""""""""
9992
9993This intrinsic does not modify the behavior of the program. In
9994particular, prefetches cannot trap and do not produce a value. On
9995targets that support this intrinsic, the prefetch can provide hints to
9996the processor cache for better performance.
9997
9998'``llvm.pcmarker``' Intrinsic
9999^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10000
10001Syntax:
10002"""""""
10003
10004::
10005
10006 declare void @llvm.pcmarker(i32 <id>)
10007
10008Overview:
10009"""""""""
10010
10011The '``llvm.pcmarker``' intrinsic is a method to export a Program
10012Counter (PC) in a region of code to simulators and other tools. The
10013method is target specific, but it is expected that the marker will use
10014exported symbols to transmit the PC of the marker. The marker makes no
10015guarantees that it will remain with any specific instruction after
10016optimizations. It is possible that the presence of a marker will inhibit
10017optimizations. The intended use is to be inserted after optimizations to
10018allow correlations of simulation runs.
10019
10020Arguments:
10021""""""""""
10022
10023``id`` is a numerical id identifying the marker.
10024
10025Semantics:
10026""""""""""
10027
10028This intrinsic does not modify the behavior of the program. Backends
10029that do not support this intrinsic may ignore it.
10030
10031'``llvm.readcyclecounter``' Intrinsic
10032^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10033
10034Syntax:
10035"""""""
10036
10037::
10038
10039 declare i64 @llvm.readcyclecounter()
10040
10041Overview:
10042"""""""""
10043
10044The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
10045counter register (or similar low latency, high accuracy clocks) on those
10046targets that support it. On X86, it should map to RDTSC. On Alpha, it
10047should map to RPCC. As the backing counters overflow quickly (on the
10048order of 9 seconds on alpha), this should only be used for small
10049timings.
10050
10051Semantics:
10052""""""""""
10053
10054When directly supported, reading the cycle counter should not modify any
10055memory. Implementations are allowed to either return a application
10056specific value or a system wide value. On backends without support, this
10057is lowered to a constant 0.
10058
Tim Northoverbc933082013-05-23 19:11:20 +000010059Note that runtime support may be conditional on the privilege-level code is
10060running at and the host platform.
10061
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010062'``llvm.clear_cache``' Intrinsic
10063^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10064
10065Syntax:
10066"""""""
10067
10068::
10069
10070 declare void @llvm.clear_cache(i8*, i8*)
10071
10072Overview:
10073"""""""""
10074
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010075The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
10076in the specified range to the execution unit of the processor. On
10077targets with non-unified instruction and data cache, the implementation
10078flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010079
10080Semantics:
10081""""""""""
10082
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010083On platforms with coherent instruction and data caches (e.g. x86), this
10084intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +000010085cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010086instructions or a system call, if cache flushing requires special
10087privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010088
Sean Silvad02bf3e2014-04-07 22:29:53 +000010089The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010090time library.
Renato Golin93010e62014-03-26 14:01:32 +000010091
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010092This instrinsic does *not* empty the instruction pipeline. Modifications
10093of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010094
Justin Bogner61ba2e32014-12-08 18:02:35 +000010095'``llvm.instrprof_increment``' Intrinsic
10096^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10097
10098Syntax:
10099"""""""
10100
10101::
10102
10103 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
10104 i32 <num-counters>, i32 <index>)
10105
10106Overview:
10107"""""""""
10108
10109The '``llvm.instrprof_increment``' intrinsic can be emitted by a
10110frontend for use with instrumentation based profiling. These will be
10111lowered by the ``-instrprof`` pass to generate execution counts of a
10112program at runtime.
10113
10114Arguments:
10115""""""""""
10116
10117The first argument is a pointer to a global variable containing the
10118name of the entity being instrumented. This should generally be the
10119(mangled) function name for a set of counters.
10120
10121The second argument is a hash value that can be used by the consumer
10122of the profile data to detect changes to the instrumented source, and
10123the third is the number of counters associated with ``name``. It is an
10124error if ``hash`` or ``num-counters`` differ between two instances of
10125``instrprof_increment`` that refer to the same name.
10126
10127The last argument refers to which of the counters for ``name`` should
10128be incremented. It should be a value between 0 and ``num-counters``.
10129
10130Semantics:
10131""""""""""
10132
10133This intrinsic represents an increment of a profiling counter. It will
10134cause the ``-instrprof`` pass to generate the appropriate data
10135structures and the code to increment the appropriate value, in a
10136format that can be written out by a compiler runtime and consumed via
10137the ``llvm-profdata`` tool.
10138
Xinliang David Li4ca17332016-09-18 18:34:07 +000010139'``llvm.instrprof_increment_step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +000010140^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +000010141
10142Syntax:
10143"""""""
10144
10145::
10146
10147 declare void @llvm.instrprof_increment_step(i8* <name>, i64 <hash>,
10148 i32 <num-counters>,
10149 i32 <index>, i64 <step>)
10150
10151Overview:
10152"""""""""
10153
10154The '``llvm.instrprof_increment_step``' intrinsic is an extension to
10155the '``llvm.instrprof_increment``' intrinsic with an additional fifth
10156argument to specify the step of the increment.
10157
10158Arguments:
10159""""""""""
10160The first four arguments are the same as '``llvm.instrprof_increment``'
Pete Couperused9569d2017-08-23 20:58:22 +000010161intrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000010162
10163The last argument specifies the value of the increment of the counter variable.
10164
10165Semantics:
10166""""""""""
10167See description of '``llvm.instrprof_increment``' instrinsic.
10168
10169
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010170'``llvm.instrprof_value_profile``' Intrinsic
10171^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10172
10173Syntax:
10174"""""""
10175
10176::
10177
10178 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
10179 i64 <value>, i32 <value_kind>,
10180 i32 <index>)
10181
10182Overview:
10183"""""""""
10184
10185The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
10186frontend for use with instrumentation based profiling. This will be
10187lowered by the ``-instrprof`` pass to find out the target values,
10188instrumented expressions take in a program at runtime.
10189
10190Arguments:
10191""""""""""
10192
10193The first argument is a pointer to a global variable containing the
10194name of the entity being instrumented. ``name`` should generally be the
10195(mangled) function name for a set of counters.
10196
10197The second argument is a hash value that can be used by the consumer
10198of the profile data to detect changes to the instrumented source. It
10199is an error if ``hash`` differs between two instances of
10200``llvm.instrprof_*`` that refer to the same name.
10201
10202The third argument is the value of the expression being profiled. The profiled
10203expression's value should be representable as an unsigned 64-bit value. The
10204fourth argument represents the kind of value profiling that is being done. The
10205supported value profiling kinds are enumerated through the
10206``InstrProfValueKind`` type declared in the
10207``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
10208index of the instrumented expression within ``name``. It should be >= 0.
10209
10210Semantics:
10211""""""""""
10212
10213This intrinsic represents the point where a call to a runtime routine
10214should be inserted for value profiling of target expressions. ``-instrprof``
10215pass will generate the appropriate data structures and replace the
10216``llvm.instrprof_value_profile`` intrinsic with the call to the profile
10217runtime library with proper arguments.
10218
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000010219'``llvm.thread.pointer``' Intrinsic
10220^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10221
10222Syntax:
10223"""""""
10224
10225::
10226
10227 declare i8* @llvm.thread.pointer()
10228
10229Overview:
10230"""""""""
10231
10232The '``llvm.thread.pointer``' intrinsic returns the value of the thread
10233pointer.
10234
10235Semantics:
10236""""""""""
10237
10238The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
10239for the current thread. The exact semantics of this value are target
10240specific: it may point to the start of TLS area, to the end, or somewhere
10241in the middle. Depending on the target, this intrinsic may read a register,
10242call a helper function, read from an alternate memory space, or perform
10243other operations necessary to locate the TLS area. Not all targets support
10244this intrinsic.
10245
Sean Silvab084af42012-12-07 10:36:55 +000010246Standard C Library Intrinsics
10247-----------------------------
10248
10249LLVM provides intrinsics for a few important standard C library
10250functions. These intrinsics allow source-language front-ends to pass
10251information about the alignment of the pointer arguments to the code
10252generator, providing opportunity for more efficient code generation.
10253
10254.. _int_memcpy:
10255
10256'``llvm.memcpy``' Intrinsic
10257^^^^^^^^^^^^^^^^^^^^^^^^^^^
10258
10259Syntax:
10260"""""""
10261
10262This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
10263integer bit width and for different address spaces. Not all targets
10264support all bit widths however.
10265
10266::
10267
10268 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
10269 i32 <len>, i32 <align>, i1 <isvolatile>)
10270 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
10271 i64 <len>, i32 <align>, i1 <isvolatile>)
10272
10273Overview:
10274"""""""""
10275
10276The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10277source location to the destination location.
10278
10279Note that, unlike the standard libc function, the ``llvm.memcpy.*``
10280intrinsics do not return a value, takes extra alignment/isvolatile
10281arguments and the pointers can be in specified address spaces.
10282
10283Arguments:
10284""""""""""
10285
10286The first argument is a pointer to the destination, the second is a
10287pointer to the source. The third argument is an integer argument
10288specifying the number of bytes to copy, the fourth argument is the
10289alignment of the source and destination locations, and the fifth is a
10290boolean indicating a volatile access.
10291
10292If the call to this intrinsic has an alignment value that is not 0 or 1,
10293then the caller guarantees that both the source and destination pointers
10294are aligned to that boundary.
10295
10296If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
10297a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10298very cleanly specified and it is unwise to depend on it.
10299
10300Semantics:
10301""""""""""
10302
10303The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10304source location to the destination location, which are not allowed to
10305overlap. It copies "len" bytes of memory over. If the argument is known
10306to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +000010307argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010308
Daniel Neilson57226ef2017-07-12 15:25:26 +000010309.. _int_memmove:
10310
Sean Silvab084af42012-12-07 10:36:55 +000010311'``llvm.memmove``' Intrinsic
10312^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10313
10314Syntax:
10315"""""""
10316
10317This is an overloaded intrinsic. You can use llvm.memmove on any integer
10318bit width and for different address space. Not all targets support all
10319bit widths however.
10320
10321::
10322
10323 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
10324 i32 <len>, i32 <align>, i1 <isvolatile>)
10325 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
10326 i64 <len>, i32 <align>, i1 <isvolatile>)
10327
10328Overview:
10329"""""""""
10330
10331The '``llvm.memmove.*``' intrinsics move a block of memory from the
10332source location to the destination location. It is similar to the
10333'``llvm.memcpy``' intrinsic but allows the two memory locations to
10334overlap.
10335
10336Note that, unlike the standard libc function, the ``llvm.memmove.*``
10337intrinsics do not return a value, takes extra alignment/isvolatile
10338arguments and the pointers can be in specified address spaces.
10339
10340Arguments:
10341""""""""""
10342
10343The first argument is a pointer to the destination, the second is a
10344pointer to the source. The third argument is an integer argument
10345specifying the number of bytes to copy, the fourth argument is the
10346alignment of the source and destination locations, and the fifth is a
10347boolean indicating a volatile access.
10348
10349If the call to this intrinsic has an alignment value that is not 0 or 1,
10350then the caller guarantees that the source and destination pointers are
10351aligned to that boundary.
10352
10353If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
10354is a :ref:`volatile operation <volatile>`. The detailed access behavior is
10355not very cleanly specified and it is unwise to depend on it.
10356
10357Semantics:
10358""""""""""
10359
10360The '``llvm.memmove.*``' intrinsics copy a block of memory from the
10361source location to the destination location, which may overlap. It
10362copies "len" bytes of memory over. If the argument is known to be
10363aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000010364otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010365
Daniel Neilson965613e2017-07-12 21:57:23 +000010366.. _int_memset:
10367
Sean Silvab084af42012-12-07 10:36:55 +000010368'``llvm.memset.*``' Intrinsics
10369^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10370
10371Syntax:
10372"""""""
10373
10374This is an overloaded intrinsic. You can use llvm.memset on any integer
10375bit width and for different address spaces. However, not all targets
10376support all bit widths.
10377
10378::
10379
10380 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
10381 i32 <len>, i32 <align>, i1 <isvolatile>)
10382 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
10383 i64 <len>, i32 <align>, i1 <isvolatile>)
10384
10385Overview:
10386"""""""""
10387
10388The '``llvm.memset.*``' intrinsics fill a block of memory with a
10389particular byte value.
10390
10391Note that, unlike the standard libc function, the ``llvm.memset``
10392intrinsic does not return a value and takes extra alignment/volatile
10393arguments. Also, the destination can be in an arbitrary address space.
10394
10395Arguments:
10396""""""""""
10397
10398The first argument is a pointer to the destination to fill, the second
10399is the byte value with which to fill it, the third argument is an
10400integer argument specifying the number of bytes to fill, and the fourth
10401argument is the known alignment of the destination location.
10402
10403If the call to this intrinsic has an alignment value that is not 0 or 1,
10404then the caller guarantees that the destination pointer is aligned to
10405that boundary.
10406
10407If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10408a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10409very cleanly specified and it is unwise to depend on it.
10410
10411Semantics:
10412""""""""""
10413
10414The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
10415at the destination location. If the argument is known to be aligned to
10416some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +000010417it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010418
10419'``llvm.sqrt.*``' Intrinsic
10420^^^^^^^^^^^^^^^^^^^^^^^^^^^
10421
10422Syntax:
10423"""""""
10424
10425This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
10426floating point or vector of floating point type. Not all targets support
10427all types however.
10428
10429::
10430
10431 declare float @llvm.sqrt.f32(float %Val)
10432 declare double @llvm.sqrt.f64(double %Val)
10433 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10434 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10435 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10436
10437Overview:
10438"""""""""
10439
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010440The '``llvm.sqrt``' intrinsics return the square root of the specified value,
Justin Lebarcb9b41d2017-01-27 00:58:03 +000010441returning the same value as the libm '``sqrt``' functions would, but without
10442trapping or setting ``errno``.
Sean Silvab084af42012-12-07 10:36:55 +000010443
10444Arguments:
10445""""""""""
10446
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010447The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010448
10449Semantics:
10450""""""""""
10451
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010452This function returns the square root of the operand if it is a nonnegative
10453floating point number.
Sean Silvab084af42012-12-07 10:36:55 +000010454
10455'``llvm.powi.*``' Intrinsic
10456^^^^^^^^^^^^^^^^^^^^^^^^^^^
10457
10458Syntax:
10459"""""""
10460
10461This is an overloaded intrinsic. You can use ``llvm.powi`` on any
10462floating point or vector of floating point type. Not all targets support
10463all types however.
10464
10465::
10466
10467 declare float @llvm.powi.f32(float %Val, i32 %power)
10468 declare double @llvm.powi.f64(double %Val, i32 %power)
10469 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10470 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10471 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10472
10473Overview:
10474"""""""""
10475
10476The '``llvm.powi.*``' intrinsics return the first operand raised to the
10477specified (positive or negative) power. The order of evaluation of
10478multiplications is not defined. When a vector of floating point type is
10479used, the second argument remains a scalar integer value.
10480
10481Arguments:
10482""""""""""
10483
10484The second argument is an integer power, and the first is a value to
10485raise to that power.
10486
10487Semantics:
10488""""""""""
10489
10490This function returns the first value raised to the second power with an
10491unspecified sequence of rounding operations.
10492
10493'``llvm.sin.*``' Intrinsic
10494^^^^^^^^^^^^^^^^^^^^^^^^^^
10495
10496Syntax:
10497"""""""
10498
10499This is an overloaded intrinsic. You can use ``llvm.sin`` on any
10500floating point or vector of floating point type. Not all targets support
10501all types however.
10502
10503::
10504
10505 declare float @llvm.sin.f32(float %Val)
10506 declare double @llvm.sin.f64(double %Val)
10507 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10508 declare fp128 @llvm.sin.f128(fp128 %Val)
10509 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10510
10511Overview:
10512"""""""""
10513
10514The '``llvm.sin.*``' intrinsics return the sine of the operand.
10515
10516Arguments:
10517""""""""""
10518
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010519The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010520
10521Semantics:
10522""""""""""
10523
10524This function returns the sine of the specified operand, returning the
10525same values as the libm ``sin`` functions would, and handles error
10526conditions in the same way.
10527
10528'``llvm.cos.*``' Intrinsic
10529^^^^^^^^^^^^^^^^^^^^^^^^^^
10530
10531Syntax:
10532"""""""
10533
10534This is an overloaded intrinsic. You can use ``llvm.cos`` on any
10535floating point or vector of floating point type. Not all targets support
10536all types however.
10537
10538::
10539
10540 declare float @llvm.cos.f32(float %Val)
10541 declare double @llvm.cos.f64(double %Val)
10542 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10543 declare fp128 @llvm.cos.f128(fp128 %Val)
10544 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10545
10546Overview:
10547"""""""""
10548
10549The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10550
10551Arguments:
10552""""""""""
10553
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010554The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010555
10556Semantics:
10557""""""""""
10558
10559This function returns the cosine of the specified operand, returning the
10560same values as the libm ``cos`` functions would, and handles error
10561conditions in the same way.
10562
10563'``llvm.pow.*``' Intrinsic
10564^^^^^^^^^^^^^^^^^^^^^^^^^^
10565
10566Syntax:
10567"""""""
10568
10569This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10570floating point or vector of floating point type. Not all targets support
10571all types however.
10572
10573::
10574
10575 declare float @llvm.pow.f32(float %Val, float %Power)
10576 declare double @llvm.pow.f64(double %Val, double %Power)
10577 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10578 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10579 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10580
10581Overview:
10582"""""""""
10583
10584The '``llvm.pow.*``' intrinsics return the first operand raised to the
10585specified (positive or negative) power.
10586
10587Arguments:
10588""""""""""
10589
10590The second argument is a floating point power, and the first is a value
10591to raise to that power.
10592
10593Semantics:
10594""""""""""
10595
10596This function returns the first value raised to the second power,
10597returning the same values as the libm ``pow`` functions would, and
10598handles error conditions in the same way.
10599
10600'``llvm.exp.*``' Intrinsic
10601^^^^^^^^^^^^^^^^^^^^^^^^^^
10602
10603Syntax:
10604"""""""
10605
10606This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10607floating point or vector of floating point type. Not all targets support
10608all types however.
10609
10610::
10611
10612 declare float @llvm.exp.f32(float %Val)
10613 declare double @llvm.exp.f64(double %Val)
10614 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10615 declare fp128 @llvm.exp.f128(fp128 %Val)
10616 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10617
10618Overview:
10619"""""""""
10620
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010621The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
10622value.
Sean Silvab084af42012-12-07 10:36:55 +000010623
10624Arguments:
10625""""""""""
10626
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010627The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010628
10629Semantics:
10630""""""""""
10631
10632This function returns the same values as the libm ``exp`` functions
10633would, and handles error conditions in the same way.
10634
10635'``llvm.exp2.*``' Intrinsic
10636^^^^^^^^^^^^^^^^^^^^^^^^^^^
10637
10638Syntax:
10639"""""""
10640
10641This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10642floating point or vector of floating point type. Not all targets support
10643all types however.
10644
10645::
10646
10647 declare float @llvm.exp2.f32(float %Val)
10648 declare double @llvm.exp2.f64(double %Val)
10649 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10650 declare fp128 @llvm.exp2.f128(fp128 %Val)
10651 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10652
10653Overview:
10654"""""""""
10655
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010656The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
10657specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010658
10659Arguments:
10660""""""""""
10661
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010662The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010663
10664Semantics:
10665""""""""""
10666
10667This function returns the same values as the libm ``exp2`` functions
10668would, and handles error conditions in the same way.
10669
10670'``llvm.log.*``' Intrinsic
10671^^^^^^^^^^^^^^^^^^^^^^^^^^
10672
10673Syntax:
10674"""""""
10675
10676This is an overloaded intrinsic. You can use ``llvm.log`` on any
10677floating point or vector of floating point type. Not all targets support
10678all types however.
10679
10680::
10681
10682 declare float @llvm.log.f32(float %Val)
10683 declare double @llvm.log.f64(double %Val)
10684 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10685 declare fp128 @llvm.log.f128(fp128 %Val)
10686 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10687
10688Overview:
10689"""""""""
10690
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010691The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
10692value.
Sean Silvab084af42012-12-07 10:36:55 +000010693
10694Arguments:
10695""""""""""
10696
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010697The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010698
10699Semantics:
10700""""""""""
10701
10702This function returns the same values as the libm ``log`` functions
10703would, and handles error conditions in the same way.
10704
10705'``llvm.log10.*``' Intrinsic
10706^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10707
10708Syntax:
10709"""""""
10710
10711This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10712floating point or vector of floating point type. Not all targets support
10713all types however.
10714
10715::
10716
10717 declare float @llvm.log10.f32(float %Val)
10718 declare double @llvm.log10.f64(double %Val)
10719 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10720 declare fp128 @llvm.log10.f128(fp128 %Val)
10721 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10722
10723Overview:
10724"""""""""
10725
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010726The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
10727specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010728
10729Arguments:
10730""""""""""
10731
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010732The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010733
10734Semantics:
10735""""""""""
10736
10737This function returns the same values as the libm ``log10`` functions
10738would, and handles error conditions in the same way.
10739
10740'``llvm.log2.*``' Intrinsic
10741^^^^^^^^^^^^^^^^^^^^^^^^^^^
10742
10743Syntax:
10744"""""""
10745
10746This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10747floating point or vector of floating point type. Not all targets support
10748all types however.
10749
10750::
10751
10752 declare float @llvm.log2.f32(float %Val)
10753 declare double @llvm.log2.f64(double %Val)
10754 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10755 declare fp128 @llvm.log2.f128(fp128 %Val)
10756 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10757
10758Overview:
10759"""""""""
10760
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010761The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
10762value.
Sean Silvab084af42012-12-07 10:36:55 +000010763
10764Arguments:
10765""""""""""
10766
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010767The argument and return value are floating point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010768
10769Semantics:
10770""""""""""
10771
10772This function returns the same values as the libm ``log2`` functions
10773would, and handles error conditions in the same way.
10774
10775'``llvm.fma.*``' Intrinsic
10776^^^^^^^^^^^^^^^^^^^^^^^^^^
10777
10778Syntax:
10779"""""""
10780
10781This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10782floating point or vector of floating point type. Not all targets support
10783all types however.
10784
10785::
10786
10787 declare float @llvm.fma.f32(float %a, float %b, float %c)
10788 declare double @llvm.fma.f64(double %a, double %b, double %c)
10789 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10790 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10791 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10792
10793Overview:
10794"""""""""
10795
10796The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10797operation.
10798
10799Arguments:
10800""""""""""
10801
10802The argument and return value are floating point numbers of the same
10803type.
10804
10805Semantics:
10806""""""""""
10807
10808This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010809would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010810
10811'``llvm.fabs.*``' Intrinsic
10812^^^^^^^^^^^^^^^^^^^^^^^^^^^
10813
10814Syntax:
10815"""""""
10816
10817This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10818floating point or vector of floating point type. Not all targets support
10819all types however.
10820
10821::
10822
10823 declare float @llvm.fabs.f32(float %Val)
10824 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010825 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010826 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010827 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010828
10829Overview:
10830"""""""""
10831
10832The '``llvm.fabs.*``' intrinsics return the absolute value of the
10833operand.
10834
10835Arguments:
10836""""""""""
10837
10838The argument and return value are floating point numbers of the same
10839type.
10840
10841Semantics:
10842""""""""""
10843
10844This function returns the same values as the libm ``fabs`` functions
10845would, and handles error conditions in the same way.
10846
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010847'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010848^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010849
10850Syntax:
10851"""""""
10852
10853This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10854floating point or vector of floating point type. Not all targets support
10855all types however.
10856
10857::
10858
Matt Arsenault64313c92014-10-22 18:25:02 +000010859 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10860 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10861 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10862 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10863 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010864
10865Overview:
10866"""""""""
10867
10868The '``llvm.minnum.*``' intrinsics return the minimum of the two
10869arguments.
10870
10871
10872Arguments:
10873""""""""""
10874
10875The arguments and return value are floating point numbers of the same
10876type.
10877
10878Semantics:
10879""""""""""
10880
10881Follows the IEEE-754 semantics for minNum, which also match for libm's
10882fmin.
10883
10884If either operand is a NaN, returns the other non-NaN operand. Returns
10885NaN only if both operands are NaN. If the operands compare equal,
10886returns a value that compares equal to both operands. This means that
10887fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10888
10889'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010890^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010891
10892Syntax:
10893"""""""
10894
10895This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10896floating point or vector of floating point type. Not all targets support
10897all types however.
10898
10899::
10900
Matt Arsenault64313c92014-10-22 18:25:02 +000010901 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10902 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10903 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10904 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10905 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010906
10907Overview:
10908"""""""""
10909
10910The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10911arguments.
10912
10913
10914Arguments:
10915""""""""""
10916
10917The arguments and return value are floating point numbers of the same
10918type.
10919
10920Semantics:
10921""""""""""
10922Follows the IEEE-754 semantics for maxNum, which also match for libm's
10923fmax.
10924
10925If either operand is a NaN, returns the other non-NaN operand. Returns
10926NaN only if both operands are NaN. If the operands compare equal,
10927returns a value that compares equal to both operands. This means that
10928fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10929
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010930'``llvm.copysign.*``' Intrinsic
10931^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10932
10933Syntax:
10934"""""""
10935
10936This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10937floating point or vector of floating point type. Not all targets support
10938all types however.
10939
10940::
10941
10942 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10943 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10944 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10945 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10946 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10947
10948Overview:
10949"""""""""
10950
10951The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10952first operand and the sign of the second operand.
10953
10954Arguments:
10955""""""""""
10956
10957The arguments and return value are floating point numbers of the same
10958type.
10959
10960Semantics:
10961""""""""""
10962
10963This function returns the same values as the libm ``copysign``
10964functions would, and handles error conditions in the same way.
10965
Sean Silvab084af42012-12-07 10:36:55 +000010966'``llvm.floor.*``' Intrinsic
10967^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10968
10969Syntax:
10970"""""""
10971
10972This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10973floating point or vector of floating point type. Not all targets support
10974all types however.
10975
10976::
10977
10978 declare float @llvm.floor.f32(float %Val)
10979 declare double @llvm.floor.f64(double %Val)
10980 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10981 declare fp128 @llvm.floor.f128(fp128 %Val)
10982 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10983
10984Overview:
10985"""""""""
10986
10987The '``llvm.floor.*``' intrinsics return the floor of the operand.
10988
10989Arguments:
10990""""""""""
10991
10992The argument and return value are floating point numbers of the same
10993type.
10994
10995Semantics:
10996""""""""""
10997
10998This function returns the same values as the libm ``floor`` functions
10999would, and handles error conditions in the same way.
11000
11001'``llvm.ceil.*``' Intrinsic
11002^^^^^^^^^^^^^^^^^^^^^^^^^^^
11003
11004Syntax:
11005"""""""
11006
11007This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
11008floating point or vector of floating point type. Not all targets support
11009all types however.
11010
11011::
11012
11013 declare float @llvm.ceil.f32(float %Val)
11014 declare double @llvm.ceil.f64(double %Val)
11015 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
11016 declare fp128 @llvm.ceil.f128(fp128 %Val)
11017 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
11018
11019Overview:
11020"""""""""
11021
11022The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
11023
11024Arguments:
11025""""""""""
11026
11027The argument and return value are floating point numbers of the same
11028type.
11029
11030Semantics:
11031""""""""""
11032
11033This function returns the same values as the libm ``ceil`` functions
11034would, and handles error conditions in the same way.
11035
11036'``llvm.trunc.*``' Intrinsic
11037^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11038
11039Syntax:
11040"""""""
11041
11042This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
11043floating point or vector of floating point type. Not all targets support
11044all types however.
11045
11046::
11047
11048 declare float @llvm.trunc.f32(float %Val)
11049 declare double @llvm.trunc.f64(double %Val)
11050 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
11051 declare fp128 @llvm.trunc.f128(fp128 %Val)
11052 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
11053
11054Overview:
11055"""""""""
11056
11057The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
11058nearest integer not larger in magnitude than the operand.
11059
11060Arguments:
11061""""""""""
11062
11063The argument and return value are floating point numbers of the same
11064type.
11065
11066Semantics:
11067""""""""""
11068
11069This function returns the same values as the libm ``trunc`` functions
11070would, and handles error conditions in the same way.
11071
11072'``llvm.rint.*``' Intrinsic
11073^^^^^^^^^^^^^^^^^^^^^^^^^^^
11074
11075Syntax:
11076"""""""
11077
11078This is an overloaded intrinsic. You can use ``llvm.rint`` on any
11079floating point or vector of floating point type. Not all targets support
11080all types however.
11081
11082::
11083
11084 declare float @llvm.rint.f32(float %Val)
11085 declare double @llvm.rint.f64(double %Val)
11086 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
11087 declare fp128 @llvm.rint.f128(fp128 %Val)
11088 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
11089
11090Overview:
11091"""""""""
11092
11093The '``llvm.rint.*``' intrinsics returns the operand rounded to the
11094nearest integer. It may raise an inexact floating-point exception if the
11095operand isn't an integer.
11096
11097Arguments:
11098""""""""""
11099
11100The argument and return value are floating point numbers of the same
11101type.
11102
11103Semantics:
11104""""""""""
11105
11106This function returns the same values as the libm ``rint`` functions
11107would, and handles error conditions in the same way.
11108
11109'``llvm.nearbyint.*``' Intrinsic
11110^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11111
11112Syntax:
11113"""""""
11114
11115This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
11116floating point or vector of floating point type. Not all targets support
11117all types however.
11118
11119::
11120
11121 declare float @llvm.nearbyint.f32(float %Val)
11122 declare double @llvm.nearbyint.f64(double %Val)
11123 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
11124 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
11125 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
11126
11127Overview:
11128"""""""""
11129
11130The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
11131nearest integer.
11132
11133Arguments:
11134""""""""""
11135
11136The argument and return value are floating point numbers of the same
11137type.
11138
11139Semantics:
11140""""""""""
11141
11142This function returns the same values as the libm ``nearbyint``
11143functions would, and handles error conditions in the same way.
11144
Hal Finkel171817e2013-08-07 22:49:12 +000011145'``llvm.round.*``' Intrinsic
11146^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11147
11148Syntax:
11149"""""""
11150
11151This is an overloaded intrinsic. You can use ``llvm.round`` on any
11152floating point or vector of floating point type. Not all targets support
11153all types however.
11154
11155::
11156
11157 declare float @llvm.round.f32(float %Val)
11158 declare double @llvm.round.f64(double %Val)
11159 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
11160 declare fp128 @llvm.round.f128(fp128 %Val)
11161 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
11162
11163Overview:
11164"""""""""
11165
11166The '``llvm.round.*``' intrinsics returns the operand rounded to the
11167nearest integer.
11168
11169Arguments:
11170""""""""""
11171
11172The argument and return value are floating point numbers of the same
11173type.
11174
11175Semantics:
11176""""""""""
11177
11178This function returns the same values as the libm ``round``
11179functions would, and handles error conditions in the same way.
11180
Sean Silvab084af42012-12-07 10:36:55 +000011181Bit Manipulation Intrinsics
11182---------------------------
11183
11184LLVM provides intrinsics for a few important bit manipulation
11185operations. These allow efficient code generation for some algorithms.
11186
James Molloy90111f72015-11-12 12:29:09 +000011187'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000011188^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000011189
11190Syntax:
11191"""""""
11192
11193This is an overloaded intrinsic function. You can use bitreverse on any
11194integer type.
11195
11196::
11197
11198 declare i16 @llvm.bitreverse.i16(i16 <id>)
11199 declare i32 @llvm.bitreverse.i32(i32 <id>)
11200 declare i64 @llvm.bitreverse.i64(i64 <id>)
11201
11202Overview:
11203"""""""""
11204
11205The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000011206bitpattern of an integer value; for example ``0b10110110`` becomes
11207``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000011208
11209Semantics:
11210""""""""""
11211
Yichao Yu5abf14b2016-11-23 16:25:31 +000011212The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000011213``M`` in the input moved to bit ``N-M`` in the output.
11214
Sean Silvab084af42012-12-07 10:36:55 +000011215'``llvm.bswap.*``' Intrinsics
11216^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11217
11218Syntax:
11219"""""""
11220
11221This is an overloaded intrinsic function. You can use bswap on any
11222integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
11223
11224::
11225
11226 declare i16 @llvm.bswap.i16(i16 <id>)
11227 declare i32 @llvm.bswap.i32(i32 <id>)
11228 declare i64 @llvm.bswap.i64(i64 <id>)
11229
11230Overview:
11231"""""""""
11232
11233The '``llvm.bswap``' family of intrinsics is used to byte swap integer
11234values with an even number of bytes (positive multiple of 16 bits).
11235These are useful for performing operations on data that is not in the
11236target's native byte order.
11237
11238Semantics:
11239""""""""""
11240
11241The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
11242and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
11243intrinsic returns an i32 value that has the four bytes of the input i32
11244swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
11245returned i32 will have its bytes in 3, 2, 1, 0 order. The
11246``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
11247concept to additional even-byte lengths (6 bytes, 8 bytes and more,
11248respectively).
11249
11250'``llvm.ctpop.*``' Intrinsic
11251^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11252
11253Syntax:
11254"""""""
11255
11256This is an overloaded intrinsic. You can use llvm.ctpop on any integer
11257bit width, or on any vector with integer elements. Not all targets
11258support all bit widths or vector types, however.
11259
11260::
11261
11262 declare i8 @llvm.ctpop.i8(i8 <src>)
11263 declare i16 @llvm.ctpop.i16(i16 <src>)
11264 declare i32 @llvm.ctpop.i32(i32 <src>)
11265 declare i64 @llvm.ctpop.i64(i64 <src>)
11266 declare i256 @llvm.ctpop.i256(i256 <src>)
11267 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
11268
11269Overview:
11270"""""""""
11271
11272The '``llvm.ctpop``' family of intrinsics counts the number of bits set
11273in a value.
11274
11275Arguments:
11276""""""""""
11277
11278The only argument is the value to be counted. The argument may be of any
11279integer type, or a vector with integer elements. The return type must
11280match the argument type.
11281
11282Semantics:
11283""""""""""
11284
11285The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
11286each element of a vector.
11287
11288'``llvm.ctlz.*``' Intrinsic
11289^^^^^^^^^^^^^^^^^^^^^^^^^^^
11290
11291Syntax:
11292"""""""
11293
11294This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
11295integer bit width, or any vector whose elements are integers. Not all
11296targets support all bit widths or vector types, however.
11297
11298::
11299
11300 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
11301 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
11302 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
11303 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
11304 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011305 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011306
11307Overview:
11308"""""""""
11309
11310The '``llvm.ctlz``' family of intrinsic functions counts the number of
11311leading zeros in a variable.
11312
11313Arguments:
11314""""""""""
11315
11316The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011317any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011318type must match the first argument type.
11319
11320The second argument must be a constant and is a flag to indicate whether
11321the intrinsic should ensure that a zero as the first argument produces a
11322defined result. Historically some architectures did not provide a
11323defined result for zero values as efficiently, and many algorithms are
11324now predicated on avoiding zero-value inputs.
11325
11326Semantics:
11327""""""""""
11328
11329The '``llvm.ctlz``' intrinsic counts the leading (most significant)
11330zeros in a variable, or within each element of the vector. If
11331``src == 0`` then the result is the size in bits of the type of ``src``
11332if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11333``llvm.ctlz(i32 2) = 30``.
11334
11335'``llvm.cttz.*``' Intrinsic
11336^^^^^^^^^^^^^^^^^^^^^^^^^^^
11337
11338Syntax:
11339"""""""
11340
11341This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
11342integer bit width, or any vector of integer elements. Not all targets
11343support all bit widths or vector types, however.
11344
11345::
11346
11347 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
11348 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
11349 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
11350 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
11351 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011352 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011353
11354Overview:
11355"""""""""
11356
11357The '``llvm.cttz``' family of intrinsic functions counts the number of
11358trailing zeros.
11359
11360Arguments:
11361""""""""""
11362
11363The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011364any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011365type must match the first argument type.
11366
11367The second argument must be a constant and is a flag to indicate whether
11368the intrinsic should ensure that a zero as the first argument produces a
11369defined result. Historically some architectures did not provide a
11370defined result for zero values as efficiently, and many algorithms are
11371now predicated on avoiding zero-value inputs.
11372
11373Semantics:
11374""""""""""
11375
11376The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11377zeros in a variable, or within each element of a vector. If ``src == 0``
11378then the result is the size in bits of the type of ``src`` if
11379``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11380``llvm.cttz(2) = 1``.
11381
Philip Reames34843ae2015-03-05 05:55:55 +000011382.. _int_overflow:
11383
Sean Silvab084af42012-12-07 10:36:55 +000011384Arithmetic with Overflow Intrinsics
11385-----------------------------------
11386
John Regehr6a493f22016-05-12 20:55:09 +000011387LLVM provides intrinsics for fast arithmetic overflow checking.
11388
11389Each of these intrinsics returns a two-element struct. The first
11390element of this struct contains the result of the corresponding
11391arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
11392the result. Therefore, for example, the first element of the struct
11393returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
11394result of a 32-bit ``add`` instruction with the same operands, where
11395the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
11396
11397The second element of the result is an ``i1`` that is 1 if the
11398arithmetic operation overflowed and 0 otherwise. An operation
11399overflows if, for any values of its operands ``A`` and ``B`` and for
11400any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
11401not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
11402``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11403``op`` is the underlying arithmetic operation.
11404
11405The behavior of these intrinsics is well-defined for all argument
11406values.
Sean Silvab084af42012-12-07 10:36:55 +000011407
11408'``llvm.sadd.with.overflow.*``' Intrinsics
11409^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11410
11411Syntax:
11412"""""""
11413
11414This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11415on any integer bit width.
11416
11417::
11418
11419 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11420 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11421 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11422
11423Overview:
11424"""""""""
11425
11426The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11427a signed addition of the two arguments, and indicate whether an overflow
11428occurred during the signed summation.
11429
11430Arguments:
11431""""""""""
11432
11433The arguments (%a and %b) and the first element of the result structure
11434may be of integer types of any bit width, but they must have the same
11435bit width. The second element of the result structure must be of type
11436``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11437addition.
11438
11439Semantics:
11440""""""""""
11441
11442The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011443a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011444first element of which is the signed summation, and the second element
11445of which is a bit specifying if the signed summation resulted in an
11446overflow.
11447
11448Examples:
11449"""""""""
11450
11451.. code-block:: llvm
11452
11453 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11454 %sum = extractvalue {i32, i1} %res, 0
11455 %obit = extractvalue {i32, i1} %res, 1
11456 br i1 %obit, label %overflow, label %normal
11457
11458'``llvm.uadd.with.overflow.*``' Intrinsics
11459^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11460
11461Syntax:
11462"""""""
11463
11464This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11465on any integer bit width.
11466
11467::
11468
11469 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11470 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11471 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11472
11473Overview:
11474"""""""""
11475
11476The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11477an unsigned addition of the two arguments, and indicate whether a carry
11478occurred during the unsigned summation.
11479
11480Arguments:
11481""""""""""
11482
11483The arguments (%a and %b) and the first element of the result structure
11484may be of integer types of any bit width, but they must have the same
11485bit width. The second element of the result structure must be of type
11486``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11487addition.
11488
11489Semantics:
11490""""""""""
11491
11492The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011493an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011494first element of which is the sum, and the second element of which is a
11495bit specifying if the unsigned summation resulted in a carry.
11496
11497Examples:
11498"""""""""
11499
11500.. code-block:: llvm
11501
11502 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11503 %sum = extractvalue {i32, i1} %res, 0
11504 %obit = extractvalue {i32, i1} %res, 1
11505 br i1 %obit, label %carry, label %normal
11506
11507'``llvm.ssub.with.overflow.*``' Intrinsics
11508^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11509
11510Syntax:
11511"""""""
11512
11513This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11514on any integer bit width.
11515
11516::
11517
11518 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11519 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11520 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11521
11522Overview:
11523"""""""""
11524
11525The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11526a signed subtraction of the two arguments, and indicate whether an
11527overflow occurred during the signed subtraction.
11528
11529Arguments:
11530""""""""""
11531
11532The arguments (%a and %b) and the first element of the result structure
11533may be of integer types of any bit width, but they must have the same
11534bit width. The second element of the result structure must be of type
11535``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11536subtraction.
11537
11538Semantics:
11539""""""""""
11540
11541The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011542a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011543first element of which is the subtraction, and the second element of
11544which is a bit specifying if the signed subtraction resulted in an
11545overflow.
11546
11547Examples:
11548"""""""""
11549
11550.. code-block:: llvm
11551
11552 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11553 %sum = extractvalue {i32, i1} %res, 0
11554 %obit = extractvalue {i32, i1} %res, 1
11555 br i1 %obit, label %overflow, label %normal
11556
11557'``llvm.usub.with.overflow.*``' Intrinsics
11558^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11559
11560Syntax:
11561"""""""
11562
11563This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11564on any integer bit width.
11565
11566::
11567
11568 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11569 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11570 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11571
11572Overview:
11573"""""""""
11574
11575The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11576an unsigned subtraction of the two arguments, and indicate whether an
11577overflow occurred during the unsigned subtraction.
11578
11579Arguments:
11580""""""""""
11581
11582The arguments (%a and %b) and the first element of the result structure
11583may be of integer types of any bit width, but they must have the same
11584bit width. The second element of the result structure must be of type
11585``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11586subtraction.
11587
11588Semantics:
11589""""""""""
11590
11591The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011592an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011593the first element of which is the subtraction, and the second element of
11594which is a bit specifying if the unsigned subtraction resulted in an
11595overflow.
11596
11597Examples:
11598"""""""""
11599
11600.. code-block:: llvm
11601
11602 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11603 %sum = extractvalue {i32, i1} %res, 0
11604 %obit = extractvalue {i32, i1} %res, 1
11605 br i1 %obit, label %overflow, label %normal
11606
11607'``llvm.smul.with.overflow.*``' Intrinsics
11608^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11609
11610Syntax:
11611"""""""
11612
11613This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11614on any integer bit width.
11615
11616::
11617
11618 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11619 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11620 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11621
11622Overview:
11623"""""""""
11624
11625The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11626a signed multiplication of the two arguments, and indicate whether an
11627overflow occurred during the signed multiplication.
11628
11629Arguments:
11630""""""""""
11631
11632The arguments (%a and %b) and the first element of the result structure
11633may be of integer types of any bit width, but they must have the same
11634bit width. The second element of the result structure must be of type
11635``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11636multiplication.
11637
11638Semantics:
11639""""""""""
11640
11641The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011642a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011643the first element of which is the multiplication, and the second element
11644of which is a bit specifying if the signed multiplication resulted in an
11645overflow.
11646
11647Examples:
11648"""""""""
11649
11650.. code-block:: llvm
11651
11652 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11653 %sum = extractvalue {i32, i1} %res, 0
11654 %obit = extractvalue {i32, i1} %res, 1
11655 br i1 %obit, label %overflow, label %normal
11656
11657'``llvm.umul.with.overflow.*``' Intrinsics
11658^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11659
11660Syntax:
11661"""""""
11662
11663This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11664on any integer bit width.
11665
11666::
11667
11668 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11669 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11670 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11671
11672Overview:
11673"""""""""
11674
11675The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11676a unsigned multiplication of the two arguments, and indicate whether an
11677overflow occurred during the unsigned multiplication.
11678
11679Arguments:
11680""""""""""
11681
11682The arguments (%a and %b) and the first element of the result structure
11683may be of integer types of any bit width, but they must have the same
11684bit width. The second element of the result structure must be of type
11685``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11686multiplication.
11687
11688Semantics:
11689""""""""""
11690
11691The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011692an unsigned multiplication of the two arguments. They return a structure ---
11693the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011694element of which is a bit specifying if the unsigned multiplication
11695resulted in an overflow.
11696
11697Examples:
11698"""""""""
11699
11700.. code-block:: llvm
11701
11702 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11703 %sum = extractvalue {i32, i1} %res, 0
11704 %obit = extractvalue {i32, i1} %res, 1
11705 br i1 %obit, label %overflow, label %normal
11706
11707Specialised Arithmetic Intrinsics
11708---------------------------------
11709
Owen Anderson1056a922015-07-11 07:01:27 +000011710'``llvm.canonicalize.*``' Intrinsic
11711^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11712
11713Syntax:
11714"""""""
11715
11716::
11717
11718 declare float @llvm.canonicalize.f32(float %a)
11719 declare double @llvm.canonicalize.f64(double %b)
11720
11721Overview:
11722"""""""""
11723
11724The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011725encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011726implementing certain numeric primitives such as frexp. The canonical encoding is
11727defined by IEEE-754-2008 to be:
11728
11729::
11730
11731 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011732 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011733 numbers, infinities, and NaNs, especially in decimal formats.
11734
11735This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011736conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011737according to section 6.2.
11738
11739Examples of non-canonical encodings:
11740
Sean Silvaa1190322015-08-06 22:56:48 +000011741- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011742 converted to a canonical representation per hardware-specific protocol.
11743- Many normal decimal floating point numbers have non-canonical alternative
11744 encodings.
11745- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011746 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011747 a zero of the same sign by this operation.
11748
11749Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11750default exception handling must signal an invalid exception, and produce a
11751quiet NaN result.
11752
11753This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011754that the compiler does not constant fold the operation. Likewise, division by
117551.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011756-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11757
Sean Silvaa1190322015-08-06 22:56:48 +000011758``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011759
11760- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11761- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11762 to ``(x == y)``
11763
11764Additionally, the sign of zero must be conserved:
11765``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11766
11767The payload bits of a NaN must be conserved, with two exceptions.
11768First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011769must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011770usual methods.
11771
11772The canonicalization operation may be optimized away if:
11773
Sean Silvaa1190322015-08-06 22:56:48 +000011774- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011775 floating-point operation that is required by the standard to be canonical.
11776- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011777 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011778
Sean Silvab084af42012-12-07 10:36:55 +000011779'``llvm.fmuladd.*``' Intrinsic
11780^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11781
11782Syntax:
11783"""""""
11784
11785::
11786
11787 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11788 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11789
11790Overview:
11791"""""""""
11792
11793The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011794expressions that can be fused if the code generator determines that (a) the
11795target instruction set has support for a fused operation, and (b) that the
11796fused operation is more efficient than the equivalent, separate pair of mul
11797and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011798
11799Arguments:
11800""""""""""
11801
11802The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11803multiplicands, a and b, and an addend c.
11804
11805Semantics:
11806""""""""""
11807
11808The expression:
11809
11810::
11811
11812 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11813
11814is equivalent to the expression a \* b + c, except that rounding will
11815not be performed between the multiplication and addition steps if the
11816code generator fuses the operations. Fusion is not guaranteed, even if
11817the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011818corresponding llvm.fma.\* intrinsic function should be used
11819instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011820
11821Examples:
11822"""""""""
11823
11824.. code-block:: llvm
11825
Tim Northover675a0962014-06-13 14:24:23 +000011826 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011827
Amara Emersoncf9daa32017-05-09 10:43:25 +000011828
11829Experimental Vector Reduction Intrinsics
11830----------------------------------------
11831
11832Horizontal reductions of vectors can be expressed using the following
11833intrinsics. Each one takes a vector operand as an input and applies its
11834respective operation across all elements of the vector, returning a single
11835scalar result of the same element type.
11836
11837
11838'``llvm.experimental.vector.reduce.add.*``' Intrinsic
11839^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11840
11841Syntax:
11842"""""""
11843
11844::
11845
11846 declare i32 @llvm.experimental.vector.reduce.add.i32.v4i32(<4 x i32> %a)
11847 declare i64 @llvm.experimental.vector.reduce.add.i64.v2i64(<2 x i64> %a)
11848
11849Overview:
11850"""""""""
11851
11852The '``llvm.experimental.vector.reduce.add.*``' intrinsics do an integer ``ADD``
11853reduction of a vector, returning the result as a scalar. The return type matches
11854the element-type of the vector input.
11855
11856Arguments:
11857""""""""""
11858The argument to this intrinsic must be a vector of integer values.
11859
11860'``llvm.experimental.vector.reduce.fadd.*``' Intrinsic
11861^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11862
11863Syntax:
11864"""""""
11865
11866::
11867
11868 declare float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %a)
11869 declare double @llvm.experimental.vector.reduce.fadd.f64.v2f64(double %acc, <2 x double> %a)
11870
11871Overview:
11872"""""""""
11873
11874The '``llvm.experimental.vector.reduce.fadd.*``' intrinsics do a floating point
11875``ADD`` reduction of a vector, returning the result as a scalar. The return type
11876matches the element-type of the vector input.
11877
11878If the intrinsic call has fast-math flags, then the reduction will not preserve
11879the associativity of an equivalent scalarized counterpart. If it does not have
11880fast-math flags, then the reduction will be *ordered*, implying that the
11881operation respects the associativity of a scalarized reduction.
11882
11883
11884Arguments:
11885""""""""""
11886The first argument to this intrinsic is a scalar accumulator value, which is
11887only used when there are no fast-math flags attached. This argument may be undef
11888when fast-math flags are used.
11889
11890The second argument must be a vector of floating point values.
11891
11892Examples:
11893"""""""""
11894
11895.. code-block:: llvm
11896
11897 %fast = call fast float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
11898 %ord = call float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
11899
11900
11901'``llvm.experimental.vector.reduce.mul.*``' Intrinsic
11902^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11903
11904Syntax:
11905"""""""
11906
11907::
11908
11909 declare i32 @llvm.experimental.vector.reduce.mul.i32.v4i32(<4 x i32> %a)
11910 declare i64 @llvm.experimental.vector.reduce.mul.i64.v2i64(<2 x i64> %a)
11911
11912Overview:
11913"""""""""
11914
11915The '``llvm.experimental.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
11916reduction of a vector, returning the result as a scalar. The return type matches
11917the element-type of the vector input.
11918
11919Arguments:
11920""""""""""
11921The argument to this intrinsic must be a vector of integer values.
11922
11923'``llvm.experimental.vector.reduce.fmul.*``' Intrinsic
11924^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11925
11926Syntax:
11927"""""""
11928
11929::
11930
11931 declare float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %a)
11932 declare double @llvm.experimental.vector.reduce.fmul.f64.v2f64(double %acc, <2 x double> %a)
11933
11934Overview:
11935"""""""""
11936
11937The '``llvm.experimental.vector.reduce.fmul.*``' intrinsics do a floating point
11938``MUL`` reduction of a vector, returning the result as a scalar. The return type
11939matches the element-type of the vector input.
11940
11941If the intrinsic call has fast-math flags, then the reduction will not preserve
11942the associativity of an equivalent scalarized counterpart. If it does not have
11943fast-math flags, then the reduction will be *ordered*, implying that the
11944operation respects the associativity of a scalarized reduction.
11945
11946
11947Arguments:
11948""""""""""
11949The first argument to this intrinsic is a scalar accumulator value, which is
11950only used when there are no fast-math flags attached. This argument may be undef
11951when fast-math flags are used.
11952
11953The second argument must be a vector of floating point values.
11954
11955Examples:
11956"""""""""
11957
11958.. code-block:: llvm
11959
11960 %fast = call fast float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
11961 %ord = call float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
11962
11963'``llvm.experimental.vector.reduce.and.*``' Intrinsic
11964^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11965
11966Syntax:
11967"""""""
11968
11969::
11970
11971 declare i32 @llvm.experimental.vector.reduce.and.i32.v4i32(<4 x i32> %a)
11972
11973Overview:
11974"""""""""
11975
11976The '``llvm.experimental.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
11977reduction of a vector, returning the result as a scalar. The return type matches
11978the element-type of the vector input.
11979
11980Arguments:
11981""""""""""
11982The argument to this intrinsic must be a vector of integer values.
11983
11984'``llvm.experimental.vector.reduce.or.*``' Intrinsic
11985^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11986
11987Syntax:
11988"""""""
11989
11990::
11991
11992 declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
11993
11994Overview:
11995"""""""""
11996
11997The '``llvm.experimental.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
11998of a vector, returning the result as a scalar. The return type matches the
11999element-type of the vector input.
12000
12001Arguments:
12002""""""""""
12003The argument to this intrinsic must be a vector of integer values.
12004
12005'``llvm.experimental.vector.reduce.xor.*``' Intrinsic
12006^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12007
12008Syntax:
12009"""""""
12010
12011::
12012
12013 declare i32 @llvm.experimental.vector.reduce.xor.i32.v4i32(<4 x i32> %a)
12014
12015Overview:
12016"""""""""
12017
12018The '``llvm.experimental.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
12019reduction of a vector, returning the result as a scalar. The return type matches
12020the element-type of the vector input.
12021
12022Arguments:
12023""""""""""
12024The argument to this intrinsic must be a vector of integer values.
12025
12026'``llvm.experimental.vector.reduce.smax.*``' Intrinsic
12027^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12028
12029Syntax:
12030"""""""
12031
12032::
12033
12034 declare i32 @llvm.experimental.vector.reduce.smax.i32.v4i32(<4 x i32> %a)
12035
12036Overview:
12037"""""""""
12038
12039The '``llvm.experimental.vector.reduce.smax.*``' intrinsics do a signed integer
12040``MAX`` reduction of a vector, returning the result as a scalar. The return type
12041matches the element-type of the vector input.
12042
12043Arguments:
12044""""""""""
12045The argument to this intrinsic must be a vector of integer values.
12046
12047'``llvm.experimental.vector.reduce.smin.*``' Intrinsic
12048^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12049
12050Syntax:
12051"""""""
12052
12053::
12054
12055 declare i32 @llvm.experimental.vector.reduce.smin.i32.v4i32(<4 x i32> %a)
12056
12057Overview:
12058"""""""""
12059
12060The '``llvm.experimental.vector.reduce.smin.*``' intrinsics do a signed integer
12061``MIN`` reduction of a vector, returning the result as a scalar. The return type
12062matches the element-type of the vector input.
12063
12064Arguments:
12065""""""""""
12066The argument to this intrinsic must be a vector of integer values.
12067
12068'``llvm.experimental.vector.reduce.umax.*``' Intrinsic
12069^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12070
12071Syntax:
12072"""""""
12073
12074::
12075
12076 declare i32 @llvm.experimental.vector.reduce.umax.i32.v4i32(<4 x i32> %a)
12077
12078Overview:
12079"""""""""
12080
12081The '``llvm.experimental.vector.reduce.umax.*``' intrinsics do an unsigned
12082integer ``MAX`` reduction of a vector, returning the result as a scalar. The
12083return type matches the element-type of the vector input.
12084
12085Arguments:
12086""""""""""
12087The argument to this intrinsic must be a vector of integer values.
12088
12089'``llvm.experimental.vector.reduce.umin.*``' Intrinsic
12090^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12091
12092Syntax:
12093"""""""
12094
12095::
12096
12097 declare i32 @llvm.experimental.vector.reduce.umin.i32.v4i32(<4 x i32> %a)
12098
12099Overview:
12100"""""""""
12101
12102The '``llvm.experimental.vector.reduce.umin.*``' intrinsics do an unsigned
12103integer ``MIN`` reduction of a vector, returning the result as a scalar. The
12104return type matches the element-type of the vector input.
12105
12106Arguments:
12107""""""""""
12108The argument to this intrinsic must be a vector of integer values.
12109
12110'``llvm.experimental.vector.reduce.fmax.*``' Intrinsic
12111^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12112
12113Syntax:
12114"""""""
12115
12116::
12117
12118 declare float @llvm.experimental.vector.reduce.fmax.f32.v4f32(<4 x float> %a)
12119 declare double @llvm.experimental.vector.reduce.fmax.f64.v2f64(<2 x double> %a)
12120
12121Overview:
12122"""""""""
12123
12124The '``llvm.experimental.vector.reduce.fmax.*``' intrinsics do a floating point
12125``MAX`` reduction of a vector, returning the result as a scalar. The return type
12126matches the element-type of the vector input.
12127
12128If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12129assume that NaNs are not present in the input vector.
12130
12131Arguments:
12132""""""""""
12133The argument to this intrinsic must be a vector of floating point values.
12134
12135'``llvm.experimental.vector.reduce.fmin.*``' Intrinsic
12136^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12137
12138Syntax:
12139"""""""
12140
12141::
12142
12143 declare float @llvm.experimental.vector.reduce.fmin.f32.v4f32(<4 x float> %a)
12144 declare double @llvm.experimental.vector.reduce.fmin.f64.v2f64(<2 x double> %a)
12145
12146Overview:
12147"""""""""
12148
12149The '``llvm.experimental.vector.reduce.fmin.*``' intrinsics do a floating point
12150``MIN`` reduction of a vector, returning the result as a scalar. The return type
12151matches the element-type of the vector input.
12152
12153If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12154assume that NaNs are not present in the input vector.
12155
12156Arguments:
12157""""""""""
12158The argument to this intrinsic must be a vector of floating point values.
12159
Sean Silvab084af42012-12-07 10:36:55 +000012160Half Precision Floating Point Intrinsics
12161----------------------------------------
12162
12163For most target platforms, half precision floating point is a
12164storage-only format. This means that it is a dense encoding (in memory)
12165but does not support computation in the format.
12166
12167This means that code must first load the half-precision floating point
12168value as an i16, then convert it to float with
12169:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
12170then be performed on the float value (including extending to double
12171etc). To store the value back to memory, it is first converted to float
12172if needed, then converted to i16 with
12173:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
12174i16 value.
12175
12176.. _int_convert_to_fp16:
12177
12178'``llvm.convert.to.fp16``' Intrinsic
12179^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12180
12181Syntax:
12182"""""""
12183
12184::
12185
Tim Northoverfd7e4242014-07-17 10:51:23 +000012186 declare i16 @llvm.convert.to.fp16.f32(float %a)
12187 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000012188
12189Overview:
12190"""""""""
12191
Tim Northoverfd7e4242014-07-17 10:51:23 +000012192The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
12193conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000012194
12195Arguments:
12196""""""""""
12197
12198The intrinsic function contains single argument - the value to be
12199converted.
12200
12201Semantics:
12202""""""""""
12203
Tim Northoverfd7e4242014-07-17 10:51:23 +000012204The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
12205conventional floating point format to half precision floating point format. The
12206return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000012207
12208Examples:
12209"""""""""
12210
12211.. code-block:: llvm
12212
Tim Northoverfd7e4242014-07-17 10:51:23 +000012213 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000012214 store i16 %res, i16* @x, align 2
12215
12216.. _int_convert_from_fp16:
12217
12218'``llvm.convert.from.fp16``' Intrinsic
12219^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12220
12221Syntax:
12222"""""""
12223
12224::
12225
Tim Northoverfd7e4242014-07-17 10:51:23 +000012226 declare float @llvm.convert.from.fp16.f32(i16 %a)
12227 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012228
12229Overview:
12230"""""""""
12231
12232The '``llvm.convert.from.fp16``' intrinsic function performs a
12233conversion from half precision floating point format to single precision
12234floating point format.
12235
12236Arguments:
12237""""""""""
12238
12239The intrinsic function contains single argument - the value to be
12240converted.
12241
12242Semantics:
12243""""""""""
12244
12245The '``llvm.convert.from.fp16``' intrinsic function performs a
12246conversion from half single precision floating point format to single
12247precision floating point format. The input half-float value is
12248represented by an ``i16`` value.
12249
12250Examples:
12251"""""""""
12252
12253.. code-block:: llvm
12254
David Blaikiec7aabbb2015-03-04 22:06:14 +000012255 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000012256 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012257
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000012258.. _dbg_intrinsics:
12259
Sean Silvab084af42012-12-07 10:36:55 +000012260Debugger Intrinsics
12261-------------------
12262
12263The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
12264prefix), are described in the `LLVM Source Level
12265Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
12266document.
12267
12268Exception Handling Intrinsics
12269-----------------------------
12270
12271The LLVM exception handling intrinsics (which all start with
12272``llvm.eh.`` prefix), are described in the `LLVM Exception
12273Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
12274
12275.. _int_trampoline:
12276
12277Trampoline Intrinsics
12278---------------------
12279
12280These intrinsics make it possible to excise one parameter, marked with
12281the :ref:`nest <nest>` attribute, from a function. The result is a
12282callable function pointer lacking the nest parameter - the caller does
12283not need to provide a value for it. Instead, the value to use is stored
12284in advance in a "trampoline", a block of memory usually allocated on the
12285stack, which also contains code to splice the nest value into the
12286argument list. This is used to implement the GCC nested function address
12287extension.
12288
12289For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
12290then the resulting function pointer has signature ``i32 (i32, i32)*``.
12291It can be created as follows:
12292
12293.. code-block:: llvm
12294
12295 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000012296 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000012297 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
12298 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
12299 %fp = bitcast i8* %p to i32 (i32, i32)*
12300
12301The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
12302``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
12303
12304.. _int_it:
12305
12306'``llvm.init.trampoline``' Intrinsic
12307^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12308
12309Syntax:
12310"""""""
12311
12312::
12313
12314 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
12315
12316Overview:
12317"""""""""
12318
12319This fills the memory pointed to by ``tramp`` with executable code,
12320turning it into a trampoline.
12321
12322Arguments:
12323""""""""""
12324
12325The ``llvm.init.trampoline`` intrinsic takes three arguments, all
12326pointers. The ``tramp`` argument must point to a sufficiently large and
12327sufficiently aligned block of memory; this memory is written to by the
12328intrinsic. Note that the size and the alignment are target-specific -
12329LLVM currently provides no portable way of determining them, so a
12330front-end that generates this intrinsic needs to have some
12331target-specific knowledge. The ``func`` argument must hold a function
12332bitcast to an ``i8*``.
12333
12334Semantics:
12335""""""""""
12336
12337The block of memory pointed to by ``tramp`` is filled with target
12338dependent code, turning it into a function. Then ``tramp`` needs to be
12339passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
12340be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
12341function's signature is the same as that of ``func`` with any arguments
12342marked with the ``nest`` attribute removed. At most one such ``nest``
12343argument is allowed, and it must be of pointer type. Calling the new
12344function is equivalent to calling ``func`` with the same argument list,
12345but with ``nval`` used for the missing ``nest`` argument. If, after
12346calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
12347modified, then the effect of any later call to the returned function
12348pointer is undefined.
12349
12350.. _int_at:
12351
12352'``llvm.adjust.trampoline``' Intrinsic
12353^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12354
12355Syntax:
12356"""""""
12357
12358::
12359
12360 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
12361
12362Overview:
12363"""""""""
12364
12365This performs any required machine-specific adjustment to the address of
12366a trampoline (passed as ``tramp``).
12367
12368Arguments:
12369""""""""""
12370
12371``tramp`` must point to a block of memory which already has trampoline
12372code filled in by a previous call to
12373:ref:`llvm.init.trampoline <int_it>`.
12374
12375Semantics:
12376""""""""""
12377
12378On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012379different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000012380intrinsic returns the executable address corresponding to ``tramp``
12381after performing the required machine specific adjustments. The pointer
12382returned can then be :ref:`bitcast and executed <int_trampoline>`.
12383
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012384.. _int_mload_mstore:
12385
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012386Masked Vector Load and Store Intrinsics
12387---------------------------------------
12388
12389LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
12390
12391.. _int_mload:
12392
12393'``llvm.masked.load.*``' Intrinsics
12394^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12395
12396Syntax:
12397"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012398This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012399
12400::
12401
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012402 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12403 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012404 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012405 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012406 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012407 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012408
12409Overview:
12410"""""""""
12411
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012412Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012413
12414
12415Arguments:
12416""""""""""
12417
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012418The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012419
12420
12421Semantics:
12422""""""""""
12423
12424The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
12425The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
12426
12427
12428::
12429
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012430 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012431
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012432 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000012433 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012434 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012435
12436.. _int_mstore:
12437
12438'``llvm.masked.store.*``' Intrinsics
12439^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12440
12441Syntax:
12442"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012443This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012444
12445::
12446
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012447 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
12448 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012449 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012450 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012451 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012452 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012453
12454Overview:
12455"""""""""
12456
12457Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12458
12459Arguments:
12460""""""""""
12461
12462The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12463
12464
12465Semantics:
12466""""""""""
12467
12468The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
12469The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
12470
12471::
12472
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012473 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012474
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012475 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000012476 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012477 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
12478 store <16 x float> %res, <16 x float>* %ptr, align 4
12479
12480
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012481Masked Vector Gather and Scatter Intrinsics
12482-------------------------------------------
12483
12484LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
12485
12486.. _int_mgather:
12487
12488'``llvm.masked.gather.*``' Intrinsics
12489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12490
12491Syntax:
12492"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012493This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012494
12495::
12496
Elad Cohenef5798a2017-05-03 12:28:54 +000012497 declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12498 declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64 (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
12499 declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012500
12501Overview:
12502"""""""""
12503
12504Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
12505
12506
12507Arguments:
12508""""""""""
12509
12510The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
12511
12512
12513Semantics:
12514""""""""""
12515
12516The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
12517The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
12518
12519
12520::
12521
Elad Cohenef5798a2017-05-03 12:28:54 +000012522 %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012523
12524 ;; The gather with all-true mask is equivalent to the following instruction sequence
12525 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
12526 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
12527 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
12528 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
12529
12530 %val0 = load double, double* %ptr0, align 8
12531 %val1 = load double, double* %ptr1, align 8
12532 %val2 = load double, double* %ptr2, align 8
12533 %val3 = load double, double* %ptr3, align 8
12534
12535 %vec0 = insertelement <4 x double>undef, %val0, 0
12536 %vec01 = insertelement <4 x double>%vec0, %val1, 1
12537 %vec012 = insertelement <4 x double>%vec01, %val2, 2
12538 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
12539
12540.. _int_mscatter:
12541
12542'``llvm.masked.scatter.*``' Intrinsics
12543^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12544
12545Syntax:
12546"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012547This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012548
12549::
12550
Elad Cohenef5798a2017-05-03 12:28:54 +000012551 declare void @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
12552 declare void @llvm.masked.scatter.v16f32.v16p1f32 (<16 x float> <value>, <16 x float addrspace(1)*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
12553 declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012554
12555Overview:
12556"""""""""
12557
12558Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12559
12560Arguments:
12561""""""""""
12562
12563The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12564
12565
12566Semantics:
12567""""""""""
12568
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000012569The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012570
12571::
12572
Sylvestre Ledru84666a12016-02-14 20:16:22 +000012573 ;; This instruction unconditionally stores data vector in multiple addresses
Elad Cohenef5798a2017-05-03 12:28:54 +000012574 call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012575
12576 ;; It is equivalent to a list of scalar stores
12577 %val0 = extractelement <8 x i32> %value, i32 0
12578 %val1 = extractelement <8 x i32> %value, i32 1
12579 ..
12580 %val7 = extractelement <8 x i32> %value, i32 7
12581 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
12582 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
12583 ..
12584 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
12585 ;; Note: the order of the following stores is important when they overlap:
12586 store i32 %val0, i32* %ptr0, align 4
12587 store i32 %val1, i32* %ptr1, align 4
12588 ..
12589 store i32 %val7, i32* %ptr7, align 4
12590
12591
Sean Silvab084af42012-12-07 10:36:55 +000012592Memory Use Markers
12593------------------
12594
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012595This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000012596memory objects and ranges where variables are immutable.
12597
Reid Klecknera534a382013-12-19 02:14:12 +000012598.. _int_lifestart:
12599
Sean Silvab084af42012-12-07 10:36:55 +000012600'``llvm.lifetime.start``' Intrinsic
12601^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12602
12603Syntax:
12604"""""""
12605
12606::
12607
12608 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
12609
12610Overview:
12611"""""""""
12612
12613The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
12614object's lifetime.
12615
12616Arguments:
12617""""""""""
12618
12619The first argument is a constant integer representing the size of the
12620object, or -1 if it is variable sized. The second argument is a pointer
12621to the object.
12622
12623Semantics:
12624""""""""""
12625
12626This intrinsic indicates that before this point in the code, the value
12627of the memory pointed to by ``ptr`` is dead. This means that it is known
12628to never be used and has an undefined value. A load from the pointer
12629that precedes this intrinsic can be replaced with ``'undef'``.
12630
Reid Klecknera534a382013-12-19 02:14:12 +000012631.. _int_lifeend:
12632
Sean Silvab084af42012-12-07 10:36:55 +000012633'``llvm.lifetime.end``' Intrinsic
12634^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12635
12636Syntax:
12637"""""""
12638
12639::
12640
12641 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
12642
12643Overview:
12644"""""""""
12645
12646The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
12647object's lifetime.
12648
12649Arguments:
12650""""""""""
12651
12652The first argument is a constant integer representing the size of the
12653object, or -1 if it is variable sized. The second argument is a pointer
12654to the object.
12655
12656Semantics:
12657""""""""""
12658
12659This intrinsic indicates that after this point in the code, the value of
12660the memory pointed to by ``ptr`` is dead. This means that it is known to
12661never be used and has an undefined value. Any stores into the memory
12662object following this intrinsic may be removed as dead.
12663
12664'``llvm.invariant.start``' Intrinsic
12665^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12666
12667Syntax:
12668"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012669This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012670
12671::
12672
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012673 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012674
12675Overview:
12676"""""""""
12677
12678The '``llvm.invariant.start``' intrinsic specifies that the contents of
12679a memory object will not change.
12680
12681Arguments:
12682""""""""""
12683
12684The first argument is a constant integer representing the size of the
12685object, or -1 if it is variable sized. The second argument is a pointer
12686to the object.
12687
12688Semantics:
12689""""""""""
12690
12691This intrinsic indicates that until an ``llvm.invariant.end`` that uses
12692the return value, the referenced memory location is constant and
12693unchanging.
12694
12695'``llvm.invariant.end``' Intrinsic
12696^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12697
12698Syntax:
12699"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012700This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012701
12702::
12703
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012704 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012705
12706Overview:
12707"""""""""
12708
12709The '``llvm.invariant.end``' intrinsic specifies that the contents of a
12710memory object are mutable.
12711
12712Arguments:
12713""""""""""
12714
12715The first argument is the matching ``llvm.invariant.start`` intrinsic.
12716The second argument is a constant integer representing the size of the
12717object, or -1 if it is variable sized and the third argument is a
12718pointer to the object.
12719
12720Semantics:
12721""""""""""
12722
12723This intrinsic indicates that the memory is mutable again.
12724
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012725'``llvm.invariant.group.barrier``' Intrinsic
12726^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12727
12728Syntax:
12729"""""""
12730
12731::
12732
12733 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
12734
12735Overview:
12736"""""""""
12737
12738The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
12739established by invariant.group metadata no longer holds, to obtain a new pointer
12740value that does not carry the invariant information.
12741
12742
12743Arguments:
12744""""""""""
12745
12746The ``llvm.invariant.group.barrier`` takes only one argument, which is
12747the pointer to the memory for which the ``invariant.group`` no longer holds.
12748
12749Semantics:
12750""""""""""
12751
12752Returns another pointer that aliases its argument but which is considered different
12753for the purposes of ``load``/``store`` ``invariant.group`` metadata.
12754
Andrew Kaylora0a11642017-01-26 23:27:59 +000012755Constrained Floating Point Intrinsics
12756-------------------------------------
12757
12758These intrinsics are used to provide special handling of floating point
12759operations when specific rounding mode or floating point exception behavior is
12760required. By default, LLVM optimization passes assume that the rounding mode is
12761round-to-nearest and that floating point exceptions will not be monitored.
12762Constrained FP intrinsics are used to support non-default rounding modes and
12763accurately preserve exception behavior without compromising LLVM's ability to
12764optimize FP code when the default behavior is used.
12765
12766Each of these intrinsics corresponds to a normal floating point operation. The
12767first two arguments and the return value are the same as the corresponding FP
12768operation.
12769
12770The third argument is a metadata argument specifying the rounding mode to be
12771assumed. This argument must be one of the following strings:
12772
12773::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012774
Andrew Kaylora0a11642017-01-26 23:27:59 +000012775 "round.dynamic"
12776 "round.tonearest"
12777 "round.downward"
12778 "round.upward"
12779 "round.towardzero"
12780
12781If this argument is "round.dynamic" optimization passes must assume that the
12782rounding mode is unknown and may change at runtime. No transformations that
12783depend on rounding mode may be performed in this case.
12784
12785The other possible values for the rounding mode argument correspond to the
12786similarly named IEEE rounding modes. If the argument is any of these values
12787optimization passes may perform transformations as long as they are consistent
12788with the specified rounding mode.
12789
12790For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
12791"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
12792'x-0' should evaluate to '-0' when rounding downward. However, this
12793transformation is legal for all other rounding modes.
12794
12795For values other than "round.dynamic" optimization passes may assume that the
12796actual runtime rounding mode (as defined in a target-specific manner) matches
12797the specified rounding mode, but this is not guaranteed. Using a specific
12798non-dynamic rounding mode which does not match the actual rounding mode at
12799runtime results in undefined behavior.
12800
12801The fourth argument to the constrained floating point intrinsics specifies the
12802required exception behavior. This argument must be one of the following
12803strings:
12804
12805::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012806
Andrew Kaylora0a11642017-01-26 23:27:59 +000012807 "fpexcept.ignore"
12808 "fpexcept.maytrap"
12809 "fpexcept.strict"
12810
12811If this argument is "fpexcept.ignore" optimization passes may assume that the
12812exception status flags will not be read and that floating point exceptions will
12813be masked. This allows transformations to be performed that may change the
12814exception semantics of the original code. For example, FP operations may be
12815speculatively executed in this case whereas they must not be for either of the
12816other possible values of this argument.
12817
12818If the exception behavior argument is "fpexcept.maytrap" optimization passes
12819must avoid transformations that may raise exceptions that would not have been
12820raised by the original code (such as speculatively executing FP operations), but
12821passes are not required to preserve all exceptions that are implied by the
12822original code. For example, exceptions may be potentially hidden by constant
12823folding.
12824
12825If the exception behavior argument is "fpexcept.strict" all transformations must
12826strictly preserve the floating point exception semantics of the original code.
12827Any FP exception that would have been raised by the original code must be raised
12828by the transformed code, and the transformed code must not raise any FP
12829exceptions that would not have been raised by the original code. This is the
12830exception behavior argument that will be used if the code being compiled reads
12831the FP exception status flags, but this mode can also be used with code that
12832unmasks FP exceptions.
12833
12834The number and order of floating point exceptions is NOT guaranteed. For
12835example, a series of FP operations that each may raise exceptions may be
12836vectorized into a single instruction that raises each unique exception a single
12837time.
12838
12839
12840'``llvm.experimental.constrained.fadd``' Intrinsic
12841^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12842
12843Syntax:
12844"""""""
12845
12846::
12847
12848 declare <type>
12849 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
12850 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012851 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012852
12853Overview:
12854"""""""""
12855
12856The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
12857two operands.
12858
12859
12860Arguments:
12861""""""""""
12862
12863The first two arguments to the '``llvm.experimental.constrained.fadd``'
12864intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12865of floating point values. Both arguments must have identical types.
12866
12867The third and fourth arguments specify the rounding mode and exception
12868behavior as described above.
12869
12870Semantics:
12871""""""""""
12872
12873The value produced is the floating point sum of the two value operands and has
12874the same type as the operands.
12875
12876
12877'``llvm.experimental.constrained.fsub``' Intrinsic
12878^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12879
12880Syntax:
12881"""""""
12882
12883::
12884
12885 declare <type>
12886 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
12887 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012888 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012889
12890Overview:
12891"""""""""
12892
12893The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
12894of its two operands.
12895
12896
12897Arguments:
12898""""""""""
12899
12900The first two arguments to the '``llvm.experimental.constrained.fsub``'
12901intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12902of floating point values. Both arguments must have identical types.
12903
12904The third and fourth arguments specify the rounding mode and exception
12905behavior as described above.
12906
12907Semantics:
12908""""""""""
12909
12910The value produced is the floating point difference of the two value operands
12911and has the same type as the operands.
12912
12913
12914'``llvm.experimental.constrained.fmul``' Intrinsic
12915^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12916
12917Syntax:
12918"""""""
12919
12920::
12921
12922 declare <type>
12923 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
12924 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012925 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012926
12927Overview:
12928"""""""""
12929
12930The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
12931its two operands.
12932
12933
12934Arguments:
12935""""""""""
12936
12937The first two arguments to the '``llvm.experimental.constrained.fmul``'
12938intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12939of floating point values. Both arguments must have identical types.
12940
12941The third and fourth arguments specify the rounding mode and exception
12942behavior as described above.
12943
12944Semantics:
12945""""""""""
12946
12947The value produced is the floating point product of the two value operands and
12948has the same type as the operands.
12949
12950
12951'``llvm.experimental.constrained.fdiv``' Intrinsic
12952^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12953
12954Syntax:
12955"""""""
12956
12957::
12958
12959 declare <type>
12960 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
12961 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012962 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012963
12964Overview:
12965"""""""""
12966
12967The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
12968its two operands.
12969
12970
12971Arguments:
12972""""""""""
12973
12974The first two arguments to the '``llvm.experimental.constrained.fdiv``'
12975intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12976of floating point values. Both arguments must have identical types.
12977
12978The third and fourth arguments specify the rounding mode and exception
12979behavior as described above.
12980
12981Semantics:
12982""""""""""
12983
12984The value produced is the floating point quotient of the two value operands and
12985has the same type as the operands.
12986
12987
12988'``llvm.experimental.constrained.frem``' Intrinsic
12989^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12990
12991Syntax:
12992"""""""
12993
12994::
12995
12996 declare <type>
12997 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
12998 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012999 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013000
13001Overview:
13002"""""""""
13003
13004The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
13005from the division of its two operands.
13006
13007
13008Arguments:
13009""""""""""
13010
13011The first two arguments to the '``llvm.experimental.constrained.frem``'
13012intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
13013of floating point values. Both arguments must have identical types.
13014
13015The third and fourth arguments specify the rounding mode and exception
13016behavior as described above. The rounding mode argument has no effect, since
13017the result of frem is never rounded, but the argument is included for
13018consistency with the other constrained floating point intrinsics.
13019
13020Semantics:
13021""""""""""
13022
13023The value produced is the floating point remainder from the division of the two
13024value operands and has the same type as the operands. The remainder has the
13025same sign as the dividend.
13026
Wei Dinga131d3f2017-08-24 04:18:24 +000013027'``llvm.experimental.constrained.fma``' Intrinsic
13028^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13029
13030Syntax:
13031"""""""
13032
13033::
13034
13035 declare <type>
13036 @llvm.experimental.constrained.fma(<type> <op1>, <type> <op2>, <type> <op3>,
13037 metadata <rounding mode>,
13038 metadata <exception behavior>)
13039
13040Overview:
13041"""""""""
13042
13043The '``llvm.experimental.constrained.fma``' intrinsic returns the result of a
13044fused-multiply-add operation on its operands.
13045
13046Arguments:
13047""""""""""
13048
13049The first three arguments to the '``llvm.experimental.constrained.fma``'
13050intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector
13051<t_vector>` of floating point values. All arguments must have identical types.
13052
13053The fourth and fifth arguments specify the rounding mode and exception behavior
13054as described above.
13055
13056Semantics:
13057""""""""""
13058
13059The result produced is the product of the first two operands added to the third
13060operand computed with infinite precision, and then rounded to the target
13061precision.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013062
Andrew Kaylorf4660012017-05-25 21:31:00 +000013063Constrained libm-equivalent Intrinsics
13064--------------------------------------
13065
13066In addition to the basic floating point operations for which constrained
13067intrinsics are described above, there are constrained versions of various
13068operations which provide equivalent behavior to a corresponding libm function.
13069These intrinsics allow the precise behavior of these operations with respect to
13070rounding mode and exception behavior to be controlled.
13071
13072As with the basic constrained floating point intrinsics, the rounding mode
13073and exception behavior arguments only control the behavior of the optimizer.
13074They do not change the runtime floating point environment.
13075
13076
13077'``llvm.experimental.constrained.sqrt``' Intrinsic
13078^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13079
13080Syntax:
13081"""""""
13082
13083::
13084
13085 declare <type>
13086 @llvm.experimental.constrained.sqrt(<type> <op1>,
13087 metadata <rounding mode>,
13088 metadata <exception behavior>)
13089
13090Overview:
13091"""""""""
13092
13093The '``llvm.experimental.constrained.sqrt``' intrinsic returns the square root
13094of the specified value, returning the same value as the libm '``sqrt``'
13095functions would, but without setting ``errno``.
13096
13097Arguments:
13098""""""""""
13099
13100The first argument and the return type are floating point numbers of the same
13101type.
13102
13103The second and third arguments specify the rounding mode and exception
13104behavior as described above.
13105
13106Semantics:
13107""""""""""
13108
13109This function returns the nonnegative square root of the specified value.
13110If the value is less than negative zero, a floating point exception occurs
13111and the the return value is architecture specific.
13112
13113
13114'``llvm.experimental.constrained.pow``' Intrinsic
13115^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13116
13117Syntax:
13118"""""""
13119
13120::
13121
13122 declare <type>
13123 @llvm.experimental.constrained.pow(<type> <op1>, <type> <op2>,
13124 metadata <rounding mode>,
13125 metadata <exception behavior>)
13126
13127Overview:
13128"""""""""
13129
13130The '``llvm.experimental.constrained.pow``' intrinsic returns the first operand
13131raised to the (positive or negative) power specified by the second operand.
13132
13133Arguments:
13134""""""""""
13135
13136The first two arguments and the return value are floating point numbers of the
13137same type. The second argument specifies the power to which the first argument
13138should be raised.
13139
13140The third and fourth arguments specify the rounding mode and exception
13141behavior as described above.
13142
13143Semantics:
13144""""""""""
13145
13146This function returns the first value raised to the second power,
13147returning the same values as the libm ``pow`` functions would, and
13148handles error conditions in the same way.
13149
13150
13151'``llvm.experimental.constrained.powi``' Intrinsic
13152^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13153
13154Syntax:
13155"""""""
13156
13157::
13158
13159 declare <type>
13160 @llvm.experimental.constrained.powi(<type> <op1>, i32 <op2>,
13161 metadata <rounding mode>,
13162 metadata <exception behavior>)
13163
13164Overview:
13165"""""""""
13166
13167The '``llvm.experimental.constrained.powi``' intrinsic returns the first operand
13168raised to the (positive or negative) power specified by the second operand. The
13169order of evaluation of multiplications is not defined. When a vector of floating
13170point type is used, the second argument remains a scalar integer value.
13171
13172
13173Arguments:
13174""""""""""
13175
13176The first argument and the return value are floating point numbers of the same
13177type. The second argument is a 32-bit signed integer specifying the power to
13178which the first argument should be raised.
13179
13180The third and fourth arguments specify the rounding mode and exception
13181behavior as described above.
13182
13183Semantics:
13184""""""""""
13185
13186This function returns the first value raised to the second power with an
13187unspecified sequence of rounding operations.
13188
13189
13190'``llvm.experimental.constrained.sin``' Intrinsic
13191^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13192
13193Syntax:
13194"""""""
13195
13196::
13197
13198 declare <type>
13199 @llvm.experimental.constrained.sin(<type> <op1>,
13200 metadata <rounding mode>,
13201 metadata <exception behavior>)
13202
13203Overview:
13204"""""""""
13205
13206The '``llvm.experimental.constrained.sin``' intrinsic returns the sine of the
13207first operand.
13208
13209Arguments:
13210""""""""""
13211
13212The first argument and the return type are floating point numbers of the same
13213type.
13214
13215The second and third arguments specify the rounding mode and exception
13216behavior as described above.
13217
13218Semantics:
13219""""""""""
13220
13221This function returns the sine of the specified operand, returning the
13222same values as the libm ``sin`` functions would, and handles error
13223conditions in the same way.
13224
13225
13226'``llvm.experimental.constrained.cos``' Intrinsic
13227^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13228
13229Syntax:
13230"""""""
13231
13232::
13233
13234 declare <type>
13235 @llvm.experimental.constrained.cos(<type> <op1>,
13236 metadata <rounding mode>,
13237 metadata <exception behavior>)
13238
13239Overview:
13240"""""""""
13241
13242The '``llvm.experimental.constrained.cos``' intrinsic returns the cosine of the
13243first operand.
13244
13245Arguments:
13246""""""""""
13247
13248The first argument and the return type are floating point numbers of the same
13249type.
13250
13251The second and third arguments specify the rounding mode and exception
13252behavior as described above.
13253
13254Semantics:
13255""""""""""
13256
13257This function returns the cosine of the specified operand, returning the
13258same values as the libm ``cos`` functions would, and handles error
13259conditions in the same way.
13260
13261
13262'``llvm.experimental.constrained.exp``' Intrinsic
13263^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13264
13265Syntax:
13266"""""""
13267
13268::
13269
13270 declare <type>
13271 @llvm.experimental.constrained.exp(<type> <op1>,
13272 metadata <rounding mode>,
13273 metadata <exception behavior>)
13274
13275Overview:
13276"""""""""
13277
13278The '``llvm.experimental.constrained.exp``' intrinsic computes the base-e
13279exponential of the specified value.
13280
13281Arguments:
13282""""""""""
13283
13284The first argument and the return value are floating point numbers of the same
13285type.
13286
13287The second and third arguments specify the rounding mode and exception
13288behavior as described above.
13289
13290Semantics:
13291""""""""""
13292
13293This function returns the same values as the libm ``exp`` functions
13294would, and handles error conditions in the same way.
13295
13296
13297'``llvm.experimental.constrained.exp2``' Intrinsic
13298^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13299
13300Syntax:
13301"""""""
13302
13303::
13304
13305 declare <type>
13306 @llvm.experimental.constrained.exp2(<type> <op1>,
13307 metadata <rounding mode>,
13308 metadata <exception behavior>)
13309
13310Overview:
13311"""""""""
13312
13313The '``llvm.experimental.constrained.exp2``' intrinsic computes the base-2
13314exponential of the specified value.
13315
13316
13317Arguments:
13318""""""""""
13319
13320The first argument and the return value are floating point numbers of the same
13321type.
13322
13323The second and third arguments specify the rounding mode and exception
13324behavior as described above.
13325
13326Semantics:
13327""""""""""
13328
13329This function returns the same values as the libm ``exp2`` functions
13330would, and handles error conditions in the same way.
13331
13332
13333'``llvm.experimental.constrained.log``' Intrinsic
13334^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13335
13336Syntax:
13337"""""""
13338
13339::
13340
13341 declare <type>
13342 @llvm.experimental.constrained.log(<type> <op1>,
13343 metadata <rounding mode>,
13344 metadata <exception behavior>)
13345
13346Overview:
13347"""""""""
13348
13349The '``llvm.experimental.constrained.log``' intrinsic computes the base-e
13350logarithm of the specified value.
13351
13352Arguments:
13353""""""""""
13354
13355The first argument and the return value are floating point numbers of the same
13356type.
13357
13358The second and third arguments specify the rounding mode and exception
13359behavior as described above.
13360
13361
13362Semantics:
13363""""""""""
13364
13365This function returns the same values as the libm ``log`` functions
13366would, and handles error conditions in the same way.
13367
13368
13369'``llvm.experimental.constrained.log10``' Intrinsic
13370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13371
13372Syntax:
13373"""""""
13374
13375::
13376
13377 declare <type>
13378 @llvm.experimental.constrained.log10(<type> <op1>,
13379 metadata <rounding mode>,
13380 metadata <exception behavior>)
13381
13382Overview:
13383"""""""""
13384
13385The '``llvm.experimental.constrained.log10``' intrinsic computes the base-10
13386logarithm of the specified value.
13387
13388Arguments:
13389""""""""""
13390
13391The first argument and the return value are floating point numbers of the same
13392type.
13393
13394The second and third arguments specify the rounding mode and exception
13395behavior as described above.
13396
13397Semantics:
13398""""""""""
13399
13400This function returns the same values as the libm ``log10`` functions
13401would, and handles error conditions in the same way.
13402
13403
13404'``llvm.experimental.constrained.log2``' Intrinsic
13405^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13406
13407Syntax:
13408"""""""
13409
13410::
13411
13412 declare <type>
13413 @llvm.experimental.constrained.log2(<type> <op1>,
13414 metadata <rounding mode>,
13415 metadata <exception behavior>)
13416
13417Overview:
13418"""""""""
13419
13420The '``llvm.experimental.constrained.log2``' intrinsic computes the base-2
13421logarithm of the specified value.
13422
13423Arguments:
13424""""""""""
13425
13426The first argument and the return value are floating point numbers of the same
13427type.
13428
13429The second and third arguments specify the rounding mode and exception
13430behavior as described above.
13431
13432Semantics:
13433""""""""""
13434
13435This function returns the same values as the libm ``log2`` functions
13436would, and handles error conditions in the same way.
13437
13438
13439'``llvm.experimental.constrained.rint``' Intrinsic
13440^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13441
13442Syntax:
13443"""""""
13444
13445::
13446
13447 declare <type>
13448 @llvm.experimental.constrained.rint(<type> <op1>,
13449 metadata <rounding mode>,
13450 metadata <exception behavior>)
13451
13452Overview:
13453"""""""""
13454
13455The '``llvm.experimental.constrained.rint``' intrinsic returns the first
13456operand rounded to the nearest integer. It may raise an inexact floating point
13457exception if the operand is not an integer.
13458
13459Arguments:
13460""""""""""
13461
13462The first argument and the return value are floating point numbers of the same
13463type.
13464
13465The second and third arguments specify the rounding mode and exception
13466behavior as described above.
13467
13468Semantics:
13469""""""""""
13470
13471This function returns the same values as the libm ``rint`` functions
13472would, and handles error conditions in the same way. The rounding mode is
13473described, not determined, by the rounding mode argument. The actual rounding
13474mode is determined by the runtime floating point environment. The rounding
13475mode argument is only intended as information to the compiler.
13476
13477
13478'``llvm.experimental.constrained.nearbyint``' Intrinsic
13479^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13480
13481Syntax:
13482"""""""
13483
13484::
13485
13486 declare <type>
13487 @llvm.experimental.constrained.nearbyint(<type> <op1>,
13488 metadata <rounding mode>,
13489 metadata <exception behavior>)
13490
13491Overview:
13492"""""""""
13493
13494The '``llvm.experimental.constrained.nearbyint``' intrinsic returns the first
13495operand rounded to the nearest integer. It will not raise an inexact floating
13496point exception if the operand is not an integer.
13497
13498
13499Arguments:
13500""""""""""
13501
13502The first argument and the return value are floating point numbers of the same
13503type.
13504
13505The second and third arguments specify the rounding mode and exception
13506behavior as described above.
13507
13508Semantics:
13509""""""""""
13510
13511This function returns the same values as the libm ``nearbyint`` functions
13512would, and handles error conditions in the same way. The rounding mode is
13513described, not determined, by the rounding mode argument. The actual rounding
13514mode is determined by the runtime floating point environment. The rounding
13515mode argument is only intended as information to the compiler.
13516
13517
Sean Silvab084af42012-12-07 10:36:55 +000013518General Intrinsics
13519------------------
13520
13521This class of intrinsics is designed to be generic and has no specific
13522purpose.
13523
13524'``llvm.var.annotation``' Intrinsic
13525^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13526
13527Syntax:
13528"""""""
13529
13530::
13531
13532 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
13533
13534Overview:
13535"""""""""
13536
13537The '``llvm.var.annotation``' intrinsic.
13538
13539Arguments:
13540""""""""""
13541
13542The first argument is a pointer to a value, the second is a pointer to a
13543global string, the third is a pointer to a global string which is the
13544source file name, and the last argument is the line number.
13545
13546Semantics:
13547""""""""""
13548
13549This intrinsic allows annotation of local variables with arbitrary
13550strings. This can be useful for special purpose optimizations that want
13551to look for these annotations. These have no other defined use; they are
13552ignored by code generation and optimization.
13553
Michael Gottesman88d18832013-03-26 00:34:27 +000013554'``llvm.ptr.annotation.*``' Intrinsic
13555^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13556
13557Syntax:
13558"""""""
13559
13560This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
13561pointer to an integer of any width. *NOTE* you must specify an address space for
13562the pointer. The identifier for the default address space is the integer
13563'``0``'.
13564
13565::
13566
13567 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
13568 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
13569 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
13570 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
13571 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
13572
13573Overview:
13574"""""""""
13575
13576The '``llvm.ptr.annotation``' intrinsic.
13577
13578Arguments:
13579""""""""""
13580
13581The first argument is a pointer to an integer value of arbitrary bitwidth
13582(result of some expression), the second is a pointer to a global string, the
13583third is a pointer to a global string which is the source file name, and the
13584last argument is the line number. It returns the value of the first argument.
13585
13586Semantics:
13587""""""""""
13588
13589This intrinsic allows annotation of a pointer to an integer with arbitrary
13590strings. This can be useful for special purpose optimizations that want to look
13591for these annotations. These have no other defined use; they are ignored by code
13592generation and optimization.
13593
Sean Silvab084af42012-12-07 10:36:55 +000013594'``llvm.annotation.*``' Intrinsic
13595^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13596
13597Syntax:
13598"""""""
13599
13600This is an overloaded intrinsic. You can use '``llvm.annotation``' on
13601any integer bit width.
13602
13603::
13604
13605 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
13606 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
13607 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
13608 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
13609 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
13610
13611Overview:
13612"""""""""
13613
13614The '``llvm.annotation``' intrinsic.
13615
13616Arguments:
13617""""""""""
13618
13619The first argument is an integer value (result of some expression), the
13620second is a pointer to a global string, the third is a pointer to a
13621global string which is the source file name, and the last argument is
13622the line number. It returns the value of the first argument.
13623
13624Semantics:
13625""""""""""
13626
13627This intrinsic allows annotations to be put on arbitrary expressions
13628with arbitrary strings. This can be useful for special purpose
13629optimizations that want to look for these annotations. These have no
13630other defined use; they are ignored by code generation and optimization.
13631
Reid Klecknere33c94f2017-09-05 20:14:58 +000013632'``llvm.codeview.annotation``' Intrinsic
Reid Klecknerd4523682017-09-05 20:26:25 +000013633^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Reid Klecknere33c94f2017-09-05 20:14:58 +000013634
13635Syntax:
13636"""""""
13637
13638This annotation emits a label at its program point and an associated
13639``S_ANNOTATION`` codeview record with some additional string metadata. This is
13640used to implement MSVC's ``__annotation`` intrinsic. It is marked
13641``noduplicate``, so calls to this intrinsic prevent inlining and should be
13642considered expensive.
13643
13644::
13645
13646 declare void @llvm.codeview.annotation(metadata)
13647
13648Arguments:
13649""""""""""
13650
13651The argument should be an MDTuple containing any number of MDStrings.
13652
Sean Silvab084af42012-12-07 10:36:55 +000013653'``llvm.trap``' Intrinsic
13654^^^^^^^^^^^^^^^^^^^^^^^^^
13655
13656Syntax:
13657"""""""
13658
13659::
13660
13661 declare void @llvm.trap() noreturn nounwind
13662
13663Overview:
13664"""""""""
13665
13666The '``llvm.trap``' intrinsic.
13667
13668Arguments:
13669""""""""""
13670
13671None.
13672
13673Semantics:
13674""""""""""
13675
13676This intrinsic is lowered to the target dependent trap instruction. If
13677the target does not have a trap instruction, this intrinsic will be
13678lowered to a call of the ``abort()`` function.
13679
13680'``llvm.debugtrap``' Intrinsic
13681^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13682
13683Syntax:
13684"""""""
13685
13686::
13687
13688 declare void @llvm.debugtrap() nounwind
13689
13690Overview:
13691"""""""""
13692
13693The '``llvm.debugtrap``' intrinsic.
13694
13695Arguments:
13696""""""""""
13697
13698None.
13699
13700Semantics:
13701""""""""""
13702
13703This intrinsic is lowered to code which is intended to cause an
13704execution trap with the intention of requesting the attention of a
13705debugger.
13706
13707'``llvm.stackprotector``' Intrinsic
13708^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13709
13710Syntax:
13711"""""""
13712
13713::
13714
13715 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
13716
13717Overview:
13718"""""""""
13719
13720The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
13721onto the stack at ``slot``. The stack slot is adjusted to ensure that it
13722is placed on the stack before local variables.
13723
13724Arguments:
13725""""""""""
13726
13727The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
13728The first argument is the value loaded from the stack guard
13729``@__stack_chk_guard``. The second variable is an ``alloca`` that has
13730enough space to hold the value of the guard.
13731
13732Semantics:
13733""""""""""
13734
Michael Gottesmandafc7d92013-08-12 18:35:32 +000013735This intrinsic causes the prologue/epilogue inserter to force the position of
13736the ``AllocaInst`` stack slot to be before local variables on the stack. This is
13737to ensure that if a local variable on the stack is overwritten, it will destroy
13738the value of the guard. When the function exits, the guard on the stack is
13739checked against the original guard by ``llvm.stackprotectorcheck``. If they are
13740different, then ``llvm.stackprotectorcheck`` causes the program to abort by
13741calling the ``__stack_chk_fail()`` function.
13742
Tim Shene885d5e2016-04-19 19:40:37 +000013743'``llvm.stackguard``' Intrinsic
13744^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13745
13746Syntax:
13747"""""""
13748
13749::
13750
13751 declare i8* @llvm.stackguard()
13752
13753Overview:
13754"""""""""
13755
13756The ``llvm.stackguard`` intrinsic returns the system stack guard value.
13757
13758It should not be generated by frontends, since it is only for internal usage.
13759The reason why we create this intrinsic is that we still support IR form Stack
13760Protector in FastISel.
13761
13762Arguments:
13763""""""""""
13764
13765None.
13766
13767Semantics:
13768""""""""""
13769
13770On some platforms, the value returned by this intrinsic remains unchanged
13771between loads in the same thread. On other platforms, it returns the same
13772global variable value, if any, e.g. ``@__stack_chk_guard``.
13773
13774Currently some platforms have IR-level customized stack guard loading (e.g.
13775X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
13776in the future.
13777
Sean Silvab084af42012-12-07 10:36:55 +000013778'``llvm.objectsize``' Intrinsic
13779^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13780
13781Syntax:
13782"""""""
13783
13784::
13785
George Burgess IV56c7e882017-03-21 20:08:59 +000013786 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>)
13787 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>)
Sean Silvab084af42012-12-07 10:36:55 +000013788
13789Overview:
13790"""""""""
13791
13792The ``llvm.objectsize`` intrinsic is designed to provide information to
13793the optimizers to determine at compile time whether a) an operation
13794(like memcpy) will overflow a buffer that corresponds to an object, or
13795b) that a runtime check for overflow isn't necessary. An object in this
13796context means an allocation of a specific class, structure, array, or
13797other object.
13798
13799Arguments:
13800""""""""""
13801
George Burgess IV56c7e882017-03-21 20:08:59 +000013802The ``llvm.objectsize`` intrinsic takes three arguments. The first argument is
13803a pointer to or into the ``object``. The second argument determines whether
13804``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size
13805is unknown. The third argument controls how ``llvm.objectsize`` acts when
13806``null`` is used as its pointer argument. If it's true and the pointer is in
13807address space 0, ``null`` is treated as an opaque value with an unknown number
13808of bytes. Otherwise, ``llvm.objectsize`` reports 0 bytes available when given
13809``null``.
13810
13811The second and third arguments only accept constants.
Sean Silvab084af42012-12-07 10:36:55 +000013812
13813Semantics:
13814""""""""""
13815
13816The ``llvm.objectsize`` intrinsic is lowered to a constant representing
13817the size of the object concerned. If the size cannot be determined at
13818compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
13819on the ``min`` argument).
13820
13821'``llvm.expect``' Intrinsic
13822^^^^^^^^^^^^^^^^^^^^^^^^^^^
13823
13824Syntax:
13825"""""""
13826
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000013827This is an overloaded intrinsic. You can use ``llvm.expect`` on any
13828integer bit width.
13829
Sean Silvab084af42012-12-07 10:36:55 +000013830::
13831
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000013832 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000013833 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
13834 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
13835
13836Overview:
13837"""""""""
13838
13839The ``llvm.expect`` intrinsic provides information about expected (the
13840most probable) value of ``val``, which can be used by optimizers.
13841
13842Arguments:
13843""""""""""
13844
13845The ``llvm.expect`` intrinsic takes two arguments. The first argument is
13846a value. The second argument is an expected value, this needs to be a
13847constant value, variables are not allowed.
13848
13849Semantics:
13850""""""""""
13851
13852This intrinsic is lowered to the ``val``.
13853
Philip Reamese0e90832015-04-26 22:23:12 +000013854.. _int_assume:
13855
Hal Finkel93046912014-07-25 21:13:35 +000013856'``llvm.assume``' Intrinsic
13857^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13858
13859Syntax:
13860"""""""
13861
13862::
13863
13864 declare void @llvm.assume(i1 %cond)
13865
13866Overview:
13867"""""""""
13868
13869The ``llvm.assume`` allows the optimizer to assume that the provided
13870condition is true. This information can then be used in simplifying other parts
13871of the code.
13872
13873Arguments:
13874""""""""""
13875
13876The condition which the optimizer may assume is always true.
13877
13878Semantics:
13879""""""""""
13880
13881The intrinsic allows the optimizer to assume that the provided condition is
13882always true whenever the control flow reaches the intrinsic call. No code is
13883generated for this intrinsic, and instructions that contribute only to the
13884provided condition are not used for code generation. If the condition is
13885violated during execution, the behavior is undefined.
13886
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000013887Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000013888used by the ``llvm.assume`` intrinsic in order to preserve the instructions
13889only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000013890if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000013891sufficient overall improvement in code quality. For this reason,
13892``llvm.assume`` should not be used to document basic mathematical invariants
13893that the optimizer can otherwise deduce or facts that are of little use to the
13894optimizer.
13895
Daniel Berlin2c438a32017-02-07 19:29:25 +000013896.. _int_ssa_copy:
13897
13898'``llvm.ssa_copy``' Intrinsic
13899^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13900
13901Syntax:
13902"""""""
13903
13904::
13905
13906 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
13907
13908Arguments:
13909""""""""""
13910
13911The first argument is an operand which is used as the returned value.
13912
13913Overview:
13914""""""""""
13915
13916The ``llvm.ssa_copy`` intrinsic can be used to attach information to
13917operations by copying them and giving them new names. For example,
13918the PredicateInfo utility uses it to build Extended SSA form, and
13919attach various forms of information to operands that dominate specific
13920uses. It is not meant for general use, only for building temporary
13921renaming forms that require value splits at certain points.
13922
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013923.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000013924
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013925'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000013926^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13927
13928Syntax:
13929"""""""
13930
13931::
13932
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013933 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000013934
13935
13936Arguments:
13937""""""""""
13938
13939The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013940metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000013941
13942Overview:
13943"""""""""
13944
Peter Collingbourne7efd7502016-06-24 21:21:32 +000013945The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
13946with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000013947
Peter Collingbourne0312f612016-06-25 00:23:04 +000013948'``llvm.type.checked.load``' Intrinsic
13949^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13950
13951Syntax:
13952"""""""
13953
13954::
13955
13956 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
13957
13958
13959Arguments:
13960""""""""""
13961
13962The first argument is a pointer from which to load a function pointer. The
13963second argument is the byte offset from which to load the function pointer. The
13964third argument is a metadata object representing a :doc:`type identifier
13965<TypeMetadata>`.
13966
13967Overview:
13968"""""""""
13969
13970The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
13971virtual table pointer using type metadata. This intrinsic is used to implement
13972control flow integrity in conjunction with virtual call optimization. The
13973virtual call optimization pass will optimize away ``llvm.type.checked.load``
13974intrinsics associated with devirtualized calls, thereby removing the type
13975check in cases where it is not needed to enforce the control flow integrity
13976constraint.
13977
13978If the given pointer is associated with a type metadata identifier, this
13979function returns true as the second element of its return value. (Note that
13980the function may also return true if the given pointer is not associated
13981with a type metadata identifier.) If the function's return value's second
13982element is true, the following rules apply to the first element:
13983
13984- If the given pointer is associated with the given type metadata identifier,
13985 it is the function pointer loaded from the given byte offset from the given
13986 pointer.
13987
13988- If the given pointer is not associated with the given type metadata
13989 identifier, it is one of the following (the choice of which is unspecified):
13990
13991 1. The function pointer that would have been loaded from an arbitrarily chosen
13992 (through an unspecified mechanism) pointer associated with the type
13993 metadata.
13994
13995 2. If the function has a non-void return type, a pointer to a function that
13996 returns an unspecified value without causing side effects.
13997
13998If the function's return value's second element is false, the value of the
13999first element is undefined.
14000
14001
Sean Silvab084af42012-12-07 10:36:55 +000014002'``llvm.donothing``' Intrinsic
14003^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14004
14005Syntax:
14006"""""""
14007
14008::
14009
14010 declare void @llvm.donothing() nounwind readnone
14011
14012Overview:
14013"""""""""
14014
Juergen Ributzkac9161192014-10-23 22:36:13 +000014015The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000014016three intrinsics (besides ``llvm.experimental.patchpoint`` and
14017``llvm.experimental.gc.statepoint``) that can be called with an invoke
14018instruction.
Sean Silvab084af42012-12-07 10:36:55 +000014019
14020Arguments:
14021""""""""""
14022
14023None.
14024
14025Semantics:
14026""""""""""
14027
14028This intrinsic does nothing, and it's removed by optimizers and ignored
14029by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000014030
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014031'``llvm.experimental.deoptimize``' Intrinsic
14032^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14033
14034Syntax:
14035"""""""
14036
14037::
14038
14039 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
14040
14041Overview:
14042"""""""""
14043
14044This intrinsic, together with :ref:`deoptimization operand bundles
14045<deopt_opbundles>`, allow frontends to express transfer of control and
14046frame-local state from the currently executing (typically more specialized,
14047hence faster) version of a function into another (typically more generic, hence
14048slower) version.
14049
14050In languages with a fully integrated managed runtime like Java and JavaScript
14051this intrinsic can be used to implement "uncommon trap" or "side exit" like
14052functionality. In unmanaged languages like C and C++, this intrinsic can be
14053used to represent the slow paths of specialized functions.
14054
14055
14056Arguments:
14057""""""""""
14058
14059The intrinsic takes an arbitrary number of arguments, whose meaning is
14060decided by the :ref:`lowering strategy<deoptimize_lowering>`.
14061
14062Semantics:
14063""""""""""
14064
14065The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
14066deoptimization continuation (denoted using a :ref:`deoptimization
14067operand bundle <deopt_opbundles>`) and returns the value returned by
14068the deoptimization continuation. Defining the semantic properties of
14069the continuation itself is out of scope of the language reference --
14070as far as LLVM is concerned, the deoptimization continuation can
14071invoke arbitrary side effects, including reading from and writing to
14072the entire heap.
14073
14074Deoptimization continuations expressed using ``"deopt"`` operand bundles always
14075continue execution to the end of the physical frame containing them, so all
14076calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
14077
14078 - ``@llvm.experimental.deoptimize`` cannot be invoked.
14079 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
14080 - The ``ret`` instruction must return the value produced by the
14081 ``@llvm.experimental.deoptimize`` call if there is one, or void.
14082
14083Note that the above restrictions imply that the return type for a call to
14084``@llvm.experimental.deoptimize`` will match the return type of its immediate
14085caller.
14086
14087The inliner composes the ``"deopt"`` continuations of the caller into the
14088``"deopt"`` continuations present in the inlinee, and also updates calls to this
14089intrinsic to return directly from the frame of the function it inlined into.
14090
Sanjoy Dase0aa4142016-05-12 01:17:38 +000014091All declarations of ``@llvm.experimental.deoptimize`` must share the
14092same calling convention.
14093
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014094.. _deoptimize_lowering:
14095
14096Lowering:
14097"""""""""
14098
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000014099Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
14100symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
14101ensure that this symbol is defined). The call arguments to
14102``@llvm.experimental.deoptimize`` are lowered as if they were formal
14103arguments of the specified types, and not as varargs.
14104
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014105
Sanjoy Das021de052016-03-31 00:18:46 +000014106'``llvm.experimental.guard``' Intrinsic
14107^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14108
14109Syntax:
14110"""""""
14111
14112::
14113
14114 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
14115
14116Overview:
14117"""""""""
14118
14119This intrinsic, together with :ref:`deoptimization operand bundles
14120<deopt_opbundles>`, allows frontends to express guards or checks on
14121optimistic assumptions made during compilation. The semantics of
14122``@llvm.experimental.guard`` is defined in terms of
14123``@llvm.experimental.deoptimize`` -- its body is defined to be
14124equivalent to:
14125
Renato Golin124f2592016-07-20 12:16:38 +000014126.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000014127
Renato Golin124f2592016-07-20 12:16:38 +000014128 define void @llvm.experimental.guard(i1 %pred, <args...>) {
14129 %realPred = and i1 %pred, undef
14130 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000014131
Renato Golin124f2592016-07-20 12:16:38 +000014132 leave:
14133 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
14134 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000014135
Renato Golin124f2592016-07-20 12:16:38 +000014136 continue:
14137 ret void
14138 }
Sanjoy Das021de052016-03-31 00:18:46 +000014139
Sanjoy Das47cf2af2016-04-30 00:55:59 +000014140
14141with the optional ``[, !make.implicit !{}]`` present if and only if it
14142is present on the call site. For more details on ``!make.implicit``,
14143see :doc:`FaultMaps`.
14144
Sanjoy Das021de052016-03-31 00:18:46 +000014145In words, ``@llvm.experimental.guard`` executes the attached
14146``"deopt"`` continuation if (but **not** only if) its first argument
14147is ``false``. Since the optimizer is allowed to replace the ``undef``
14148with an arbitrary value, it can optimize guard to fail "spuriously",
14149i.e. without the original condition being false (hence the "not only
14150if"); and this allows for "check widening" type optimizations.
14151
14152``@llvm.experimental.guard`` cannot be invoked.
14153
14154
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000014155'``llvm.load.relative``' Intrinsic
14156^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14157
14158Syntax:
14159"""""""
14160
14161::
14162
14163 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
14164
14165Overview:
14166"""""""""
14167
14168This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
14169adds ``%ptr`` to that value and returns it. The constant folder specifically
14170recognizes the form of this intrinsic and the constant initializers it may
14171load from; if a loaded constant initializer is known to have the form
14172``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
14173
14174LLVM provides that the calculation of such a constant initializer will
14175not overflow at link time under the medium code model if ``x`` is an
14176``unnamed_addr`` function. However, it does not provide this guarantee for
14177a constant initializer folded into a function body. This intrinsic can be
14178used to avoid the possibility of overflows when loading from such a constant.
14179
Andrew Trick5e029ce2013-12-24 02:57:25 +000014180Stack Map Intrinsics
14181--------------------
14182
14183LLVM provides experimental intrinsics to support runtime patching
14184mechanisms commonly desired in dynamic language JITs. These intrinsics
14185are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014186
14187Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000014188-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000014189
14190These intrinsics are similar to the standard library memory intrinsics except
14191that they perform memory transfer as a sequence of atomic memory accesses.
14192
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014193.. _int_memcpy_element_unordered_atomic:
Igor Laevsky4f31e522016-12-29 14:31:07 +000014194
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014195'``llvm.memcpy.element.unordered.atomic``' Intrinsic
14196^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000014197
14198Syntax:
14199"""""""
14200
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014201This is an overloaded intrinsic. You can use ``llvm.memcpy.element.unordered.atomic`` on
Igor Laevsky4f31e522016-12-29 14:31:07 +000014202any integer bit width and for different address spaces. Not all targets
14203support all bit widths however.
14204
14205::
14206
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014207 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
14208 i8* <src>,
14209 i32 <len>,
14210 i32 <element_size>)
14211 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
14212 i8* <src>,
14213 i64 <len>,
14214 i32 <element_size>)
Igor Laevsky4f31e522016-12-29 14:31:07 +000014215
14216Overview:
14217"""""""""
14218
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014219The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic is a specialization of the
14220'``llvm.memcpy.*``' intrinsic. It differs in that the ``dest`` and ``src`` are treated
14221as arrays with elements that are exactly ``element_size`` bytes, and the copy between
14222buffers uses a sequence of :ref:`unordered atomic <ordering>` load/store operations
14223that are a positive integer multiple of the ``element_size`` in size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014224
14225Arguments:
14226""""""""""
14227
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014228The first three arguments are the same as they are in the :ref:`@llvm.memcpy <int_memcpy>`
14229intrinsic, with the added constraint that ``len`` is required to be a positive integer
14230multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
14231``element_size``, then the behaviour of the intrinsic is undefined.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014232
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014233``element_size`` must be a compile-time constant positive power of two no greater than
14234target-specific atomic access size limit.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014235
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014236For each of the input pointers ``align`` parameter attribute must be specified. It
14237must be a power of two no less than the ``element_size``. Caller guarantees that
14238both the source and destination pointers are aligned to that boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014239
14240Semantics:
14241""""""""""
14242
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014243The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic copies ``len`` bytes of
14244memory from the source location to the destination location. These locations are not
14245allowed to overlap. The memory copy is performed as a sequence of load/store operations
14246where each access is guaranteed to be a multiple of ``element_size`` bytes wide and
14247aligned at an ``element_size`` boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014248
14249The order of the copy is unspecified. The same value may be read from the source
14250buffer many times, but only one write is issued to the destination buffer per
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014251element. It is well defined to have concurrent reads and writes to both source and
14252destination provided those reads and writes are unordered atomic when specified.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014253
14254This intrinsic does not provide any additional ordering guarantees over those
14255provided by a set of unordered loads from the source location and stores to the
14256destination.
14257
14258Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000014259"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000014260
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014261In the most general case call to the '``llvm.memcpy.element.unordered.atomic.*``' is
14262lowered to a call to the symbol ``__llvm_memcpy_element_unordered_atomic_*``. Where '*'
14263is replaced with an actual element size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014264
Daniel Neilson57226ef2017-07-12 15:25:26 +000014265Optimizer is allowed to inline memory copy when it's profitable to do so.
14266
14267'``llvm.memmove.element.unordered.atomic``' Intrinsic
14268^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14269
14270Syntax:
14271"""""""
14272
14273This is an overloaded intrinsic. You can use
14274``llvm.memmove.element.unordered.atomic`` on any integer bit width and for
14275different address spaces. Not all targets support all bit widths however.
14276
14277::
14278
14279 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
14280 i8* <src>,
14281 i32 <len>,
14282 i32 <element_size>)
14283 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
14284 i8* <src>,
14285 i64 <len>,
14286 i32 <element_size>)
14287
14288Overview:
14289"""""""""
14290
14291The '``llvm.memmove.element.unordered.atomic.*``' intrinsic is a specialization
14292of the '``llvm.memmove.*``' intrinsic. It differs in that the ``dest`` and
14293``src`` are treated as arrays with elements that are exactly ``element_size``
14294bytes, and the copy between buffers uses a sequence of
14295:ref:`unordered atomic <ordering>` load/store operations that are a positive
14296integer multiple of the ``element_size`` in size.
14297
14298Arguments:
14299""""""""""
14300
14301The first three arguments are the same as they are in the
14302:ref:`@llvm.memmove <int_memmove>` intrinsic, with the added constraint that
14303``len`` is required to be a positive integer multiple of the ``element_size``.
14304If ``len`` is not a positive integer multiple of ``element_size``, then the
14305behaviour of the intrinsic is undefined.
14306
14307``element_size`` must be a compile-time constant positive power of two no
14308greater than a target-specific atomic access size limit.
14309
14310For each of the input pointers the ``align`` parameter attribute must be
14311specified. It must be a power of two no less than the ``element_size``. Caller
14312guarantees that both the source and destination pointers are aligned to that
14313boundary.
14314
14315Semantics:
14316""""""""""
14317
14318The '``llvm.memmove.element.unordered.atomic.*``' intrinsic copies ``len`` bytes
14319of memory from the source location to the destination location. These locations
14320are allowed to overlap. The memory copy is performed as a sequence of load/store
14321operations where each access is guaranteed to be a multiple of ``element_size``
14322bytes wide and aligned at an ``element_size`` boundary.
14323
14324The order of the copy is unspecified. The same value may be read from the source
14325buffer many times, but only one write is issued to the destination buffer per
14326element. It is well defined to have concurrent reads and writes to both source
14327and destination provided those reads and writes are unordered atomic when
14328specified.
14329
14330This intrinsic does not provide any additional ordering guarantees over those
14331provided by a set of unordered loads from the source location and stores to the
14332destination.
14333
14334Lowering:
14335"""""""""
14336
14337In the most general case call to the
14338'``llvm.memmove.element.unordered.atomic.*``' is lowered to a call to the symbol
14339``__llvm_memmove_element_unordered_atomic_*``. Where '*' is replaced with an
14340actual element size.
14341
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014342The optimizer is allowed to inline the memory copy when it's profitable to do so.
Daniel Neilson965613e2017-07-12 21:57:23 +000014343
14344.. _int_memset_element_unordered_atomic:
14345
14346'``llvm.memset.element.unordered.atomic``' Intrinsic
14347^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14348
14349Syntax:
14350"""""""
14351
14352This is an overloaded intrinsic. You can use ``llvm.memset.element.unordered.atomic`` on
14353any integer bit width and for different address spaces. Not all targets
14354support all bit widths however.
14355
14356::
14357
14358 declare void @llvm.memset.element.unordered.atomic.p0i8.i32(i8* <dest>,
14359 i8 <value>,
14360 i32 <len>,
14361 i32 <element_size>)
14362 declare void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* <dest>,
14363 i8 <value>,
14364 i64 <len>,
14365 i32 <element_size>)
14366
14367Overview:
14368"""""""""
14369
14370The '``llvm.memset.element.unordered.atomic.*``' intrinsic is a specialization of the
14371'``llvm.memset.*``' intrinsic. It differs in that the ``dest`` is treated as an array
14372with elements that are exactly ``element_size`` bytes, and the assignment to that array
14373uses uses a sequence of :ref:`unordered atomic <ordering>` store operations
14374that are a positive integer multiple of the ``element_size`` in size.
14375
14376Arguments:
14377""""""""""
14378
14379The first three arguments are the same as they are in the :ref:`@llvm.memset <int_memset>`
14380intrinsic, with the added constraint that ``len`` is required to be a positive integer
14381multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
14382``element_size``, then the behaviour of the intrinsic is undefined.
14383
14384``element_size`` must be a compile-time constant positive power of two no greater than
14385target-specific atomic access size limit.
14386
14387The ``dest`` input pointer must have the ``align`` parameter attribute specified. It
14388must be a power of two no less than the ``element_size``. Caller guarantees that
14389the destination pointer is aligned to that boundary.
14390
14391Semantics:
14392""""""""""
14393
14394The '``llvm.memset.element.unordered.atomic.*``' intrinsic sets the ``len`` bytes of
14395memory starting at the destination location to the given ``value``. The memory is
14396set with a sequence of store operations where each access is guaranteed to be a
14397multiple of ``element_size`` bytes wide and aligned at an ``element_size`` boundary.
14398
14399The order of the assignment is unspecified. Only one write is issued to the
14400destination buffer per element. It is well defined to have concurrent reads and
14401writes to the destination provided those reads and writes are unordered atomic
14402when specified.
14403
14404This intrinsic does not provide any additional ordering guarantees over those
14405provided by a set of unordered stores to the destination.
14406
14407Lowering:
14408"""""""""
14409
14410In the most general case call to the '``llvm.memset.element.unordered.atomic.*``' is
14411lowered to a call to the symbol ``__llvm_memset_element_unordered_atomic_*``. Where '*'
14412is replaced with an actual element size.
14413
14414The optimizer is allowed to inline the memory assignment when it's profitable to do so.
14415