blob: 569e4a98d183b50347819f91d4c1d589de71a3c6 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
George Burgess IVfbc34982017-05-20 04:52:29 +0000164 ; Convert [13 x i8]* to i8*...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledru0604c5c2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvab084af42012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Sean Fertilec70d28b2017-10-26 15:00:26 +0000530.. _runtime_preemption_model:
531
532Runtime Preemption Specifiers
533-----------------------------
534
535Global variables, functions and aliases may have an optional runtime preemption
536specifier. If a preemption specifier isn't given explicitly, then a
537symbol is assumed to be ``dso_preemptable``.
538
539``dso_preemptable``
540 Indicates that the function or variable may be replaced by a symbol from
541 outside the linkage unit at runtime.
542
543``dso_local``
544 The compiler may assume that a function or variable marked as ``dso_local``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000545 will resolve to a symbol within the same linkage unit. Direct access will
Sean Fertilec70d28b2017-10-26 15:00:26 +0000546 be generated even if the definition is not within this compilation unit.
547
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000548.. _namedtypes:
549
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000550Structure Types
551---------------
Sean Silvab084af42012-12-07 10:36:55 +0000552
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000553LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000554types <t_struct>`. Literal types are uniqued structurally, but identified types
555are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000556to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000557
Sean Silva706fba52015-08-06 22:56:24 +0000558An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000559
560.. code-block:: llvm
561
562 %mytype = type { %mytype*, i32 }
563
Sean Silvaa1190322015-08-06 22:56:48 +0000564Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000565literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000566
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000567.. _nointptrtype:
568
569Non-Integral Pointer Type
570-------------------------
571
572Note: non-integral pointer types are a work in progress, and they should be
573considered experimental at this time.
574
575LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000576spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
577Non-integral pointer types represent pointers that have an *unspecified* bitwise
578representation; that is, the integral representation may be target dependent or
579unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000580
581``inttoptr`` instructions converting integers to non-integral pointer types are
582ill-typed, and so are ``ptrtoint`` instructions converting values of
583non-integral pointer types to integers. Vector versions of said instructions
584are ill-typed as well.
585
Sean Silvab084af42012-12-07 10:36:55 +0000586.. _globalvars:
587
588Global Variables
589----------------
590
591Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000592instead of run-time.
593
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000594Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000595
596Global variables in other translation units can also be declared, in which
597case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000598
Bob Wilson85b24f22014-06-12 20:40:33 +0000599Either global variable definitions or declarations may have an explicit section
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000600to be placed in and may have an optional explicit alignment specified. If there
601is a mismatch between the explicit or inferred section information for the
602variable declaration and its definition the resulting behavior is undefined.
Bob Wilson85b24f22014-06-12 20:40:33 +0000603
Michael Gottesman006039c2013-01-31 05:48:48 +0000604A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000605the contents of the variable will **never** be modified (enabling better
606optimization, allowing the global data to be placed in the read-only
607section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000608initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000609variable.
610
611LLVM explicitly allows *declarations* of global variables to be marked
612constant, even if the final definition of the global is not. This
613capability can be used to enable slightly better optimization of the
614program, but requires the language definition to guarantee that
615optimizations based on the 'constantness' are valid for the translation
616units that do not include the definition.
617
618As SSA values, global variables define pointer values that are in scope
619(i.e. they dominate) all basic blocks in the program. Global variables
620always define a pointer to their "content" type because they describe a
621region of memory, and all memory objects in LLVM are accessed through
622pointers.
623
624Global variables can be marked with ``unnamed_addr`` which indicates
625that the address is not significant, only the content. Constants marked
626like this can be merged with other constants if they have the same
627initializer. Note that a constant with significant address *can* be
628merged with a ``unnamed_addr`` constant, the result being a constant
629whose address is significant.
630
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000631If the ``local_unnamed_addr`` attribute is given, the address is known to
632not be significant within the module.
633
Sean Silvab084af42012-12-07 10:36:55 +0000634A global variable may be declared to reside in a target-specific
635numbered address space. For targets that support them, address spaces
636may affect how optimizations are performed and/or what target
637instructions are used to access the variable. The default address space
638is zero. The address space qualifier must precede any other attributes.
639
640LLVM allows an explicit section to be specified for globals. If the
641target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000642Additionally, the global can placed in a comdat if the target has the necessary
643support.
Sean Silvab084af42012-12-07 10:36:55 +0000644
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000645External declarations may have an explicit section specified. Section
646information is retained in LLVM IR for targets that make use of this
647information. Attaching section information to an external declaration is an
648assertion that its definition is located in the specified section. If the
649definition is located in a different section, the behavior is undefined.
Erich Keane0343ef82017-08-22 15:30:43 +0000650
Michael Gottesmane743a302013-02-04 03:22:00 +0000651By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000652variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000653initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000654true even for variables potentially accessible from outside the
655module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000656``@llvm.used`` or dllexported variables. This assumption may be suppressed
657by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659An explicit alignment may be specified for a global, which must be a
660power of 2. If not present, or if the alignment is set to zero, the
661alignment of the global is set by the target to whatever it feels
662convenient. If an explicit alignment is specified, the global is forced
663to have exactly that alignment. Targets and optimizers are not allowed
664to over-align the global if the global has an assigned section. In this
665case, the extra alignment could be observable: for example, code could
666assume that the globals are densely packed in their section and try to
667iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000668iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000669
Javed Absarf3d79042017-05-11 12:28:08 +0000670Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
Sean Fertilec70d28b2017-10-26 15:00:26 +0000671an optional :ref:`runtime preemption specifier <runtime_preemption_model>`,
Javed Absarf3d79042017-05-11 12:28:08 +0000672an optional :ref:`global attributes <glattrs>` and
673an optional list of attached :ref:`metadata <metadata>`.
Nico Rieck7157bb72014-01-14 15:22:47 +0000674
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000675Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000676:ref:`Thread Local Storage Model <tls_model>`.
677
Nico Rieck7157bb72014-01-14 15:22:47 +0000678Syntax::
679
Sean Fertilec70d28b2017-10-26 15:00:26 +0000680 @<GlobalVarName> = [Linkage] [PreemptionSpecifier] [Visibility]
681 [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000682 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
683 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000684 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000685 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000686 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000687
Sean Silvab084af42012-12-07 10:36:55 +0000688For example, the following defines a global in a numbered address space
689with an initializer, section, and alignment:
690
691.. code-block:: llvm
692
693 @G = addrspace(5) constant float 1.0, section "foo", align 4
694
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000695The following example just declares a global variable
696
697.. code-block:: llvm
698
699 @G = external global i32
700
Sean Silvab084af42012-12-07 10:36:55 +0000701The following example defines a thread-local global with the
702``initialexec`` TLS model:
703
704.. code-block:: llvm
705
706 @G = thread_local(initialexec) global i32 0, align 4
707
708.. _functionstructure:
709
710Functions
711---------
712
713LLVM function definitions consist of the "``define``" keyword, an
Sean Fertilec70d28b2017-10-26 15:00:26 +0000714optional :ref:`linkage type <linkage>`, an optional :ref:`runtime preemption
715specifier <runtime_preemption_model>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000716style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
717an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000718an optional ``unnamed_addr`` attribute, a return type, an optional
719:ref:`parameter attribute <paramattrs>` for the return type, a function
720name, a (possibly empty) argument list (each with optional :ref:`parameter
721attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000722an optional section, an optional alignment,
723an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000724an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000725an optional :ref:`prologue <prologuedata>`,
726an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000727an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000728an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000731optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
732<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
733optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
734or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
735attribute <paramattrs>` for the return type, a function name, a possibly
736empty list of arguments, an optional alignment, an optional :ref:`garbage
737collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
738:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000739
Bill Wendling6822ecb2013-10-27 05:09:12 +0000740A function definition contains a list of basic blocks, forming the CFG (Control
741Flow Graph) for the function. Each basic block may optionally start with a label
742(giving the basic block a symbol table entry), contains a list of instructions,
743and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
744function return). If an explicit label is not provided, a block is assigned an
745implicit numbered label, using the next value from the same counter as used for
746unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
747entry block does not have an explicit label, it will be assigned label "%0",
748then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000749
750The first basic block in a function is special in two ways: it is
751immediately executed on entrance to the function, and it is not allowed
752to have predecessor basic blocks (i.e. there can not be any branches to
753the entry block of a function). Because the block can have no
754predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
755
756LLVM allows an explicit section to be specified for functions. If the
757target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000758Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000759
760An explicit alignment may be specified for a function. If not present,
761or if the alignment is set to zero, the alignment of the function is set
762by the target to whatever it feels convenient. If an explicit alignment
763is specified, the function is forced to have at least that much
764alignment. All alignments must be a power of 2.
765
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000766If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000767be significant and two identical functions can be merged.
768
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000769If the ``local_unnamed_addr`` attribute is given, the address is known to
770not be significant within the module.
771
Sean Silvab084af42012-12-07 10:36:55 +0000772Syntax::
773
Sean Fertilec70d28b2017-10-26 15:00:26 +0000774 define [linkage] [PreemptionSpecifier] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000775 [cconv] [ret attrs]
776 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000777 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
778 [comdat [($name)]] [align N] [gc] [prefix Constant]
779 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000780
Sean Silva706fba52015-08-06 22:56:24 +0000781The argument list is a comma separated sequence of arguments where each
782argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000783
784Syntax::
785
786 <type> [parameter Attrs] [name]
787
788
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000789.. _langref_aliases:
790
Sean Silvab084af42012-12-07 10:36:55 +0000791Aliases
792-------
793
Rafael Espindola64c1e182014-06-03 02:41:57 +0000794Aliases, unlike function or variables, don't create any new data. They
795are just a new symbol and metadata for an existing position.
796
797Aliases have a name and an aliasee that is either a global value or a
798constant expression.
799
Nico Rieck7157bb72014-01-14 15:22:47 +0000800Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Sean Fertilec70d28b2017-10-26 15:00:26 +0000801:ref:`runtime preemption specifier <runtime_preemption_model>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000802:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
803<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000804
805Syntax::
806
Sean Fertilec70d28b2017-10-26 15:00:26 +0000807 @<Name> = [Linkage] [PreemptionSpecifier] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000808
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000809The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000810``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000811might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000812
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000813Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000814the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
815to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000816
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000817If the ``local_unnamed_addr`` attribute is given, the address is known to
818not be significant within the module.
819
Rafael Espindola64c1e182014-06-03 02:41:57 +0000820Since aliases are only a second name, some restrictions apply, of which
821some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000822
Rafael Espindola64c1e182014-06-03 02:41:57 +0000823* The expression defining the aliasee must be computable at assembly
824 time. Since it is just a name, no relocations can be used.
825
826* No alias in the expression can be weak as the possibility of the
827 intermediate alias being overridden cannot be represented in an
828 object file.
829
830* No global value in the expression can be a declaration, since that
831 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000832
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000833.. _langref_ifunc:
834
835IFuncs
836-------
837
838IFuncs, like as aliases, don't create any new data or func. They are just a new
839symbol that dynamic linker resolves at runtime by calling a resolver function.
840
841IFuncs have a name and a resolver that is a function called by dynamic linker
842that returns address of another function associated with the name.
843
844IFunc may have an optional :ref:`linkage type <linkage>` and an optional
845:ref:`visibility style <visibility>`.
846
847Syntax::
848
849 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
850
851
David Majnemerdad0a642014-06-27 18:19:56 +0000852.. _langref_comdats:
853
854Comdats
855-------
856
857Comdat IR provides access to COFF and ELF object file COMDAT functionality.
858
Sean Silvaa1190322015-08-06 22:56:48 +0000859Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000860specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000861that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000862aliasee computes to, if any.
863
864Comdats have a selection kind to provide input on how the linker should
865choose between keys in two different object files.
866
867Syntax::
868
869 $<Name> = comdat SelectionKind
870
871The selection kind must be one of the following:
872
873``any``
874 The linker may choose any COMDAT key, the choice is arbitrary.
875``exactmatch``
876 The linker may choose any COMDAT key but the sections must contain the
877 same data.
878``largest``
879 The linker will choose the section containing the largest COMDAT key.
880``noduplicates``
881 The linker requires that only section with this COMDAT key exist.
882``samesize``
883 The linker may choose any COMDAT key but the sections must contain the
884 same amount of data.
885
Sam Cleggea7cace2018-01-09 23:43:14 +0000886Note that the Mach-O platform doesn't support COMDATs, and ELF and WebAssembly
887only support ``any`` as a selection kind.
David Majnemerdad0a642014-06-27 18:19:56 +0000888
889Here is an example of a COMDAT group where a function will only be selected if
890the COMDAT key's section is the largest:
891
Renato Golin124f2592016-07-20 12:16:38 +0000892.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000893
894 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000895 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000896
Rafael Espindola83a362c2015-01-06 22:55:16 +0000897 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000898 ret void
899 }
900
Rafael Espindola83a362c2015-01-06 22:55:16 +0000901As a syntactic sugar the ``$name`` can be omitted if the name is the same as
902the global name:
903
Renato Golin124f2592016-07-20 12:16:38 +0000904.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000905
906 $foo = comdat any
907 @foo = global i32 2, comdat
908
909
David Majnemerdad0a642014-06-27 18:19:56 +0000910In a COFF object file, this will create a COMDAT section with selection kind
911``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
912and another COMDAT section with selection kind
913``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000914section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000915
916There are some restrictions on the properties of the global object.
917It, or an alias to it, must have the same name as the COMDAT group when
918targeting COFF.
919The contents and size of this object may be used during link-time to determine
920which COMDAT groups get selected depending on the selection kind.
921Because the name of the object must match the name of the COMDAT group, the
922linkage of the global object must not be local; local symbols can get renamed
923if a collision occurs in the symbol table.
924
925The combined use of COMDATS and section attributes may yield surprising results.
926For example:
927
Renato Golin124f2592016-07-20 12:16:38 +0000928.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000929
930 $foo = comdat any
931 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000932 @g1 = global i32 42, section "sec", comdat($foo)
933 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000934
935From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000936with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000937COMDAT groups and COMDATs, at the object file level, are represented by
938sections.
939
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000940Note that certain IR constructs like global variables and functions may
941create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000942COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000943in individual sections (e.g. when `-data-sections` or `-function-sections`
944is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000945
Sean Silvab084af42012-12-07 10:36:55 +0000946.. _namedmetadatastructure:
947
948Named Metadata
949--------------
950
951Named metadata is a collection of metadata. :ref:`Metadata
952nodes <metadata>` (but not metadata strings) are the only valid
953operands for a named metadata.
954
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000955#. Named metadata are represented as a string of characters with the
956 metadata prefix. The rules for metadata names are the same as for
957 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
958 are still valid, which allows any character to be part of a name.
959
Sean Silvab084af42012-12-07 10:36:55 +0000960Syntax::
961
962 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000963 !0 = !{!"zero"}
964 !1 = !{!"one"}
965 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000966 ; A named metadata.
967 !name = !{!0, !1, !2}
968
969.. _paramattrs:
970
971Parameter Attributes
972--------------------
973
974The return type and each parameter of a function type may have a set of
975*parameter attributes* associated with them. Parameter attributes are
976used to communicate additional information about the result or
977parameters of a function. Parameter attributes are considered to be part
978of the function, not of the function type, so functions with different
979parameter attributes can have the same function type.
980
981Parameter attributes are simple keywords that follow the type specified.
982If multiple parameter attributes are needed, they are space separated.
983For example:
984
985.. code-block:: llvm
986
987 declare i32 @printf(i8* noalias nocapture, ...)
988 declare i32 @atoi(i8 zeroext)
989 declare signext i8 @returns_signed_char()
990
991Note that any attributes for the function result (``nounwind``,
992``readonly``) come immediately after the argument list.
993
994Currently, only the following parameter attributes are defined:
995
996``zeroext``
997 This indicates to the code generator that the parameter or return
998 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000999 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +00001000``signext``
1001 This indicates to the code generator that the parameter or return
1002 value should be sign-extended to the extent required by the target's
1003 ABI (which is usually 32-bits) by the caller (for a parameter) or
1004 the callee (for a return value).
1005``inreg``
1006 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +00001007 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +00001008 a function call or return (usually, by putting it in a register as
1009 opposed to memory, though some targets use it to distinguish between
1010 two different kinds of registers). Use of this attribute is
1011 target-specific.
1012``byval``
1013 This indicates that the pointer parameter should really be passed by
1014 value to the function. The attribute implies that a hidden copy of
1015 the pointee is made between the caller and the callee, so the callee
1016 is unable to modify the value in the caller. This attribute is only
1017 valid on LLVM pointer arguments. It is generally used to pass
1018 structs and arrays by value, but is also valid on pointers to
1019 scalars. The copy is considered to belong to the caller not the
1020 callee (for example, ``readonly`` functions should not write to
1021 ``byval`` parameters). This is not a valid attribute for return
1022 values.
1023
1024 The byval attribute also supports specifying an alignment with the
1025 align attribute. It indicates the alignment of the stack slot to
1026 form and the known alignment of the pointer specified to the call
1027 site. If the alignment is not specified, then the code generator
1028 makes a target-specific assumption.
1029
Reid Klecknera534a382013-12-19 02:14:12 +00001030.. _attr_inalloca:
1031
1032``inalloca``
1033
Reid Kleckner60d3a832014-01-16 22:59:24 +00001034 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001035 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001036 be a pointer to stack memory produced by an ``alloca`` instruction.
1037 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001038 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001039 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001040
Reid Kleckner436c42e2014-01-17 23:58:17 +00001041 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001042 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001043 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001044 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001045 ``inalloca`` attribute also disables LLVM's implicit lowering of
1046 large aggregate return values, which means that frontend authors
1047 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001048
Reid Kleckner60d3a832014-01-16 22:59:24 +00001049 When the call site is reached, the argument allocation must have
1050 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001051 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001052 space after an argument allocation and before its call site, but it
1053 must be cleared off with :ref:`llvm.stackrestore
1054 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001055
1056 See :doc:`InAlloca` for more information on how to use this
1057 attribute.
1058
Sean Silvab084af42012-12-07 10:36:55 +00001059``sret``
1060 This indicates that the pointer parameter specifies the address of a
1061 structure that is the return value of the function in the source
1062 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001063 loads and stores to the structure may be assumed by the callee not
1064 to trap and to be properly aligned. This is not a valid attribute
1065 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001066
Hal Finkelccc70902014-07-22 16:58:55 +00001067``align <n>``
1068 This indicates that the pointer value may be assumed by the optimizer to
1069 have the specified alignment.
1070
1071 Note that this attribute has additional semantics when combined with the
1072 ``byval`` attribute.
1073
Sean Silva1703e702014-04-08 21:06:22 +00001074.. _noalias:
1075
Sean Silvab084af42012-12-07 10:36:55 +00001076``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001077 This indicates that objects accessed via pointer values
1078 :ref:`based <pointeraliasing>` on the argument or return value are not also
1079 accessed, during the execution of the function, via pointer values not
1080 *based* on the argument or return value. The attribute on a return value
1081 also has additional semantics described below. The caller shares the
1082 responsibility with the callee for ensuring that these requirements are met.
1083 For further details, please see the discussion of the NoAlias response in
1084 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001085
1086 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001087 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001088
1089 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001090 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1091 attribute on return values are stronger than the semantics of the attribute
1092 when used on function arguments. On function return values, the ``noalias``
1093 attribute indicates that the function acts like a system memory allocation
1094 function, returning a pointer to allocated storage disjoint from the
1095 storage for any other object accessible to the caller.
1096
Sean Silvab084af42012-12-07 10:36:55 +00001097``nocapture``
1098 This indicates that the callee does not make any copies of the
1099 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001100 attribute for return values. Addresses used in volatile operations
1101 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001102
1103.. _nest:
1104
1105``nest``
1106 This indicates that the pointer parameter can be excised using the
1107 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001108 attribute for return values and can only be applied to one parameter.
1109
1110``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001111 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001112 value. This is a hint to the optimizer and code generator used when
1113 generating the caller, allowing value propagation, tail call optimization,
1114 and omission of register saves and restores in some cases; it is not
1115 checked or enforced when generating the callee. The parameter and the
1116 function return type must be valid operands for the
1117 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1118 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001119
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001120``nonnull``
1121 This indicates that the parameter or return pointer is not null. This
1122 attribute may only be applied to pointer typed parameters. This is not
1123 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001124 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001125 is non-null.
1126
Hal Finkelb0407ba2014-07-18 15:51:28 +00001127``dereferenceable(<n>)``
1128 This indicates that the parameter or return pointer is dereferenceable. This
1129 attribute may only be applied to pointer typed parameters. A pointer that
1130 is dereferenceable can be loaded from speculatively without a risk of
1131 trapping. The number of bytes known to be dereferenceable must be provided
1132 in parentheses. It is legal for the number of bytes to be less than the
1133 size of the pointee type. The ``nonnull`` attribute does not imply
1134 dereferenceability (consider a pointer to one element past the end of an
1135 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1136 ``addrspace(0)`` (which is the default address space).
1137
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001138``dereferenceable_or_null(<n>)``
1139 This indicates that the parameter or return value isn't both
1140 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001141 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001142 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1143 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1144 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1145 and in other address spaces ``dereferenceable_or_null(<n>)``
1146 implies that a pointer is at least one of ``dereferenceable(<n>)``
1147 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001148 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001149 pointer typed parameters.
1150
Manman Renf46262e2016-03-29 17:37:21 +00001151``swiftself``
1152 This indicates that the parameter is the self/context parameter. This is not
1153 a valid attribute for return values and can only be applied to one
1154 parameter.
1155
Manman Ren9bfd0d02016-04-01 21:41:15 +00001156``swifterror``
1157 This attribute is motivated to model and optimize Swift error handling. It
1158 can be applied to a parameter with pointer to pointer type or a
1159 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001160 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1161 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1162 the parameter or the alloca) can only be loaded and stored from, or used as
1163 a ``swifterror`` argument. This is not a valid attribute for return values
1164 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001165
1166 These constraints allow the calling convention to optimize access to
1167 ``swifterror`` variables by associating them with a specific register at
1168 call boundaries rather than placing them in memory. Since this does change
1169 the calling convention, a function which uses the ``swifterror`` attribute
1170 on a parameter is not ABI-compatible with one which does not.
1171
1172 These constraints also allow LLVM to assume that a ``swifterror`` argument
1173 does not alias any other memory visible within a function and that a
1174 ``swifterror`` alloca passed as an argument does not escape.
1175
Sean Silvab084af42012-12-07 10:36:55 +00001176.. _gc:
1177
Philip Reamesf80bbff2015-02-25 23:45:20 +00001178Garbage Collector Strategy Names
1179--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001180
Philip Reamesf80bbff2015-02-25 23:45:20 +00001181Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001182string:
1183
1184.. code-block:: llvm
1185
1186 define void @f() gc "name" { ... }
1187
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001188The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001189<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001190strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001191named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001192garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001193which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001194
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001195.. _prefixdata:
1196
1197Prefix Data
1198-----------
1199
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001200Prefix data is data associated with a function which the code
1201generator will emit immediately before the function's entrypoint.
1202The purpose of this feature is to allow frontends to associate
1203language-specific runtime metadata with specific functions and make it
1204available through the function pointer while still allowing the
1205function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001206
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001207To access the data for a given function, a program may bitcast the
1208function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001209index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001210the prefix data. For instance, take the example of a function annotated
1211with a single ``i32``,
1212
1213.. code-block:: llvm
1214
1215 define void @f() prefix i32 123 { ... }
1216
1217The prefix data can be referenced as,
1218
1219.. code-block:: llvm
1220
David Blaikie16a97eb2015-03-04 22:02:58 +00001221 %0 = bitcast void* () @f to i32*
1222 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001223 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001224
1225Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001226of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001227beginning of the prefix data is aligned. This means that if the size
1228of the prefix data is not a multiple of the alignment size, the
1229function's entrypoint will not be aligned. If alignment of the
1230function's entrypoint is desired, padding must be added to the prefix
1231data.
1232
Sean Silvaa1190322015-08-06 22:56:48 +00001233A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001234to the ``available_externally`` linkage in that the data may be used by the
1235optimizers but will not be emitted in the object file.
1236
1237.. _prologuedata:
1238
1239Prologue Data
1240-------------
1241
1242The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1243be inserted prior to the function body. This can be used for enabling
1244function hot-patching and instrumentation.
1245
1246To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001247have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001248bytes which decode to a sequence of machine instructions, valid for the
1249module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001250the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001251the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001252definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001253makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001254
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001255A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001256which encodes the ``nop`` instruction:
1257
Renato Golin124f2592016-07-20 12:16:38 +00001258.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001259
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001260 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001261
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001262Generally prologue data can be formed by encoding a relative branch instruction
1263which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001264x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1265
Renato Golin124f2592016-07-20 12:16:38 +00001266.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001267
1268 %0 = type <{ i8, i8, i8* }>
1269
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001270 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001271
Sean Silvaa1190322015-08-06 22:56:48 +00001272A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001273to the ``available_externally`` linkage in that the data may be used by the
1274optimizers but will not be emitted in the object file.
1275
David Majnemer7fddecc2015-06-17 20:52:32 +00001276.. _personalityfn:
1277
1278Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001279--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001280
1281The ``personality`` attribute permits functions to specify what function
1282to use for exception handling.
1283
Bill Wendling63b88192013-02-06 06:52:58 +00001284.. _attrgrp:
1285
1286Attribute Groups
1287----------------
1288
1289Attribute groups are groups of attributes that are referenced by objects within
1290the IR. They are important for keeping ``.ll`` files readable, because a lot of
1291functions will use the same set of attributes. In the degenerative case of a
1292``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1293group will capture the important command line flags used to build that file.
1294
1295An attribute group is a module-level object. To use an attribute group, an
1296object references the attribute group's ID (e.g. ``#37``). An object may refer
1297to more than one attribute group. In that situation, the attributes from the
1298different groups are merged.
1299
1300Here is an example of attribute groups for a function that should always be
1301inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1302
1303.. code-block:: llvm
1304
1305 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001306 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001307
1308 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001309 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001310
1311 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1312 define void @f() #0 #1 { ... }
1313
Sean Silvab084af42012-12-07 10:36:55 +00001314.. _fnattrs:
1315
1316Function Attributes
1317-------------------
1318
1319Function attributes are set to communicate additional information about
1320a function. Function attributes are considered to be part of the
1321function, not of the function type, so functions with different function
1322attributes can have the same function type.
1323
1324Function attributes are simple keywords that follow the type specified.
1325If multiple attributes are needed, they are space separated. For
1326example:
1327
1328.. code-block:: llvm
1329
1330 define void @f() noinline { ... }
1331 define void @f() alwaysinline { ... }
1332 define void @f() alwaysinline optsize { ... }
1333 define void @f() optsize { ... }
1334
Sean Silvab084af42012-12-07 10:36:55 +00001335``alignstack(<n>)``
1336 This attribute indicates that, when emitting the prologue and
1337 epilogue, the backend should forcibly align the stack pointer.
1338 Specify the desired alignment, which must be a power of two, in
1339 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001340``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1341 This attribute indicates that the annotated function will always return at
1342 least a given number of bytes (or null). Its arguments are zero-indexed
1343 parameter numbers; if one argument is provided, then it's assumed that at
1344 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1345 returned pointer. If two are provided, then it's assumed that
1346 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1347 available. The referenced parameters must be integer types. No assumptions
1348 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001349``alwaysinline``
1350 This attribute indicates that the inliner should attempt to inline
1351 this function into callers whenever possible, ignoring any active
1352 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001353``builtin``
1354 This indicates that the callee function at a call site should be
1355 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001356 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001357 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001358 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001359``cold``
1360 This attribute indicates that this function is rarely called. When
1361 computing edge weights, basic blocks post-dominated by a cold
1362 function call are also considered to be cold; and, thus, given low
1363 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001364``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001365 In some parallel execution models, there exist operations that cannot be
1366 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001367 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001368
Justin Lebar58535b12016-02-17 17:46:41 +00001369 The ``convergent`` attribute may appear on functions or call/invoke
1370 instructions. When it appears on a function, it indicates that calls to
1371 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001372 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001373 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001374 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001375
Justin Lebar58535b12016-02-17 17:46:41 +00001376 When it appears on a call/invoke, the ``convergent`` attribute indicates
1377 that we should treat the call as though we're calling a convergent
1378 function. This is particularly useful on indirect calls; without this we
1379 may treat such calls as though the target is non-convergent.
1380
1381 The optimizer may remove the ``convergent`` attribute on functions when it
1382 can prove that the function does not execute any convergent operations.
1383 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1384 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001385``inaccessiblememonly``
1386 This attribute indicates that the function may only access memory that
1387 is not accessible by the module being compiled. This is a weaker form
1388 of ``readnone``.
1389``inaccessiblemem_or_argmemonly``
1390 This attribute indicates that the function may only access memory that is
1391 either not accessible by the module being compiled, or is pointed to
1392 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001393``inlinehint``
1394 This attribute indicates that the source code contained a hint that
1395 inlining this function is desirable (such as the "inline" keyword in
1396 C/C++). It is just a hint; it imposes no requirements on the
1397 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001398``jumptable``
1399 This attribute indicates that the function should be added to a
1400 jump-instruction table at code-generation time, and that all address-taken
1401 references to this function should be replaced with a reference to the
1402 appropriate jump-instruction-table function pointer. Note that this creates
1403 a new pointer for the original function, which means that code that depends
1404 on function-pointer identity can break. So, any function annotated with
1405 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001406``minsize``
1407 This attribute suggests that optimization passes and code generator
1408 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001409 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001410 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001411``naked``
1412 This attribute disables prologue / epilogue emission for the
1413 function. This can have very system-specific consequences.
Sumanth Gundapaneni6af104e2017-07-28 22:26:22 +00001414``no-jump-tables``
1415 When this attribute is set to true, the jump tables and lookup tables that
1416 can be generated from a switch case lowering are disabled.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001417``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001418 This indicates that the callee function at a call site is not recognized as
1419 a built-in function. LLVM will retain the original call and not replace it
1420 with equivalent code based on the semantics of the built-in function, unless
1421 the call site uses the ``builtin`` attribute. This is valid at call sites
1422 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001423``noduplicate``
1424 This attribute indicates that calls to the function cannot be
1425 duplicated. A call to a ``noduplicate`` function may be moved
1426 within its parent function, but may not be duplicated within
1427 its parent function.
1428
1429 A function containing a ``noduplicate`` call may still
1430 be an inlining candidate, provided that the call is not
1431 duplicated by inlining. That implies that the function has
1432 internal linkage and only has one call site, so the original
1433 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001434``noimplicitfloat``
1435 This attributes disables implicit floating point instructions.
1436``noinline``
1437 This attribute indicates that the inliner should never inline this
1438 function in any situation. This attribute may not be used together
1439 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001440``nonlazybind``
1441 This attribute suppresses lazy symbol binding for the function. This
1442 may make calls to the function faster, at the cost of extra program
1443 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001444``noredzone``
1445 This attribute indicates that the code generator should not use a
1446 red zone, even if the target-specific ABI normally permits it.
1447``noreturn``
1448 This function attribute indicates that the function never returns
1449 normally. This produces undefined behavior at runtime if the
1450 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001451``norecurse``
1452 This function attribute indicates that the function does not call itself
1453 either directly or indirectly down any possible call path. This produces
1454 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001455``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001456 This function attribute indicates that the function never raises an
1457 exception. If the function does raise an exception, its runtime
1458 behavior is undefined. However, functions marked nounwind may still
1459 trap or generate asynchronous exceptions. Exception handling schemes
1460 that are recognized by LLVM to handle asynchronous exceptions, such
1461 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001462``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001463 This function attribute indicates that most optimization passes will skip
1464 this function, with the exception of interprocedural optimization passes.
1465 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001466 This attribute cannot be used together with the ``alwaysinline``
1467 attribute; this attribute is also incompatible
1468 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001469
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001470 This attribute requires the ``noinline`` attribute to be specified on
1471 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001472 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001473 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001474``optsize``
1475 This attribute suggests that optimization passes and code generator
1476 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001477 and otherwise do optimizations specifically to reduce code size as
1478 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001479``"patchable-function"``
1480 This attribute tells the code generator that the code
1481 generated for this function needs to follow certain conventions that
1482 make it possible for a runtime function to patch over it later.
1483 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001484 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001485
1486 * ``"prologue-short-redirect"`` - This style of patchable
1487 function is intended to support patching a function prologue to
1488 redirect control away from the function in a thread safe
1489 manner. It guarantees that the first instruction of the
1490 function will be large enough to accommodate a short jump
1491 instruction, and will be sufficiently aligned to allow being
1492 fully changed via an atomic compare-and-swap instruction.
1493 While the first requirement can be satisfied by inserting large
1494 enough NOP, LLVM can and will try to re-purpose an existing
1495 instruction (i.e. one that would have to be emitted anyway) as
1496 the patchable instruction larger than a short jump.
1497
1498 ``"prologue-short-redirect"`` is currently only supported on
1499 x86-64.
1500
1501 This attribute by itself does not imply restrictions on
1502 inter-procedural optimizations. All of the semantic effects the
1503 patching may have to be separately conveyed via the linkage type.
whitequarked54b4a2017-06-21 18:46:50 +00001504``"probe-stack"``
1505 This attribute indicates that the function will trigger a guard region
1506 in the end of the stack. It ensures that accesses to the stack must be
1507 no further apart than the size of the guard region to a previous
1508 access of the stack. It takes one required string value, the name of
1509 the stack probing function that will be called.
1510
1511 If a function that has a ``"probe-stack"`` attribute is inlined into
1512 a function with another ``"probe-stack"`` attribute, the resulting
1513 function has the ``"probe-stack"`` attribute of the caller. If a
1514 function that has a ``"probe-stack"`` attribute is inlined into a
1515 function that has no ``"probe-stack"`` attribute at all, the resulting
1516 function has the ``"probe-stack"`` attribute of the callee.
Sean Silvab084af42012-12-07 10:36:55 +00001517``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001518 On a function, this attribute indicates that the function computes its
1519 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001520 without dereferencing any pointer arguments or otherwise accessing
1521 any mutable state (e.g. memory, control registers, etc) visible to
1522 caller functions. It does not write through any pointer arguments
1523 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das5be2e842017-02-13 23:19:07 +00001524 to callers. This means while it cannot unwind exceptions by calling
1525 the ``C++`` exception throwing methods (since they write to memory), there may
1526 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1527 visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001528
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001529 On an argument, this attribute indicates that the function does not
1530 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001531 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001532``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001533 On a function, this attribute indicates that the function does not write
1534 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001535 modify any state (e.g. memory, control registers, etc) visible to
1536 caller functions. It may dereference pointer arguments and read
1537 state that may be set in the caller. A readonly function always
1538 returns the same value (or unwinds an exception identically) when
Sanjoy Das5be2e842017-02-13 23:19:07 +00001539 called with the same set of arguments and global state. This means while it
1540 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1541 (since they write to memory), there may be non-``C++`` mechanisms that throw
1542 exceptions without writing to LLVM visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001543
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001544 On an argument, this attribute indicates that the function does not write
1545 through this pointer argument, even though it may write to the memory that
1546 the pointer points to.
whitequark08b20352017-06-22 23:22:36 +00001547``"stack-probe-size"``
1548 This attribute controls the behavior of stack probes: either
1549 the ``"probe-stack"`` attribute, or ABI-required stack probes, if any.
1550 It defines the size of the guard region. It ensures that if the function
1551 may use more stack space than the size of the guard region, stack probing
1552 sequence will be emitted. It takes one required integer value, which
1553 is 4096 by default.
1554
1555 If a function that has a ``"stack-probe-size"`` attribute is inlined into
1556 a function with another ``"stack-probe-size"`` attribute, the resulting
1557 function has the ``"stack-probe-size"`` attribute that has the lower
1558 numeric value. If a function that has a ``"stack-probe-size"`` attribute is
1559 inlined into a function that has no ``"stack-probe-size"`` attribute
1560 at all, the resulting function has the ``"stack-probe-size"`` attribute
1561 of the callee.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001562``writeonly``
1563 On a function, this attribute indicates that the function may write to but
1564 does not read from memory.
1565
1566 On an argument, this attribute indicates that the function may write to but
1567 does not read through this pointer argument (even though it may read from
1568 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001569``argmemonly``
1570 This attribute indicates that the only memory accesses inside function are
1571 loads and stores from objects pointed to by its pointer-typed arguments,
1572 with arbitrary offsets. Or in other words, all memory operations in the
1573 function can refer to memory only using pointers based on its function
1574 arguments.
1575 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1576 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001577``returns_twice``
1578 This attribute indicates that this function can return twice. The C
1579 ``setjmp`` is an example of such a function. The compiler disables
1580 some optimizations (like tail calls) in the caller of these
1581 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001582``safestack``
1583 This attribute indicates that
1584 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1585 protection is enabled for this function.
1586
1587 If a function that has a ``safestack`` attribute is inlined into a
1588 function that doesn't have a ``safestack`` attribute or which has an
1589 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1590 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001591``sanitize_address``
1592 This attribute indicates that AddressSanitizer checks
1593 (dynamic address safety analysis) are enabled for this function.
1594``sanitize_memory``
1595 This attribute indicates that MemorySanitizer checks (dynamic detection
1596 of accesses to uninitialized memory) are enabled for this function.
1597``sanitize_thread``
1598 This attribute indicates that ThreadSanitizer checks
1599 (dynamic thread safety analysis) are enabled for this function.
Evgeniy Stepanovc667c1f2017-12-09 00:21:41 +00001600``sanitize_hwaddress``
1601 This attribute indicates that HWAddressSanitizer checks
1602 (dynamic address safety analysis based on tagged pointers) are enabled for
1603 this function.
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001604``speculatable``
1605 This function attribute indicates that the function does not have any
1606 effects besides calculating its result and does not have undefined behavior.
1607 Note that ``speculatable`` is not enough to conclude that along any
Xin Tongc7180202017-05-02 23:24:12 +00001608 particular execution path the number of calls to this function will not be
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001609 externally observable. This attribute is only valid on functions
1610 and declarations, not on individual call sites. If a function is
1611 incorrectly marked as speculatable and really does exhibit
1612 undefined behavior, the undefined behavior may be observed even
1613 if the call site is dead code.
1614
Sean Silvab084af42012-12-07 10:36:55 +00001615``ssp``
1616 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001617 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001618 placed on the stack before the local variables that's checked upon
1619 return from the function to see if it has been overwritten. A
1620 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001621 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001622
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001623 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1624 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1625 - Calls to alloca() with variable sizes or constant sizes greater than
1626 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001627
Josh Magee24c7f062014-02-01 01:36:16 +00001628 Variables that are identified as requiring a protector will be arranged
1629 on the stack such that they are adjacent to the stack protector guard.
1630
Sean Silvab084af42012-12-07 10:36:55 +00001631 If a function that has an ``ssp`` attribute is inlined into a
1632 function that doesn't have an ``ssp`` attribute, then the resulting
1633 function will have an ``ssp`` attribute.
1634``sspreq``
1635 This attribute indicates that the function should *always* emit a
1636 stack smashing protector. This overrides the ``ssp`` function
1637 attribute.
1638
Josh Magee24c7f062014-02-01 01:36:16 +00001639 Variables that are identified as requiring a protector will be arranged
1640 on the stack such that they are adjacent to the stack protector guard.
1641 The specific layout rules are:
1642
1643 #. Large arrays and structures containing large arrays
1644 (``>= ssp-buffer-size``) are closest to the stack protector.
1645 #. Small arrays and structures containing small arrays
1646 (``< ssp-buffer-size``) are 2nd closest to the protector.
1647 #. Variables that have had their address taken are 3rd closest to the
1648 protector.
1649
Sean Silvab084af42012-12-07 10:36:55 +00001650 If a function that has an ``sspreq`` attribute is inlined into a
1651 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001652 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1653 an ``sspreq`` attribute.
1654``sspstrong``
1655 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001656 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001657 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001658 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001659
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001660 - Arrays of any size and type
1661 - Aggregates containing an array of any size and type.
1662 - Calls to alloca().
1663 - Local variables that have had their address taken.
1664
Josh Magee24c7f062014-02-01 01:36:16 +00001665 Variables that are identified as requiring a protector will be arranged
1666 on the stack such that they are adjacent to the stack protector guard.
1667 The specific layout rules are:
1668
1669 #. Large arrays and structures containing large arrays
1670 (``>= ssp-buffer-size``) are closest to the stack protector.
1671 #. Small arrays and structures containing small arrays
1672 (``< ssp-buffer-size``) are 2nd closest to the protector.
1673 #. Variables that have had their address taken are 3rd closest to the
1674 protector.
1675
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001676 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001677
1678 If a function that has an ``sspstrong`` attribute is inlined into a
1679 function that doesn't have an ``sspstrong`` attribute, then the
1680 resulting function will have an ``sspstrong`` attribute.
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001681``strictfp``
1682 This attribute indicates that the function was called from a scope that
1683 requires strict floating point semantics. LLVM will not attempt any
1684 optimizations that require assumptions about the floating point rounding
1685 mode or that might alter the state of floating point status flags that
1686 might otherwise be set or cleared by calling this function.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001687``"thunk"``
1688 This attribute indicates that the function will delegate to some other
1689 function with a tail call. The prototype of a thunk should not be used for
1690 optimization purposes. The caller is expected to cast the thunk prototype to
1691 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001692``uwtable``
1693 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001694 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001695 show that no exceptions passes by it. This is normally the case for
1696 the ELF x86-64 abi, but it can be disabled for some compilation
1697 units.
Sean Silvab084af42012-12-07 10:36:55 +00001698
Javed Absarf3d79042017-05-11 12:28:08 +00001699.. _glattrs:
1700
1701Global Attributes
1702-----------------
1703
1704Attributes may be set to communicate additional information about a global variable.
1705Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
1706are grouped into a single :ref:`attribute group <attrgrp>`.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001707
1708.. _opbundles:
1709
1710Operand Bundles
1711---------------
1712
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001713Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001714with certain LLVM instructions (currently only ``call`` s and
1715``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001716incorrect and will change program semantics.
1717
1718Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001719
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001720 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001721 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1722 bundle operand ::= SSA value
1723 tag ::= string constant
1724
1725Operand bundles are **not** part of a function's signature, and a
1726given function may be called from multiple places with different kinds
1727of operand bundles. This reflects the fact that the operand bundles
1728are conceptually a part of the ``call`` (or ``invoke``), not the
1729callee being dispatched to.
1730
1731Operand bundles are a generic mechanism intended to support
1732runtime-introspection-like functionality for managed languages. While
1733the exact semantics of an operand bundle depend on the bundle tag,
1734there are certain limitations to how much the presence of an operand
1735bundle can influence the semantics of a program. These restrictions
1736are described as the semantics of an "unknown" operand bundle. As
1737long as the behavior of an operand bundle is describable within these
1738restrictions, LLVM does not need to have special knowledge of the
1739operand bundle to not miscompile programs containing it.
1740
David Majnemer34cacb42015-10-22 01:46:38 +00001741- The bundle operands for an unknown operand bundle escape in unknown
1742 ways before control is transferred to the callee or invokee.
1743- Calls and invokes with operand bundles have unknown read / write
1744 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001745 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001746 callsite specific attributes.
1747- An operand bundle at a call site cannot change the implementation
1748 of the called function. Inter-procedural optimizations work as
1749 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001750
Sanjoy Dascdafd842015-11-11 21:38:02 +00001751More specific types of operand bundles are described below.
1752
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001753.. _deopt_opbundles:
1754
Sanjoy Dascdafd842015-11-11 21:38:02 +00001755Deoptimization Operand Bundles
1756^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1757
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001758Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001759operand bundle tag. These operand bundles represent an alternate
1760"safe" continuation for the call site they're attached to, and can be
1761used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001762specified call site. There can be at most one ``"deopt"`` operand
1763bundle attached to a call site. Exact details of deoptimization is
1764out of scope for the language reference, but it usually involves
1765rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001766
1767From the compiler's perspective, deoptimization operand bundles make
1768the call sites they're attached to at least ``readonly``. They read
1769through all of their pointer typed operands (even if they're not
1770otherwise escaped) and the entire visible heap. Deoptimization
1771operand bundles do not capture their operands except during
1772deoptimization, in which case control will not be returned to the
1773compiled frame.
1774
Sanjoy Das2d161452015-11-18 06:23:38 +00001775The inliner knows how to inline through calls that have deoptimization
1776operand bundles. Just like inlining through a normal call site
1777involves composing the normal and exceptional continuations, inlining
1778through a call site with a deoptimization operand bundle needs to
1779appropriately compose the "safe" deoptimization continuation. The
1780inliner does this by prepending the parent's deoptimization
1781continuation to every deoptimization continuation in the inlined body.
1782E.g. inlining ``@f`` into ``@g`` in the following example
1783
1784.. code-block:: llvm
1785
1786 define void @f() {
1787 call void @x() ;; no deopt state
1788 call void @y() [ "deopt"(i32 10) ]
1789 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1790 ret void
1791 }
1792
1793 define void @g() {
1794 call void @f() [ "deopt"(i32 20) ]
1795 ret void
1796 }
1797
1798will result in
1799
1800.. code-block:: llvm
1801
1802 define void @g() {
1803 call void @x() ;; still no deopt state
1804 call void @y() [ "deopt"(i32 20, i32 10) ]
1805 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1806 ret void
1807 }
1808
1809It is the frontend's responsibility to structure or encode the
1810deoptimization state in a way that syntactically prepending the
1811caller's deoptimization state to the callee's deoptimization state is
1812semantically equivalent to composing the caller's deoptimization
1813continuation after the callee's deoptimization continuation.
1814
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001815.. _ob_funclet:
1816
David Majnemer3bb88c02015-12-15 21:27:27 +00001817Funclet Operand Bundles
1818^^^^^^^^^^^^^^^^^^^^^^^
1819
1820Funclet operand bundles are characterized by the ``"funclet"``
1821operand bundle tag. These operand bundles indicate that a call site
1822is within a particular funclet. There can be at most one
1823``"funclet"`` operand bundle attached to a call site and it must have
1824exactly one bundle operand.
1825
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001826If any funclet EH pads have been "entered" but not "exited" (per the
1827`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1828it is undefined behavior to execute a ``call`` or ``invoke`` which:
1829
1830* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1831 intrinsic, or
1832* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1833 not-yet-exited funclet EH pad.
1834
1835Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1836executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1837
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001838GC Transition Operand Bundles
1839^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1840
1841GC transition operand bundles are characterized by the
1842``"gc-transition"`` operand bundle tag. These operand bundles mark a
1843call as a transition between a function with one GC strategy to a
1844function with a different GC strategy. If coordinating the transition
1845between GC strategies requires additional code generation at the call
1846site, these bundles may contain any values that are needed by the
1847generated code. For more details, see :ref:`GC Transitions
1848<gc_transition_args>`.
1849
Sean Silvab084af42012-12-07 10:36:55 +00001850.. _moduleasm:
1851
1852Module-Level Inline Assembly
1853----------------------------
1854
1855Modules may contain "module-level inline asm" blocks, which corresponds
1856to the GCC "file scope inline asm" blocks. These blocks are internally
1857concatenated by LLVM and treated as a single unit, but may be separated
1858in the ``.ll`` file if desired. The syntax is very simple:
1859
1860.. code-block:: llvm
1861
1862 module asm "inline asm code goes here"
1863 module asm "more can go here"
1864
1865The strings can contain any character by escaping non-printable
1866characters. The escape sequence used is simply "\\xx" where "xx" is the
1867two digit hex code for the number.
1868
James Y Knightbc832ed2015-07-08 18:08:36 +00001869Note that the assembly string *must* be parseable by LLVM's integrated assembler
1870(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001871
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001872.. _langref_datalayout:
1873
Sean Silvab084af42012-12-07 10:36:55 +00001874Data Layout
1875-----------
1876
1877A module may specify a target specific data layout string that specifies
1878how data is to be laid out in memory. The syntax for the data layout is
1879simply:
1880
1881.. code-block:: llvm
1882
1883 target datalayout = "layout specification"
1884
1885The *layout specification* consists of a list of specifications
1886separated by the minus sign character ('-'). Each specification starts
1887with a letter and may include other information after the letter to
1888define some aspect of the data layout. The specifications accepted are
1889as follows:
1890
1891``E``
1892 Specifies that the target lays out data in big-endian form. That is,
1893 the bits with the most significance have the lowest address
1894 location.
1895``e``
1896 Specifies that the target lays out data in little-endian form. That
1897 is, the bits with the least significance have the lowest address
1898 location.
1899``S<size>``
1900 Specifies the natural alignment of the stack in bits. Alignment
1901 promotion of stack variables is limited to the natural stack
1902 alignment to avoid dynamic stack realignment. The stack alignment
1903 must be a multiple of 8-bits. If omitted, the natural stack
1904 alignment defaults to "unspecified", which does not prevent any
1905 alignment promotions.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001906``A<address space>``
1907 Specifies the address space of objects created by '``alloca``'.
1908 Defaults to the default address space of 0.
Sean Silvab084af42012-12-07 10:36:55 +00001909``p[n]:<size>:<abi>:<pref>``
1910 This specifies the *size* of a pointer and its ``<abi>`` and
1911 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001912 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001913 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001914 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001915``i<size>:<abi>:<pref>``
1916 This specifies the alignment for an integer type of a given bit
1917 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1918``v<size>:<abi>:<pref>``
1919 This specifies the alignment for a vector type of a given bit
1920 ``<size>``.
1921``f<size>:<abi>:<pref>``
1922 This specifies the alignment for a floating point type of a given bit
1923 ``<size>``. Only values of ``<size>`` that are supported by the target
1924 will work. 32 (float) and 64 (double) are supported on all targets; 80
1925 or 128 (different flavors of long double) are also supported on some
1926 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001927``a:<abi>:<pref>``
1928 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001929``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001930 If present, specifies that llvm names are mangled in the output. The
1931 options are
1932
1933 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1934 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1935 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1936 symbols get a ``_`` prefix.
1937 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1938 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001939 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1940 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001941``n<size1>:<size2>:<size3>...``
1942 This specifies a set of native integer widths for the target CPU in
1943 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1944 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1945 this set are considered to support most general arithmetic operations
1946 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001947``ni:<address space0>:<address space1>:<address space2>...``
1948 This specifies pointer types with the specified address spaces
1949 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1950 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001951
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001952On every specification that takes a ``<abi>:<pref>``, specifying the
1953``<pref>`` alignment is optional. If omitted, the preceding ``:``
1954should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1955
Sean Silvab084af42012-12-07 10:36:55 +00001956When constructing the data layout for a given target, LLVM starts with a
1957default set of specifications which are then (possibly) overridden by
1958the specifications in the ``datalayout`` keyword. The default
1959specifications are given in this list:
1960
1961- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001962- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1963- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1964 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001965- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001966- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1967- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1968- ``i16:16:16`` - i16 is 16-bit aligned
1969- ``i32:32:32`` - i32 is 32-bit aligned
1970- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1971 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001972- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001973- ``f32:32:32`` - float is 32-bit aligned
1974- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001975- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001976- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1977- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001978- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001979
1980When LLVM is determining the alignment for a given type, it uses the
1981following rules:
1982
1983#. If the type sought is an exact match for one of the specifications,
1984 that specification is used.
1985#. If no match is found, and the type sought is an integer type, then
1986 the smallest integer type that is larger than the bitwidth of the
1987 sought type is used. If none of the specifications are larger than
1988 the bitwidth then the largest integer type is used. For example,
1989 given the default specifications above, the i7 type will use the
1990 alignment of i8 (next largest) while both i65 and i256 will use the
1991 alignment of i64 (largest specified).
1992#. If no match is found, and the type sought is a vector type, then the
1993 largest vector type that is smaller than the sought vector type will
1994 be used as a fall back. This happens because <128 x double> can be
1995 implemented in terms of 64 <2 x double>, for example.
1996
1997The function of the data layout string may not be what you expect.
1998Notably, this is not a specification from the frontend of what alignment
1999the code generator should use.
2000
2001Instead, if specified, the target data layout is required to match what
2002the ultimate *code generator* expects. This string is used by the
2003mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00002004what the ultimate code generator uses. There is no way to generate IR
2005that does not embed this target-specific detail into the IR. If you
2006don't specify the string, the default specifications will be used to
2007generate a Data Layout and the optimization phases will operate
2008accordingly and introduce target specificity into the IR with respect to
2009these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00002010
Bill Wendling5cc90842013-10-18 23:41:25 +00002011.. _langref_triple:
2012
2013Target Triple
2014-------------
2015
2016A module may specify a target triple string that describes the target
2017host. The syntax for the target triple is simply:
2018
2019.. code-block:: llvm
2020
2021 target triple = "x86_64-apple-macosx10.7.0"
2022
2023The *target triple* string consists of a series of identifiers delimited
2024by the minus sign character ('-'). The canonical forms are:
2025
2026::
2027
2028 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
2029 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
2030
2031This information is passed along to the backend so that it generates
2032code for the proper architecture. It's possible to override this on the
2033command line with the ``-mtriple`` command line option.
2034
Sean Silvab084af42012-12-07 10:36:55 +00002035.. _pointeraliasing:
2036
2037Pointer Aliasing Rules
2038----------------------
2039
2040Any memory access must be done through a pointer value associated with
2041an address range of the memory access, otherwise the behavior is
2042undefined. Pointer values are associated with address ranges according
2043to the following rules:
2044
2045- A pointer value is associated with the addresses associated with any
2046 value it is *based* on.
2047- An address of a global variable is associated with the address range
2048 of the variable's storage.
2049- The result value of an allocation instruction is associated with the
2050 address range of the allocated storage.
2051- A null pointer in the default address-space is associated with no
2052 address.
2053- An integer constant other than zero or a pointer value returned from
2054 a function not defined within LLVM may be associated with address
2055 ranges allocated through mechanisms other than those provided by
2056 LLVM. Such ranges shall not overlap with any ranges of addresses
2057 allocated by mechanisms provided by LLVM.
2058
2059A pointer value is *based* on another pointer value according to the
2060following rules:
2061
Sanjoy Das6d489492017-09-13 18:49:22 +00002062- A pointer value formed from a scalar ``getelementptr`` operation is *based* on
2063 the pointer-typed operand of the ``getelementptr``.
2064- The pointer in lane *l* of the result of a vector ``getelementptr`` operation
2065 is *based* on the pointer in lane *l* of the vector-of-pointers-typed operand
2066 of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00002067- The result value of a ``bitcast`` is *based* on the operand of the
2068 ``bitcast``.
2069- A pointer value formed by an ``inttoptr`` is *based* on all pointer
2070 values that contribute (directly or indirectly) to the computation of
2071 the pointer's value.
2072- The "*based* on" relationship is transitive.
2073
2074Note that this definition of *"based"* is intentionally similar to the
2075definition of *"based"* in C99, though it is slightly weaker.
2076
2077LLVM IR does not associate types with memory. The result type of a
2078``load`` merely indicates the size and alignment of the memory from
2079which to load, as well as the interpretation of the value. The first
2080operand type of a ``store`` similarly only indicates the size and
2081alignment of the store.
2082
2083Consequently, type-based alias analysis, aka TBAA, aka
2084``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2085:ref:`Metadata <metadata>` may be used to encode additional information
2086which specialized optimization passes may use to implement type-based
2087alias analysis.
2088
2089.. _volatile:
2090
2091Volatile Memory Accesses
2092------------------------
2093
2094Certain memory accesses, such as :ref:`load <i_load>`'s,
2095:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2096marked ``volatile``. The optimizers must not change the number of
2097volatile operations or change their order of execution relative to other
2098volatile operations. The optimizers *may* change the order of volatile
2099operations relative to non-volatile operations. This is not Java's
2100"volatile" and has no cross-thread synchronization behavior.
2101
Andrew Trick89fc5a62013-01-30 21:19:35 +00002102IR-level volatile loads and stores cannot safely be optimized into
2103llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2104flagged volatile. Likewise, the backend should never split or merge
2105target-legal volatile load/store instructions.
2106
Andrew Trick7e6f9282013-01-31 00:49:39 +00002107.. admonition:: Rationale
2108
2109 Platforms may rely on volatile loads and stores of natively supported
2110 data width to be executed as single instruction. For example, in C
2111 this holds for an l-value of volatile primitive type with native
2112 hardware support, but not necessarily for aggregate types. The
2113 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002114 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002115 do not violate the frontend's contract with the language.
2116
Sean Silvab084af42012-12-07 10:36:55 +00002117.. _memmodel:
2118
2119Memory Model for Concurrent Operations
2120--------------------------------------
2121
2122The LLVM IR does not define any way to start parallel threads of
2123execution or to register signal handlers. Nonetheless, there are
2124platform-specific ways to create them, and we define LLVM IR's behavior
2125in their presence. This model is inspired by the C++0x memory model.
2126
2127For a more informal introduction to this model, see the :doc:`Atomics`.
2128
2129We define a *happens-before* partial order as the least partial order
2130that
2131
2132- Is a superset of single-thread program order, and
2133- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2134 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2135 techniques, like pthread locks, thread creation, thread joining,
2136 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2137 Constraints <ordering>`).
2138
2139Note that program order does not introduce *happens-before* edges
2140between a thread and signals executing inside that thread.
2141
2142Every (defined) read operation (load instructions, memcpy, atomic
2143loads/read-modify-writes, etc.) R reads a series of bytes written by
2144(defined) write operations (store instructions, atomic
2145stores/read-modify-writes, memcpy, etc.). For the purposes of this
2146section, initialized globals are considered to have a write of the
2147initializer which is atomic and happens before any other read or write
2148of the memory in question. For each byte of a read R, R\ :sub:`byte`
2149may see any write to the same byte, except:
2150
2151- If write\ :sub:`1` happens before write\ :sub:`2`, and
2152 write\ :sub:`2` happens before R\ :sub:`byte`, then
2153 R\ :sub:`byte` does not see write\ :sub:`1`.
2154- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2155 R\ :sub:`byte` does not see write\ :sub:`3`.
2156
2157Given that definition, R\ :sub:`byte` is defined as follows:
2158
2159- If R is volatile, the result is target-dependent. (Volatile is
2160 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002161 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002162 like normal memory. It does not generally provide cross-thread
2163 synchronization.)
2164- Otherwise, if there is no write to the same byte that happens before
2165 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2166- Otherwise, if R\ :sub:`byte` may see exactly one write,
2167 R\ :sub:`byte` returns the value written by that write.
2168- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2169 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2170 Memory Ordering Constraints <ordering>` section for additional
2171 constraints on how the choice is made.
2172- Otherwise R\ :sub:`byte` returns ``undef``.
2173
2174R returns the value composed of the series of bytes it read. This
2175implies that some bytes within the value may be ``undef`` **without**
2176the entire value being ``undef``. Note that this only defines the
2177semantics of the operation; it doesn't mean that targets will emit more
2178than one instruction to read the series of bytes.
2179
2180Note that in cases where none of the atomic intrinsics are used, this
2181model places only one restriction on IR transformations on top of what
2182is required for single-threaded execution: introducing a store to a byte
2183which might not otherwise be stored is not allowed in general.
2184(Specifically, in the case where another thread might write to and read
2185from an address, introducing a store can change a load that may see
2186exactly one write into a load that may see multiple writes.)
2187
2188.. _ordering:
2189
2190Atomic Memory Ordering Constraints
2191----------------------------------
2192
2193Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2194:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2195:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002196ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002197the same address they *synchronize with*. These semantics are borrowed
2198from Java and C++0x, but are somewhat more colloquial. If these
2199descriptions aren't precise enough, check those specs (see spec
2200references in the :doc:`atomics guide <Atomics>`).
2201:ref:`fence <i_fence>` instructions treat these orderings somewhat
2202differently since they don't take an address. See that instruction's
2203documentation for details.
2204
2205For a simpler introduction to the ordering constraints, see the
2206:doc:`Atomics`.
2207
2208``unordered``
2209 The set of values that can be read is governed by the happens-before
2210 partial order. A value cannot be read unless some operation wrote
2211 it. This is intended to provide a guarantee strong enough to model
2212 Java's non-volatile shared variables. This ordering cannot be
2213 specified for read-modify-write operations; it is not strong enough
2214 to make them atomic in any interesting way.
2215``monotonic``
2216 In addition to the guarantees of ``unordered``, there is a single
2217 total order for modifications by ``monotonic`` operations on each
2218 address. All modification orders must be compatible with the
2219 happens-before order. There is no guarantee that the modification
2220 orders can be combined to a global total order for the whole program
2221 (and this often will not be possible). The read in an atomic
2222 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2223 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2224 order immediately before the value it writes. If one atomic read
2225 happens before another atomic read of the same address, the later
2226 read must see the same value or a later value in the address's
2227 modification order. This disallows reordering of ``monotonic`` (or
2228 stronger) operations on the same address. If an address is written
2229 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2230 read that address repeatedly, the other threads must eventually see
2231 the write. This corresponds to the C++0x/C1x
2232 ``memory_order_relaxed``.
2233``acquire``
2234 In addition to the guarantees of ``monotonic``, a
2235 *synchronizes-with* edge may be formed with a ``release`` operation.
2236 This is intended to model C++'s ``memory_order_acquire``.
2237``release``
2238 In addition to the guarantees of ``monotonic``, if this operation
2239 writes a value which is subsequently read by an ``acquire``
2240 operation, it *synchronizes-with* that operation. (This isn't a
2241 complete description; see the C++0x definition of a release
2242 sequence.) This corresponds to the C++0x/C1x
2243 ``memory_order_release``.
2244``acq_rel`` (acquire+release)
2245 Acts as both an ``acquire`` and ``release`` operation on its
2246 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2247``seq_cst`` (sequentially consistent)
2248 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002249 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002250 writes), there is a global total order on all
2251 sequentially-consistent operations on all addresses, which is
2252 consistent with the *happens-before* partial order and with the
2253 modification orders of all the affected addresses. Each
2254 sequentially-consistent read sees the last preceding write to the
2255 same address in this global order. This corresponds to the C++0x/C1x
2256 ``memory_order_seq_cst`` and Java volatile.
2257
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002258.. _syncscope:
Sean Silvab084af42012-12-07 10:36:55 +00002259
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002260If an atomic operation is marked ``syncscope("singlethread")``, it only
2261*synchronizes with* and only participates in the seq\_cst total orderings of
2262other operations running in the same thread (for example, in signal handlers).
2263
2264If an atomic operation is marked ``syncscope("<target-scope>")``, where
2265``<target-scope>`` is a target specific synchronization scope, then it is target
2266dependent if it *synchronizes with* and participates in the seq\_cst total
2267orderings of other operations.
2268
2269Otherwise, an atomic operation that is not marked ``syncscope("singlethread")``
2270or ``syncscope("<target-scope>")`` *synchronizes with* and participates in the
2271seq\_cst total orderings of other operations that are not marked
2272``syncscope("singlethread")`` or ``syncscope("<target-scope>")``.
Sean Silvab084af42012-12-07 10:36:55 +00002273
2274.. _fastmath:
2275
2276Fast-Math Flags
2277---------------
2278
Sanjay Patel629c4112017-11-06 16:27:15 +00002279LLVM IR floating-point operations (:ref:`fadd <i_fadd>`,
Sean Silvab084af42012-12-07 10:36:55 +00002280:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002281:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
Sanjay Patel629c4112017-11-06 16:27:15 +00002282may use the following flags to enable otherwise unsafe
2283floating-point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002284
2285``nnan``
2286 No NaNs - Allow optimizations to assume the arguments and result are not
2287 NaN. Such optimizations are required to retain defined behavior over
2288 NaNs, but the value of the result is undefined.
2289
2290``ninf``
2291 No Infs - Allow optimizations to assume the arguments and result are not
2292 +/-Inf. Such optimizations are required to retain defined behavior over
2293 +/-Inf, but the value of the result is undefined.
2294
2295``nsz``
2296 No Signed Zeros - Allow optimizations to treat the sign of a zero
2297 argument or result as insignificant.
2298
2299``arcp``
2300 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2301 argument rather than perform division.
2302
Adam Nemetcd847a82017-03-28 20:11:52 +00002303``contract``
2304 Allow floating-point contraction (e.g. fusing a multiply followed by an
2305 addition into a fused multiply-and-add).
2306
Sanjay Patel629c4112017-11-06 16:27:15 +00002307``afn``
2308 Approximate functions - Allow substitution of approximate calculations for
2309 functions (sin, log, sqrt, etc). See floating-point intrinsic definitions
2310 for places where this can apply to LLVM's intrinsic math functions.
2311
2312``reassoc``
2313 Allow reassociation transformations for floating-point instructions.
2314 This may dramatically change results in floating point.
2315
Sean Silvab084af42012-12-07 10:36:55 +00002316``fast``
Sanjay Patel629c4112017-11-06 16:27:15 +00002317 This flag implies all of the others.
Sean Silvab084af42012-12-07 10:36:55 +00002318
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002319.. _uselistorder:
2320
2321Use-list Order Directives
2322-------------------------
2323
2324Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002325order to be recreated. ``<order-indexes>`` is a comma-separated list of
2326indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002327value's use-list is immediately sorted by these indexes.
2328
Sean Silvaa1190322015-08-06 22:56:48 +00002329Use-list directives may appear at function scope or global scope. They are not
2330instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002331function scope, they must appear after the terminator of the final basic block.
2332
2333If basic blocks have their address taken via ``blockaddress()`` expressions,
2334``uselistorder_bb`` can be used to reorder their use-lists from outside their
2335function's scope.
2336
2337:Syntax:
2338
2339::
2340
2341 uselistorder <ty> <value>, { <order-indexes> }
2342 uselistorder_bb @function, %block { <order-indexes> }
2343
2344:Examples:
2345
2346::
2347
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002348 define void @foo(i32 %arg1, i32 %arg2) {
2349 entry:
2350 ; ... instructions ...
2351 bb:
2352 ; ... instructions ...
2353
2354 ; At function scope.
2355 uselistorder i32 %arg1, { 1, 0, 2 }
2356 uselistorder label %bb, { 1, 0 }
2357 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002358
2359 ; At global scope.
2360 uselistorder i32* @global, { 1, 2, 0 }
2361 uselistorder i32 7, { 1, 0 }
2362 uselistorder i32 (i32) @bar, { 1, 0 }
2363 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2364
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002365.. _source_filename:
2366
2367Source Filename
2368---------------
2369
2370The *source filename* string is set to the original module identifier,
2371which will be the name of the compiled source file when compiling from
2372source through the clang front end, for example. It is then preserved through
2373the IR and bitcode.
2374
2375This is currently necessary to generate a consistent unique global
2376identifier for local functions used in profile data, which prepends the
2377source file name to the local function name.
2378
2379The syntax for the source file name is simply:
2380
Renato Golin124f2592016-07-20 12:16:38 +00002381.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002382
2383 source_filename = "/path/to/source.c"
2384
Sean Silvab084af42012-12-07 10:36:55 +00002385.. _typesystem:
2386
2387Type System
2388===========
2389
2390The LLVM type system is one of the most important features of the
2391intermediate representation. Being typed enables a number of
2392optimizations to be performed on the intermediate representation
2393directly, without having to do extra analyses on the side before the
2394transformation. A strong type system makes it easier to read the
2395generated code and enables novel analyses and transformations that are
2396not feasible to perform on normal three address code representations.
2397
Rafael Espindola08013342013-12-07 19:34:20 +00002398.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002399
Rafael Espindola08013342013-12-07 19:34:20 +00002400Void Type
2401---------
Sean Silvab084af42012-12-07 10:36:55 +00002402
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002403:Overview:
2404
Rafael Espindola08013342013-12-07 19:34:20 +00002405
2406The void type does not represent any value and has no size.
2407
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002408:Syntax:
2409
Rafael Espindola08013342013-12-07 19:34:20 +00002410
2411::
2412
2413 void
Sean Silvab084af42012-12-07 10:36:55 +00002414
2415
Rafael Espindola08013342013-12-07 19:34:20 +00002416.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002417
Rafael Espindola08013342013-12-07 19:34:20 +00002418Function Type
2419-------------
Sean Silvab084af42012-12-07 10:36:55 +00002420
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002421:Overview:
2422
Sean Silvab084af42012-12-07 10:36:55 +00002423
Rafael Espindola08013342013-12-07 19:34:20 +00002424The function type can be thought of as a function signature. It consists of a
2425return type and a list of formal parameter types. The return type of a function
2426type is a void type or first class type --- except for :ref:`label <t_label>`
2427and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002428
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002429:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002430
Rafael Espindola08013342013-12-07 19:34:20 +00002431::
Sean Silvab084af42012-12-07 10:36:55 +00002432
Rafael Espindola08013342013-12-07 19:34:20 +00002433 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002434
Rafael Espindola08013342013-12-07 19:34:20 +00002435...where '``<parameter list>``' is a comma-separated list of type
2436specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002437indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002438argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002439handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002440except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002441
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002442:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002443
Rafael Espindola08013342013-12-07 19:34:20 +00002444+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2445| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2446+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2447| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2448+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2449| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2450+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2451| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2452+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2453
2454.. _t_firstclass:
2455
2456First Class Types
2457-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002458
2459The :ref:`first class <t_firstclass>` types are perhaps the most important.
2460Values of these types are the only ones which can be produced by
2461instructions.
2462
Rafael Espindola08013342013-12-07 19:34:20 +00002463.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002464
Rafael Espindola08013342013-12-07 19:34:20 +00002465Single Value Types
2466^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002467
Rafael Espindola08013342013-12-07 19:34:20 +00002468These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002469
2470.. _t_integer:
2471
2472Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002473""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002474
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002475:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002476
2477The integer type is a very simple type that simply specifies an
2478arbitrary bit width for the integer type desired. Any bit width from 1
2479bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2480
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002481:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002482
2483::
2484
2485 iN
2486
2487The number of bits the integer will occupy is specified by the ``N``
2488value.
2489
2490Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002491*********
Sean Silvab084af42012-12-07 10:36:55 +00002492
2493+----------------+------------------------------------------------+
2494| ``i1`` | a single-bit integer. |
2495+----------------+------------------------------------------------+
2496| ``i32`` | a 32-bit integer. |
2497+----------------+------------------------------------------------+
2498| ``i1942652`` | a really big integer of over 1 million bits. |
2499+----------------+------------------------------------------------+
2500
2501.. _t_floating:
2502
2503Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002504""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002505
2506.. list-table::
2507 :header-rows: 1
2508
2509 * - Type
2510 - Description
2511
2512 * - ``half``
2513 - 16-bit floating point value
2514
2515 * - ``float``
2516 - 32-bit floating point value
2517
2518 * - ``double``
2519 - 64-bit floating point value
2520
2521 * - ``fp128``
2522 - 128-bit floating point value (112-bit mantissa)
2523
2524 * - ``x86_fp80``
2525 - 80-bit floating point value (X87)
2526
2527 * - ``ppc_fp128``
2528 - 128-bit floating point value (two 64-bits)
2529
Reid Kleckner9a16d082014-03-05 02:41:37 +00002530X86_mmx Type
2531""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002532
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002533:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002534
Reid Kleckner9a16d082014-03-05 02:41:37 +00002535The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002536machine. The operations allowed on it are quite limited: parameters and
2537return values, load and store, and bitcast. User-specified MMX
2538instructions are represented as intrinsic or asm calls with arguments
2539and/or results of this type. There are no arrays, vectors or constants
2540of this type.
2541
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002542:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002543
2544::
2545
Reid Kleckner9a16d082014-03-05 02:41:37 +00002546 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002547
Sean Silvab084af42012-12-07 10:36:55 +00002548
Rafael Espindola08013342013-12-07 19:34:20 +00002549.. _t_pointer:
2550
2551Pointer Type
2552""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002553
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002554:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002555
Rafael Espindola08013342013-12-07 19:34:20 +00002556The pointer type is used to specify memory locations. Pointers are
2557commonly used to reference objects in memory.
2558
2559Pointer types may have an optional address space attribute defining the
2560numbered address space where the pointed-to object resides. The default
2561address space is number zero. The semantics of non-zero address spaces
2562are target-specific.
2563
2564Note that LLVM does not permit pointers to void (``void*``) nor does it
2565permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002566
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002567:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002568
2569::
2570
Rafael Espindola08013342013-12-07 19:34:20 +00002571 <type> *
2572
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002573:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002574
2575+-------------------------+--------------------------------------------------------------------------------------------------------------+
2576| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2577+-------------------------+--------------------------------------------------------------------------------------------------------------+
2578| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2579+-------------------------+--------------------------------------------------------------------------------------------------------------+
2580| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2581+-------------------------+--------------------------------------------------------------------------------------------------------------+
2582
2583.. _t_vector:
2584
2585Vector Type
2586"""""""""""
2587
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002588:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002589
2590A vector type is a simple derived type that represents a vector of
2591elements. Vector types are used when multiple primitive data are
2592operated in parallel using a single instruction (SIMD). A vector type
2593requires a size (number of elements) and an underlying primitive data
2594type. Vector types are considered :ref:`first class <t_firstclass>`.
2595
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002596:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002597
2598::
2599
2600 < <# elements> x <elementtype> >
2601
2602The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002603elementtype may be any integer, floating point or pointer type. Vectors
2604of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002605
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002606:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002607
2608+-------------------+--------------------------------------------------+
2609| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2610+-------------------+--------------------------------------------------+
2611| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2612+-------------------+--------------------------------------------------+
2613| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2614+-------------------+--------------------------------------------------+
2615| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2616+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002617
2618.. _t_label:
2619
2620Label Type
2621^^^^^^^^^^
2622
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002623:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002624
2625The label type represents code labels.
2626
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002627:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002628
2629::
2630
2631 label
2632
David Majnemerb611e3f2015-08-14 05:09:07 +00002633.. _t_token:
2634
2635Token Type
2636^^^^^^^^^^
2637
2638:Overview:
2639
2640The token type is used when a value is associated with an instruction
2641but all uses of the value must not attempt to introspect or obscure it.
2642As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2643:ref:`select <i_select>` of type token.
2644
2645:Syntax:
2646
2647::
2648
2649 token
2650
2651
2652
Sean Silvab084af42012-12-07 10:36:55 +00002653.. _t_metadata:
2654
2655Metadata Type
2656^^^^^^^^^^^^^
2657
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002658:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002659
2660The metadata type represents embedded metadata. No derived types may be
2661created from metadata except for :ref:`function <t_function>` arguments.
2662
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002663:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002664
2665::
2666
2667 metadata
2668
Sean Silvab084af42012-12-07 10:36:55 +00002669.. _t_aggregate:
2670
2671Aggregate Types
2672^^^^^^^^^^^^^^^
2673
2674Aggregate Types are a subset of derived types that can contain multiple
2675member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2676aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2677aggregate types.
2678
2679.. _t_array:
2680
2681Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002682""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002683
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002684:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002685
2686The array type is a very simple derived type that arranges elements
2687sequentially in memory. The array type requires a size (number of
2688elements) and an underlying data type.
2689
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002690:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002691
2692::
2693
2694 [<# elements> x <elementtype>]
2695
2696The number of elements is a constant integer value; ``elementtype`` may
2697be any type with a size.
2698
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002699:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002700
2701+------------------+--------------------------------------+
2702| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2703+------------------+--------------------------------------+
2704| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2705+------------------+--------------------------------------+
2706| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2707+------------------+--------------------------------------+
2708
2709Here are some examples of multidimensional arrays:
2710
2711+-----------------------------+----------------------------------------------------------+
2712| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2713+-----------------------------+----------------------------------------------------------+
2714| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2715+-----------------------------+----------------------------------------------------------+
2716| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2717+-----------------------------+----------------------------------------------------------+
2718
2719There is no restriction on indexing beyond the end of the array implied
2720by a static type (though there are restrictions on indexing beyond the
2721bounds of an allocated object in some cases). This means that
2722single-dimension 'variable sized array' addressing can be implemented in
2723LLVM with a zero length array type. An implementation of 'pascal style
2724arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2725example.
2726
Sean Silvab084af42012-12-07 10:36:55 +00002727.. _t_struct:
2728
2729Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002730""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002731
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002732:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002733
2734The structure type is used to represent a collection of data members
2735together in memory. The elements of a structure may be any type that has
2736a size.
2737
2738Structures in memory are accessed using '``load``' and '``store``' by
2739getting a pointer to a field with the '``getelementptr``' instruction.
2740Structures in registers are accessed using the '``extractvalue``' and
2741'``insertvalue``' instructions.
2742
2743Structures may optionally be "packed" structures, which indicate that
2744the alignment of the struct is one byte, and that there is no padding
2745between the elements. In non-packed structs, padding between field types
2746is inserted as defined by the DataLayout string in the module, which is
2747required to match what the underlying code generator expects.
2748
2749Structures can either be "literal" or "identified". A literal structure
2750is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2751identified types are always defined at the top level with a name.
2752Literal types are uniqued by their contents and can never be recursive
2753or opaque since there is no way to write one. Identified types can be
2754recursive, can be opaqued, and are never uniqued.
2755
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002756:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002757
2758::
2759
2760 %T1 = type { <type list> } ; Identified normal struct type
2761 %T2 = type <{ <type list> }> ; Identified packed struct type
2762
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002763:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002764
2765+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2766| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2767+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002768| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002769+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2770| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2771+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2772
2773.. _t_opaque:
2774
2775Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002776""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002777
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002778:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002779
2780Opaque structure types are used to represent named structure types that
2781do not have a body specified. This corresponds (for example) to the C
2782notion of a forward declared structure.
2783
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002784:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002785
2786::
2787
2788 %X = type opaque
2789 %52 = type opaque
2790
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002791:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002792
2793+--------------+-------------------+
2794| ``opaque`` | An opaque type. |
2795+--------------+-------------------+
2796
Sean Silva1703e702014-04-08 21:06:22 +00002797.. _constants:
2798
Sean Silvab084af42012-12-07 10:36:55 +00002799Constants
2800=========
2801
2802LLVM has several different basic types of constants. This section
2803describes them all and their syntax.
2804
2805Simple Constants
2806----------------
2807
2808**Boolean constants**
2809 The two strings '``true``' and '``false``' are both valid constants
2810 of the ``i1`` type.
2811**Integer constants**
2812 Standard integers (such as '4') are constants of the
2813 :ref:`integer <t_integer>` type. Negative numbers may be used with
2814 integer types.
2815**Floating point constants**
2816 Floating point constants use standard decimal notation (e.g.
2817 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2818 hexadecimal notation (see below). The assembler requires the exact
2819 decimal value of a floating-point constant. For example, the
2820 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2821 decimal in binary. Floating point constants must have a :ref:`floating
2822 point <t_floating>` type.
2823**Null pointer constants**
2824 The identifier '``null``' is recognized as a null pointer constant
2825 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002826**Token constants**
2827 The identifier '``none``' is recognized as an empty token constant
2828 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002829
2830The one non-intuitive notation for constants is the hexadecimal form of
2831floating point constants. For example, the form
2832'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2833than) '``double 4.5e+15``'. The only time hexadecimal floating point
2834constants are required (and the only time that they are generated by the
2835disassembler) is when a floating point constant must be emitted but it
2836cannot be represented as a decimal floating point number in a reasonable
2837number of digits. For example, NaN's, infinities, and other special
2838values are represented in their IEEE hexadecimal format so that assembly
2839and disassembly do not cause any bits to change in the constants.
2840
2841When using the hexadecimal form, constants of types half, float, and
2842double are represented using the 16-digit form shown above (which
2843matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002844must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002845precision, respectively. Hexadecimal format is always used for long
2846double, and there are three forms of long double. The 80-bit format used
2847by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2848128-bit format used by PowerPC (two adjacent doubles) is represented by
2849``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002850represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2851will only work if they match the long double format on your target.
2852The IEEE 16-bit format (half precision) is represented by ``0xH``
2853followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2854(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002855
Reid Kleckner9a16d082014-03-05 02:41:37 +00002856There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002857
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002858.. _complexconstants:
2859
Sean Silvab084af42012-12-07 10:36:55 +00002860Complex Constants
2861-----------------
2862
2863Complex constants are a (potentially recursive) combination of simple
2864constants and smaller complex constants.
2865
2866**Structure constants**
2867 Structure constants are represented with notation similar to
2868 structure type definitions (a comma separated list of elements,
2869 surrounded by braces (``{}``)). For example:
2870 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2871 "``@G = external global i32``". Structure constants must have
2872 :ref:`structure type <t_struct>`, and the number and types of elements
2873 must match those specified by the type.
2874**Array constants**
2875 Array constants are represented with notation similar to array type
2876 definitions (a comma separated list of elements, surrounded by
2877 square brackets (``[]``)). For example:
2878 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2879 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002880 match those specified by the type. As a special case, character array
2881 constants may also be represented as a double-quoted string using the ``c``
2882 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002883**Vector constants**
2884 Vector constants are represented with notation similar to vector
2885 type definitions (a comma separated list of elements, surrounded by
2886 less-than/greater-than's (``<>``)). For example:
2887 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2888 must have :ref:`vector type <t_vector>`, and the number and types of
2889 elements must match those specified by the type.
2890**Zero initialization**
2891 The string '``zeroinitializer``' can be used to zero initialize a
2892 value to zero of *any* type, including scalar and
2893 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2894 having to print large zero initializers (e.g. for large arrays) and
2895 is always exactly equivalent to using explicit zero initializers.
2896**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002897 A metadata node is a constant tuple without types. For example:
2898 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002899 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2900 Unlike other typed constants that are meant to be interpreted as part of
2901 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002902 information such as debug info.
2903
2904Global Variable and Function Addresses
2905--------------------------------------
2906
2907The addresses of :ref:`global variables <globalvars>` and
2908:ref:`functions <functionstructure>` are always implicitly valid
2909(link-time) constants. These constants are explicitly referenced when
2910the :ref:`identifier for the global <identifiers>` is used and always have
2911:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2912file:
2913
2914.. code-block:: llvm
2915
2916 @X = global i32 17
2917 @Y = global i32 42
2918 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2919
2920.. _undefvalues:
2921
2922Undefined Values
2923----------------
2924
2925The string '``undef``' can be used anywhere a constant is expected, and
2926indicates that the user of the value may receive an unspecified
2927bit-pattern. Undefined values may be of any type (other than '``label``'
2928or '``void``') and be used anywhere a constant is permitted.
2929
2930Undefined values are useful because they indicate to the compiler that
2931the program is well defined no matter what value is used. This gives the
2932compiler more freedom to optimize. Here are some examples of
2933(potentially surprising) transformations that are valid (in pseudo IR):
2934
2935.. code-block:: llvm
2936
2937 %A = add %X, undef
2938 %B = sub %X, undef
2939 %C = xor %X, undef
2940 Safe:
2941 %A = undef
2942 %B = undef
2943 %C = undef
2944
2945This is safe because all of the output bits are affected by the undef
2946bits. Any output bit can have a zero or one depending on the input bits.
2947
2948.. code-block:: llvm
2949
2950 %A = or %X, undef
2951 %B = and %X, undef
2952 Safe:
2953 %A = -1
2954 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00002955 Safe:
2956 %A = %X ;; By choosing undef as 0
2957 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00002958 Unsafe:
2959 %A = undef
2960 %B = undef
2961
2962These logical operations have bits that are not always affected by the
2963input. For example, if ``%X`` has a zero bit, then the output of the
2964'``and``' operation will always be a zero for that bit, no matter what
2965the corresponding bit from the '``undef``' is. As such, it is unsafe to
2966optimize or assume that the result of the '``and``' is '``undef``'.
2967However, it is safe to assume that all bits of the '``undef``' could be
29680, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2969all the bits of the '``undef``' operand to the '``or``' could be set,
2970allowing the '``or``' to be folded to -1.
2971
2972.. code-block:: llvm
2973
2974 %A = select undef, %X, %Y
2975 %B = select undef, 42, %Y
2976 %C = select %X, %Y, undef
2977 Safe:
2978 %A = %X (or %Y)
2979 %B = 42 (or %Y)
2980 %C = %Y
2981 Unsafe:
2982 %A = undef
2983 %B = undef
2984 %C = undef
2985
2986This set of examples shows that undefined '``select``' (and conditional
2987branch) conditions can go *either way*, but they have to come from one
2988of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2989both known to have a clear low bit, then ``%A`` would have to have a
2990cleared low bit. However, in the ``%C`` example, the optimizer is
2991allowed to assume that the '``undef``' operand could be the same as
2992``%Y``, allowing the whole '``select``' to be eliminated.
2993
Renato Golin124f2592016-07-20 12:16:38 +00002994.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002995
2996 %A = xor undef, undef
2997
2998 %B = undef
2999 %C = xor %B, %B
3000
3001 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00003002 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00003003 %F = icmp gte %D, 4
3004
3005 Safe:
3006 %A = undef
3007 %B = undef
3008 %C = undef
3009 %D = undef
3010 %E = undef
3011 %F = undef
3012
3013This example points out that two '``undef``' operands are not
3014necessarily the same. This can be surprising to people (and also matches
3015C semantics) where they assume that "``X^X``" is always zero, even if
3016``X`` is undefined. This isn't true for a number of reasons, but the
3017short answer is that an '``undef``' "variable" can arbitrarily change
3018its value over its "live range". This is true because the variable
3019doesn't actually *have a live range*. Instead, the value is logically
3020read from arbitrary registers that happen to be around when needed, so
3021the value is not necessarily consistent over time. In fact, ``%A`` and
3022``%C`` need to have the same semantics or the core LLVM "replace all
3023uses with" concept would not hold.
3024
3025.. code-block:: llvm
3026
3027 %A = fdiv undef, %X
3028 %B = fdiv %X, undef
3029 Safe:
3030 %A = undef
3031 b: unreachable
3032
3033These examples show the crucial difference between an *undefined value*
3034and *undefined behavior*. An undefined value (like '``undef``') is
3035allowed to have an arbitrary bit-pattern. This means that the ``%A``
3036operation can be constant folded to '``undef``', because the '``undef``'
3037could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
3038However, in the second example, we can make a more aggressive
3039assumption: because the ``undef`` is allowed to be an arbitrary value,
3040we are allowed to assume that it could be zero. Since a divide by zero
3041has *undefined behavior*, we are allowed to assume that the operation
3042does not execute at all. This allows us to delete the divide and all
3043code after it. Because the undefined operation "can't happen", the
3044optimizer can assume that it occurs in dead code.
3045
Renato Golin124f2592016-07-20 12:16:38 +00003046.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003047
3048 a: store undef -> %X
3049 b: store %X -> undef
3050 Safe:
3051 a: <deleted>
3052 b: unreachable
3053
3054These examples reiterate the ``fdiv`` example: a store *of* an undefined
3055value can be assumed to not have any effect; we can assume that the
3056value is overwritten with bits that happen to match what was already
3057there. However, a store *to* an undefined location could clobber
3058arbitrary memory, therefore, it has undefined behavior.
3059
3060.. _poisonvalues:
3061
3062Poison Values
3063-------------
3064
3065Poison values are similar to :ref:`undef values <undefvalues>`, however
3066they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00003067that cannot evoke side effects has nevertheless detected a condition
3068that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003069
3070There is currently no way of representing a poison value in the IR; they
3071only exist when produced by operations such as :ref:`add <i_add>` with
3072the ``nsw`` flag.
3073
3074Poison value behavior is defined in terms of value *dependence*:
3075
3076- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
3077- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
3078 their dynamic predecessor basic block.
3079- Function arguments depend on the corresponding actual argument values
3080 in the dynamic callers of their functions.
3081- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
3082 instructions that dynamically transfer control back to them.
3083- :ref:`Invoke <i_invoke>` instructions depend on the
3084 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
3085 call instructions that dynamically transfer control back to them.
3086- Non-volatile loads and stores depend on the most recent stores to all
3087 of the referenced memory addresses, following the order in the IR
3088 (including loads and stores implied by intrinsics such as
3089 :ref:`@llvm.memcpy <int_memcpy>`.)
3090- An instruction with externally visible side effects depends on the
3091 most recent preceding instruction with externally visible side
3092 effects, following the order in the IR. (This includes :ref:`volatile
3093 operations <volatile>`.)
3094- An instruction *control-depends* on a :ref:`terminator
3095 instruction <terminators>` if the terminator instruction has
3096 multiple successors and the instruction is always executed when
3097 control transfers to one of the successors, and may not be executed
3098 when control is transferred to another.
3099- Additionally, an instruction also *control-depends* on a terminator
3100 instruction if the set of instructions it otherwise depends on would
3101 be different if the terminator had transferred control to a different
3102 successor.
3103- Dependence is transitive.
3104
Richard Smith32dbdf62014-07-31 04:25:36 +00003105Poison values have the same behavior as :ref:`undef values <undefvalues>`,
3106with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00003107on a poison value has undefined behavior.
3108
3109Here are some examples:
3110
3111.. code-block:: llvm
3112
3113 entry:
3114 %poison = sub nuw i32 0, 1 ; Results in a poison value.
3115 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00003116 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00003117 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3118
3119 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003120 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003121
3122 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3123
3124 %narrowaddr = bitcast i32* @g to i16*
3125 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003126 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3127 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003128
3129 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3130 br i1 %cmp, label %true, label %end ; Branch to either destination.
3131
3132 true:
3133 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3134 ; it has undefined behavior.
3135 br label %end
3136
3137 end:
3138 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3139 ; Both edges into this PHI are
3140 ; control-dependent on %cmp, so this
3141 ; always results in a poison value.
3142
3143 store volatile i32 0, i32* @g ; This would depend on the store in %true
3144 ; if %cmp is true, or the store in %entry
3145 ; otherwise, so this is undefined behavior.
3146
3147 br i1 %cmp, label %second_true, label %second_end
3148 ; The same branch again, but this time the
3149 ; true block doesn't have side effects.
3150
3151 second_true:
3152 ; No side effects!
3153 ret void
3154
3155 second_end:
3156 store volatile i32 0, i32* @g ; This time, the instruction always depends
3157 ; on the store in %end. Also, it is
3158 ; control-equivalent to %end, so this is
3159 ; well-defined (ignoring earlier undefined
3160 ; behavior in this example).
3161
3162.. _blockaddress:
3163
3164Addresses of Basic Blocks
3165-------------------------
3166
3167``blockaddress(@function, %block)``
3168
3169The '``blockaddress``' constant computes the address of the specified
3170basic block in the specified function, and always has an ``i8*`` type.
3171Taking the address of the entry block is illegal.
3172
3173This value only has defined behavior when used as an operand to the
3174':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3175against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003176undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003177no label is equal to the null pointer. This may be passed around as an
3178opaque pointer sized value as long as the bits are not inspected. This
3179allows ``ptrtoint`` and arithmetic to be performed on these values so
3180long as the original value is reconstituted before the ``indirectbr``
3181instruction.
3182
3183Finally, some targets may provide defined semantics when using the value
3184as the operand to an inline assembly, but that is target specific.
3185
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003186.. _constantexprs:
3187
Sean Silvab084af42012-12-07 10:36:55 +00003188Constant Expressions
3189--------------------
3190
3191Constant expressions are used to allow expressions involving other
3192constants to be used as constants. Constant expressions may be of any
3193:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3194that does not have side effects (e.g. load and call are not supported).
3195The following is the syntax for constant expressions:
3196
3197``trunc (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003198 Perform the :ref:`trunc operation <i_trunc>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003199``zext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003200 Perform the :ref:`zext operation <i_zext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003201``sext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003202 Perform the :ref:`sext operation <i_sext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003203``fptrunc (CST to TYPE)``
3204 Truncate a floating point constant to another floating point type.
3205 The size of CST must be larger than the size of TYPE. Both types
3206 must be floating point.
3207``fpext (CST to TYPE)``
3208 Floating point extend a constant to another type. The size of CST
3209 must be smaller or equal to the size of TYPE. Both types must be
3210 floating point.
3211``fptoui (CST to TYPE)``
3212 Convert a floating point constant to the corresponding unsigned
3213 integer constant. TYPE must be a scalar or vector integer type. CST
3214 must be of scalar or vector floating point type. Both CST and TYPE
3215 must be scalars, or vectors of the same number of elements. If the
3216 value won't fit in the integer type, the results are undefined.
3217``fptosi (CST to TYPE)``
3218 Convert a floating point constant to the corresponding signed
3219 integer constant. TYPE must be a scalar or vector integer type. CST
3220 must be of scalar or vector floating point type. Both CST and TYPE
3221 must be scalars, or vectors of the same number of elements. If the
3222 value won't fit in the integer type, the results are undefined.
3223``uitofp (CST to TYPE)``
3224 Convert an unsigned integer constant to the corresponding floating
3225 point constant. TYPE must be a scalar or vector floating point type.
3226 CST must be of scalar or vector integer type. Both CST and TYPE must
3227 be scalars, or vectors of the same number of elements. If the value
3228 won't fit in the floating point type, the results are undefined.
3229``sitofp (CST to TYPE)``
3230 Convert a signed integer constant to the corresponding floating
3231 point constant. TYPE must be a scalar or vector floating point type.
3232 CST must be of scalar or vector integer type. Both CST and TYPE must
3233 be scalars, or vectors of the same number of elements. If the value
3234 won't fit in the floating point type, the results are undefined.
3235``ptrtoint (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003236 Perform the :ref:`ptrtoint operation <i_ptrtoint>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003237``inttoptr (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003238 Perform the :ref:`inttoptr operation <i_inttoptr>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003239 This one is *really* dangerous!
3240``bitcast (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003241 Convert a constant, CST, to another TYPE.
3242 The constraints of the operands are the same as those for the
3243 :ref:`bitcast instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003244``addrspacecast (CST to TYPE)``
3245 Convert a constant pointer or constant vector of pointer, CST, to another
3246 TYPE in a different address space. The constraints of the operands are the
3247 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003248``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003249 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3250 constants. As with the :ref:`getelementptr <i_getelementptr>`
David Blaikief91b0302017-06-19 05:34:21 +00003251 instruction, the index list may have one or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003252 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003253``select (COND, VAL1, VAL2)``
3254 Perform the :ref:`select operation <i_select>` on constants.
3255``icmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003256 Perform the :ref:`icmp operation <i_icmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003257``fcmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003258 Perform the :ref:`fcmp operation <i_fcmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003259``extractelement (VAL, IDX)``
3260 Perform the :ref:`extractelement operation <i_extractelement>` on
3261 constants.
3262``insertelement (VAL, ELT, IDX)``
3263 Perform the :ref:`insertelement operation <i_insertelement>` on
3264 constants.
3265``shufflevector (VEC1, VEC2, IDXMASK)``
3266 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3267 constants.
3268``extractvalue (VAL, IDX0, IDX1, ...)``
3269 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3270 constants. The index list is interpreted in a similar manner as
3271 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3272 least one index value must be specified.
3273``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3274 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3275 The index list is interpreted in a similar manner as indices in a
3276 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3277 value must be specified.
3278``OPCODE (LHS, RHS)``
3279 Perform the specified operation of the LHS and RHS constants. OPCODE
3280 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3281 binary <bitwiseops>` operations. The constraints on operands are
3282 the same as those for the corresponding instruction (e.g. no bitwise
3283 operations on floating point values are allowed).
3284
3285Other Values
3286============
3287
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003288.. _inlineasmexprs:
3289
Sean Silvab084af42012-12-07 10:36:55 +00003290Inline Assembler Expressions
3291----------------------------
3292
3293LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003294Inline Assembly <moduleasm>`) through the use of a special value. This value
3295represents the inline assembler as a template string (containing the
3296instructions to emit), a list of operand constraints (stored as a string), a
3297flag that indicates whether or not the inline asm expression has side effects,
3298and a flag indicating whether the function containing the asm needs to align its
3299stack conservatively.
3300
3301The template string supports argument substitution of the operands using "``$``"
3302followed by a number, to indicate substitution of the given register/memory
3303location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3304be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3305operand (See :ref:`inline-asm-modifiers`).
3306
3307A literal "``$``" may be included by using "``$$``" in the template. To include
3308other special characters into the output, the usual "``\XX``" escapes may be
3309used, just as in other strings. Note that after template substitution, the
3310resulting assembly string is parsed by LLVM's integrated assembler unless it is
3311disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3312syntax known to LLVM.
3313
Reid Kleckner71cb1642017-02-06 18:08:45 +00003314LLVM also supports a few more substitions useful for writing inline assembly:
3315
3316- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3317 This substitution is useful when declaring a local label. Many standard
3318 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3319 Adding a blob-unique identifier ensures that the two labels will not conflict
3320 during assembly. This is used to implement `GCC's %= special format
3321 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3322- ``${:comment}``: Expands to the comment character of the current target's
3323 assembly dialect. This is usually ``#``, but many targets use other strings,
3324 such as ``;``, ``//``, or ``!``.
3325- ``${:private}``: Expands to the assembler private label prefix. Labels with
3326 this prefix will not appear in the symbol table of the assembled object.
3327 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3328 relatively popular.
3329
James Y Knightbc832ed2015-07-08 18:08:36 +00003330LLVM's support for inline asm is modeled closely on the requirements of Clang's
3331GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3332modifier codes listed here are similar or identical to those in GCC's inline asm
3333support. However, to be clear, the syntax of the template and constraint strings
3334described here is *not* the same as the syntax accepted by GCC and Clang, and,
3335while most constraint letters are passed through as-is by Clang, some get
3336translated to other codes when converting from the C source to the LLVM
3337assembly.
3338
3339An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003340
3341.. code-block:: llvm
3342
3343 i32 (i32) asm "bswap $0", "=r,r"
3344
3345Inline assembler expressions may **only** be used as the callee operand
3346of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3347Thus, typically we have:
3348
3349.. code-block:: llvm
3350
3351 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3352
3353Inline asms with side effects not visible in the constraint list must be
3354marked as having side effects. This is done through the use of the
3355'``sideeffect``' keyword, like so:
3356
3357.. code-block:: llvm
3358
3359 call void asm sideeffect "eieio", ""()
3360
3361In some cases inline asms will contain code that will not work unless
3362the stack is aligned in some way, such as calls or SSE instructions on
3363x86, yet will not contain code that does that alignment within the asm.
3364The compiler should make conservative assumptions about what the asm
3365might contain and should generate its usual stack alignment code in the
3366prologue if the '``alignstack``' keyword is present:
3367
3368.. code-block:: llvm
3369
3370 call void asm alignstack "eieio", ""()
3371
3372Inline asms also support using non-standard assembly dialects. The
3373assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3374the inline asm is using the Intel dialect. Currently, ATT and Intel are
3375the only supported dialects. An example is:
3376
3377.. code-block:: llvm
3378
3379 call void asm inteldialect "eieio", ""()
3380
3381If multiple keywords appear the '``sideeffect``' keyword must come
3382first, the '``alignstack``' keyword second and the '``inteldialect``'
3383keyword last.
3384
James Y Knightbc832ed2015-07-08 18:08:36 +00003385Inline Asm Constraint String
3386^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3387
3388The constraint list is a comma-separated string, each element containing one or
3389more constraint codes.
3390
3391For each element in the constraint list an appropriate register or memory
3392operand will be chosen, and it will be made available to assembly template
3393string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3394second, etc.
3395
3396There are three different types of constraints, which are distinguished by a
3397prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3398constraints must always be given in that order: outputs first, then inputs, then
3399clobbers. They cannot be intermingled.
3400
3401There are also three different categories of constraint codes:
3402
3403- Register constraint. This is either a register class, or a fixed physical
3404 register. This kind of constraint will allocate a register, and if necessary,
3405 bitcast the argument or result to the appropriate type.
3406- Memory constraint. This kind of constraint is for use with an instruction
3407 taking a memory operand. Different constraints allow for different addressing
3408 modes used by the target.
3409- Immediate value constraint. This kind of constraint is for an integer or other
3410 immediate value which can be rendered directly into an instruction. The
3411 various target-specific constraints allow the selection of a value in the
3412 proper range for the instruction you wish to use it with.
3413
3414Output constraints
3415""""""""""""""""""
3416
3417Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3418indicates that the assembly will write to this operand, and the operand will
3419then be made available as a return value of the ``asm`` expression. Output
3420constraints do not consume an argument from the call instruction. (Except, see
3421below about indirect outputs).
3422
3423Normally, it is expected that no output locations are written to by the assembly
3424expression until *all* of the inputs have been read. As such, LLVM may assign
3425the same register to an output and an input. If this is not safe (e.g. if the
3426assembly contains two instructions, where the first writes to one output, and
3427the second reads an input and writes to a second output), then the "``&``"
3428modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003429"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003430will not use the same register for any inputs (other than an input tied to this
3431output).
3432
3433Input constraints
3434"""""""""""""""""
3435
3436Input constraints do not have a prefix -- just the constraint codes. Each input
3437constraint will consume one argument from the call instruction. It is not
3438permitted for the asm to write to any input register or memory location (unless
3439that input is tied to an output). Note also that multiple inputs may all be
3440assigned to the same register, if LLVM can determine that they necessarily all
3441contain the same value.
3442
3443Instead of providing a Constraint Code, input constraints may also "tie"
3444themselves to an output constraint, by providing an integer as the constraint
3445string. Tied inputs still consume an argument from the call instruction, and
3446take up a position in the asm template numbering as is usual -- they will simply
3447be constrained to always use the same register as the output they've been tied
3448to. For example, a constraint string of "``=r,0``" says to assign a register for
3449output, and use that register as an input as well (it being the 0'th
3450constraint).
3451
3452It is permitted to tie an input to an "early-clobber" output. In that case, no
3453*other* input may share the same register as the input tied to the early-clobber
3454(even when the other input has the same value).
3455
3456You may only tie an input to an output which has a register constraint, not a
3457memory constraint. Only a single input may be tied to an output.
3458
3459There is also an "interesting" feature which deserves a bit of explanation: if a
3460register class constraint allocates a register which is too small for the value
3461type operand provided as input, the input value will be split into multiple
3462registers, and all of them passed to the inline asm.
3463
3464However, this feature is often not as useful as you might think.
3465
3466Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3467architectures that have instructions which operate on multiple consecutive
3468instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3469SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3470hardware then loads into both the named register, and the next register. This
3471feature of inline asm would not be useful to support that.)
3472
3473A few of the targets provide a template string modifier allowing explicit access
3474to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3475``D``). On such an architecture, you can actually access the second allocated
3476register (yet, still, not any subsequent ones). But, in that case, you're still
3477probably better off simply splitting the value into two separate operands, for
3478clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3479despite existing only for use with this feature, is not really a good idea to
3480use)
3481
3482Indirect inputs and outputs
3483"""""""""""""""""""""""""""
3484
3485Indirect output or input constraints can be specified by the "``*``" modifier
3486(which goes after the "``=``" in case of an output). This indicates that the asm
3487will write to or read from the contents of an *address* provided as an input
3488argument. (Note that in this way, indirect outputs act more like an *input* than
3489an output: just like an input, they consume an argument of the call expression,
3490rather than producing a return value. An indirect output constraint is an
3491"output" only in that the asm is expected to write to the contents of the input
3492memory location, instead of just read from it).
3493
3494This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3495address of a variable as a value.
3496
3497It is also possible to use an indirect *register* constraint, but only on output
3498(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3499value normally, and then, separately emit a store to the address provided as
3500input, after the provided inline asm. (It's not clear what value this
3501functionality provides, compared to writing the store explicitly after the asm
3502statement, and it can only produce worse code, since it bypasses many
3503optimization passes. I would recommend not using it.)
3504
3505
3506Clobber constraints
3507"""""""""""""""""""
3508
3509A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3510consume an input operand, nor generate an output. Clobbers cannot use any of the
3511general constraint code letters -- they may use only explicit register
3512constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3513"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3514memory locations -- not only the memory pointed to by a declared indirect
3515output.
3516
Peter Zotov00257232016-08-30 10:48:31 +00003517Note that clobbering named registers that are also present in output
3518constraints is not legal.
3519
James Y Knightbc832ed2015-07-08 18:08:36 +00003520
3521Constraint Codes
3522""""""""""""""""
3523After a potential prefix comes constraint code, or codes.
3524
3525A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3526followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3527(e.g. "``{eax}``").
3528
3529The one and two letter constraint codes are typically chosen to be the same as
3530GCC's constraint codes.
3531
3532A single constraint may include one or more than constraint code in it, leaving
3533it up to LLVM to choose which one to use. This is included mainly for
3534compatibility with the translation of GCC inline asm coming from clang.
3535
3536There are two ways to specify alternatives, and either or both may be used in an
3537inline asm constraint list:
3538
35391) Append the codes to each other, making a constraint code set. E.g. "``im``"
3540 or "``{eax}m``". This means "choose any of the options in the set". The
3541 choice of constraint is made independently for each constraint in the
3542 constraint list.
3543
35442) Use "``|``" between constraint code sets, creating alternatives. Every
3545 constraint in the constraint list must have the same number of alternative
3546 sets. With this syntax, the same alternative in *all* of the items in the
3547 constraint list will be chosen together.
3548
3549Putting those together, you might have a two operand constraint string like
3550``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3551operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3552may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3553
3554However, the use of either of the alternatives features is *NOT* recommended, as
3555LLVM is not able to make an intelligent choice about which one to use. (At the
3556point it currently needs to choose, not enough information is available to do so
3557in a smart way.) Thus, it simply tries to make a choice that's most likely to
3558compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3559always choose to use memory, not registers). And, if given multiple registers,
3560or multiple register classes, it will simply choose the first one. (In fact, it
3561doesn't currently even ensure explicitly specified physical registers are
3562unique, so specifying multiple physical registers as alternatives, like
3563``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3564intended.)
3565
3566Supported Constraint Code List
3567""""""""""""""""""""""""""""""
3568
3569The constraint codes are, in general, expected to behave the same way they do in
3570GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3571inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3572and GCC likely indicates a bug in LLVM.
3573
3574Some constraint codes are typically supported by all targets:
3575
3576- ``r``: A register in the target's general purpose register class.
3577- ``m``: A memory address operand. It is target-specific what addressing modes
3578 are supported, typical examples are register, or register + register offset,
3579 or register + immediate offset (of some target-specific size).
3580- ``i``: An integer constant (of target-specific width). Allows either a simple
3581 immediate, or a relocatable value.
3582- ``n``: An integer constant -- *not* including relocatable values.
3583- ``s``: An integer constant, but allowing *only* relocatable values.
3584- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3585 useful to pass a label for an asm branch or call.
3586
3587 .. FIXME: but that surely isn't actually okay to jump out of an asm
3588 block without telling llvm about the control transfer???)
3589
3590- ``{register-name}``: Requires exactly the named physical register.
3591
3592Other constraints are target-specific:
3593
3594AArch64:
3595
3596- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3597- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3598 i.e. 0 to 4095 with optional shift by 12.
3599- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3600 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3601- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3602 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3603- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3604 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3605- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3606 32-bit register. This is a superset of ``K``: in addition to the bitmask
3607 immediate, also allows immediate integers which can be loaded with a single
3608 ``MOVZ`` or ``MOVL`` instruction.
3609- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3610 64-bit register. This is a superset of ``L``.
3611- ``Q``: Memory address operand must be in a single register (no
3612 offsets). (However, LLVM currently does this for the ``m`` constraint as
3613 well.)
3614- ``r``: A 32 or 64-bit integer register (W* or X*).
3615- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3616- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3617
3618AMDGPU:
3619
3620- ``r``: A 32 or 64-bit integer register.
3621- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3622- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3623
3624
3625All ARM modes:
3626
3627- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3628 operand. Treated the same as operand ``m``, at the moment.
3629
3630ARM and ARM's Thumb2 mode:
3631
3632- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3633- ``I``: An immediate integer valid for a data-processing instruction.
3634- ``J``: An immediate integer between -4095 and 4095.
3635- ``K``: An immediate integer whose bitwise inverse is valid for a
3636 data-processing instruction. (Can be used with template modifier "``B``" to
3637 print the inverted value).
3638- ``L``: An immediate integer whose negation is valid for a data-processing
3639 instruction. (Can be used with template modifier "``n``" to print the negated
3640 value).
3641- ``M``: A power of two or a integer between 0 and 32.
3642- ``N``: Invalid immediate constraint.
3643- ``O``: Invalid immediate constraint.
3644- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3645- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3646 as ``r``.
3647- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3648 invalid.
3649- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3650 ``d0-d31``, or ``q0-q15``.
3651- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3652 ``d0-d7``, or ``q0-q3``.
3653- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3654 ``s0-s31``.
3655
3656ARM's Thumb1 mode:
3657
3658- ``I``: An immediate integer between 0 and 255.
3659- ``J``: An immediate integer between -255 and -1.
3660- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3661 some amount.
3662- ``L``: An immediate integer between -7 and 7.
3663- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3664- ``N``: An immediate integer between 0 and 31.
3665- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3666- ``r``: A low 32-bit GPR register (``r0-r7``).
3667- ``l``: A low 32-bit GPR register (``r0-r7``).
3668- ``h``: A high GPR register (``r0-r7``).
3669- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3670 ``d0-d31``, or ``q0-q15``.
3671- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3672 ``d0-d7``, or ``q0-q3``.
3673- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3674 ``s0-s31``.
3675
3676
3677Hexagon:
3678
3679- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3680 at the moment.
3681- ``r``: A 32 or 64-bit register.
3682
3683MSP430:
3684
3685- ``r``: An 8 or 16-bit register.
3686
3687MIPS:
3688
3689- ``I``: An immediate signed 16-bit integer.
3690- ``J``: An immediate integer zero.
3691- ``K``: An immediate unsigned 16-bit integer.
3692- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3693- ``N``: An immediate integer between -65535 and -1.
3694- ``O``: An immediate signed 15-bit integer.
3695- ``P``: An immediate integer between 1 and 65535.
3696- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3697 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3698- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3699 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3700 ``m``.
3701- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3702 ``sc`` instruction on the given subtarget (details vary).
3703- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3704- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003705 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3706 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003707- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3708 ``25``).
3709- ``l``: The ``lo`` register, 32 or 64-bit.
3710- ``x``: Invalid.
3711
3712NVPTX:
3713
3714- ``b``: A 1-bit integer register.
3715- ``c`` or ``h``: A 16-bit integer register.
3716- ``r``: A 32-bit integer register.
3717- ``l`` or ``N``: A 64-bit integer register.
3718- ``f``: A 32-bit float register.
3719- ``d``: A 64-bit float register.
3720
3721
3722PowerPC:
3723
3724- ``I``: An immediate signed 16-bit integer.
3725- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3726- ``K``: An immediate unsigned 16-bit integer.
3727- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3728- ``M``: An immediate integer greater than 31.
3729- ``N``: An immediate integer that is an exact power of 2.
3730- ``O``: The immediate integer constant 0.
3731- ``P``: An immediate integer constant whose negation is a signed 16-bit
3732 constant.
3733- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3734 treated the same as ``m``.
3735- ``r``: A 32 or 64-bit integer register.
3736- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3737 ``R1-R31``).
3738- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3739 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3740- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3741 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3742 altivec vector register (``V0-V31``).
3743
3744 .. FIXME: is this a bug that v accepts QPX registers? I think this
3745 is supposed to only use the altivec vector registers?
3746
3747- ``y``: Condition register (``CR0-CR7``).
3748- ``wc``: An individual CR bit in a CR register.
3749- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3750 register set (overlapping both the floating-point and vector register files).
3751- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3752 set.
3753
3754Sparc:
3755
3756- ``I``: An immediate 13-bit signed integer.
3757- ``r``: A 32-bit integer register.
James Y Knightd4e1b002017-05-12 15:59:10 +00003758- ``f``: Any floating-point register on SparcV8, or a floating point
3759 register in the "low" half of the registers on SparcV9.
3760- ``e``: Any floating point register. (Same as ``f`` on SparcV8.)
James Y Knightbc832ed2015-07-08 18:08:36 +00003761
3762SystemZ:
3763
3764- ``I``: An immediate unsigned 8-bit integer.
3765- ``J``: An immediate unsigned 12-bit integer.
3766- ``K``: An immediate signed 16-bit integer.
3767- ``L``: An immediate signed 20-bit integer.
3768- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003769- ``Q``: A memory address operand with a base address and a 12-bit immediate
3770 unsigned displacement.
3771- ``R``: A memory address operand with a base address, a 12-bit immediate
3772 unsigned displacement, and an index register.
3773- ``S``: A memory address operand with a base address and a 20-bit immediate
3774 signed displacement.
3775- ``T``: A memory address operand with a base address, a 20-bit immediate
3776 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003777- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3778- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3779 address context evaluates as zero).
3780- ``h``: A 32-bit value in the high part of a 64bit data register
3781 (LLVM-specific)
3782- ``f``: A 32, 64, or 128-bit floating point register.
3783
3784X86:
3785
3786- ``I``: An immediate integer between 0 and 31.
3787- ``J``: An immediate integer between 0 and 64.
3788- ``K``: An immediate signed 8-bit integer.
3789- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3790 0xffffffff.
3791- ``M``: An immediate integer between 0 and 3.
3792- ``N``: An immediate unsigned 8-bit integer.
3793- ``O``: An immediate integer between 0 and 127.
3794- ``e``: An immediate 32-bit signed integer.
3795- ``Z``: An immediate 32-bit unsigned integer.
3796- ``o``, ``v``: Treated the same as ``m``, at the moment.
3797- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3798 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3799 registers, and on X86-64, it is all of the integer registers.
3800- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3801 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3802- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3803- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3804 existed since i386, and can be accessed without the REX prefix.
3805- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3806- ``y``: A 64-bit MMX register, if MMX is enabled.
3807- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3808 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3809 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3810 512-bit vector operand in an AVX512 register, Otherwise, an error.
3811- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3812- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3813 32-bit mode, a 64-bit integer operand will get split into two registers). It
3814 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3815 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3816 you're better off splitting it yourself, before passing it to the asm
3817 statement.
3818
3819XCore:
3820
3821- ``r``: A 32-bit integer register.
3822
3823
3824.. _inline-asm-modifiers:
3825
3826Asm template argument modifiers
3827^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3828
3829In the asm template string, modifiers can be used on the operand reference, like
3830"``${0:n}``".
3831
3832The modifiers are, in general, expected to behave the same way they do in
3833GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3834inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3835and GCC likely indicates a bug in LLVM.
3836
3837Target-independent:
3838
Sean Silvaa1190322015-08-06 22:56:48 +00003839- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003840 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3841- ``n``: Negate and print immediate integer constant unadorned, without the
3842 target-specific immediate punctuation (e.g. no ``$`` prefix).
3843- ``l``: Print as an unadorned label, without the target-specific label
3844 punctuation (e.g. no ``$`` prefix).
3845
3846AArch64:
3847
3848- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3849 instead of ``x30``, print ``w30``.
3850- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3851- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3852 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3853 ``v*``.
3854
3855AMDGPU:
3856
3857- ``r``: No effect.
3858
3859ARM:
3860
3861- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3862 register).
3863- ``P``: No effect.
3864- ``q``: No effect.
3865- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3866 as ``d4[1]`` instead of ``s9``)
3867- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3868 prefix.
3869- ``L``: Print the low 16-bits of an immediate integer constant.
3870- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3871 register operands subsequent to the specified one (!), so use carefully.
3872- ``Q``: Print the low-order register of a register-pair, or the low-order
3873 register of a two-register operand.
3874- ``R``: Print the high-order register of a register-pair, or the high-order
3875 register of a two-register operand.
3876- ``H``: Print the second register of a register-pair. (On a big-endian system,
3877 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3878 to ``R``.)
3879
3880 .. FIXME: H doesn't currently support printing the second register
3881 of a two-register operand.
3882
3883- ``e``: Print the low doubleword register of a NEON quad register.
3884- ``f``: Print the high doubleword register of a NEON quad register.
3885- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3886 adornment.
3887
3888Hexagon:
3889
3890- ``L``: Print the second register of a two-register operand. Requires that it
3891 has been allocated consecutively to the first.
3892
3893 .. FIXME: why is it restricted to consecutive ones? And there's
3894 nothing that ensures that happens, is there?
3895
3896- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3897 nothing. Used to print 'addi' vs 'add' instructions.
3898
3899MSP430:
3900
3901No additional modifiers.
3902
3903MIPS:
3904
3905- ``X``: Print an immediate integer as hexadecimal
3906- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3907- ``d``: Print an immediate integer as decimal.
3908- ``m``: Subtract one and print an immediate integer as decimal.
3909- ``z``: Print $0 if an immediate zero, otherwise print normally.
3910- ``L``: Print the low-order register of a two-register operand, or prints the
3911 address of the low-order word of a double-word memory operand.
3912
3913 .. FIXME: L seems to be missing memory operand support.
3914
3915- ``M``: Print the high-order register of a two-register operand, or prints the
3916 address of the high-order word of a double-word memory operand.
3917
3918 .. FIXME: M seems to be missing memory operand support.
3919
3920- ``D``: Print the second register of a two-register operand, or prints the
3921 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3922 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3923 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003924- ``w``: No effect. Provided for compatibility with GCC which requires this
3925 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3926 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003927
3928NVPTX:
3929
3930- ``r``: No effect.
3931
3932PowerPC:
3933
3934- ``L``: Print the second register of a two-register operand. Requires that it
3935 has been allocated consecutively to the first.
3936
3937 .. FIXME: why is it restricted to consecutive ones? And there's
3938 nothing that ensures that happens, is there?
3939
3940- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3941 nothing. Used to print 'addi' vs 'add' instructions.
3942- ``y``: For a memory operand, prints formatter for a two-register X-form
3943 instruction. (Currently always prints ``r0,OPERAND``).
3944- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3945 otherwise. (NOTE: LLVM does not support update form, so this will currently
3946 always print nothing)
3947- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3948 not support indexed form, so this will currently always print nothing)
3949
3950Sparc:
3951
3952- ``r``: No effect.
3953
3954SystemZ:
3955
3956SystemZ implements only ``n``, and does *not* support any of the other
3957target-independent modifiers.
3958
3959X86:
3960
3961- ``c``: Print an unadorned integer or symbol name. (The latter is
3962 target-specific behavior for this typically target-independent modifier).
3963- ``A``: Print a register name with a '``*``' before it.
3964- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3965 operand.
3966- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3967 memory operand.
3968- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3969 operand.
3970- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3971 operand.
3972- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3973 available, otherwise the 32-bit register name; do nothing on a memory operand.
3974- ``n``: Negate and print an unadorned integer, or, for operands other than an
3975 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3976 the operand. (The behavior for relocatable symbol expressions is a
3977 target-specific behavior for this typically target-independent modifier)
3978- ``H``: Print a memory reference with additional offset +8.
3979- ``P``: Print a memory reference or operand for use as the argument of a call
3980 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3981
3982XCore:
3983
3984No additional modifiers.
3985
3986
Sean Silvab084af42012-12-07 10:36:55 +00003987Inline Asm Metadata
3988^^^^^^^^^^^^^^^^^^^
3989
3990The call instructions that wrap inline asm nodes may have a
3991"``!srcloc``" MDNode attached to it that contains a list of constant
3992integers. If present, the code generator will use the integer as the
3993location cookie value when report errors through the ``LLVMContext``
3994error reporting mechanisms. This allows a front-end to correlate backend
3995errors that occur with inline asm back to the source code that produced
3996it. For example:
3997
3998.. code-block:: llvm
3999
4000 call void asm sideeffect "something bad", ""(), !srcloc !42
4001 ...
4002 !42 = !{ i32 1234567 }
4003
4004It is up to the front-end to make sense of the magic numbers it places
4005in the IR. If the MDNode contains multiple constants, the code generator
4006will use the one that corresponds to the line of the asm that the error
4007occurs on.
4008
4009.. _metadata:
4010
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004011Metadata
4012========
Sean Silvab084af42012-12-07 10:36:55 +00004013
4014LLVM IR allows metadata to be attached to instructions in the program
4015that can convey extra information about the code to the optimizers and
4016code generator. One example application of metadata is source-level
4017debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004018
Sean Silvaa1190322015-08-06 22:56:48 +00004019Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004020``call`` instruction, it uses the ``metadata`` type.
4021
4022All metadata are identified in syntax by a exclamation point ('``!``').
4023
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004024.. _metadata-string:
4025
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004026Metadata Nodes and Metadata Strings
4027-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00004028
4029A metadata string is a string surrounded by double quotes. It can
4030contain any character by escaping non-printable characters with
4031"``\xx``" where "``xx``" is the two digit hex code. For example:
4032"``!"test\00"``".
4033
4034Metadata nodes are represented with notation similar to structure
4035constants (a comma separated list of elements, surrounded by braces and
4036preceded by an exclamation point). Metadata nodes can have any values as
4037their operand. For example:
4038
4039.. code-block:: llvm
4040
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004041 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00004042
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004043Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
4044
Renato Golin124f2592016-07-20 12:16:38 +00004045.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004046
4047 !0 = distinct !{!"test\00", i32 10}
4048
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004049``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00004050content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004051when metadata operands change.
4052
Sean Silvab084af42012-12-07 10:36:55 +00004053A :ref:`named metadata <namedmetadatastructure>` is a collection of
4054metadata nodes, which can be looked up in the module symbol table. For
4055example:
4056
4057.. code-block:: llvm
4058
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004059 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00004060
Adrian Prantl1b842da2017-07-28 20:44:29 +00004061Metadata can be used as function arguments. Here the ``llvm.dbg.value``
4062intrinsic is using three metadata arguments:
Sean Silvab084af42012-12-07 10:36:55 +00004063
4064.. code-block:: llvm
4065
Adrian Prantlabe04752017-07-28 20:21:02 +00004066 call void @llvm.dbg.value(metadata !24, metadata !25, metadata !26)
Sean Silvab084af42012-12-07 10:36:55 +00004067
Peter Collingbourne50108682015-11-06 02:41:02 +00004068Metadata can be attached to an instruction. Here metadata ``!21`` is attached
4069to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00004070
4071.. code-block:: llvm
4072
4073 %indvar.next = add i64 %indvar, 1, !dbg !21
4074
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004075Metadata can also be attached to a function or a global variable. Here metadata
4076``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
4077and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00004078
4079.. code-block:: llvm
4080
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004081 declare !dbg !22 void @f1()
4082 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00004083 ret void
4084 }
4085
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004086 @g1 = global i32 0, !dbg !22
4087 @g2 = external global i32, !dbg !22
4088
4089A transformation is required to drop any metadata attachment that it does not
4090know or know it can't preserve. Currently there is an exception for metadata
4091attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
4092unconditionally dropped unless the global is itself deleted.
4093
4094Metadata attached to a module using named metadata may not be dropped, with
4095the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
4096
Sean Silvab084af42012-12-07 10:36:55 +00004097More information about specific metadata nodes recognized by the
4098optimizers and code generator is found below.
4099
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004100.. _specialized-metadata:
4101
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004102Specialized Metadata Nodes
4103^^^^^^^^^^^^^^^^^^^^^^^^^^
4104
4105Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00004106to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004107order.
4108
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004109These aren't inherently debug info centric, but currently all the specialized
4110metadata nodes are related to debug info.
4111
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004112.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004113
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004114DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004115"""""""""""""
4116
Sean Silvaa1190322015-08-06 22:56:48 +00004117``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004118``retainedTypes:``, ``globals:``, ``imports:`` and ``macros:`` fields are tuples
4119containing the debug info to be emitted along with the compile unit, regardless
4120of code optimizations (some nodes are only emitted if there are references to
4121them from instructions). The ``debugInfoForProfiling:`` field is a boolean
4122indicating whether or not line-table discriminators are updated to provide
4123more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004124
Renato Golin124f2592016-07-20 12:16:38 +00004125.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004126
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004127 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004128 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004129 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004130 enums: !2, retainedTypes: !3, globals: !4, imports: !5,
4131 macros: !6, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004132
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004133Compile unit descriptors provide the root scope for objects declared in a
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004134specific compilation unit. File descriptors are defined using this scope. These
4135descriptors are collected by a named metadata node ``!llvm.dbg.cu``. They keep
4136track of global variables, type information, and imported entities (declarations
4137and namespaces).
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004138
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004139.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004140
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004141DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004142""""""
4143
Sean Silvaa1190322015-08-06 22:56:48 +00004144``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004145
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004146.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004147
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004148 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4149 checksumkind: CSK_MD5,
4150 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004151
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004152Files are sometimes used in ``scope:`` fields, and are the only valid target
4153for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004154Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004155
Michael Kuperstein605308a2015-05-14 10:58:59 +00004156.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004157
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004158DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004159"""""""""""
4160
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004161``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004162``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004163
Renato Golin124f2592016-07-20 12:16:38 +00004164.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004165
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004166 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004167 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004168 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004169
Sean Silvaa1190322015-08-06 22:56:48 +00004170The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004171following:
4172
Renato Golin124f2592016-07-20 12:16:38 +00004173.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004174
4175 DW_ATE_address = 1
4176 DW_ATE_boolean = 2
4177 DW_ATE_float = 4
4178 DW_ATE_signed = 5
4179 DW_ATE_signed_char = 6
4180 DW_ATE_unsigned = 7
4181 DW_ATE_unsigned_char = 8
4182
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004183.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004184
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004185DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004186""""""""""""""""
4187
Sean Silvaa1190322015-08-06 22:56:48 +00004188``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004189refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004190types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004191represents a function with no return value (such as ``void foo() {}`` in C++).
4192
Renato Golin124f2592016-07-20 12:16:38 +00004193.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004194
4195 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4196 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004197 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004198
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004199.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004200
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004201DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004202"""""""""""""
4203
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004204``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004205qualified types.
4206
Renato Golin124f2592016-07-20 12:16:38 +00004207.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004208
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004209 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004210 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004211 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004212 align: 32)
4213
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004214The following ``tag:`` values are valid:
4215
Renato Golin124f2592016-07-20 12:16:38 +00004216.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004217
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004218 DW_TAG_member = 13
4219 DW_TAG_pointer_type = 15
4220 DW_TAG_reference_type = 16
4221 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004222 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004223 DW_TAG_ptr_to_member_type = 31
4224 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004225 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004226 DW_TAG_volatile_type = 53
4227 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004228 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004229
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004230.. _DIDerivedTypeMember:
4231
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004232``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004233<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004234``offset:`` is the member's bit offset. If the composite type has an ODR
4235``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4236uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004237
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004238``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4239field of :ref:`composite types <DICompositeType>` to describe parents and
4240friends.
4241
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004242``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4243
4244``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004245``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4246are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004247
4248Note that the ``void *`` type is expressed as a type derived from NULL.
4249
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004250.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004251
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004252DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004253"""""""""""""""
4254
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004255``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004256structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004257
4258If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004259identifier used for type merging between modules. When specified,
4260:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4261derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4262``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004263
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004264For a given ``identifier:``, there should only be a single composite type that
4265does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4266together will unique such definitions at parse time via the ``identifier:``
4267field, even if the nodes are ``distinct``.
4268
Renato Golin124f2592016-07-20 12:16:38 +00004269.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004270
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004271 !0 = !DIEnumerator(name: "SixKind", value: 7)
4272 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4273 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4274 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004275 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4276 elements: !{!0, !1, !2})
4277
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004278The following ``tag:`` values are valid:
4279
Renato Golin124f2592016-07-20 12:16:38 +00004280.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004281
4282 DW_TAG_array_type = 1
4283 DW_TAG_class_type = 2
4284 DW_TAG_enumeration_type = 4
4285 DW_TAG_structure_type = 19
4286 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004287
4288For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004289descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004290level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004291array type is a native packed vector.
4292
4293For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004294descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004295value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004296``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004297
4298For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4299``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004300<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4301``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4302``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004303
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004304.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004305
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004306DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004307""""""""""
4308
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004309``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004310:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004311
4312.. code-block:: llvm
4313
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004314 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4315 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4316 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004317
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004318.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004319
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004320DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004321""""""""""""
4322
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004323``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4324variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004325
4326.. code-block:: llvm
4327
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004328 !0 = !DIEnumerator(name: "SixKind", value: 7)
4329 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4330 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004331
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004332DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004333"""""""""""""""""""""""
4334
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004335``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004336language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004337:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004338
4339.. code-block:: llvm
4340
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004341 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004342
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004343DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004344""""""""""""""""""""""""
4345
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004346``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004347language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004348but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004349``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004350:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004351
4352.. code-block:: llvm
4353
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004354 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004355
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004356DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004357"""""""""""
4358
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004359``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004360
4361.. code-block:: llvm
4362
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004363 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004364
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004365DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004366""""""""""""""""
4367
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004368``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004369
4370.. code-block:: llvm
4371
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004372 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004373 file: !2, line: 7, type: !3, isLocal: true,
4374 isDefinition: false, variable: i32* @foo,
4375 declaration: !4)
4376
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004377All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004378:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004379
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004380.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004381
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004382DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004383""""""""""""
4384
Peter Collingbourne50108682015-11-06 02:41:02 +00004385``DISubprogram`` nodes represent functions from the source language. A
4386``DISubprogram`` may be attached to a function definition using ``!dbg``
4387metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4388that must be retained, even if their IR counterparts are optimized out of
4389the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004390
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004391.. _DISubprogramDeclaration:
4392
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004393When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004394tree as opposed to a definition of a function. If the scope is a composite
4395type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4396then the subprogram declaration is uniqued based only on its ``linkageName:``
4397and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004398
Renato Golin124f2592016-07-20 12:16:38 +00004399.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004400
Peter Collingbourne50108682015-11-06 02:41:02 +00004401 define void @_Z3foov() !dbg !0 {
4402 ...
4403 }
4404
4405 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4406 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004407 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004408 containingType: !4,
4409 virtuality: DW_VIRTUALITY_pure_virtual,
4410 virtualIndex: 10, flags: DIFlagPrototyped,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004411 isOptimized: true, unit: !5, templateParams: !6,
4412 declaration: !7, variables: !8, thrownTypes: !9)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004413
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004414.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004415
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004416DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004417""""""""""""""
4418
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004419``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004420<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004421two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004422fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004423
Renato Golin124f2592016-07-20 12:16:38 +00004424.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004425
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004426 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004427
4428Usually lexical blocks are ``distinct`` to prevent node merging based on
4429operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004430
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004431.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004432
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004433DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004434""""""""""""""""""
4435
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004436``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004437:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004438indicate textual inclusion, or the ``discriminator:`` field can be used to
4439discriminate between control flow within a single block in the source language.
4440
4441.. code-block:: llvm
4442
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004443 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4444 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4445 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004446
Michael Kuperstein605308a2015-05-14 10:58:59 +00004447.. _DILocation:
4448
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004449DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004450""""""""""
4451
Sean Silvaa1190322015-08-06 22:56:48 +00004452``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004453mandatory, and points at an :ref:`DILexicalBlockFile`, an
4454:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004455
4456.. code-block:: llvm
4457
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004458 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004459
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004460.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004461
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004462DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004463"""""""""""""""
4464
Sean Silvaa1190322015-08-06 22:56:48 +00004465``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004466the ``arg:`` field is set to non-zero, then this variable is a subprogram
4467parameter, and it will be included in the ``variables:`` field of its
4468:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004469
Renato Golin124f2592016-07-20 12:16:38 +00004470.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004471
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004472 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4473 type: !3, flags: DIFlagArtificial)
4474 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4475 type: !3)
4476 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004477
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004478DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004479""""""""""""
4480
Adrian Prantlb44c7762017-03-22 18:01:01 +00004481``DIExpression`` nodes represent expressions that are inspired by the DWARF
4482expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
4483(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
4484referenced LLVM variable relates to the source language variable.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004485
4486The current supported vocabulary is limited:
4487
Adrian Prantl6825fb62017-04-18 01:21:53 +00004488- ``DW_OP_deref`` dereferences the top of the expression stack.
Florian Hahnffc498d2017-06-14 13:14:38 +00004489- ``DW_OP_plus`` pops the last two entries from the expression stack, adds
4490 them together and appends the result to the expression stack.
4491- ``DW_OP_minus`` pops the last two entries from the expression stack, subtracts
4492 the last entry from the second last entry and appends the result to the
4493 expression stack.
Florian Hahnc9c403c2017-06-13 16:54:44 +00004494- ``DW_OP_plus_uconst, 93`` adds ``93`` to the working expression.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004495- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
4496 here, respectively) of the variable fragment from the working expression. Note
Hiroshi Inoue760c0c92018-01-16 13:19:48 +00004497 that contrary to DW_OP_bit_piece, the offset is describing the location
Adrian Prantlb44c7762017-03-22 18:01:01 +00004498 within the described source variable.
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004499- ``DW_OP_swap`` swaps top two stack entries.
4500- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
4501 of the stack is treated as an address. The second stack entry is treated as an
4502 address space identifier.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004503- ``DW_OP_stack_value`` marks a constant value.
4504
Adrian Prantl6825fb62017-04-18 01:21:53 +00004505DWARF specifies three kinds of simple location descriptions: Register, memory,
4506and implicit location descriptions. Register and memory location descriptions
4507describe the *location* of a source variable (in the sense that a debugger might
4508modify its value), whereas implicit locations describe merely the *value* of a
4509source variable. DIExpressions also follow this model: A DIExpression that
4510doesn't have a trailing ``DW_OP_stack_value`` will describe an *address* when
4511combined with a concrete location.
4512
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004513.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004514
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004515 !0 = !DIExpression(DW_OP_deref)
Florian Hahnc9c403c2017-06-13 16:54:44 +00004516 !1 = !DIExpression(DW_OP_plus_uconst, 3)
Florian Hahnffc498d2017-06-14 13:14:38 +00004517 !1 = !DIExpression(DW_OP_constu, 3, DW_OP_plus)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004518 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
Florian Hahnffc498d2017-06-14 13:14:38 +00004519 !3 = !DIExpression(DW_OP_deref, DW_OP_constu, 3, DW_OP_plus, DW_OP_LLVM_fragment, 3, 7)
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004520 !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004521 !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004522
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004523DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004524""""""""""""""
4525
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004526``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004527
4528.. code-block:: llvm
4529
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004530 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004531 getter: "getFoo", attributes: 7, type: !2)
4532
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004533DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004534""""""""""""""""
4535
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004536``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004537compile unit.
4538
Renato Golin124f2592016-07-20 12:16:38 +00004539.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004540
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004541 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004542 entity: !1, line: 7)
4543
Amjad Abouda9bcf162015-12-10 12:56:35 +00004544DIMacro
4545"""""""
4546
4547``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4548The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004549defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004550used to expand the macro identifier.
4551
Renato Golin124f2592016-07-20 12:16:38 +00004552.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004553
4554 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4555 value: "((x) + 1)")
4556 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4557
4558DIMacroFile
4559"""""""""""
4560
4561``DIMacroFile`` nodes represent inclusion of source files.
4562The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4563appear in the included source file.
4564
Renato Golin124f2592016-07-20 12:16:38 +00004565.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004566
4567 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4568 nodes: !3)
4569
Sean Silvab084af42012-12-07 10:36:55 +00004570'``tbaa``' Metadata
4571^^^^^^^^^^^^^^^^^^^
4572
4573In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004574suitable for doing type based alias analysis (TBAA). Instead, metadata is
4575added to the IR to describe a type system of a higher level language. This
4576can be used to implement C/C++ strict type aliasing rules, but it can also
4577be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004578
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004579This description of LLVM's TBAA system is broken into two parts:
4580:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4581:ref:`Representation<tbaa_node_representation>` talks about the metadata
4582encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004583
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004584It is always possible to trace any TBAA node to a "root" TBAA node (details
4585in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4586nodes with different roots have an unknown aliasing relationship, and LLVM
4587conservatively infers ``MayAlias`` between them. The rules mentioned in
4588this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004589
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004590.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004591
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004592Semantics
4593"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004594
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004595The TBAA metadata system, referred to as "struct path TBAA" (not to be
4596confused with ``tbaa.struct``), consists of the following high level
4597concepts: *Type Descriptors*, further subdivided into scalar type
4598descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004599
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004600**Type descriptors** describe the type system of the higher level language
4601being compiled. **Scalar type descriptors** describe types that do not
4602contain other types. Each scalar type has a parent type, which must also
4603be a scalar type or the TBAA root. Via this parent relation, scalar types
4604within a TBAA root form a tree. **Struct type descriptors** denote types
4605that contain a sequence of other type descriptors, at known offsets. These
4606contained type descriptors can either be struct type descriptors themselves
4607or scalar type descriptors.
4608
4609**Access tags** are metadata nodes attached to load and store instructions.
4610Access tags use type descriptors to describe the *location* being accessed
4611in terms of the type system of the higher level language. Access tags are
4612tuples consisting of a base type, an access type and an offset. The base
4613type is a scalar type descriptor or a struct type descriptor, the access
4614type is a scalar type descriptor, and the offset is a constant integer.
4615
4616The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4617things:
4618
4619 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4620 or store) of a value of type ``AccessTy`` contained in the struct type
4621 ``BaseTy`` at offset ``Offset``.
4622
4623 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4624 ``AccessTy`` must be the same; and the access tag describes a scalar
4625 access with scalar type ``AccessTy``.
4626
4627We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4628tuples this way:
4629
4630 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4631 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4632 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4633 undefined if ``Offset`` is non-zero.
4634
4635 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4636 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4637 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4638 to be relative within that inner type.
4639
4640A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4641aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4642Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4643Offset2)`` via the ``Parent`` relation or vice versa.
4644
4645As a concrete example, the type descriptor graph for the following program
4646
4647.. code-block:: c
4648
4649 struct Inner {
4650 int i; // offset 0
4651 float f; // offset 4
4652 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004653
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004654 struct Outer {
4655 float f; // offset 0
4656 double d; // offset 4
4657 struct Inner inner_a; // offset 12
4658 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004659
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004660 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4661 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4662 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
4663 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, IntScalarTy, 16)
4664 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4665 }
4666
4667is (note that in C and C++, ``char`` can be used to access any arbitrary
4668type):
4669
4670.. code-block:: text
4671
4672 Root = "TBAA Root"
4673 CharScalarTy = ("char", Root, 0)
4674 FloatScalarTy = ("float", CharScalarTy, 0)
4675 DoubleScalarTy = ("double", CharScalarTy, 0)
4676 IntScalarTy = ("int", CharScalarTy, 0)
4677 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4678 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4679 (InnerStructTy, 12)}
4680
4681
4682with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
46830)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4684``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4685
4686.. _tbaa_node_representation:
4687
4688Representation
4689""""""""""""""
4690
4691The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4692with exactly one ``MDString`` operand.
4693
4694Scalar type descriptors are represented as an ``MDNode`` s with two
4695operands. The first operand is an ``MDString`` denoting the name of the
4696struct type. LLVM does not assign meaning to the value of this operand, it
4697only cares about it being an ``MDString``. The second operand is an
4698``MDNode`` which points to the parent for said scalar type descriptor,
4699which is either another scalar type descriptor or the TBAA root. Scalar
4700type descriptors can have an optional third argument, but that must be the
4701constant integer zero.
4702
4703Struct type descriptors are represented as ``MDNode`` s with an odd number
4704of operands greater than 1. The first operand is an ``MDString`` denoting
4705the name of the struct type. Like in scalar type descriptors the actual
4706value of this name operand is irrelevant to LLVM. After the name operand,
4707the struct type descriptors have a sequence of alternating ``MDNode`` and
4708``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4709an ``MDNode``, denotes a contained field, and the 2N th operand, a
4710``ConstantInt``, is the offset of the said contained field. The offsets
4711must be in non-decreasing order.
4712
4713Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4714The first operand is an ``MDNode`` pointing to the node representing the
4715base type. The second operand is an ``MDNode`` pointing to the node
4716representing the access type. The third operand is a ``ConstantInt`` that
4717states the offset of the access. If a fourth field is present, it must be
4718a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4719that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004720``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004721AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4722the access type and the base type of an access tag must be the same, and
4723that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004724
4725'``tbaa.struct``' Metadata
4726^^^^^^^^^^^^^^^^^^^^^^^^^^
4727
4728The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4729aggregate assignment operations in C and similar languages, however it
4730is defined to copy a contiguous region of memory, which is more than
4731strictly necessary for aggregate types which contain holes due to
4732padding. Also, it doesn't contain any TBAA information about the fields
4733of the aggregate.
4734
4735``!tbaa.struct`` metadata can describe which memory subregions in a
4736memcpy are padding and what the TBAA tags of the struct are.
4737
4738The current metadata format is very simple. ``!tbaa.struct`` metadata
4739nodes are a list of operands which are in conceptual groups of three.
4740For each group of three, the first operand gives the byte offset of a
4741field in bytes, the second gives its size in bytes, and the third gives
4742its tbaa tag. e.g.:
4743
4744.. code-block:: llvm
4745
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004746 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004747
4748This describes a struct with two fields. The first is at offset 0 bytes
4749with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4750and has size 4 bytes and has tbaa tag !2.
4751
4752Note that the fields need not be contiguous. In this example, there is a
47534 byte gap between the two fields. This gap represents padding which
4754does not carry useful data and need not be preserved.
4755
Hal Finkel94146652014-07-24 14:25:39 +00004756'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004757^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004758
4759``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4760noalias memory-access sets. This means that some collection of memory access
4761instructions (loads, stores, memory-accessing calls, etc.) that carry
4762``noalias`` metadata can specifically be specified not to alias with some other
4763collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004764Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004765a domain.
4766
4767When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004768of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004769subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004770instruction's ``noalias`` list, then the two memory accesses are assumed not to
4771alias.
Hal Finkel94146652014-07-24 14:25:39 +00004772
Adam Nemet569a5b32016-04-27 00:52:48 +00004773Because scopes in one domain don't affect scopes in other domains, separate
4774domains can be used to compose multiple independent noalias sets. This is
4775used for example during inlining. As the noalias function parameters are
4776turned into noalias scope metadata, a new domain is used every time the
4777function is inlined.
4778
Hal Finkel029cde62014-07-25 15:50:02 +00004779The metadata identifying each domain is itself a list containing one or two
4780entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004781string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004782self-reference can be used to create globally unique domain names. A
4783descriptive string may optionally be provided as a second list entry.
4784
4785The metadata identifying each scope is also itself a list containing two or
4786three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004787is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004788self-reference can be used to create globally unique scope names. A metadata
4789reference to the scope's domain is the second entry. A descriptive string may
4790optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004791
4792For example,
4793
4794.. code-block:: llvm
4795
Hal Finkel029cde62014-07-25 15:50:02 +00004796 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004797 !0 = !{!0}
4798 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004799
Hal Finkel029cde62014-07-25 15:50:02 +00004800 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004801 !2 = !{!2, !0}
4802 !3 = !{!3, !0}
4803 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004804
Hal Finkel029cde62014-07-25 15:50:02 +00004805 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004806 !5 = !{!4} ; A list containing only scope !4
4807 !6 = !{!4, !3, !2}
4808 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004809
4810 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004811 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004812 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004813
Hal Finkel029cde62014-07-25 15:50:02 +00004814 ; These two instructions also don't alias (for domain !1, the set of scopes
4815 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004816 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004817 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004818
Adam Nemet0a8416f2015-05-11 08:30:28 +00004819 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004820 ; the !noalias list is not a superset of, or equal to, the scopes in the
4821 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004822 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004823 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004824
Sean Silvab084af42012-12-07 10:36:55 +00004825'``fpmath``' Metadata
4826^^^^^^^^^^^^^^^^^^^^^
4827
4828``fpmath`` metadata may be attached to any instruction of floating point
4829type. It can be used to express the maximum acceptable error in the
4830result of that instruction, in ULPs, thus potentially allowing the
4831compiler to use a more efficient but less accurate method of computing
4832it. ULP is defined as follows:
4833
4834 If ``x`` is a real number that lies between two finite consecutive
4835 floating-point numbers ``a`` and ``b``, without being equal to one
4836 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4837 distance between the two non-equal finite floating-point numbers
4838 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4839
Matt Arsenault82f41512016-06-27 19:43:15 +00004840The metadata node shall consist of a single positive float type number
4841representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004842
4843.. code-block:: llvm
4844
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004845 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004846
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004847.. _range-metadata:
4848
Sean Silvab084af42012-12-07 10:36:55 +00004849'``range``' Metadata
4850^^^^^^^^^^^^^^^^^^^^
4851
Jingyue Wu37fcb592014-06-19 16:50:16 +00004852``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4853integer types. It expresses the possible ranges the loaded value or the value
4854returned by the called function at this call site is in. The ranges are
4855represented with a flattened list of integers. The loaded value or the value
4856returned is known to be in the union of the ranges defined by each consecutive
4857pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004858
4859- The type must match the type loaded by the instruction.
4860- The pair ``a,b`` represents the range ``[a,b)``.
4861- Both ``a`` and ``b`` are constants.
4862- The range is allowed to wrap.
4863- The range should not represent the full or empty set. That is,
4864 ``a!=b``.
4865
4866In addition, the pairs must be in signed order of the lower bound and
4867they must be non-contiguous.
4868
4869Examples:
4870
4871.. code-block:: llvm
4872
David Blaikiec7aabbb2015-03-04 22:06:14 +00004873 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4874 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004875 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4876 %d = invoke i8 @bar() to label %cont
4877 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004878 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004879 !0 = !{ i8 0, i8 2 }
4880 !1 = !{ i8 255, i8 2 }
4881 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4882 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004883
Peter Collingbourne235c2752016-12-08 19:01:00 +00004884'``absolute_symbol``' Metadata
4885^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4886
4887``absolute_symbol`` metadata may be attached to a global variable
4888declaration. It marks the declaration as a reference to an absolute symbol,
4889which causes the backend to use absolute relocations for the symbol even
4890in position independent code, and expresses the possible ranges that the
4891global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00004892``range`` metadata, with the extension that the pair ``all-ones,all-ones``
4893may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00004894
Peter Collingbourned88f9282017-01-20 21:56:37 +00004895Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00004896
4897.. code-block:: llvm
4898
4899 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00004900 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00004901
4902 ...
4903 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00004904 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00004905
Matthew Simpson36bbc8c2017-10-16 22:22:11 +00004906'``callees``' Metadata
4907^^^^^^^^^^^^^^^^^^^^^^
4908
4909``callees`` metadata may be attached to indirect call sites. If ``callees``
4910metadata is attached to a call site, and any callee is not among the set of
4911functions provided by the metadata, the behavior is undefined. The intent of
4912this metadata is to facilitate optimizations such as indirect-call promotion.
4913For example, in the code below, the call instruction may only target the
4914``add`` or ``sub`` functions:
4915
4916.. code-block:: llvm
4917
4918 %result = call i64 %binop(i64 %x, i64 %y), !callees !0
4919
4920 ...
4921 !0 = !{i64 (i64, i64)* @add, i64 (i64, i64)* @sub}
4922
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004923'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004924^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004925
4926``unpredictable`` metadata may be attached to any branch or switch
4927instruction. It can be used to express the unpredictability of control
4928flow. Similar to the llvm.expect intrinsic, it may be used to alter
4929optimizations related to compare and branch instructions. The metadata
4930is treated as a boolean value; if it exists, it signals that the branch
4931or switch that it is attached to is completely unpredictable.
4932
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004933'``llvm.loop``'
4934^^^^^^^^^^^^^^^
4935
4936It is sometimes useful to attach information to loop constructs. Currently,
4937loop metadata is implemented as metadata attached to the branch instruction
4938in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004939guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004940specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004941
4942The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004943itself to avoid merging it with any other identifier metadata, e.g.,
4944during module linkage or function inlining. That is, each loop should refer
4945to their own identification metadata even if they reside in separate functions.
4946The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004947constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004948
4949.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004950
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004951 !0 = !{!0}
4952 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004953
Mark Heffernan893752a2014-07-18 19:24:51 +00004954The loop identifier metadata can be used to specify additional
4955per-loop metadata. Any operands after the first operand can be treated
4956as user-defined metadata. For example the ``llvm.loop.unroll.count``
4957suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004958
Paul Redmond5fdf8362013-05-28 20:00:34 +00004959.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004960
Paul Redmond5fdf8362013-05-28 20:00:34 +00004961 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4962 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004963 !0 = !{!0, !1}
4964 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004965
Mark Heffernan9d20e422014-07-21 23:11:03 +00004966'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4967^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004968
Mark Heffernan9d20e422014-07-21 23:11:03 +00004969Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4970used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004971vectorization width and interleave count. These metadata should be used in
4972conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004973``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4974optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004975it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004976which contains information about loop-carried memory dependencies can be helpful
4977in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004978
Mark Heffernan9d20e422014-07-21 23:11:03 +00004979'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004980^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4981
Mark Heffernan9d20e422014-07-21 23:11:03 +00004982This metadata suggests an interleave count to the loop interleaver.
4983The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004984second operand is an integer specifying the interleave count. For
4985example:
4986
4987.. code-block:: llvm
4988
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004989 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004990
Mark Heffernan9d20e422014-07-21 23:11:03 +00004991Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004992multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004993then the interleave count will be determined automatically.
4994
4995'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004996^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004997
4998This metadata selectively enables or disables vectorization for the loop. The
4999first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00005000is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000050010 disables vectorization:
5002
5003.. code-block:: llvm
5004
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005005 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
5006 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00005007
5008'``llvm.loop.vectorize.width``' Metadata
5009^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5010
5011This metadata sets the target width of the vectorizer. The first
5012operand is the string ``llvm.loop.vectorize.width`` and the second
5013operand is an integer specifying the width. For example:
5014
5015.. code-block:: llvm
5016
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005017 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005018
5019Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00005020vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000050210 or if the loop does not have this metadata the width will be
5022determined automatically.
5023
5024'``llvm.loop.unroll``'
5025^^^^^^^^^^^^^^^^^^^^^^
5026
5027Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
5028optimization hints such as the unroll factor. ``llvm.loop.unroll``
5029metadata should be used in conjunction with ``llvm.loop`` loop
5030identification metadata. The ``llvm.loop.unroll`` metadata are only
5031optimization hints and the unrolling will only be performed if the
5032optimizer believes it is safe to do so.
5033
Mark Heffernan893752a2014-07-18 19:24:51 +00005034'``llvm.loop.unroll.count``' Metadata
5035^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5036
5037This metadata suggests an unroll factor to the loop unroller. The
5038first operand is the string ``llvm.loop.unroll.count`` and the second
5039operand is a positive integer specifying the unroll factor. For
5040example:
5041
5042.. code-block:: llvm
5043
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005044 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005045
5046If the trip count of the loop is less than the unroll count the loop
5047will be partially unrolled.
5048
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005049'``llvm.loop.unroll.disable``' Metadata
5050^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5051
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005052This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00005053which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005054
5055.. code-block:: llvm
5056
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005057 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005058
Kevin Qin715b01e2015-03-09 06:14:18 +00005059'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00005060^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00005061
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005062This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00005063operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00005064
5065.. code-block:: llvm
5066
5067 !0 = !{!"llvm.loop.unroll.runtime.disable"}
5068
Mark Heffernan89391542015-08-10 17:28:08 +00005069'``llvm.loop.unroll.enable``' Metadata
5070^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5071
5072This metadata suggests that the loop should be fully unrolled if the trip count
5073is known at compile time and partially unrolled if the trip count is not known
5074at compile time. The metadata has a single operand which is the string
5075``llvm.loop.unroll.enable``. For example:
5076
5077.. code-block:: llvm
5078
5079 !0 = !{!"llvm.loop.unroll.enable"}
5080
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005081'``llvm.loop.unroll.full``' Metadata
5082^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5083
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005084This metadata suggests that the loop should be unrolled fully. The
5085metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005086For example:
5087
5088.. code-block:: llvm
5089
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005090 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005091
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005092'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00005093^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005094
5095This metadata indicates that the loop should not be versioned for the purpose
5096of enabling loop-invariant code motion (LICM). The metadata has a single operand
5097which is the string ``llvm.loop.licm_versioning.disable``. For example:
5098
5099.. code-block:: llvm
5100
5101 !0 = !{!"llvm.loop.licm_versioning.disable"}
5102
Adam Nemetd2fa4142016-04-27 05:28:18 +00005103'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00005104^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00005105
5106Loop distribution allows splitting a loop into multiple loops. Currently,
5107this is only performed if the entire loop cannot be vectorized due to unsafe
Hiroshi Inoueb93daec2017-07-02 12:44:27 +00005108memory dependencies. The transformation will attempt to isolate the unsafe
Adam Nemetd2fa4142016-04-27 05:28:18 +00005109dependencies into their own loop.
5110
5111This metadata can be used to selectively enable or disable distribution of the
5112loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
5113second operand is a bit. If the bit operand value is 1 distribution is
5114enabled. A value of 0 disables distribution:
5115
5116.. code-block:: llvm
5117
5118 !0 = !{!"llvm.loop.distribute.enable", i1 0}
5119 !1 = !{!"llvm.loop.distribute.enable", i1 1}
5120
5121This metadata should be used in conjunction with ``llvm.loop`` loop
5122identification metadata.
5123
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005124'``llvm.mem``'
5125^^^^^^^^^^^^^^^
5126
5127Metadata types used to annotate memory accesses with information helpful
5128for optimizations are prefixed with ``llvm.mem``.
5129
5130'``llvm.mem.parallel_loop_access``' Metadata
5131^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5132
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005133The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
5134or metadata containing a list of loop identifiers for nested loops.
5135The metadata is attached to memory accessing instructions and denotes that
5136no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00005137with the same loop identifier. The metadata on memory reads also implies that
5138if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005139
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005140Precisely, given two instructions ``m1`` and ``m2`` that both have the
5141``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
5142set of loops associated with that metadata, respectively, then there is no loop
5143carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005144``L2``.
5145
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005146As a special case, if all memory accessing instructions in a loop have
5147``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
5148loop has no loop carried memory dependences and is considered to be a parallel
5149loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005150
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005151Note that if not all memory access instructions have such metadata referring to
5152the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00005153memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005154safe mechanism, this causes loops that were originally parallel to be considered
5155sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005156insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005157
5158Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00005159both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005160metadata types that refer to the same loop identifier metadata.
5161
5162.. code-block:: llvm
5163
5164 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005165 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005166 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005167 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005168 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005169 ...
5170 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005171
5172 for.end:
5173 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005174 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005175
5176It is also possible to have nested parallel loops. In that case the
5177memory accesses refer to a list of loop identifier metadata nodes instead of
5178the loop identifier metadata node directly:
5179
5180.. code-block:: llvm
5181
5182 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005183 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005184 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005185 ...
5186 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005187
5188 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005189 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005190 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005191 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005192 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005193 ...
5194 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005195
5196 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005197 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005198 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00005199 ...
5200 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005201
5202 outer.for.end: ; preds = %for.body
5203 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005204 !0 = !{!1, !2} ; a list of loop identifiers
5205 !1 = !{!1} ; an identifier for the inner loop
5206 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005207
Hiroshi Yamauchidce9def2017-11-02 22:26:51 +00005208'``irr_loop``' Metadata
5209^^^^^^^^^^^^^^^^^^^^^^^
5210
5211``irr_loop`` metadata may be attached to the terminator instruction of a basic
5212block that's an irreducible loop header (note that an irreducible loop has more
5213than once header basic blocks.) If ``irr_loop`` metadata is attached to the
5214terminator instruction of a basic block that is not really an irreducible loop
5215header, the behavior is undefined. The intent of this metadata is to improve the
5216accuracy of the block frequency propagation. For example, in the code below, the
5217block ``header0`` may have a loop header weight (relative to the other headers of
5218the irreducible loop) of 100:
5219
5220.. code-block:: llvm
5221
5222 header0:
5223 ...
5224 br i1 %cmp, label %t1, label %t2, !irr_loop !0
5225
5226 ...
5227 !0 = !{"loop_header_weight", i64 100}
5228
5229Irreducible loop header weights are typically based on profile data.
5230
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005231'``invariant.group``' Metadata
5232^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5233
5234The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005235The existence of the ``invariant.group`` metadata on the instruction tells
5236the optimizer that every ``load`` and ``store`` to the same pointer operand
5237within the same invariant group can be assumed to load or store the same
5238value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005239when two pointers are considered the same). Pointers returned by bitcast or
5240getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005241
5242Examples:
5243
5244.. code-block:: llvm
5245
5246 @unknownPtr = external global i8
5247 ...
5248 %ptr = alloca i8
5249 store i8 42, i8* %ptr, !invariant.group !0
5250 call void @foo(i8* %ptr)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005251
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005252 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5253 call void @foo(i8* %ptr)
5254 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005255
5256 %newPtr = call i8* @getPointer(i8* %ptr)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005257 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005258
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005259 %unknownValue = load i8, i8* @unknownPtr
5260 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005261
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005262 call void @foo(i8* %ptr)
5263 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
5264 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005265
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005266 ...
5267 declare void @foo(i8*)
5268 declare i8* @getPointer(i8*)
5269 declare i8* @llvm.invariant.group.barrier(i8*)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005270
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005271 !0 = !{!"magic ptr"}
5272 !1 = !{!"other ptr"}
5273
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005274The invariant.group metadata must be dropped when replacing one pointer by
5275another based on aliasing information. This is because invariant.group is tied
5276to the SSA value of the pointer operand.
5277
5278.. code-block:: llvm
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005279
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005280 %v = load i8, i8* %x, !invariant.group !0
5281 ; if %x mustalias %y then we can replace the above instruction with
5282 %v = load i8, i8* %y
5283
5284
Peter Collingbournea333db82016-07-26 22:31:30 +00005285'``type``' Metadata
5286^^^^^^^^^^^^^^^^^^^
5287
5288See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005289
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005290'``associated``' Metadata
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005291^^^^^^^^^^^^^^^^^^^^^^^^^
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005292
5293The ``associated`` metadata may be attached to a global object
5294declaration with a single argument that references another global object.
5295
5296This metadata prevents discarding of the global object in linker GC
5297unless the referenced object is also discarded. The linker support for
5298this feature is spotty. For best compatibility, globals carrying this
5299metadata may also:
5300
5301- Be in a comdat with the referenced global.
5302- Be in @llvm.compiler.used.
5303- Have an explicit section with a name which is a valid C identifier.
5304
5305It does not have any effect on non-ELF targets.
5306
5307Example:
5308
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005309.. code-block:: text
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005310
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005311 $a = comdat any
5312 @a = global i32 1, comdat $a
5313 @b = internal global i32 2, comdat $a, section "abc", !associated !0
5314 !0 = !{i32* @a}
5315
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005316
Teresa Johnsond72f51c2017-06-15 15:57:12 +00005317'``prof``' Metadata
5318^^^^^^^^^^^^^^^^^^^
5319
5320The ``prof`` metadata is used to record profile data in the IR.
5321The first operand of the metadata node indicates the profile metadata
5322type. There are currently 3 types:
5323:ref:`branch_weights<prof_node_branch_weights>`,
5324:ref:`function_entry_count<prof_node_function_entry_count>`, and
5325:ref:`VP<prof_node_VP>`.
5326
5327.. _prof_node_branch_weights:
5328
5329branch_weights
5330""""""""""""""
5331
5332Branch weight metadata attached to a branch, select, switch or call instruction
5333represents the likeliness of the associated branch being taken.
5334For more information, see :doc:`BranchWeightMetadata`.
5335
5336.. _prof_node_function_entry_count:
5337
5338function_entry_count
5339""""""""""""""""""""
5340
5341Function entry count metadata can be attached to function definitions
5342to record the number of times the function is called. Used with BFI
5343information, it is also used to derive the basic block profile count.
5344For more information, see :doc:`BranchWeightMetadata`.
5345
5346.. _prof_node_VP:
5347
5348VP
5349""
5350
5351VP (value profile) metadata can be attached to instructions that have
5352value profile information. Currently this is indirect calls (where it
5353records the hottest callees) and calls to memory intrinsics such as memcpy,
5354memmove, and memset (where it records the hottest byte lengths).
5355
5356Each VP metadata node contains "VP" string, then a uint32_t value for the value
5357profiling kind, a uint64_t value for the total number of times the instruction
5358is executed, followed by uint64_t value and execution count pairs.
5359The value profiling kind is 0 for indirect call targets and 1 for memory
5360operations. For indirect call targets, each profile value is a hash
5361of the callee function name, and for memory operations each value is the
5362byte length.
5363
5364Note that the value counts do not need to add up to the total count
5365listed in the third operand (in practice only the top hottest values
5366are tracked and reported).
5367
5368Indirect call example:
5369
5370.. code-block:: llvm
5371
5372 call void %f(), !prof !1
5373 !1 = !{!"VP", i32 0, i64 1600, i64 7651369219802541373, i64 1030, i64 -4377547752858689819, i64 410}
5374
5375Note that the VP type is 0 (the second operand), which indicates this is
5376an indirect call value profile data. The third operand indicates that the
5377indirect call executed 1600 times. The 4th and 6th operands give the
5378hashes of the 2 hottest target functions' names (this is the same hash used
5379to represent function names in the profile database), and the 5th and 7th
5380operands give the execution count that each of the respective prior target
5381functions was called.
5382
Sean Silvab084af42012-12-07 10:36:55 +00005383Module Flags Metadata
5384=====================
5385
5386Information about the module as a whole is difficult to convey to LLVM's
5387subsystems. The LLVM IR isn't sufficient to transmit this information.
5388The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005389this. These flags are in the form of key / value pairs --- much like a
5390dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005391look it up.
5392
5393The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5394Each triplet has the following form:
5395
5396- The first element is a *behavior* flag, which specifies the behavior
5397 when two (or more) modules are merged together, and it encounters two
5398 (or more) metadata with the same ID. The supported behaviors are
5399 described below.
5400- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005401 metadata. Each module may only have one flag entry for each unique ID (not
5402 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005403- The third element is the value of the flag.
5404
5405When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005406``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5407each unique metadata ID string, there will be exactly one entry in the merged
5408modules ``llvm.module.flags`` metadata table, and the value for that entry will
5409be determined by the merge behavior flag, as described below. The only exception
5410is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005411
5412The following behaviors are supported:
5413
5414.. list-table::
5415 :header-rows: 1
5416 :widths: 10 90
5417
5418 * - Value
5419 - Behavior
5420
5421 * - 1
5422 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005423 Emits an error if two values disagree, otherwise the resulting value
5424 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005425
5426 * - 2
5427 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005428 Emits a warning if two values disagree. The result value will be the
5429 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005430
5431 * - 3
5432 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005433 Adds a requirement that another module flag be present and have a
5434 specified value after linking is performed. The value must be a
5435 metadata pair, where the first element of the pair is the ID of the
5436 module flag to be restricted, and the second element of the pair is
5437 the value the module flag should be restricted to. This behavior can
5438 be used to restrict the allowable results (via triggering of an
5439 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005440
5441 * - 4
5442 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005443 Uses the specified value, regardless of the behavior or value of the
5444 other module. If both modules specify **Override**, but the values
5445 differ, an error will be emitted.
5446
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005447 * - 5
5448 - **Append**
5449 Appends the two values, which are required to be metadata nodes.
5450
5451 * - 6
5452 - **AppendUnique**
5453 Appends the two values, which are required to be metadata
5454 nodes. However, duplicate entries in the second list are dropped
5455 during the append operation.
5456
Steven Wu86a511e2017-08-15 16:16:33 +00005457 * - 7
5458 - **Max**
5459 Takes the max of the two values, which are required to be integers.
5460
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005461It is an error for a particular unique flag ID to have multiple behaviors,
5462except in the case of **Require** (which adds restrictions on another metadata
5463value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005464
5465An example of module flags:
5466
5467.. code-block:: llvm
5468
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005469 !0 = !{ i32 1, !"foo", i32 1 }
5470 !1 = !{ i32 4, !"bar", i32 37 }
5471 !2 = !{ i32 2, !"qux", i32 42 }
5472 !3 = !{ i32 3, !"qux",
5473 !{
5474 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005475 }
5476 }
5477 !llvm.module.flags = !{ !0, !1, !2, !3 }
5478
5479- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5480 if two or more ``!"foo"`` flags are seen is to emit an error if their
5481 values are not equal.
5482
5483- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5484 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005485 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005486
5487- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5488 behavior if two or more ``!"qux"`` flags are seen is to emit a
5489 warning if their values are not equal.
5490
5491- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5492
5493 ::
5494
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005495 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005496
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005497 The behavior is to emit an error if the ``llvm.module.flags`` does not
5498 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5499 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005500
5501Objective-C Garbage Collection Module Flags Metadata
5502----------------------------------------------------
5503
5504On the Mach-O platform, Objective-C stores metadata about garbage
5505collection in a special section called "image info". The metadata
5506consists of a version number and a bitmask specifying what types of
5507garbage collection are supported (if any) by the file. If two or more
5508modules are linked together their garbage collection metadata needs to
5509be merged rather than appended together.
5510
5511The Objective-C garbage collection module flags metadata consists of the
5512following key-value pairs:
5513
5514.. list-table::
5515 :header-rows: 1
5516 :widths: 30 70
5517
5518 * - Key
5519 - Value
5520
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005521 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005522 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005523
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005524 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005525 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005526 always 0.
5527
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005528 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005529 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005530 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5531 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5532 Objective-C ABI version 2.
5533
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005534 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005535 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005536 not. Valid values are 0, for no garbage collection, and 2, for garbage
5537 collection supported.
5538
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005539 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005540 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005541 If present, its value must be 6. This flag requires that the
5542 ``Objective-C Garbage Collection`` flag have the value 2.
5543
5544Some important flag interactions:
5545
5546- If a module with ``Objective-C Garbage Collection`` set to 0 is
5547 merged with a module with ``Objective-C Garbage Collection`` set to
5548 2, then the resulting module has the
5549 ``Objective-C Garbage Collection`` flag set to 0.
5550- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5551 merged with a module with ``Objective-C GC Only`` set to 6.
5552
Oliver Stannard5dc29342014-06-20 10:08:11 +00005553C type width Module Flags Metadata
5554----------------------------------
5555
5556The ARM backend emits a section into each generated object file describing the
5557options that it was compiled with (in a compiler-independent way) to prevent
5558linking incompatible objects, and to allow automatic library selection. Some
5559of these options are not visible at the IR level, namely wchar_t width and enum
5560width.
5561
5562To pass this information to the backend, these options are encoded in module
5563flags metadata, using the following key-value pairs:
5564
5565.. list-table::
5566 :header-rows: 1
5567 :widths: 30 70
5568
5569 * - Key
5570 - Value
5571
5572 * - short_wchar
5573 - * 0 --- sizeof(wchar_t) == 4
5574 * 1 --- sizeof(wchar_t) == 2
5575
5576 * - short_enum
5577 - * 0 --- Enums are at least as large as an ``int``.
5578 * 1 --- Enums are stored in the smallest integer type which can
5579 represent all of its values.
5580
5581For example, the following metadata section specifies that the module was
5582compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5583enum is the smallest type which can represent all of its values::
5584
5585 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005586 !0 = !{i32 1, !"short_wchar", i32 1}
5587 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005588
Peter Collingbourne89061b22017-06-12 20:10:48 +00005589Automatic Linker Flags Named Metadata
5590=====================================
5591
5592Some targets support embedding flags to the linker inside individual object
5593files. Typically this is used in conjunction with language extensions which
5594allow source files to explicitly declare the libraries they depend on, and have
5595these automatically be transmitted to the linker via object files.
5596
5597These flags are encoded in the IR using named metadata with the name
5598``!llvm.linker.options``. Each operand is expected to be a metadata node
5599which should be a list of other metadata nodes, each of which should be a
5600list of metadata strings defining linker options.
5601
5602For example, the following metadata section specifies two separate sets of
5603linker options, presumably to link against ``libz`` and the ``Cocoa``
5604framework::
5605
5606 !0 = !{ !"-lz" },
5607 !1 = !{ !"-framework", !"Cocoa" } } }
5608 !llvm.linker.options = !{ !0, !1 }
5609
5610The metadata encoding as lists of lists of options, as opposed to a collapsed
5611list of options, is chosen so that the IR encoding can use multiple option
5612strings to specify e.g., a single library, while still having that specifier be
5613preserved as an atomic element that can be recognized by a target specific
5614assembly writer or object file emitter.
5615
5616Each individual option is required to be either a valid option for the target's
5617linker, or an option that is reserved by the target specific assembly writer or
5618object file emitter. No other aspect of these options is defined by the IR.
5619
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005620.. _intrinsicglobalvariables:
5621
Sean Silvab084af42012-12-07 10:36:55 +00005622Intrinsic Global Variables
5623==========================
5624
5625LLVM has a number of "magic" global variables that contain data that
5626affect code generation or other IR semantics. These are documented here.
5627All globals of this sort should have a section specified as
5628"``llvm.metadata``". This section and all globals that start with
5629"``llvm.``" are reserved for use by LLVM.
5630
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005631.. _gv_llvmused:
5632
Sean Silvab084af42012-12-07 10:36:55 +00005633The '``llvm.used``' Global Variable
5634-----------------------------------
5635
Rafael Espindola74f2e462013-04-22 14:58:02 +00005636The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005637:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005638pointers to named global variables, functions and aliases which may optionally
5639have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005640use of it is:
5641
5642.. code-block:: llvm
5643
5644 @X = global i8 4
5645 @Y = global i32 123
5646
5647 @llvm.used = appending global [2 x i8*] [
5648 i8* @X,
5649 i8* bitcast (i32* @Y to i8*)
5650 ], section "llvm.metadata"
5651
Rafael Espindola74f2e462013-04-22 14:58:02 +00005652If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5653and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005654symbol that it cannot see (which is why they have to be named). For example, if
5655a variable has internal linkage and no references other than that from the
5656``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5657references from inline asms and other things the compiler cannot "see", and
5658corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005659
5660On some targets, the code generator must emit a directive to the
5661assembler or object file to prevent the assembler and linker from
5662molesting the symbol.
5663
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005664.. _gv_llvmcompilerused:
5665
Sean Silvab084af42012-12-07 10:36:55 +00005666The '``llvm.compiler.used``' Global Variable
5667--------------------------------------------
5668
5669The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5670directive, except that it only prevents the compiler from touching the
5671symbol. On targets that support it, this allows an intelligent linker to
5672optimize references to the symbol without being impeded as it would be
5673by ``@llvm.used``.
5674
5675This is a rare construct that should only be used in rare circumstances,
5676and should not be exposed to source languages.
5677
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005678.. _gv_llvmglobalctors:
5679
Sean Silvab084af42012-12-07 10:36:55 +00005680The '``llvm.global_ctors``' Global Variable
5681-------------------------------------------
5682
5683.. code-block:: llvm
5684
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005685 %0 = type { i32, void ()*, i8* }
5686 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005687
5688The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005689functions, priorities, and an optional associated global or function.
5690The functions referenced by this array will be called in ascending order
5691of priority (i.e. lowest first) when the module is loaded. The order of
5692functions with the same priority is not defined.
5693
5694If the third field is present, non-null, and points to a global variable
5695or function, the initializer function will only run if the associated
5696data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005697
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005698.. _llvmglobaldtors:
5699
Sean Silvab084af42012-12-07 10:36:55 +00005700The '``llvm.global_dtors``' Global Variable
5701-------------------------------------------
5702
5703.. code-block:: llvm
5704
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005705 %0 = type { i32, void ()*, i8* }
5706 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005707
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005708The ``@llvm.global_dtors`` array contains a list of destructor
5709functions, priorities, and an optional associated global or function.
5710The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005711order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005712order of functions with the same priority is not defined.
5713
5714If the third field is present, non-null, and points to a global variable
5715or function, the destructor function will only run if the associated
5716data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005717
5718Instruction Reference
5719=====================
5720
5721The LLVM instruction set consists of several different classifications
5722of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5723instructions <binaryops>`, :ref:`bitwise binary
5724instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5725:ref:`other instructions <otherops>`.
5726
5727.. _terminators:
5728
5729Terminator Instructions
5730-----------------------
5731
5732As mentioned :ref:`previously <functionstructure>`, every basic block in a
5733program ends with a "Terminator" instruction, which indicates which
5734block should be executed after the current block is finished. These
5735terminator instructions typically yield a '``void``' value: they produce
5736control flow, not values (the one exception being the
5737':ref:`invoke <i_invoke>`' instruction).
5738
5739The terminator instructions are: ':ref:`ret <i_ret>`',
5740':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5741':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005742':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005743':ref:`catchret <i_catchret>`',
5744':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005745and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005746
5747.. _i_ret:
5748
5749'``ret``' Instruction
5750^^^^^^^^^^^^^^^^^^^^^
5751
5752Syntax:
5753"""""""
5754
5755::
5756
5757 ret <type> <value> ; Return a value from a non-void function
5758 ret void ; Return from void function
5759
5760Overview:
5761"""""""""
5762
5763The '``ret``' instruction is used to return control flow (and optionally
5764a value) from a function back to the caller.
5765
5766There are two forms of the '``ret``' instruction: one that returns a
5767value and then causes control flow, and one that just causes control
5768flow to occur.
5769
5770Arguments:
5771""""""""""
5772
5773The '``ret``' instruction optionally accepts a single argument, the
5774return value. The type of the return value must be a ':ref:`first
5775class <t_firstclass>`' type.
5776
5777A function is not :ref:`well formed <wellformed>` if it it has a non-void
5778return type and contains a '``ret``' instruction with no return value or
5779a return value with a type that does not match its type, or if it has a
5780void return type and contains a '``ret``' instruction with a return
5781value.
5782
5783Semantics:
5784""""""""""
5785
5786When the '``ret``' instruction is executed, control flow returns back to
5787the calling function's context. If the caller is a
5788":ref:`call <i_call>`" instruction, execution continues at the
5789instruction after the call. If the caller was an
5790":ref:`invoke <i_invoke>`" instruction, execution continues at the
5791beginning of the "normal" destination block. If the instruction returns
5792a value, that value shall set the call or invoke instruction's return
5793value.
5794
5795Example:
5796""""""""
5797
5798.. code-block:: llvm
5799
5800 ret i32 5 ; Return an integer value of 5
5801 ret void ; Return from a void function
5802 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5803
5804.. _i_br:
5805
5806'``br``' Instruction
5807^^^^^^^^^^^^^^^^^^^^
5808
5809Syntax:
5810"""""""
5811
5812::
5813
5814 br i1 <cond>, label <iftrue>, label <iffalse>
5815 br label <dest> ; Unconditional branch
5816
5817Overview:
5818"""""""""
5819
5820The '``br``' instruction is used to cause control flow to transfer to a
5821different basic block in the current function. There are two forms of
5822this instruction, corresponding to a conditional branch and an
5823unconditional branch.
5824
5825Arguments:
5826""""""""""
5827
5828The conditional branch form of the '``br``' instruction takes a single
5829'``i1``' value and two '``label``' values. The unconditional form of the
5830'``br``' instruction takes a single '``label``' value as a target.
5831
5832Semantics:
5833""""""""""
5834
5835Upon execution of a conditional '``br``' instruction, the '``i1``'
5836argument is evaluated. If the value is ``true``, control flows to the
5837'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5838to the '``iffalse``' ``label`` argument.
5839
5840Example:
5841""""""""
5842
5843.. code-block:: llvm
5844
5845 Test:
5846 %cond = icmp eq i32 %a, %b
5847 br i1 %cond, label %IfEqual, label %IfUnequal
5848 IfEqual:
5849 ret i32 1
5850 IfUnequal:
5851 ret i32 0
5852
5853.. _i_switch:
5854
5855'``switch``' Instruction
5856^^^^^^^^^^^^^^^^^^^^^^^^
5857
5858Syntax:
5859"""""""
5860
5861::
5862
5863 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5864
5865Overview:
5866"""""""""
5867
5868The '``switch``' instruction is used to transfer control flow to one of
5869several different places. It is a generalization of the '``br``'
5870instruction, allowing a branch to occur to one of many possible
5871destinations.
5872
5873Arguments:
5874""""""""""
5875
5876The '``switch``' instruction uses three parameters: an integer
5877comparison value '``value``', a default '``label``' destination, and an
5878array of pairs of comparison value constants and '``label``'s. The table
5879is not allowed to contain duplicate constant entries.
5880
5881Semantics:
5882""""""""""
5883
5884The ``switch`` instruction specifies a table of values and destinations.
5885When the '``switch``' instruction is executed, this table is searched
5886for the given value. If the value is found, control flow is transferred
5887to the corresponding destination; otherwise, control flow is transferred
5888to the default destination.
5889
5890Implementation:
5891"""""""""""""""
5892
5893Depending on properties of the target machine and the particular
5894``switch`` instruction, this instruction may be code generated in
5895different ways. For example, it could be generated as a series of
5896chained conditional branches or with a lookup table.
5897
5898Example:
5899""""""""
5900
5901.. code-block:: llvm
5902
5903 ; Emulate a conditional br instruction
5904 %Val = zext i1 %value to i32
5905 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5906
5907 ; Emulate an unconditional br instruction
5908 switch i32 0, label %dest [ ]
5909
5910 ; Implement a jump table:
5911 switch i32 %val, label %otherwise [ i32 0, label %onzero
5912 i32 1, label %onone
5913 i32 2, label %ontwo ]
5914
5915.. _i_indirectbr:
5916
5917'``indirectbr``' Instruction
5918^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5919
5920Syntax:
5921"""""""
5922
5923::
5924
5925 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5926
5927Overview:
5928"""""""""
5929
5930The '``indirectbr``' instruction implements an indirect branch to a
5931label within the current function, whose address is specified by
5932"``address``". Address must be derived from a
5933:ref:`blockaddress <blockaddress>` constant.
5934
5935Arguments:
5936""""""""""
5937
5938The '``address``' argument is the address of the label to jump to. The
5939rest of the arguments indicate the full set of possible destinations
5940that the address may point to. Blocks are allowed to occur multiple
5941times in the destination list, though this isn't particularly useful.
5942
5943This destination list is required so that dataflow analysis has an
5944accurate understanding of the CFG.
5945
5946Semantics:
5947""""""""""
5948
5949Control transfers to the block specified in the address argument. All
5950possible destination blocks must be listed in the label list, otherwise
5951this instruction has undefined behavior. This implies that jumps to
5952labels defined in other functions have undefined behavior as well.
5953
5954Implementation:
5955"""""""""""""""
5956
5957This is typically implemented with a jump through a register.
5958
5959Example:
5960""""""""
5961
5962.. code-block:: llvm
5963
5964 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5965
5966.. _i_invoke:
5967
5968'``invoke``' Instruction
5969^^^^^^^^^^^^^^^^^^^^^^^^
5970
5971Syntax:
5972"""""""
5973
5974::
5975
David Blaikieb83cf102016-07-13 17:21:34 +00005976 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005977 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005978
5979Overview:
5980"""""""""
5981
5982The '``invoke``' instruction causes control to transfer to a specified
5983function, with the possibility of control flow transfer to either the
5984'``normal``' label or the '``exception``' label. If the callee function
5985returns with the "``ret``" instruction, control flow will return to the
5986"normal" label. If the callee (or any indirect callees) returns via the
5987":ref:`resume <i_resume>`" instruction or other exception handling
5988mechanism, control is interrupted and continued at the dynamically
5989nearest "exception" label.
5990
5991The '``exception``' label is a `landing
5992pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5993'``exception``' label is required to have the
5994":ref:`landingpad <i_landingpad>`" instruction, which contains the
5995information about the behavior of the program after unwinding happens,
5996as its first non-PHI instruction. The restrictions on the
5997"``landingpad``" instruction's tightly couples it to the "``invoke``"
5998instruction, so that the important information contained within the
5999"``landingpad``" instruction can't be lost through normal code motion.
6000
6001Arguments:
6002""""""""""
6003
6004This instruction requires several arguments:
6005
6006#. The optional "cconv" marker indicates which :ref:`calling
6007 convention <callingconv>` the call should use. If none is
6008 specified, the call defaults to using C calling conventions.
6009#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6010 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6011 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00006012#. '``ty``': the type of the call instruction itself which is also the
6013 type of the return value. Functions that return no value are marked
6014 ``void``.
6015#. '``fnty``': shall be the signature of the function being invoked. The
6016 argument types must match the types implied by this signature. This
6017 type can be omitted if the function is not varargs.
6018#. '``fnptrval``': An LLVM value containing a pointer to a function to
6019 be invoked. In most cases, this is a direct function invocation, but
6020 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
6021 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00006022#. '``function args``': argument list whose types match the function
6023 signature argument types and parameter attributes. All arguments must
6024 be of :ref:`first class <t_firstclass>` type. If the function signature
6025 indicates the function accepts a variable number of arguments, the
6026 extra arguments can be specified.
6027#. '``normal label``': the label reached when the called function
6028 executes a '``ret``' instruction.
6029#. '``exception label``': the label reached when a callee returns via
6030 the :ref:`resume <i_resume>` instruction or other exception handling
6031 mechanism.
George Burgess IV8a464a72017-04-13 05:00:31 +00006032#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006033#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00006034
6035Semantics:
6036""""""""""
6037
6038This instruction is designed to operate as a standard '``call``'
6039instruction in most regards. The primary difference is that it
6040establishes an association with a label, which is used by the runtime
6041library to unwind the stack.
6042
6043This instruction is used in languages with destructors to ensure that
6044proper cleanup is performed in the case of either a ``longjmp`` or a
6045thrown exception. Additionally, this is important for implementation of
6046'``catch``' clauses in high-level languages that support them.
6047
6048For the purposes of the SSA form, the definition of the value returned
6049by the '``invoke``' instruction is deemed to occur on the edge from the
6050current block to the "normal" label. If the callee unwinds then no
6051return value is available.
6052
6053Example:
6054""""""""
6055
6056.. code-block:: llvm
6057
6058 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006059 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006060 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006061 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006062
6063.. _i_resume:
6064
6065'``resume``' Instruction
6066^^^^^^^^^^^^^^^^^^^^^^^^
6067
6068Syntax:
6069"""""""
6070
6071::
6072
6073 resume <type> <value>
6074
6075Overview:
6076"""""""""
6077
6078The '``resume``' instruction is a terminator instruction that has no
6079successors.
6080
6081Arguments:
6082""""""""""
6083
6084The '``resume``' instruction requires one argument, which must have the
6085same type as the result of any '``landingpad``' instruction in the same
6086function.
6087
6088Semantics:
6089""""""""""
6090
6091The '``resume``' instruction resumes propagation of an existing
6092(in-flight) exception whose unwinding was interrupted with a
6093:ref:`landingpad <i_landingpad>` instruction.
6094
6095Example:
6096""""""""
6097
6098.. code-block:: llvm
6099
6100 resume { i8*, i32 } %exn
6101
David Majnemer8a1c45d2015-12-12 05:38:55 +00006102.. _i_catchswitch:
6103
6104'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00006105^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00006106
6107Syntax:
6108"""""""
6109
6110::
6111
6112 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
6113 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
6114
6115Overview:
6116"""""""""
6117
6118The '``catchswitch``' instruction is used by `LLVM's exception handling system
6119<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
6120that may be executed by the :ref:`EH personality routine <personalityfn>`.
6121
6122Arguments:
6123""""""""""
6124
6125The ``parent`` argument is the token of the funclet that contains the
6126``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
6127this operand may be the token ``none``.
6128
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006129The ``default`` argument is the label of another basic block beginning with
6130either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
6131must be a legal target with respect to the ``parent`` links, as described in
6132the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00006133
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006134The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00006135:ref:`catchpad <i_catchpad>` instruction.
6136
6137Semantics:
6138""""""""""
6139
6140Executing this instruction transfers control to one of the successors in
6141``handlers``, if appropriate, or continues to unwind via the unwind label if
6142present.
6143
6144The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
6145it must be both the first non-phi instruction and last instruction in the basic
6146block. Therefore, it must be the only non-phi instruction in the block.
6147
6148Example:
6149""""""""
6150
Renato Golin124f2592016-07-20 12:16:38 +00006151.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00006152
6153 dispatch1:
6154 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
6155 dispatch2:
6156 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
6157
David Majnemer654e1302015-07-31 17:58:14 +00006158.. _i_catchret:
6159
6160'``catchret``' Instruction
6161^^^^^^^^^^^^^^^^^^^^^^^^^^
6162
6163Syntax:
6164"""""""
6165
6166::
6167
David Majnemer8a1c45d2015-12-12 05:38:55 +00006168 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00006169
6170Overview:
6171"""""""""
6172
6173The '``catchret``' instruction is a terminator instruction that has a
6174single successor.
6175
6176
6177Arguments:
6178""""""""""
6179
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006180The first argument to a '``catchret``' indicates which ``catchpad`` it
6181exits. It must be a :ref:`catchpad <i_catchpad>`.
6182The second argument to a '``catchret``' specifies where control will
6183transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00006184
6185Semantics:
6186""""""""""
6187
David Majnemer8a1c45d2015-12-12 05:38:55 +00006188The '``catchret``' instruction ends an existing (in-flight) exception whose
6189unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
6190:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
6191code to, for example, destroy the active exception. Control then transfers to
6192``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006193
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006194The ``token`` argument must be a token produced by a ``catchpad`` instruction.
6195If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
6196funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6197the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00006198
6199Example:
6200""""""""
6201
Renato Golin124f2592016-07-20 12:16:38 +00006202.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006203
David Majnemer8a1c45d2015-12-12 05:38:55 +00006204 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006205
David Majnemer654e1302015-07-31 17:58:14 +00006206.. _i_cleanupret:
6207
6208'``cleanupret``' Instruction
6209^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6210
6211Syntax:
6212"""""""
6213
6214::
6215
David Majnemer8a1c45d2015-12-12 05:38:55 +00006216 cleanupret from <value> unwind label <continue>
6217 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00006218
6219Overview:
6220"""""""""
6221
6222The '``cleanupret``' instruction is a terminator instruction that has
6223an optional successor.
6224
6225
6226Arguments:
6227""""""""""
6228
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006229The '``cleanupret``' instruction requires one argument, which indicates
6230which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006231If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
6232funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6233the ``cleanupret``'s behavior is undefined.
6234
6235The '``cleanupret``' instruction also has an optional successor, ``continue``,
6236which must be the label of another basic block beginning with either a
6237``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
6238be a legal target with respect to the ``parent`` links, as described in the
6239`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00006240
6241Semantics:
6242""""""""""
6243
6244The '``cleanupret``' instruction indicates to the
6245:ref:`personality function <personalityfn>` that one
6246:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
6247It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006248
David Majnemer654e1302015-07-31 17:58:14 +00006249Example:
6250""""""""
6251
Renato Golin124f2592016-07-20 12:16:38 +00006252.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006253
David Majnemer8a1c45d2015-12-12 05:38:55 +00006254 cleanupret from %cleanup unwind to caller
6255 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00006256
Sean Silvab084af42012-12-07 10:36:55 +00006257.. _i_unreachable:
6258
6259'``unreachable``' Instruction
6260^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6261
6262Syntax:
6263"""""""
6264
6265::
6266
6267 unreachable
6268
6269Overview:
6270"""""""""
6271
6272The '``unreachable``' instruction has no defined semantics. This
6273instruction is used to inform the optimizer that a particular portion of
6274the code is not reachable. This can be used to indicate that the code
6275after a no-return function cannot be reached, and other facts.
6276
6277Semantics:
6278""""""""""
6279
6280The '``unreachable``' instruction has no defined semantics.
6281
6282.. _binaryops:
6283
6284Binary Operations
6285-----------------
6286
6287Binary operators are used to do most of the computation in a program.
6288They require two operands of the same type, execute an operation on
6289them, and produce a single value. The operands might represent multiple
6290data, as is the case with the :ref:`vector <t_vector>` data type. The
6291result value has the same type as its operands.
6292
6293There are several different binary operators:
6294
6295.. _i_add:
6296
6297'``add``' Instruction
6298^^^^^^^^^^^^^^^^^^^^^
6299
6300Syntax:
6301"""""""
6302
6303::
6304
Tim Northover675a0962014-06-13 14:24:23 +00006305 <result> = add <ty> <op1>, <op2> ; yields ty:result
6306 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
6307 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
6308 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006309
6310Overview:
6311"""""""""
6312
6313The '``add``' instruction returns the sum of its two operands.
6314
6315Arguments:
6316""""""""""
6317
6318The two arguments to the '``add``' instruction must be
6319:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6320arguments must have identical types.
6321
6322Semantics:
6323""""""""""
6324
6325The value produced is the integer sum of the two operands.
6326
6327If the sum has unsigned overflow, the result returned is the
6328mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6329the result.
6330
6331Because LLVM integers use a two's complement representation, this
6332instruction is appropriate for both signed and unsigned integers.
6333
6334``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6335respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6336result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
6337unsigned and/or signed overflow, respectively, occurs.
6338
6339Example:
6340""""""""
6341
Renato Golin124f2592016-07-20 12:16:38 +00006342.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006343
Tim Northover675a0962014-06-13 14:24:23 +00006344 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006345
6346.. _i_fadd:
6347
6348'``fadd``' Instruction
6349^^^^^^^^^^^^^^^^^^^^^^
6350
6351Syntax:
6352"""""""
6353
6354::
6355
Tim Northover675a0962014-06-13 14:24:23 +00006356 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006357
6358Overview:
6359"""""""""
6360
6361The '``fadd``' instruction returns the sum of its two operands.
6362
6363Arguments:
6364""""""""""
6365
6366The two arguments to the '``fadd``' instruction must be :ref:`floating
6367point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6368Both arguments must have identical types.
6369
6370Semantics:
6371""""""""""
6372
6373The value produced is the floating point sum of the two operands. This
6374instruction can also take any number of :ref:`fast-math flags <fastmath>`,
6375which are optimization hints to enable otherwise unsafe floating point
6376optimizations:
6377
6378Example:
6379""""""""
6380
Renato Golin124f2592016-07-20 12:16:38 +00006381.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006382
Tim Northover675a0962014-06-13 14:24:23 +00006383 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006384
6385'``sub``' Instruction
6386^^^^^^^^^^^^^^^^^^^^^
6387
6388Syntax:
6389"""""""
6390
6391::
6392
Tim Northover675a0962014-06-13 14:24:23 +00006393 <result> = sub <ty> <op1>, <op2> ; yields ty:result
6394 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
6395 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
6396 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006397
6398Overview:
6399"""""""""
6400
6401The '``sub``' instruction returns the difference of its two operands.
6402
6403Note that the '``sub``' instruction is used to represent the '``neg``'
6404instruction present in most other intermediate representations.
6405
6406Arguments:
6407""""""""""
6408
6409The two arguments to the '``sub``' instruction must be
6410:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6411arguments must have identical types.
6412
6413Semantics:
6414""""""""""
6415
6416The value produced is the integer difference of the two operands.
6417
6418If the difference has unsigned overflow, the result returned is the
6419mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6420the result.
6421
6422Because LLVM integers use a two's complement representation, this
6423instruction is appropriate for both signed and unsigned integers.
6424
6425``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6426respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6427result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
6428unsigned and/or signed overflow, respectively, occurs.
6429
6430Example:
6431""""""""
6432
Renato Golin124f2592016-07-20 12:16:38 +00006433.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006434
Tim Northover675a0962014-06-13 14:24:23 +00006435 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6436 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006437
6438.. _i_fsub:
6439
6440'``fsub``' Instruction
6441^^^^^^^^^^^^^^^^^^^^^^
6442
6443Syntax:
6444"""""""
6445
6446::
6447
Tim Northover675a0962014-06-13 14:24:23 +00006448 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006449
6450Overview:
6451"""""""""
6452
6453The '``fsub``' instruction returns the difference of its two operands.
6454
6455Note that the '``fsub``' instruction is used to represent the '``fneg``'
6456instruction present in most other intermediate representations.
6457
6458Arguments:
6459""""""""""
6460
6461The two arguments to the '``fsub``' instruction must be :ref:`floating
6462point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6463Both arguments must have identical types.
6464
6465Semantics:
6466""""""""""
6467
6468The value produced is the floating point difference of the two operands.
6469This instruction can also take any number of :ref:`fast-math
6470flags <fastmath>`, which are optimization hints to enable otherwise
6471unsafe floating point optimizations:
6472
6473Example:
6474""""""""
6475
Renato Golin124f2592016-07-20 12:16:38 +00006476.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006477
Tim Northover675a0962014-06-13 14:24:23 +00006478 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6479 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006480
6481'``mul``' Instruction
6482^^^^^^^^^^^^^^^^^^^^^
6483
6484Syntax:
6485"""""""
6486
6487::
6488
Tim Northover675a0962014-06-13 14:24:23 +00006489 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6490 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6491 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6492 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006493
6494Overview:
6495"""""""""
6496
6497The '``mul``' instruction returns the product of its two operands.
6498
6499Arguments:
6500""""""""""
6501
6502The two arguments to the '``mul``' instruction must be
6503:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6504arguments must have identical types.
6505
6506Semantics:
6507""""""""""
6508
6509The value produced is the integer product of the two operands.
6510
6511If the result of the multiplication has unsigned overflow, the result
6512returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6513bit width of the result.
6514
6515Because LLVM integers use a two's complement representation, and the
6516result is the same width as the operands, this instruction returns the
6517correct result for both signed and unsigned integers. If a full product
6518(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6519sign-extended or zero-extended as appropriate to the width of the full
6520product.
6521
6522``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6523respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6524result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6525unsigned and/or signed overflow, respectively, occurs.
6526
6527Example:
6528""""""""
6529
Renato Golin124f2592016-07-20 12:16:38 +00006530.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006531
Tim Northover675a0962014-06-13 14:24:23 +00006532 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006533
6534.. _i_fmul:
6535
6536'``fmul``' Instruction
6537^^^^^^^^^^^^^^^^^^^^^^
6538
6539Syntax:
6540"""""""
6541
6542::
6543
Tim Northover675a0962014-06-13 14:24:23 +00006544 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006545
6546Overview:
6547"""""""""
6548
6549The '``fmul``' instruction returns the product of its two operands.
6550
6551Arguments:
6552""""""""""
6553
6554The two arguments to the '``fmul``' instruction must be :ref:`floating
6555point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6556Both arguments must have identical types.
6557
6558Semantics:
6559""""""""""
6560
6561The value produced is the floating point product of the two operands.
6562This instruction can also take any number of :ref:`fast-math
6563flags <fastmath>`, which are optimization hints to enable otherwise
6564unsafe floating point optimizations:
6565
6566Example:
6567""""""""
6568
Renato Golin124f2592016-07-20 12:16:38 +00006569.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006570
Tim Northover675a0962014-06-13 14:24:23 +00006571 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006572
6573'``udiv``' Instruction
6574^^^^^^^^^^^^^^^^^^^^^^
6575
6576Syntax:
6577"""""""
6578
6579::
6580
Tim Northover675a0962014-06-13 14:24:23 +00006581 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6582 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006583
6584Overview:
6585"""""""""
6586
6587The '``udiv``' instruction returns the quotient of its two operands.
6588
6589Arguments:
6590""""""""""
6591
6592The two arguments to the '``udiv``' instruction must be
6593:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6594arguments must have identical types.
6595
6596Semantics:
6597""""""""""
6598
6599The value produced is the unsigned integer quotient of the two operands.
6600
6601Note that unsigned integer division and signed integer division are
6602distinct operations; for signed integer division, use '``sdiv``'.
6603
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006604Division by zero is undefined behavior. For vectors, if any element
6605of the divisor is zero, the operation has undefined behavior.
6606
Sean Silvab084af42012-12-07 10:36:55 +00006607
6608If the ``exact`` keyword is present, the result value of the ``udiv`` is
6609a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6610such, "((a udiv exact b) mul b) == a").
6611
6612Example:
6613""""""""
6614
Renato Golin124f2592016-07-20 12:16:38 +00006615.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006616
Tim Northover675a0962014-06-13 14:24:23 +00006617 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006618
6619'``sdiv``' Instruction
6620^^^^^^^^^^^^^^^^^^^^^^
6621
6622Syntax:
6623"""""""
6624
6625::
6626
Tim Northover675a0962014-06-13 14:24:23 +00006627 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6628 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006629
6630Overview:
6631"""""""""
6632
6633The '``sdiv``' instruction returns the quotient of its two operands.
6634
6635Arguments:
6636""""""""""
6637
6638The two arguments to the '``sdiv``' instruction must be
6639:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6640arguments must have identical types.
6641
6642Semantics:
6643""""""""""
6644
6645The value produced is the signed integer quotient of the two operands
6646rounded towards zero.
6647
6648Note that signed integer division and unsigned integer division are
6649distinct operations; for unsigned integer division, use '``udiv``'.
6650
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006651Division by zero is undefined behavior. For vectors, if any element
6652of the divisor is zero, the operation has undefined behavior.
6653Overflow also leads to undefined behavior; this is a rare case, but can
6654occur, for example, by doing a 32-bit division of -2147483648 by -1.
Sean Silvab084af42012-12-07 10:36:55 +00006655
6656If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6657a :ref:`poison value <poisonvalues>` if the result would be rounded.
6658
6659Example:
6660""""""""
6661
Renato Golin124f2592016-07-20 12:16:38 +00006662.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006663
Tim Northover675a0962014-06-13 14:24:23 +00006664 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006665
6666.. _i_fdiv:
6667
6668'``fdiv``' Instruction
6669^^^^^^^^^^^^^^^^^^^^^^
6670
6671Syntax:
6672"""""""
6673
6674::
6675
Tim Northover675a0962014-06-13 14:24:23 +00006676 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006677
6678Overview:
6679"""""""""
6680
6681The '``fdiv``' instruction returns the quotient of its two operands.
6682
6683Arguments:
6684""""""""""
6685
6686The two arguments to the '``fdiv``' instruction must be :ref:`floating
6687point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6688Both arguments must have identical types.
6689
6690Semantics:
6691""""""""""
6692
6693The value produced is the floating point quotient of the two operands.
6694This instruction can also take any number of :ref:`fast-math
6695flags <fastmath>`, which are optimization hints to enable otherwise
6696unsafe floating point optimizations:
6697
6698Example:
6699""""""""
6700
Renato Golin124f2592016-07-20 12:16:38 +00006701.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006702
Tim Northover675a0962014-06-13 14:24:23 +00006703 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006704
6705'``urem``' Instruction
6706^^^^^^^^^^^^^^^^^^^^^^
6707
6708Syntax:
6709"""""""
6710
6711::
6712
Tim Northover675a0962014-06-13 14:24:23 +00006713 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006714
6715Overview:
6716"""""""""
6717
6718The '``urem``' instruction returns the remainder from the unsigned
6719division of its two arguments.
6720
6721Arguments:
6722""""""""""
6723
6724The two arguments to the '``urem``' instruction must be
6725:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6726arguments must have identical types.
6727
6728Semantics:
6729""""""""""
6730
6731This instruction returns the unsigned integer *remainder* of a division.
6732This instruction always performs an unsigned division to get the
6733remainder.
6734
6735Note that unsigned integer remainder and signed integer remainder are
6736distinct operations; for signed integer remainder, use '``srem``'.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00006737
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006738Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00006739For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006740undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006741
6742Example:
6743""""""""
6744
Renato Golin124f2592016-07-20 12:16:38 +00006745.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006746
Tim Northover675a0962014-06-13 14:24:23 +00006747 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006748
6749'``srem``' Instruction
6750^^^^^^^^^^^^^^^^^^^^^^
6751
6752Syntax:
6753"""""""
6754
6755::
6756
Tim Northover675a0962014-06-13 14:24:23 +00006757 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006758
6759Overview:
6760"""""""""
6761
6762The '``srem``' instruction returns the remainder from the signed
6763division of its two operands. This instruction can also take
6764:ref:`vector <t_vector>` versions of the values in which case the elements
6765must be integers.
6766
6767Arguments:
6768""""""""""
6769
6770The two arguments to the '``srem``' instruction must be
6771:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6772arguments must have identical types.
6773
6774Semantics:
6775""""""""""
6776
6777This instruction returns the *remainder* of a division (where the result
6778is either zero or has the same sign as the dividend, ``op1``), not the
6779*modulo* operator (where the result is either zero or has the same sign
6780as the divisor, ``op2``) of a value. For more information about the
6781difference, see `The Math
6782Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6783table of how this is implemented in various languages, please see
6784`Wikipedia: modulo
6785operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6786
6787Note that signed integer remainder and unsigned integer remainder are
6788distinct operations; for unsigned integer remainder, use '``urem``'.
6789
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006790Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00006791For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006792undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006793Overflow also leads to undefined behavior; this is a rare case, but can
6794occur, for example, by taking the remainder of a 32-bit division of
6795-2147483648 by -1. (The remainder doesn't actually overflow, but this
6796rule lets srem be implemented using instructions that return both the
6797result of the division and the remainder.)
6798
6799Example:
6800""""""""
6801
Renato Golin124f2592016-07-20 12:16:38 +00006802.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006803
Tim Northover675a0962014-06-13 14:24:23 +00006804 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006805
6806.. _i_frem:
6807
6808'``frem``' Instruction
6809^^^^^^^^^^^^^^^^^^^^^^
6810
6811Syntax:
6812"""""""
6813
6814::
6815
Tim Northover675a0962014-06-13 14:24:23 +00006816 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006817
6818Overview:
6819"""""""""
6820
6821The '``frem``' instruction returns the remainder from the division of
6822its two operands.
6823
6824Arguments:
6825""""""""""
6826
6827The two arguments to the '``frem``' instruction must be :ref:`floating
6828point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6829Both arguments must have identical types.
6830
6831Semantics:
6832""""""""""
6833
Sanjay Patel7fb23122017-11-30 14:59:03 +00006834Return the same value as a libm '``fmod``' function but without trapping or
6835setting ``errno``.
6836
6837The remainder has the same sign as the dividend. This instruction can also
6838take any number of :ref:`fast-math flags <fastmath>`, which are optimization
6839hints to enable otherwise unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006840
6841Example:
6842""""""""
6843
Renato Golin124f2592016-07-20 12:16:38 +00006844.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006845
Tim Northover675a0962014-06-13 14:24:23 +00006846 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006847
6848.. _bitwiseops:
6849
6850Bitwise Binary Operations
6851-------------------------
6852
6853Bitwise binary operators are used to do various forms of bit-twiddling
6854in a program. They are generally very efficient instructions and can
6855commonly be strength reduced from other instructions. They require two
6856operands of the same type, execute an operation on them, and produce a
6857single value. The resulting value is the same type as its operands.
6858
6859'``shl``' Instruction
6860^^^^^^^^^^^^^^^^^^^^^
6861
6862Syntax:
6863"""""""
6864
6865::
6866
Tim Northover675a0962014-06-13 14:24:23 +00006867 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6868 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6869 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6870 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006871
6872Overview:
6873"""""""""
6874
6875The '``shl``' instruction returns the first operand shifted to the left
6876a specified number of bits.
6877
6878Arguments:
6879""""""""""
6880
6881Both arguments to the '``shl``' instruction must be the same
6882:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6883'``op2``' is treated as an unsigned value.
6884
6885Semantics:
6886""""""""""
6887
6888The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6889where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006890dynamically) equal to or larger than the number of bits in
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006891``op1``, this instruction returns a :ref:`poison value <poisonvalues>`.
6892If the arguments are vectors, each vector element of ``op1`` is shifted
6893by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006894
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006895If the ``nuw`` keyword is present, then the shift produces a poison
6896value if it shifts out any non-zero bits.
6897If the ``nsw`` keyword is present, then the shift produces a poison
6898value it shifts out any bits that disagree with the resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00006899
6900Example:
6901""""""""
6902
Renato Golin124f2592016-07-20 12:16:38 +00006903.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006904
Tim Northover675a0962014-06-13 14:24:23 +00006905 <result> = shl i32 4, %var ; yields i32: 4 << %var
6906 <result> = shl i32 4, 2 ; yields i32: 16
6907 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006908 <result> = shl i32 1, 32 ; undefined
6909 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6910
6911'``lshr``' Instruction
6912^^^^^^^^^^^^^^^^^^^^^^
6913
6914Syntax:
6915"""""""
6916
6917::
6918
Tim Northover675a0962014-06-13 14:24:23 +00006919 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6920 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006921
6922Overview:
6923"""""""""
6924
6925The '``lshr``' instruction (logical shift right) returns the first
6926operand shifted to the right a specified number of bits with zero fill.
6927
6928Arguments:
6929""""""""""
6930
6931Both arguments to the '``lshr``' instruction must be the same
6932:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6933'``op2``' is treated as an unsigned value.
6934
6935Semantics:
6936""""""""""
6937
6938This instruction always performs a logical shift right operation. The
6939most significant bits of the result will be filled with zero bits after
6940the shift. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006941than the number of bits in ``op1``, this instruction returns a :ref:`poison
6942value <poisonvalues>`. If the arguments are vectors, each vector element
6943of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006944
6945If the ``exact`` keyword is present, the result value of the ``lshr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006946a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00006947
6948Example:
6949""""""""
6950
Renato Golin124f2592016-07-20 12:16:38 +00006951.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006952
Tim Northover675a0962014-06-13 14:24:23 +00006953 <result> = lshr i32 4, 1 ; yields i32:result = 2
6954 <result> = lshr i32 4, 2 ; yields i32:result = 1
6955 <result> = lshr i8 4, 3 ; yields i8:result = 0
6956 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006957 <result> = lshr i32 1, 32 ; undefined
6958 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6959
6960'``ashr``' Instruction
6961^^^^^^^^^^^^^^^^^^^^^^
6962
6963Syntax:
6964"""""""
6965
6966::
6967
Tim Northover675a0962014-06-13 14:24:23 +00006968 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6969 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006970
6971Overview:
6972"""""""""
6973
6974The '``ashr``' instruction (arithmetic shift right) returns the first
6975operand shifted to the right a specified number of bits with sign
6976extension.
6977
6978Arguments:
6979""""""""""
6980
6981Both arguments to the '``ashr``' instruction must be the same
6982:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6983'``op2``' is treated as an unsigned value.
6984
6985Semantics:
6986""""""""""
6987
6988This instruction always performs an arithmetic shift right operation,
6989The most significant bits of the result will be filled with the sign bit
6990of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006991than the number of bits in ``op1``, this instruction returns a :ref:`poison
6992value <poisonvalues>`. If the arguments are vectors, each vector element
6993of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006994
6995If the ``exact`` keyword is present, the result value of the ``ashr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006996a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00006997
6998Example:
6999""""""""
7000
Renato Golin124f2592016-07-20 12:16:38 +00007001.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007002
Tim Northover675a0962014-06-13 14:24:23 +00007003 <result> = ashr i32 4, 1 ; yields i32:result = 2
7004 <result> = ashr i32 4, 2 ; yields i32:result = 1
7005 <result> = ashr i8 4, 3 ; yields i8:result = 0
7006 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00007007 <result> = ashr i32 1, 32 ; undefined
7008 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
7009
7010'``and``' Instruction
7011^^^^^^^^^^^^^^^^^^^^^
7012
7013Syntax:
7014"""""""
7015
7016::
7017
Tim Northover675a0962014-06-13 14:24:23 +00007018 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007019
7020Overview:
7021"""""""""
7022
7023The '``and``' instruction returns the bitwise logical and of its two
7024operands.
7025
7026Arguments:
7027""""""""""
7028
7029The two arguments to the '``and``' instruction must be
7030:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7031arguments must have identical types.
7032
7033Semantics:
7034""""""""""
7035
7036The truth table used for the '``and``' instruction is:
7037
7038+-----+-----+-----+
7039| In0 | In1 | Out |
7040+-----+-----+-----+
7041| 0 | 0 | 0 |
7042+-----+-----+-----+
7043| 0 | 1 | 0 |
7044+-----+-----+-----+
7045| 1 | 0 | 0 |
7046+-----+-----+-----+
7047| 1 | 1 | 1 |
7048+-----+-----+-----+
7049
7050Example:
7051""""""""
7052
Renato Golin124f2592016-07-20 12:16:38 +00007053.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007054
Tim Northover675a0962014-06-13 14:24:23 +00007055 <result> = and i32 4, %var ; yields i32:result = 4 & %var
7056 <result> = and i32 15, 40 ; yields i32:result = 8
7057 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00007058
7059'``or``' Instruction
7060^^^^^^^^^^^^^^^^^^^^
7061
7062Syntax:
7063"""""""
7064
7065::
7066
Tim Northover675a0962014-06-13 14:24:23 +00007067 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007068
7069Overview:
7070"""""""""
7071
7072The '``or``' instruction returns the bitwise logical inclusive or of its
7073two operands.
7074
7075Arguments:
7076""""""""""
7077
7078The two arguments to the '``or``' instruction must be
7079:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7080arguments must have identical types.
7081
7082Semantics:
7083""""""""""
7084
7085The truth table used for the '``or``' instruction is:
7086
7087+-----+-----+-----+
7088| In0 | In1 | Out |
7089+-----+-----+-----+
7090| 0 | 0 | 0 |
7091+-----+-----+-----+
7092| 0 | 1 | 1 |
7093+-----+-----+-----+
7094| 1 | 0 | 1 |
7095+-----+-----+-----+
7096| 1 | 1 | 1 |
7097+-----+-----+-----+
7098
7099Example:
7100""""""""
7101
7102::
7103
Tim Northover675a0962014-06-13 14:24:23 +00007104 <result> = or i32 4, %var ; yields i32:result = 4 | %var
7105 <result> = or i32 15, 40 ; yields i32:result = 47
7106 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00007107
7108'``xor``' Instruction
7109^^^^^^^^^^^^^^^^^^^^^
7110
7111Syntax:
7112"""""""
7113
7114::
7115
Tim Northover675a0962014-06-13 14:24:23 +00007116 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007117
7118Overview:
7119"""""""""
7120
7121The '``xor``' instruction returns the bitwise logical exclusive or of
7122its two operands. The ``xor`` is used to implement the "one's
7123complement" operation, which is the "~" operator in C.
7124
7125Arguments:
7126""""""""""
7127
7128The two arguments to the '``xor``' instruction must be
7129:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7130arguments must have identical types.
7131
7132Semantics:
7133""""""""""
7134
7135The truth table used for the '``xor``' instruction is:
7136
7137+-----+-----+-----+
7138| In0 | In1 | Out |
7139+-----+-----+-----+
7140| 0 | 0 | 0 |
7141+-----+-----+-----+
7142| 0 | 1 | 1 |
7143+-----+-----+-----+
7144| 1 | 0 | 1 |
7145+-----+-----+-----+
7146| 1 | 1 | 0 |
7147+-----+-----+-----+
7148
7149Example:
7150""""""""
7151
Renato Golin124f2592016-07-20 12:16:38 +00007152.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007153
Tim Northover675a0962014-06-13 14:24:23 +00007154 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
7155 <result> = xor i32 15, 40 ; yields i32:result = 39
7156 <result> = xor i32 4, 8 ; yields i32:result = 12
7157 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00007158
7159Vector Operations
7160-----------------
7161
7162LLVM supports several instructions to represent vector operations in a
7163target-independent manner. These instructions cover the element-access
7164and vector-specific operations needed to process vectors effectively.
7165While LLVM does directly support these vector operations, many
7166sophisticated algorithms will want to use target-specific intrinsics to
7167take full advantage of a specific target.
7168
7169.. _i_extractelement:
7170
7171'``extractelement``' Instruction
7172^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7173
7174Syntax:
7175"""""""
7176
7177::
7178
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007179 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00007180
7181Overview:
7182"""""""""
7183
7184The '``extractelement``' instruction extracts a single scalar element
7185from a vector at a specified index.
7186
7187Arguments:
7188""""""""""
7189
7190The first operand of an '``extractelement``' instruction is a value of
7191:ref:`vector <t_vector>` type. The second operand is an index indicating
7192the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007193variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007194
7195Semantics:
7196""""""""""
7197
7198The result is a scalar of the same type as the element type of ``val``.
7199Its value is the value at position ``idx`` of ``val``. If ``idx``
7200exceeds the length of ``val``, the results are undefined.
7201
7202Example:
7203""""""""
7204
Renato Golin124f2592016-07-20 12:16:38 +00007205.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007206
7207 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
7208
7209.. _i_insertelement:
7210
7211'``insertelement``' Instruction
7212^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7213
7214Syntax:
7215"""""""
7216
7217::
7218
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007219 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00007220
7221Overview:
7222"""""""""
7223
7224The '``insertelement``' instruction inserts a scalar element into a
7225vector at a specified index.
7226
7227Arguments:
7228""""""""""
7229
7230The first operand of an '``insertelement``' instruction is a value of
7231:ref:`vector <t_vector>` type. The second operand is a scalar value whose
7232type must equal the element type of the first operand. The third operand
7233is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007234index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007235
7236Semantics:
7237""""""""""
7238
7239The result is a vector of the same type as ``val``. Its element values
7240are those of ``val`` except at position ``idx``, where it gets the value
7241``elt``. If ``idx`` exceeds the length of ``val``, the results are
7242undefined.
7243
7244Example:
7245""""""""
7246
Renato Golin124f2592016-07-20 12:16:38 +00007247.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007248
7249 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
7250
7251.. _i_shufflevector:
7252
7253'``shufflevector``' Instruction
7254^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7255
7256Syntax:
7257"""""""
7258
7259::
7260
7261 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
7262
7263Overview:
7264"""""""""
7265
7266The '``shufflevector``' instruction constructs a permutation of elements
7267from two input vectors, returning a vector with the same element type as
7268the input and length that is the same as the shuffle mask.
7269
7270Arguments:
7271""""""""""
7272
7273The first two operands of a '``shufflevector``' instruction are vectors
7274with the same type. The third argument is a shuffle mask whose element
7275type is always 'i32'. The result of the instruction is a vector whose
7276length is the same as the shuffle mask and whose element type is the
7277same as the element type of the first two operands.
7278
7279The shuffle mask operand is required to be a constant vector with either
7280constant integer or undef values.
7281
7282Semantics:
7283""""""""""
7284
7285The elements of the two input vectors are numbered from left to right
7286across both of the vectors. The shuffle mask operand specifies, for each
7287element of the result vector, which element of the two input vectors the
Sanjay Patel6e410182017-04-12 18:39:53 +00007288result element gets. If the shuffle mask is undef, the result vector is
7289undef. If any element of the mask operand is undef, that element of the
7290result is undef. If the shuffle mask selects an undef element from one
7291of the input vectors, the resulting element is undef.
Sean Silvab084af42012-12-07 10:36:55 +00007292
7293Example:
7294""""""""
7295
Renato Golin124f2592016-07-20 12:16:38 +00007296.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007297
7298 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7299 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
7300 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
7301 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
7302 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
7303 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
7304 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7305 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
7306
7307Aggregate Operations
7308--------------------
7309
7310LLVM supports several instructions for working with
7311:ref:`aggregate <t_aggregate>` values.
7312
7313.. _i_extractvalue:
7314
7315'``extractvalue``' Instruction
7316^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7317
7318Syntax:
7319"""""""
7320
7321::
7322
7323 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
7324
7325Overview:
7326"""""""""
7327
7328The '``extractvalue``' instruction extracts the value of a member field
7329from an :ref:`aggregate <t_aggregate>` value.
7330
7331Arguments:
7332""""""""""
7333
7334The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00007335:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00007336constant indices to specify which value to extract in a similar manner
7337as indices in a '``getelementptr``' instruction.
7338
7339The major differences to ``getelementptr`` indexing are:
7340
7341- Since the value being indexed is not a pointer, the first index is
7342 omitted and assumed to be zero.
7343- At least one index must be specified.
7344- Not only struct indices but also array indices must be in bounds.
7345
7346Semantics:
7347""""""""""
7348
7349The result is the value at the position in the aggregate specified by
7350the index operands.
7351
7352Example:
7353""""""""
7354
Renato Golin124f2592016-07-20 12:16:38 +00007355.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007356
7357 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
7358
7359.. _i_insertvalue:
7360
7361'``insertvalue``' Instruction
7362^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7363
7364Syntax:
7365"""""""
7366
7367::
7368
7369 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
7370
7371Overview:
7372"""""""""
7373
7374The '``insertvalue``' instruction inserts a value into a member field in
7375an :ref:`aggregate <t_aggregate>` value.
7376
7377Arguments:
7378""""""""""
7379
7380The first operand of an '``insertvalue``' instruction is a value of
7381:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
7382a first-class value to insert. The following operands are constant
7383indices indicating the position at which to insert the value in a
7384similar manner as indices in a '``extractvalue``' instruction. The value
7385to insert must have the same type as the value identified by the
7386indices.
7387
7388Semantics:
7389""""""""""
7390
7391The result is an aggregate of the same type as ``val``. Its value is
7392that of ``val`` except that the value at the position specified by the
7393indices is that of ``elt``.
7394
7395Example:
7396""""""""
7397
7398.. code-block:: llvm
7399
7400 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
7401 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00007402 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00007403
7404.. _memoryops:
7405
7406Memory Access and Addressing Operations
7407---------------------------------------
7408
7409A key design point of an SSA-based representation is how it represents
7410memory. In LLVM, no memory locations are in SSA form, which makes things
7411very simple. This section describes how to read, write, and allocate
7412memory in LLVM.
7413
7414.. _i_alloca:
7415
7416'``alloca``' Instruction
7417^^^^^^^^^^^^^^^^^^^^^^^^
7418
7419Syntax:
7420"""""""
7421
7422::
7423
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007424 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result
Sean Silvab084af42012-12-07 10:36:55 +00007425
7426Overview:
7427"""""""""
7428
7429The '``alloca``' instruction allocates memory on the stack frame of the
7430currently executing function, to be automatically released when this
7431function returns to its caller. The object is always allocated in the
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007432address space for allocas indicated in the datalayout.
Sean Silvab084af42012-12-07 10:36:55 +00007433
7434Arguments:
7435""""""""""
7436
7437The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7438bytes of memory on the runtime stack, returning a pointer of the
7439appropriate type to the program. If "NumElements" is specified, it is
7440the number of elements allocated, otherwise "NumElements" is defaulted
7441to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007442allocation is guaranteed to be aligned to at least that boundary. The
7443alignment may not be greater than ``1 << 29``. If not specified, or if
7444zero, the target can choose to align the allocation on any convenient
7445boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007446
7447'``type``' may be any sized type.
7448
7449Semantics:
7450""""""""""
7451
7452Memory is allocated; a pointer is returned. The operation is undefined
7453if there is insufficient stack space for the allocation. '``alloca``'d
7454memory is automatically released when the function returns. The
7455'``alloca``' instruction is commonly used to represent automatic
7456variables that must have an address available. When the function returns
7457(either with the ``ret`` or ``resume`` instructions), the memory is
7458reclaimed. Allocating zero bytes is legal, but the result is undefined.
7459The order in which memory is allocated (ie., which way the stack grows)
7460is not specified.
7461
7462Example:
7463""""""""
7464
7465.. code-block:: llvm
7466
Tim Northover675a0962014-06-13 14:24:23 +00007467 %ptr = alloca i32 ; yields i32*:ptr
7468 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7469 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7470 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007471
7472.. _i_load:
7473
7474'``load``' Instruction
7475^^^^^^^^^^^^^^^^^^^^^^
7476
7477Syntax:
7478"""""""
7479
7480::
7481
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007482 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007483 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007484 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007485 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007486 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007487
7488Overview:
7489"""""""""
7490
7491The '``load``' instruction is used to read from memory.
7492
7493Arguments:
7494""""""""""
7495
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007496The argument to the ``load`` instruction specifies the memory address from which
7497to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7498known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7499the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7500modify the number or order of execution of this ``load`` with other
7501:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007502
JF Bastiend1fb5852015-12-17 22:09:19 +00007503If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007504<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
7505``release`` and ``acq_rel`` orderings are not valid on ``load`` instructions.
7506Atomic loads produce :ref:`defined <memmodel>` results when they may see
7507multiple atomic stores. The type of the pointee must be an integer, pointer, or
7508floating-point type whose bit width is a power of two greater than or equal to
7509eight and less than or equal to a target-specific size limit. ``align`` must be
7510explicitly specified on atomic loads, and the load has undefined behavior if the
7511alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00007512pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007513
7514The optional constant ``align`` argument specifies the alignment of the
7515operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007516or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007517alignment for the target. It is the responsibility of the code emitter
7518to ensure that the alignment information is correct. Overestimating the
7519alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007520may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007521maximum possible alignment is ``1 << 29``. An alignment value higher
7522than the size of the loaded type implies memory up to the alignment
7523value bytes can be safely loaded without trapping in the default
7524address space. Access of the high bytes can interfere with debugging
7525tools, so should not be accessed if the function has the
7526``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007527
7528The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007529metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007530``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007531metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007532that this load is not expected to be reused in the cache. The code
7533generator may select special instructions to save cache bandwidth, such
7534as the ``MOVNT`` instruction on x86.
7535
7536The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007537metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007538entries. If a load instruction tagged with the ``!invariant.load``
7539metadata is executed, the optimizer may assume the memory location
7540referenced by the load contains the same value at all points in the
7541program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007542
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007543The optional ``!invariant.group`` metadata must reference a single metadata name
7544 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7545
Philip Reamescdb72f32014-10-20 22:40:55 +00007546The optional ``!nonnull`` metadata must reference a single
7547metadata name ``<index>`` corresponding to a metadata node with no
7548entries. The existence of the ``!nonnull`` metadata on the
7549instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007550never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007551on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007552to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007553
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007554The optional ``!dereferenceable`` metadata must reference a single metadata
7555name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007556entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007557tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007558The number of bytes known to be dereferenceable is specified by the integer
7559value in the metadata node. This is analogous to the ''dereferenceable''
7560attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007561to loads of a pointer type.
7562
7563The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007564metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7565``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007566instruction tells the optimizer that the value loaded is known to be either
7567dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007568The number of bytes known to be dereferenceable is specified by the integer
7569value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7570attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007571to loads of a pointer type.
7572
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007573The optional ``!align`` metadata must reference a single metadata name
7574``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7575The existence of the ``!align`` metadata on the instruction tells the
7576optimizer that the value loaded is known to be aligned to a boundary specified
7577by the integer value in the metadata node. The alignment must be a power of 2.
7578This is analogous to the ''align'' attribute on parameters and return values.
7579This metadata can only be applied to loads of a pointer type.
7580
Sean Silvab084af42012-12-07 10:36:55 +00007581Semantics:
7582""""""""""
7583
7584The location of memory pointed to is loaded. If the value being loaded
7585is of scalar type then the number of bytes read does not exceed the
7586minimum number of bytes needed to hold all bits of the type. For
7587example, loading an ``i24`` reads at most three bytes. When loading a
7588value of a type like ``i20`` with a size that is not an integral number
7589of bytes, the result is undefined if the value was not originally
7590written using a store of the same type.
7591
7592Examples:
7593"""""""""
7594
7595.. code-block:: llvm
7596
Tim Northover675a0962014-06-13 14:24:23 +00007597 %ptr = alloca i32 ; yields i32*:ptr
7598 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007599 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007600
7601.. _i_store:
7602
7603'``store``' Instruction
7604^^^^^^^^^^^^^^^^^^^^^^^
7605
7606Syntax:
7607"""""""
7608
7609::
7610
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007611 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007612 store atomic [volatile] <ty> <value>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007613
7614Overview:
7615"""""""""
7616
7617The '``store``' instruction is used to write to memory.
7618
7619Arguments:
7620""""""""""
7621
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007622There are two arguments to the ``store`` instruction: a value to store and an
7623address at which to store it. The type of the ``<pointer>`` operand must be a
7624pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7625operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7626allowed to modify the number or order of execution of this ``store`` with other
7627:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7628<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7629structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007630
JF Bastiend1fb5852015-12-17 22:09:19 +00007631If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007632<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
7633``acquire`` and ``acq_rel`` orderings aren't valid on ``store`` instructions.
7634Atomic loads produce :ref:`defined <memmodel>` results when they may see
7635multiple atomic stores. The type of the pointee must be an integer, pointer, or
7636floating-point type whose bit width is a power of two greater than or equal to
7637eight and less than or equal to a target-specific size limit. ``align`` must be
7638explicitly specified on atomic stores, and the store has undefined behavior if
7639the alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00007640pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007641
Eli Benderskyca380842013-04-17 17:17:20 +00007642The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007643operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007644or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007645alignment for the target. It is the responsibility of the code emitter
7646to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007647alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007648alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007649safe. The maximum possible alignment is ``1 << 29``. An alignment
7650value higher than the size of the stored type implies memory up to the
7651alignment value bytes can be stored to without trapping in the default
7652address space. Storing to the higher bytes however may result in data
7653races if another thread can access the same address. Introducing a
7654data race is not allowed. Storing to the extra bytes is not allowed
7655even in situations where a data race is known to not exist if the
7656function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007657
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007658The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007659name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007660value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007661tells the optimizer and code generator that this load is not expected to
7662be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007663instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007664x86.
7665
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007666The optional ``!invariant.group`` metadata must reference a
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007667single metadata name ``<index>``. See ``invariant.group`` metadata.
7668
Sean Silvab084af42012-12-07 10:36:55 +00007669Semantics:
7670""""""""""
7671
Eli Benderskyca380842013-04-17 17:17:20 +00007672The contents of memory are updated to contain ``<value>`` at the
7673location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007674of scalar type then the number of bytes written does not exceed the
7675minimum number of bytes needed to hold all bits of the type. For
7676example, storing an ``i24`` writes at most three bytes. When writing a
7677value of a type like ``i20`` with a size that is not an integral number
7678of bytes, it is unspecified what happens to the extra bits that do not
7679belong to the type, but they will typically be overwritten.
7680
7681Example:
7682""""""""
7683
7684.. code-block:: llvm
7685
Tim Northover675a0962014-06-13 14:24:23 +00007686 %ptr = alloca i32 ; yields i32*:ptr
7687 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007688 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007689
7690.. _i_fence:
7691
7692'``fence``' Instruction
7693^^^^^^^^^^^^^^^^^^^^^^^
7694
7695Syntax:
7696"""""""
7697
7698::
7699
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007700 fence [syncscope("<target-scope>")] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007701
7702Overview:
7703"""""""""
7704
7705The '``fence``' instruction is used to introduce happens-before edges
7706between operations.
7707
7708Arguments:
7709""""""""""
7710
7711'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7712defines what *synchronizes-with* edges they add. They can only be given
7713``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7714
7715Semantics:
7716""""""""""
7717
7718A fence A which has (at least) ``release`` ordering semantics
7719*synchronizes with* a fence B with (at least) ``acquire`` ordering
7720semantics if and only if there exist atomic operations X and Y, both
7721operating on some atomic object M, such that A is sequenced before X, X
7722modifies M (either directly or through some side effect of a sequence
7723headed by X), Y is sequenced before B, and Y observes M. This provides a
7724*happens-before* dependency between A and B. Rather than an explicit
7725``fence``, one (but not both) of the atomic operations X or Y might
7726provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7727still *synchronize-with* the explicit ``fence`` and establish the
7728*happens-before* edge.
7729
7730A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7731``acquire`` and ``release`` semantics specified above, participates in
7732the global program order of other ``seq_cst`` operations and/or fences.
7733
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007734A ``fence`` instruction can also take an optional
7735":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00007736
7737Example:
7738""""""""
7739
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007740.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007741
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007742 fence acquire ; yields void
7743 fence syncscope("singlethread") seq_cst ; yields void
7744 fence syncscope("agent") seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007745
7746.. _i_cmpxchg:
7747
7748'``cmpxchg``' Instruction
7749^^^^^^^^^^^^^^^^^^^^^^^^^
7750
7751Syntax:
7752"""""""
7753
7754::
7755
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007756 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [syncscope("<target-scope>")] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007757
7758Overview:
7759"""""""""
7760
7761The '``cmpxchg``' instruction is used to atomically modify memory. It
7762loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007763equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007764
7765Arguments:
7766""""""""""
7767
7768There are three arguments to the '``cmpxchg``' instruction: an address
7769to operate on, a value to compare to the value currently be at that
7770address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007771are equal. The type of '<cmp>' must be an integer or pointer type whose
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007772bit width is a power of two greater than or equal to eight and less
Philip Reames1960cfd2016-02-19 00:06:41 +00007773than or equal to a target-specific size limit. '<cmp>' and '<new>' must
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007774have the same type, and the type of '<pointer>' must be a pointer to
7775that type. If the ``cmpxchg`` is marked as ``volatile``, then the
Philip Reames1960cfd2016-02-19 00:06:41 +00007776optimizer is not allowed to modify the number or order of execution of
7777this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007778
Tim Northovere94a5182014-03-11 10:48:52 +00007779The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007780``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7781must be at least ``monotonic``, the ordering constraint on failure must be no
7782stronger than that on success, and the failure ordering cannot be either
7783``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007784
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007785A ``cmpxchg`` instruction can also take an optional
7786":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00007787
7788The pointer passed into cmpxchg must have alignment greater than or
7789equal to the size in memory of the operand.
7790
7791Semantics:
7792""""""""""
7793
Tim Northover420a2162014-06-13 14:24:07 +00007794The contents of memory at the location specified by the '``<pointer>``' operand
Matthias Braun93f2b4b2017-08-09 22:22:04 +00007795is read and compared to '``<cmp>``'; if the values are equal, '``<new>``' is
7796written to the location. The original value at the location is returned,
7797together with a flag indicating success (true) or failure (false).
Tim Northover420a2162014-06-13 14:24:07 +00007798
7799If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7800permitted: the operation may not write ``<new>`` even if the comparison
7801matched.
7802
7803If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7804if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007805
Tim Northovere94a5182014-03-11 10:48:52 +00007806A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7807identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7808load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007809
7810Example:
7811""""""""
7812
7813.. code-block:: llvm
7814
7815 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007816 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007817 br label %loop
7818
7819 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007820 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007821 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007822 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007823 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7824 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007825 br i1 %success, label %done, label %loop
7826
7827 done:
7828 ...
7829
7830.. _i_atomicrmw:
7831
7832'``atomicrmw``' Instruction
7833^^^^^^^^^^^^^^^^^^^^^^^^^^^
7834
7835Syntax:
7836"""""""
7837
7838::
7839
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007840 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [syncscope("<target-scope>")] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007841
7842Overview:
7843"""""""""
7844
7845The '``atomicrmw``' instruction is used to atomically modify memory.
7846
7847Arguments:
7848""""""""""
7849
7850There are three arguments to the '``atomicrmw``' instruction: an
7851operation to apply, an address whose value to modify, an argument to the
7852operation. The operation must be one of the following keywords:
7853
7854- xchg
7855- add
7856- sub
7857- and
7858- nand
7859- or
7860- xor
7861- max
7862- min
7863- umax
7864- umin
7865
7866The type of '<value>' must be an integer type whose bit width is a power
7867of two greater than or equal to eight and less than or equal to a
7868target-specific size limit. The type of the '``<pointer>``' operand must
7869be a pointer to that type. If the ``atomicrmw`` is marked as
7870``volatile``, then the optimizer is not allowed to modify the number or
7871order of execution of this ``atomicrmw`` with other :ref:`volatile
7872operations <volatile>`.
7873
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007874A ``atomicrmw`` instruction can also take an optional
7875":ref:`syncscope <syncscope>`" argument.
7876
Sean Silvab084af42012-12-07 10:36:55 +00007877Semantics:
7878""""""""""
7879
7880The contents of memory at the location specified by the '``<pointer>``'
7881operand are atomically read, modified, and written back. The original
7882value at the location is returned. The modification is specified by the
7883operation argument:
7884
7885- xchg: ``*ptr = val``
7886- add: ``*ptr = *ptr + val``
7887- sub: ``*ptr = *ptr - val``
7888- and: ``*ptr = *ptr & val``
7889- nand: ``*ptr = ~(*ptr & val)``
7890- or: ``*ptr = *ptr | val``
7891- xor: ``*ptr = *ptr ^ val``
7892- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7893- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7894- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7895 comparison)
7896- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7897 comparison)
7898
7899Example:
7900""""""""
7901
7902.. code-block:: llvm
7903
Tim Northover675a0962014-06-13 14:24:23 +00007904 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007905
7906.. _i_getelementptr:
7907
7908'``getelementptr``' Instruction
7909^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7910
7911Syntax:
7912"""""""
7913
7914::
7915
Peter Collingbourned93620b2016-11-10 22:34:55 +00007916 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7917 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7918 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007919
7920Overview:
7921"""""""""
7922
7923The '``getelementptr``' instruction is used to get the address of a
7924subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007925address calculation only and does not access memory. The instruction can also
7926be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007927
7928Arguments:
7929""""""""""
7930
David Blaikie16a97eb2015-03-04 22:02:58 +00007931The first argument is always a type used as the basis for the calculations.
7932The second argument is always a pointer or a vector of pointers, and is the
7933base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007934that indicate which of the elements of the aggregate object are indexed.
7935The interpretation of each index is dependent on the type being indexed
7936into. The first index always indexes the pointer value given as the
David Blaikief91b0302017-06-19 05:34:21 +00007937second argument, the second index indexes a value of the type pointed to
Sean Silvab084af42012-12-07 10:36:55 +00007938(not necessarily the value directly pointed to, since the first index
7939can be non-zero), etc. The first type indexed into must be a pointer
7940value, subsequent types can be arrays, vectors, and structs. Note that
7941subsequent types being indexed into can never be pointers, since that
7942would require loading the pointer before continuing calculation.
7943
7944The type of each index argument depends on the type it is indexing into.
7945When indexing into a (optionally packed) structure, only ``i32`` integer
7946**constants** are allowed (when using a vector of indices they must all
7947be the **same** ``i32`` integer constant). When indexing into an array,
7948pointer or vector, integers of any width are allowed, and they are not
7949required to be constant. These integers are treated as signed values
7950where relevant.
7951
7952For example, let's consider a C code fragment and how it gets compiled
7953to LLVM:
7954
7955.. code-block:: c
7956
7957 struct RT {
7958 char A;
7959 int B[10][20];
7960 char C;
7961 };
7962 struct ST {
7963 int X;
7964 double Y;
7965 struct RT Z;
7966 };
7967
7968 int *foo(struct ST *s) {
7969 return &s[1].Z.B[5][13];
7970 }
7971
7972The LLVM code generated by Clang is:
7973
7974.. code-block:: llvm
7975
7976 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7977 %struct.ST = type { i32, double, %struct.RT }
7978
7979 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7980 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007981 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007982 ret i32* %arrayidx
7983 }
7984
7985Semantics:
7986""""""""""
7987
7988In the example above, the first index is indexing into the
7989'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7990= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7991indexes into the third element of the structure, yielding a
7992'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7993structure. The third index indexes into the second element of the
7994structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7995dimensions of the array are subscripted into, yielding an '``i32``'
7996type. The '``getelementptr``' instruction returns a pointer to this
7997element, thus computing a value of '``i32*``' type.
7998
7999Note that it is perfectly legal to index partially through a structure,
8000returning a pointer to an inner element. Because of this, the LLVM code
8001for the given testcase is equivalent to:
8002
8003.. code-block:: llvm
8004
8005 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00008006 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
8007 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
8008 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
8009 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
8010 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00008011 ret i32* %t5
8012 }
8013
8014If the ``inbounds`` keyword is present, the result value of the
8015``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
8016pointer is not an *in bounds* address of an allocated object, or if any
8017of the addresses that would be formed by successive addition of the
8018offsets implied by the indices to the base address with infinitely
8019precise signed arithmetic are not an *in bounds* address of that
8020allocated object. The *in bounds* addresses for an allocated object are
8021all the addresses that point into the object, plus the address one byte
Eli Friedman13f2e352017-02-23 00:48:18 +00008022past the end. The only *in bounds* address for a null pointer in the
8023default address-space is the null pointer itself. In cases where the
8024base is a vector of pointers the ``inbounds`` keyword applies to each
8025of the computations element-wise.
Sean Silvab084af42012-12-07 10:36:55 +00008026
8027If the ``inbounds`` keyword is not present, the offsets are added to the
8028base address with silently-wrapping two's complement arithmetic. If the
8029offsets have a different width from the pointer, they are sign-extended
8030or truncated to the width of the pointer. The result value of the
8031``getelementptr`` may be outside the object pointed to by the base
8032pointer. The result value may not necessarily be used to access memory
8033though, even if it happens to point into allocated storage. See the
8034:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
8035information.
8036
Peter Collingbourned93620b2016-11-10 22:34:55 +00008037If the ``inrange`` keyword is present before any index, loading from or
8038storing to any pointer derived from the ``getelementptr`` has undefined
8039behavior if the load or store would access memory outside of the bounds of
8040the element selected by the index marked as ``inrange``. The result of a
8041pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
8042involving memory) involving a pointer derived from a ``getelementptr`` with
8043the ``inrange`` keyword is undefined, with the exception of comparisons
8044in the case where both operands are in the range of the element selected
8045by the ``inrange`` keyword, inclusive of the address one past the end of
8046that element. Note that the ``inrange`` keyword is currently only allowed
8047in constant ``getelementptr`` expressions.
8048
Sean Silvab084af42012-12-07 10:36:55 +00008049The getelementptr instruction is often confusing. For some more insight
8050into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
8051
8052Example:
8053""""""""
8054
8055.. code-block:: llvm
8056
8057 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008058 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008059 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008060 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008061 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008062 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008063 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008064 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00008065
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008066Vector of pointers:
8067"""""""""""""""""""
8068
8069The ``getelementptr`` returns a vector of pointers, instead of a single address,
8070when one or more of its arguments is a vector. In such cases, all vector
8071arguments should have the same number of elements, and every scalar argument
8072will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00008073
8074.. code-block:: llvm
8075
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008076 ; All arguments are vectors:
8077 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
8078 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008079
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008080 ; Add the same scalar offset to each pointer of a vector:
8081 ; A[i] = ptrs[i] + offset*sizeof(i8)
8082 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00008083
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008084 ; Add distinct offsets to the same pointer:
8085 ; A[i] = ptr + offsets[i]*sizeof(i8)
8086 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008087
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008088 ; In all cases described above the type of the result is <4 x i8*>
8089
8090The two following instructions are equivalent:
8091
8092.. code-block:: llvm
8093
8094 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8095 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
8096 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
8097 <4 x i32> %ind4,
8098 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00008099
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008100 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8101 i32 2, i32 1, <4 x i32> %ind4, i64 13
8102
8103Let's look at the C code, where the vector version of ``getelementptr``
8104makes sense:
8105
8106.. code-block:: c
8107
8108 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00008109 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008110 for (int i = 0; i < size; ++i) {
8111 A[i] = B[C[i]];
8112 }
8113
8114.. code-block:: llvm
8115
8116 ; get pointers for 8 elements from array B
8117 %ptrs = getelementptr double, double* %B, <8 x i32> %C
8118 ; load 8 elements from array B into A
Elad Cohenef5798a2017-05-03 12:28:54 +00008119 %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008120 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00008121
8122Conversion Operations
8123---------------------
8124
8125The instructions in this category are the conversion instructions
8126(casting) which all take a single operand and a type. They perform
8127various bit conversions on the operand.
8128
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008129.. _i_trunc:
8130
Sean Silvab084af42012-12-07 10:36:55 +00008131'``trunc .. to``' Instruction
8132^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8133
8134Syntax:
8135"""""""
8136
8137::
8138
8139 <result> = trunc <ty> <value> to <ty2> ; yields ty2
8140
8141Overview:
8142"""""""""
8143
8144The '``trunc``' instruction truncates its operand to the type ``ty2``.
8145
8146Arguments:
8147""""""""""
8148
8149The '``trunc``' instruction takes a value to trunc, and a type to trunc
8150it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
8151of the same number of integers. The bit size of the ``value`` must be
8152larger than the bit size of the destination type, ``ty2``. Equal sized
8153types are not allowed.
8154
8155Semantics:
8156""""""""""
8157
8158The '``trunc``' instruction truncates the high order bits in ``value``
8159and converts the remaining bits to ``ty2``. Since the source size must
8160be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
8161It will always truncate bits.
8162
8163Example:
8164""""""""
8165
8166.. code-block:: llvm
8167
8168 %X = trunc i32 257 to i8 ; yields i8:1
8169 %Y = trunc i32 123 to i1 ; yields i1:true
8170 %Z = trunc i32 122 to i1 ; yields i1:false
8171 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
8172
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008173.. _i_zext:
8174
Sean Silvab084af42012-12-07 10:36:55 +00008175'``zext .. to``' Instruction
8176^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8177
8178Syntax:
8179"""""""
8180
8181::
8182
8183 <result> = zext <ty> <value> to <ty2> ; yields ty2
8184
8185Overview:
8186"""""""""
8187
8188The '``zext``' instruction zero extends its operand to type ``ty2``.
8189
8190Arguments:
8191""""""""""
8192
8193The '``zext``' instruction takes a value to cast, and a type to cast it
8194to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8195the same number of integers. The bit size of the ``value`` must be
8196smaller than the bit size of the destination type, ``ty2``.
8197
8198Semantics:
8199""""""""""
8200
8201The ``zext`` fills the high order bits of the ``value`` with zero bits
8202until it reaches the size of the destination type, ``ty2``.
8203
8204When zero extending from i1, the result will always be either 0 or 1.
8205
8206Example:
8207""""""""
8208
8209.. code-block:: llvm
8210
8211 %X = zext i32 257 to i64 ; yields i64:257
8212 %Y = zext i1 true to i32 ; yields i32:1
8213 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8214
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008215.. _i_sext:
8216
Sean Silvab084af42012-12-07 10:36:55 +00008217'``sext .. to``' Instruction
8218^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8219
8220Syntax:
8221"""""""
8222
8223::
8224
8225 <result> = sext <ty> <value> to <ty2> ; yields ty2
8226
8227Overview:
8228"""""""""
8229
8230The '``sext``' sign extends ``value`` to the type ``ty2``.
8231
8232Arguments:
8233""""""""""
8234
8235The '``sext``' instruction takes a value to cast, and a type to cast it
8236to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8237the same number of integers. The bit size of the ``value`` must be
8238smaller than the bit size of the destination type, ``ty2``.
8239
8240Semantics:
8241""""""""""
8242
8243The '``sext``' instruction performs a sign extension by copying the sign
8244bit (highest order bit) of the ``value`` until it reaches the bit size
8245of the type ``ty2``.
8246
8247When sign extending from i1, the extension always results in -1 or 0.
8248
8249Example:
8250""""""""
8251
8252.. code-block:: llvm
8253
8254 %X = sext i8 -1 to i16 ; yields i16 :65535
8255 %Y = sext i1 true to i32 ; yields i32:-1
8256 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8257
8258'``fptrunc .. to``' Instruction
8259^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8260
8261Syntax:
8262"""""""
8263
8264::
8265
8266 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
8267
8268Overview:
8269"""""""""
8270
8271The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
8272
8273Arguments:
8274""""""""""
8275
8276The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
8277value to cast and a :ref:`floating point <t_floating>` type to cast it to.
8278The size of ``value`` must be larger than the size of ``ty2``. This
8279implies that ``fptrunc`` cannot be used to make a *no-op cast*.
8280
8281Semantics:
8282""""""""""
8283
Dan Liew50456fb2015-09-03 18:43:56 +00008284The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00008285:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00008286point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
8287destination type, ``ty2``, then the results are undefined. If the cast produces
8288an inexact result, how rounding is performed (e.g. truncation, also known as
8289round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00008290
8291Example:
8292""""""""
8293
8294.. code-block:: llvm
8295
8296 %X = fptrunc double 123.0 to float ; yields float:123.0
8297 %Y = fptrunc double 1.0E+300 to float ; yields undefined
8298
8299'``fpext .. to``' Instruction
8300^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8301
8302Syntax:
8303"""""""
8304
8305::
8306
8307 <result> = fpext <ty> <value> to <ty2> ; yields ty2
8308
8309Overview:
8310"""""""""
8311
8312The '``fpext``' extends a floating point ``value`` to a larger floating
8313point value.
8314
8315Arguments:
8316""""""""""
8317
8318The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
8319``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
8320to. The source type must be smaller than the destination type.
8321
8322Semantics:
8323""""""""""
8324
8325The '``fpext``' instruction extends the ``value`` from a smaller
8326:ref:`floating point <t_floating>` type to a larger :ref:`floating
8327point <t_floating>` type. The ``fpext`` cannot be used to make a
8328*no-op cast* because it always changes bits. Use ``bitcast`` to make a
8329*no-op cast* for a floating point cast.
8330
8331Example:
8332""""""""
8333
8334.. code-block:: llvm
8335
8336 %X = fpext float 3.125 to double ; yields double:3.125000e+00
8337 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
8338
8339'``fptoui .. to``' Instruction
8340^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8341
8342Syntax:
8343"""""""
8344
8345::
8346
8347 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
8348
8349Overview:
8350"""""""""
8351
8352The '``fptoui``' converts a floating point ``value`` to its unsigned
8353integer equivalent of type ``ty2``.
8354
8355Arguments:
8356""""""""""
8357
8358The '``fptoui``' instruction takes a value to cast, which must be a
8359scalar or vector :ref:`floating point <t_floating>` value, and a type to
8360cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8361``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8362type with the same number of elements as ``ty``
8363
8364Semantics:
8365""""""""""
8366
8367The '``fptoui``' instruction converts its :ref:`floating
8368point <t_floating>` operand into the nearest (rounding towards zero)
8369unsigned integer value. If the value cannot fit in ``ty2``, the results
8370are undefined.
8371
8372Example:
8373""""""""
8374
8375.. code-block:: llvm
8376
8377 %X = fptoui double 123.0 to i32 ; yields i32:123
8378 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
8379 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
8380
8381'``fptosi .. to``' Instruction
8382^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8383
8384Syntax:
8385"""""""
8386
8387::
8388
8389 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
8390
8391Overview:
8392"""""""""
8393
8394The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
8395``value`` to type ``ty2``.
8396
8397Arguments:
8398""""""""""
8399
8400The '``fptosi``' instruction takes a value to cast, which must be a
8401scalar or vector :ref:`floating point <t_floating>` value, and a type to
8402cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8403``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8404type with the same number of elements as ``ty``
8405
8406Semantics:
8407""""""""""
8408
8409The '``fptosi``' instruction converts its :ref:`floating
8410point <t_floating>` operand into the nearest (rounding towards zero)
8411signed integer value. If the value cannot fit in ``ty2``, the results
8412are undefined.
8413
8414Example:
8415""""""""
8416
8417.. code-block:: llvm
8418
8419 %X = fptosi double -123.0 to i32 ; yields i32:-123
8420 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
8421 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
8422
8423'``uitofp .. to``' Instruction
8424^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8425
8426Syntax:
8427"""""""
8428
8429::
8430
8431 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
8432
8433Overview:
8434"""""""""
8435
8436The '``uitofp``' instruction regards ``value`` as an unsigned integer
8437and converts that value to the ``ty2`` type.
8438
8439Arguments:
8440""""""""""
8441
8442The '``uitofp``' instruction takes a value to cast, which must be a
8443scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8444``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8445``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8446type with the same number of elements as ``ty``
8447
8448Semantics:
8449""""""""""
8450
8451The '``uitofp``' instruction interprets its operand as an unsigned
8452integer quantity and converts it to the corresponding floating point
8453value. If the value cannot fit in the floating point value, the results
8454are undefined.
8455
8456Example:
8457""""""""
8458
8459.. code-block:: llvm
8460
8461 %X = uitofp i32 257 to float ; yields float:257.0
8462 %Y = uitofp i8 -1 to double ; yields double:255.0
8463
8464'``sitofp .. to``' Instruction
8465^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8466
8467Syntax:
8468"""""""
8469
8470::
8471
8472 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8473
8474Overview:
8475"""""""""
8476
8477The '``sitofp``' instruction regards ``value`` as a signed integer and
8478converts that value to the ``ty2`` type.
8479
8480Arguments:
8481""""""""""
8482
8483The '``sitofp``' instruction takes a value to cast, which must be a
8484scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8485``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8486``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8487type with the same number of elements as ``ty``
8488
8489Semantics:
8490""""""""""
8491
8492The '``sitofp``' instruction interprets its operand as a signed integer
8493quantity and converts it to the corresponding floating point value. If
8494the value cannot fit in the floating point value, the results are
8495undefined.
8496
8497Example:
8498""""""""
8499
8500.. code-block:: llvm
8501
8502 %X = sitofp i32 257 to float ; yields float:257.0
8503 %Y = sitofp i8 -1 to double ; yields double:-1.0
8504
8505.. _i_ptrtoint:
8506
8507'``ptrtoint .. to``' Instruction
8508^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8509
8510Syntax:
8511"""""""
8512
8513::
8514
8515 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8516
8517Overview:
8518"""""""""
8519
8520The '``ptrtoint``' instruction converts the pointer or a vector of
8521pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8522
8523Arguments:
8524""""""""""
8525
8526The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008527a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008528type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8529a vector of integers type.
8530
8531Semantics:
8532""""""""""
8533
8534The '``ptrtoint``' instruction converts ``value`` to integer type
8535``ty2`` by interpreting the pointer value as an integer and either
8536truncating or zero extending that value to the size of the integer type.
8537If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8538``value`` is larger than ``ty2`` then a truncation is done. If they are
8539the same size, then nothing is done (*no-op cast*) other than a type
8540change.
8541
8542Example:
8543""""""""
8544
8545.. code-block:: llvm
8546
8547 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8548 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8549 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8550
8551.. _i_inttoptr:
8552
8553'``inttoptr .. to``' Instruction
8554^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8555
8556Syntax:
8557"""""""
8558
8559::
8560
8561 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8562
8563Overview:
8564"""""""""
8565
8566The '``inttoptr``' instruction converts an integer ``value`` to a
8567pointer type, ``ty2``.
8568
8569Arguments:
8570""""""""""
8571
8572The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8573cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8574type.
8575
8576Semantics:
8577""""""""""
8578
8579The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8580applying either a zero extension or a truncation depending on the size
8581of the integer ``value``. If ``value`` is larger than the size of a
8582pointer then a truncation is done. If ``value`` is smaller than the size
8583of a pointer then a zero extension is done. If they are the same size,
8584nothing is done (*no-op cast*).
8585
8586Example:
8587""""""""
8588
8589.. code-block:: llvm
8590
8591 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8592 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8593 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8594 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8595
8596.. _i_bitcast:
8597
8598'``bitcast .. to``' Instruction
8599^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8600
8601Syntax:
8602"""""""
8603
8604::
8605
8606 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8607
8608Overview:
8609"""""""""
8610
8611The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8612changing any bits.
8613
8614Arguments:
8615""""""""""
8616
8617The '``bitcast``' instruction takes a value to cast, which must be a
8618non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008619also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8620bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008621identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008622also be a pointer of the same size. This instruction supports bitwise
8623conversion of vectors to integers and to vectors of other types (as
8624long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008625
8626Semantics:
8627""""""""""
8628
Matt Arsenault24b49c42013-07-31 17:49:08 +00008629The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8630is always a *no-op cast* because no bits change with this
8631conversion. The conversion is done as if the ``value`` had been stored
8632to memory and read back as type ``ty2``. Pointer (or vector of
8633pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008634pointers) types with the same address space through this instruction.
8635To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8636or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008637
8638Example:
8639""""""""
8640
Renato Golin124f2592016-07-20 12:16:38 +00008641.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008642
8643 %X = bitcast i8 255 to i8 ; yields i8 :-1
8644 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8645 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8646 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8647
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008648.. _i_addrspacecast:
8649
8650'``addrspacecast .. to``' Instruction
8651^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8652
8653Syntax:
8654"""""""
8655
8656::
8657
8658 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8659
8660Overview:
8661"""""""""
8662
8663The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8664address space ``n`` to type ``pty2`` in address space ``m``.
8665
8666Arguments:
8667""""""""""
8668
8669The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8670to cast and a pointer type to cast it to, which must have a different
8671address space.
8672
8673Semantics:
8674""""""""""
8675
8676The '``addrspacecast``' instruction converts the pointer value
8677``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008678value modification, depending on the target and the address space
8679pair. Pointer conversions within the same address space must be
8680performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008681conversion is legal then both result and operand refer to the same memory
8682location.
8683
8684Example:
8685""""""""
8686
8687.. code-block:: llvm
8688
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008689 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8690 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8691 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008692
Sean Silvab084af42012-12-07 10:36:55 +00008693.. _otherops:
8694
8695Other Operations
8696----------------
8697
8698The instructions in this category are the "miscellaneous" instructions,
8699which defy better classification.
8700
8701.. _i_icmp:
8702
8703'``icmp``' Instruction
8704^^^^^^^^^^^^^^^^^^^^^^
8705
8706Syntax:
8707"""""""
8708
8709::
8710
Tim Northover675a0962014-06-13 14:24:23 +00008711 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008712
8713Overview:
8714"""""""""
8715
8716The '``icmp``' instruction returns a boolean value or a vector of
8717boolean values based on comparison of its two integer, integer vector,
8718pointer, or pointer vector operands.
8719
8720Arguments:
8721""""""""""
8722
8723The '``icmp``' instruction takes three operands. The first operand is
8724the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008725not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008726
8727#. ``eq``: equal
8728#. ``ne``: not equal
8729#. ``ugt``: unsigned greater than
8730#. ``uge``: unsigned greater or equal
8731#. ``ult``: unsigned less than
8732#. ``ule``: unsigned less or equal
8733#. ``sgt``: signed greater than
8734#. ``sge``: signed greater or equal
8735#. ``slt``: signed less than
8736#. ``sle``: signed less or equal
8737
8738The remaining two arguments must be :ref:`integer <t_integer>` or
8739:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8740must also be identical types.
8741
8742Semantics:
8743""""""""""
8744
8745The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8746code given as ``cond``. The comparison performed always yields either an
8747:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8748
8749#. ``eq``: yields ``true`` if the operands are equal, ``false``
8750 otherwise. No sign interpretation is necessary or performed.
8751#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8752 otherwise. No sign interpretation is necessary or performed.
8753#. ``ugt``: interprets the operands as unsigned values and yields
8754 ``true`` if ``op1`` is greater than ``op2``.
8755#. ``uge``: interprets the operands as unsigned values and yields
8756 ``true`` if ``op1`` is greater than or equal to ``op2``.
8757#. ``ult``: interprets the operands as unsigned values and yields
8758 ``true`` if ``op1`` is less than ``op2``.
8759#. ``ule``: interprets the operands as unsigned values and yields
8760 ``true`` if ``op1`` is less than or equal to ``op2``.
8761#. ``sgt``: interprets the operands as signed values and yields ``true``
8762 if ``op1`` is greater than ``op2``.
8763#. ``sge``: interprets the operands as signed values and yields ``true``
8764 if ``op1`` is greater than or equal to ``op2``.
8765#. ``slt``: interprets the operands as signed values and yields ``true``
8766 if ``op1`` is less than ``op2``.
8767#. ``sle``: interprets the operands as signed values and yields ``true``
8768 if ``op1`` is less than or equal to ``op2``.
8769
8770If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8771are compared as if they were integers.
8772
8773If the operands are integer vectors, then they are compared element by
8774element. The result is an ``i1`` vector with the same number of elements
8775as the values being compared. Otherwise, the result is an ``i1``.
8776
8777Example:
8778""""""""
8779
Renato Golin124f2592016-07-20 12:16:38 +00008780.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008781
8782 <result> = icmp eq i32 4, 5 ; yields: result=false
8783 <result> = icmp ne float* %X, %X ; yields: result=false
8784 <result> = icmp ult i16 4, 5 ; yields: result=true
8785 <result> = icmp sgt i16 4, 5 ; yields: result=false
8786 <result> = icmp ule i16 -4, 5 ; yields: result=false
8787 <result> = icmp sge i16 4, 5 ; yields: result=false
8788
Sean Silvab084af42012-12-07 10:36:55 +00008789.. _i_fcmp:
8790
8791'``fcmp``' Instruction
8792^^^^^^^^^^^^^^^^^^^^^^
8793
8794Syntax:
8795"""""""
8796
8797::
8798
James Molloy88eb5352015-07-10 12:52:00 +00008799 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008800
8801Overview:
8802"""""""""
8803
8804The '``fcmp``' instruction returns a boolean value or vector of boolean
8805values based on comparison of its operands.
8806
8807If the operands are floating point scalars, then the result type is a
8808boolean (:ref:`i1 <t_integer>`).
8809
8810If the operands are floating point vectors, then the result type is a
8811vector of boolean with the same number of elements as the operands being
8812compared.
8813
8814Arguments:
8815""""""""""
8816
8817The '``fcmp``' instruction takes three operands. The first operand is
8818the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008819not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008820
8821#. ``false``: no comparison, always returns false
8822#. ``oeq``: ordered and equal
8823#. ``ogt``: ordered and greater than
8824#. ``oge``: ordered and greater than or equal
8825#. ``olt``: ordered and less than
8826#. ``ole``: ordered and less than or equal
8827#. ``one``: ordered and not equal
8828#. ``ord``: ordered (no nans)
8829#. ``ueq``: unordered or equal
8830#. ``ugt``: unordered or greater than
8831#. ``uge``: unordered or greater than or equal
8832#. ``ult``: unordered or less than
8833#. ``ule``: unordered or less than or equal
8834#. ``une``: unordered or not equal
8835#. ``uno``: unordered (either nans)
8836#. ``true``: no comparison, always returns true
8837
8838*Ordered* means that neither operand is a QNAN while *unordered* means
8839that either operand may be a QNAN.
8840
8841Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8842point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8843type. They must have identical types.
8844
8845Semantics:
8846""""""""""
8847
8848The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8849condition code given as ``cond``. If the operands are vectors, then the
8850vectors are compared element by element. Each comparison performed
8851always yields an :ref:`i1 <t_integer>` result, as follows:
8852
8853#. ``false``: always yields ``false``, regardless of operands.
8854#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8855 is equal to ``op2``.
8856#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8857 is greater than ``op2``.
8858#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8859 is greater than or equal to ``op2``.
8860#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8861 is less than ``op2``.
8862#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8863 is less than or equal to ``op2``.
8864#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8865 is not equal to ``op2``.
8866#. ``ord``: yields ``true`` if both operands are not a QNAN.
8867#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8868 equal to ``op2``.
8869#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8870 greater than ``op2``.
8871#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8872 greater than or equal to ``op2``.
8873#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8874 less than ``op2``.
8875#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8876 less than or equal to ``op2``.
8877#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8878 not equal to ``op2``.
8879#. ``uno``: yields ``true`` if either operand is a QNAN.
8880#. ``true``: always yields ``true``, regardless of operands.
8881
James Molloy88eb5352015-07-10 12:52:00 +00008882The ``fcmp`` instruction can also optionally take any number of
8883:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8884otherwise unsafe floating point optimizations.
8885
8886Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8887only flags that have any effect on its semantics are those that allow
8888assumptions to be made about the values of input arguments; namely
8889``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8890
Sean Silvab084af42012-12-07 10:36:55 +00008891Example:
8892""""""""
8893
Renato Golin124f2592016-07-20 12:16:38 +00008894.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008895
8896 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8897 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8898 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8899 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8900
Sean Silvab084af42012-12-07 10:36:55 +00008901.. _i_phi:
8902
8903'``phi``' Instruction
8904^^^^^^^^^^^^^^^^^^^^^
8905
8906Syntax:
8907"""""""
8908
8909::
8910
8911 <result> = phi <ty> [ <val0>, <label0>], ...
8912
8913Overview:
8914"""""""""
8915
8916The '``phi``' instruction is used to implement the φ node in the SSA
8917graph representing the function.
8918
8919Arguments:
8920""""""""""
8921
8922The type of the incoming values is specified with the first type field.
8923After this, the '``phi``' instruction takes a list of pairs as
8924arguments, with one pair for each predecessor basic block of the current
8925block. Only values of :ref:`first class <t_firstclass>` type may be used as
8926the value arguments to the PHI node. Only labels may be used as the
8927label arguments.
8928
8929There must be no non-phi instructions between the start of a basic block
8930and the PHI instructions: i.e. PHI instructions must be first in a basic
8931block.
8932
8933For the purposes of the SSA form, the use of each incoming value is
8934deemed to occur on the edge from the corresponding predecessor block to
8935the current block (but after any definition of an '``invoke``'
8936instruction's return value on the same edge).
8937
8938Semantics:
8939""""""""""
8940
8941At runtime, the '``phi``' instruction logically takes on the value
8942specified by the pair corresponding to the predecessor basic block that
8943executed just prior to the current block.
8944
8945Example:
8946""""""""
8947
8948.. code-block:: llvm
8949
8950 Loop: ; Infinite loop that counts from 0 on up...
8951 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8952 %nextindvar = add i32 %indvar, 1
8953 br label %Loop
8954
8955.. _i_select:
8956
8957'``select``' Instruction
8958^^^^^^^^^^^^^^^^^^^^^^^^
8959
8960Syntax:
8961"""""""
8962
8963::
8964
8965 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8966
8967 selty is either i1 or {<N x i1>}
8968
8969Overview:
8970"""""""""
8971
8972The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008973condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008974
8975Arguments:
8976""""""""""
8977
8978The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8979values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008980class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008981
8982Semantics:
8983""""""""""
8984
8985If the condition is an i1 and it evaluates to 1, the instruction returns
8986the first value argument; otherwise, it returns the second value
8987argument.
8988
8989If the condition is a vector of i1, then the value arguments must be
8990vectors of the same size, and the selection is done element by element.
8991
David Majnemer40a0b592015-03-03 22:45:47 +00008992If the condition is an i1 and the value arguments are vectors of the
8993same size, then an entire vector is selected.
8994
Sean Silvab084af42012-12-07 10:36:55 +00008995Example:
8996""""""""
8997
8998.. code-block:: llvm
8999
9000 %X = select i1 true, i8 17, i8 42 ; yields i8:17
9001
9002.. _i_call:
9003
9004'``call``' Instruction
9005^^^^^^^^^^^^^^^^^^^^^^
9006
9007Syntax:
9008"""""""
9009
9010::
9011
David Blaikieb83cf102016-07-13 17:21:34 +00009012 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00009013 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00009014
9015Overview:
9016"""""""""
9017
9018The '``call``' instruction represents a simple function call.
9019
9020Arguments:
9021""""""""""
9022
9023This instruction requires several arguments:
9024
Reid Kleckner5772b772014-04-24 20:14:34 +00009025#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00009026 should perform tail call optimization. The ``tail`` marker is a hint that
9027 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00009028 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00009029 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00009030
9031 #. The call will not cause unbounded stack growth if it is part of a
9032 recursive cycle in the call graph.
9033 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
9034 forwarded in place.
9035
9036 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00009037 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00009038 rules:
9039
9040 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
9041 or a pointer bitcast followed by a ret instruction.
9042 - The ret instruction must return the (possibly bitcasted) value
9043 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00009044 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00009045 parameters or return types may differ in pointee type, but not
9046 in address space.
9047 - The calling conventions of the caller and callee must match.
9048 - All ABI-impacting function attributes, such as sret, byval, inreg,
9049 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00009050 - The callee must be varargs iff the caller is varargs. Bitcasting a
9051 non-varargs function to the appropriate varargs type is legal so
9052 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00009053
9054 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
9055 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00009056
9057 - Caller and callee both have the calling convention ``fastcc``.
9058 - The call is in tail position (ret immediately follows call and ret
9059 uses value of call or is void).
9060 - Option ``-tailcallopt`` is enabled, or
9061 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00009062 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00009063 met. <CodeGenerator.html#tailcallopt>`_
9064
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00009065#. The optional ``notail`` marker indicates that the optimizers should not add
9066 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
9067 call optimization from being performed on the call.
9068
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00009069#. The optional ``fast-math flags`` marker indicates that the call has one or more
Sanjay Patelfa54ace2015-12-14 21:59:03 +00009070 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
9071 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
9072 for calls that return a floating-point scalar or vector type.
9073
Sean Silvab084af42012-12-07 10:36:55 +00009074#. The optional "cconv" marker indicates which :ref:`calling
9075 convention <callingconv>` the call should use. If none is
9076 specified, the call defaults to using C calling conventions. The
9077 calling convention of the call must match the calling convention of
9078 the target function, or else the behavior is undefined.
9079#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
9080 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
9081 are valid here.
9082#. '``ty``': the type of the call instruction itself which is also the
9083 type of the return value. Functions that return no value are marked
9084 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00009085#. '``fnty``': shall be the signature of the function being called. The
9086 argument types must match the types implied by this signature. This
9087 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00009088#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00009089 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00009090 indirect ``call``'s are just as possible, calling an arbitrary pointer
9091 to function value.
9092#. '``function args``': argument list whose types match the function
9093 signature argument types and parameter attributes. All arguments must
9094 be of :ref:`first class <t_firstclass>` type. If the function signature
9095 indicates the function accepts a variable number of arguments, the
9096 extra arguments can be specified.
George Burgess IV39c91052017-04-13 04:01:55 +00009097#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00009098#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00009099
9100Semantics:
9101""""""""""
9102
9103The '``call``' instruction is used to cause control flow to transfer to
9104a specified function, with its incoming arguments bound to the specified
9105values. Upon a '``ret``' instruction in the called function, control
9106flow continues with the instruction after the function call, and the
9107return value of the function is bound to the result argument.
9108
9109Example:
9110""""""""
9111
9112.. code-block:: llvm
9113
9114 %retval = call i32 @test(i32 %argc)
9115 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
9116 %X = tail call i32 @foo() ; yields i32
9117 %Y = tail call fastcc i32 @foo() ; yields i32
9118 call void %foo(i8 97 signext)
9119
9120 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00009121 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00009122 %gr = extractvalue %struct.A %r, 0 ; yields i32
9123 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
9124 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
9125 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
9126
9127llvm treats calls to some functions with names and arguments that match
9128the standard C99 library as being the C99 library functions, and may
9129perform optimizations or generate code for them under that assumption.
9130This is something we'd like to change in the future to provide better
9131support for freestanding environments and non-C-based languages.
9132
9133.. _i_va_arg:
9134
9135'``va_arg``' Instruction
9136^^^^^^^^^^^^^^^^^^^^^^^^
9137
9138Syntax:
9139"""""""
9140
9141::
9142
9143 <resultval> = va_arg <va_list*> <arglist>, <argty>
9144
9145Overview:
9146"""""""""
9147
9148The '``va_arg``' instruction is used to access arguments passed through
9149the "variable argument" area of a function call. It is used to implement
9150the ``va_arg`` macro in C.
9151
9152Arguments:
9153""""""""""
9154
9155This instruction takes a ``va_list*`` value and the type of the
9156argument. It returns a value of the specified argument type and
9157increments the ``va_list`` to point to the next argument. The actual
9158type of ``va_list`` is target specific.
9159
9160Semantics:
9161""""""""""
9162
9163The '``va_arg``' instruction loads an argument of the specified type
9164from the specified ``va_list`` and causes the ``va_list`` to point to
9165the next argument. For more information, see the variable argument
9166handling :ref:`Intrinsic Functions <int_varargs>`.
9167
9168It is legal for this instruction to be called in a function which does
9169not take a variable number of arguments, for example, the ``vfprintf``
9170function.
9171
9172``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
9173function <intrinsics>` because it takes a type as an argument.
9174
9175Example:
9176""""""""
9177
9178See the :ref:`variable argument processing <int_varargs>` section.
9179
9180Note that the code generator does not yet fully support va\_arg on many
9181targets. Also, it does not currently support va\_arg with aggregate
9182types on any target.
9183
9184.. _i_landingpad:
9185
9186'``landingpad``' Instruction
9187^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9188
9189Syntax:
9190"""""""
9191
9192::
9193
David Majnemer7fddecc2015-06-17 20:52:32 +00009194 <resultval> = landingpad <resultty> <clause>+
9195 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00009196
9197 <clause> := catch <type> <value>
9198 <clause> := filter <array constant type> <array constant>
9199
9200Overview:
9201"""""""""
9202
9203The '``landingpad``' instruction is used by `LLVM's exception handling
9204system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009205is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00009206code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00009207defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00009208re-entry to the function. The ``resultval`` has the type ``resultty``.
9209
9210Arguments:
9211""""""""""
9212
David Majnemer7fddecc2015-06-17 20:52:32 +00009213The optional
Sean Silvab084af42012-12-07 10:36:55 +00009214``cleanup`` flag indicates that the landing pad block is a cleanup.
9215
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009216A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00009217contains the global variable representing the "type" that may be caught
9218or filtered respectively. Unlike the ``catch`` clause, the ``filter``
9219clause takes an array constant as its argument. Use
9220"``[0 x i8**] undef``" for a filter which cannot throw. The
9221'``landingpad``' instruction must contain *at least* one ``clause`` or
9222the ``cleanup`` flag.
9223
9224Semantics:
9225""""""""""
9226
9227The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00009228:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00009229therefore the "result type" of the ``landingpad`` instruction. As with
9230calling conventions, how the personality function results are
9231represented in LLVM IR is target specific.
9232
9233The clauses are applied in order from top to bottom. If two
9234``landingpad`` instructions are merged together through inlining, the
9235clauses from the calling function are appended to the list of clauses.
9236When the call stack is being unwound due to an exception being thrown,
9237the exception is compared against each ``clause`` in turn. If it doesn't
9238match any of the clauses, and the ``cleanup`` flag is not set, then
9239unwinding continues further up the call stack.
9240
9241The ``landingpad`` instruction has several restrictions:
9242
9243- A landing pad block is a basic block which is the unwind destination
9244 of an '``invoke``' instruction.
9245- A landing pad block must have a '``landingpad``' instruction as its
9246 first non-PHI instruction.
9247- There can be only one '``landingpad``' instruction within the landing
9248 pad block.
9249- A basic block that is not a landing pad block may not include a
9250 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009251
9252Example:
9253""""""""
9254
9255.. code-block:: llvm
9256
9257 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00009258 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009259 catch i8** @_ZTIi
9260 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00009261 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009262 cleanup
9263 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00009264 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009265 catch i8** @_ZTIi
9266 filter [1 x i8**] [@_ZTId]
9267
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009268.. _i_catchpad:
9269
9270'``catchpad``' Instruction
9271^^^^^^^^^^^^^^^^^^^^^^^^^^
9272
9273Syntax:
9274"""""""
9275
9276::
9277
9278 <resultval> = catchpad within <catchswitch> [<args>*]
9279
9280Overview:
9281"""""""""
9282
9283The '``catchpad``' instruction is used by `LLVM's exception handling
9284system <ExceptionHandling.html#overview>`_ to specify that a basic block
9285begins a catch handler --- one where a personality routine attempts to transfer
9286control to catch an exception.
9287
9288Arguments:
9289""""""""""
9290
9291The ``catchswitch`` operand must always be a token produced by a
9292:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
9293ensures that each ``catchpad`` has exactly one predecessor block, and it always
9294terminates in a ``catchswitch``.
9295
9296The ``args`` correspond to whatever information the personality routine
9297requires to know if this is an appropriate handler for the exception. Control
9298will transfer to the ``catchpad`` if this is the first appropriate handler for
9299the exception.
9300
9301The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
9302``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
9303pads.
9304
9305Semantics:
9306""""""""""
9307
9308When the call stack is being unwound due to an exception being thrown, the
9309exception is compared against the ``args``. If it doesn't match, control will
9310not reach the ``catchpad`` instruction. The representation of ``args`` is
9311entirely target and personality function-specific.
9312
9313Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
9314instruction must be the first non-phi of its parent basic block.
9315
9316The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
9317instructions is described in the
9318`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
9319
9320When a ``catchpad`` has been "entered" but not yet "exited" (as
9321described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9322it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9323that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
9324
9325Example:
9326""""""""
9327
Renato Golin124f2592016-07-20 12:16:38 +00009328.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009329
9330 dispatch:
9331 %cs = catchswitch within none [label %handler0] unwind to caller
9332 ;; A catch block which can catch an integer.
9333 handler0:
9334 %tok = catchpad within %cs [i8** @_ZTIi]
9335
David Majnemer654e1302015-07-31 17:58:14 +00009336.. _i_cleanuppad:
9337
9338'``cleanuppad``' Instruction
9339^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9340
9341Syntax:
9342"""""""
9343
9344::
9345
David Majnemer8a1c45d2015-12-12 05:38:55 +00009346 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00009347
9348Overview:
9349"""""""""
9350
9351The '``cleanuppad``' instruction is used by `LLVM's exception handling
9352system <ExceptionHandling.html#overview>`_ to specify that a basic block
9353is a cleanup block --- one where a personality routine attempts to
9354transfer control to run cleanup actions.
9355The ``args`` correspond to whatever additional
9356information the :ref:`personality function <personalityfn>` requires to
9357execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00009358The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00009359match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
9360The ``parent`` argument is the token of the funclet that contains the
9361``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
9362this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00009363
9364Arguments:
9365""""""""""
9366
9367The instruction takes a list of arbitrary values which are interpreted
9368by the :ref:`personality function <personalityfn>`.
9369
9370Semantics:
9371""""""""""
9372
David Majnemer654e1302015-07-31 17:58:14 +00009373When the call stack is being unwound due to an exception being thrown,
9374the :ref:`personality function <personalityfn>` transfers control to the
9375``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00009376As with calling conventions, how the personality function results are
9377represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00009378
9379The ``cleanuppad`` instruction has several restrictions:
9380
9381- A cleanup block is a basic block which is the unwind destination of
9382 an exceptional instruction.
9383- A cleanup block must have a '``cleanuppad``' instruction as its
9384 first non-PHI instruction.
9385- There can be only one '``cleanuppad``' instruction within the
9386 cleanup block.
9387- A basic block that is not a cleanup block may not include a
9388 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009389
Joseph Tremoulete28885e2016-01-10 04:28:38 +00009390When a ``cleanuppad`` has been "entered" but not yet "exited" (as
9391described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9392it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9393that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009394
David Majnemer654e1302015-07-31 17:58:14 +00009395Example:
9396""""""""
9397
Renato Golin124f2592016-07-20 12:16:38 +00009398.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00009399
David Majnemer8a1c45d2015-12-12 05:38:55 +00009400 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00009401
Sean Silvab084af42012-12-07 10:36:55 +00009402.. _intrinsics:
9403
9404Intrinsic Functions
9405===================
9406
9407LLVM supports the notion of an "intrinsic function". These functions
9408have well known names and semantics and are required to follow certain
9409restrictions. Overall, these intrinsics represent an extension mechanism
9410for the LLVM language that does not require changing all of the
9411transformations in LLVM when adding to the language (or the bitcode
9412reader/writer, the parser, etc...).
9413
9414Intrinsic function names must all start with an "``llvm.``" prefix. This
9415prefix is reserved in LLVM for intrinsic names; thus, function names may
9416not begin with this prefix. Intrinsic functions must always be external
9417functions: you cannot define the body of intrinsic functions. Intrinsic
9418functions may only be used in call or invoke instructions: it is illegal
9419to take the address of an intrinsic function. Additionally, because
9420intrinsic functions are part of the LLVM language, it is required if any
9421are added that they be documented here.
9422
9423Some intrinsic functions can be overloaded, i.e., the intrinsic
9424represents a family of functions that perform the same operation but on
9425different data types. Because LLVM can represent over 8 million
9426different integer types, overloading is used commonly to allow an
9427intrinsic function to operate on any integer type. One or more of the
9428argument types or the result type can be overloaded to accept any
9429integer type. Argument types may also be defined as exactly matching a
9430previous argument's type or the result type. This allows an intrinsic
9431function which accepts multiple arguments, but needs all of them to be
9432of the same type, to only be overloaded with respect to a single
9433argument or the result.
9434
9435Overloaded intrinsics will have the names of its overloaded argument
9436types encoded into its function name, each preceded by a period. Only
9437those types which are overloaded result in a name suffix. Arguments
9438whose type is matched against another type do not. For example, the
9439``llvm.ctpop`` function can take an integer of any width and returns an
9440integer of exactly the same integer width. This leads to a family of
9441functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
9442``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
9443overloaded, and only one type suffix is required. Because the argument's
9444type is matched against the return type, it does not require its own
9445name suffix.
9446
9447To learn how to add an intrinsic function, please see the `Extending
9448LLVM Guide <ExtendingLLVM.html>`_.
9449
9450.. _int_varargs:
9451
9452Variable Argument Handling Intrinsics
9453-------------------------------------
9454
9455Variable argument support is defined in LLVM with the
9456:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9457functions. These functions are related to the similarly named macros
9458defined in the ``<stdarg.h>`` header file.
9459
9460All of these functions operate on arguments that use a target-specific
9461value type "``va_list``". The LLVM assembly language reference manual
9462does not define what this type is, so all transformations should be
9463prepared to handle these functions regardless of the type used.
9464
9465This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9466variable argument handling intrinsic functions are used.
9467
9468.. code-block:: llvm
9469
Tim Northoverab60bb92014-11-02 01:21:51 +00009470 ; This struct is different for every platform. For most platforms,
9471 ; it is merely an i8*.
9472 %struct.va_list = type { i8* }
9473
9474 ; For Unix x86_64 platforms, va_list is the following struct:
9475 ; %struct.va_list = type { i32, i32, i8*, i8* }
9476
Sean Silvab084af42012-12-07 10:36:55 +00009477 define i32 @test(i32 %X, ...) {
9478 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009479 %ap = alloca %struct.va_list
9480 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009481 call void @llvm.va_start(i8* %ap2)
9482
9483 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009484 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009485
9486 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9487 %aq = alloca i8*
9488 %aq2 = bitcast i8** %aq to i8*
9489 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9490 call void @llvm.va_end(i8* %aq2)
9491
9492 ; Stop processing of arguments.
9493 call void @llvm.va_end(i8* %ap2)
9494 ret i32 %tmp
9495 }
9496
9497 declare void @llvm.va_start(i8*)
9498 declare void @llvm.va_copy(i8*, i8*)
9499 declare void @llvm.va_end(i8*)
9500
9501.. _int_va_start:
9502
9503'``llvm.va_start``' Intrinsic
9504^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9505
9506Syntax:
9507"""""""
9508
9509::
9510
Nick Lewycky04f6de02013-09-11 22:04:52 +00009511 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009512
9513Overview:
9514"""""""""
9515
9516The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9517subsequent use by ``va_arg``.
9518
9519Arguments:
9520""""""""""
9521
9522The argument is a pointer to a ``va_list`` element to initialize.
9523
9524Semantics:
9525""""""""""
9526
9527The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9528available in C. In a target-dependent way, it initializes the
9529``va_list`` element to which the argument points, so that the next call
9530to ``va_arg`` will produce the first variable argument passed to the
9531function. Unlike the C ``va_start`` macro, this intrinsic does not need
9532to know the last argument of the function as the compiler can figure
9533that out.
9534
9535'``llvm.va_end``' Intrinsic
9536^^^^^^^^^^^^^^^^^^^^^^^^^^^
9537
9538Syntax:
9539"""""""
9540
9541::
9542
9543 declare void @llvm.va_end(i8* <arglist>)
9544
9545Overview:
9546"""""""""
9547
9548The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9549initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9550
9551Arguments:
9552""""""""""
9553
9554The argument is a pointer to a ``va_list`` to destroy.
9555
9556Semantics:
9557""""""""""
9558
9559The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9560available in C. In a target-dependent way, it destroys the ``va_list``
9561element to which the argument points. Calls to
9562:ref:`llvm.va_start <int_va_start>` and
9563:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9564``llvm.va_end``.
9565
9566.. _int_va_copy:
9567
9568'``llvm.va_copy``' Intrinsic
9569^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9570
9571Syntax:
9572"""""""
9573
9574::
9575
9576 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9577
9578Overview:
9579"""""""""
9580
9581The '``llvm.va_copy``' intrinsic copies the current argument position
9582from the source argument list to the destination argument list.
9583
9584Arguments:
9585""""""""""
9586
9587The first argument is a pointer to a ``va_list`` element to initialize.
9588The second argument is a pointer to a ``va_list`` element to copy from.
9589
9590Semantics:
9591""""""""""
9592
9593The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9594available in C. In a target-dependent way, it copies the source
9595``va_list`` element into the destination ``va_list`` element. This
9596intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9597arbitrarily complex and require, for example, memory allocation.
9598
9599Accurate Garbage Collection Intrinsics
9600--------------------------------------
9601
Philip Reamesc5b0f562015-02-25 23:52:06 +00009602LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009603(GC) requires the frontend to generate code containing appropriate intrinsic
9604calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009605intrinsics in a manner which is appropriate for the target collector.
9606
Sean Silvab084af42012-12-07 10:36:55 +00009607These intrinsics allow identification of :ref:`GC roots on the
9608stack <int_gcroot>`, as well as garbage collector implementations that
9609require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009610Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009611these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009612details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009613
Philip Reamesf80bbff2015-02-25 23:45:20 +00009614Experimental Statepoint Intrinsics
9615^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9616
9617LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009618collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009619to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009620:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009621differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009622<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009623described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009624
9625.. _int_gcroot:
9626
9627'``llvm.gcroot``' Intrinsic
9628^^^^^^^^^^^^^^^^^^^^^^^^^^^
9629
9630Syntax:
9631"""""""
9632
9633::
9634
9635 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9636
9637Overview:
9638"""""""""
9639
9640The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9641the code generator, and allows some metadata to be associated with it.
9642
9643Arguments:
9644""""""""""
9645
9646The first argument specifies the address of a stack object that contains
9647the root pointer. The second pointer (which must be either a constant or
9648a global value address) contains the meta-data to be associated with the
9649root.
9650
9651Semantics:
9652""""""""""
9653
9654At runtime, a call to this intrinsic stores a null pointer into the
9655"ptrloc" location. At compile-time, the code generator generates
9656information to allow the runtime to find the pointer at GC safe points.
9657The '``llvm.gcroot``' intrinsic may only be used in a function which
9658:ref:`specifies a GC algorithm <gc>`.
9659
9660.. _int_gcread:
9661
9662'``llvm.gcread``' Intrinsic
9663^^^^^^^^^^^^^^^^^^^^^^^^^^^
9664
9665Syntax:
9666"""""""
9667
9668::
9669
9670 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9671
9672Overview:
9673"""""""""
9674
9675The '``llvm.gcread``' intrinsic identifies reads of references from heap
9676locations, allowing garbage collector implementations that require read
9677barriers.
9678
9679Arguments:
9680""""""""""
9681
9682The second argument is the address to read from, which should be an
9683address allocated from the garbage collector. The first object is a
9684pointer to the start of the referenced object, if needed by the language
9685runtime (otherwise null).
9686
9687Semantics:
9688""""""""""
9689
9690The '``llvm.gcread``' intrinsic has the same semantics as a load
9691instruction, but may be replaced with substantially more complex code by
9692the garbage collector runtime, as needed. The '``llvm.gcread``'
9693intrinsic may only be used in a function which :ref:`specifies a GC
9694algorithm <gc>`.
9695
9696.. _int_gcwrite:
9697
9698'``llvm.gcwrite``' Intrinsic
9699^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9700
9701Syntax:
9702"""""""
9703
9704::
9705
9706 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9707
9708Overview:
9709"""""""""
9710
9711The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9712locations, allowing garbage collector implementations that require write
9713barriers (such as generational or reference counting collectors).
9714
9715Arguments:
9716""""""""""
9717
9718The first argument is the reference to store, the second is the start of
9719the object to store it to, and the third is the address of the field of
9720Obj to store to. If the runtime does not require a pointer to the
9721object, Obj may be null.
9722
9723Semantics:
9724""""""""""
9725
9726The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9727instruction, but may be replaced with substantially more complex code by
9728the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9729intrinsic may only be used in a function which :ref:`specifies a GC
9730algorithm <gc>`.
9731
9732Code Generator Intrinsics
9733-------------------------
9734
9735These intrinsics are provided by LLVM to expose special features that
9736may only be implemented with code generator support.
9737
9738'``llvm.returnaddress``' Intrinsic
9739^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9740
9741Syntax:
9742"""""""
9743
9744::
9745
George Burgess IVfbc34982017-05-20 04:52:29 +00009746 declare i8* @llvm.returnaddress(i32 <level>)
Sean Silvab084af42012-12-07 10:36:55 +00009747
9748Overview:
9749"""""""""
9750
9751The '``llvm.returnaddress``' intrinsic attempts to compute a
9752target-specific value indicating the return address of the current
9753function or one of its callers.
9754
9755Arguments:
9756""""""""""
9757
9758The argument to this intrinsic indicates which function to return the
9759address for. Zero indicates the calling function, one indicates its
9760caller, etc. The argument is **required** to be a constant integer
9761value.
9762
9763Semantics:
9764""""""""""
9765
9766The '``llvm.returnaddress``' intrinsic either returns a pointer
9767indicating the return address of the specified call frame, or zero if it
9768cannot be identified. The value returned by this intrinsic is likely to
9769be incorrect or 0 for arguments other than zero, so it should only be
9770used for debugging purposes.
9771
9772Note that calling this intrinsic does not prevent function inlining or
9773other aggressive transformations, so the value returned may not be that
9774of the obvious source-language caller.
9775
Albert Gutowski795d7d62016-10-12 22:13:19 +00009776'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +00009777^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +00009778
9779Syntax:
9780"""""""
9781
9782::
9783
George Burgess IVfbc34982017-05-20 04:52:29 +00009784 declare i8* @llvm.addressofreturnaddress()
Albert Gutowski795d7d62016-10-12 22:13:19 +00009785
9786Overview:
9787"""""""""
9788
9789The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
9790pointer to the place in the stack frame where the return address of the
9791current function is stored.
9792
9793Semantics:
9794""""""""""
9795
9796Note that calling this intrinsic does not prevent function inlining or
9797other aggressive transformations, so the value returned may not be that
9798of the obvious source-language caller.
9799
9800This intrinsic is only implemented for x86.
9801
Sean Silvab084af42012-12-07 10:36:55 +00009802'``llvm.frameaddress``' Intrinsic
9803^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9804
9805Syntax:
9806"""""""
9807
9808::
9809
9810 declare i8* @llvm.frameaddress(i32 <level>)
9811
9812Overview:
9813"""""""""
9814
9815The '``llvm.frameaddress``' intrinsic attempts to return the
9816target-specific frame pointer value for the specified stack frame.
9817
9818Arguments:
9819""""""""""
9820
9821The argument to this intrinsic indicates which function to return the
9822frame pointer for. Zero indicates the calling function, one indicates
9823its caller, etc. The argument is **required** to be a constant integer
9824value.
9825
9826Semantics:
9827""""""""""
9828
9829The '``llvm.frameaddress``' intrinsic either returns a pointer
9830indicating the frame address of the specified call frame, or zero if it
9831cannot be identified. The value returned by this intrinsic is likely to
9832be incorrect or 0 for arguments other than zero, so it should only be
9833used for debugging purposes.
9834
9835Note that calling this intrinsic does not prevent function inlining or
9836other aggressive transformations, so the value returned may not be that
9837of the obvious source-language caller.
9838
Reid Kleckner60381792015-07-07 22:25:32 +00009839'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009840^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9841
9842Syntax:
9843"""""""
9844
9845::
9846
Reid Kleckner60381792015-07-07 22:25:32 +00009847 declare void @llvm.localescape(...)
9848 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009849
9850Overview:
9851"""""""""
9852
Reid Kleckner60381792015-07-07 22:25:32 +00009853The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9854allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009855live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009856computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009857
9858Arguments:
9859""""""""""
9860
Reid Kleckner60381792015-07-07 22:25:32 +00009861All arguments to '``llvm.localescape``' must be pointers to static allocas or
9862casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009863once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009864
Reid Kleckner60381792015-07-07 22:25:32 +00009865The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009866bitcasted pointer to a function defined in the current module. The code
9867generator cannot determine the frame allocation offset of functions defined in
9868other modules.
9869
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009870The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9871call frame that is currently live. The return value of '``llvm.localaddress``'
9872is one way to produce such a value, but various runtimes also expose a suitable
9873pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009874
Reid Kleckner60381792015-07-07 22:25:32 +00009875The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9876'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009877
Reid Klecknere9b89312015-01-13 00:48:10 +00009878Semantics:
9879""""""""""
9880
Reid Kleckner60381792015-07-07 22:25:32 +00009881These intrinsics allow a group of functions to share access to a set of local
9882stack allocations of a one parent function. The parent function may call the
9883'``llvm.localescape``' intrinsic once from the function entry block, and the
9884child functions can use '``llvm.localrecover``' to access the escaped allocas.
9885The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9886the escaped allocas are allocated, which would break attempts to use
9887'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009888
Renato Golinc7aea402014-05-06 16:51:25 +00009889.. _int_read_register:
9890.. _int_write_register:
9891
9892'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9893^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9894
9895Syntax:
9896"""""""
9897
9898::
9899
9900 declare i32 @llvm.read_register.i32(metadata)
9901 declare i64 @llvm.read_register.i64(metadata)
9902 declare void @llvm.write_register.i32(metadata, i32 @value)
9903 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009904 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009905
9906Overview:
9907"""""""""
9908
9909The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9910provides access to the named register. The register must be valid on
9911the architecture being compiled to. The type needs to be compatible
9912with the register being read.
9913
9914Semantics:
9915""""""""""
9916
9917The '``llvm.read_register``' intrinsic returns the current value of the
9918register, where possible. The '``llvm.write_register``' intrinsic sets
9919the current value of the register, where possible.
9920
9921This is useful to implement named register global variables that need
9922to always be mapped to a specific register, as is common practice on
9923bare-metal programs including OS kernels.
9924
9925The compiler doesn't check for register availability or use of the used
9926register in surrounding code, including inline assembly. Because of that,
9927allocatable registers are not supported.
9928
9929Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009930architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009931work is needed to support other registers and even more so, allocatable
9932registers.
9933
Sean Silvab084af42012-12-07 10:36:55 +00009934.. _int_stacksave:
9935
9936'``llvm.stacksave``' Intrinsic
9937^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9938
9939Syntax:
9940"""""""
9941
9942::
9943
9944 declare i8* @llvm.stacksave()
9945
9946Overview:
9947"""""""""
9948
9949The '``llvm.stacksave``' intrinsic is used to remember the current state
9950of the function stack, for use with
9951:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9952implementing language features like scoped automatic variable sized
9953arrays in C99.
9954
9955Semantics:
9956""""""""""
9957
9958This intrinsic returns a opaque pointer value that can be passed to
9959:ref:`llvm.stackrestore <int_stackrestore>`. When an
9960``llvm.stackrestore`` intrinsic is executed with a value saved from
9961``llvm.stacksave``, it effectively restores the state of the stack to
9962the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9963practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9964were allocated after the ``llvm.stacksave`` was executed.
9965
9966.. _int_stackrestore:
9967
9968'``llvm.stackrestore``' Intrinsic
9969^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9970
9971Syntax:
9972"""""""
9973
9974::
9975
9976 declare void @llvm.stackrestore(i8* %ptr)
9977
9978Overview:
9979"""""""""
9980
9981The '``llvm.stackrestore``' intrinsic is used to restore the state of
9982the function stack to the state it was in when the corresponding
9983:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9984useful for implementing language features like scoped automatic variable
9985sized arrays in C99.
9986
9987Semantics:
9988""""""""""
9989
9990See the description for :ref:`llvm.stacksave <int_stacksave>`.
9991
Yury Gribovd7dbb662015-12-01 11:40:55 +00009992.. _int_get_dynamic_area_offset:
9993
9994'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009995^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009996
9997Syntax:
9998"""""""
9999
10000::
10001
10002 declare i32 @llvm.get.dynamic.area.offset.i32()
10003 declare i64 @llvm.get.dynamic.area.offset.i64()
10004
Lang Hames10239932016-10-08 00:20:42 +000010005Overview:
10006"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +000010007
10008 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
10009 get the offset from native stack pointer to the address of the most
10010 recent dynamic alloca on the caller's stack. These intrinsics are
10011 intendend for use in combination with
10012 :ref:`llvm.stacksave <int_stacksave>` to get a
10013 pointer to the most recent dynamic alloca. This is useful, for example,
10014 for AddressSanitizer's stack unpoisoning routines.
10015
10016Semantics:
10017""""""""""
10018
10019 These intrinsics return a non-negative integer value that can be used to
10020 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
10021 on the caller's stack. In particular, for targets where stack grows downwards,
10022 adding this offset to the native stack pointer would get the address of the most
10023 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +000010024 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +000010025 one past the end of the most recent dynamic alloca.
10026
10027 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
10028 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
10029 compile-time-known constant value.
10030
10031 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
Matt Arsenaultc749bdc2017-03-30 23:36:47 +000010032 must match the target's default address space's (address space 0) pointer type.
Yury Gribovd7dbb662015-12-01 11:40:55 +000010033
Sean Silvab084af42012-12-07 10:36:55 +000010034'``llvm.prefetch``' Intrinsic
10035^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10036
10037Syntax:
10038"""""""
10039
10040::
10041
10042 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
10043
10044Overview:
10045"""""""""
10046
10047The '``llvm.prefetch``' intrinsic is a hint to the code generator to
10048insert a prefetch instruction if supported; otherwise, it is a noop.
10049Prefetches have no effect on the behavior of the program but can change
10050its performance characteristics.
10051
10052Arguments:
10053""""""""""
10054
10055``address`` is the address to be prefetched, ``rw`` is the specifier
10056determining if the fetch should be for a read (0) or write (1), and
10057``locality`` is a temporal locality specifier ranging from (0) - no
10058locality, to (3) - extremely local keep in cache. The ``cache type``
10059specifies whether the prefetch is performed on the data (1) or
10060instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
10061arguments must be constant integers.
10062
10063Semantics:
10064""""""""""
10065
10066This intrinsic does not modify the behavior of the program. In
10067particular, prefetches cannot trap and do not produce a value. On
10068targets that support this intrinsic, the prefetch can provide hints to
10069the processor cache for better performance.
10070
10071'``llvm.pcmarker``' Intrinsic
10072^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10073
10074Syntax:
10075"""""""
10076
10077::
10078
10079 declare void @llvm.pcmarker(i32 <id>)
10080
10081Overview:
10082"""""""""
10083
10084The '``llvm.pcmarker``' intrinsic is a method to export a Program
10085Counter (PC) in a region of code to simulators and other tools. The
10086method is target specific, but it is expected that the marker will use
10087exported symbols to transmit the PC of the marker. The marker makes no
10088guarantees that it will remain with any specific instruction after
10089optimizations. It is possible that the presence of a marker will inhibit
10090optimizations. The intended use is to be inserted after optimizations to
10091allow correlations of simulation runs.
10092
10093Arguments:
10094""""""""""
10095
10096``id`` is a numerical id identifying the marker.
10097
10098Semantics:
10099""""""""""
10100
10101This intrinsic does not modify the behavior of the program. Backends
10102that do not support this intrinsic may ignore it.
10103
10104'``llvm.readcyclecounter``' Intrinsic
10105^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10106
10107Syntax:
10108"""""""
10109
10110::
10111
10112 declare i64 @llvm.readcyclecounter()
10113
10114Overview:
10115"""""""""
10116
10117The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
10118counter register (or similar low latency, high accuracy clocks) on those
10119targets that support it. On X86, it should map to RDTSC. On Alpha, it
10120should map to RPCC. As the backing counters overflow quickly (on the
10121order of 9 seconds on alpha), this should only be used for small
10122timings.
10123
10124Semantics:
10125""""""""""
10126
10127When directly supported, reading the cycle counter should not modify any
10128memory. Implementations are allowed to either return a application
10129specific value or a system wide value. On backends without support, this
10130is lowered to a constant 0.
10131
Tim Northoverbc933082013-05-23 19:11:20 +000010132Note that runtime support may be conditional on the privilege-level code is
10133running at and the host platform.
10134
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010135'``llvm.clear_cache``' Intrinsic
10136^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10137
10138Syntax:
10139"""""""
10140
10141::
10142
10143 declare void @llvm.clear_cache(i8*, i8*)
10144
10145Overview:
10146"""""""""
10147
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010148The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
10149in the specified range to the execution unit of the processor. On
10150targets with non-unified instruction and data cache, the implementation
10151flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010152
10153Semantics:
10154""""""""""
10155
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010156On platforms with coherent instruction and data caches (e.g. x86), this
10157intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +000010158cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010159instructions or a system call, if cache flushing requires special
10160privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010161
Sean Silvad02bf3e2014-04-07 22:29:53 +000010162The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010163time library.
Renato Golin93010e62014-03-26 14:01:32 +000010164
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010165This instrinsic does *not* empty the instruction pipeline. Modifications
10166of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010167
Justin Bogner61ba2e32014-12-08 18:02:35 +000010168'``llvm.instrprof_increment``' Intrinsic
10169^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10170
10171Syntax:
10172"""""""
10173
10174::
10175
10176 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
10177 i32 <num-counters>, i32 <index>)
10178
10179Overview:
10180"""""""""
10181
10182The '``llvm.instrprof_increment``' intrinsic can be emitted by a
10183frontend for use with instrumentation based profiling. These will be
10184lowered by the ``-instrprof`` pass to generate execution counts of a
10185program at runtime.
10186
10187Arguments:
10188""""""""""
10189
10190The first argument is a pointer to a global variable containing the
10191name of the entity being instrumented. This should generally be the
10192(mangled) function name for a set of counters.
10193
10194The second argument is a hash value that can be used by the consumer
10195of the profile data to detect changes to the instrumented source, and
10196the third is the number of counters associated with ``name``. It is an
10197error if ``hash`` or ``num-counters`` differ between two instances of
10198``instrprof_increment`` that refer to the same name.
10199
10200The last argument refers to which of the counters for ``name`` should
10201be incremented. It should be a value between 0 and ``num-counters``.
10202
10203Semantics:
10204""""""""""
10205
10206This intrinsic represents an increment of a profiling counter. It will
10207cause the ``-instrprof`` pass to generate the appropriate data
10208structures and the code to increment the appropriate value, in a
10209format that can be written out by a compiler runtime and consumed via
10210the ``llvm-profdata`` tool.
10211
Xinliang David Li4ca17332016-09-18 18:34:07 +000010212'``llvm.instrprof_increment_step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +000010213^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +000010214
10215Syntax:
10216"""""""
10217
10218::
10219
10220 declare void @llvm.instrprof_increment_step(i8* <name>, i64 <hash>,
10221 i32 <num-counters>,
10222 i32 <index>, i64 <step>)
10223
10224Overview:
10225"""""""""
10226
10227The '``llvm.instrprof_increment_step``' intrinsic is an extension to
10228the '``llvm.instrprof_increment``' intrinsic with an additional fifth
10229argument to specify the step of the increment.
10230
10231Arguments:
10232""""""""""
10233The first four arguments are the same as '``llvm.instrprof_increment``'
Pete Couperused9569d2017-08-23 20:58:22 +000010234intrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000010235
10236The last argument specifies the value of the increment of the counter variable.
10237
10238Semantics:
10239""""""""""
10240See description of '``llvm.instrprof_increment``' instrinsic.
10241
10242
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010243'``llvm.instrprof_value_profile``' Intrinsic
10244^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10245
10246Syntax:
10247"""""""
10248
10249::
10250
10251 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
10252 i64 <value>, i32 <value_kind>,
10253 i32 <index>)
10254
10255Overview:
10256"""""""""
10257
10258The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
10259frontend for use with instrumentation based profiling. This will be
10260lowered by the ``-instrprof`` pass to find out the target values,
10261instrumented expressions take in a program at runtime.
10262
10263Arguments:
10264""""""""""
10265
10266The first argument is a pointer to a global variable containing the
10267name of the entity being instrumented. ``name`` should generally be the
10268(mangled) function name for a set of counters.
10269
10270The second argument is a hash value that can be used by the consumer
10271of the profile data to detect changes to the instrumented source. It
10272is an error if ``hash`` differs between two instances of
10273``llvm.instrprof_*`` that refer to the same name.
10274
10275The third argument is the value of the expression being profiled. The profiled
10276expression's value should be representable as an unsigned 64-bit value. The
10277fourth argument represents the kind of value profiling that is being done. The
10278supported value profiling kinds are enumerated through the
10279``InstrProfValueKind`` type declared in the
10280``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
10281index of the instrumented expression within ``name``. It should be >= 0.
10282
10283Semantics:
10284""""""""""
10285
10286This intrinsic represents the point where a call to a runtime routine
10287should be inserted for value profiling of target expressions. ``-instrprof``
10288pass will generate the appropriate data structures and replace the
10289``llvm.instrprof_value_profile`` intrinsic with the call to the profile
10290runtime library with proper arguments.
10291
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000010292'``llvm.thread.pointer``' Intrinsic
10293^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10294
10295Syntax:
10296"""""""
10297
10298::
10299
10300 declare i8* @llvm.thread.pointer()
10301
10302Overview:
10303"""""""""
10304
10305The '``llvm.thread.pointer``' intrinsic returns the value of the thread
10306pointer.
10307
10308Semantics:
10309""""""""""
10310
10311The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
10312for the current thread. The exact semantics of this value are target
10313specific: it may point to the start of TLS area, to the end, or somewhere
10314in the middle. Depending on the target, this intrinsic may read a register,
10315call a helper function, read from an alternate memory space, or perform
10316other operations necessary to locate the TLS area. Not all targets support
10317this intrinsic.
10318
Sean Silvab084af42012-12-07 10:36:55 +000010319Standard C Library Intrinsics
10320-----------------------------
10321
10322LLVM provides intrinsics for a few important standard C library
10323functions. These intrinsics allow source-language front-ends to pass
10324information about the alignment of the pointer arguments to the code
10325generator, providing opportunity for more efficient code generation.
10326
10327.. _int_memcpy:
10328
10329'``llvm.memcpy``' Intrinsic
10330^^^^^^^^^^^^^^^^^^^^^^^^^^^
10331
10332Syntax:
10333"""""""
10334
10335This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
10336integer bit width and for different address spaces. Not all targets
10337support all bit widths however.
10338
10339::
10340
10341 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
10342 i32 <len>, i32 <align>, i1 <isvolatile>)
10343 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
10344 i64 <len>, i32 <align>, i1 <isvolatile>)
10345
10346Overview:
10347"""""""""
10348
10349The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10350source location to the destination location.
10351
10352Note that, unlike the standard libc function, the ``llvm.memcpy.*``
10353intrinsics do not return a value, takes extra alignment/isvolatile
10354arguments and the pointers can be in specified address spaces.
10355
10356Arguments:
10357""""""""""
10358
10359The first argument is a pointer to the destination, the second is a
10360pointer to the source. The third argument is an integer argument
10361specifying the number of bytes to copy, the fourth argument is the
10362alignment of the source and destination locations, and the fifth is a
10363boolean indicating a volatile access.
10364
10365If the call to this intrinsic has an alignment value that is not 0 or 1,
10366then the caller guarantees that both the source and destination pointers
10367are aligned to that boundary.
10368
10369If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
10370a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10371very cleanly specified and it is unwise to depend on it.
10372
10373Semantics:
10374""""""""""
10375
10376The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10377source location to the destination location, which are not allowed to
10378overlap. It copies "len" bytes of memory over. If the argument is known
10379to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +000010380argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010381
Daniel Neilson57226ef2017-07-12 15:25:26 +000010382.. _int_memmove:
10383
Sean Silvab084af42012-12-07 10:36:55 +000010384'``llvm.memmove``' Intrinsic
10385^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10386
10387Syntax:
10388"""""""
10389
10390This is an overloaded intrinsic. You can use llvm.memmove on any integer
10391bit width and for different address space. Not all targets support all
10392bit widths however.
10393
10394::
10395
10396 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
10397 i32 <len>, i32 <align>, i1 <isvolatile>)
10398 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
10399 i64 <len>, i32 <align>, i1 <isvolatile>)
10400
10401Overview:
10402"""""""""
10403
10404The '``llvm.memmove.*``' intrinsics move a block of memory from the
10405source location to the destination location. It is similar to the
10406'``llvm.memcpy``' intrinsic but allows the two memory locations to
10407overlap.
10408
10409Note that, unlike the standard libc function, the ``llvm.memmove.*``
10410intrinsics do not return a value, takes extra alignment/isvolatile
10411arguments and the pointers can be in specified address spaces.
10412
10413Arguments:
10414""""""""""
10415
10416The first argument is a pointer to the destination, the second is a
10417pointer to the source. The third argument is an integer argument
10418specifying the number of bytes to copy, the fourth argument is the
10419alignment of the source and destination locations, and the fifth is a
10420boolean indicating a volatile access.
10421
10422If the call to this intrinsic has an alignment value that is not 0 or 1,
10423then the caller guarantees that the source and destination pointers are
10424aligned to that boundary.
10425
10426If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
10427is a :ref:`volatile operation <volatile>`. The detailed access behavior is
10428not very cleanly specified and it is unwise to depend on it.
10429
10430Semantics:
10431""""""""""
10432
10433The '``llvm.memmove.*``' intrinsics copy a block of memory from the
10434source location to the destination location, which may overlap. It
10435copies "len" bytes of memory over. If the argument is known to be
10436aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000010437otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010438
Daniel Neilson965613e2017-07-12 21:57:23 +000010439.. _int_memset:
10440
Sean Silvab084af42012-12-07 10:36:55 +000010441'``llvm.memset.*``' Intrinsics
10442^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10443
10444Syntax:
10445"""""""
10446
10447This is an overloaded intrinsic. You can use llvm.memset on any integer
10448bit width and for different address spaces. However, not all targets
10449support all bit widths.
10450
10451::
10452
10453 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
10454 i32 <len>, i32 <align>, i1 <isvolatile>)
10455 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
10456 i64 <len>, i32 <align>, i1 <isvolatile>)
10457
10458Overview:
10459"""""""""
10460
10461The '``llvm.memset.*``' intrinsics fill a block of memory with a
10462particular byte value.
10463
10464Note that, unlike the standard libc function, the ``llvm.memset``
10465intrinsic does not return a value and takes extra alignment/volatile
10466arguments. Also, the destination can be in an arbitrary address space.
10467
10468Arguments:
10469""""""""""
10470
10471The first argument is a pointer to the destination to fill, the second
10472is the byte value with which to fill it, the third argument is an
10473integer argument specifying the number of bytes to fill, and the fourth
10474argument is the known alignment of the destination location.
10475
10476If the call to this intrinsic has an alignment value that is not 0 or 1,
10477then the caller guarantees that the destination pointer is aligned to
10478that boundary.
10479
10480If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10481a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10482very cleanly specified and it is unwise to depend on it.
10483
10484Semantics:
10485""""""""""
10486
10487The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
10488at the destination location. If the argument is known to be aligned to
10489some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +000010490it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010491
10492'``llvm.sqrt.*``' Intrinsic
10493^^^^^^^^^^^^^^^^^^^^^^^^^^^
10494
10495Syntax:
10496"""""""
10497
10498This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010499floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010500all types however.
10501
10502::
10503
10504 declare float @llvm.sqrt.f32(float %Val)
10505 declare double @llvm.sqrt.f64(double %Val)
10506 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10507 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10508 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10509
10510Overview:
10511"""""""""
10512
Sanjay Patel629c4112017-11-06 16:27:15 +000010513The '``llvm.sqrt``' intrinsics return the square root of the specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010514
10515Arguments:
10516""""""""""
10517
Sanjay Patel629c4112017-11-06 16:27:15 +000010518The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010519
10520Semantics:
10521""""""""""
10522
Sanjay Patel629c4112017-11-06 16:27:15 +000010523Return the same value as a corresponding libm '``sqrt``' function but without
10524trapping or setting ``errno``. For types specified by IEEE-754, the result
10525matches a conforming libm implementation.
10526
10527When specified with the fast-math-flag 'afn', the result may be approximated
10528using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010529
10530'``llvm.powi.*``' Intrinsic
10531^^^^^^^^^^^^^^^^^^^^^^^^^^^
10532
10533Syntax:
10534"""""""
10535
10536This is an overloaded intrinsic. You can use ``llvm.powi`` on any
10537floating point or vector of floating point type. Not all targets support
10538all types however.
10539
10540::
10541
10542 declare float @llvm.powi.f32(float %Val, i32 %power)
10543 declare double @llvm.powi.f64(double %Val, i32 %power)
10544 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10545 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10546 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10547
10548Overview:
10549"""""""""
10550
10551The '``llvm.powi.*``' intrinsics return the first operand raised to the
10552specified (positive or negative) power. The order of evaluation of
10553multiplications is not defined. When a vector of floating point type is
10554used, the second argument remains a scalar integer value.
10555
10556Arguments:
10557""""""""""
10558
10559The second argument is an integer power, and the first is a value to
10560raise to that power.
10561
10562Semantics:
10563""""""""""
10564
10565This function returns the first value raised to the second power with an
10566unspecified sequence of rounding operations.
10567
10568'``llvm.sin.*``' Intrinsic
10569^^^^^^^^^^^^^^^^^^^^^^^^^^
10570
10571Syntax:
10572"""""""
10573
10574This is an overloaded intrinsic. You can use ``llvm.sin`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010575floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010576all types however.
10577
10578::
10579
10580 declare float @llvm.sin.f32(float %Val)
10581 declare double @llvm.sin.f64(double %Val)
10582 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10583 declare fp128 @llvm.sin.f128(fp128 %Val)
10584 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10585
10586Overview:
10587"""""""""
10588
10589The '``llvm.sin.*``' intrinsics return the sine of the operand.
10590
10591Arguments:
10592""""""""""
10593
Sanjay Patel629c4112017-11-06 16:27:15 +000010594The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010595
10596Semantics:
10597""""""""""
10598
Sanjay Patel629c4112017-11-06 16:27:15 +000010599Return the same value as a corresponding libm '``sin``' function but without
10600trapping or setting ``errno``.
10601
10602When specified with the fast-math-flag 'afn', the result may be approximated
10603using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010604
10605'``llvm.cos.*``' Intrinsic
10606^^^^^^^^^^^^^^^^^^^^^^^^^^
10607
10608Syntax:
10609"""""""
10610
10611This is an overloaded intrinsic. You can use ``llvm.cos`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010612floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010613all types however.
10614
10615::
10616
10617 declare float @llvm.cos.f32(float %Val)
10618 declare double @llvm.cos.f64(double %Val)
10619 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10620 declare fp128 @llvm.cos.f128(fp128 %Val)
10621 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10622
10623Overview:
10624"""""""""
10625
10626The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10627
10628Arguments:
10629""""""""""
10630
Sanjay Patel629c4112017-11-06 16:27:15 +000010631The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010632
10633Semantics:
10634""""""""""
10635
Sanjay Patel629c4112017-11-06 16:27:15 +000010636Return the same value as a corresponding libm '``cos``' function but without
10637trapping or setting ``errno``.
10638
10639When specified with the fast-math-flag 'afn', the result may be approximated
10640using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010641
10642'``llvm.pow.*``' Intrinsic
10643^^^^^^^^^^^^^^^^^^^^^^^^^^
10644
10645Syntax:
10646"""""""
10647
10648This is an overloaded intrinsic. You can use ``llvm.pow`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010649floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010650all types however.
10651
10652::
10653
10654 declare float @llvm.pow.f32(float %Val, float %Power)
10655 declare double @llvm.pow.f64(double %Val, double %Power)
10656 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10657 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10658 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10659
10660Overview:
10661"""""""""
10662
10663The '``llvm.pow.*``' intrinsics return the first operand raised to the
10664specified (positive or negative) power.
10665
10666Arguments:
10667""""""""""
10668
Sanjay Patel629c4112017-11-06 16:27:15 +000010669The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010670
10671Semantics:
10672""""""""""
10673
Sanjay Patel629c4112017-11-06 16:27:15 +000010674Return the same value as a corresponding libm '``pow``' function but without
10675trapping or setting ``errno``.
10676
10677When specified with the fast-math-flag 'afn', the result may be approximated
10678using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010679
10680'``llvm.exp.*``' Intrinsic
10681^^^^^^^^^^^^^^^^^^^^^^^^^^
10682
10683Syntax:
10684"""""""
10685
10686This is an overloaded intrinsic. You can use ``llvm.exp`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010687floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010688all types however.
10689
10690::
10691
10692 declare float @llvm.exp.f32(float %Val)
10693 declare double @llvm.exp.f64(double %Val)
10694 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10695 declare fp128 @llvm.exp.f128(fp128 %Val)
10696 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10697
10698Overview:
10699"""""""""
10700
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010701The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
10702value.
Sean Silvab084af42012-12-07 10:36:55 +000010703
10704Arguments:
10705""""""""""
10706
Sanjay Patel629c4112017-11-06 16:27:15 +000010707The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010708
10709Semantics:
10710""""""""""
10711
Sanjay Patel629c4112017-11-06 16:27:15 +000010712Return the same value as a corresponding libm '``exp``' function but without
10713trapping or setting ``errno``.
10714
10715When specified with the fast-math-flag 'afn', the result may be approximated
10716using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010717
10718'``llvm.exp2.*``' Intrinsic
10719^^^^^^^^^^^^^^^^^^^^^^^^^^^
10720
10721Syntax:
10722"""""""
10723
10724This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010725floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010726all types however.
10727
10728::
10729
10730 declare float @llvm.exp2.f32(float %Val)
10731 declare double @llvm.exp2.f64(double %Val)
10732 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10733 declare fp128 @llvm.exp2.f128(fp128 %Val)
10734 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10735
10736Overview:
10737"""""""""
10738
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010739The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
10740specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010741
10742Arguments:
10743""""""""""
10744
Sanjay Patel629c4112017-11-06 16:27:15 +000010745The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010746
10747Semantics:
10748""""""""""
10749
Sanjay Patel629c4112017-11-06 16:27:15 +000010750Return the same value as a corresponding libm '``exp2``' function but without
10751trapping or setting ``errno``.
10752
10753When specified with the fast-math-flag 'afn', the result may be approximated
10754using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010755
10756'``llvm.log.*``' Intrinsic
10757^^^^^^^^^^^^^^^^^^^^^^^^^^
10758
10759Syntax:
10760"""""""
10761
10762This is an overloaded intrinsic. You can use ``llvm.log`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010763floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010764all types however.
10765
10766::
10767
10768 declare float @llvm.log.f32(float %Val)
10769 declare double @llvm.log.f64(double %Val)
10770 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10771 declare fp128 @llvm.log.f128(fp128 %Val)
10772 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10773
10774Overview:
10775"""""""""
10776
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010777The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
10778value.
Sean Silvab084af42012-12-07 10:36:55 +000010779
10780Arguments:
10781""""""""""
10782
Sanjay Patel629c4112017-11-06 16:27:15 +000010783The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010784
10785Semantics:
10786""""""""""
10787
Sanjay Patel629c4112017-11-06 16:27:15 +000010788Return the same value as a corresponding libm '``log``' function but without
10789trapping or setting ``errno``.
10790
10791When specified with the fast-math-flag 'afn', the result may be approximated
10792using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010793
10794'``llvm.log10.*``' Intrinsic
10795^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10796
10797Syntax:
10798"""""""
10799
10800This is an overloaded intrinsic. You can use ``llvm.log10`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010801floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010802all types however.
10803
10804::
10805
10806 declare float @llvm.log10.f32(float %Val)
10807 declare double @llvm.log10.f64(double %Val)
10808 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10809 declare fp128 @llvm.log10.f128(fp128 %Val)
10810 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10811
10812Overview:
10813"""""""""
10814
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010815The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
10816specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010817
10818Arguments:
10819""""""""""
10820
Sanjay Patel629c4112017-11-06 16:27:15 +000010821The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010822
10823Semantics:
10824""""""""""
10825
Sanjay Patel629c4112017-11-06 16:27:15 +000010826Return the same value as a corresponding libm '``log10``' function but without
10827trapping or setting ``errno``.
10828
10829When specified with the fast-math-flag 'afn', the result may be approximated
10830using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010831
10832'``llvm.log2.*``' Intrinsic
10833^^^^^^^^^^^^^^^^^^^^^^^^^^^
10834
10835Syntax:
10836"""""""
10837
10838This is an overloaded intrinsic. You can use ``llvm.log2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010839floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010840all types however.
10841
10842::
10843
10844 declare float @llvm.log2.f32(float %Val)
10845 declare double @llvm.log2.f64(double %Val)
10846 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10847 declare fp128 @llvm.log2.f128(fp128 %Val)
10848 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10849
10850Overview:
10851"""""""""
10852
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010853The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
10854value.
Sean Silvab084af42012-12-07 10:36:55 +000010855
10856Arguments:
10857""""""""""
10858
Sanjay Patel629c4112017-11-06 16:27:15 +000010859The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010860
10861Semantics:
10862""""""""""
10863
Sanjay Patel629c4112017-11-06 16:27:15 +000010864Return the same value as a corresponding libm '``log2``' function but without
10865trapping or setting ``errno``.
10866
10867When specified with the fast-math-flag 'afn', the result may be approximated
10868using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010869
10870'``llvm.fma.*``' Intrinsic
10871^^^^^^^^^^^^^^^^^^^^^^^^^^
10872
10873Syntax:
10874"""""""
10875
10876This is an overloaded intrinsic. You can use ``llvm.fma`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010877floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010878all types however.
10879
10880::
10881
10882 declare float @llvm.fma.f32(float %a, float %b, float %c)
10883 declare double @llvm.fma.f64(double %a, double %b, double %c)
10884 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10885 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10886 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10887
10888Overview:
10889"""""""""
10890
Sanjay Patel629c4112017-11-06 16:27:15 +000010891The '``llvm.fma.*``' intrinsics perform the fused multiply-add operation.
Sean Silvab084af42012-12-07 10:36:55 +000010892
10893Arguments:
10894""""""""""
10895
Sanjay Patel629c4112017-11-06 16:27:15 +000010896The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010897
10898Semantics:
10899""""""""""
10900
Sanjay Patel629c4112017-11-06 16:27:15 +000010901Return the same value as a corresponding libm '``fma``' function but without
10902trapping or setting ``errno``.
10903
10904When specified with the fast-math-flag 'afn', the result may be approximated
10905using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010906
10907'``llvm.fabs.*``' Intrinsic
10908^^^^^^^^^^^^^^^^^^^^^^^^^^^
10909
10910Syntax:
10911"""""""
10912
10913This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10914floating point or vector of floating point type. Not all targets support
10915all types however.
10916
10917::
10918
10919 declare float @llvm.fabs.f32(float %Val)
10920 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010921 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010922 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010923 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010924
10925Overview:
10926"""""""""
10927
10928The '``llvm.fabs.*``' intrinsics return the absolute value of the
10929operand.
10930
10931Arguments:
10932""""""""""
10933
10934The argument and return value are floating point numbers of the same
10935type.
10936
10937Semantics:
10938""""""""""
10939
10940This function returns the same values as the libm ``fabs`` functions
10941would, and handles error conditions in the same way.
10942
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010943'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010944^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010945
10946Syntax:
10947"""""""
10948
10949This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10950floating point or vector of floating point type. Not all targets support
10951all types however.
10952
10953::
10954
Matt Arsenault64313c92014-10-22 18:25:02 +000010955 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10956 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10957 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10958 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10959 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010960
10961Overview:
10962"""""""""
10963
10964The '``llvm.minnum.*``' intrinsics return the minimum of the two
10965arguments.
10966
10967
10968Arguments:
10969""""""""""
10970
10971The arguments and return value are floating point numbers of the same
10972type.
10973
10974Semantics:
10975""""""""""
10976
10977Follows the IEEE-754 semantics for minNum, which also match for libm's
10978fmin.
10979
10980If either operand is a NaN, returns the other non-NaN operand. Returns
10981NaN only if both operands are NaN. If the operands compare equal,
10982returns a value that compares equal to both operands. This means that
10983fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10984
10985'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010986^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010987
10988Syntax:
10989"""""""
10990
10991This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10992floating point or vector of floating point type. Not all targets support
10993all types however.
10994
10995::
10996
Matt Arsenault64313c92014-10-22 18:25:02 +000010997 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10998 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10999 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11000 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
11001 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011002
11003Overview:
11004"""""""""
11005
11006The '``llvm.maxnum.*``' intrinsics return the maximum of the two
11007arguments.
11008
11009
11010Arguments:
11011""""""""""
11012
11013The arguments and return value are floating point numbers of the same
11014type.
11015
11016Semantics:
11017""""""""""
11018Follows the IEEE-754 semantics for maxNum, which also match for libm's
11019fmax.
11020
11021If either operand is a NaN, returns the other non-NaN operand. Returns
11022NaN only if both operands are NaN. If the operands compare equal,
11023returns a value that compares equal to both operands. This means that
11024fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
11025
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011026'``llvm.copysign.*``' Intrinsic
11027^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11028
11029Syntax:
11030"""""""
11031
11032This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
11033floating point or vector of floating point type. Not all targets support
11034all types however.
11035
11036::
11037
11038 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
11039 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
11040 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
11041 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
11042 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
11043
11044Overview:
11045"""""""""
11046
11047The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
11048first operand and the sign of the second operand.
11049
11050Arguments:
11051""""""""""
11052
11053The arguments and return value are floating point numbers of the same
11054type.
11055
11056Semantics:
11057""""""""""
11058
11059This function returns the same values as the libm ``copysign``
11060functions would, and handles error conditions in the same way.
11061
Sean Silvab084af42012-12-07 10:36:55 +000011062'``llvm.floor.*``' Intrinsic
11063^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11064
11065Syntax:
11066"""""""
11067
11068This is an overloaded intrinsic. You can use ``llvm.floor`` on any
11069floating point or vector of floating point type. Not all targets support
11070all types however.
11071
11072::
11073
11074 declare float @llvm.floor.f32(float %Val)
11075 declare double @llvm.floor.f64(double %Val)
11076 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
11077 declare fp128 @llvm.floor.f128(fp128 %Val)
11078 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
11079
11080Overview:
11081"""""""""
11082
11083The '``llvm.floor.*``' intrinsics return the floor of the operand.
11084
11085Arguments:
11086""""""""""
11087
11088The argument and return value are floating point numbers of the same
11089type.
11090
11091Semantics:
11092""""""""""
11093
11094This function returns the same values as the libm ``floor`` functions
11095would, and handles error conditions in the same way.
11096
11097'``llvm.ceil.*``' Intrinsic
11098^^^^^^^^^^^^^^^^^^^^^^^^^^^
11099
11100Syntax:
11101"""""""
11102
11103This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
11104floating point or vector of floating point type. Not all targets support
11105all types however.
11106
11107::
11108
11109 declare float @llvm.ceil.f32(float %Val)
11110 declare double @llvm.ceil.f64(double %Val)
11111 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
11112 declare fp128 @llvm.ceil.f128(fp128 %Val)
11113 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
11114
11115Overview:
11116"""""""""
11117
11118The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
11119
11120Arguments:
11121""""""""""
11122
11123The argument and return value are floating point numbers of the same
11124type.
11125
11126Semantics:
11127""""""""""
11128
11129This function returns the same values as the libm ``ceil`` functions
11130would, and handles error conditions in the same way.
11131
11132'``llvm.trunc.*``' Intrinsic
11133^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11134
11135Syntax:
11136"""""""
11137
11138This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
11139floating point or vector of floating point type. Not all targets support
11140all types however.
11141
11142::
11143
11144 declare float @llvm.trunc.f32(float %Val)
11145 declare double @llvm.trunc.f64(double %Val)
11146 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
11147 declare fp128 @llvm.trunc.f128(fp128 %Val)
11148 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
11149
11150Overview:
11151"""""""""
11152
11153The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
11154nearest integer not larger in magnitude than the operand.
11155
11156Arguments:
11157""""""""""
11158
11159The argument and return value are floating point numbers of the same
11160type.
11161
11162Semantics:
11163""""""""""
11164
11165This function returns the same values as the libm ``trunc`` functions
11166would, and handles error conditions in the same way.
11167
11168'``llvm.rint.*``' Intrinsic
11169^^^^^^^^^^^^^^^^^^^^^^^^^^^
11170
11171Syntax:
11172"""""""
11173
11174This is an overloaded intrinsic. You can use ``llvm.rint`` on any
11175floating point or vector of floating point type. Not all targets support
11176all types however.
11177
11178::
11179
11180 declare float @llvm.rint.f32(float %Val)
11181 declare double @llvm.rint.f64(double %Val)
11182 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
11183 declare fp128 @llvm.rint.f128(fp128 %Val)
11184 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
11185
11186Overview:
11187"""""""""
11188
11189The '``llvm.rint.*``' intrinsics returns the operand rounded to the
11190nearest integer. It may raise an inexact floating-point exception if the
11191operand isn't an integer.
11192
11193Arguments:
11194""""""""""
11195
11196The argument and return value are floating point numbers of the same
11197type.
11198
11199Semantics:
11200""""""""""
11201
11202This function returns the same values as the libm ``rint`` functions
11203would, and handles error conditions in the same way.
11204
11205'``llvm.nearbyint.*``' Intrinsic
11206^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11207
11208Syntax:
11209"""""""
11210
11211This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
11212floating point or vector of floating point type. Not all targets support
11213all types however.
11214
11215::
11216
11217 declare float @llvm.nearbyint.f32(float %Val)
11218 declare double @llvm.nearbyint.f64(double %Val)
11219 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
11220 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
11221 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
11222
11223Overview:
11224"""""""""
11225
11226The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
11227nearest integer.
11228
11229Arguments:
11230""""""""""
11231
11232The argument and return value are floating point numbers of the same
11233type.
11234
11235Semantics:
11236""""""""""
11237
11238This function returns the same values as the libm ``nearbyint``
11239functions would, and handles error conditions in the same way.
11240
Hal Finkel171817e2013-08-07 22:49:12 +000011241'``llvm.round.*``' Intrinsic
11242^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11243
11244Syntax:
11245"""""""
11246
11247This is an overloaded intrinsic. You can use ``llvm.round`` on any
11248floating point or vector of floating point type. Not all targets support
11249all types however.
11250
11251::
11252
11253 declare float @llvm.round.f32(float %Val)
11254 declare double @llvm.round.f64(double %Val)
11255 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
11256 declare fp128 @llvm.round.f128(fp128 %Val)
11257 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
11258
11259Overview:
11260"""""""""
11261
11262The '``llvm.round.*``' intrinsics returns the operand rounded to the
11263nearest integer.
11264
11265Arguments:
11266""""""""""
11267
11268The argument and return value are floating point numbers of the same
11269type.
11270
11271Semantics:
11272""""""""""
11273
11274This function returns the same values as the libm ``round``
11275functions would, and handles error conditions in the same way.
11276
Sean Silvab084af42012-12-07 10:36:55 +000011277Bit Manipulation Intrinsics
11278---------------------------
11279
11280LLVM provides intrinsics for a few important bit manipulation
11281operations. These allow efficient code generation for some algorithms.
11282
James Molloy90111f72015-11-12 12:29:09 +000011283'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000011284^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000011285
11286Syntax:
11287"""""""
11288
11289This is an overloaded intrinsic function. You can use bitreverse on any
11290integer type.
11291
11292::
11293
11294 declare i16 @llvm.bitreverse.i16(i16 <id>)
11295 declare i32 @llvm.bitreverse.i32(i32 <id>)
11296 declare i64 @llvm.bitreverse.i64(i64 <id>)
11297
11298Overview:
11299"""""""""
11300
11301The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000011302bitpattern of an integer value; for example ``0b10110110`` becomes
11303``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000011304
11305Semantics:
11306""""""""""
11307
Yichao Yu5abf14b2016-11-23 16:25:31 +000011308The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000011309``M`` in the input moved to bit ``N-M`` in the output.
11310
Sean Silvab084af42012-12-07 10:36:55 +000011311'``llvm.bswap.*``' Intrinsics
11312^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11313
11314Syntax:
11315"""""""
11316
11317This is an overloaded intrinsic function. You can use bswap on any
11318integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
11319
11320::
11321
11322 declare i16 @llvm.bswap.i16(i16 <id>)
11323 declare i32 @llvm.bswap.i32(i32 <id>)
11324 declare i64 @llvm.bswap.i64(i64 <id>)
11325
11326Overview:
11327"""""""""
11328
11329The '``llvm.bswap``' family of intrinsics is used to byte swap integer
11330values with an even number of bytes (positive multiple of 16 bits).
11331These are useful for performing operations on data that is not in the
11332target's native byte order.
11333
11334Semantics:
11335""""""""""
11336
11337The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
11338and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
11339intrinsic returns an i32 value that has the four bytes of the input i32
11340swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
11341returned i32 will have its bytes in 3, 2, 1, 0 order. The
11342``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
11343concept to additional even-byte lengths (6 bytes, 8 bytes and more,
11344respectively).
11345
11346'``llvm.ctpop.*``' Intrinsic
11347^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11348
11349Syntax:
11350"""""""
11351
11352This is an overloaded intrinsic. You can use llvm.ctpop on any integer
11353bit width, or on any vector with integer elements. Not all targets
11354support all bit widths or vector types, however.
11355
11356::
11357
11358 declare i8 @llvm.ctpop.i8(i8 <src>)
11359 declare i16 @llvm.ctpop.i16(i16 <src>)
11360 declare i32 @llvm.ctpop.i32(i32 <src>)
11361 declare i64 @llvm.ctpop.i64(i64 <src>)
11362 declare i256 @llvm.ctpop.i256(i256 <src>)
11363 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
11364
11365Overview:
11366"""""""""
11367
11368The '``llvm.ctpop``' family of intrinsics counts the number of bits set
11369in a value.
11370
11371Arguments:
11372""""""""""
11373
11374The only argument is the value to be counted. The argument may be of any
11375integer type, or a vector with integer elements. The return type must
11376match the argument type.
11377
11378Semantics:
11379""""""""""
11380
11381The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
11382each element of a vector.
11383
11384'``llvm.ctlz.*``' Intrinsic
11385^^^^^^^^^^^^^^^^^^^^^^^^^^^
11386
11387Syntax:
11388"""""""
11389
11390This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
11391integer bit width, or any vector whose elements are integers. Not all
11392targets support all bit widths or vector types, however.
11393
11394::
11395
11396 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
11397 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
11398 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
11399 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
11400 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011401 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011402
11403Overview:
11404"""""""""
11405
11406The '``llvm.ctlz``' family of intrinsic functions counts the number of
11407leading zeros in a variable.
11408
11409Arguments:
11410""""""""""
11411
11412The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011413any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011414type must match the first argument type.
11415
11416The second argument must be a constant and is a flag to indicate whether
11417the intrinsic should ensure that a zero as the first argument produces a
11418defined result. Historically some architectures did not provide a
11419defined result for zero values as efficiently, and many algorithms are
11420now predicated on avoiding zero-value inputs.
11421
11422Semantics:
11423""""""""""
11424
11425The '``llvm.ctlz``' intrinsic counts the leading (most significant)
11426zeros in a variable, or within each element of the vector. If
11427``src == 0`` then the result is the size in bits of the type of ``src``
11428if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11429``llvm.ctlz(i32 2) = 30``.
11430
11431'``llvm.cttz.*``' Intrinsic
11432^^^^^^^^^^^^^^^^^^^^^^^^^^^
11433
11434Syntax:
11435"""""""
11436
11437This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
11438integer bit width, or any vector of integer elements. Not all targets
11439support all bit widths or vector types, however.
11440
11441::
11442
11443 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
11444 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
11445 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
11446 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
11447 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011448 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011449
11450Overview:
11451"""""""""
11452
11453The '``llvm.cttz``' family of intrinsic functions counts the number of
11454trailing zeros.
11455
11456Arguments:
11457""""""""""
11458
11459The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011460any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011461type must match the first argument type.
11462
11463The second argument must be a constant and is a flag to indicate whether
11464the intrinsic should ensure that a zero as the first argument produces a
11465defined result. Historically some architectures did not provide a
11466defined result for zero values as efficiently, and many algorithms are
11467now predicated on avoiding zero-value inputs.
11468
11469Semantics:
11470""""""""""
11471
11472The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11473zeros in a variable, or within each element of a vector. If ``src == 0``
11474then the result is the size in bits of the type of ``src`` if
11475``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11476``llvm.cttz(2) = 1``.
11477
Philip Reames34843ae2015-03-05 05:55:55 +000011478.. _int_overflow:
11479
Sean Silvab084af42012-12-07 10:36:55 +000011480Arithmetic with Overflow Intrinsics
11481-----------------------------------
11482
John Regehr6a493f22016-05-12 20:55:09 +000011483LLVM provides intrinsics for fast arithmetic overflow checking.
11484
11485Each of these intrinsics returns a two-element struct. The first
11486element of this struct contains the result of the corresponding
11487arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
11488the result. Therefore, for example, the first element of the struct
11489returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
11490result of a 32-bit ``add`` instruction with the same operands, where
11491the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
11492
11493The second element of the result is an ``i1`` that is 1 if the
11494arithmetic operation overflowed and 0 otherwise. An operation
11495overflows if, for any values of its operands ``A`` and ``B`` and for
11496any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
11497not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
11498``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11499``op`` is the underlying arithmetic operation.
11500
11501The behavior of these intrinsics is well-defined for all argument
11502values.
Sean Silvab084af42012-12-07 10:36:55 +000011503
11504'``llvm.sadd.with.overflow.*``' Intrinsics
11505^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11506
11507Syntax:
11508"""""""
11509
11510This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11511on any integer bit width.
11512
11513::
11514
11515 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11516 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11517 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11518
11519Overview:
11520"""""""""
11521
11522The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11523a signed addition of the two arguments, and indicate whether an overflow
11524occurred during the signed summation.
11525
11526Arguments:
11527""""""""""
11528
11529The arguments (%a and %b) and the first element of the result structure
11530may be of integer types of any bit width, but they must have the same
11531bit width. The second element of the result structure must be of type
11532``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11533addition.
11534
11535Semantics:
11536""""""""""
11537
11538The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011539a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011540first element of which is the signed summation, and the second element
11541of which is a bit specifying if the signed summation resulted in an
11542overflow.
11543
11544Examples:
11545"""""""""
11546
11547.. code-block:: llvm
11548
11549 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11550 %sum = extractvalue {i32, i1} %res, 0
11551 %obit = extractvalue {i32, i1} %res, 1
11552 br i1 %obit, label %overflow, label %normal
11553
11554'``llvm.uadd.with.overflow.*``' Intrinsics
11555^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11556
11557Syntax:
11558"""""""
11559
11560This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11561on any integer bit width.
11562
11563::
11564
11565 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11566 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11567 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11568
11569Overview:
11570"""""""""
11571
11572The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11573an unsigned addition of the two arguments, and indicate whether a carry
11574occurred during the unsigned summation.
11575
11576Arguments:
11577""""""""""
11578
11579The arguments (%a and %b) and the first element of the result structure
11580may be of integer types of any bit width, but they must have the same
11581bit width. The second element of the result structure must be of type
11582``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11583addition.
11584
11585Semantics:
11586""""""""""
11587
11588The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011589an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011590first element of which is the sum, and the second element of which is a
11591bit specifying if the unsigned summation resulted in a carry.
11592
11593Examples:
11594"""""""""
11595
11596.. code-block:: llvm
11597
11598 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11599 %sum = extractvalue {i32, i1} %res, 0
11600 %obit = extractvalue {i32, i1} %res, 1
11601 br i1 %obit, label %carry, label %normal
11602
11603'``llvm.ssub.with.overflow.*``' Intrinsics
11604^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11605
11606Syntax:
11607"""""""
11608
11609This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11610on any integer bit width.
11611
11612::
11613
11614 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11615 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11616 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11617
11618Overview:
11619"""""""""
11620
11621The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11622a signed subtraction of the two arguments, and indicate whether an
11623overflow occurred during the signed subtraction.
11624
11625Arguments:
11626""""""""""
11627
11628The arguments (%a and %b) and the first element of the result structure
11629may be of integer types of any bit width, but they must have the same
11630bit width. The second element of the result structure must be of type
11631``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11632subtraction.
11633
11634Semantics:
11635""""""""""
11636
11637The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011638a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011639first element of which is the subtraction, and the second element of
11640which is a bit specifying if the signed subtraction resulted in an
11641overflow.
11642
11643Examples:
11644"""""""""
11645
11646.. code-block:: llvm
11647
11648 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11649 %sum = extractvalue {i32, i1} %res, 0
11650 %obit = extractvalue {i32, i1} %res, 1
11651 br i1 %obit, label %overflow, label %normal
11652
11653'``llvm.usub.with.overflow.*``' Intrinsics
11654^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11655
11656Syntax:
11657"""""""
11658
11659This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11660on any integer bit width.
11661
11662::
11663
11664 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11665 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11666 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11667
11668Overview:
11669"""""""""
11670
11671The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11672an unsigned subtraction of the two arguments, and indicate whether an
11673overflow occurred during the unsigned subtraction.
11674
11675Arguments:
11676""""""""""
11677
11678The arguments (%a and %b) and the first element of the result structure
11679may be of integer types of any bit width, but they must have the same
11680bit width. The second element of the result structure must be of type
11681``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11682subtraction.
11683
11684Semantics:
11685""""""""""
11686
11687The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011688an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011689the first element of which is the subtraction, and the second element of
11690which is a bit specifying if the unsigned subtraction resulted in an
11691overflow.
11692
11693Examples:
11694"""""""""
11695
11696.. code-block:: llvm
11697
11698 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11699 %sum = extractvalue {i32, i1} %res, 0
11700 %obit = extractvalue {i32, i1} %res, 1
11701 br i1 %obit, label %overflow, label %normal
11702
11703'``llvm.smul.with.overflow.*``' Intrinsics
11704^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11705
11706Syntax:
11707"""""""
11708
11709This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11710on any integer bit width.
11711
11712::
11713
11714 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11715 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11716 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11717
11718Overview:
11719"""""""""
11720
11721The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11722a signed multiplication of the two arguments, and indicate whether an
11723overflow occurred during the signed multiplication.
11724
11725Arguments:
11726""""""""""
11727
11728The arguments (%a and %b) and the first element of the result structure
11729may be of integer types of any bit width, but they must have the same
11730bit width. The second element of the result structure must be of type
11731``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11732multiplication.
11733
11734Semantics:
11735""""""""""
11736
11737The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011738a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011739the first element of which is the multiplication, and the second element
11740of which is a bit specifying if the signed multiplication resulted in an
11741overflow.
11742
11743Examples:
11744"""""""""
11745
11746.. code-block:: llvm
11747
11748 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11749 %sum = extractvalue {i32, i1} %res, 0
11750 %obit = extractvalue {i32, i1} %res, 1
11751 br i1 %obit, label %overflow, label %normal
11752
11753'``llvm.umul.with.overflow.*``' Intrinsics
11754^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11755
11756Syntax:
11757"""""""
11758
11759This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11760on any integer bit width.
11761
11762::
11763
11764 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11765 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11766 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11767
11768Overview:
11769"""""""""
11770
11771The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11772a unsigned multiplication of the two arguments, and indicate whether an
11773overflow occurred during the unsigned multiplication.
11774
11775Arguments:
11776""""""""""
11777
11778The arguments (%a and %b) and the first element of the result structure
11779may be of integer types of any bit width, but they must have the same
11780bit width. The second element of the result structure must be of type
11781``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11782multiplication.
11783
11784Semantics:
11785""""""""""
11786
11787The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011788an unsigned multiplication of the two arguments. They return a structure ---
11789the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011790element of which is a bit specifying if the unsigned multiplication
11791resulted in an overflow.
11792
11793Examples:
11794"""""""""
11795
11796.. code-block:: llvm
11797
11798 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11799 %sum = extractvalue {i32, i1} %res, 0
11800 %obit = extractvalue {i32, i1} %res, 1
11801 br i1 %obit, label %overflow, label %normal
11802
11803Specialised Arithmetic Intrinsics
11804---------------------------------
11805
Owen Anderson1056a922015-07-11 07:01:27 +000011806'``llvm.canonicalize.*``' Intrinsic
11807^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11808
11809Syntax:
11810"""""""
11811
11812::
11813
11814 declare float @llvm.canonicalize.f32(float %a)
11815 declare double @llvm.canonicalize.f64(double %b)
11816
11817Overview:
11818"""""""""
11819
11820The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011821encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011822implementing certain numeric primitives such as frexp. The canonical encoding is
11823defined by IEEE-754-2008 to be:
11824
11825::
11826
11827 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011828 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011829 numbers, infinities, and NaNs, especially in decimal formats.
11830
11831This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011832conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011833according to section 6.2.
11834
11835Examples of non-canonical encodings:
11836
Sean Silvaa1190322015-08-06 22:56:48 +000011837- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011838 converted to a canonical representation per hardware-specific protocol.
11839- Many normal decimal floating point numbers have non-canonical alternative
11840 encodings.
11841- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011842 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011843 a zero of the same sign by this operation.
11844
11845Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11846default exception handling must signal an invalid exception, and produce a
11847quiet NaN result.
11848
11849This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011850that the compiler does not constant fold the operation. Likewise, division by
118511.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011852-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11853
Sean Silvaa1190322015-08-06 22:56:48 +000011854``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011855
11856- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11857- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11858 to ``(x == y)``
11859
11860Additionally, the sign of zero must be conserved:
11861``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11862
11863The payload bits of a NaN must be conserved, with two exceptions.
11864First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011865must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011866usual methods.
11867
11868The canonicalization operation may be optimized away if:
11869
Sean Silvaa1190322015-08-06 22:56:48 +000011870- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011871 floating-point operation that is required by the standard to be canonical.
11872- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011873 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011874
Sean Silvab084af42012-12-07 10:36:55 +000011875'``llvm.fmuladd.*``' Intrinsic
11876^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11877
11878Syntax:
11879"""""""
11880
11881::
11882
11883 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11884 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11885
11886Overview:
11887"""""""""
11888
11889The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011890expressions that can be fused if the code generator determines that (a) the
11891target instruction set has support for a fused operation, and (b) that the
11892fused operation is more efficient than the equivalent, separate pair of mul
11893and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011894
11895Arguments:
11896""""""""""
11897
11898The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11899multiplicands, a and b, and an addend c.
11900
11901Semantics:
11902""""""""""
11903
11904The expression:
11905
11906::
11907
11908 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11909
11910is equivalent to the expression a \* b + c, except that rounding will
11911not be performed between the multiplication and addition steps if the
11912code generator fuses the operations. Fusion is not guaranteed, even if
11913the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011914corresponding llvm.fma.\* intrinsic function should be used
11915instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011916
11917Examples:
11918"""""""""
11919
11920.. code-block:: llvm
11921
Tim Northover675a0962014-06-13 14:24:23 +000011922 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011923
Amara Emersoncf9daa32017-05-09 10:43:25 +000011924
11925Experimental Vector Reduction Intrinsics
11926----------------------------------------
11927
11928Horizontal reductions of vectors can be expressed using the following
11929intrinsics. Each one takes a vector operand as an input and applies its
11930respective operation across all elements of the vector, returning a single
11931scalar result of the same element type.
11932
11933
11934'``llvm.experimental.vector.reduce.add.*``' Intrinsic
11935^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11936
11937Syntax:
11938"""""""
11939
11940::
11941
11942 declare i32 @llvm.experimental.vector.reduce.add.i32.v4i32(<4 x i32> %a)
11943 declare i64 @llvm.experimental.vector.reduce.add.i64.v2i64(<2 x i64> %a)
11944
11945Overview:
11946"""""""""
11947
11948The '``llvm.experimental.vector.reduce.add.*``' intrinsics do an integer ``ADD``
11949reduction of a vector, returning the result as a scalar. The return type matches
11950the element-type of the vector input.
11951
11952Arguments:
11953""""""""""
11954The argument to this intrinsic must be a vector of integer values.
11955
11956'``llvm.experimental.vector.reduce.fadd.*``' Intrinsic
11957^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11958
11959Syntax:
11960"""""""
11961
11962::
11963
11964 declare float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %a)
11965 declare double @llvm.experimental.vector.reduce.fadd.f64.v2f64(double %acc, <2 x double> %a)
11966
11967Overview:
11968"""""""""
11969
11970The '``llvm.experimental.vector.reduce.fadd.*``' intrinsics do a floating point
11971``ADD`` reduction of a vector, returning the result as a scalar. The return type
11972matches the element-type of the vector input.
11973
11974If the intrinsic call has fast-math flags, then the reduction will not preserve
11975the associativity of an equivalent scalarized counterpart. If it does not have
11976fast-math flags, then the reduction will be *ordered*, implying that the
11977operation respects the associativity of a scalarized reduction.
11978
11979
11980Arguments:
11981""""""""""
11982The first argument to this intrinsic is a scalar accumulator value, which is
11983only used when there are no fast-math flags attached. This argument may be undef
11984when fast-math flags are used.
11985
11986The second argument must be a vector of floating point values.
11987
11988Examples:
11989"""""""""
11990
11991.. code-block:: llvm
11992
11993 %fast = call fast float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
11994 %ord = call float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
11995
11996
11997'``llvm.experimental.vector.reduce.mul.*``' Intrinsic
11998^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11999
12000Syntax:
12001"""""""
12002
12003::
12004
12005 declare i32 @llvm.experimental.vector.reduce.mul.i32.v4i32(<4 x i32> %a)
12006 declare i64 @llvm.experimental.vector.reduce.mul.i64.v2i64(<2 x i64> %a)
12007
12008Overview:
12009"""""""""
12010
12011The '``llvm.experimental.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
12012reduction of a vector, returning the result as a scalar. The return type matches
12013the element-type of the vector input.
12014
12015Arguments:
12016""""""""""
12017The argument to this intrinsic must be a vector of integer values.
12018
12019'``llvm.experimental.vector.reduce.fmul.*``' Intrinsic
12020^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12021
12022Syntax:
12023"""""""
12024
12025::
12026
12027 declare float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %a)
12028 declare double @llvm.experimental.vector.reduce.fmul.f64.v2f64(double %acc, <2 x double> %a)
12029
12030Overview:
12031"""""""""
12032
12033The '``llvm.experimental.vector.reduce.fmul.*``' intrinsics do a floating point
12034``MUL`` reduction of a vector, returning the result as a scalar. The return type
12035matches the element-type of the vector input.
12036
12037If the intrinsic call has fast-math flags, then the reduction will not preserve
12038the associativity of an equivalent scalarized counterpart. If it does not have
12039fast-math flags, then the reduction will be *ordered*, implying that the
12040operation respects the associativity of a scalarized reduction.
12041
12042
12043Arguments:
12044""""""""""
12045The first argument to this intrinsic is a scalar accumulator value, which is
12046only used when there are no fast-math flags attached. This argument may be undef
12047when fast-math flags are used.
12048
12049The second argument must be a vector of floating point values.
12050
12051Examples:
12052"""""""""
12053
12054.. code-block:: llvm
12055
12056 %fast = call fast float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
12057 %ord = call float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
12058
12059'``llvm.experimental.vector.reduce.and.*``' Intrinsic
12060^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12061
12062Syntax:
12063"""""""
12064
12065::
12066
12067 declare i32 @llvm.experimental.vector.reduce.and.i32.v4i32(<4 x i32> %a)
12068
12069Overview:
12070"""""""""
12071
12072The '``llvm.experimental.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
12073reduction of a vector, returning the result as a scalar. The return type matches
12074the element-type of the vector input.
12075
12076Arguments:
12077""""""""""
12078The argument to this intrinsic must be a vector of integer values.
12079
12080'``llvm.experimental.vector.reduce.or.*``' Intrinsic
12081^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12082
12083Syntax:
12084"""""""
12085
12086::
12087
12088 declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
12089
12090Overview:
12091"""""""""
12092
12093The '``llvm.experimental.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
12094of a vector, returning the result as a scalar. The return type matches the
12095element-type of the vector input.
12096
12097Arguments:
12098""""""""""
12099The argument to this intrinsic must be a vector of integer values.
12100
12101'``llvm.experimental.vector.reduce.xor.*``' Intrinsic
12102^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12103
12104Syntax:
12105"""""""
12106
12107::
12108
12109 declare i32 @llvm.experimental.vector.reduce.xor.i32.v4i32(<4 x i32> %a)
12110
12111Overview:
12112"""""""""
12113
12114The '``llvm.experimental.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
12115reduction of a vector, returning the result as a scalar. The return type matches
12116the element-type of the vector input.
12117
12118Arguments:
12119""""""""""
12120The argument to this intrinsic must be a vector of integer values.
12121
12122'``llvm.experimental.vector.reduce.smax.*``' Intrinsic
12123^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12124
12125Syntax:
12126"""""""
12127
12128::
12129
12130 declare i32 @llvm.experimental.vector.reduce.smax.i32.v4i32(<4 x i32> %a)
12131
12132Overview:
12133"""""""""
12134
12135The '``llvm.experimental.vector.reduce.smax.*``' intrinsics do a signed integer
12136``MAX`` reduction of a vector, returning the result as a scalar. The return type
12137matches the element-type of the vector input.
12138
12139Arguments:
12140""""""""""
12141The argument to this intrinsic must be a vector of integer values.
12142
12143'``llvm.experimental.vector.reduce.smin.*``' Intrinsic
12144^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12145
12146Syntax:
12147"""""""
12148
12149::
12150
12151 declare i32 @llvm.experimental.vector.reduce.smin.i32.v4i32(<4 x i32> %a)
12152
12153Overview:
12154"""""""""
12155
12156The '``llvm.experimental.vector.reduce.smin.*``' intrinsics do a signed integer
12157``MIN`` reduction of a vector, returning the result as a scalar. The return type
12158matches the element-type of the vector input.
12159
12160Arguments:
12161""""""""""
12162The argument to this intrinsic must be a vector of integer values.
12163
12164'``llvm.experimental.vector.reduce.umax.*``' Intrinsic
12165^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12166
12167Syntax:
12168"""""""
12169
12170::
12171
12172 declare i32 @llvm.experimental.vector.reduce.umax.i32.v4i32(<4 x i32> %a)
12173
12174Overview:
12175"""""""""
12176
12177The '``llvm.experimental.vector.reduce.umax.*``' intrinsics do an unsigned
12178integer ``MAX`` reduction of a vector, returning the result as a scalar. The
12179return type matches the element-type of the vector input.
12180
12181Arguments:
12182""""""""""
12183The argument to this intrinsic must be a vector of integer values.
12184
12185'``llvm.experimental.vector.reduce.umin.*``' Intrinsic
12186^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12187
12188Syntax:
12189"""""""
12190
12191::
12192
12193 declare i32 @llvm.experimental.vector.reduce.umin.i32.v4i32(<4 x i32> %a)
12194
12195Overview:
12196"""""""""
12197
12198The '``llvm.experimental.vector.reduce.umin.*``' intrinsics do an unsigned
12199integer ``MIN`` reduction of a vector, returning the result as a scalar. The
12200return type matches the element-type of the vector input.
12201
12202Arguments:
12203""""""""""
12204The argument to this intrinsic must be a vector of integer values.
12205
12206'``llvm.experimental.vector.reduce.fmax.*``' Intrinsic
12207^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12208
12209Syntax:
12210"""""""
12211
12212::
12213
12214 declare float @llvm.experimental.vector.reduce.fmax.f32.v4f32(<4 x float> %a)
12215 declare double @llvm.experimental.vector.reduce.fmax.f64.v2f64(<2 x double> %a)
12216
12217Overview:
12218"""""""""
12219
12220The '``llvm.experimental.vector.reduce.fmax.*``' intrinsics do a floating point
12221``MAX`` reduction of a vector, returning the result as a scalar. The return type
12222matches the element-type of the vector input.
12223
12224If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12225assume that NaNs are not present in the input vector.
12226
12227Arguments:
12228""""""""""
12229The argument to this intrinsic must be a vector of floating point values.
12230
12231'``llvm.experimental.vector.reduce.fmin.*``' Intrinsic
12232^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12233
12234Syntax:
12235"""""""
12236
12237::
12238
12239 declare float @llvm.experimental.vector.reduce.fmin.f32.v4f32(<4 x float> %a)
12240 declare double @llvm.experimental.vector.reduce.fmin.f64.v2f64(<2 x double> %a)
12241
12242Overview:
12243"""""""""
12244
12245The '``llvm.experimental.vector.reduce.fmin.*``' intrinsics do a floating point
12246``MIN`` reduction of a vector, returning the result as a scalar. The return type
12247matches the element-type of the vector input.
12248
12249If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12250assume that NaNs are not present in the input vector.
12251
12252Arguments:
12253""""""""""
12254The argument to this intrinsic must be a vector of floating point values.
12255
Sean Silvab084af42012-12-07 10:36:55 +000012256Half Precision Floating Point Intrinsics
12257----------------------------------------
12258
12259For most target platforms, half precision floating point is a
12260storage-only format. This means that it is a dense encoding (in memory)
12261but does not support computation in the format.
12262
12263This means that code must first load the half-precision floating point
12264value as an i16, then convert it to float with
12265:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
12266then be performed on the float value (including extending to double
12267etc). To store the value back to memory, it is first converted to float
12268if needed, then converted to i16 with
12269:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
12270i16 value.
12271
12272.. _int_convert_to_fp16:
12273
12274'``llvm.convert.to.fp16``' Intrinsic
12275^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12276
12277Syntax:
12278"""""""
12279
12280::
12281
Tim Northoverfd7e4242014-07-17 10:51:23 +000012282 declare i16 @llvm.convert.to.fp16.f32(float %a)
12283 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000012284
12285Overview:
12286"""""""""
12287
Tim Northoverfd7e4242014-07-17 10:51:23 +000012288The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
12289conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000012290
12291Arguments:
12292""""""""""
12293
12294The intrinsic function contains single argument - the value to be
12295converted.
12296
12297Semantics:
12298""""""""""
12299
Tim Northoverfd7e4242014-07-17 10:51:23 +000012300The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
12301conventional floating point format to half precision floating point format. The
12302return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000012303
12304Examples:
12305"""""""""
12306
12307.. code-block:: llvm
12308
Tim Northoverfd7e4242014-07-17 10:51:23 +000012309 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000012310 store i16 %res, i16* @x, align 2
12311
12312.. _int_convert_from_fp16:
12313
12314'``llvm.convert.from.fp16``' Intrinsic
12315^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12316
12317Syntax:
12318"""""""
12319
12320::
12321
Tim Northoverfd7e4242014-07-17 10:51:23 +000012322 declare float @llvm.convert.from.fp16.f32(i16 %a)
12323 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012324
12325Overview:
12326"""""""""
12327
12328The '``llvm.convert.from.fp16``' intrinsic function performs a
12329conversion from half precision floating point format to single precision
12330floating point format.
12331
12332Arguments:
12333""""""""""
12334
12335The intrinsic function contains single argument - the value to be
12336converted.
12337
12338Semantics:
12339""""""""""
12340
12341The '``llvm.convert.from.fp16``' intrinsic function performs a
12342conversion from half single precision floating point format to single
12343precision floating point format. The input half-float value is
12344represented by an ``i16`` value.
12345
12346Examples:
12347"""""""""
12348
12349.. code-block:: llvm
12350
David Blaikiec7aabbb2015-03-04 22:06:14 +000012351 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000012352 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012353
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000012354.. _dbg_intrinsics:
12355
Sean Silvab084af42012-12-07 10:36:55 +000012356Debugger Intrinsics
12357-------------------
12358
12359The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
12360prefix), are described in the `LLVM Source Level
Hans Wennborg65195622017-09-28 15:16:37 +000012361Debugging <SourceLevelDebugging.html#format-common-intrinsics>`_
Sean Silvab084af42012-12-07 10:36:55 +000012362document.
12363
12364Exception Handling Intrinsics
12365-----------------------------
12366
12367The LLVM exception handling intrinsics (which all start with
12368``llvm.eh.`` prefix), are described in the `LLVM Exception
Hans Wennborg65195622017-09-28 15:16:37 +000012369Handling <ExceptionHandling.html#format-common-intrinsics>`_ document.
Sean Silvab084af42012-12-07 10:36:55 +000012370
12371.. _int_trampoline:
12372
12373Trampoline Intrinsics
12374---------------------
12375
12376These intrinsics make it possible to excise one parameter, marked with
12377the :ref:`nest <nest>` attribute, from a function. The result is a
12378callable function pointer lacking the nest parameter - the caller does
12379not need to provide a value for it. Instead, the value to use is stored
12380in advance in a "trampoline", a block of memory usually allocated on the
12381stack, which also contains code to splice the nest value into the
12382argument list. This is used to implement the GCC nested function address
12383extension.
12384
12385For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
12386then the resulting function pointer has signature ``i32 (i32, i32)*``.
12387It can be created as follows:
12388
12389.. code-block:: llvm
12390
12391 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000012392 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000012393 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
12394 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
12395 %fp = bitcast i8* %p to i32 (i32, i32)*
12396
12397The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
12398``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
12399
12400.. _int_it:
12401
12402'``llvm.init.trampoline``' Intrinsic
12403^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12404
12405Syntax:
12406"""""""
12407
12408::
12409
12410 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
12411
12412Overview:
12413"""""""""
12414
12415This fills the memory pointed to by ``tramp`` with executable code,
12416turning it into a trampoline.
12417
12418Arguments:
12419""""""""""
12420
12421The ``llvm.init.trampoline`` intrinsic takes three arguments, all
12422pointers. The ``tramp`` argument must point to a sufficiently large and
12423sufficiently aligned block of memory; this memory is written to by the
12424intrinsic. Note that the size and the alignment are target-specific -
12425LLVM currently provides no portable way of determining them, so a
12426front-end that generates this intrinsic needs to have some
12427target-specific knowledge. The ``func`` argument must hold a function
12428bitcast to an ``i8*``.
12429
12430Semantics:
12431""""""""""
12432
12433The block of memory pointed to by ``tramp`` is filled with target
12434dependent code, turning it into a function. Then ``tramp`` needs to be
12435passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
12436be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
12437function's signature is the same as that of ``func`` with any arguments
12438marked with the ``nest`` attribute removed. At most one such ``nest``
12439argument is allowed, and it must be of pointer type. Calling the new
12440function is equivalent to calling ``func`` with the same argument list,
12441but with ``nval`` used for the missing ``nest`` argument. If, after
12442calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
12443modified, then the effect of any later call to the returned function
12444pointer is undefined.
12445
12446.. _int_at:
12447
12448'``llvm.adjust.trampoline``' Intrinsic
12449^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12450
12451Syntax:
12452"""""""
12453
12454::
12455
12456 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
12457
12458Overview:
12459"""""""""
12460
12461This performs any required machine-specific adjustment to the address of
12462a trampoline (passed as ``tramp``).
12463
12464Arguments:
12465""""""""""
12466
12467``tramp`` must point to a block of memory which already has trampoline
12468code filled in by a previous call to
12469:ref:`llvm.init.trampoline <int_it>`.
12470
12471Semantics:
12472""""""""""
12473
12474On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012475different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000012476intrinsic returns the executable address corresponding to ``tramp``
12477after performing the required machine specific adjustments. The pointer
12478returned can then be :ref:`bitcast and executed <int_trampoline>`.
12479
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012480.. _int_mload_mstore:
12481
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012482Masked Vector Load and Store Intrinsics
12483---------------------------------------
12484
12485LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
12486
12487.. _int_mload:
12488
12489'``llvm.masked.load.*``' Intrinsics
12490^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12491
12492Syntax:
12493"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012494This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012495
12496::
12497
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012498 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12499 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012500 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012501 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012502 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012503 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012504
12505Overview:
12506"""""""""
12507
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012508Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012509
12510
12511Arguments:
12512""""""""""
12513
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012514The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012515
12516
12517Semantics:
12518""""""""""
12519
12520The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
12521The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
12522
12523
12524::
12525
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012526 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012527
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012528 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000012529 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012530 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012531
12532.. _int_mstore:
12533
12534'``llvm.masked.store.*``' Intrinsics
12535^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12536
12537Syntax:
12538"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012539This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012540
12541::
12542
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012543 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
12544 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012545 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012546 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012547 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012548 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012549
12550Overview:
12551"""""""""
12552
12553Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12554
12555Arguments:
12556""""""""""
12557
12558The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12559
12560
12561Semantics:
12562""""""""""
12563
12564The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
12565The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
12566
12567::
12568
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012569 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012570
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012571 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000012572 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012573 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
12574 store <16 x float> %res, <16 x float>* %ptr, align 4
12575
12576
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012577Masked Vector Gather and Scatter Intrinsics
12578-------------------------------------------
12579
12580LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
12581
12582.. _int_mgather:
12583
12584'``llvm.masked.gather.*``' Intrinsics
12585^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12586
12587Syntax:
12588"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012589This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012590
12591::
12592
Elad Cohenef5798a2017-05-03 12:28:54 +000012593 declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12594 declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64 (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
12595 declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012596
12597Overview:
12598"""""""""
12599
12600Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
12601
12602
12603Arguments:
12604""""""""""
12605
12606The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
12607
12608
12609Semantics:
12610""""""""""
12611
12612The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
12613The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
12614
12615
12616::
12617
Elad Cohenef5798a2017-05-03 12:28:54 +000012618 %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012619
12620 ;; The gather with all-true mask is equivalent to the following instruction sequence
12621 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
12622 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
12623 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
12624 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
12625
12626 %val0 = load double, double* %ptr0, align 8
12627 %val1 = load double, double* %ptr1, align 8
12628 %val2 = load double, double* %ptr2, align 8
12629 %val3 = load double, double* %ptr3, align 8
12630
12631 %vec0 = insertelement <4 x double>undef, %val0, 0
12632 %vec01 = insertelement <4 x double>%vec0, %val1, 1
12633 %vec012 = insertelement <4 x double>%vec01, %val2, 2
12634 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
12635
12636.. _int_mscatter:
12637
12638'``llvm.masked.scatter.*``' Intrinsics
12639^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12640
12641Syntax:
12642"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012643This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012644
12645::
12646
Elad Cohenef5798a2017-05-03 12:28:54 +000012647 declare void @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
12648 declare void @llvm.masked.scatter.v16f32.v16p1f32 (<16 x float> <value>, <16 x float addrspace(1)*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
12649 declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012650
12651Overview:
12652"""""""""
12653
12654Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12655
12656Arguments:
12657""""""""""
12658
12659The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12660
12661
12662Semantics:
12663""""""""""
12664
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000012665The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012666
12667::
12668
Sylvestre Ledru84666a12016-02-14 20:16:22 +000012669 ;; This instruction unconditionally stores data vector in multiple addresses
Elad Cohenef5798a2017-05-03 12:28:54 +000012670 call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012671
12672 ;; It is equivalent to a list of scalar stores
12673 %val0 = extractelement <8 x i32> %value, i32 0
12674 %val1 = extractelement <8 x i32> %value, i32 1
12675 ..
12676 %val7 = extractelement <8 x i32> %value, i32 7
12677 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
12678 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
12679 ..
12680 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
12681 ;; Note: the order of the following stores is important when they overlap:
12682 store i32 %val0, i32* %ptr0, align 4
12683 store i32 %val1, i32* %ptr1, align 4
12684 ..
12685 store i32 %val7, i32* %ptr7, align 4
12686
12687
Sean Silvab084af42012-12-07 10:36:55 +000012688Memory Use Markers
12689------------------
12690
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012691This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000012692memory objects and ranges where variables are immutable.
12693
Reid Klecknera534a382013-12-19 02:14:12 +000012694.. _int_lifestart:
12695
Sean Silvab084af42012-12-07 10:36:55 +000012696'``llvm.lifetime.start``' Intrinsic
12697^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12698
12699Syntax:
12700"""""""
12701
12702::
12703
12704 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
12705
12706Overview:
12707"""""""""
12708
12709The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
12710object's lifetime.
12711
12712Arguments:
12713""""""""""
12714
12715The first argument is a constant integer representing the size of the
12716object, or -1 if it is variable sized. The second argument is a pointer
12717to the object.
12718
12719Semantics:
12720""""""""""
12721
12722This intrinsic indicates that before this point in the code, the value
12723of the memory pointed to by ``ptr`` is dead. This means that it is known
12724to never be used and has an undefined value. A load from the pointer
12725that precedes this intrinsic can be replaced with ``'undef'``.
12726
Reid Klecknera534a382013-12-19 02:14:12 +000012727.. _int_lifeend:
12728
Sean Silvab084af42012-12-07 10:36:55 +000012729'``llvm.lifetime.end``' Intrinsic
12730^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12731
12732Syntax:
12733"""""""
12734
12735::
12736
12737 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
12738
12739Overview:
12740"""""""""
12741
12742The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
12743object's lifetime.
12744
12745Arguments:
12746""""""""""
12747
12748The first argument is a constant integer representing the size of the
12749object, or -1 if it is variable sized. The second argument is a pointer
12750to the object.
12751
12752Semantics:
12753""""""""""
12754
12755This intrinsic indicates that after this point in the code, the value of
12756the memory pointed to by ``ptr`` is dead. This means that it is known to
12757never be used and has an undefined value. Any stores into the memory
12758object following this intrinsic may be removed as dead.
12759
12760'``llvm.invariant.start``' Intrinsic
12761^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12762
12763Syntax:
12764"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012765This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012766
12767::
12768
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012769 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012770
12771Overview:
12772"""""""""
12773
12774The '``llvm.invariant.start``' intrinsic specifies that the contents of
12775a memory object will not change.
12776
12777Arguments:
12778""""""""""
12779
12780The first argument is a constant integer representing the size of the
12781object, or -1 if it is variable sized. The second argument is a pointer
12782to the object.
12783
12784Semantics:
12785""""""""""
12786
12787This intrinsic indicates that until an ``llvm.invariant.end`` that uses
12788the return value, the referenced memory location is constant and
12789unchanging.
12790
12791'``llvm.invariant.end``' Intrinsic
12792^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12793
12794Syntax:
12795"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012796This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012797
12798::
12799
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012800 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012801
12802Overview:
12803"""""""""
12804
12805The '``llvm.invariant.end``' intrinsic specifies that the contents of a
12806memory object are mutable.
12807
12808Arguments:
12809""""""""""
12810
12811The first argument is the matching ``llvm.invariant.start`` intrinsic.
12812The second argument is a constant integer representing the size of the
12813object, or -1 if it is variable sized and the third argument is a
12814pointer to the object.
12815
12816Semantics:
12817""""""""""
12818
12819This intrinsic indicates that the memory is mutable again.
12820
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012821'``llvm.invariant.group.barrier``' Intrinsic
12822^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12823
12824Syntax:
12825"""""""
Yaxun Liu407ca362017-11-16 16:32:16 +000012826This is an overloaded intrinsic. The memory object can belong to any address
12827space. The returned pointer must belong to the same address space as the
12828argument.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012829
12830::
12831
Yaxun Liu407ca362017-11-16 16:32:16 +000012832 declare i8* @llvm.invariant.group.barrier.p0i8(i8* <ptr>)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012833
12834Overview:
12835"""""""""
12836
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000012837The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012838established by invariant.group metadata no longer holds, to obtain a new pointer
12839value that does not carry the invariant information.
12840
12841
12842Arguments:
12843""""""""""
12844
12845The ``llvm.invariant.group.barrier`` takes only one argument, which is
12846the pointer to the memory for which the ``invariant.group`` no longer holds.
12847
12848Semantics:
12849""""""""""
12850
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000012851Returns another pointer that aliases its argument but which is considered different
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012852for the purposes of ``load``/``store`` ``invariant.group`` metadata.
12853
Andrew Kaylora0a11642017-01-26 23:27:59 +000012854Constrained Floating Point Intrinsics
12855-------------------------------------
12856
12857These intrinsics are used to provide special handling of floating point
12858operations when specific rounding mode or floating point exception behavior is
12859required. By default, LLVM optimization passes assume that the rounding mode is
12860round-to-nearest and that floating point exceptions will not be monitored.
12861Constrained FP intrinsics are used to support non-default rounding modes and
12862accurately preserve exception behavior without compromising LLVM's ability to
12863optimize FP code when the default behavior is used.
12864
12865Each of these intrinsics corresponds to a normal floating point operation. The
12866first two arguments and the return value are the same as the corresponding FP
12867operation.
12868
12869The third argument is a metadata argument specifying the rounding mode to be
12870assumed. This argument must be one of the following strings:
12871
12872::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012873
Andrew Kaylora0a11642017-01-26 23:27:59 +000012874 "round.dynamic"
12875 "round.tonearest"
12876 "round.downward"
12877 "round.upward"
12878 "round.towardzero"
12879
12880If this argument is "round.dynamic" optimization passes must assume that the
12881rounding mode is unknown and may change at runtime. No transformations that
12882depend on rounding mode may be performed in this case.
12883
12884The other possible values for the rounding mode argument correspond to the
12885similarly named IEEE rounding modes. If the argument is any of these values
12886optimization passes may perform transformations as long as they are consistent
12887with the specified rounding mode.
12888
12889For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
12890"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
12891'x-0' should evaluate to '-0' when rounding downward. However, this
12892transformation is legal for all other rounding modes.
12893
12894For values other than "round.dynamic" optimization passes may assume that the
12895actual runtime rounding mode (as defined in a target-specific manner) matches
12896the specified rounding mode, but this is not guaranteed. Using a specific
12897non-dynamic rounding mode which does not match the actual rounding mode at
12898runtime results in undefined behavior.
12899
12900The fourth argument to the constrained floating point intrinsics specifies the
12901required exception behavior. This argument must be one of the following
12902strings:
12903
12904::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012905
Andrew Kaylora0a11642017-01-26 23:27:59 +000012906 "fpexcept.ignore"
12907 "fpexcept.maytrap"
12908 "fpexcept.strict"
12909
12910If this argument is "fpexcept.ignore" optimization passes may assume that the
12911exception status flags will not be read and that floating point exceptions will
12912be masked. This allows transformations to be performed that may change the
12913exception semantics of the original code. For example, FP operations may be
12914speculatively executed in this case whereas they must not be for either of the
12915other possible values of this argument.
12916
12917If the exception behavior argument is "fpexcept.maytrap" optimization passes
12918must avoid transformations that may raise exceptions that would not have been
12919raised by the original code (such as speculatively executing FP operations), but
12920passes are not required to preserve all exceptions that are implied by the
12921original code. For example, exceptions may be potentially hidden by constant
12922folding.
12923
12924If the exception behavior argument is "fpexcept.strict" all transformations must
12925strictly preserve the floating point exception semantics of the original code.
12926Any FP exception that would have been raised by the original code must be raised
12927by the transformed code, and the transformed code must not raise any FP
12928exceptions that would not have been raised by the original code. This is the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000012929exception behavior argument that will be used if the code being compiled reads
Andrew Kaylora0a11642017-01-26 23:27:59 +000012930the FP exception status flags, but this mode can also be used with code that
12931unmasks FP exceptions.
12932
12933The number and order of floating point exceptions is NOT guaranteed. For
12934example, a series of FP operations that each may raise exceptions may be
12935vectorized into a single instruction that raises each unique exception a single
12936time.
12937
12938
12939'``llvm.experimental.constrained.fadd``' Intrinsic
12940^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12941
12942Syntax:
12943"""""""
12944
12945::
12946
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000012947 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000012948 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
12949 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012950 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012951
12952Overview:
12953"""""""""
12954
12955The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
12956two operands.
12957
12958
12959Arguments:
12960""""""""""
12961
12962The first two arguments to the '``llvm.experimental.constrained.fadd``'
12963intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12964of floating point values. Both arguments must have identical types.
12965
12966The third and fourth arguments specify the rounding mode and exception
12967behavior as described above.
12968
12969Semantics:
12970""""""""""
12971
12972The value produced is the floating point sum of the two value operands and has
12973the same type as the operands.
12974
12975
12976'``llvm.experimental.constrained.fsub``' Intrinsic
12977^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12978
12979Syntax:
12980"""""""
12981
12982::
12983
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000012984 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000012985 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
12986 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012987 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012988
12989Overview:
12990"""""""""
12991
12992The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
12993of its two operands.
12994
12995
12996Arguments:
12997""""""""""
12998
12999The first two arguments to the '``llvm.experimental.constrained.fsub``'
13000intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
13001of floating point values. Both arguments must have identical types.
13002
13003The third and fourth arguments specify the rounding mode and exception
13004behavior as described above.
13005
13006Semantics:
13007""""""""""
13008
13009The value produced is the floating point difference of the two value operands
13010and has the same type as the operands.
13011
13012
13013'``llvm.experimental.constrained.fmul``' Intrinsic
13014^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13015
13016Syntax:
13017"""""""
13018
13019::
13020
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013021 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013022 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
13023 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013024 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013025
13026Overview:
13027"""""""""
13028
13029The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
13030its two operands.
13031
13032
13033Arguments:
13034""""""""""
13035
13036The first two arguments to the '``llvm.experimental.constrained.fmul``'
13037intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
13038of floating point values. Both arguments must have identical types.
13039
13040The third and fourth arguments specify the rounding mode and exception
13041behavior as described above.
13042
13043Semantics:
13044""""""""""
13045
13046The value produced is the floating point product of the two value operands and
13047has the same type as the operands.
13048
13049
13050'``llvm.experimental.constrained.fdiv``' Intrinsic
13051^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13052
13053Syntax:
13054"""""""
13055
13056::
13057
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013058 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013059 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
13060 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013061 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013062
13063Overview:
13064"""""""""
13065
13066The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
13067its two operands.
13068
13069
13070Arguments:
13071""""""""""
13072
13073The first two arguments to the '``llvm.experimental.constrained.fdiv``'
13074intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
13075of floating point values. Both arguments must have identical types.
13076
13077The third and fourth arguments specify the rounding mode and exception
13078behavior as described above.
13079
13080Semantics:
13081""""""""""
13082
13083The value produced is the floating point quotient of the two value operands and
13084has the same type as the operands.
13085
13086
13087'``llvm.experimental.constrained.frem``' Intrinsic
13088^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13089
13090Syntax:
13091"""""""
13092
13093::
13094
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013095 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013096 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
13097 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013098 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013099
13100Overview:
13101"""""""""
13102
13103The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
13104from the division of its two operands.
13105
13106
13107Arguments:
13108""""""""""
13109
13110The first two arguments to the '``llvm.experimental.constrained.frem``'
13111intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
13112of floating point values. Both arguments must have identical types.
13113
13114The third and fourth arguments specify the rounding mode and exception
13115behavior as described above. The rounding mode argument has no effect, since
13116the result of frem is never rounded, but the argument is included for
13117consistency with the other constrained floating point intrinsics.
13118
13119Semantics:
13120""""""""""
13121
13122The value produced is the floating point remainder from the division of the two
13123value operands and has the same type as the operands. The remainder has the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013124same sign as the dividend.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013125
Wei Dinga131d3f2017-08-24 04:18:24 +000013126'``llvm.experimental.constrained.fma``' Intrinsic
13127^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13128
13129Syntax:
13130"""""""
13131
13132::
13133
13134 declare <type>
13135 @llvm.experimental.constrained.fma(<type> <op1>, <type> <op2>, <type> <op3>,
13136 metadata <rounding mode>,
13137 metadata <exception behavior>)
13138
13139Overview:
13140"""""""""
13141
13142The '``llvm.experimental.constrained.fma``' intrinsic returns the result of a
13143fused-multiply-add operation on its operands.
13144
13145Arguments:
13146""""""""""
13147
13148The first three arguments to the '``llvm.experimental.constrained.fma``'
13149intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector
13150<t_vector>` of floating point values. All arguments must have identical types.
13151
13152The fourth and fifth arguments specify the rounding mode and exception behavior
13153as described above.
13154
13155Semantics:
13156""""""""""
13157
13158The result produced is the product of the first two operands added to the third
13159operand computed with infinite precision, and then rounded to the target
13160precision.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013161
Andrew Kaylorf4660012017-05-25 21:31:00 +000013162Constrained libm-equivalent Intrinsics
13163--------------------------------------
13164
13165In addition to the basic floating point operations for which constrained
13166intrinsics are described above, there are constrained versions of various
13167operations which provide equivalent behavior to a corresponding libm function.
13168These intrinsics allow the precise behavior of these operations with respect to
13169rounding mode and exception behavior to be controlled.
13170
13171As with the basic constrained floating point intrinsics, the rounding mode
13172and exception behavior arguments only control the behavior of the optimizer.
13173They do not change the runtime floating point environment.
13174
13175
13176'``llvm.experimental.constrained.sqrt``' Intrinsic
13177^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13178
13179Syntax:
13180"""""""
13181
13182::
13183
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013184 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013185 @llvm.experimental.constrained.sqrt(<type> <op1>,
13186 metadata <rounding mode>,
13187 metadata <exception behavior>)
13188
13189Overview:
13190"""""""""
13191
13192The '``llvm.experimental.constrained.sqrt``' intrinsic returns the square root
13193of the specified value, returning the same value as the libm '``sqrt``'
13194functions would, but without setting ``errno``.
13195
13196Arguments:
13197""""""""""
13198
13199The first argument and the return type are floating point numbers of the same
13200type.
13201
13202The second and third arguments specify the rounding mode and exception
13203behavior as described above.
13204
13205Semantics:
13206""""""""""
13207
13208This function returns the nonnegative square root of the specified value.
13209If the value is less than negative zero, a floating point exception occurs
Hiroshi Inoue760c0c92018-01-16 13:19:48 +000013210and the return value is architecture specific.
Andrew Kaylorf4660012017-05-25 21:31:00 +000013211
13212
13213'``llvm.experimental.constrained.pow``' Intrinsic
13214^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13215
13216Syntax:
13217"""""""
13218
13219::
13220
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013221 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013222 @llvm.experimental.constrained.pow(<type> <op1>, <type> <op2>,
13223 metadata <rounding mode>,
13224 metadata <exception behavior>)
13225
13226Overview:
13227"""""""""
13228
13229The '``llvm.experimental.constrained.pow``' intrinsic returns the first operand
13230raised to the (positive or negative) power specified by the second operand.
13231
13232Arguments:
13233""""""""""
13234
13235The first two arguments and the return value are floating point numbers of the
13236same type. The second argument specifies the power to which the first argument
13237should be raised.
13238
13239The third and fourth arguments specify the rounding mode and exception
13240behavior as described above.
13241
13242Semantics:
13243""""""""""
13244
13245This function returns the first value raised to the second power,
13246returning the same values as the libm ``pow`` functions would, and
13247handles error conditions in the same way.
13248
13249
13250'``llvm.experimental.constrained.powi``' Intrinsic
13251^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13252
13253Syntax:
13254"""""""
13255
13256::
13257
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013258 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013259 @llvm.experimental.constrained.powi(<type> <op1>, i32 <op2>,
13260 metadata <rounding mode>,
13261 metadata <exception behavior>)
13262
13263Overview:
13264"""""""""
13265
13266The '``llvm.experimental.constrained.powi``' intrinsic returns the first operand
13267raised to the (positive or negative) power specified by the second operand. The
13268order of evaluation of multiplications is not defined. When a vector of floating
13269point type is used, the second argument remains a scalar integer value.
13270
13271
13272Arguments:
13273""""""""""
13274
13275The first argument and the return value are floating point numbers of the same
13276type. The second argument is a 32-bit signed integer specifying the power to
13277which the first argument should be raised.
13278
13279The third and fourth arguments specify the rounding mode and exception
13280behavior as described above.
13281
13282Semantics:
13283""""""""""
13284
13285This function returns the first value raised to the second power with an
13286unspecified sequence of rounding operations.
13287
13288
13289'``llvm.experimental.constrained.sin``' Intrinsic
13290^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13291
13292Syntax:
13293"""""""
13294
13295::
13296
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013297 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013298 @llvm.experimental.constrained.sin(<type> <op1>,
13299 metadata <rounding mode>,
13300 metadata <exception behavior>)
13301
13302Overview:
13303"""""""""
13304
13305The '``llvm.experimental.constrained.sin``' intrinsic returns the sine of the
13306first operand.
13307
13308Arguments:
13309""""""""""
13310
13311The first argument and the return type are floating point numbers of the same
13312type.
13313
13314The second and third arguments specify the rounding mode and exception
13315behavior as described above.
13316
13317Semantics:
13318""""""""""
13319
13320This function returns the sine of the specified operand, returning the
13321same values as the libm ``sin`` functions would, and handles error
13322conditions in the same way.
13323
13324
13325'``llvm.experimental.constrained.cos``' Intrinsic
13326^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13327
13328Syntax:
13329"""""""
13330
13331::
13332
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013333 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013334 @llvm.experimental.constrained.cos(<type> <op1>,
13335 metadata <rounding mode>,
13336 metadata <exception behavior>)
13337
13338Overview:
13339"""""""""
13340
13341The '``llvm.experimental.constrained.cos``' intrinsic returns the cosine of the
13342first operand.
13343
13344Arguments:
13345""""""""""
13346
13347The first argument and the return type are floating point numbers of the same
13348type.
13349
13350The second and third arguments specify the rounding mode and exception
13351behavior as described above.
13352
13353Semantics:
13354""""""""""
13355
13356This function returns the cosine of the specified operand, returning the
13357same values as the libm ``cos`` functions would, and handles error
13358conditions in the same way.
13359
13360
13361'``llvm.experimental.constrained.exp``' Intrinsic
13362^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13363
13364Syntax:
13365"""""""
13366
13367::
13368
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013369 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013370 @llvm.experimental.constrained.exp(<type> <op1>,
13371 metadata <rounding mode>,
13372 metadata <exception behavior>)
13373
13374Overview:
13375"""""""""
13376
13377The '``llvm.experimental.constrained.exp``' intrinsic computes the base-e
13378exponential of the specified value.
13379
13380Arguments:
13381""""""""""
13382
13383The first argument and the return value are floating point numbers of the same
13384type.
13385
13386The second and third arguments specify the rounding mode and exception
13387behavior as described above.
13388
13389Semantics:
13390""""""""""
13391
13392This function returns the same values as the libm ``exp`` functions
13393would, and handles error conditions in the same way.
13394
13395
13396'``llvm.experimental.constrained.exp2``' Intrinsic
13397^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13398
13399Syntax:
13400"""""""
13401
13402::
13403
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013404 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013405 @llvm.experimental.constrained.exp2(<type> <op1>,
13406 metadata <rounding mode>,
13407 metadata <exception behavior>)
13408
13409Overview:
13410"""""""""
13411
13412The '``llvm.experimental.constrained.exp2``' intrinsic computes the base-2
13413exponential of the specified value.
13414
13415
13416Arguments:
13417""""""""""
13418
13419The first argument and the return value are floating point numbers of the same
13420type.
13421
13422The second and third arguments specify the rounding mode and exception
13423behavior as described above.
13424
13425Semantics:
13426""""""""""
13427
13428This function returns the same values as the libm ``exp2`` functions
13429would, and handles error conditions in the same way.
13430
13431
13432'``llvm.experimental.constrained.log``' Intrinsic
13433^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13434
13435Syntax:
13436"""""""
13437
13438::
13439
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013440 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013441 @llvm.experimental.constrained.log(<type> <op1>,
13442 metadata <rounding mode>,
13443 metadata <exception behavior>)
13444
13445Overview:
13446"""""""""
13447
13448The '``llvm.experimental.constrained.log``' intrinsic computes the base-e
13449logarithm of the specified value.
13450
13451Arguments:
13452""""""""""
13453
13454The first argument and the return value are floating point numbers of the same
13455type.
13456
13457The second and third arguments specify the rounding mode and exception
13458behavior as described above.
13459
13460
13461Semantics:
13462""""""""""
13463
13464This function returns the same values as the libm ``log`` functions
13465would, and handles error conditions in the same way.
13466
13467
13468'``llvm.experimental.constrained.log10``' Intrinsic
13469^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13470
13471Syntax:
13472"""""""
13473
13474::
13475
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013476 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013477 @llvm.experimental.constrained.log10(<type> <op1>,
13478 metadata <rounding mode>,
13479 metadata <exception behavior>)
13480
13481Overview:
13482"""""""""
13483
13484The '``llvm.experimental.constrained.log10``' intrinsic computes the base-10
13485logarithm of the specified value.
13486
13487Arguments:
13488""""""""""
13489
13490The first argument and the return value are floating point numbers of the same
13491type.
13492
13493The second and third arguments specify the rounding mode and exception
13494behavior as described above.
13495
13496Semantics:
13497""""""""""
13498
13499This function returns the same values as the libm ``log10`` functions
13500would, and handles error conditions in the same way.
13501
13502
13503'``llvm.experimental.constrained.log2``' Intrinsic
13504^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13505
13506Syntax:
13507"""""""
13508
13509::
13510
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013511 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013512 @llvm.experimental.constrained.log2(<type> <op1>,
13513 metadata <rounding mode>,
13514 metadata <exception behavior>)
13515
13516Overview:
13517"""""""""
13518
13519The '``llvm.experimental.constrained.log2``' intrinsic computes the base-2
13520logarithm of the specified value.
13521
13522Arguments:
13523""""""""""
13524
13525The first argument and the return value are floating point numbers of the same
13526type.
13527
13528The second and third arguments specify the rounding mode and exception
13529behavior as described above.
13530
13531Semantics:
13532""""""""""
13533
13534This function returns the same values as the libm ``log2`` functions
13535would, and handles error conditions in the same way.
13536
13537
13538'``llvm.experimental.constrained.rint``' Intrinsic
13539^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13540
13541Syntax:
13542"""""""
13543
13544::
13545
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013546 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013547 @llvm.experimental.constrained.rint(<type> <op1>,
13548 metadata <rounding mode>,
13549 metadata <exception behavior>)
13550
13551Overview:
13552"""""""""
13553
13554The '``llvm.experimental.constrained.rint``' intrinsic returns the first
13555operand rounded to the nearest integer. It may raise an inexact floating point
13556exception if the operand is not an integer.
13557
13558Arguments:
13559""""""""""
13560
13561The first argument and the return value are floating point numbers of the same
13562type.
13563
13564The second and third arguments specify the rounding mode and exception
13565behavior as described above.
13566
13567Semantics:
13568""""""""""
13569
13570This function returns the same values as the libm ``rint`` functions
13571would, and handles error conditions in the same way. The rounding mode is
13572described, not determined, by the rounding mode argument. The actual rounding
13573mode is determined by the runtime floating point environment. The rounding
13574mode argument is only intended as information to the compiler.
13575
13576
13577'``llvm.experimental.constrained.nearbyint``' Intrinsic
13578^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13579
13580Syntax:
13581"""""""
13582
13583::
13584
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013585 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013586 @llvm.experimental.constrained.nearbyint(<type> <op1>,
13587 metadata <rounding mode>,
13588 metadata <exception behavior>)
13589
13590Overview:
13591"""""""""
13592
13593The '``llvm.experimental.constrained.nearbyint``' intrinsic returns the first
13594operand rounded to the nearest integer. It will not raise an inexact floating
13595point exception if the operand is not an integer.
13596
13597
13598Arguments:
13599""""""""""
13600
13601The first argument and the return value are floating point numbers of the same
13602type.
13603
13604The second and third arguments specify the rounding mode and exception
13605behavior as described above.
13606
13607Semantics:
13608""""""""""
13609
13610This function returns the same values as the libm ``nearbyint`` functions
13611would, and handles error conditions in the same way. The rounding mode is
13612described, not determined, by the rounding mode argument. The actual rounding
13613mode is determined by the runtime floating point environment. The rounding
13614mode argument is only intended as information to the compiler.
13615
13616
Sean Silvab084af42012-12-07 10:36:55 +000013617General Intrinsics
13618------------------
13619
13620This class of intrinsics is designed to be generic and has no specific
13621purpose.
13622
13623'``llvm.var.annotation``' Intrinsic
13624^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13625
13626Syntax:
13627"""""""
13628
13629::
13630
13631 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
13632
13633Overview:
13634"""""""""
13635
13636The '``llvm.var.annotation``' intrinsic.
13637
13638Arguments:
13639""""""""""
13640
13641The first argument is a pointer to a value, the second is a pointer to a
13642global string, the third is a pointer to a global string which is the
13643source file name, and the last argument is the line number.
13644
13645Semantics:
13646""""""""""
13647
13648This intrinsic allows annotation of local variables with arbitrary
13649strings. This can be useful for special purpose optimizations that want
13650to look for these annotations. These have no other defined use; they are
13651ignored by code generation and optimization.
13652
Michael Gottesman88d18832013-03-26 00:34:27 +000013653'``llvm.ptr.annotation.*``' Intrinsic
13654^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13655
13656Syntax:
13657"""""""
13658
13659This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
13660pointer to an integer of any width. *NOTE* you must specify an address space for
13661the pointer. The identifier for the default address space is the integer
13662'``0``'.
13663
13664::
13665
13666 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
13667 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
13668 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
13669 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
13670 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
13671
13672Overview:
13673"""""""""
13674
13675The '``llvm.ptr.annotation``' intrinsic.
13676
13677Arguments:
13678""""""""""
13679
13680The first argument is a pointer to an integer value of arbitrary bitwidth
13681(result of some expression), the second is a pointer to a global string, the
13682third is a pointer to a global string which is the source file name, and the
13683last argument is the line number. It returns the value of the first argument.
13684
13685Semantics:
13686""""""""""
13687
13688This intrinsic allows annotation of a pointer to an integer with arbitrary
13689strings. This can be useful for special purpose optimizations that want to look
13690for these annotations. These have no other defined use; they are ignored by code
13691generation and optimization.
13692
Sean Silvab084af42012-12-07 10:36:55 +000013693'``llvm.annotation.*``' Intrinsic
13694^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13695
13696Syntax:
13697"""""""
13698
13699This is an overloaded intrinsic. You can use '``llvm.annotation``' on
13700any integer bit width.
13701
13702::
13703
13704 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
13705 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
13706 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
13707 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
13708 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
13709
13710Overview:
13711"""""""""
13712
13713The '``llvm.annotation``' intrinsic.
13714
13715Arguments:
13716""""""""""
13717
13718The first argument is an integer value (result of some expression), the
13719second is a pointer to a global string, the third is a pointer to a
13720global string which is the source file name, and the last argument is
13721the line number. It returns the value of the first argument.
13722
13723Semantics:
13724""""""""""
13725
13726This intrinsic allows annotations to be put on arbitrary expressions
13727with arbitrary strings. This can be useful for special purpose
13728optimizations that want to look for these annotations. These have no
13729other defined use; they are ignored by code generation and optimization.
13730
Reid Klecknere33c94f2017-09-05 20:14:58 +000013731'``llvm.codeview.annotation``' Intrinsic
Reid Klecknerd4523682017-09-05 20:26:25 +000013732^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Reid Klecknere33c94f2017-09-05 20:14:58 +000013733
13734Syntax:
13735"""""""
13736
13737This annotation emits a label at its program point and an associated
13738``S_ANNOTATION`` codeview record with some additional string metadata. This is
13739used to implement MSVC's ``__annotation`` intrinsic. It is marked
13740``noduplicate``, so calls to this intrinsic prevent inlining and should be
13741considered expensive.
13742
13743::
13744
13745 declare void @llvm.codeview.annotation(metadata)
13746
13747Arguments:
13748""""""""""
13749
13750The argument should be an MDTuple containing any number of MDStrings.
13751
Sean Silvab084af42012-12-07 10:36:55 +000013752'``llvm.trap``' Intrinsic
13753^^^^^^^^^^^^^^^^^^^^^^^^^
13754
13755Syntax:
13756"""""""
13757
13758::
13759
13760 declare void @llvm.trap() noreturn nounwind
13761
13762Overview:
13763"""""""""
13764
13765The '``llvm.trap``' intrinsic.
13766
13767Arguments:
13768""""""""""
13769
13770None.
13771
13772Semantics:
13773""""""""""
13774
13775This intrinsic is lowered to the target dependent trap instruction. If
13776the target does not have a trap instruction, this intrinsic will be
13777lowered to a call of the ``abort()`` function.
13778
13779'``llvm.debugtrap``' Intrinsic
13780^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13781
13782Syntax:
13783"""""""
13784
13785::
13786
13787 declare void @llvm.debugtrap() nounwind
13788
13789Overview:
13790"""""""""
13791
13792The '``llvm.debugtrap``' intrinsic.
13793
13794Arguments:
13795""""""""""
13796
13797None.
13798
13799Semantics:
13800""""""""""
13801
13802This intrinsic is lowered to code which is intended to cause an
13803execution trap with the intention of requesting the attention of a
13804debugger.
13805
13806'``llvm.stackprotector``' Intrinsic
13807^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13808
13809Syntax:
13810"""""""
13811
13812::
13813
13814 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
13815
13816Overview:
13817"""""""""
13818
13819The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
13820onto the stack at ``slot``. The stack slot is adjusted to ensure that it
13821is placed on the stack before local variables.
13822
13823Arguments:
13824""""""""""
13825
13826The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
13827The first argument is the value loaded from the stack guard
13828``@__stack_chk_guard``. The second variable is an ``alloca`` that has
13829enough space to hold the value of the guard.
13830
13831Semantics:
13832""""""""""
13833
Michael Gottesmandafc7d92013-08-12 18:35:32 +000013834This intrinsic causes the prologue/epilogue inserter to force the position of
13835the ``AllocaInst`` stack slot to be before local variables on the stack. This is
13836to ensure that if a local variable on the stack is overwritten, it will destroy
13837the value of the guard. When the function exits, the guard on the stack is
13838checked against the original guard by ``llvm.stackprotectorcheck``. If they are
13839different, then ``llvm.stackprotectorcheck`` causes the program to abort by
13840calling the ``__stack_chk_fail()`` function.
13841
Tim Shene885d5e2016-04-19 19:40:37 +000013842'``llvm.stackguard``' Intrinsic
13843^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13844
13845Syntax:
13846"""""""
13847
13848::
13849
13850 declare i8* @llvm.stackguard()
13851
13852Overview:
13853"""""""""
13854
13855The ``llvm.stackguard`` intrinsic returns the system stack guard value.
13856
13857It should not be generated by frontends, since it is only for internal usage.
13858The reason why we create this intrinsic is that we still support IR form Stack
13859Protector in FastISel.
13860
13861Arguments:
13862""""""""""
13863
13864None.
13865
13866Semantics:
13867""""""""""
13868
13869On some platforms, the value returned by this intrinsic remains unchanged
13870between loads in the same thread. On other platforms, it returns the same
13871global variable value, if any, e.g. ``@__stack_chk_guard``.
13872
13873Currently some platforms have IR-level customized stack guard loading (e.g.
13874X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
13875in the future.
13876
Sean Silvab084af42012-12-07 10:36:55 +000013877'``llvm.objectsize``' Intrinsic
13878^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13879
13880Syntax:
13881"""""""
13882
13883::
13884
George Burgess IV56c7e882017-03-21 20:08:59 +000013885 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>)
13886 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>)
Sean Silvab084af42012-12-07 10:36:55 +000013887
13888Overview:
13889"""""""""
13890
13891The ``llvm.objectsize`` intrinsic is designed to provide information to
13892the optimizers to determine at compile time whether a) an operation
13893(like memcpy) will overflow a buffer that corresponds to an object, or
13894b) that a runtime check for overflow isn't necessary. An object in this
13895context means an allocation of a specific class, structure, array, or
13896other object.
13897
13898Arguments:
13899""""""""""
13900
George Burgess IV56c7e882017-03-21 20:08:59 +000013901The ``llvm.objectsize`` intrinsic takes three arguments. The first argument is
13902a pointer to or into the ``object``. The second argument determines whether
13903``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size
13904is unknown. The third argument controls how ``llvm.objectsize`` acts when
13905``null`` is used as its pointer argument. If it's true and the pointer is in
13906address space 0, ``null`` is treated as an opaque value with an unknown number
13907of bytes. Otherwise, ``llvm.objectsize`` reports 0 bytes available when given
13908``null``.
13909
13910The second and third arguments only accept constants.
Sean Silvab084af42012-12-07 10:36:55 +000013911
13912Semantics:
13913""""""""""
13914
13915The ``llvm.objectsize`` intrinsic is lowered to a constant representing
13916the size of the object concerned. If the size cannot be determined at
13917compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
13918on the ``min`` argument).
13919
13920'``llvm.expect``' Intrinsic
13921^^^^^^^^^^^^^^^^^^^^^^^^^^^
13922
13923Syntax:
13924"""""""
13925
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000013926This is an overloaded intrinsic. You can use ``llvm.expect`` on any
13927integer bit width.
13928
Sean Silvab084af42012-12-07 10:36:55 +000013929::
13930
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000013931 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000013932 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
13933 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
13934
13935Overview:
13936"""""""""
13937
13938The ``llvm.expect`` intrinsic provides information about expected (the
13939most probable) value of ``val``, which can be used by optimizers.
13940
13941Arguments:
13942""""""""""
13943
13944The ``llvm.expect`` intrinsic takes two arguments. The first argument is
13945a value. The second argument is an expected value, this needs to be a
13946constant value, variables are not allowed.
13947
13948Semantics:
13949""""""""""
13950
13951This intrinsic is lowered to the ``val``.
13952
Philip Reamese0e90832015-04-26 22:23:12 +000013953.. _int_assume:
13954
Hal Finkel93046912014-07-25 21:13:35 +000013955'``llvm.assume``' Intrinsic
13956^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13957
13958Syntax:
13959"""""""
13960
13961::
13962
13963 declare void @llvm.assume(i1 %cond)
13964
13965Overview:
13966"""""""""
13967
13968The ``llvm.assume`` allows the optimizer to assume that the provided
13969condition is true. This information can then be used in simplifying other parts
13970of the code.
13971
13972Arguments:
13973""""""""""
13974
13975The condition which the optimizer may assume is always true.
13976
13977Semantics:
13978""""""""""
13979
13980The intrinsic allows the optimizer to assume that the provided condition is
13981always true whenever the control flow reaches the intrinsic call. No code is
13982generated for this intrinsic, and instructions that contribute only to the
13983provided condition are not used for code generation. If the condition is
13984violated during execution, the behavior is undefined.
13985
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000013986Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000013987used by the ``llvm.assume`` intrinsic in order to preserve the instructions
13988only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000013989if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000013990sufficient overall improvement in code quality. For this reason,
13991``llvm.assume`` should not be used to document basic mathematical invariants
13992that the optimizer can otherwise deduce or facts that are of little use to the
13993optimizer.
13994
Daniel Berlin2c438a32017-02-07 19:29:25 +000013995.. _int_ssa_copy:
13996
13997'``llvm.ssa_copy``' Intrinsic
13998^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13999
14000Syntax:
14001"""""""
14002
14003::
14004
14005 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
14006
14007Arguments:
14008""""""""""
14009
14010The first argument is an operand which is used as the returned value.
14011
14012Overview:
14013""""""""""
14014
14015The ``llvm.ssa_copy`` intrinsic can be used to attach information to
14016operations by copying them and giving them new names. For example,
14017the PredicateInfo utility uses it to build Extended SSA form, and
14018attach various forms of information to operands that dominate specific
14019uses. It is not meant for general use, only for building temporary
14020renaming forms that require value splits at certain points.
14021
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014022.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000014023
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014024'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000014025^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14026
14027Syntax:
14028"""""""
14029
14030::
14031
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014032 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000014033
14034
14035Arguments:
14036""""""""""
14037
14038The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014039metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000014040
14041Overview:
14042"""""""""
14043
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014044The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
14045with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000014046
Peter Collingbourne0312f612016-06-25 00:23:04 +000014047'``llvm.type.checked.load``' Intrinsic
14048^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14049
14050Syntax:
14051"""""""
14052
14053::
14054
14055 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
14056
14057
14058Arguments:
14059""""""""""
14060
14061The first argument is a pointer from which to load a function pointer. The
14062second argument is the byte offset from which to load the function pointer. The
14063third argument is a metadata object representing a :doc:`type identifier
14064<TypeMetadata>`.
14065
14066Overview:
14067"""""""""
14068
14069The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
14070virtual table pointer using type metadata. This intrinsic is used to implement
14071control flow integrity in conjunction with virtual call optimization. The
14072virtual call optimization pass will optimize away ``llvm.type.checked.load``
14073intrinsics associated with devirtualized calls, thereby removing the type
14074check in cases where it is not needed to enforce the control flow integrity
14075constraint.
14076
14077If the given pointer is associated with a type metadata identifier, this
14078function returns true as the second element of its return value. (Note that
14079the function may also return true if the given pointer is not associated
14080with a type metadata identifier.) If the function's return value's second
14081element is true, the following rules apply to the first element:
14082
14083- If the given pointer is associated with the given type metadata identifier,
14084 it is the function pointer loaded from the given byte offset from the given
14085 pointer.
14086
14087- If the given pointer is not associated with the given type metadata
14088 identifier, it is one of the following (the choice of which is unspecified):
14089
14090 1. The function pointer that would have been loaded from an arbitrarily chosen
14091 (through an unspecified mechanism) pointer associated with the type
14092 metadata.
14093
14094 2. If the function has a non-void return type, a pointer to a function that
14095 returns an unspecified value without causing side effects.
14096
14097If the function's return value's second element is false, the value of the
14098first element is undefined.
14099
14100
Sean Silvab084af42012-12-07 10:36:55 +000014101'``llvm.donothing``' Intrinsic
14102^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14103
14104Syntax:
14105"""""""
14106
14107::
14108
14109 declare void @llvm.donothing() nounwind readnone
14110
14111Overview:
14112"""""""""
14113
Juergen Ributzkac9161192014-10-23 22:36:13 +000014114The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000014115three intrinsics (besides ``llvm.experimental.patchpoint`` and
14116``llvm.experimental.gc.statepoint``) that can be called with an invoke
14117instruction.
Sean Silvab084af42012-12-07 10:36:55 +000014118
14119Arguments:
14120""""""""""
14121
14122None.
14123
14124Semantics:
14125""""""""""
14126
14127This intrinsic does nothing, and it's removed by optimizers and ignored
14128by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000014129
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014130'``llvm.experimental.deoptimize``' Intrinsic
14131^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14132
14133Syntax:
14134"""""""
14135
14136::
14137
14138 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
14139
14140Overview:
14141"""""""""
14142
14143This intrinsic, together with :ref:`deoptimization operand bundles
14144<deopt_opbundles>`, allow frontends to express transfer of control and
14145frame-local state from the currently executing (typically more specialized,
14146hence faster) version of a function into another (typically more generic, hence
14147slower) version.
14148
14149In languages with a fully integrated managed runtime like Java and JavaScript
14150this intrinsic can be used to implement "uncommon trap" or "side exit" like
14151functionality. In unmanaged languages like C and C++, this intrinsic can be
14152used to represent the slow paths of specialized functions.
14153
14154
14155Arguments:
14156""""""""""
14157
14158The intrinsic takes an arbitrary number of arguments, whose meaning is
14159decided by the :ref:`lowering strategy<deoptimize_lowering>`.
14160
14161Semantics:
14162""""""""""
14163
14164The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
14165deoptimization continuation (denoted using a :ref:`deoptimization
14166operand bundle <deopt_opbundles>`) and returns the value returned by
14167the deoptimization continuation. Defining the semantic properties of
14168the continuation itself is out of scope of the language reference --
14169as far as LLVM is concerned, the deoptimization continuation can
14170invoke arbitrary side effects, including reading from and writing to
14171the entire heap.
14172
14173Deoptimization continuations expressed using ``"deopt"`` operand bundles always
14174continue execution to the end of the physical frame containing them, so all
14175calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
14176
14177 - ``@llvm.experimental.deoptimize`` cannot be invoked.
14178 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
14179 - The ``ret`` instruction must return the value produced by the
14180 ``@llvm.experimental.deoptimize`` call if there is one, or void.
14181
14182Note that the above restrictions imply that the return type for a call to
14183``@llvm.experimental.deoptimize`` will match the return type of its immediate
14184caller.
14185
14186The inliner composes the ``"deopt"`` continuations of the caller into the
14187``"deopt"`` continuations present in the inlinee, and also updates calls to this
14188intrinsic to return directly from the frame of the function it inlined into.
14189
Sanjoy Dase0aa4142016-05-12 01:17:38 +000014190All declarations of ``@llvm.experimental.deoptimize`` must share the
14191same calling convention.
14192
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014193.. _deoptimize_lowering:
14194
14195Lowering:
14196"""""""""
14197
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000014198Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
14199symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
14200ensure that this symbol is defined). The call arguments to
14201``@llvm.experimental.deoptimize`` are lowered as if they were formal
14202arguments of the specified types, and not as varargs.
14203
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014204
Sanjoy Das021de052016-03-31 00:18:46 +000014205'``llvm.experimental.guard``' Intrinsic
14206^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14207
14208Syntax:
14209"""""""
14210
14211::
14212
14213 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
14214
14215Overview:
14216"""""""""
14217
14218This intrinsic, together with :ref:`deoptimization operand bundles
14219<deopt_opbundles>`, allows frontends to express guards or checks on
14220optimistic assumptions made during compilation. The semantics of
14221``@llvm.experimental.guard`` is defined in terms of
14222``@llvm.experimental.deoptimize`` -- its body is defined to be
14223equivalent to:
14224
Renato Golin124f2592016-07-20 12:16:38 +000014225.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000014226
Renato Golin124f2592016-07-20 12:16:38 +000014227 define void @llvm.experimental.guard(i1 %pred, <args...>) {
14228 %realPred = and i1 %pred, undef
14229 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000014230
Renato Golin124f2592016-07-20 12:16:38 +000014231 leave:
14232 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
14233 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000014234
Renato Golin124f2592016-07-20 12:16:38 +000014235 continue:
14236 ret void
14237 }
Sanjoy Das021de052016-03-31 00:18:46 +000014238
Sanjoy Das47cf2af2016-04-30 00:55:59 +000014239
14240with the optional ``[, !make.implicit !{}]`` present if and only if it
14241is present on the call site. For more details on ``!make.implicit``,
14242see :doc:`FaultMaps`.
14243
Sanjoy Das021de052016-03-31 00:18:46 +000014244In words, ``@llvm.experimental.guard`` executes the attached
14245``"deopt"`` continuation if (but **not** only if) its first argument
14246is ``false``. Since the optimizer is allowed to replace the ``undef``
14247with an arbitrary value, it can optimize guard to fail "spuriously",
14248i.e. without the original condition being false (hence the "not only
14249if"); and this allows for "check widening" type optimizations.
14250
14251``@llvm.experimental.guard`` cannot be invoked.
14252
14253
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000014254'``llvm.load.relative``' Intrinsic
14255^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14256
14257Syntax:
14258"""""""
14259
14260::
14261
14262 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
14263
14264Overview:
14265"""""""""
14266
14267This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
14268adds ``%ptr`` to that value and returns it. The constant folder specifically
14269recognizes the form of this intrinsic and the constant initializers it may
14270load from; if a loaded constant initializer is known to have the form
14271``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
14272
14273LLVM provides that the calculation of such a constant initializer will
14274not overflow at link time under the medium code model if ``x`` is an
14275``unnamed_addr`` function. However, it does not provide this guarantee for
14276a constant initializer folded into a function body. This intrinsic can be
14277used to avoid the possibility of overflows when loading from such a constant.
14278
Dan Gohman2c74fe92017-11-08 21:59:51 +000014279'``llvm.sideeffect``' Intrinsic
14280^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14281
14282Syntax:
14283"""""""
14284
14285::
14286
14287 declare void @llvm.sideeffect() inaccessiblememonly nounwind
14288
14289Overview:
14290"""""""""
14291
14292The ``llvm.sideeffect`` intrinsic doesn't perform any operation. Optimizers
14293treat it as having side effects, so it can be inserted into a loop to
14294indicate that the loop shouldn't be assumed to terminate (which could
14295potentially lead to the loop being optimized away entirely), even if it's
14296an infinite loop with no other side effects.
14297
14298Arguments:
14299""""""""""
14300
14301None.
14302
14303Semantics:
14304""""""""""
14305
14306This intrinsic actually does nothing, but optimizers must assume that it
14307has externally observable side effects.
14308
Andrew Trick5e029ce2013-12-24 02:57:25 +000014309Stack Map Intrinsics
14310--------------------
14311
14312LLVM provides experimental intrinsics to support runtime patching
14313mechanisms commonly desired in dynamic language JITs. These intrinsics
14314are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014315
14316Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000014317-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000014318
14319These intrinsics are similar to the standard library memory intrinsics except
14320that they perform memory transfer as a sequence of atomic memory accesses.
14321
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014322.. _int_memcpy_element_unordered_atomic:
Igor Laevsky4f31e522016-12-29 14:31:07 +000014323
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014324'``llvm.memcpy.element.unordered.atomic``' Intrinsic
14325^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000014326
14327Syntax:
14328"""""""
14329
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014330This is an overloaded intrinsic. You can use ``llvm.memcpy.element.unordered.atomic`` on
Igor Laevsky4f31e522016-12-29 14:31:07 +000014331any integer bit width and for different address spaces. Not all targets
14332support all bit widths however.
14333
14334::
14335
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014336 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
14337 i8* <src>,
14338 i32 <len>,
14339 i32 <element_size>)
14340 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
14341 i8* <src>,
14342 i64 <len>,
14343 i32 <element_size>)
Igor Laevsky4f31e522016-12-29 14:31:07 +000014344
14345Overview:
14346"""""""""
14347
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014348The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic is a specialization of the
14349'``llvm.memcpy.*``' intrinsic. It differs in that the ``dest`` and ``src`` are treated
14350as arrays with elements that are exactly ``element_size`` bytes, and the copy between
14351buffers uses a sequence of :ref:`unordered atomic <ordering>` load/store operations
14352that are a positive integer multiple of the ``element_size`` in size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014353
14354Arguments:
14355""""""""""
14356
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014357The first three arguments are the same as they are in the :ref:`@llvm.memcpy <int_memcpy>`
14358intrinsic, with the added constraint that ``len`` is required to be a positive integer
14359multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
14360``element_size``, then the behaviour of the intrinsic is undefined.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014361
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014362``element_size`` must be a compile-time constant positive power of two no greater than
14363target-specific atomic access size limit.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014364
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014365For each of the input pointers ``align`` parameter attribute must be specified. It
14366must be a power of two no less than the ``element_size``. Caller guarantees that
14367both the source and destination pointers are aligned to that boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014368
14369Semantics:
14370""""""""""
14371
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014372The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic copies ``len`` bytes of
14373memory from the source location to the destination location. These locations are not
14374allowed to overlap. The memory copy is performed as a sequence of load/store operations
14375where each access is guaranteed to be a multiple of ``element_size`` bytes wide and
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014376aligned at an ``element_size`` boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014377
14378The order of the copy is unspecified. The same value may be read from the source
14379buffer many times, but only one write is issued to the destination buffer per
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014380element. It is well defined to have concurrent reads and writes to both source and
14381destination provided those reads and writes are unordered atomic when specified.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014382
14383This intrinsic does not provide any additional ordering guarantees over those
14384provided by a set of unordered loads from the source location and stores to the
14385destination.
14386
14387Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000014388"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000014389
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014390In the most general case call to the '``llvm.memcpy.element.unordered.atomic.*``' is
14391lowered to a call to the symbol ``__llvm_memcpy_element_unordered_atomic_*``. Where '*'
14392is replaced with an actual element size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014393
Daniel Neilson57226ef2017-07-12 15:25:26 +000014394Optimizer is allowed to inline memory copy when it's profitable to do so.
14395
14396'``llvm.memmove.element.unordered.atomic``' Intrinsic
14397^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14398
14399Syntax:
14400"""""""
14401
14402This is an overloaded intrinsic. You can use
14403``llvm.memmove.element.unordered.atomic`` on any integer bit width and for
14404different address spaces. Not all targets support all bit widths however.
14405
14406::
14407
14408 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
14409 i8* <src>,
14410 i32 <len>,
14411 i32 <element_size>)
14412 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
14413 i8* <src>,
14414 i64 <len>,
14415 i32 <element_size>)
14416
14417Overview:
14418"""""""""
14419
14420The '``llvm.memmove.element.unordered.atomic.*``' intrinsic is a specialization
14421of the '``llvm.memmove.*``' intrinsic. It differs in that the ``dest`` and
14422``src`` are treated as arrays with elements that are exactly ``element_size``
14423bytes, and the copy between buffers uses a sequence of
14424:ref:`unordered atomic <ordering>` load/store operations that are a positive
14425integer multiple of the ``element_size`` in size.
14426
14427Arguments:
14428""""""""""
14429
14430The first three arguments are the same as they are in the
14431:ref:`@llvm.memmove <int_memmove>` intrinsic, with the added constraint that
14432``len`` is required to be a positive integer multiple of the ``element_size``.
14433If ``len`` is not a positive integer multiple of ``element_size``, then the
14434behaviour of the intrinsic is undefined.
14435
14436``element_size`` must be a compile-time constant positive power of two no
14437greater than a target-specific atomic access size limit.
14438
14439For each of the input pointers the ``align`` parameter attribute must be
14440specified. It must be a power of two no less than the ``element_size``. Caller
14441guarantees that both the source and destination pointers are aligned to that
14442boundary.
14443
14444Semantics:
14445""""""""""
14446
14447The '``llvm.memmove.element.unordered.atomic.*``' intrinsic copies ``len`` bytes
14448of memory from the source location to the destination location. These locations
14449are allowed to overlap. The memory copy is performed as a sequence of load/store
14450operations where each access is guaranteed to be a multiple of ``element_size``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014451bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson57226ef2017-07-12 15:25:26 +000014452
14453The order of the copy is unspecified. The same value may be read from the source
14454buffer many times, but only one write is issued to the destination buffer per
14455element. It is well defined to have concurrent reads and writes to both source
14456and destination provided those reads and writes are unordered atomic when
14457specified.
14458
14459This intrinsic does not provide any additional ordering guarantees over those
14460provided by a set of unordered loads from the source location and stores to the
14461destination.
14462
14463Lowering:
14464"""""""""
14465
14466In the most general case call to the
14467'``llvm.memmove.element.unordered.atomic.*``' is lowered to a call to the symbol
14468``__llvm_memmove_element_unordered_atomic_*``. Where '*' is replaced with an
14469actual element size.
14470
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014471The optimizer is allowed to inline the memory copy when it's profitable to do so.
Daniel Neilson965613e2017-07-12 21:57:23 +000014472
14473.. _int_memset_element_unordered_atomic:
14474
14475'``llvm.memset.element.unordered.atomic``' Intrinsic
14476^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14477
14478Syntax:
14479"""""""
14480
14481This is an overloaded intrinsic. You can use ``llvm.memset.element.unordered.atomic`` on
14482any integer bit width and for different address spaces. Not all targets
14483support all bit widths however.
14484
14485::
14486
14487 declare void @llvm.memset.element.unordered.atomic.p0i8.i32(i8* <dest>,
14488 i8 <value>,
14489 i32 <len>,
14490 i32 <element_size>)
14491 declare void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* <dest>,
14492 i8 <value>,
14493 i64 <len>,
14494 i32 <element_size>)
14495
14496Overview:
14497"""""""""
14498
14499The '``llvm.memset.element.unordered.atomic.*``' intrinsic is a specialization of the
14500'``llvm.memset.*``' intrinsic. It differs in that the ``dest`` is treated as an array
14501with elements that are exactly ``element_size`` bytes, and the assignment to that array
14502uses uses a sequence of :ref:`unordered atomic <ordering>` store operations
14503that are a positive integer multiple of the ``element_size`` in size.
14504
14505Arguments:
14506""""""""""
14507
14508The first three arguments are the same as they are in the :ref:`@llvm.memset <int_memset>`
14509intrinsic, with the added constraint that ``len`` is required to be a positive integer
14510multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
14511``element_size``, then the behaviour of the intrinsic is undefined.
14512
14513``element_size`` must be a compile-time constant positive power of two no greater than
14514target-specific atomic access size limit.
14515
14516The ``dest`` input pointer must have the ``align`` parameter attribute specified. It
14517must be a power of two no less than the ``element_size``. Caller guarantees that
14518the destination pointer is aligned to that boundary.
14519
14520Semantics:
14521""""""""""
14522
14523The '``llvm.memset.element.unordered.atomic.*``' intrinsic sets the ``len`` bytes of
14524memory starting at the destination location to the given ``value``. The memory is
14525set with a sequence of store operations where each access is guaranteed to be a
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014526multiple of ``element_size`` bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson965613e2017-07-12 21:57:23 +000014527
14528The order of the assignment is unspecified. Only one write is issued to the
14529destination buffer per element. It is well defined to have concurrent reads and
14530writes to the destination provided those reads and writes are unordered atomic
14531when specified.
14532
14533This intrinsic does not provide any additional ordering guarantees over those
14534provided by a set of unordered stores to the destination.
14535
14536Lowering:
14537"""""""""
14538
14539In the most general case call to the '``llvm.memset.element.unordered.atomic.*``' is
14540lowered to a call to the symbol ``__llvm_memset_element_unordered_atomic_*``. Where '*'
14541is replaced with an actual element size.
14542
14543The optimizer is allowed to inline the memory assignment when it's profitable to do so.
14544