blob: 660daf2216e2301aa0ddcc464732dbacaaee2a38 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
George Burgess IVfbc34982017-05-20 04:52:29 +0000164 ; Convert [13 x i8]* to i8*...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledru0604c5c2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvab084af42012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Sean Fertilec70d28b2017-10-26 15:00:26 +0000530.. _runtime_preemption_model:
531
532Runtime Preemption Specifiers
533-----------------------------
534
535Global variables, functions and aliases may have an optional runtime preemption
536specifier. If a preemption specifier isn't given explicitly, then a
537symbol is assumed to be ``dso_preemptable``.
538
539``dso_preemptable``
540 Indicates that the function or variable may be replaced by a symbol from
541 outside the linkage unit at runtime.
542
543``dso_local``
544 The compiler may assume that a function or variable marked as ``dso_local``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000545 will resolve to a symbol within the same linkage unit. Direct access will
Sean Fertilec70d28b2017-10-26 15:00:26 +0000546 be generated even if the definition is not within this compilation unit.
547
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000548.. _namedtypes:
549
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000550Structure Types
551---------------
Sean Silvab084af42012-12-07 10:36:55 +0000552
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000553LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000554types <t_struct>`. Literal types are uniqued structurally, but identified types
555are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000556to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000557
Sean Silva706fba52015-08-06 22:56:24 +0000558An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000559
560.. code-block:: llvm
561
562 %mytype = type { %mytype*, i32 }
563
Sean Silvaa1190322015-08-06 22:56:48 +0000564Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000565literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000566
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000567.. _nointptrtype:
568
569Non-Integral Pointer Type
570-------------------------
571
572Note: non-integral pointer types are a work in progress, and they should be
573considered experimental at this time.
574
575LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000576spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
577Non-integral pointer types represent pointers that have an *unspecified* bitwise
578representation; that is, the integral representation may be target dependent or
579unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000580
581``inttoptr`` instructions converting integers to non-integral pointer types are
582ill-typed, and so are ``ptrtoint`` instructions converting values of
583non-integral pointer types to integers. Vector versions of said instructions
584are ill-typed as well.
585
Sean Silvab084af42012-12-07 10:36:55 +0000586.. _globalvars:
587
588Global Variables
589----------------
590
591Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000592instead of run-time.
593
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000594Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000595
596Global variables in other translation units can also be declared, in which
597case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000598
Bob Wilson85b24f22014-06-12 20:40:33 +0000599Either global variable definitions or declarations may have an explicit section
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000600to be placed in and may have an optional explicit alignment specified. If there
601is a mismatch between the explicit or inferred section information for the
602variable declaration and its definition the resulting behavior is undefined.
Bob Wilson85b24f22014-06-12 20:40:33 +0000603
Michael Gottesman006039c2013-01-31 05:48:48 +0000604A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000605the contents of the variable will **never** be modified (enabling better
606optimization, allowing the global data to be placed in the read-only
607section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000608initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000609variable.
610
611LLVM explicitly allows *declarations* of global variables to be marked
612constant, even if the final definition of the global is not. This
613capability can be used to enable slightly better optimization of the
614program, but requires the language definition to guarantee that
615optimizations based on the 'constantness' are valid for the translation
616units that do not include the definition.
617
618As SSA values, global variables define pointer values that are in scope
619(i.e. they dominate) all basic blocks in the program. Global variables
620always define a pointer to their "content" type because they describe a
621region of memory, and all memory objects in LLVM are accessed through
622pointers.
623
624Global variables can be marked with ``unnamed_addr`` which indicates
625that the address is not significant, only the content. Constants marked
626like this can be merged with other constants if they have the same
627initializer. Note that a constant with significant address *can* be
628merged with a ``unnamed_addr`` constant, the result being a constant
629whose address is significant.
630
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000631If the ``local_unnamed_addr`` attribute is given, the address is known to
632not be significant within the module.
633
Sean Silvab084af42012-12-07 10:36:55 +0000634A global variable may be declared to reside in a target-specific
635numbered address space. For targets that support them, address spaces
636may affect how optimizations are performed and/or what target
637instructions are used to access the variable. The default address space
638is zero. The address space qualifier must precede any other attributes.
639
640LLVM allows an explicit section to be specified for globals. If the
641target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000642Additionally, the global can placed in a comdat if the target has the necessary
643support.
Sean Silvab084af42012-12-07 10:36:55 +0000644
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000645External declarations may have an explicit section specified. Section
646information is retained in LLVM IR for targets that make use of this
647information. Attaching section information to an external declaration is an
648assertion that its definition is located in the specified section. If the
649definition is located in a different section, the behavior is undefined.
Erich Keane0343ef82017-08-22 15:30:43 +0000650
Michael Gottesmane743a302013-02-04 03:22:00 +0000651By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000652variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000653initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000654true even for variables potentially accessible from outside the
655module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000656``@llvm.used`` or dllexported variables. This assumption may be suppressed
657by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659An explicit alignment may be specified for a global, which must be a
660power of 2. If not present, or if the alignment is set to zero, the
661alignment of the global is set by the target to whatever it feels
662convenient. If an explicit alignment is specified, the global is forced
663to have exactly that alignment. Targets and optimizers are not allowed
664to over-align the global if the global has an assigned section. In this
665case, the extra alignment could be observable: for example, code could
666assume that the globals are densely packed in their section and try to
667iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000668iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000669
Javed Absarf3d79042017-05-11 12:28:08 +0000670Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
Sean Fertilec70d28b2017-10-26 15:00:26 +0000671an optional :ref:`runtime preemption specifier <runtime_preemption_model>`,
Javed Absarf3d79042017-05-11 12:28:08 +0000672an optional :ref:`global attributes <glattrs>` and
673an optional list of attached :ref:`metadata <metadata>`.
Nico Rieck7157bb72014-01-14 15:22:47 +0000674
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000675Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000676:ref:`Thread Local Storage Model <tls_model>`.
677
Nico Rieck7157bb72014-01-14 15:22:47 +0000678Syntax::
679
Sean Fertilec70d28b2017-10-26 15:00:26 +0000680 @<GlobalVarName> = [Linkage] [PreemptionSpecifier] [Visibility]
681 [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000682 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
683 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000684 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000685 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000686 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000687
Sean Silvab084af42012-12-07 10:36:55 +0000688For example, the following defines a global in a numbered address space
689with an initializer, section, and alignment:
690
691.. code-block:: llvm
692
693 @G = addrspace(5) constant float 1.0, section "foo", align 4
694
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000695The following example just declares a global variable
696
697.. code-block:: llvm
698
699 @G = external global i32
700
Sean Silvab084af42012-12-07 10:36:55 +0000701The following example defines a thread-local global with the
702``initialexec`` TLS model:
703
704.. code-block:: llvm
705
706 @G = thread_local(initialexec) global i32 0, align 4
707
708.. _functionstructure:
709
710Functions
711---------
712
713LLVM function definitions consist of the "``define``" keyword, an
Sean Fertilec70d28b2017-10-26 15:00:26 +0000714optional :ref:`linkage type <linkage>`, an optional :ref:`runtime preemption
715specifier <runtime_preemption_model>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000716style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
717an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000718an optional ``unnamed_addr`` attribute, a return type, an optional
719:ref:`parameter attribute <paramattrs>` for the return type, a function
720name, a (possibly empty) argument list (each with optional :ref:`parameter
721attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000722an optional section, an optional alignment,
723an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000724an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000725an optional :ref:`prologue <prologuedata>`,
726an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000727an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000728an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000731optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
732<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
733optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
734or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
735attribute <paramattrs>` for the return type, a function name, a possibly
736empty list of arguments, an optional alignment, an optional :ref:`garbage
737collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
738:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000739
Bill Wendling6822ecb2013-10-27 05:09:12 +0000740A function definition contains a list of basic blocks, forming the CFG (Control
741Flow Graph) for the function. Each basic block may optionally start with a label
742(giving the basic block a symbol table entry), contains a list of instructions,
743and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
744function return). If an explicit label is not provided, a block is assigned an
745implicit numbered label, using the next value from the same counter as used for
746unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
747entry block does not have an explicit label, it will be assigned label "%0",
748then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000749
750The first basic block in a function is special in two ways: it is
751immediately executed on entrance to the function, and it is not allowed
752to have predecessor basic blocks (i.e. there can not be any branches to
753the entry block of a function). Because the block can have no
754predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
755
756LLVM allows an explicit section to be specified for functions. If the
757target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000758Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000759
760An explicit alignment may be specified for a function. If not present,
761or if the alignment is set to zero, the alignment of the function is set
762by the target to whatever it feels convenient. If an explicit alignment
763is specified, the function is forced to have at least that much
764alignment. All alignments must be a power of 2.
765
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000766If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000767be significant and two identical functions can be merged.
768
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000769If the ``local_unnamed_addr`` attribute is given, the address is known to
770not be significant within the module.
771
Sean Silvab084af42012-12-07 10:36:55 +0000772Syntax::
773
Sean Fertilec70d28b2017-10-26 15:00:26 +0000774 define [linkage] [PreemptionSpecifier] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000775 [cconv] [ret attrs]
776 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000777 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
778 [comdat [($name)]] [align N] [gc] [prefix Constant]
779 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000780
Sean Silva706fba52015-08-06 22:56:24 +0000781The argument list is a comma separated sequence of arguments where each
782argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000783
784Syntax::
785
786 <type> [parameter Attrs] [name]
787
788
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000789.. _langref_aliases:
790
Sean Silvab084af42012-12-07 10:36:55 +0000791Aliases
792-------
793
Rafael Espindola64c1e182014-06-03 02:41:57 +0000794Aliases, unlike function or variables, don't create any new data. They
795are just a new symbol and metadata for an existing position.
796
797Aliases have a name and an aliasee that is either a global value or a
798constant expression.
799
Nico Rieck7157bb72014-01-14 15:22:47 +0000800Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Sean Fertilec70d28b2017-10-26 15:00:26 +0000801:ref:`runtime preemption specifier <runtime_preemption_model>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000802:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
803<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000804
805Syntax::
806
Sean Fertilec70d28b2017-10-26 15:00:26 +0000807 @<Name> = [Linkage] [PreemptionSpecifier] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000808
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000809The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000810``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000811might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000812
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000813Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000814the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
815to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000816
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000817If the ``local_unnamed_addr`` attribute is given, the address is known to
818not be significant within the module.
819
Rafael Espindola64c1e182014-06-03 02:41:57 +0000820Since aliases are only a second name, some restrictions apply, of which
821some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000822
Rafael Espindola64c1e182014-06-03 02:41:57 +0000823* The expression defining the aliasee must be computable at assembly
824 time. Since it is just a name, no relocations can be used.
825
826* No alias in the expression can be weak as the possibility of the
827 intermediate alias being overridden cannot be represented in an
828 object file.
829
830* No global value in the expression can be a declaration, since that
831 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000832
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000833.. _langref_ifunc:
834
835IFuncs
836-------
837
838IFuncs, like as aliases, don't create any new data or func. They are just a new
839symbol that dynamic linker resolves at runtime by calling a resolver function.
840
841IFuncs have a name and a resolver that is a function called by dynamic linker
842that returns address of another function associated with the name.
843
844IFunc may have an optional :ref:`linkage type <linkage>` and an optional
845:ref:`visibility style <visibility>`.
846
847Syntax::
848
849 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
850
851
David Majnemerdad0a642014-06-27 18:19:56 +0000852.. _langref_comdats:
853
854Comdats
855-------
856
857Comdat IR provides access to COFF and ELF object file COMDAT functionality.
858
Sean Silvaa1190322015-08-06 22:56:48 +0000859Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000860specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000861that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000862aliasee computes to, if any.
863
864Comdats have a selection kind to provide input on how the linker should
865choose between keys in two different object files.
866
867Syntax::
868
869 $<Name> = comdat SelectionKind
870
871The selection kind must be one of the following:
872
873``any``
874 The linker may choose any COMDAT key, the choice is arbitrary.
875``exactmatch``
876 The linker may choose any COMDAT key but the sections must contain the
877 same data.
878``largest``
879 The linker will choose the section containing the largest COMDAT key.
880``noduplicates``
881 The linker requires that only section with this COMDAT key exist.
882``samesize``
883 The linker may choose any COMDAT key but the sections must contain the
884 same amount of data.
885
Sam Cleggea7cace2018-01-09 23:43:14 +0000886Note that the Mach-O platform doesn't support COMDATs, and ELF and WebAssembly
887only support ``any`` as a selection kind.
David Majnemerdad0a642014-06-27 18:19:56 +0000888
889Here is an example of a COMDAT group where a function will only be selected if
890the COMDAT key's section is the largest:
891
Renato Golin124f2592016-07-20 12:16:38 +0000892.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000893
894 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000895 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000896
Rafael Espindola83a362c2015-01-06 22:55:16 +0000897 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000898 ret void
899 }
900
Rafael Espindola83a362c2015-01-06 22:55:16 +0000901As a syntactic sugar the ``$name`` can be omitted if the name is the same as
902the global name:
903
Renato Golin124f2592016-07-20 12:16:38 +0000904.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000905
906 $foo = comdat any
907 @foo = global i32 2, comdat
908
909
David Majnemerdad0a642014-06-27 18:19:56 +0000910In a COFF object file, this will create a COMDAT section with selection kind
911``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
912and another COMDAT section with selection kind
913``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000914section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000915
916There are some restrictions on the properties of the global object.
917It, or an alias to it, must have the same name as the COMDAT group when
918targeting COFF.
919The contents and size of this object may be used during link-time to determine
920which COMDAT groups get selected depending on the selection kind.
921Because the name of the object must match the name of the COMDAT group, the
922linkage of the global object must not be local; local symbols can get renamed
923if a collision occurs in the symbol table.
924
925The combined use of COMDATS and section attributes may yield surprising results.
926For example:
927
Renato Golin124f2592016-07-20 12:16:38 +0000928.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000929
930 $foo = comdat any
931 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000932 @g1 = global i32 42, section "sec", comdat($foo)
933 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000934
935From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000936with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000937COMDAT groups and COMDATs, at the object file level, are represented by
938sections.
939
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000940Note that certain IR constructs like global variables and functions may
941create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000942COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000943in individual sections (e.g. when `-data-sections` or `-function-sections`
944is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000945
Sean Silvab084af42012-12-07 10:36:55 +0000946.. _namedmetadatastructure:
947
948Named Metadata
949--------------
950
951Named metadata is a collection of metadata. :ref:`Metadata
952nodes <metadata>` (but not metadata strings) are the only valid
953operands for a named metadata.
954
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000955#. Named metadata are represented as a string of characters with the
956 metadata prefix. The rules for metadata names are the same as for
957 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
958 are still valid, which allows any character to be part of a name.
959
Sean Silvab084af42012-12-07 10:36:55 +0000960Syntax::
961
962 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000963 !0 = !{!"zero"}
964 !1 = !{!"one"}
965 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000966 ; A named metadata.
967 !name = !{!0, !1, !2}
968
969.. _paramattrs:
970
971Parameter Attributes
972--------------------
973
974The return type and each parameter of a function type may have a set of
975*parameter attributes* associated with them. Parameter attributes are
976used to communicate additional information about the result or
977parameters of a function. Parameter attributes are considered to be part
978of the function, not of the function type, so functions with different
979parameter attributes can have the same function type.
980
981Parameter attributes are simple keywords that follow the type specified.
982If multiple parameter attributes are needed, they are space separated.
983For example:
984
985.. code-block:: llvm
986
987 declare i32 @printf(i8* noalias nocapture, ...)
988 declare i32 @atoi(i8 zeroext)
989 declare signext i8 @returns_signed_char()
990
991Note that any attributes for the function result (``nounwind``,
992``readonly``) come immediately after the argument list.
993
994Currently, only the following parameter attributes are defined:
995
996``zeroext``
997 This indicates to the code generator that the parameter or return
998 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000999 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +00001000``signext``
1001 This indicates to the code generator that the parameter or return
1002 value should be sign-extended to the extent required by the target's
1003 ABI (which is usually 32-bits) by the caller (for a parameter) or
1004 the callee (for a return value).
1005``inreg``
1006 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +00001007 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +00001008 a function call or return (usually, by putting it in a register as
1009 opposed to memory, though some targets use it to distinguish between
1010 two different kinds of registers). Use of this attribute is
1011 target-specific.
1012``byval``
1013 This indicates that the pointer parameter should really be passed by
1014 value to the function. The attribute implies that a hidden copy of
1015 the pointee is made between the caller and the callee, so the callee
1016 is unable to modify the value in the caller. This attribute is only
1017 valid on LLVM pointer arguments. It is generally used to pass
1018 structs and arrays by value, but is also valid on pointers to
1019 scalars. The copy is considered to belong to the caller not the
1020 callee (for example, ``readonly`` functions should not write to
1021 ``byval`` parameters). This is not a valid attribute for return
1022 values.
1023
1024 The byval attribute also supports specifying an alignment with the
1025 align attribute. It indicates the alignment of the stack slot to
1026 form and the known alignment of the pointer specified to the call
1027 site. If the alignment is not specified, then the code generator
1028 makes a target-specific assumption.
1029
Reid Klecknera534a382013-12-19 02:14:12 +00001030.. _attr_inalloca:
1031
1032``inalloca``
1033
Reid Kleckner60d3a832014-01-16 22:59:24 +00001034 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001035 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001036 be a pointer to stack memory produced by an ``alloca`` instruction.
1037 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001038 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001039 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001040
Reid Kleckner436c42e2014-01-17 23:58:17 +00001041 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001042 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001043 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001044 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001045 ``inalloca`` attribute also disables LLVM's implicit lowering of
1046 large aggregate return values, which means that frontend authors
1047 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001048
Reid Kleckner60d3a832014-01-16 22:59:24 +00001049 When the call site is reached, the argument allocation must have
1050 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001051 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001052 space after an argument allocation and before its call site, but it
1053 must be cleared off with :ref:`llvm.stackrestore
1054 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001055
1056 See :doc:`InAlloca` for more information on how to use this
1057 attribute.
1058
Sean Silvab084af42012-12-07 10:36:55 +00001059``sret``
1060 This indicates that the pointer parameter specifies the address of a
1061 structure that is the return value of the function in the source
1062 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001063 loads and stores to the structure may be assumed by the callee not
1064 to trap and to be properly aligned. This is not a valid attribute
1065 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001066
Daniel Neilson1e687242018-01-19 17:13:12 +00001067.. _attr_align:
1068
Hal Finkelccc70902014-07-22 16:58:55 +00001069``align <n>``
1070 This indicates that the pointer value may be assumed by the optimizer to
1071 have the specified alignment.
1072
1073 Note that this attribute has additional semantics when combined with the
1074 ``byval`` attribute.
1075
Sean Silva1703e702014-04-08 21:06:22 +00001076.. _noalias:
1077
Sean Silvab084af42012-12-07 10:36:55 +00001078``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001079 This indicates that objects accessed via pointer values
1080 :ref:`based <pointeraliasing>` on the argument or return value are not also
1081 accessed, during the execution of the function, via pointer values not
1082 *based* on the argument or return value. The attribute on a return value
1083 also has additional semantics described below. The caller shares the
1084 responsibility with the callee for ensuring that these requirements are met.
1085 For further details, please see the discussion of the NoAlias response in
1086 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001087
1088 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001089 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001090
1091 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001092 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1093 attribute on return values are stronger than the semantics of the attribute
1094 when used on function arguments. On function return values, the ``noalias``
1095 attribute indicates that the function acts like a system memory allocation
1096 function, returning a pointer to allocated storage disjoint from the
1097 storage for any other object accessible to the caller.
1098
Sean Silvab084af42012-12-07 10:36:55 +00001099``nocapture``
1100 This indicates that the callee does not make any copies of the
1101 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001102 attribute for return values. Addresses used in volatile operations
1103 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001104
1105.. _nest:
1106
1107``nest``
1108 This indicates that the pointer parameter can be excised using the
1109 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001110 attribute for return values and can only be applied to one parameter.
1111
1112``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001113 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001114 value. This is a hint to the optimizer and code generator used when
1115 generating the caller, allowing value propagation, tail call optimization,
1116 and omission of register saves and restores in some cases; it is not
1117 checked or enforced when generating the callee. The parameter and the
1118 function return type must be valid operands for the
1119 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1120 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001121
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001122``nonnull``
1123 This indicates that the parameter or return pointer is not null. This
1124 attribute may only be applied to pointer typed parameters. This is not
1125 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001126 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001127 is non-null.
1128
Hal Finkelb0407ba2014-07-18 15:51:28 +00001129``dereferenceable(<n>)``
1130 This indicates that the parameter or return pointer is dereferenceable. This
1131 attribute may only be applied to pointer typed parameters. A pointer that
1132 is dereferenceable can be loaded from speculatively without a risk of
1133 trapping. The number of bytes known to be dereferenceable must be provided
1134 in parentheses. It is legal for the number of bytes to be less than the
1135 size of the pointee type. The ``nonnull`` attribute does not imply
1136 dereferenceability (consider a pointer to one element past the end of an
1137 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1138 ``addrspace(0)`` (which is the default address space).
1139
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001140``dereferenceable_or_null(<n>)``
1141 This indicates that the parameter or return value isn't both
1142 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001143 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001144 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1145 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1146 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1147 and in other address spaces ``dereferenceable_or_null(<n>)``
1148 implies that a pointer is at least one of ``dereferenceable(<n>)``
1149 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001150 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001151 pointer typed parameters.
1152
Manman Renf46262e2016-03-29 17:37:21 +00001153``swiftself``
1154 This indicates that the parameter is the self/context parameter. This is not
1155 a valid attribute for return values and can only be applied to one
1156 parameter.
1157
Manman Ren9bfd0d02016-04-01 21:41:15 +00001158``swifterror``
1159 This attribute is motivated to model and optimize Swift error handling. It
1160 can be applied to a parameter with pointer to pointer type or a
1161 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001162 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1163 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1164 the parameter or the alloca) can only be loaded and stored from, or used as
1165 a ``swifterror`` argument. This is not a valid attribute for return values
1166 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001167
1168 These constraints allow the calling convention to optimize access to
1169 ``swifterror`` variables by associating them with a specific register at
1170 call boundaries rather than placing them in memory. Since this does change
1171 the calling convention, a function which uses the ``swifterror`` attribute
1172 on a parameter is not ABI-compatible with one which does not.
1173
1174 These constraints also allow LLVM to assume that a ``swifterror`` argument
1175 does not alias any other memory visible within a function and that a
1176 ``swifterror`` alloca passed as an argument does not escape.
1177
Sean Silvab084af42012-12-07 10:36:55 +00001178.. _gc:
1179
Philip Reamesf80bbff2015-02-25 23:45:20 +00001180Garbage Collector Strategy Names
1181--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001182
Philip Reamesf80bbff2015-02-25 23:45:20 +00001183Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001184string:
1185
1186.. code-block:: llvm
1187
1188 define void @f() gc "name" { ... }
1189
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001190The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001191<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001192strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001193named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001194garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001195which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001196
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001197.. _prefixdata:
1198
1199Prefix Data
1200-----------
1201
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001202Prefix data is data associated with a function which the code
1203generator will emit immediately before the function's entrypoint.
1204The purpose of this feature is to allow frontends to associate
1205language-specific runtime metadata with specific functions and make it
1206available through the function pointer while still allowing the
1207function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001208
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001209To access the data for a given function, a program may bitcast the
1210function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001211index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001212the prefix data. For instance, take the example of a function annotated
1213with a single ``i32``,
1214
1215.. code-block:: llvm
1216
1217 define void @f() prefix i32 123 { ... }
1218
1219The prefix data can be referenced as,
1220
1221.. code-block:: llvm
1222
David Blaikie16a97eb2015-03-04 22:02:58 +00001223 %0 = bitcast void* () @f to i32*
1224 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001225 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001226
1227Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001228of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001229beginning of the prefix data is aligned. This means that if the size
1230of the prefix data is not a multiple of the alignment size, the
1231function's entrypoint will not be aligned. If alignment of the
1232function's entrypoint is desired, padding must be added to the prefix
1233data.
1234
Sean Silvaa1190322015-08-06 22:56:48 +00001235A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001236to the ``available_externally`` linkage in that the data may be used by the
1237optimizers but will not be emitted in the object file.
1238
1239.. _prologuedata:
1240
1241Prologue Data
1242-------------
1243
1244The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1245be inserted prior to the function body. This can be used for enabling
1246function hot-patching and instrumentation.
1247
1248To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001249have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001250bytes which decode to a sequence of machine instructions, valid for the
1251module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001252the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001253the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001254definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001255makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001256
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001257A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001258which encodes the ``nop`` instruction:
1259
Renato Golin124f2592016-07-20 12:16:38 +00001260.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001261
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001262 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001263
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001264Generally prologue data can be formed by encoding a relative branch instruction
1265which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001266x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1267
Renato Golin124f2592016-07-20 12:16:38 +00001268.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001269
1270 %0 = type <{ i8, i8, i8* }>
1271
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001272 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001273
Sean Silvaa1190322015-08-06 22:56:48 +00001274A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001275to the ``available_externally`` linkage in that the data may be used by the
1276optimizers but will not be emitted in the object file.
1277
David Majnemer7fddecc2015-06-17 20:52:32 +00001278.. _personalityfn:
1279
1280Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001281--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001282
1283The ``personality`` attribute permits functions to specify what function
1284to use for exception handling.
1285
Bill Wendling63b88192013-02-06 06:52:58 +00001286.. _attrgrp:
1287
1288Attribute Groups
1289----------------
1290
1291Attribute groups are groups of attributes that are referenced by objects within
1292the IR. They are important for keeping ``.ll`` files readable, because a lot of
1293functions will use the same set of attributes. In the degenerative case of a
1294``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1295group will capture the important command line flags used to build that file.
1296
1297An attribute group is a module-level object. To use an attribute group, an
1298object references the attribute group's ID (e.g. ``#37``). An object may refer
1299to more than one attribute group. In that situation, the attributes from the
1300different groups are merged.
1301
1302Here is an example of attribute groups for a function that should always be
1303inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1304
1305.. code-block:: llvm
1306
1307 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001308 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001309
1310 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001311 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001312
1313 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1314 define void @f() #0 #1 { ... }
1315
Sean Silvab084af42012-12-07 10:36:55 +00001316.. _fnattrs:
1317
1318Function Attributes
1319-------------------
1320
1321Function attributes are set to communicate additional information about
1322a function. Function attributes are considered to be part of the
1323function, not of the function type, so functions with different function
1324attributes can have the same function type.
1325
1326Function attributes are simple keywords that follow the type specified.
1327If multiple attributes are needed, they are space separated. For
1328example:
1329
1330.. code-block:: llvm
1331
1332 define void @f() noinline { ... }
1333 define void @f() alwaysinline { ... }
1334 define void @f() alwaysinline optsize { ... }
1335 define void @f() optsize { ... }
1336
Sean Silvab084af42012-12-07 10:36:55 +00001337``alignstack(<n>)``
1338 This attribute indicates that, when emitting the prologue and
1339 epilogue, the backend should forcibly align the stack pointer.
1340 Specify the desired alignment, which must be a power of two, in
1341 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001342``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1343 This attribute indicates that the annotated function will always return at
1344 least a given number of bytes (or null). Its arguments are zero-indexed
1345 parameter numbers; if one argument is provided, then it's assumed that at
1346 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1347 returned pointer. If two are provided, then it's assumed that
1348 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1349 available. The referenced parameters must be integer types. No assumptions
1350 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001351``alwaysinline``
1352 This attribute indicates that the inliner should attempt to inline
1353 this function into callers whenever possible, ignoring any active
1354 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001355``builtin``
1356 This indicates that the callee function at a call site should be
1357 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001358 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001359 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001360 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001361``cold``
1362 This attribute indicates that this function is rarely called. When
1363 computing edge weights, basic blocks post-dominated by a cold
1364 function call are also considered to be cold; and, thus, given low
1365 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001366``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001367 In some parallel execution models, there exist operations that cannot be
1368 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001369 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001370
Justin Lebar58535b12016-02-17 17:46:41 +00001371 The ``convergent`` attribute may appear on functions or call/invoke
1372 instructions. When it appears on a function, it indicates that calls to
1373 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001374 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001375 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001376 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001377
Justin Lebar58535b12016-02-17 17:46:41 +00001378 When it appears on a call/invoke, the ``convergent`` attribute indicates
1379 that we should treat the call as though we're calling a convergent
1380 function. This is particularly useful on indirect calls; without this we
1381 may treat such calls as though the target is non-convergent.
1382
1383 The optimizer may remove the ``convergent`` attribute on functions when it
1384 can prove that the function does not execute any convergent operations.
1385 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1386 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001387``inaccessiblememonly``
1388 This attribute indicates that the function may only access memory that
1389 is not accessible by the module being compiled. This is a weaker form
1390 of ``readnone``.
1391``inaccessiblemem_or_argmemonly``
1392 This attribute indicates that the function may only access memory that is
1393 either not accessible by the module being compiled, or is pointed to
1394 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001395``inlinehint``
1396 This attribute indicates that the source code contained a hint that
1397 inlining this function is desirable (such as the "inline" keyword in
1398 C/C++). It is just a hint; it imposes no requirements on the
1399 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001400``jumptable``
1401 This attribute indicates that the function should be added to a
1402 jump-instruction table at code-generation time, and that all address-taken
1403 references to this function should be replaced with a reference to the
1404 appropriate jump-instruction-table function pointer. Note that this creates
1405 a new pointer for the original function, which means that code that depends
1406 on function-pointer identity can break. So, any function annotated with
1407 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001408``minsize``
1409 This attribute suggests that optimization passes and code generator
1410 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001411 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001412 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001413``naked``
1414 This attribute disables prologue / epilogue emission for the
1415 function. This can have very system-specific consequences.
Sumanth Gundapaneni6af104e2017-07-28 22:26:22 +00001416``no-jump-tables``
1417 When this attribute is set to true, the jump tables and lookup tables that
1418 can be generated from a switch case lowering are disabled.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001419``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001420 This indicates that the callee function at a call site is not recognized as
1421 a built-in function. LLVM will retain the original call and not replace it
1422 with equivalent code based on the semantics of the built-in function, unless
1423 the call site uses the ``builtin`` attribute. This is valid at call sites
1424 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001425``noduplicate``
1426 This attribute indicates that calls to the function cannot be
1427 duplicated. A call to a ``noduplicate`` function may be moved
1428 within its parent function, but may not be duplicated within
1429 its parent function.
1430
1431 A function containing a ``noduplicate`` call may still
1432 be an inlining candidate, provided that the call is not
1433 duplicated by inlining. That implies that the function has
1434 internal linkage and only has one call site, so the original
1435 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001436``noimplicitfloat``
1437 This attributes disables implicit floating point instructions.
1438``noinline``
1439 This attribute indicates that the inliner should never inline this
1440 function in any situation. This attribute may not be used together
1441 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001442``nonlazybind``
1443 This attribute suppresses lazy symbol binding for the function. This
1444 may make calls to the function faster, at the cost of extra program
1445 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001446``noredzone``
1447 This attribute indicates that the code generator should not use a
1448 red zone, even if the target-specific ABI normally permits it.
1449``noreturn``
1450 This function attribute indicates that the function never returns
1451 normally. This produces undefined behavior at runtime if the
1452 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001453``norecurse``
1454 This function attribute indicates that the function does not call itself
1455 either directly or indirectly down any possible call path. This produces
1456 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001457``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001458 This function attribute indicates that the function never raises an
1459 exception. If the function does raise an exception, its runtime
1460 behavior is undefined. However, functions marked nounwind may still
1461 trap or generate asynchronous exceptions. Exception handling schemes
1462 that are recognized by LLVM to handle asynchronous exceptions, such
1463 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001464``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001465 This function attribute indicates that most optimization passes will skip
1466 this function, with the exception of interprocedural optimization passes.
1467 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001468 This attribute cannot be used together with the ``alwaysinline``
1469 attribute; this attribute is also incompatible
1470 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001471
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001472 This attribute requires the ``noinline`` attribute to be specified on
1473 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001474 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001475 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001476``optsize``
1477 This attribute suggests that optimization passes and code generator
1478 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001479 and otherwise do optimizations specifically to reduce code size as
1480 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001481``"patchable-function"``
1482 This attribute tells the code generator that the code
1483 generated for this function needs to follow certain conventions that
1484 make it possible for a runtime function to patch over it later.
1485 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001486 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001487
1488 * ``"prologue-short-redirect"`` - This style of patchable
1489 function is intended to support patching a function prologue to
1490 redirect control away from the function in a thread safe
1491 manner. It guarantees that the first instruction of the
1492 function will be large enough to accommodate a short jump
1493 instruction, and will be sufficiently aligned to allow being
1494 fully changed via an atomic compare-and-swap instruction.
1495 While the first requirement can be satisfied by inserting large
1496 enough NOP, LLVM can and will try to re-purpose an existing
1497 instruction (i.e. one that would have to be emitted anyway) as
1498 the patchable instruction larger than a short jump.
1499
1500 ``"prologue-short-redirect"`` is currently only supported on
1501 x86-64.
1502
1503 This attribute by itself does not imply restrictions on
1504 inter-procedural optimizations. All of the semantic effects the
1505 patching may have to be separately conveyed via the linkage type.
whitequarked54b4a2017-06-21 18:46:50 +00001506``"probe-stack"``
1507 This attribute indicates that the function will trigger a guard region
1508 in the end of the stack. It ensures that accesses to the stack must be
1509 no further apart than the size of the guard region to a previous
1510 access of the stack. It takes one required string value, the name of
1511 the stack probing function that will be called.
1512
1513 If a function that has a ``"probe-stack"`` attribute is inlined into
1514 a function with another ``"probe-stack"`` attribute, the resulting
1515 function has the ``"probe-stack"`` attribute of the caller. If a
1516 function that has a ``"probe-stack"`` attribute is inlined into a
1517 function that has no ``"probe-stack"`` attribute at all, the resulting
1518 function has the ``"probe-stack"`` attribute of the callee.
Sean Silvab084af42012-12-07 10:36:55 +00001519``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001520 On a function, this attribute indicates that the function computes its
1521 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001522 without dereferencing any pointer arguments or otherwise accessing
1523 any mutable state (e.g. memory, control registers, etc) visible to
1524 caller functions. It does not write through any pointer arguments
1525 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das5be2e842017-02-13 23:19:07 +00001526 to callers. This means while it cannot unwind exceptions by calling
1527 the ``C++`` exception throwing methods (since they write to memory), there may
1528 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1529 visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001530
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001531 On an argument, this attribute indicates that the function does not
1532 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001533 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001534``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001535 On a function, this attribute indicates that the function does not write
1536 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001537 modify any state (e.g. memory, control registers, etc) visible to
1538 caller functions. It may dereference pointer arguments and read
1539 state that may be set in the caller. A readonly function always
1540 returns the same value (or unwinds an exception identically) when
Sanjoy Das5be2e842017-02-13 23:19:07 +00001541 called with the same set of arguments and global state. This means while it
1542 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1543 (since they write to memory), there may be non-``C++`` mechanisms that throw
1544 exceptions without writing to LLVM visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001545
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001546 On an argument, this attribute indicates that the function does not write
1547 through this pointer argument, even though it may write to the memory that
1548 the pointer points to.
whitequark08b20352017-06-22 23:22:36 +00001549``"stack-probe-size"``
1550 This attribute controls the behavior of stack probes: either
1551 the ``"probe-stack"`` attribute, or ABI-required stack probes, if any.
1552 It defines the size of the guard region. It ensures that if the function
1553 may use more stack space than the size of the guard region, stack probing
1554 sequence will be emitted. It takes one required integer value, which
1555 is 4096 by default.
1556
1557 If a function that has a ``"stack-probe-size"`` attribute is inlined into
1558 a function with another ``"stack-probe-size"`` attribute, the resulting
1559 function has the ``"stack-probe-size"`` attribute that has the lower
1560 numeric value. If a function that has a ``"stack-probe-size"`` attribute is
1561 inlined into a function that has no ``"stack-probe-size"`` attribute
1562 at all, the resulting function has the ``"stack-probe-size"`` attribute
1563 of the callee.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001564``writeonly``
1565 On a function, this attribute indicates that the function may write to but
1566 does not read from memory.
1567
1568 On an argument, this attribute indicates that the function may write to but
1569 does not read through this pointer argument (even though it may read from
1570 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001571``argmemonly``
1572 This attribute indicates that the only memory accesses inside function are
1573 loads and stores from objects pointed to by its pointer-typed arguments,
1574 with arbitrary offsets. Or in other words, all memory operations in the
1575 function can refer to memory only using pointers based on its function
1576 arguments.
1577 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1578 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001579``returns_twice``
1580 This attribute indicates that this function can return twice. The C
1581 ``setjmp`` is an example of such a function. The compiler disables
1582 some optimizations (like tail calls) in the caller of these
1583 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001584``safestack``
1585 This attribute indicates that
1586 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1587 protection is enabled for this function.
1588
1589 If a function that has a ``safestack`` attribute is inlined into a
1590 function that doesn't have a ``safestack`` attribute or which has an
1591 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1592 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001593``sanitize_address``
1594 This attribute indicates that AddressSanitizer checks
1595 (dynamic address safety analysis) are enabled for this function.
1596``sanitize_memory``
1597 This attribute indicates that MemorySanitizer checks (dynamic detection
1598 of accesses to uninitialized memory) are enabled for this function.
1599``sanitize_thread``
1600 This attribute indicates that ThreadSanitizer checks
1601 (dynamic thread safety analysis) are enabled for this function.
Evgeniy Stepanovc667c1f2017-12-09 00:21:41 +00001602``sanitize_hwaddress``
1603 This attribute indicates that HWAddressSanitizer checks
1604 (dynamic address safety analysis based on tagged pointers) are enabled for
1605 this function.
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001606``speculatable``
1607 This function attribute indicates that the function does not have any
1608 effects besides calculating its result and does not have undefined behavior.
1609 Note that ``speculatable`` is not enough to conclude that along any
Xin Tongc7180202017-05-02 23:24:12 +00001610 particular execution path the number of calls to this function will not be
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001611 externally observable. This attribute is only valid on functions
1612 and declarations, not on individual call sites. If a function is
1613 incorrectly marked as speculatable and really does exhibit
1614 undefined behavior, the undefined behavior may be observed even
1615 if the call site is dead code.
1616
Sean Silvab084af42012-12-07 10:36:55 +00001617``ssp``
1618 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001619 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001620 placed on the stack before the local variables that's checked upon
1621 return from the function to see if it has been overwritten. A
1622 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001623 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001624
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001625 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1626 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1627 - Calls to alloca() with variable sizes or constant sizes greater than
1628 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001629
Josh Magee24c7f062014-02-01 01:36:16 +00001630 Variables that are identified as requiring a protector will be arranged
1631 on the stack such that they are adjacent to the stack protector guard.
1632
Sean Silvab084af42012-12-07 10:36:55 +00001633 If a function that has an ``ssp`` attribute is inlined into a
1634 function that doesn't have an ``ssp`` attribute, then the resulting
1635 function will have an ``ssp`` attribute.
1636``sspreq``
1637 This attribute indicates that the function should *always* emit a
1638 stack smashing protector. This overrides the ``ssp`` function
1639 attribute.
1640
Josh Magee24c7f062014-02-01 01:36:16 +00001641 Variables that are identified as requiring a protector will be arranged
1642 on the stack such that they are adjacent to the stack protector guard.
1643 The specific layout rules are:
1644
1645 #. Large arrays and structures containing large arrays
1646 (``>= ssp-buffer-size``) are closest to the stack protector.
1647 #. Small arrays and structures containing small arrays
1648 (``< ssp-buffer-size``) are 2nd closest to the protector.
1649 #. Variables that have had their address taken are 3rd closest to the
1650 protector.
1651
Sean Silvab084af42012-12-07 10:36:55 +00001652 If a function that has an ``sspreq`` attribute is inlined into a
1653 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001654 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1655 an ``sspreq`` attribute.
1656``sspstrong``
1657 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001658 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001659 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001660 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001661
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001662 - Arrays of any size and type
1663 - Aggregates containing an array of any size and type.
1664 - Calls to alloca().
1665 - Local variables that have had their address taken.
1666
Josh Magee24c7f062014-02-01 01:36:16 +00001667 Variables that are identified as requiring a protector will be arranged
1668 on the stack such that they are adjacent to the stack protector guard.
1669 The specific layout rules are:
1670
1671 #. Large arrays and structures containing large arrays
1672 (``>= ssp-buffer-size``) are closest to the stack protector.
1673 #. Small arrays and structures containing small arrays
1674 (``< ssp-buffer-size``) are 2nd closest to the protector.
1675 #. Variables that have had their address taken are 3rd closest to the
1676 protector.
1677
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001678 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001679
1680 If a function that has an ``sspstrong`` attribute is inlined into a
1681 function that doesn't have an ``sspstrong`` attribute, then the
1682 resulting function will have an ``sspstrong`` attribute.
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001683``strictfp``
1684 This attribute indicates that the function was called from a scope that
1685 requires strict floating point semantics. LLVM will not attempt any
1686 optimizations that require assumptions about the floating point rounding
1687 mode or that might alter the state of floating point status flags that
1688 might otherwise be set or cleared by calling this function.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001689``"thunk"``
1690 This attribute indicates that the function will delegate to some other
1691 function with a tail call. The prototype of a thunk should not be used for
1692 optimization purposes. The caller is expected to cast the thunk prototype to
1693 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001694``uwtable``
1695 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001696 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001697 show that no exceptions passes by it. This is normally the case for
1698 the ELF x86-64 abi, but it can be disabled for some compilation
1699 units.
Sean Silvab084af42012-12-07 10:36:55 +00001700
Javed Absarf3d79042017-05-11 12:28:08 +00001701.. _glattrs:
1702
1703Global Attributes
1704-----------------
1705
1706Attributes may be set to communicate additional information about a global variable.
1707Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
1708are grouped into a single :ref:`attribute group <attrgrp>`.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001709
1710.. _opbundles:
1711
1712Operand Bundles
1713---------------
1714
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001715Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001716with certain LLVM instructions (currently only ``call`` s and
1717``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001718incorrect and will change program semantics.
1719
1720Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001721
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001722 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001723 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1724 bundle operand ::= SSA value
1725 tag ::= string constant
1726
1727Operand bundles are **not** part of a function's signature, and a
1728given function may be called from multiple places with different kinds
1729of operand bundles. This reflects the fact that the operand bundles
1730are conceptually a part of the ``call`` (or ``invoke``), not the
1731callee being dispatched to.
1732
1733Operand bundles are a generic mechanism intended to support
1734runtime-introspection-like functionality for managed languages. While
1735the exact semantics of an operand bundle depend on the bundle tag,
1736there are certain limitations to how much the presence of an operand
1737bundle can influence the semantics of a program. These restrictions
1738are described as the semantics of an "unknown" operand bundle. As
1739long as the behavior of an operand bundle is describable within these
1740restrictions, LLVM does not need to have special knowledge of the
1741operand bundle to not miscompile programs containing it.
1742
David Majnemer34cacb42015-10-22 01:46:38 +00001743- The bundle operands for an unknown operand bundle escape in unknown
1744 ways before control is transferred to the callee or invokee.
1745- Calls and invokes with operand bundles have unknown read / write
1746 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001747 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001748 callsite specific attributes.
1749- An operand bundle at a call site cannot change the implementation
1750 of the called function. Inter-procedural optimizations work as
1751 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001752
Sanjoy Dascdafd842015-11-11 21:38:02 +00001753More specific types of operand bundles are described below.
1754
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001755.. _deopt_opbundles:
1756
Sanjoy Dascdafd842015-11-11 21:38:02 +00001757Deoptimization Operand Bundles
1758^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1759
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001760Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001761operand bundle tag. These operand bundles represent an alternate
1762"safe" continuation for the call site they're attached to, and can be
1763used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001764specified call site. There can be at most one ``"deopt"`` operand
1765bundle attached to a call site. Exact details of deoptimization is
1766out of scope for the language reference, but it usually involves
1767rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001768
1769From the compiler's perspective, deoptimization operand bundles make
1770the call sites they're attached to at least ``readonly``. They read
1771through all of their pointer typed operands (even if they're not
1772otherwise escaped) and the entire visible heap. Deoptimization
1773operand bundles do not capture their operands except during
1774deoptimization, in which case control will not be returned to the
1775compiled frame.
1776
Sanjoy Das2d161452015-11-18 06:23:38 +00001777The inliner knows how to inline through calls that have deoptimization
1778operand bundles. Just like inlining through a normal call site
1779involves composing the normal and exceptional continuations, inlining
1780through a call site with a deoptimization operand bundle needs to
1781appropriately compose the "safe" deoptimization continuation. The
1782inliner does this by prepending the parent's deoptimization
1783continuation to every deoptimization continuation in the inlined body.
1784E.g. inlining ``@f`` into ``@g`` in the following example
1785
1786.. code-block:: llvm
1787
1788 define void @f() {
1789 call void @x() ;; no deopt state
1790 call void @y() [ "deopt"(i32 10) ]
1791 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1792 ret void
1793 }
1794
1795 define void @g() {
1796 call void @f() [ "deopt"(i32 20) ]
1797 ret void
1798 }
1799
1800will result in
1801
1802.. code-block:: llvm
1803
1804 define void @g() {
1805 call void @x() ;; still no deopt state
1806 call void @y() [ "deopt"(i32 20, i32 10) ]
1807 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1808 ret void
1809 }
1810
1811It is the frontend's responsibility to structure or encode the
1812deoptimization state in a way that syntactically prepending the
1813caller's deoptimization state to the callee's deoptimization state is
1814semantically equivalent to composing the caller's deoptimization
1815continuation after the callee's deoptimization continuation.
1816
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001817.. _ob_funclet:
1818
David Majnemer3bb88c02015-12-15 21:27:27 +00001819Funclet Operand Bundles
1820^^^^^^^^^^^^^^^^^^^^^^^
1821
1822Funclet operand bundles are characterized by the ``"funclet"``
1823operand bundle tag. These operand bundles indicate that a call site
1824is within a particular funclet. There can be at most one
1825``"funclet"`` operand bundle attached to a call site and it must have
1826exactly one bundle operand.
1827
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001828If any funclet EH pads have been "entered" but not "exited" (per the
1829`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1830it is undefined behavior to execute a ``call`` or ``invoke`` which:
1831
1832* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1833 intrinsic, or
1834* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1835 not-yet-exited funclet EH pad.
1836
1837Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1838executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1839
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001840GC Transition Operand Bundles
1841^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1842
1843GC transition operand bundles are characterized by the
1844``"gc-transition"`` operand bundle tag. These operand bundles mark a
1845call as a transition between a function with one GC strategy to a
1846function with a different GC strategy. If coordinating the transition
1847between GC strategies requires additional code generation at the call
1848site, these bundles may contain any values that are needed by the
1849generated code. For more details, see :ref:`GC Transitions
1850<gc_transition_args>`.
1851
Sean Silvab084af42012-12-07 10:36:55 +00001852.. _moduleasm:
1853
1854Module-Level Inline Assembly
1855----------------------------
1856
1857Modules may contain "module-level inline asm" blocks, which corresponds
1858to the GCC "file scope inline asm" blocks. These blocks are internally
1859concatenated by LLVM and treated as a single unit, but may be separated
1860in the ``.ll`` file if desired. The syntax is very simple:
1861
1862.. code-block:: llvm
1863
1864 module asm "inline asm code goes here"
1865 module asm "more can go here"
1866
1867The strings can contain any character by escaping non-printable
1868characters. The escape sequence used is simply "\\xx" where "xx" is the
1869two digit hex code for the number.
1870
James Y Knightbc832ed2015-07-08 18:08:36 +00001871Note that the assembly string *must* be parseable by LLVM's integrated assembler
1872(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001873
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001874.. _langref_datalayout:
1875
Sean Silvab084af42012-12-07 10:36:55 +00001876Data Layout
1877-----------
1878
1879A module may specify a target specific data layout string that specifies
1880how data is to be laid out in memory. The syntax for the data layout is
1881simply:
1882
1883.. code-block:: llvm
1884
1885 target datalayout = "layout specification"
1886
1887The *layout specification* consists of a list of specifications
1888separated by the minus sign character ('-'). Each specification starts
1889with a letter and may include other information after the letter to
1890define some aspect of the data layout. The specifications accepted are
1891as follows:
1892
1893``E``
1894 Specifies that the target lays out data in big-endian form. That is,
1895 the bits with the most significance have the lowest address
1896 location.
1897``e``
1898 Specifies that the target lays out data in little-endian form. That
1899 is, the bits with the least significance have the lowest address
1900 location.
1901``S<size>``
1902 Specifies the natural alignment of the stack in bits. Alignment
1903 promotion of stack variables is limited to the natural stack
1904 alignment to avoid dynamic stack realignment. The stack alignment
1905 must be a multiple of 8-bits. If omitted, the natural stack
1906 alignment defaults to "unspecified", which does not prevent any
1907 alignment promotions.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001908``A<address space>``
1909 Specifies the address space of objects created by '``alloca``'.
1910 Defaults to the default address space of 0.
Sean Silvab084af42012-12-07 10:36:55 +00001911``p[n]:<size>:<abi>:<pref>``
1912 This specifies the *size* of a pointer and its ``<abi>`` and
1913 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001914 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001915 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001916 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001917``i<size>:<abi>:<pref>``
1918 This specifies the alignment for an integer type of a given bit
1919 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1920``v<size>:<abi>:<pref>``
1921 This specifies the alignment for a vector type of a given bit
1922 ``<size>``.
1923``f<size>:<abi>:<pref>``
1924 This specifies the alignment for a floating point type of a given bit
1925 ``<size>``. Only values of ``<size>`` that are supported by the target
1926 will work. 32 (float) and 64 (double) are supported on all targets; 80
1927 or 128 (different flavors of long double) are also supported on some
1928 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001929``a:<abi>:<pref>``
1930 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001931``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001932 If present, specifies that llvm names are mangled in the output. The
1933 options are
1934
1935 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1936 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1937 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1938 symbols get a ``_`` prefix.
1939 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1940 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001941 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1942 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001943``n<size1>:<size2>:<size3>...``
1944 This specifies a set of native integer widths for the target CPU in
1945 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1946 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1947 this set are considered to support most general arithmetic operations
1948 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001949``ni:<address space0>:<address space1>:<address space2>...``
1950 This specifies pointer types with the specified address spaces
1951 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1952 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001953
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001954On every specification that takes a ``<abi>:<pref>``, specifying the
1955``<pref>`` alignment is optional. If omitted, the preceding ``:``
1956should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1957
Sean Silvab084af42012-12-07 10:36:55 +00001958When constructing the data layout for a given target, LLVM starts with a
1959default set of specifications which are then (possibly) overridden by
1960the specifications in the ``datalayout`` keyword. The default
1961specifications are given in this list:
1962
1963- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001964- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1965- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1966 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001967- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001968- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1969- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1970- ``i16:16:16`` - i16 is 16-bit aligned
1971- ``i32:32:32`` - i32 is 32-bit aligned
1972- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1973 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001974- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001975- ``f32:32:32`` - float is 32-bit aligned
1976- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001977- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001978- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1979- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001980- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001981
1982When LLVM is determining the alignment for a given type, it uses the
1983following rules:
1984
1985#. If the type sought is an exact match for one of the specifications,
1986 that specification is used.
1987#. If no match is found, and the type sought is an integer type, then
1988 the smallest integer type that is larger than the bitwidth of the
1989 sought type is used. If none of the specifications are larger than
1990 the bitwidth then the largest integer type is used. For example,
1991 given the default specifications above, the i7 type will use the
1992 alignment of i8 (next largest) while both i65 and i256 will use the
1993 alignment of i64 (largest specified).
1994#. If no match is found, and the type sought is a vector type, then the
1995 largest vector type that is smaller than the sought vector type will
1996 be used as a fall back. This happens because <128 x double> can be
1997 implemented in terms of 64 <2 x double>, for example.
1998
1999The function of the data layout string may not be what you expect.
2000Notably, this is not a specification from the frontend of what alignment
2001the code generator should use.
2002
2003Instead, if specified, the target data layout is required to match what
2004the ultimate *code generator* expects. This string is used by the
2005mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00002006what the ultimate code generator uses. There is no way to generate IR
2007that does not embed this target-specific detail into the IR. If you
2008don't specify the string, the default specifications will be used to
2009generate a Data Layout and the optimization phases will operate
2010accordingly and introduce target specificity into the IR with respect to
2011these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00002012
Bill Wendling5cc90842013-10-18 23:41:25 +00002013.. _langref_triple:
2014
2015Target Triple
2016-------------
2017
2018A module may specify a target triple string that describes the target
2019host. The syntax for the target triple is simply:
2020
2021.. code-block:: llvm
2022
2023 target triple = "x86_64-apple-macosx10.7.0"
2024
2025The *target triple* string consists of a series of identifiers delimited
2026by the minus sign character ('-'). The canonical forms are:
2027
2028::
2029
2030 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
2031 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
2032
2033This information is passed along to the backend so that it generates
2034code for the proper architecture. It's possible to override this on the
2035command line with the ``-mtriple`` command line option.
2036
Sean Silvab084af42012-12-07 10:36:55 +00002037.. _pointeraliasing:
2038
2039Pointer Aliasing Rules
2040----------------------
2041
2042Any memory access must be done through a pointer value associated with
2043an address range of the memory access, otherwise the behavior is
2044undefined. Pointer values are associated with address ranges according
2045to the following rules:
2046
2047- A pointer value is associated with the addresses associated with any
2048 value it is *based* on.
2049- An address of a global variable is associated with the address range
2050 of the variable's storage.
2051- The result value of an allocation instruction is associated with the
2052 address range of the allocated storage.
2053- A null pointer in the default address-space is associated with no
2054 address.
2055- An integer constant other than zero or a pointer value returned from
2056 a function not defined within LLVM may be associated with address
2057 ranges allocated through mechanisms other than those provided by
2058 LLVM. Such ranges shall not overlap with any ranges of addresses
2059 allocated by mechanisms provided by LLVM.
2060
2061A pointer value is *based* on another pointer value according to the
2062following rules:
2063
Sanjoy Das6d489492017-09-13 18:49:22 +00002064- A pointer value formed from a scalar ``getelementptr`` operation is *based* on
2065 the pointer-typed operand of the ``getelementptr``.
2066- The pointer in lane *l* of the result of a vector ``getelementptr`` operation
2067 is *based* on the pointer in lane *l* of the vector-of-pointers-typed operand
2068 of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00002069- The result value of a ``bitcast`` is *based* on the operand of the
2070 ``bitcast``.
2071- A pointer value formed by an ``inttoptr`` is *based* on all pointer
2072 values that contribute (directly or indirectly) to the computation of
2073 the pointer's value.
2074- The "*based* on" relationship is transitive.
2075
2076Note that this definition of *"based"* is intentionally similar to the
2077definition of *"based"* in C99, though it is slightly weaker.
2078
2079LLVM IR does not associate types with memory. The result type of a
2080``load`` merely indicates the size and alignment of the memory from
2081which to load, as well as the interpretation of the value. The first
2082operand type of a ``store`` similarly only indicates the size and
2083alignment of the store.
2084
2085Consequently, type-based alias analysis, aka TBAA, aka
2086``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2087:ref:`Metadata <metadata>` may be used to encode additional information
2088which specialized optimization passes may use to implement type-based
2089alias analysis.
2090
2091.. _volatile:
2092
2093Volatile Memory Accesses
2094------------------------
2095
2096Certain memory accesses, such as :ref:`load <i_load>`'s,
2097:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2098marked ``volatile``. The optimizers must not change the number of
2099volatile operations or change their order of execution relative to other
2100volatile operations. The optimizers *may* change the order of volatile
2101operations relative to non-volatile operations. This is not Java's
2102"volatile" and has no cross-thread synchronization behavior.
2103
Andrew Trick89fc5a62013-01-30 21:19:35 +00002104IR-level volatile loads and stores cannot safely be optimized into
2105llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2106flagged volatile. Likewise, the backend should never split or merge
2107target-legal volatile load/store instructions.
2108
Andrew Trick7e6f9282013-01-31 00:49:39 +00002109.. admonition:: Rationale
2110
2111 Platforms may rely on volatile loads and stores of natively supported
2112 data width to be executed as single instruction. For example, in C
2113 this holds for an l-value of volatile primitive type with native
2114 hardware support, but not necessarily for aggregate types. The
2115 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002116 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002117 do not violate the frontend's contract with the language.
2118
Sean Silvab084af42012-12-07 10:36:55 +00002119.. _memmodel:
2120
2121Memory Model for Concurrent Operations
2122--------------------------------------
2123
2124The LLVM IR does not define any way to start parallel threads of
2125execution or to register signal handlers. Nonetheless, there are
2126platform-specific ways to create them, and we define LLVM IR's behavior
2127in their presence. This model is inspired by the C++0x memory model.
2128
2129For a more informal introduction to this model, see the :doc:`Atomics`.
2130
2131We define a *happens-before* partial order as the least partial order
2132that
2133
2134- Is a superset of single-thread program order, and
2135- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2136 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2137 techniques, like pthread locks, thread creation, thread joining,
2138 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2139 Constraints <ordering>`).
2140
2141Note that program order does not introduce *happens-before* edges
2142between a thread and signals executing inside that thread.
2143
2144Every (defined) read operation (load instructions, memcpy, atomic
2145loads/read-modify-writes, etc.) R reads a series of bytes written by
2146(defined) write operations (store instructions, atomic
2147stores/read-modify-writes, memcpy, etc.). For the purposes of this
2148section, initialized globals are considered to have a write of the
2149initializer which is atomic and happens before any other read or write
2150of the memory in question. For each byte of a read R, R\ :sub:`byte`
2151may see any write to the same byte, except:
2152
2153- If write\ :sub:`1` happens before write\ :sub:`2`, and
2154 write\ :sub:`2` happens before R\ :sub:`byte`, then
2155 R\ :sub:`byte` does not see write\ :sub:`1`.
2156- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2157 R\ :sub:`byte` does not see write\ :sub:`3`.
2158
2159Given that definition, R\ :sub:`byte` is defined as follows:
2160
2161- If R is volatile, the result is target-dependent. (Volatile is
2162 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002163 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002164 like normal memory. It does not generally provide cross-thread
2165 synchronization.)
2166- Otherwise, if there is no write to the same byte that happens before
2167 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2168- Otherwise, if R\ :sub:`byte` may see exactly one write,
2169 R\ :sub:`byte` returns the value written by that write.
2170- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2171 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2172 Memory Ordering Constraints <ordering>` section for additional
2173 constraints on how the choice is made.
2174- Otherwise R\ :sub:`byte` returns ``undef``.
2175
2176R returns the value composed of the series of bytes it read. This
2177implies that some bytes within the value may be ``undef`` **without**
2178the entire value being ``undef``. Note that this only defines the
2179semantics of the operation; it doesn't mean that targets will emit more
2180than one instruction to read the series of bytes.
2181
2182Note that in cases where none of the atomic intrinsics are used, this
2183model places only one restriction on IR transformations on top of what
2184is required for single-threaded execution: introducing a store to a byte
2185which might not otherwise be stored is not allowed in general.
2186(Specifically, in the case where another thread might write to and read
2187from an address, introducing a store can change a load that may see
2188exactly one write into a load that may see multiple writes.)
2189
2190.. _ordering:
2191
2192Atomic Memory Ordering Constraints
2193----------------------------------
2194
2195Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2196:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2197:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002198ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002199the same address they *synchronize with*. These semantics are borrowed
2200from Java and C++0x, but are somewhat more colloquial. If these
2201descriptions aren't precise enough, check those specs (see spec
2202references in the :doc:`atomics guide <Atomics>`).
2203:ref:`fence <i_fence>` instructions treat these orderings somewhat
2204differently since they don't take an address. See that instruction's
2205documentation for details.
2206
2207For a simpler introduction to the ordering constraints, see the
2208:doc:`Atomics`.
2209
2210``unordered``
2211 The set of values that can be read is governed by the happens-before
2212 partial order. A value cannot be read unless some operation wrote
2213 it. This is intended to provide a guarantee strong enough to model
2214 Java's non-volatile shared variables. This ordering cannot be
2215 specified for read-modify-write operations; it is not strong enough
2216 to make them atomic in any interesting way.
2217``monotonic``
2218 In addition to the guarantees of ``unordered``, there is a single
2219 total order for modifications by ``monotonic`` operations on each
2220 address. All modification orders must be compatible with the
2221 happens-before order. There is no guarantee that the modification
2222 orders can be combined to a global total order for the whole program
2223 (and this often will not be possible). The read in an atomic
2224 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2225 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2226 order immediately before the value it writes. If one atomic read
2227 happens before another atomic read of the same address, the later
2228 read must see the same value or a later value in the address's
2229 modification order. This disallows reordering of ``monotonic`` (or
2230 stronger) operations on the same address. If an address is written
2231 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2232 read that address repeatedly, the other threads must eventually see
2233 the write. This corresponds to the C++0x/C1x
2234 ``memory_order_relaxed``.
2235``acquire``
2236 In addition to the guarantees of ``monotonic``, a
2237 *synchronizes-with* edge may be formed with a ``release`` operation.
2238 This is intended to model C++'s ``memory_order_acquire``.
2239``release``
2240 In addition to the guarantees of ``monotonic``, if this operation
2241 writes a value which is subsequently read by an ``acquire``
2242 operation, it *synchronizes-with* that operation. (This isn't a
2243 complete description; see the C++0x definition of a release
2244 sequence.) This corresponds to the C++0x/C1x
2245 ``memory_order_release``.
2246``acq_rel`` (acquire+release)
2247 Acts as both an ``acquire`` and ``release`` operation on its
2248 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2249``seq_cst`` (sequentially consistent)
2250 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002251 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002252 writes), there is a global total order on all
2253 sequentially-consistent operations on all addresses, which is
2254 consistent with the *happens-before* partial order and with the
2255 modification orders of all the affected addresses. Each
2256 sequentially-consistent read sees the last preceding write to the
2257 same address in this global order. This corresponds to the C++0x/C1x
2258 ``memory_order_seq_cst`` and Java volatile.
2259
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002260.. _syncscope:
Sean Silvab084af42012-12-07 10:36:55 +00002261
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002262If an atomic operation is marked ``syncscope("singlethread")``, it only
2263*synchronizes with* and only participates in the seq\_cst total orderings of
2264other operations running in the same thread (for example, in signal handlers).
2265
2266If an atomic operation is marked ``syncscope("<target-scope>")``, where
2267``<target-scope>`` is a target specific synchronization scope, then it is target
2268dependent if it *synchronizes with* and participates in the seq\_cst total
2269orderings of other operations.
2270
2271Otherwise, an atomic operation that is not marked ``syncscope("singlethread")``
2272or ``syncscope("<target-scope>")`` *synchronizes with* and participates in the
2273seq\_cst total orderings of other operations that are not marked
2274``syncscope("singlethread")`` or ``syncscope("<target-scope>")``.
Sean Silvab084af42012-12-07 10:36:55 +00002275
2276.. _fastmath:
2277
2278Fast-Math Flags
2279---------------
2280
Sanjay Patel629c4112017-11-06 16:27:15 +00002281LLVM IR floating-point operations (:ref:`fadd <i_fadd>`,
Sean Silvab084af42012-12-07 10:36:55 +00002282:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002283:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
Sanjay Patel629c4112017-11-06 16:27:15 +00002284may use the following flags to enable otherwise unsafe
2285floating-point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002286
2287``nnan``
2288 No NaNs - Allow optimizations to assume the arguments and result are not
2289 NaN. Such optimizations are required to retain defined behavior over
2290 NaNs, but the value of the result is undefined.
2291
2292``ninf``
2293 No Infs - Allow optimizations to assume the arguments and result are not
2294 +/-Inf. Such optimizations are required to retain defined behavior over
2295 +/-Inf, but the value of the result is undefined.
2296
2297``nsz``
2298 No Signed Zeros - Allow optimizations to treat the sign of a zero
2299 argument or result as insignificant.
2300
2301``arcp``
2302 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2303 argument rather than perform division.
2304
Adam Nemetcd847a82017-03-28 20:11:52 +00002305``contract``
2306 Allow floating-point contraction (e.g. fusing a multiply followed by an
2307 addition into a fused multiply-and-add).
2308
Sanjay Patel629c4112017-11-06 16:27:15 +00002309``afn``
2310 Approximate functions - Allow substitution of approximate calculations for
2311 functions (sin, log, sqrt, etc). See floating-point intrinsic definitions
2312 for places where this can apply to LLVM's intrinsic math functions.
2313
2314``reassoc``
2315 Allow reassociation transformations for floating-point instructions.
2316 This may dramatically change results in floating point.
2317
Sean Silvab084af42012-12-07 10:36:55 +00002318``fast``
Sanjay Patel629c4112017-11-06 16:27:15 +00002319 This flag implies all of the others.
Sean Silvab084af42012-12-07 10:36:55 +00002320
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002321.. _uselistorder:
2322
2323Use-list Order Directives
2324-------------------------
2325
2326Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002327order to be recreated. ``<order-indexes>`` is a comma-separated list of
2328indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002329value's use-list is immediately sorted by these indexes.
2330
Sean Silvaa1190322015-08-06 22:56:48 +00002331Use-list directives may appear at function scope or global scope. They are not
2332instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002333function scope, they must appear after the terminator of the final basic block.
2334
2335If basic blocks have their address taken via ``blockaddress()`` expressions,
2336``uselistorder_bb`` can be used to reorder their use-lists from outside their
2337function's scope.
2338
2339:Syntax:
2340
2341::
2342
2343 uselistorder <ty> <value>, { <order-indexes> }
2344 uselistorder_bb @function, %block { <order-indexes> }
2345
2346:Examples:
2347
2348::
2349
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002350 define void @foo(i32 %arg1, i32 %arg2) {
2351 entry:
2352 ; ... instructions ...
2353 bb:
2354 ; ... instructions ...
2355
2356 ; At function scope.
2357 uselistorder i32 %arg1, { 1, 0, 2 }
2358 uselistorder label %bb, { 1, 0 }
2359 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002360
2361 ; At global scope.
2362 uselistorder i32* @global, { 1, 2, 0 }
2363 uselistorder i32 7, { 1, 0 }
2364 uselistorder i32 (i32) @bar, { 1, 0 }
2365 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2366
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002367.. _source_filename:
2368
2369Source Filename
2370---------------
2371
2372The *source filename* string is set to the original module identifier,
2373which will be the name of the compiled source file when compiling from
2374source through the clang front end, for example. It is then preserved through
2375the IR and bitcode.
2376
2377This is currently necessary to generate a consistent unique global
2378identifier for local functions used in profile data, which prepends the
2379source file name to the local function name.
2380
2381The syntax for the source file name is simply:
2382
Renato Golin124f2592016-07-20 12:16:38 +00002383.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002384
2385 source_filename = "/path/to/source.c"
2386
Sean Silvab084af42012-12-07 10:36:55 +00002387.. _typesystem:
2388
2389Type System
2390===========
2391
2392The LLVM type system is one of the most important features of the
2393intermediate representation. Being typed enables a number of
2394optimizations to be performed on the intermediate representation
2395directly, without having to do extra analyses on the side before the
2396transformation. A strong type system makes it easier to read the
2397generated code and enables novel analyses and transformations that are
2398not feasible to perform on normal three address code representations.
2399
Rafael Espindola08013342013-12-07 19:34:20 +00002400.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002401
Rafael Espindola08013342013-12-07 19:34:20 +00002402Void Type
2403---------
Sean Silvab084af42012-12-07 10:36:55 +00002404
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002405:Overview:
2406
Rafael Espindola08013342013-12-07 19:34:20 +00002407
2408The void type does not represent any value and has no size.
2409
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002410:Syntax:
2411
Rafael Espindola08013342013-12-07 19:34:20 +00002412
2413::
2414
2415 void
Sean Silvab084af42012-12-07 10:36:55 +00002416
2417
Rafael Espindola08013342013-12-07 19:34:20 +00002418.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002419
Rafael Espindola08013342013-12-07 19:34:20 +00002420Function Type
2421-------------
Sean Silvab084af42012-12-07 10:36:55 +00002422
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002423:Overview:
2424
Sean Silvab084af42012-12-07 10:36:55 +00002425
Rafael Espindola08013342013-12-07 19:34:20 +00002426The function type can be thought of as a function signature. It consists of a
2427return type and a list of formal parameter types. The return type of a function
2428type is a void type or first class type --- except for :ref:`label <t_label>`
2429and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002430
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002431:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002432
Rafael Espindola08013342013-12-07 19:34:20 +00002433::
Sean Silvab084af42012-12-07 10:36:55 +00002434
Rafael Espindola08013342013-12-07 19:34:20 +00002435 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002436
Rafael Espindola08013342013-12-07 19:34:20 +00002437...where '``<parameter list>``' is a comma-separated list of type
2438specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002439indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002440argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002441handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002442except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002443
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002444:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002445
Rafael Espindola08013342013-12-07 19:34:20 +00002446+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2447| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2448+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2449| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2450+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2451| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2452+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2453| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2454+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2455
2456.. _t_firstclass:
2457
2458First Class Types
2459-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002460
2461The :ref:`first class <t_firstclass>` types are perhaps the most important.
2462Values of these types are the only ones which can be produced by
2463instructions.
2464
Rafael Espindola08013342013-12-07 19:34:20 +00002465.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002466
Rafael Espindola08013342013-12-07 19:34:20 +00002467Single Value Types
2468^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002469
Rafael Espindola08013342013-12-07 19:34:20 +00002470These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002471
2472.. _t_integer:
2473
2474Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002475""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002476
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002477:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002478
2479The integer type is a very simple type that simply specifies an
2480arbitrary bit width for the integer type desired. Any bit width from 1
2481bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2482
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002483:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002484
2485::
2486
2487 iN
2488
2489The number of bits the integer will occupy is specified by the ``N``
2490value.
2491
2492Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002493*********
Sean Silvab084af42012-12-07 10:36:55 +00002494
2495+----------------+------------------------------------------------+
2496| ``i1`` | a single-bit integer. |
2497+----------------+------------------------------------------------+
2498| ``i32`` | a 32-bit integer. |
2499+----------------+------------------------------------------------+
2500| ``i1942652`` | a really big integer of over 1 million bits. |
2501+----------------+------------------------------------------------+
2502
2503.. _t_floating:
2504
2505Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002506""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002507
2508.. list-table::
2509 :header-rows: 1
2510
2511 * - Type
2512 - Description
2513
2514 * - ``half``
2515 - 16-bit floating point value
2516
2517 * - ``float``
2518 - 32-bit floating point value
2519
2520 * - ``double``
2521 - 64-bit floating point value
2522
2523 * - ``fp128``
2524 - 128-bit floating point value (112-bit mantissa)
2525
2526 * - ``x86_fp80``
2527 - 80-bit floating point value (X87)
2528
2529 * - ``ppc_fp128``
2530 - 128-bit floating point value (two 64-bits)
2531
Reid Kleckner9a16d082014-03-05 02:41:37 +00002532X86_mmx Type
2533""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002534
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002535:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002536
Reid Kleckner9a16d082014-03-05 02:41:37 +00002537The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002538machine. The operations allowed on it are quite limited: parameters and
2539return values, load and store, and bitcast. User-specified MMX
2540instructions are represented as intrinsic or asm calls with arguments
2541and/or results of this type. There are no arrays, vectors or constants
2542of this type.
2543
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002544:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002545
2546::
2547
Reid Kleckner9a16d082014-03-05 02:41:37 +00002548 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002549
Sean Silvab084af42012-12-07 10:36:55 +00002550
Rafael Espindola08013342013-12-07 19:34:20 +00002551.. _t_pointer:
2552
2553Pointer Type
2554""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002555
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002556:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002557
Rafael Espindola08013342013-12-07 19:34:20 +00002558The pointer type is used to specify memory locations. Pointers are
2559commonly used to reference objects in memory.
2560
2561Pointer types may have an optional address space attribute defining the
2562numbered address space where the pointed-to object resides. The default
2563address space is number zero. The semantics of non-zero address spaces
2564are target-specific.
2565
2566Note that LLVM does not permit pointers to void (``void*``) nor does it
2567permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002568
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002569:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002570
2571::
2572
Rafael Espindola08013342013-12-07 19:34:20 +00002573 <type> *
2574
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002575:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002576
2577+-------------------------+--------------------------------------------------------------------------------------------------------------+
2578| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2579+-------------------------+--------------------------------------------------------------------------------------------------------------+
2580| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2581+-------------------------+--------------------------------------------------------------------------------------------------------------+
2582| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2583+-------------------------+--------------------------------------------------------------------------------------------------------------+
2584
2585.. _t_vector:
2586
2587Vector Type
2588"""""""""""
2589
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002590:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002591
2592A vector type is a simple derived type that represents a vector of
2593elements. Vector types are used when multiple primitive data are
2594operated in parallel using a single instruction (SIMD). A vector type
2595requires a size (number of elements) and an underlying primitive data
2596type. Vector types are considered :ref:`first class <t_firstclass>`.
2597
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002598:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002599
2600::
2601
2602 < <# elements> x <elementtype> >
2603
2604The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002605elementtype may be any integer, floating point or pointer type. Vectors
2606of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002607
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002608:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002609
2610+-------------------+--------------------------------------------------+
2611| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2612+-------------------+--------------------------------------------------+
2613| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2614+-------------------+--------------------------------------------------+
2615| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2616+-------------------+--------------------------------------------------+
2617| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2618+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002619
2620.. _t_label:
2621
2622Label Type
2623^^^^^^^^^^
2624
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002625:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002626
2627The label type represents code labels.
2628
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002629:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002630
2631::
2632
2633 label
2634
David Majnemerb611e3f2015-08-14 05:09:07 +00002635.. _t_token:
2636
2637Token Type
2638^^^^^^^^^^
2639
2640:Overview:
2641
2642The token type is used when a value is associated with an instruction
2643but all uses of the value must not attempt to introspect or obscure it.
2644As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2645:ref:`select <i_select>` of type token.
2646
2647:Syntax:
2648
2649::
2650
2651 token
2652
2653
2654
Sean Silvab084af42012-12-07 10:36:55 +00002655.. _t_metadata:
2656
2657Metadata Type
2658^^^^^^^^^^^^^
2659
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002660:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002661
2662The metadata type represents embedded metadata. No derived types may be
2663created from metadata except for :ref:`function <t_function>` arguments.
2664
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002665:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002666
2667::
2668
2669 metadata
2670
Sean Silvab084af42012-12-07 10:36:55 +00002671.. _t_aggregate:
2672
2673Aggregate Types
2674^^^^^^^^^^^^^^^
2675
2676Aggregate Types are a subset of derived types that can contain multiple
2677member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2678aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2679aggregate types.
2680
2681.. _t_array:
2682
2683Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002684""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002685
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002686:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002687
2688The array type is a very simple derived type that arranges elements
2689sequentially in memory. The array type requires a size (number of
2690elements) and an underlying data type.
2691
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002692:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002693
2694::
2695
2696 [<# elements> x <elementtype>]
2697
2698The number of elements is a constant integer value; ``elementtype`` may
2699be any type with a size.
2700
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002701:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002702
2703+------------------+--------------------------------------+
2704| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2705+------------------+--------------------------------------+
2706| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2707+------------------+--------------------------------------+
2708| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2709+------------------+--------------------------------------+
2710
2711Here are some examples of multidimensional arrays:
2712
2713+-----------------------------+----------------------------------------------------------+
2714| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2715+-----------------------------+----------------------------------------------------------+
2716| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2717+-----------------------------+----------------------------------------------------------+
2718| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2719+-----------------------------+----------------------------------------------------------+
2720
2721There is no restriction on indexing beyond the end of the array implied
2722by a static type (though there are restrictions on indexing beyond the
2723bounds of an allocated object in some cases). This means that
2724single-dimension 'variable sized array' addressing can be implemented in
2725LLVM with a zero length array type. An implementation of 'pascal style
2726arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2727example.
2728
Sean Silvab084af42012-12-07 10:36:55 +00002729.. _t_struct:
2730
2731Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002732""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002733
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002734:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002735
2736The structure type is used to represent a collection of data members
2737together in memory. The elements of a structure may be any type that has
2738a size.
2739
2740Structures in memory are accessed using '``load``' and '``store``' by
2741getting a pointer to a field with the '``getelementptr``' instruction.
2742Structures in registers are accessed using the '``extractvalue``' and
2743'``insertvalue``' instructions.
2744
2745Structures may optionally be "packed" structures, which indicate that
2746the alignment of the struct is one byte, and that there is no padding
2747between the elements. In non-packed structs, padding between field types
2748is inserted as defined by the DataLayout string in the module, which is
2749required to match what the underlying code generator expects.
2750
2751Structures can either be "literal" or "identified". A literal structure
2752is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2753identified types are always defined at the top level with a name.
2754Literal types are uniqued by their contents and can never be recursive
2755or opaque since there is no way to write one. Identified types can be
2756recursive, can be opaqued, and are never uniqued.
2757
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002758:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002759
2760::
2761
2762 %T1 = type { <type list> } ; Identified normal struct type
2763 %T2 = type <{ <type list> }> ; Identified packed struct type
2764
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002765:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002766
2767+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2768| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2769+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002770| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002771+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2772| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2773+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2774
2775.. _t_opaque:
2776
2777Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002778""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002779
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002780:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002781
2782Opaque structure types are used to represent named structure types that
2783do not have a body specified. This corresponds (for example) to the C
2784notion of a forward declared structure.
2785
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002786:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002787
2788::
2789
2790 %X = type opaque
2791 %52 = type opaque
2792
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002793:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002794
2795+--------------+-------------------+
2796| ``opaque`` | An opaque type. |
2797+--------------+-------------------+
2798
Sean Silva1703e702014-04-08 21:06:22 +00002799.. _constants:
2800
Sean Silvab084af42012-12-07 10:36:55 +00002801Constants
2802=========
2803
2804LLVM has several different basic types of constants. This section
2805describes them all and their syntax.
2806
2807Simple Constants
2808----------------
2809
2810**Boolean constants**
2811 The two strings '``true``' and '``false``' are both valid constants
2812 of the ``i1`` type.
2813**Integer constants**
2814 Standard integers (such as '4') are constants of the
2815 :ref:`integer <t_integer>` type. Negative numbers may be used with
2816 integer types.
2817**Floating point constants**
2818 Floating point constants use standard decimal notation (e.g.
2819 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2820 hexadecimal notation (see below). The assembler requires the exact
2821 decimal value of a floating-point constant. For example, the
2822 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2823 decimal in binary. Floating point constants must have a :ref:`floating
2824 point <t_floating>` type.
2825**Null pointer constants**
2826 The identifier '``null``' is recognized as a null pointer constant
2827 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002828**Token constants**
2829 The identifier '``none``' is recognized as an empty token constant
2830 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002831
2832The one non-intuitive notation for constants is the hexadecimal form of
2833floating point constants. For example, the form
2834'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2835than) '``double 4.5e+15``'. The only time hexadecimal floating point
2836constants are required (and the only time that they are generated by the
2837disassembler) is when a floating point constant must be emitted but it
2838cannot be represented as a decimal floating point number in a reasonable
2839number of digits. For example, NaN's, infinities, and other special
2840values are represented in their IEEE hexadecimal format so that assembly
2841and disassembly do not cause any bits to change in the constants.
2842
2843When using the hexadecimal form, constants of types half, float, and
2844double are represented using the 16-digit form shown above (which
2845matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002846must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002847precision, respectively. Hexadecimal format is always used for long
2848double, and there are three forms of long double. The 80-bit format used
2849by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2850128-bit format used by PowerPC (two adjacent doubles) is represented by
2851``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002852represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2853will only work if they match the long double format on your target.
2854The IEEE 16-bit format (half precision) is represented by ``0xH``
2855followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2856(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002857
Reid Kleckner9a16d082014-03-05 02:41:37 +00002858There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002859
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002860.. _complexconstants:
2861
Sean Silvab084af42012-12-07 10:36:55 +00002862Complex Constants
2863-----------------
2864
2865Complex constants are a (potentially recursive) combination of simple
2866constants and smaller complex constants.
2867
2868**Structure constants**
2869 Structure constants are represented with notation similar to
2870 structure type definitions (a comma separated list of elements,
2871 surrounded by braces (``{}``)). For example:
2872 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2873 "``@G = external global i32``". Structure constants must have
2874 :ref:`structure type <t_struct>`, and the number and types of elements
2875 must match those specified by the type.
2876**Array constants**
2877 Array constants are represented with notation similar to array type
2878 definitions (a comma separated list of elements, surrounded by
2879 square brackets (``[]``)). For example:
2880 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2881 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002882 match those specified by the type. As a special case, character array
2883 constants may also be represented as a double-quoted string using the ``c``
2884 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002885**Vector constants**
2886 Vector constants are represented with notation similar to vector
2887 type definitions (a comma separated list of elements, surrounded by
2888 less-than/greater-than's (``<>``)). For example:
2889 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2890 must have :ref:`vector type <t_vector>`, and the number and types of
2891 elements must match those specified by the type.
2892**Zero initialization**
2893 The string '``zeroinitializer``' can be used to zero initialize a
2894 value to zero of *any* type, including scalar and
2895 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2896 having to print large zero initializers (e.g. for large arrays) and
2897 is always exactly equivalent to using explicit zero initializers.
2898**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002899 A metadata node is a constant tuple without types. For example:
2900 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002901 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2902 Unlike other typed constants that are meant to be interpreted as part of
2903 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002904 information such as debug info.
2905
2906Global Variable and Function Addresses
2907--------------------------------------
2908
2909The addresses of :ref:`global variables <globalvars>` and
2910:ref:`functions <functionstructure>` are always implicitly valid
2911(link-time) constants. These constants are explicitly referenced when
2912the :ref:`identifier for the global <identifiers>` is used and always have
2913:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2914file:
2915
2916.. code-block:: llvm
2917
2918 @X = global i32 17
2919 @Y = global i32 42
2920 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2921
2922.. _undefvalues:
2923
2924Undefined Values
2925----------------
2926
2927The string '``undef``' can be used anywhere a constant is expected, and
2928indicates that the user of the value may receive an unspecified
2929bit-pattern. Undefined values may be of any type (other than '``label``'
2930or '``void``') and be used anywhere a constant is permitted.
2931
2932Undefined values are useful because they indicate to the compiler that
2933the program is well defined no matter what value is used. This gives the
2934compiler more freedom to optimize. Here are some examples of
2935(potentially surprising) transformations that are valid (in pseudo IR):
2936
2937.. code-block:: llvm
2938
2939 %A = add %X, undef
2940 %B = sub %X, undef
2941 %C = xor %X, undef
2942 Safe:
2943 %A = undef
2944 %B = undef
2945 %C = undef
2946
2947This is safe because all of the output bits are affected by the undef
2948bits. Any output bit can have a zero or one depending on the input bits.
2949
2950.. code-block:: llvm
2951
2952 %A = or %X, undef
2953 %B = and %X, undef
2954 Safe:
2955 %A = -1
2956 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00002957 Safe:
2958 %A = %X ;; By choosing undef as 0
2959 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00002960 Unsafe:
2961 %A = undef
2962 %B = undef
2963
2964These logical operations have bits that are not always affected by the
2965input. For example, if ``%X`` has a zero bit, then the output of the
2966'``and``' operation will always be a zero for that bit, no matter what
2967the corresponding bit from the '``undef``' is. As such, it is unsafe to
2968optimize or assume that the result of the '``and``' is '``undef``'.
2969However, it is safe to assume that all bits of the '``undef``' could be
29700, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2971all the bits of the '``undef``' operand to the '``or``' could be set,
2972allowing the '``or``' to be folded to -1.
2973
2974.. code-block:: llvm
2975
2976 %A = select undef, %X, %Y
2977 %B = select undef, 42, %Y
2978 %C = select %X, %Y, undef
2979 Safe:
2980 %A = %X (or %Y)
2981 %B = 42 (or %Y)
2982 %C = %Y
2983 Unsafe:
2984 %A = undef
2985 %B = undef
2986 %C = undef
2987
2988This set of examples shows that undefined '``select``' (and conditional
2989branch) conditions can go *either way*, but they have to come from one
2990of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2991both known to have a clear low bit, then ``%A`` would have to have a
2992cleared low bit. However, in the ``%C`` example, the optimizer is
2993allowed to assume that the '``undef``' operand could be the same as
2994``%Y``, allowing the whole '``select``' to be eliminated.
2995
Renato Golin124f2592016-07-20 12:16:38 +00002996.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002997
2998 %A = xor undef, undef
2999
3000 %B = undef
3001 %C = xor %B, %B
3002
3003 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00003004 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00003005 %F = icmp gte %D, 4
3006
3007 Safe:
3008 %A = undef
3009 %B = undef
3010 %C = undef
3011 %D = undef
3012 %E = undef
3013 %F = undef
3014
3015This example points out that two '``undef``' operands are not
3016necessarily the same. This can be surprising to people (and also matches
3017C semantics) where they assume that "``X^X``" is always zero, even if
3018``X`` is undefined. This isn't true for a number of reasons, but the
3019short answer is that an '``undef``' "variable" can arbitrarily change
3020its value over its "live range". This is true because the variable
3021doesn't actually *have a live range*. Instead, the value is logically
3022read from arbitrary registers that happen to be around when needed, so
3023the value is not necessarily consistent over time. In fact, ``%A`` and
3024``%C`` need to have the same semantics or the core LLVM "replace all
3025uses with" concept would not hold.
3026
3027.. code-block:: llvm
3028
3029 %A = fdiv undef, %X
3030 %B = fdiv %X, undef
3031 Safe:
3032 %A = undef
3033 b: unreachable
3034
3035These examples show the crucial difference between an *undefined value*
3036and *undefined behavior*. An undefined value (like '``undef``') is
3037allowed to have an arbitrary bit-pattern. This means that the ``%A``
3038operation can be constant folded to '``undef``', because the '``undef``'
3039could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
3040However, in the second example, we can make a more aggressive
3041assumption: because the ``undef`` is allowed to be an arbitrary value,
3042we are allowed to assume that it could be zero. Since a divide by zero
3043has *undefined behavior*, we are allowed to assume that the operation
3044does not execute at all. This allows us to delete the divide and all
3045code after it. Because the undefined operation "can't happen", the
3046optimizer can assume that it occurs in dead code.
3047
Renato Golin124f2592016-07-20 12:16:38 +00003048.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003049
3050 a: store undef -> %X
3051 b: store %X -> undef
3052 Safe:
3053 a: <deleted>
3054 b: unreachable
3055
3056These examples reiterate the ``fdiv`` example: a store *of* an undefined
3057value can be assumed to not have any effect; we can assume that the
3058value is overwritten with bits that happen to match what was already
3059there. However, a store *to* an undefined location could clobber
3060arbitrary memory, therefore, it has undefined behavior.
3061
3062.. _poisonvalues:
3063
3064Poison Values
3065-------------
3066
3067Poison values are similar to :ref:`undef values <undefvalues>`, however
3068they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00003069that cannot evoke side effects has nevertheless detected a condition
3070that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003071
3072There is currently no way of representing a poison value in the IR; they
3073only exist when produced by operations such as :ref:`add <i_add>` with
3074the ``nsw`` flag.
3075
3076Poison value behavior is defined in terms of value *dependence*:
3077
3078- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
3079- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
3080 their dynamic predecessor basic block.
3081- Function arguments depend on the corresponding actual argument values
3082 in the dynamic callers of their functions.
3083- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
3084 instructions that dynamically transfer control back to them.
3085- :ref:`Invoke <i_invoke>` instructions depend on the
3086 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
3087 call instructions that dynamically transfer control back to them.
3088- Non-volatile loads and stores depend on the most recent stores to all
3089 of the referenced memory addresses, following the order in the IR
3090 (including loads and stores implied by intrinsics such as
3091 :ref:`@llvm.memcpy <int_memcpy>`.)
3092- An instruction with externally visible side effects depends on the
3093 most recent preceding instruction with externally visible side
3094 effects, following the order in the IR. (This includes :ref:`volatile
3095 operations <volatile>`.)
3096- An instruction *control-depends* on a :ref:`terminator
3097 instruction <terminators>` if the terminator instruction has
3098 multiple successors and the instruction is always executed when
3099 control transfers to one of the successors, and may not be executed
3100 when control is transferred to another.
3101- Additionally, an instruction also *control-depends* on a terminator
3102 instruction if the set of instructions it otherwise depends on would
3103 be different if the terminator had transferred control to a different
3104 successor.
3105- Dependence is transitive.
3106
Richard Smith32dbdf62014-07-31 04:25:36 +00003107Poison values have the same behavior as :ref:`undef values <undefvalues>`,
3108with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00003109on a poison value has undefined behavior.
3110
3111Here are some examples:
3112
3113.. code-block:: llvm
3114
3115 entry:
3116 %poison = sub nuw i32 0, 1 ; Results in a poison value.
3117 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00003118 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00003119 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3120
3121 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003122 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003123
3124 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3125
3126 %narrowaddr = bitcast i32* @g to i16*
3127 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003128 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3129 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003130
3131 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3132 br i1 %cmp, label %true, label %end ; Branch to either destination.
3133
3134 true:
3135 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3136 ; it has undefined behavior.
3137 br label %end
3138
3139 end:
3140 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3141 ; Both edges into this PHI are
3142 ; control-dependent on %cmp, so this
3143 ; always results in a poison value.
3144
3145 store volatile i32 0, i32* @g ; This would depend on the store in %true
3146 ; if %cmp is true, or the store in %entry
3147 ; otherwise, so this is undefined behavior.
3148
3149 br i1 %cmp, label %second_true, label %second_end
3150 ; The same branch again, but this time the
3151 ; true block doesn't have side effects.
3152
3153 second_true:
3154 ; No side effects!
3155 ret void
3156
3157 second_end:
3158 store volatile i32 0, i32* @g ; This time, the instruction always depends
3159 ; on the store in %end. Also, it is
3160 ; control-equivalent to %end, so this is
3161 ; well-defined (ignoring earlier undefined
3162 ; behavior in this example).
3163
3164.. _blockaddress:
3165
3166Addresses of Basic Blocks
3167-------------------------
3168
3169``blockaddress(@function, %block)``
3170
3171The '``blockaddress``' constant computes the address of the specified
3172basic block in the specified function, and always has an ``i8*`` type.
3173Taking the address of the entry block is illegal.
3174
3175This value only has defined behavior when used as an operand to the
3176':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3177against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003178undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003179no label is equal to the null pointer. This may be passed around as an
3180opaque pointer sized value as long as the bits are not inspected. This
3181allows ``ptrtoint`` and arithmetic to be performed on these values so
3182long as the original value is reconstituted before the ``indirectbr``
3183instruction.
3184
3185Finally, some targets may provide defined semantics when using the value
3186as the operand to an inline assembly, but that is target specific.
3187
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003188.. _constantexprs:
3189
Sean Silvab084af42012-12-07 10:36:55 +00003190Constant Expressions
3191--------------------
3192
3193Constant expressions are used to allow expressions involving other
3194constants to be used as constants. Constant expressions may be of any
3195:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3196that does not have side effects (e.g. load and call are not supported).
3197The following is the syntax for constant expressions:
3198
3199``trunc (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003200 Perform the :ref:`trunc operation <i_trunc>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003201``zext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003202 Perform the :ref:`zext operation <i_zext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003203``sext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003204 Perform the :ref:`sext operation <i_sext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003205``fptrunc (CST to TYPE)``
3206 Truncate a floating point constant to another floating point type.
3207 The size of CST must be larger than the size of TYPE. Both types
3208 must be floating point.
3209``fpext (CST to TYPE)``
3210 Floating point extend a constant to another type. The size of CST
3211 must be smaller or equal to the size of TYPE. Both types must be
3212 floating point.
3213``fptoui (CST to TYPE)``
3214 Convert a floating point constant to the corresponding unsigned
3215 integer constant. TYPE must be a scalar or vector integer type. CST
3216 must be of scalar or vector floating point type. Both CST and TYPE
3217 must be scalars, or vectors of the same number of elements. If the
3218 value won't fit in the integer type, the results are undefined.
3219``fptosi (CST to TYPE)``
3220 Convert a floating point constant to the corresponding signed
3221 integer constant. TYPE must be a scalar or vector integer type. CST
3222 must be of scalar or vector floating point type. Both CST and TYPE
3223 must be scalars, or vectors of the same number of elements. If the
3224 value won't fit in the integer type, the results are undefined.
3225``uitofp (CST to TYPE)``
3226 Convert an unsigned integer constant to the corresponding floating
3227 point constant. TYPE must be a scalar or vector floating point type.
3228 CST must be of scalar or vector integer type. Both CST and TYPE must
3229 be scalars, or vectors of the same number of elements. If the value
3230 won't fit in the floating point type, the results are undefined.
3231``sitofp (CST to TYPE)``
3232 Convert a signed integer constant to the corresponding floating
3233 point constant. TYPE must be a scalar or vector floating point type.
3234 CST must be of scalar or vector integer type. Both CST and TYPE must
3235 be scalars, or vectors of the same number of elements. If the value
3236 won't fit in the floating point type, the results are undefined.
3237``ptrtoint (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003238 Perform the :ref:`ptrtoint operation <i_ptrtoint>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003239``inttoptr (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003240 Perform the :ref:`inttoptr operation <i_inttoptr>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003241 This one is *really* dangerous!
3242``bitcast (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003243 Convert a constant, CST, to another TYPE.
3244 The constraints of the operands are the same as those for the
3245 :ref:`bitcast instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003246``addrspacecast (CST to TYPE)``
3247 Convert a constant pointer or constant vector of pointer, CST, to another
3248 TYPE in a different address space. The constraints of the operands are the
3249 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003250``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003251 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3252 constants. As with the :ref:`getelementptr <i_getelementptr>`
David Blaikief91b0302017-06-19 05:34:21 +00003253 instruction, the index list may have one or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003254 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003255``select (COND, VAL1, VAL2)``
3256 Perform the :ref:`select operation <i_select>` on constants.
3257``icmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003258 Perform the :ref:`icmp operation <i_icmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003259``fcmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003260 Perform the :ref:`fcmp operation <i_fcmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003261``extractelement (VAL, IDX)``
3262 Perform the :ref:`extractelement operation <i_extractelement>` on
3263 constants.
3264``insertelement (VAL, ELT, IDX)``
3265 Perform the :ref:`insertelement operation <i_insertelement>` on
3266 constants.
3267``shufflevector (VEC1, VEC2, IDXMASK)``
3268 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3269 constants.
3270``extractvalue (VAL, IDX0, IDX1, ...)``
3271 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3272 constants. The index list is interpreted in a similar manner as
3273 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3274 least one index value must be specified.
3275``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3276 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3277 The index list is interpreted in a similar manner as indices in a
3278 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3279 value must be specified.
3280``OPCODE (LHS, RHS)``
3281 Perform the specified operation of the LHS and RHS constants. OPCODE
3282 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3283 binary <bitwiseops>` operations. The constraints on operands are
3284 the same as those for the corresponding instruction (e.g. no bitwise
3285 operations on floating point values are allowed).
3286
3287Other Values
3288============
3289
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003290.. _inlineasmexprs:
3291
Sean Silvab084af42012-12-07 10:36:55 +00003292Inline Assembler Expressions
3293----------------------------
3294
3295LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003296Inline Assembly <moduleasm>`) through the use of a special value. This value
3297represents the inline assembler as a template string (containing the
3298instructions to emit), a list of operand constraints (stored as a string), a
3299flag that indicates whether or not the inline asm expression has side effects,
3300and a flag indicating whether the function containing the asm needs to align its
3301stack conservatively.
3302
3303The template string supports argument substitution of the operands using "``$``"
3304followed by a number, to indicate substitution of the given register/memory
3305location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3306be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3307operand (See :ref:`inline-asm-modifiers`).
3308
3309A literal "``$``" may be included by using "``$$``" in the template. To include
3310other special characters into the output, the usual "``\XX``" escapes may be
3311used, just as in other strings. Note that after template substitution, the
3312resulting assembly string is parsed by LLVM's integrated assembler unless it is
3313disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3314syntax known to LLVM.
3315
Reid Kleckner71cb1642017-02-06 18:08:45 +00003316LLVM also supports a few more substitions useful for writing inline assembly:
3317
3318- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3319 This substitution is useful when declaring a local label. Many standard
3320 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3321 Adding a blob-unique identifier ensures that the two labels will not conflict
3322 during assembly. This is used to implement `GCC's %= special format
3323 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3324- ``${:comment}``: Expands to the comment character of the current target's
3325 assembly dialect. This is usually ``#``, but many targets use other strings,
3326 such as ``;``, ``//``, or ``!``.
3327- ``${:private}``: Expands to the assembler private label prefix. Labels with
3328 this prefix will not appear in the symbol table of the assembled object.
3329 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3330 relatively popular.
3331
James Y Knightbc832ed2015-07-08 18:08:36 +00003332LLVM's support for inline asm is modeled closely on the requirements of Clang's
3333GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3334modifier codes listed here are similar or identical to those in GCC's inline asm
3335support. However, to be clear, the syntax of the template and constraint strings
3336described here is *not* the same as the syntax accepted by GCC and Clang, and,
3337while most constraint letters are passed through as-is by Clang, some get
3338translated to other codes when converting from the C source to the LLVM
3339assembly.
3340
3341An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003342
3343.. code-block:: llvm
3344
3345 i32 (i32) asm "bswap $0", "=r,r"
3346
3347Inline assembler expressions may **only** be used as the callee operand
3348of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3349Thus, typically we have:
3350
3351.. code-block:: llvm
3352
3353 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3354
3355Inline asms with side effects not visible in the constraint list must be
3356marked as having side effects. This is done through the use of the
3357'``sideeffect``' keyword, like so:
3358
3359.. code-block:: llvm
3360
3361 call void asm sideeffect "eieio", ""()
3362
3363In some cases inline asms will contain code that will not work unless
3364the stack is aligned in some way, such as calls or SSE instructions on
3365x86, yet will not contain code that does that alignment within the asm.
3366The compiler should make conservative assumptions about what the asm
3367might contain and should generate its usual stack alignment code in the
3368prologue if the '``alignstack``' keyword is present:
3369
3370.. code-block:: llvm
3371
3372 call void asm alignstack "eieio", ""()
3373
3374Inline asms also support using non-standard assembly dialects. The
3375assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3376the inline asm is using the Intel dialect. Currently, ATT and Intel are
3377the only supported dialects. An example is:
3378
3379.. code-block:: llvm
3380
3381 call void asm inteldialect "eieio", ""()
3382
3383If multiple keywords appear the '``sideeffect``' keyword must come
3384first, the '``alignstack``' keyword second and the '``inteldialect``'
3385keyword last.
3386
James Y Knightbc832ed2015-07-08 18:08:36 +00003387Inline Asm Constraint String
3388^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3389
3390The constraint list is a comma-separated string, each element containing one or
3391more constraint codes.
3392
3393For each element in the constraint list an appropriate register or memory
3394operand will be chosen, and it will be made available to assembly template
3395string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3396second, etc.
3397
3398There are three different types of constraints, which are distinguished by a
3399prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3400constraints must always be given in that order: outputs first, then inputs, then
3401clobbers. They cannot be intermingled.
3402
3403There are also three different categories of constraint codes:
3404
3405- Register constraint. This is either a register class, or a fixed physical
3406 register. This kind of constraint will allocate a register, and if necessary,
3407 bitcast the argument or result to the appropriate type.
3408- Memory constraint. This kind of constraint is for use with an instruction
3409 taking a memory operand. Different constraints allow for different addressing
3410 modes used by the target.
3411- Immediate value constraint. This kind of constraint is for an integer or other
3412 immediate value which can be rendered directly into an instruction. The
3413 various target-specific constraints allow the selection of a value in the
3414 proper range for the instruction you wish to use it with.
3415
3416Output constraints
3417""""""""""""""""""
3418
3419Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3420indicates that the assembly will write to this operand, and the operand will
3421then be made available as a return value of the ``asm`` expression. Output
3422constraints do not consume an argument from the call instruction. (Except, see
3423below about indirect outputs).
3424
3425Normally, it is expected that no output locations are written to by the assembly
3426expression until *all* of the inputs have been read. As such, LLVM may assign
3427the same register to an output and an input. If this is not safe (e.g. if the
3428assembly contains two instructions, where the first writes to one output, and
3429the second reads an input and writes to a second output), then the "``&``"
3430modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003431"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003432will not use the same register for any inputs (other than an input tied to this
3433output).
3434
3435Input constraints
3436"""""""""""""""""
3437
3438Input constraints do not have a prefix -- just the constraint codes. Each input
3439constraint will consume one argument from the call instruction. It is not
3440permitted for the asm to write to any input register or memory location (unless
3441that input is tied to an output). Note also that multiple inputs may all be
3442assigned to the same register, if LLVM can determine that they necessarily all
3443contain the same value.
3444
3445Instead of providing a Constraint Code, input constraints may also "tie"
3446themselves to an output constraint, by providing an integer as the constraint
3447string. Tied inputs still consume an argument from the call instruction, and
3448take up a position in the asm template numbering as is usual -- they will simply
3449be constrained to always use the same register as the output they've been tied
3450to. For example, a constraint string of "``=r,0``" says to assign a register for
3451output, and use that register as an input as well (it being the 0'th
3452constraint).
3453
3454It is permitted to tie an input to an "early-clobber" output. In that case, no
3455*other* input may share the same register as the input tied to the early-clobber
3456(even when the other input has the same value).
3457
3458You may only tie an input to an output which has a register constraint, not a
3459memory constraint. Only a single input may be tied to an output.
3460
3461There is also an "interesting" feature which deserves a bit of explanation: if a
3462register class constraint allocates a register which is too small for the value
3463type operand provided as input, the input value will be split into multiple
3464registers, and all of them passed to the inline asm.
3465
3466However, this feature is often not as useful as you might think.
3467
3468Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3469architectures that have instructions which operate on multiple consecutive
3470instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3471SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3472hardware then loads into both the named register, and the next register. This
3473feature of inline asm would not be useful to support that.)
3474
3475A few of the targets provide a template string modifier allowing explicit access
3476to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3477``D``). On such an architecture, you can actually access the second allocated
3478register (yet, still, not any subsequent ones). But, in that case, you're still
3479probably better off simply splitting the value into two separate operands, for
3480clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3481despite existing only for use with this feature, is not really a good idea to
3482use)
3483
3484Indirect inputs and outputs
3485"""""""""""""""""""""""""""
3486
3487Indirect output or input constraints can be specified by the "``*``" modifier
3488(which goes after the "``=``" in case of an output). This indicates that the asm
3489will write to or read from the contents of an *address* provided as an input
3490argument. (Note that in this way, indirect outputs act more like an *input* than
3491an output: just like an input, they consume an argument of the call expression,
3492rather than producing a return value. An indirect output constraint is an
3493"output" only in that the asm is expected to write to the contents of the input
3494memory location, instead of just read from it).
3495
3496This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3497address of a variable as a value.
3498
3499It is also possible to use an indirect *register* constraint, but only on output
3500(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3501value normally, and then, separately emit a store to the address provided as
3502input, after the provided inline asm. (It's not clear what value this
3503functionality provides, compared to writing the store explicitly after the asm
3504statement, and it can only produce worse code, since it bypasses many
3505optimization passes. I would recommend not using it.)
3506
3507
3508Clobber constraints
3509"""""""""""""""""""
3510
3511A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3512consume an input operand, nor generate an output. Clobbers cannot use any of the
3513general constraint code letters -- they may use only explicit register
3514constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3515"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3516memory locations -- not only the memory pointed to by a declared indirect
3517output.
3518
Peter Zotov00257232016-08-30 10:48:31 +00003519Note that clobbering named registers that are also present in output
3520constraints is not legal.
3521
James Y Knightbc832ed2015-07-08 18:08:36 +00003522
3523Constraint Codes
3524""""""""""""""""
3525After a potential prefix comes constraint code, or codes.
3526
3527A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3528followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3529(e.g. "``{eax}``").
3530
3531The one and two letter constraint codes are typically chosen to be the same as
3532GCC's constraint codes.
3533
3534A single constraint may include one or more than constraint code in it, leaving
3535it up to LLVM to choose which one to use. This is included mainly for
3536compatibility with the translation of GCC inline asm coming from clang.
3537
3538There are two ways to specify alternatives, and either or both may be used in an
3539inline asm constraint list:
3540
35411) Append the codes to each other, making a constraint code set. E.g. "``im``"
3542 or "``{eax}m``". This means "choose any of the options in the set". The
3543 choice of constraint is made independently for each constraint in the
3544 constraint list.
3545
35462) Use "``|``" between constraint code sets, creating alternatives. Every
3547 constraint in the constraint list must have the same number of alternative
3548 sets. With this syntax, the same alternative in *all* of the items in the
3549 constraint list will be chosen together.
3550
3551Putting those together, you might have a two operand constraint string like
3552``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3553operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3554may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3555
3556However, the use of either of the alternatives features is *NOT* recommended, as
3557LLVM is not able to make an intelligent choice about which one to use. (At the
3558point it currently needs to choose, not enough information is available to do so
3559in a smart way.) Thus, it simply tries to make a choice that's most likely to
3560compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3561always choose to use memory, not registers). And, if given multiple registers,
3562or multiple register classes, it will simply choose the first one. (In fact, it
3563doesn't currently even ensure explicitly specified physical registers are
3564unique, so specifying multiple physical registers as alternatives, like
3565``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3566intended.)
3567
3568Supported Constraint Code List
3569""""""""""""""""""""""""""""""
3570
3571The constraint codes are, in general, expected to behave the same way they do in
3572GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3573inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3574and GCC likely indicates a bug in LLVM.
3575
3576Some constraint codes are typically supported by all targets:
3577
3578- ``r``: A register in the target's general purpose register class.
3579- ``m``: A memory address operand. It is target-specific what addressing modes
3580 are supported, typical examples are register, or register + register offset,
3581 or register + immediate offset (of some target-specific size).
3582- ``i``: An integer constant (of target-specific width). Allows either a simple
3583 immediate, or a relocatable value.
3584- ``n``: An integer constant -- *not* including relocatable values.
3585- ``s``: An integer constant, but allowing *only* relocatable values.
3586- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3587 useful to pass a label for an asm branch or call.
3588
3589 .. FIXME: but that surely isn't actually okay to jump out of an asm
3590 block without telling llvm about the control transfer???)
3591
3592- ``{register-name}``: Requires exactly the named physical register.
3593
3594Other constraints are target-specific:
3595
3596AArch64:
3597
3598- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3599- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3600 i.e. 0 to 4095 with optional shift by 12.
3601- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3602 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3603- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3604 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3605- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3606 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3607- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3608 32-bit register. This is a superset of ``K``: in addition to the bitmask
3609 immediate, also allows immediate integers which can be loaded with a single
3610 ``MOVZ`` or ``MOVL`` instruction.
3611- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3612 64-bit register. This is a superset of ``L``.
3613- ``Q``: Memory address operand must be in a single register (no
3614 offsets). (However, LLVM currently does this for the ``m`` constraint as
3615 well.)
3616- ``r``: A 32 or 64-bit integer register (W* or X*).
3617- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3618- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3619
3620AMDGPU:
3621
3622- ``r``: A 32 or 64-bit integer register.
3623- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3624- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3625
3626
3627All ARM modes:
3628
3629- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3630 operand. Treated the same as operand ``m``, at the moment.
3631
3632ARM and ARM's Thumb2 mode:
3633
3634- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3635- ``I``: An immediate integer valid for a data-processing instruction.
3636- ``J``: An immediate integer between -4095 and 4095.
3637- ``K``: An immediate integer whose bitwise inverse is valid for a
3638 data-processing instruction. (Can be used with template modifier "``B``" to
3639 print the inverted value).
3640- ``L``: An immediate integer whose negation is valid for a data-processing
3641 instruction. (Can be used with template modifier "``n``" to print the negated
3642 value).
3643- ``M``: A power of two or a integer between 0 and 32.
3644- ``N``: Invalid immediate constraint.
3645- ``O``: Invalid immediate constraint.
3646- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3647- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3648 as ``r``.
3649- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3650 invalid.
3651- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3652 ``d0-d31``, or ``q0-q15``.
3653- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3654 ``d0-d7``, or ``q0-q3``.
3655- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3656 ``s0-s31``.
3657
3658ARM's Thumb1 mode:
3659
3660- ``I``: An immediate integer between 0 and 255.
3661- ``J``: An immediate integer between -255 and -1.
3662- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3663 some amount.
3664- ``L``: An immediate integer between -7 and 7.
3665- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3666- ``N``: An immediate integer between 0 and 31.
3667- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3668- ``r``: A low 32-bit GPR register (``r0-r7``).
3669- ``l``: A low 32-bit GPR register (``r0-r7``).
3670- ``h``: A high GPR register (``r0-r7``).
3671- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3672 ``d0-d31``, or ``q0-q15``.
3673- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3674 ``d0-d7``, or ``q0-q3``.
3675- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3676 ``s0-s31``.
3677
3678
3679Hexagon:
3680
3681- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3682 at the moment.
3683- ``r``: A 32 or 64-bit register.
3684
3685MSP430:
3686
3687- ``r``: An 8 or 16-bit register.
3688
3689MIPS:
3690
3691- ``I``: An immediate signed 16-bit integer.
3692- ``J``: An immediate integer zero.
3693- ``K``: An immediate unsigned 16-bit integer.
3694- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3695- ``N``: An immediate integer between -65535 and -1.
3696- ``O``: An immediate signed 15-bit integer.
3697- ``P``: An immediate integer between 1 and 65535.
3698- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3699 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3700- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3701 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3702 ``m``.
3703- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3704 ``sc`` instruction on the given subtarget (details vary).
3705- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3706- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003707 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3708 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003709- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3710 ``25``).
3711- ``l``: The ``lo`` register, 32 or 64-bit.
3712- ``x``: Invalid.
3713
3714NVPTX:
3715
3716- ``b``: A 1-bit integer register.
3717- ``c`` or ``h``: A 16-bit integer register.
3718- ``r``: A 32-bit integer register.
3719- ``l`` or ``N``: A 64-bit integer register.
3720- ``f``: A 32-bit float register.
3721- ``d``: A 64-bit float register.
3722
3723
3724PowerPC:
3725
3726- ``I``: An immediate signed 16-bit integer.
3727- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3728- ``K``: An immediate unsigned 16-bit integer.
3729- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3730- ``M``: An immediate integer greater than 31.
3731- ``N``: An immediate integer that is an exact power of 2.
3732- ``O``: The immediate integer constant 0.
3733- ``P``: An immediate integer constant whose negation is a signed 16-bit
3734 constant.
3735- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3736 treated the same as ``m``.
3737- ``r``: A 32 or 64-bit integer register.
3738- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3739 ``R1-R31``).
3740- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3741 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3742- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3743 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3744 altivec vector register (``V0-V31``).
3745
3746 .. FIXME: is this a bug that v accepts QPX registers? I think this
3747 is supposed to only use the altivec vector registers?
3748
3749- ``y``: Condition register (``CR0-CR7``).
3750- ``wc``: An individual CR bit in a CR register.
3751- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3752 register set (overlapping both the floating-point and vector register files).
3753- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3754 set.
3755
3756Sparc:
3757
3758- ``I``: An immediate 13-bit signed integer.
3759- ``r``: A 32-bit integer register.
James Y Knightd4e1b002017-05-12 15:59:10 +00003760- ``f``: Any floating-point register on SparcV8, or a floating point
3761 register in the "low" half of the registers on SparcV9.
3762- ``e``: Any floating point register. (Same as ``f`` on SparcV8.)
James Y Knightbc832ed2015-07-08 18:08:36 +00003763
3764SystemZ:
3765
3766- ``I``: An immediate unsigned 8-bit integer.
3767- ``J``: An immediate unsigned 12-bit integer.
3768- ``K``: An immediate signed 16-bit integer.
3769- ``L``: An immediate signed 20-bit integer.
3770- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003771- ``Q``: A memory address operand with a base address and a 12-bit immediate
3772 unsigned displacement.
3773- ``R``: A memory address operand with a base address, a 12-bit immediate
3774 unsigned displacement, and an index register.
3775- ``S``: A memory address operand with a base address and a 20-bit immediate
3776 signed displacement.
3777- ``T``: A memory address operand with a base address, a 20-bit immediate
3778 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003779- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3780- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3781 address context evaluates as zero).
3782- ``h``: A 32-bit value in the high part of a 64bit data register
3783 (LLVM-specific)
3784- ``f``: A 32, 64, or 128-bit floating point register.
3785
3786X86:
3787
3788- ``I``: An immediate integer between 0 and 31.
3789- ``J``: An immediate integer between 0 and 64.
3790- ``K``: An immediate signed 8-bit integer.
3791- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3792 0xffffffff.
3793- ``M``: An immediate integer between 0 and 3.
3794- ``N``: An immediate unsigned 8-bit integer.
3795- ``O``: An immediate integer between 0 and 127.
3796- ``e``: An immediate 32-bit signed integer.
3797- ``Z``: An immediate 32-bit unsigned integer.
3798- ``o``, ``v``: Treated the same as ``m``, at the moment.
3799- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3800 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3801 registers, and on X86-64, it is all of the integer registers.
3802- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3803 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3804- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3805- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3806 existed since i386, and can be accessed without the REX prefix.
3807- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3808- ``y``: A 64-bit MMX register, if MMX is enabled.
3809- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3810 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3811 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3812 512-bit vector operand in an AVX512 register, Otherwise, an error.
3813- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3814- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3815 32-bit mode, a 64-bit integer operand will get split into two registers). It
3816 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3817 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3818 you're better off splitting it yourself, before passing it to the asm
3819 statement.
3820
3821XCore:
3822
3823- ``r``: A 32-bit integer register.
3824
3825
3826.. _inline-asm-modifiers:
3827
3828Asm template argument modifiers
3829^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3830
3831In the asm template string, modifiers can be used on the operand reference, like
3832"``${0:n}``".
3833
3834The modifiers are, in general, expected to behave the same way they do in
3835GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3836inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3837and GCC likely indicates a bug in LLVM.
3838
3839Target-independent:
3840
Sean Silvaa1190322015-08-06 22:56:48 +00003841- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003842 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3843- ``n``: Negate and print immediate integer constant unadorned, without the
3844 target-specific immediate punctuation (e.g. no ``$`` prefix).
3845- ``l``: Print as an unadorned label, without the target-specific label
3846 punctuation (e.g. no ``$`` prefix).
3847
3848AArch64:
3849
3850- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3851 instead of ``x30``, print ``w30``.
3852- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3853- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3854 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3855 ``v*``.
3856
3857AMDGPU:
3858
3859- ``r``: No effect.
3860
3861ARM:
3862
3863- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3864 register).
3865- ``P``: No effect.
3866- ``q``: No effect.
3867- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3868 as ``d4[1]`` instead of ``s9``)
3869- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3870 prefix.
3871- ``L``: Print the low 16-bits of an immediate integer constant.
3872- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3873 register operands subsequent to the specified one (!), so use carefully.
3874- ``Q``: Print the low-order register of a register-pair, or the low-order
3875 register of a two-register operand.
3876- ``R``: Print the high-order register of a register-pair, or the high-order
3877 register of a two-register operand.
3878- ``H``: Print the second register of a register-pair. (On a big-endian system,
3879 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3880 to ``R``.)
3881
3882 .. FIXME: H doesn't currently support printing the second register
3883 of a two-register operand.
3884
3885- ``e``: Print the low doubleword register of a NEON quad register.
3886- ``f``: Print the high doubleword register of a NEON quad register.
3887- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3888 adornment.
3889
3890Hexagon:
3891
3892- ``L``: Print the second register of a two-register operand. Requires that it
3893 has been allocated consecutively to the first.
3894
3895 .. FIXME: why is it restricted to consecutive ones? And there's
3896 nothing that ensures that happens, is there?
3897
3898- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3899 nothing. Used to print 'addi' vs 'add' instructions.
3900
3901MSP430:
3902
3903No additional modifiers.
3904
3905MIPS:
3906
3907- ``X``: Print an immediate integer as hexadecimal
3908- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3909- ``d``: Print an immediate integer as decimal.
3910- ``m``: Subtract one and print an immediate integer as decimal.
3911- ``z``: Print $0 if an immediate zero, otherwise print normally.
3912- ``L``: Print the low-order register of a two-register operand, or prints the
3913 address of the low-order word of a double-word memory operand.
3914
3915 .. FIXME: L seems to be missing memory operand support.
3916
3917- ``M``: Print the high-order register of a two-register operand, or prints the
3918 address of the high-order word of a double-word memory operand.
3919
3920 .. FIXME: M seems to be missing memory operand support.
3921
3922- ``D``: Print the second register of a two-register operand, or prints the
3923 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3924 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3925 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003926- ``w``: No effect. Provided for compatibility with GCC which requires this
3927 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3928 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003929
3930NVPTX:
3931
3932- ``r``: No effect.
3933
3934PowerPC:
3935
3936- ``L``: Print the second register of a two-register operand. Requires that it
3937 has been allocated consecutively to the first.
3938
3939 .. FIXME: why is it restricted to consecutive ones? And there's
3940 nothing that ensures that happens, is there?
3941
3942- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3943 nothing. Used to print 'addi' vs 'add' instructions.
3944- ``y``: For a memory operand, prints formatter for a two-register X-form
3945 instruction. (Currently always prints ``r0,OPERAND``).
3946- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3947 otherwise. (NOTE: LLVM does not support update form, so this will currently
3948 always print nothing)
3949- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3950 not support indexed form, so this will currently always print nothing)
3951
3952Sparc:
3953
3954- ``r``: No effect.
3955
3956SystemZ:
3957
3958SystemZ implements only ``n``, and does *not* support any of the other
3959target-independent modifiers.
3960
3961X86:
3962
3963- ``c``: Print an unadorned integer or symbol name. (The latter is
3964 target-specific behavior for this typically target-independent modifier).
3965- ``A``: Print a register name with a '``*``' before it.
3966- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3967 operand.
3968- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3969 memory operand.
3970- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3971 operand.
3972- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3973 operand.
3974- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3975 available, otherwise the 32-bit register name; do nothing on a memory operand.
3976- ``n``: Negate and print an unadorned integer, or, for operands other than an
3977 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3978 the operand. (The behavior for relocatable symbol expressions is a
3979 target-specific behavior for this typically target-independent modifier)
3980- ``H``: Print a memory reference with additional offset +8.
3981- ``P``: Print a memory reference or operand for use as the argument of a call
3982 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3983
3984XCore:
3985
3986No additional modifiers.
3987
3988
Sean Silvab084af42012-12-07 10:36:55 +00003989Inline Asm Metadata
3990^^^^^^^^^^^^^^^^^^^
3991
3992The call instructions that wrap inline asm nodes may have a
3993"``!srcloc``" MDNode attached to it that contains a list of constant
3994integers. If present, the code generator will use the integer as the
3995location cookie value when report errors through the ``LLVMContext``
3996error reporting mechanisms. This allows a front-end to correlate backend
3997errors that occur with inline asm back to the source code that produced
3998it. For example:
3999
4000.. code-block:: llvm
4001
4002 call void asm sideeffect "something bad", ""(), !srcloc !42
4003 ...
4004 !42 = !{ i32 1234567 }
4005
4006It is up to the front-end to make sense of the magic numbers it places
4007in the IR. If the MDNode contains multiple constants, the code generator
4008will use the one that corresponds to the line of the asm that the error
4009occurs on.
4010
4011.. _metadata:
4012
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004013Metadata
4014========
Sean Silvab084af42012-12-07 10:36:55 +00004015
4016LLVM IR allows metadata to be attached to instructions in the program
4017that can convey extra information about the code to the optimizers and
4018code generator. One example application of metadata is source-level
4019debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004020
Sean Silvaa1190322015-08-06 22:56:48 +00004021Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004022``call`` instruction, it uses the ``metadata`` type.
4023
4024All metadata are identified in syntax by a exclamation point ('``!``').
4025
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004026.. _metadata-string:
4027
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004028Metadata Nodes and Metadata Strings
4029-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00004030
4031A metadata string is a string surrounded by double quotes. It can
4032contain any character by escaping non-printable characters with
4033"``\xx``" where "``xx``" is the two digit hex code. For example:
4034"``!"test\00"``".
4035
4036Metadata nodes are represented with notation similar to structure
4037constants (a comma separated list of elements, surrounded by braces and
4038preceded by an exclamation point). Metadata nodes can have any values as
4039their operand. For example:
4040
4041.. code-block:: llvm
4042
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004043 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00004044
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004045Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
4046
Renato Golin124f2592016-07-20 12:16:38 +00004047.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004048
4049 !0 = distinct !{!"test\00", i32 10}
4050
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004051``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00004052content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004053when metadata operands change.
4054
Sean Silvab084af42012-12-07 10:36:55 +00004055A :ref:`named metadata <namedmetadatastructure>` is a collection of
4056metadata nodes, which can be looked up in the module symbol table. For
4057example:
4058
4059.. code-block:: llvm
4060
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004061 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00004062
Adrian Prantl1b842da2017-07-28 20:44:29 +00004063Metadata can be used as function arguments. Here the ``llvm.dbg.value``
4064intrinsic is using three metadata arguments:
Sean Silvab084af42012-12-07 10:36:55 +00004065
4066.. code-block:: llvm
4067
Adrian Prantlabe04752017-07-28 20:21:02 +00004068 call void @llvm.dbg.value(metadata !24, metadata !25, metadata !26)
Sean Silvab084af42012-12-07 10:36:55 +00004069
Peter Collingbourne50108682015-11-06 02:41:02 +00004070Metadata can be attached to an instruction. Here metadata ``!21`` is attached
4071to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00004072
4073.. code-block:: llvm
4074
4075 %indvar.next = add i64 %indvar, 1, !dbg !21
4076
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004077Metadata can also be attached to a function or a global variable. Here metadata
4078``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
4079and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00004080
4081.. code-block:: llvm
4082
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004083 declare !dbg !22 void @f1()
4084 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00004085 ret void
4086 }
4087
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004088 @g1 = global i32 0, !dbg !22
4089 @g2 = external global i32, !dbg !22
4090
4091A transformation is required to drop any metadata attachment that it does not
4092know or know it can't preserve. Currently there is an exception for metadata
4093attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
4094unconditionally dropped unless the global is itself deleted.
4095
4096Metadata attached to a module using named metadata may not be dropped, with
4097the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
4098
Sean Silvab084af42012-12-07 10:36:55 +00004099More information about specific metadata nodes recognized by the
4100optimizers and code generator is found below.
4101
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004102.. _specialized-metadata:
4103
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004104Specialized Metadata Nodes
4105^^^^^^^^^^^^^^^^^^^^^^^^^^
4106
4107Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00004108to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004109order.
4110
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004111These aren't inherently debug info centric, but currently all the specialized
4112metadata nodes are related to debug info.
4113
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004114.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004115
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004116DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004117"""""""""""""
4118
Sean Silvaa1190322015-08-06 22:56:48 +00004119``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004120``retainedTypes:``, ``globals:``, ``imports:`` and ``macros:`` fields are tuples
4121containing the debug info to be emitted along with the compile unit, regardless
4122of code optimizations (some nodes are only emitted if there are references to
4123them from instructions). The ``debugInfoForProfiling:`` field is a boolean
4124indicating whether or not line-table discriminators are updated to provide
4125more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004126
Renato Golin124f2592016-07-20 12:16:38 +00004127.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004128
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004129 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004130 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004131 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004132 enums: !2, retainedTypes: !3, globals: !4, imports: !5,
4133 macros: !6, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004134
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004135Compile unit descriptors provide the root scope for objects declared in a
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004136specific compilation unit. File descriptors are defined using this scope. These
4137descriptors are collected by a named metadata node ``!llvm.dbg.cu``. They keep
4138track of global variables, type information, and imported entities (declarations
4139and namespaces).
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004140
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004141.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004142
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004143DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004144""""""
4145
Sean Silvaa1190322015-08-06 22:56:48 +00004146``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004147
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004148.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004149
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004150 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4151 checksumkind: CSK_MD5,
4152 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004153
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004154Files are sometimes used in ``scope:`` fields, and are the only valid target
4155for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004156Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004157
Michael Kuperstein605308a2015-05-14 10:58:59 +00004158.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004159
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004160DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004161"""""""""""
4162
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004163``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004164``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004165
Renato Golin124f2592016-07-20 12:16:38 +00004166.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004167
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004168 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004169 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004170 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004171
Sean Silvaa1190322015-08-06 22:56:48 +00004172The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004173following:
4174
Renato Golin124f2592016-07-20 12:16:38 +00004175.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004176
4177 DW_ATE_address = 1
4178 DW_ATE_boolean = 2
4179 DW_ATE_float = 4
4180 DW_ATE_signed = 5
4181 DW_ATE_signed_char = 6
4182 DW_ATE_unsigned = 7
4183 DW_ATE_unsigned_char = 8
4184
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004185.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004186
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004187DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004188""""""""""""""""
4189
Sean Silvaa1190322015-08-06 22:56:48 +00004190``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004191refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004192types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004193represents a function with no return value (such as ``void foo() {}`` in C++).
4194
Renato Golin124f2592016-07-20 12:16:38 +00004195.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004196
4197 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4198 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004199 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004200
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004201.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004202
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004203DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004204"""""""""""""
4205
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004206``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004207qualified types.
4208
Renato Golin124f2592016-07-20 12:16:38 +00004209.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004210
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004211 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004212 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004213 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004214 align: 32)
4215
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004216The following ``tag:`` values are valid:
4217
Renato Golin124f2592016-07-20 12:16:38 +00004218.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004219
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004220 DW_TAG_member = 13
4221 DW_TAG_pointer_type = 15
4222 DW_TAG_reference_type = 16
4223 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004224 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004225 DW_TAG_ptr_to_member_type = 31
4226 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004227 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004228 DW_TAG_volatile_type = 53
4229 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004230 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004231
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004232.. _DIDerivedTypeMember:
4233
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004234``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004235<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004236``offset:`` is the member's bit offset. If the composite type has an ODR
4237``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4238uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004239
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004240``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4241field of :ref:`composite types <DICompositeType>` to describe parents and
4242friends.
4243
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004244``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4245
4246``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004247``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4248are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004249
4250Note that the ``void *`` type is expressed as a type derived from NULL.
4251
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004252.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004253
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004254DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004255"""""""""""""""
4256
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004257``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004258structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004259
4260If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004261identifier used for type merging between modules. When specified,
4262:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4263derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4264``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004265
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004266For a given ``identifier:``, there should only be a single composite type that
4267does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4268together will unique such definitions at parse time via the ``identifier:``
4269field, even if the nodes are ``distinct``.
4270
Renato Golin124f2592016-07-20 12:16:38 +00004271.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004272
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004273 !0 = !DIEnumerator(name: "SixKind", value: 7)
4274 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4275 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4276 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004277 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4278 elements: !{!0, !1, !2})
4279
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004280The following ``tag:`` values are valid:
4281
Renato Golin124f2592016-07-20 12:16:38 +00004282.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004283
4284 DW_TAG_array_type = 1
4285 DW_TAG_class_type = 2
4286 DW_TAG_enumeration_type = 4
4287 DW_TAG_structure_type = 19
4288 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004289
4290For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004291descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004292level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004293array type is a native packed vector.
4294
4295For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004296descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004297value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004298``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004299
4300For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4301``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004302<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4303``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4304``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004305
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004306.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004307
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004308DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004309""""""""""
4310
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004311``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004312:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Sander de Smalenfdf40912018-01-24 09:56:07 +00004313``count: !9`` describes the count with a :ref:`DILocalVariable`.
4314``count: !11`` describes the count with a :ref:`DIGlobalVariable`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004315
4316.. code-block:: llvm
4317
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004318 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4319 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4320 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004321
Sander de Smalenfdf40912018-01-24 09:56:07 +00004322 ; Scopes used in rest of example
4323 !6 = !DIFile(filename: "vla.c", directory: "/path/to/file")
4324 !7 = distinct !DICompileUnit(language: DW_LANG_C99, ...
4325 !8 = distinct !DISubprogram(name: "foo", scope: !7, file: !6, line: 5, ...
4326
4327 ; Use of local variable as count value
4328 !9 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
4329 !10 = !DILocalVariable(name: "count", scope: !8, file: !6, line: 42, type: !9)
4330 !11 = !DISubrange(count !10, lowerBound: 0)
4331
4332 ; Use of global variable as count value
4333 !12 = !DIGlobalVariable(name: "count", scope: !8, file: !6, line: 22, type: !9)
4334 !13 = !DISubrange(count !12, lowerBound: 0)
4335
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004336.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004337
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004338DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004339""""""""""""
4340
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004341``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4342variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004343
4344.. code-block:: llvm
4345
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004346 !0 = !DIEnumerator(name: "SixKind", value: 7)
4347 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4348 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004349
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004350DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004351"""""""""""""""""""""""
4352
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004353``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004354language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004355:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004356
4357.. code-block:: llvm
4358
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004359 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004360
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004361DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004362""""""""""""""""""""""""
4363
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004364``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004365language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004366but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004367``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004368:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004369
4370.. code-block:: llvm
4371
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004372 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004373
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004374DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004375"""""""""""
4376
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004377``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004378
4379.. code-block:: llvm
4380
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004381 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004382
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004383DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004384""""""""""""""""
4385
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004386``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004387
4388.. code-block:: llvm
4389
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004390 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004391 file: !2, line: 7, type: !3, isLocal: true,
4392 isDefinition: false, variable: i32* @foo,
4393 declaration: !4)
4394
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004395All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004396:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004397
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004398.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004399
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004400DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004401""""""""""""
4402
Peter Collingbourne50108682015-11-06 02:41:02 +00004403``DISubprogram`` nodes represent functions from the source language. A
4404``DISubprogram`` may be attached to a function definition using ``!dbg``
4405metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4406that must be retained, even if their IR counterparts are optimized out of
4407the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004408
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004409.. _DISubprogramDeclaration:
4410
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004411When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004412tree as opposed to a definition of a function. If the scope is a composite
4413type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4414then the subprogram declaration is uniqued based only on its ``linkageName:``
4415and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004416
Renato Golin124f2592016-07-20 12:16:38 +00004417.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004418
Peter Collingbourne50108682015-11-06 02:41:02 +00004419 define void @_Z3foov() !dbg !0 {
4420 ...
4421 }
4422
4423 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4424 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004425 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004426 containingType: !4,
4427 virtuality: DW_VIRTUALITY_pure_virtual,
4428 virtualIndex: 10, flags: DIFlagPrototyped,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004429 isOptimized: true, unit: !5, templateParams: !6,
4430 declaration: !7, variables: !8, thrownTypes: !9)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004431
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004432.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004433
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004434DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004435""""""""""""""
4436
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004437``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004438<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004439two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004440fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004441
Renato Golin124f2592016-07-20 12:16:38 +00004442.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004443
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004444 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004445
4446Usually lexical blocks are ``distinct`` to prevent node merging based on
4447operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004448
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004449.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004450
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004451DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004452""""""""""""""""""
4453
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004454``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004455:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004456indicate textual inclusion, or the ``discriminator:`` field can be used to
4457discriminate between control flow within a single block in the source language.
4458
4459.. code-block:: llvm
4460
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004461 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4462 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4463 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004464
Michael Kuperstein605308a2015-05-14 10:58:59 +00004465.. _DILocation:
4466
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004467DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004468""""""""""
4469
Sean Silvaa1190322015-08-06 22:56:48 +00004470``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004471mandatory, and points at an :ref:`DILexicalBlockFile`, an
4472:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004473
4474.. code-block:: llvm
4475
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004476 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004477
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004478.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004479
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004480DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004481"""""""""""""""
4482
Sean Silvaa1190322015-08-06 22:56:48 +00004483``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004484the ``arg:`` field is set to non-zero, then this variable is a subprogram
4485parameter, and it will be included in the ``variables:`` field of its
4486:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004487
Renato Golin124f2592016-07-20 12:16:38 +00004488.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004489
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004490 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4491 type: !3, flags: DIFlagArtificial)
4492 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4493 type: !3)
4494 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004495
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004496DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004497""""""""""""
4498
Adrian Prantlb44c7762017-03-22 18:01:01 +00004499``DIExpression`` nodes represent expressions that are inspired by the DWARF
4500expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
4501(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
4502referenced LLVM variable relates to the source language variable.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004503
4504The current supported vocabulary is limited:
4505
Adrian Prantl6825fb62017-04-18 01:21:53 +00004506- ``DW_OP_deref`` dereferences the top of the expression stack.
Florian Hahnffc498d2017-06-14 13:14:38 +00004507- ``DW_OP_plus`` pops the last two entries from the expression stack, adds
4508 them together and appends the result to the expression stack.
4509- ``DW_OP_minus`` pops the last two entries from the expression stack, subtracts
4510 the last entry from the second last entry and appends the result to the
4511 expression stack.
Florian Hahnc9c403c2017-06-13 16:54:44 +00004512- ``DW_OP_plus_uconst, 93`` adds ``93`` to the working expression.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004513- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
4514 here, respectively) of the variable fragment from the working expression. Note
Hiroshi Inoue760c0c92018-01-16 13:19:48 +00004515 that contrary to DW_OP_bit_piece, the offset is describing the location
Adrian Prantlb44c7762017-03-22 18:01:01 +00004516 within the described source variable.
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004517- ``DW_OP_swap`` swaps top two stack entries.
4518- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
4519 of the stack is treated as an address. The second stack entry is treated as an
4520 address space identifier.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004521- ``DW_OP_stack_value`` marks a constant value.
4522
Adrian Prantl6825fb62017-04-18 01:21:53 +00004523DWARF specifies three kinds of simple location descriptions: Register, memory,
4524and implicit location descriptions. Register and memory location descriptions
4525describe the *location* of a source variable (in the sense that a debugger might
4526modify its value), whereas implicit locations describe merely the *value* of a
4527source variable. DIExpressions also follow this model: A DIExpression that
4528doesn't have a trailing ``DW_OP_stack_value`` will describe an *address* when
4529combined with a concrete location.
4530
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004531.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004532
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004533 !0 = !DIExpression(DW_OP_deref)
Florian Hahnc9c403c2017-06-13 16:54:44 +00004534 !1 = !DIExpression(DW_OP_plus_uconst, 3)
Florian Hahnffc498d2017-06-14 13:14:38 +00004535 !1 = !DIExpression(DW_OP_constu, 3, DW_OP_plus)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004536 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
Florian Hahnffc498d2017-06-14 13:14:38 +00004537 !3 = !DIExpression(DW_OP_deref, DW_OP_constu, 3, DW_OP_plus, DW_OP_LLVM_fragment, 3, 7)
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004538 !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004539 !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004540
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004541DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004542""""""""""""""
4543
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004544``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004545
4546.. code-block:: llvm
4547
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004548 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004549 getter: "getFoo", attributes: 7, type: !2)
4550
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004551DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004552""""""""""""""""
4553
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004554``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004555compile unit.
4556
Renato Golin124f2592016-07-20 12:16:38 +00004557.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004558
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004559 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004560 entity: !1, line: 7)
4561
Amjad Abouda9bcf162015-12-10 12:56:35 +00004562DIMacro
4563"""""""
4564
4565``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4566The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004567defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004568used to expand the macro identifier.
4569
Renato Golin124f2592016-07-20 12:16:38 +00004570.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004571
4572 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4573 value: "((x) + 1)")
4574 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4575
4576DIMacroFile
4577"""""""""""
4578
4579``DIMacroFile`` nodes represent inclusion of source files.
4580The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4581appear in the included source file.
4582
Renato Golin124f2592016-07-20 12:16:38 +00004583.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004584
4585 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4586 nodes: !3)
4587
Sean Silvab084af42012-12-07 10:36:55 +00004588'``tbaa``' Metadata
4589^^^^^^^^^^^^^^^^^^^
4590
4591In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004592suitable for doing type based alias analysis (TBAA). Instead, metadata is
4593added to the IR to describe a type system of a higher level language. This
4594can be used to implement C/C++ strict type aliasing rules, but it can also
4595be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004596
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004597This description of LLVM's TBAA system is broken into two parts:
4598:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4599:ref:`Representation<tbaa_node_representation>` talks about the metadata
4600encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004601
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004602It is always possible to trace any TBAA node to a "root" TBAA node (details
4603in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4604nodes with different roots have an unknown aliasing relationship, and LLVM
4605conservatively infers ``MayAlias`` between them. The rules mentioned in
4606this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004607
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004608.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004609
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004610Semantics
4611"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004612
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004613The TBAA metadata system, referred to as "struct path TBAA" (not to be
4614confused with ``tbaa.struct``), consists of the following high level
4615concepts: *Type Descriptors*, further subdivided into scalar type
4616descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004617
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004618**Type descriptors** describe the type system of the higher level language
4619being compiled. **Scalar type descriptors** describe types that do not
4620contain other types. Each scalar type has a parent type, which must also
4621be a scalar type or the TBAA root. Via this parent relation, scalar types
4622within a TBAA root form a tree. **Struct type descriptors** denote types
4623that contain a sequence of other type descriptors, at known offsets. These
4624contained type descriptors can either be struct type descriptors themselves
4625or scalar type descriptors.
4626
4627**Access tags** are metadata nodes attached to load and store instructions.
4628Access tags use type descriptors to describe the *location* being accessed
4629in terms of the type system of the higher level language. Access tags are
4630tuples consisting of a base type, an access type and an offset. The base
4631type is a scalar type descriptor or a struct type descriptor, the access
4632type is a scalar type descriptor, and the offset is a constant integer.
4633
4634The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4635things:
4636
4637 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4638 or store) of a value of type ``AccessTy`` contained in the struct type
4639 ``BaseTy`` at offset ``Offset``.
4640
4641 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4642 ``AccessTy`` must be the same; and the access tag describes a scalar
4643 access with scalar type ``AccessTy``.
4644
4645We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4646tuples this way:
4647
4648 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4649 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4650 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4651 undefined if ``Offset`` is non-zero.
4652
4653 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4654 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4655 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4656 to be relative within that inner type.
4657
4658A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4659aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4660Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4661Offset2)`` via the ``Parent`` relation or vice versa.
4662
4663As a concrete example, the type descriptor graph for the following program
4664
4665.. code-block:: c
4666
4667 struct Inner {
4668 int i; // offset 0
4669 float f; // offset 4
4670 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004671
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004672 struct Outer {
4673 float f; // offset 0
4674 double d; // offset 4
4675 struct Inner inner_a; // offset 12
4676 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004677
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004678 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4679 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4680 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
4681 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, IntScalarTy, 16)
4682 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4683 }
4684
4685is (note that in C and C++, ``char`` can be used to access any arbitrary
4686type):
4687
4688.. code-block:: text
4689
4690 Root = "TBAA Root"
4691 CharScalarTy = ("char", Root, 0)
4692 FloatScalarTy = ("float", CharScalarTy, 0)
4693 DoubleScalarTy = ("double", CharScalarTy, 0)
4694 IntScalarTy = ("int", CharScalarTy, 0)
4695 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4696 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4697 (InnerStructTy, 12)}
4698
4699
4700with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
47010)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4702``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4703
4704.. _tbaa_node_representation:
4705
4706Representation
4707""""""""""""""
4708
4709The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4710with exactly one ``MDString`` operand.
4711
4712Scalar type descriptors are represented as an ``MDNode`` s with two
4713operands. The first operand is an ``MDString`` denoting the name of the
4714struct type. LLVM does not assign meaning to the value of this operand, it
4715only cares about it being an ``MDString``. The second operand is an
4716``MDNode`` which points to the parent for said scalar type descriptor,
4717which is either another scalar type descriptor or the TBAA root. Scalar
4718type descriptors can have an optional third argument, but that must be the
4719constant integer zero.
4720
4721Struct type descriptors are represented as ``MDNode`` s with an odd number
4722of operands greater than 1. The first operand is an ``MDString`` denoting
4723the name of the struct type. Like in scalar type descriptors the actual
4724value of this name operand is irrelevant to LLVM. After the name operand,
4725the struct type descriptors have a sequence of alternating ``MDNode`` and
4726``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4727an ``MDNode``, denotes a contained field, and the 2N th operand, a
4728``ConstantInt``, is the offset of the said contained field. The offsets
4729must be in non-decreasing order.
4730
4731Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4732The first operand is an ``MDNode`` pointing to the node representing the
4733base type. The second operand is an ``MDNode`` pointing to the node
4734representing the access type. The third operand is a ``ConstantInt`` that
4735states the offset of the access. If a fourth field is present, it must be
4736a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4737that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004738``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004739AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4740the access type and the base type of an access tag must be the same, and
4741that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004742
4743'``tbaa.struct``' Metadata
4744^^^^^^^^^^^^^^^^^^^^^^^^^^
4745
4746The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4747aggregate assignment operations in C and similar languages, however it
4748is defined to copy a contiguous region of memory, which is more than
4749strictly necessary for aggregate types which contain holes due to
4750padding. Also, it doesn't contain any TBAA information about the fields
4751of the aggregate.
4752
4753``!tbaa.struct`` metadata can describe which memory subregions in a
4754memcpy are padding and what the TBAA tags of the struct are.
4755
4756The current metadata format is very simple. ``!tbaa.struct`` metadata
4757nodes are a list of operands which are in conceptual groups of three.
4758For each group of three, the first operand gives the byte offset of a
4759field in bytes, the second gives its size in bytes, and the third gives
4760its tbaa tag. e.g.:
4761
4762.. code-block:: llvm
4763
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004764 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004765
4766This describes a struct with two fields. The first is at offset 0 bytes
4767with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4768and has size 4 bytes and has tbaa tag !2.
4769
4770Note that the fields need not be contiguous. In this example, there is a
47714 byte gap between the two fields. This gap represents padding which
4772does not carry useful data and need not be preserved.
4773
Hal Finkel94146652014-07-24 14:25:39 +00004774'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004775^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004776
4777``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4778noalias memory-access sets. This means that some collection of memory access
4779instructions (loads, stores, memory-accessing calls, etc.) that carry
4780``noalias`` metadata can specifically be specified not to alias with some other
4781collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004782Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004783a domain.
4784
4785When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004786of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004787subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004788instruction's ``noalias`` list, then the two memory accesses are assumed not to
4789alias.
Hal Finkel94146652014-07-24 14:25:39 +00004790
Adam Nemet569a5b32016-04-27 00:52:48 +00004791Because scopes in one domain don't affect scopes in other domains, separate
4792domains can be used to compose multiple independent noalias sets. This is
4793used for example during inlining. As the noalias function parameters are
4794turned into noalias scope metadata, a new domain is used every time the
4795function is inlined.
4796
Hal Finkel029cde62014-07-25 15:50:02 +00004797The metadata identifying each domain is itself a list containing one or two
4798entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004799string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004800self-reference can be used to create globally unique domain names. A
4801descriptive string may optionally be provided as a second list entry.
4802
4803The metadata identifying each scope is also itself a list containing two or
4804three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004805is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004806self-reference can be used to create globally unique scope names. A metadata
4807reference to the scope's domain is the second entry. A descriptive string may
4808optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004809
4810For example,
4811
4812.. code-block:: llvm
4813
Hal Finkel029cde62014-07-25 15:50:02 +00004814 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004815 !0 = !{!0}
4816 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004817
Hal Finkel029cde62014-07-25 15:50:02 +00004818 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004819 !2 = !{!2, !0}
4820 !3 = !{!3, !0}
4821 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004822
Hal Finkel029cde62014-07-25 15:50:02 +00004823 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004824 !5 = !{!4} ; A list containing only scope !4
4825 !6 = !{!4, !3, !2}
4826 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004827
4828 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004829 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004830 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004831
Hal Finkel029cde62014-07-25 15:50:02 +00004832 ; These two instructions also don't alias (for domain !1, the set of scopes
4833 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004834 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004835 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004836
Adam Nemet0a8416f2015-05-11 08:30:28 +00004837 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004838 ; the !noalias list is not a superset of, or equal to, the scopes in the
4839 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004840 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004841 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004842
Sean Silvab084af42012-12-07 10:36:55 +00004843'``fpmath``' Metadata
4844^^^^^^^^^^^^^^^^^^^^^
4845
4846``fpmath`` metadata may be attached to any instruction of floating point
4847type. It can be used to express the maximum acceptable error in the
4848result of that instruction, in ULPs, thus potentially allowing the
4849compiler to use a more efficient but less accurate method of computing
4850it. ULP is defined as follows:
4851
4852 If ``x`` is a real number that lies between two finite consecutive
4853 floating-point numbers ``a`` and ``b``, without being equal to one
4854 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4855 distance between the two non-equal finite floating-point numbers
4856 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4857
Matt Arsenault82f41512016-06-27 19:43:15 +00004858The metadata node shall consist of a single positive float type number
4859representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004860
4861.. code-block:: llvm
4862
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004863 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004864
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004865.. _range-metadata:
4866
Sean Silvab084af42012-12-07 10:36:55 +00004867'``range``' Metadata
4868^^^^^^^^^^^^^^^^^^^^
4869
Jingyue Wu37fcb592014-06-19 16:50:16 +00004870``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4871integer types. It expresses the possible ranges the loaded value or the value
4872returned by the called function at this call site is in. The ranges are
4873represented with a flattened list of integers. The loaded value or the value
4874returned is known to be in the union of the ranges defined by each consecutive
4875pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004876
4877- The type must match the type loaded by the instruction.
4878- The pair ``a,b`` represents the range ``[a,b)``.
4879- Both ``a`` and ``b`` are constants.
4880- The range is allowed to wrap.
4881- The range should not represent the full or empty set. That is,
4882 ``a!=b``.
4883
4884In addition, the pairs must be in signed order of the lower bound and
4885they must be non-contiguous.
4886
4887Examples:
4888
4889.. code-block:: llvm
4890
David Blaikiec7aabbb2015-03-04 22:06:14 +00004891 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4892 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004893 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4894 %d = invoke i8 @bar() to label %cont
4895 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004896 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004897 !0 = !{ i8 0, i8 2 }
4898 !1 = !{ i8 255, i8 2 }
4899 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4900 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004901
Peter Collingbourne235c2752016-12-08 19:01:00 +00004902'``absolute_symbol``' Metadata
4903^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4904
4905``absolute_symbol`` metadata may be attached to a global variable
4906declaration. It marks the declaration as a reference to an absolute symbol,
4907which causes the backend to use absolute relocations for the symbol even
4908in position independent code, and expresses the possible ranges that the
4909global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00004910``range`` metadata, with the extension that the pair ``all-ones,all-ones``
4911may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00004912
Peter Collingbourned88f9282017-01-20 21:56:37 +00004913Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00004914
4915.. code-block:: llvm
4916
4917 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00004918 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00004919
4920 ...
4921 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00004922 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00004923
Matthew Simpson36bbc8c2017-10-16 22:22:11 +00004924'``callees``' Metadata
4925^^^^^^^^^^^^^^^^^^^^^^
4926
4927``callees`` metadata may be attached to indirect call sites. If ``callees``
4928metadata is attached to a call site, and any callee is not among the set of
4929functions provided by the metadata, the behavior is undefined. The intent of
4930this metadata is to facilitate optimizations such as indirect-call promotion.
4931For example, in the code below, the call instruction may only target the
4932``add`` or ``sub`` functions:
4933
4934.. code-block:: llvm
4935
4936 %result = call i64 %binop(i64 %x, i64 %y), !callees !0
4937
4938 ...
4939 !0 = !{i64 (i64, i64)* @add, i64 (i64, i64)* @sub}
4940
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004941'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004942^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004943
4944``unpredictable`` metadata may be attached to any branch or switch
4945instruction. It can be used to express the unpredictability of control
4946flow. Similar to the llvm.expect intrinsic, it may be used to alter
4947optimizations related to compare and branch instructions. The metadata
4948is treated as a boolean value; if it exists, it signals that the branch
4949or switch that it is attached to is completely unpredictable.
4950
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004951'``llvm.loop``'
4952^^^^^^^^^^^^^^^
4953
4954It is sometimes useful to attach information to loop constructs. Currently,
4955loop metadata is implemented as metadata attached to the branch instruction
4956in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004957guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004958specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004959
4960The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004961itself to avoid merging it with any other identifier metadata, e.g.,
4962during module linkage or function inlining. That is, each loop should refer
4963to their own identification metadata even if they reside in separate functions.
4964The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004965constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004966
4967.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004968
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004969 !0 = !{!0}
4970 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004971
Mark Heffernan893752a2014-07-18 19:24:51 +00004972The loop identifier metadata can be used to specify additional
4973per-loop metadata. Any operands after the first operand can be treated
4974as user-defined metadata. For example the ``llvm.loop.unroll.count``
4975suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004976
Paul Redmond5fdf8362013-05-28 20:00:34 +00004977.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004978
Paul Redmond5fdf8362013-05-28 20:00:34 +00004979 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4980 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004981 !0 = !{!0, !1}
4982 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004983
Mark Heffernan9d20e422014-07-21 23:11:03 +00004984'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4985^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004986
Mark Heffernan9d20e422014-07-21 23:11:03 +00004987Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4988used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004989vectorization width and interleave count. These metadata should be used in
4990conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004991``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4992optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004993it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004994which contains information about loop-carried memory dependencies can be helpful
4995in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004996
Mark Heffernan9d20e422014-07-21 23:11:03 +00004997'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004998^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4999
Mark Heffernan9d20e422014-07-21 23:11:03 +00005000This metadata suggests an interleave count to the loop interleaver.
5001The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00005002second operand is an integer specifying the interleave count. For
5003example:
5004
5005.. code-block:: llvm
5006
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005007 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005008
Mark Heffernan9d20e422014-07-21 23:11:03 +00005009Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00005010multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00005011then the interleave count will be determined automatically.
5012
5013'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00005014^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00005015
5016This metadata selectively enables or disables vectorization for the loop. The
5017first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00005018is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000050190 disables vectorization:
5020
5021.. code-block:: llvm
5022
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005023 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
5024 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00005025
5026'``llvm.loop.vectorize.width``' Metadata
5027^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5028
5029This metadata sets the target width of the vectorizer. The first
5030operand is the string ``llvm.loop.vectorize.width`` and the second
5031operand is an integer specifying the width. For example:
5032
5033.. code-block:: llvm
5034
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005035 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005036
5037Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00005038vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000050390 or if the loop does not have this metadata the width will be
5040determined automatically.
5041
5042'``llvm.loop.unroll``'
5043^^^^^^^^^^^^^^^^^^^^^^
5044
5045Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
5046optimization hints such as the unroll factor. ``llvm.loop.unroll``
5047metadata should be used in conjunction with ``llvm.loop`` loop
5048identification metadata. The ``llvm.loop.unroll`` metadata are only
5049optimization hints and the unrolling will only be performed if the
5050optimizer believes it is safe to do so.
5051
Mark Heffernan893752a2014-07-18 19:24:51 +00005052'``llvm.loop.unroll.count``' Metadata
5053^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5054
5055This metadata suggests an unroll factor to the loop unroller. The
5056first operand is the string ``llvm.loop.unroll.count`` and the second
5057operand is a positive integer specifying the unroll factor. For
5058example:
5059
5060.. code-block:: llvm
5061
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005062 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005063
5064If the trip count of the loop is less than the unroll count the loop
5065will be partially unrolled.
5066
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005067'``llvm.loop.unroll.disable``' Metadata
5068^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5069
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005070This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00005071which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005072
5073.. code-block:: llvm
5074
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005075 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005076
Kevin Qin715b01e2015-03-09 06:14:18 +00005077'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00005078^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00005079
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005080This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00005081operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00005082
5083.. code-block:: llvm
5084
5085 !0 = !{!"llvm.loop.unroll.runtime.disable"}
5086
Mark Heffernan89391542015-08-10 17:28:08 +00005087'``llvm.loop.unroll.enable``' Metadata
5088^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5089
5090This metadata suggests that the loop should be fully unrolled if the trip count
5091is known at compile time and partially unrolled if the trip count is not known
5092at compile time. The metadata has a single operand which is the string
5093``llvm.loop.unroll.enable``. For example:
5094
5095.. code-block:: llvm
5096
5097 !0 = !{!"llvm.loop.unroll.enable"}
5098
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005099'``llvm.loop.unroll.full``' Metadata
5100^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5101
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005102This metadata suggests that the loop should be unrolled fully. The
5103metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005104For example:
5105
5106.. code-block:: llvm
5107
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005108 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005109
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005110'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00005111^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005112
5113This metadata indicates that the loop should not be versioned for the purpose
5114of enabling loop-invariant code motion (LICM). The metadata has a single operand
5115which is the string ``llvm.loop.licm_versioning.disable``. For example:
5116
5117.. code-block:: llvm
5118
5119 !0 = !{!"llvm.loop.licm_versioning.disable"}
5120
Adam Nemetd2fa4142016-04-27 05:28:18 +00005121'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00005122^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00005123
5124Loop distribution allows splitting a loop into multiple loops. Currently,
5125this is only performed if the entire loop cannot be vectorized due to unsafe
Hiroshi Inoueb93daec2017-07-02 12:44:27 +00005126memory dependencies. The transformation will attempt to isolate the unsafe
Adam Nemetd2fa4142016-04-27 05:28:18 +00005127dependencies into their own loop.
5128
5129This metadata can be used to selectively enable or disable distribution of the
5130loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
5131second operand is a bit. If the bit operand value is 1 distribution is
5132enabled. A value of 0 disables distribution:
5133
5134.. code-block:: llvm
5135
5136 !0 = !{!"llvm.loop.distribute.enable", i1 0}
5137 !1 = !{!"llvm.loop.distribute.enable", i1 1}
5138
5139This metadata should be used in conjunction with ``llvm.loop`` loop
5140identification metadata.
5141
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005142'``llvm.mem``'
5143^^^^^^^^^^^^^^^
5144
5145Metadata types used to annotate memory accesses with information helpful
5146for optimizations are prefixed with ``llvm.mem``.
5147
5148'``llvm.mem.parallel_loop_access``' Metadata
5149^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5150
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005151The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
5152or metadata containing a list of loop identifiers for nested loops.
5153The metadata is attached to memory accessing instructions and denotes that
5154no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00005155with the same loop identifier. The metadata on memory reads also implies that
5156if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005157
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005158Precisely, given two instructions ``m1`` and ``m2`` that both have the
5159``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
5160set of loops associated with that metadata, respectively, then there is no loop
5161carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005162``L2``.
5163
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005164As a special case, if all memory accessing instructions in a loop have
5165``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
5166loop has no loop carried memory dependences and is considered to be a parallel
5167loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005168
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005169Note that if not all memory access instructions have such metadata referring to
5170the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00005171memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005172safe mechanism, this causes loops that were originally parallel to be considered
5173sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005174insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005175
5176Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00005177both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005178metadata types that refer to the same loop identifier metadata.
5179
5180.. code-block:: llvm
5181
5182 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005183 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005184 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005185 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005186 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005187 ...
5188 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005189
5190 for.end:
5191 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005192 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005193
5194It is also possible to have nested parallel loops. In that case the
5195memory accesses refer to a list of loop identifier metadata nodes instead of
5196the loop identifier metadata node directly:
5197
5198.. code-block:: llvm
5199
5200 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005201 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005202 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005203 ...
5204 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005205
5206 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005207 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005208 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005209 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005210 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005211 ...
5212 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005213
5214 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005215 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005216 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00005217 ...
5218 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005219
5220 outer.for.end: ; preds = %for.body
5221 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005222 !0 = !{!1, !2} ; a list of loop identifiers
5223 !1 = !{!1} ; an identifier for the inner loop
5224 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005225
Hiroshi Yamauchidce9def2017-11-02 22:26:51 +00005226'``irr_loop``' Metadata
5227^^^^^^^^^^^^^^^^^^^^^^^
5228
5229``irr_loop`` metadata may be attached to the terminator instruction of a basic
5230block that's an irreducible loop header (note that an irreducible loop has more
5231than once header basic blocks.) If ``irr_loop`` metadata is attached to the
5232terminator instruction of a basic block that is not really an irreducible loop
5233header, the behavior is undefined. The intent of this metadata is to improve the
5234accuracy of the block frequency propagation. For example, in the code below, the
5235block ``header0`` may have a loop header weight (relative to the other headers of
5236the irreducible loop) of 100:
5237
5238.. code-block:: llvm
5239
5240 header0:
5241 ...
5242 br i1 %cmp, label %t1, label %t2, !irr_loop !0
5243
5244 ...
5245 !0 = !{"loop_header_weight", i64 100}
5246
5247Irreducible loop header weights are typically based on profile data.
5248
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005249'``invariant.group``' Metadata
5250^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5251
5252The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005253The existence of the ``invariant.group`` metadata on the instruction tells
5254the optimizer that every ``load`` and ``store`` to the same pointer operand
5255within the same invariant group can be assumed to load or store the same
5256value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005257when two pointers are considered the same). Pointers returned by bitcast or
5258getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005259
5260Examples:
5261
5262.. code-block:: llvm
5263
5264 @unknownPtr = external global i8
5265 ...
5266 %ptr = alloca i8
5267 store i8 42, i8* %ptr, !invariant.group !0
5268 call void @foo(i8* %ptr)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005269
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005270 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5271 call void @foo(i8* %ptr)
5272 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005273
5274 %newPtr = call i8* @getPointer(i8* %ptr)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005275 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005276
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005277 %unknownValue = load i8, i8* @unknownPtr
5278 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005279
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005280 call void @foo(i8* %ptr)
5281 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
5282 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005283
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005284 ...
5285 declare void @foo(i8*)
5286 declare i8* @getPointer(i8*)
5287 declare i8* @llvm.invariant.group.barrier(i8*)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005288
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005289 !0 = !{!"magic ptr"}
5290 !1 = !{!"other ptr"}
5291
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005292The invariant.group metadata must be dropped when replacing one pointer by
5293another based on aliasing information. This is because invariant.group is tied
5294to the SSA value of the pointer operand.
5295
5296.. code-block:: llvm
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005297
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005298 %v = load i8, i8* %x, !invariant.group !0
5299 ; if %x mustalias %y then we can replace the above instruction with
5300 %v = load i8, i8* %y
5301
5302
Peter Collingbournea333db82016-07-26 22:31:30 +00005303'``type``' Metadata
5304^^^^^^^^^^^^^^^^^^^
5305
5306See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005307
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005308'``associated``' Metadata
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005309^^^^^^^^^^^^^^^^^^^^^^^^^
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005310
5311The ``associated`` metadata may be attached to a global object
5312declaration with a single argument that references another global object.
5313
5314This metadata prevents discarding of the global object in linker GC
5315unless the referenced object is also discarded. The linker support for
5316this feature is spotty. For best compatibility, globals carrying this
5317metadata may also:
5318
5319- Be in a comdat with the referenced global.
5320- Be in @llvm.compiler.used.
5321- Have an explicit section with a name which is a valid C identifier.
5322
5323It does not have any effect on non-ELF targets.
5324
5325Example:
5326
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005327.. code-block:: text
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005328
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005329 $a = comdat any
5330 @a = global i32 1, comdat $a
5331 @b = internal global i32 2, comdat $a, section "abc", !associated !0
5332 !0 = !{i32* @a}
5333
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005334
Teresa Johnsond72f51c2017-06-15 15:57:12 +00005335'``prof``' Metadata
5336^^^^^^^^^^^^^^^^^^^
5337
5338The ``prof`` metadata is used to record profile data in the IR.
5339The first operand of the metadata node indicates the profile metadata
5340type. There are currently 3 types:
5341:ref:`branch_weights<prof_node_branch_weights>`,
5342:ref:`function_entry_count<prof_node_function_entry_count>`, and
5343:ref:`VP<prof_node_VP>`.
5344
5345.. _prof_node_branch_weights:
5346
5347branch_weights
5348""""""""""""""
5349
5350Branch weight metadata attached to a branch, select, switch or call instruction
5351represents the likeliness of the associated branch being taken.
5352For more information, see :doc:`BranchWeightMetadata`.
5353
5354.. _prof_node_function_entry_count:
5355
5356function_entry_count
5357""""""""""""""""""""
5358
5359Function entry count metadata can be attached to function definitions
5360to record the number of times the function is called. Used with BFI
5361information, it is also used to derive the basic block profile count.
5362For more information, see :doc:`BranchWeightMetadata`.
5363
5364.. _prof_node_VP:
5365
5366VP
5367""
5368
5369VP (value profile) metadata can be attached to instructions that have
5370value profile information. Currently this is indirect calls (where it
5371records the hottest callees) and calls to memory intrinsics such as memcpy,
5372memmove, and memset (where it records the hottest byte lengths).
5373
5374Each VP metadata node contains "VP" string, then a uint32_t value for the value
5375profiling kind, a uint64_t value for the total number of times the instruction
5376is executed, followed by uint64_t value and execution count pairs.
5377The value profiling kind is 0 for indirect call targets and 1 for memory
5378operations. For indirect call targets, each profile value is a hash
5379of the callee function name, and for memory operations each value is the
5380byte length.
5381
5382Note that the value counts do not need to add up to the total count
5383listed in the third operand (in practice only the top hottest values
5384are tracked and reported).
5385
5386Indirect call example:
5387
5388.. code-block:: llvm
5389
5390 call void %f(), !prof !1
5391 !1 = !{!"VP", i32 0, i64 1600, i64 7651369219802541373, i64 1030, i64 -4377547752858689819, i64 410}
5392
5393Note that the VP type is 0 (the second operand), which indicates this is
5394an indirect call value profile data. The third operand indicates that the
5395indirect call executed 1600 times. The 4th and 6th operands give the
5396hashes of the 2 hottest target functions' names (this is the same hash used
5397to represent function names in the profile database), and the 5th and 7th
5398operands give the execution count that each of the respective prior target
5399functions was called.
5400
Sean Silvab084af42012-12-07 10:36:55 +00005401Module Flags Metadata
5402=====================
5403
5404Information about the module as a whole is difficult to convey to LLVM's
5405subsystems. The LLVM IR isn't sufficient to transmit this information.
5406The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005407this. These flags are in the form of key / value pairs --- much like a
5408dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005409look it up.
5410
5411The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5412Each triplet has the following form:
5413
5414- The first element is a *behavior* flag, which specifies the behavior
5415 when two (or more) modules are merged together, and it encounters two
5416 (or more) metadata with the same ID. The supported behaviors are
5417 described below.
5418- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005419 metadata. Each module may only have one flag entry for each unique ID (not
5420 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005421- The third element is the value of the flag.
5422
5423When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005424``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5425each unique metadata ID string, there will be exactly one entry in the merged
5426modules ``llvm.module.flags`` metadata table, and the value for that entry will
5427be determined by the merge behavior flag, as described below. The only exception
5428is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005429
5430The following behaviors are supported:
5431
5432.. list-table::
5433 :header-rows: 1
5434 :widths: 10 90
5435
5436 * - Value
5437 - Behavior
5438
5439 * - 1
5440 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005441 Emits an error if two values disagree, otherwise the resulting value
5442 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005443
5444 * - 2
5445 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005446 Emits a warning if two values disagree. The result value will be the
5447 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005448
5449 * - 3
5450 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005451 Adds a requirement that another module flag be present and have a
5452 specified value after linking is performed. The value must be a
5453 metadata pair, where the first element of the pair is the ID of the
5454 module flag to be restricted, and the second element of the pair is
5455 the value the module flag should be restricted to. This behavior can
5456 be used to restrict the allowable results (via triggering of an
5457 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005458
5459 * - 4
5460 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005461 Uses the specified value, regardless of the behavior or value of the
5462 other module. If both modules specify **Override**, but the values
5463 differ, an error will be emitted.
5464
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005465 * - 5
5466 - **Append**
5467 Appends the two values, which are required to be metadata nodes.
5468
5469 * - 6
5470 - **AppendUnique**
5471 Appends the two values, which are required to be metadata
5472 nodes. However, duplicate entries in the second list are dropped
5473 during the append operation.
5474
Steven Wu86a511e2017-08-15 16:16:33 +00005475 * - 7
5476 - **Max**
5477 Takes the max of the two values, which are required to be integers.
5478
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005479It is an error for a particular unique flag ID to have multiple behaviors,
5480except in the case of **Require** (which adds restrictions on another metadata
5481value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005482
5483An example of module flags:
5484
5485.. code-block:: llvm
5486
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005487 !0 = !{ i32 1, !"foo", i32 1 }
5488 !1 = !{ i32 4, !"bar", i32 37 }
5489 !2 = !{ i32 2, !"qux", i32 42 }
5490 !3 = !{ i32 3, !"qux",
5491 !{
5492 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005493 }
5494 }
5495 !llvm.module.flags = !{ !0, !1, !2, !3 }
5496
5497- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5498 if two or more ``!"foo"`` flags are seen is to emit an error if their
5499 values are not equal.
5500
5501- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5502 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005503 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005504
5505- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5506 behavior if two or more ``!"qux"`` flags are seen is to emit a
5507 warning if their values are not equal.
5508
5509- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5510
5511 ::
5512
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005513 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005514
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005515 The behavior is to emit an error if the ``llvm.module.flags`` does not
5516 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5517 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005518
5519Objective-C Garbage Collection Module Flags Metadata
5520----------------------------------------------------
5521
5522On the Mach-O platform, Objective-C stores metadata about garbage
5523collection in a special section called "image info". The metadata
5524consists of a version number and a bitmask specifying what types of
5525garbage collection are supported (if any) by the file. If two or more
5526modules are linked together their garbage collection metadata needs to
5527be merged rather than appended together.
5528
5529The Objective-C garbage collection module flags metadata consists of the
5530following key-value pairs:
5531
5532.. list-table::
5533 :header-rows: 1
5534 :widths: 30 70
5535
5536 * - Key
5537 - Value
5538
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005539 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005540 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005541
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005542 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005543 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005544 always 0.
5545
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005546 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005547 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005548 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5549 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5550 Objective-C ABI version 2.
5551
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005552 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005553 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005554 not. Valid values are 0, for no garbage collection, and 2, for garbage
5555 collection supported.
5556
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005557 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005558 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005559 If present, its value must be 6. This flag requires that the
5560 ``Objective-C Garbage Collection`` flag have the value 2.
5561
5562Some important flag interactions:
5563
5564- If a module with ``Objective-C Garbage Collection`` set to 0 is
5565 merged with a module with ``Objective-C Garbage Collection`` set to
5566 2, then the resulting module has the
5567 ``Objective-C Garbage Collection`` flag set to 0.
5568- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5569 merged with a module with ``Objective-C GC Only`` set to 6.
5570
Oliver Stannard5dc29342014-06-20 10:08:11 +00005571C type width Module Flags Metadata
5572----------------------------------
5573
5574The ARM backend emits a section into each generated object file describing the
5575options that it was compiled with (in a compiler-independent way) to prevent
5576linking incompatible objects, and to allow automatic library selection. Some
5577of these options are not visible at the IR level, namely wchar_t width and enum
5578width.
5579
5580To pass this information to the backend, these options are encoded in module
5581flags metadata, using the following key-value pairs:
5582
5583.. list-table::
5584 :header-rows: 1
5585 :widths: 30 70
5586
5587 * - Key
5588 - Value
5589
5590 * - short_wchar
5591 - * 0 --- sizeof(wchar_t) == 4
5592 * 1 --- sizeof(wchar_t) == 2
5593
5594 * - short_enum
5595 - * 0 --- Enums are at least as large as an ``int``.
5596 * 1 --- Enums are stored in the smallest integer type which can
5597 represent all of its values.
5598
5599For example, the following metadata section specifies that the module was
5600compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5601enum is the smallest type which can represent all of its values::
5602
5603 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005604 !0 = !{i32 1, !"short_wchar", i32 1}
5605 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005606
Peter Collingbourne89061b22017-06-12 20:10:48 +00005607Automatic Linker Flags Named Metadata
5608=====================================
5609
5610Some targets support embedding flags to the linker inside individual object
5611files. Typically this is used in conjunction with language extensions which
5612allow source files to explicitly declare the libraries they depend on, and have
5613these automatically be transmitted to the linker via object files.
5614
5615These flags are encoded in the IR using named metadata with the name
5616``!llvm.linker.options``. Each operand is expected to be a metadata node
5617which should be a list of other metadata nodes, each of which should be a
5618list of metadata strings defining linker options.
5619
5620For example, the following metadata section specifies two separate sets of
5621linker options, presumably to link against ``libz`` and the ``Cocoa``
5622framework::
5623
5624 !0 = !{ !"-lz" },
5625 !1 = !{ !"-framework", !"Cocoa" } } }
5626 !llvm.linker.options = !{ !0, !1 }
5627
5628The metadata encoding as lists of lists of options, as opposed to a collapsed
5629list of options, is chosen so that the IR encoding can use multiple option
5630strings to specify e.g., a single library, while still having that specifier be
5631preserved as an atomic element that can be recognized by a target specific
5632assembly writer or object file emitter.
5633
5634Each individual option is required to be either a valid option for the target's
5635linker, or an option that is reserved by the target specific assembly writer or
5636object file emitter. No other aspect of these options is defined by the IR.
5637
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005638.. _intrinsicglobalvariables:
5639
Sean Silvab084af42012-12-07 10:36:55 +00005640Intrinsic Global Variables
5641==========================
5642
5643LLVM has a number of "magic" global variables that contain data that
5644affect code generation or other IR semantics. These are documented here.
5645All globals of this sort should have a section specified as
5646"``llvm.metadata``". This section and all globals that start with
5647"``llvm.``" are reserved for use by LLVM.
5648
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005649.. _gv_llvmused:
5650
Sean Silvab084af42012-12-07 10:36:55 +00005651The '``llvm.used``' Global Variable
5652-----------------------------------
5653
Rafael Espindola74f2e462013-04-22 14:58:02 +00005654The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005655:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005656pointers to named global variables, functions and aliases which may optionally
5657have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005658use of it is:
5659
5660.. code-block:: llvm
5661
5662 @X = global i8 4
5663 @Y = global i32 123
5664
5665 @llvm.used = appending global [2 x i8*] [
5666 i8* @X,
5667 i8* bitcast (i32* @Y to i8*)
5668 ], section "llvm.metadata"
5669
Rafael Espindola74f2e462013-04-22 14:58:02 +00005670If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5671and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005672symbol that it cannot see (which is why they have to be named). For example, if
5673a variable has internal linkage and no references other than that from the
5674``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5675references from inline asms and other things the compiler cannot "see", and
5676corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005677
5678On some targets, the code generator must emit a directive to the
5679assembler or object file to prevent the assembler and linker from
5680molesting the symbol.
5681
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005682.. _gv_llvmcompilerused:
5683
Sean Silvab084af42012-12-07 10:36:55 +00005684The '``llvm.compiler.used``' Global Variable
5685--------------------------------------------
5686
5687The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5688directive, except that it only prevents the compiler from touching the
5689symbol. On targets that support it, this allows an intelligent linker to
5690optimize references to the symbol without being impeded as it would be
5691by ``@llvm.used``.
5692
5693This is a rare construct that should only be used in rare circumstances,
5694and should not be exposed to source languages.
5695
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005696.. _gv_llvmglobalctors:
5697
Sean Silvab084af42012-12-07 10:36:55 +00005698The '``llvm.global_ctors``' Global Variable
5699-------------------------------------------
5700
5701.. code-block:: llvm
5702
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005703 %0 = type { i32, void ()*, i8* }
5704 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005705
5706The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005707functions, priorities, and an optional associated global or function.
5708The functions referenced by this array will be called in ascending order
5709of priority (i.e. lowest first) when the module is loaded. The order of
5710functions with the same priority is not defined.
5711
5712If the third field is present, non-null, and points to a global variable
5713or function, the initializer function will only run if the associated
5714data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005715
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005716.. _llvmglobaldtors:
5717
Sean Silvab084af42012-12-07 10:36:55 +00005718The '``llvm.global_dtors``' Global Variable
5719-------------------------------------------
5720
5721.. code-block:: llvm
5722
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005723 %0 = type { i32, void ()*, i8* }
5724 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005725
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005726The ``@llvm.global_dtors`` array contains a list of destructor
5727functions, priorities, and an optional associated global or function.
5728The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005729order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005730order of functions with the same priority is not defined.
5731
5732If the third field is present, non-null, and points to a global variable
5733or function, the destructor function will only run if the associated
5734data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005735
5736Instruction Reference
5737=====================
5738
5739The LLVM instruction set consists of several different classifications
5740of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5741instructions <binaryops>`, :ref:`bitwise binary
5742instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5743:ref:`other instructions <otherops>`.
5744
5745.. _terminators:
5746
5747Terminator Instructions
5748-----------------------
5749
5750As mentioned :ref:`previously <functionstructure>`, every basic block in a
5751program ends with a "Terminator" instruction, which indicates which
5752block should be executed after the current block is finished. These
5753terminator instructions typically yield a '``void``' value: they produce
5754control flow, not values (the one exception being the
5755':ref:`invoke <i_invoke>`' instruction).
5756
5757The terminator instructions are: ':ref:`ret <i_ret>`',
5758':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5759':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005760':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005761':ref:`catchret <i_catchret>`',
5762':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005763and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005764
5765.. _i_ret:
5766
5767'``ret``' Instruction
5768^^^^^^^^^^^^^^^^^^^^^
5769
5770Syntax:
5771"""""""
5772
5773::
5774
5775 ret <type> <value> ; Return a value from a non-void function
5776 ret void ; Return from void function
5777
5778Overview:
5779"""""""""
5780
5781The '``ret``' instruction is used to return control flow (and optionally
5782a value) from a function back to the caller.
5783
5784There are two forms of the '``ret``' instruction: one that returns a
5785value and then causes control flow, and one that just causes control
5786flow to occur.
5787
5788Arguments:
5789""""""""""
5790
5791The '``ret``' instruction optionally accepts a single argument, the
5792return value. The type of the return value must be a ':ref:`first
5793class <t_firstclass>`' type.
5794
5795A function is not :ref:`well formed <wellformed>` if it it has a non-void
5796return type and contains a '``ret``' instruction with no return value or
5797a return value with a type that does not match its type, or if it has a
5798void return type and contains a '``ret``' instruction with a return
5799value.
5800
5801Semantics:
5802""""""""""
5803
5804When the '``ret``' instruction is executed, control flow returns back to
5805the calling function's context. If the caller is a
5806":ref:`call <i_call>`" instruction, execution continues at the
5807instruction after the call. If the caller was an
5808":ref:`invoke <i_invoke>`" instruction, execution continues at the
5809beginning of the "normal" destination block. If the instruction returns
5810a value, that value shall set the call or invoke instruction's return
5811value.
5812
5813Example:
5814""""""""
5815
5816.. code-block:: llvm
5817
5818 ret i32 5 ; Return an integer value of 5
5819 ret void ; Return from a void function
5820 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5821
5822.. _i_br:
5823
5824'``br``' Instruction
5825^^^^^^^^^^^^^^^^^^^^
5826
5827Syntax:
5828"""""""
5829
5830::
5831
5832 br i1 <cond>, label <iftrue>, label <iffalse>
5833 br label <dest> ; Unconditional branch
5834
5835Overview:
5836"""""""""
5837
5838The '``br``' instruction is used to cause control flow to transfer to a
5839different basic block in the current function. There are two forms of
5840this instruction, corresponding to a conditional branch and an
5841unconditional branch.
5842
5843Arguments:
5844""""""""""
5845
5846The conditional branch form of the '``br``' instruction takes a single
5847'``i1``' value and two '``label``' values. The unconditional form of the
5848'``br``' instruction takes a single '``label``' value as a target.
5849
5850Semantics:
5851""""""""""
5852
5853Upon execution of a conditional '``br``' instruction, the '``i1``'
5854argument is evaluated. If the value is ``true``, control flows to the
5855'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5856to the '``iffalse``' ``label`` argument.
5857
5858Example:
5859""""""""
5860
5861.. code-block:: llvm
5862
5863 Test:
5864 %cond = icmp eq i32 %a, %b
5865 br i1 %cond, label %IfEqual, label %IfUnequal
5866 IfEqual:
5867 ret i32 1
5868 IfUnequal:
5869 ret i32 0
5870
5871.. _i_switch:
5872
5873'``switch``' Instruction
5874^^^^^^^^^^^^^^^^^^^^^^^^
5875
5876Syntax:
5877"""""""
5878
5879::
5880
5881 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5882
5883Overview:
5884"""""""""
5885
5886The '``switch``' instruction is used to transfer control flow to one of
5887several different places. It is a generalization of the '``br``'
5888instruction, allowing a branch to occur to one of many possible
5889destinations.
5890
5891Arguments:
5892""""""""""
5893
5894The '``switch``' instruction uses three parameters: an integer
5895comparison value '``value``', a default '``label``' destination, and an
5896array of pairs of comparison value constants and '``label``'s. The table
5897is not allowed to contain duplicate constant entries.
5898
5899Semantics:
5900""""""""""
5901
5902The ``switch`` instruction specifies a table of values and destinations.
5903When the '``switch``' instruction is executed, this table is searched
5904for the given value. If the value is found, control flow is transferred
5905to the corresponding destination; otherwise, control flow is transferred
5906to the default destination.
5907
5908Implementation:
5909"""""""""""""""
5910
5911Depending on properties of the target machine and the particular
5912``switch`` instruction, this instruction may be code generated in
5913different ways. For example, it could be generated as a series of
5914chained conditional branches or with a lookup table.
5915
5916Example:
5917""""""""
5918
5919.. code-block:: llvm
5920
5921 ; Emulate a conditional br instruction
5922 %Val = zext i1 %value to i32
5923 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5924
5925 ; Emulate an unconditional br instruction
5926 switch i32 0, label %dest [ ]
5927
5928 ; Implement a jump table:
5929 switch i32 %val, label %otherwise [ i32 0, label %onzero
5930 i32 1, label %onone
5931 i32 2, label %ontwo ]
5932
5933.. _i_indirectbr:
5934
5935'``indirectbr``' Instruction
5936^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5937
5938Syntax:
5939"""""""
5940
5941::
5942
5943 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5944
5945Overview:
5946"""""""""
5947
5948The '``indirectbr``' instruction implements an indirect branch to a
5949label within the current function, whose address is specified by
5950"``address``". Address must be derived from a
5951:ref:`blockaddress <blockaddress>` constant.
5952
5953Arguments:
5954""""""""""
5955
5956The '``address``' argument is the address of the label to jump to. The
5957rest of the arguments indicate the full set of possible destinations
5958that the address may point to. Blocks are allowed to occur multiple
5959times in the destination list, though this isn't particularly useful.
5960
5961This destination list is required so that dataflow analysis has an
5962accurate understanding of the CFG.
5963
5964Semantics:
5965""""""""""
5966
5967Control transfers to the block specified in the address argument. All
5968possible destination blocks must be listed in the label list, otherwise
5969this instruction has undefined behavior. This implies that jumps to
5970labels defined in other functions have undefined behavior as well.
5971
5972Implementation:
5973"""""""""""""""
5974
5975This is typically implemented with a jump through a register.
5976
5977Example:
5978""""""""
5979
5980.. code-block:: llvm
5981
5982 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5983
5984.. _i_invoke:
5985
5986'``invoke``' Instruction
5987^^^^^^^^^^^^^^^^^^^^^^^^
5988
5989Syntax:
5990"""""""
5991
5992::
5993
David Blaikieb83cf102016-07-13 17:21:34 +00005994 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005995 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005996
5997Overview:
5998"""""""""
5999
6000The '``invoke``' instruction causes control to transfer to a specified
6001function, with the possibility of control flow transfer to either the
6002'``normal``' label or the '``exception``' label. If the callee function
6003returns with the "``ret``" instruction, control flow will return to the
6004"normal" label. If the callee (or any indirect callees) returns via the
6005":ref:`resume <i_resume>`" instruction or other exception handling
6006mechanism, control is interrupted and continued at the dynamically
6007nearest "exception" label.
6008
6009The '``exception``' label is a `landing
6010pad <ExceptionHandling.html#overview>`_ for the exception. As such,
6011'``exception``' label is required to have the
6012":ref:`landingpad <i_landingpad>`" instruction, which contains the
6013information about the behavior of the program after unwinding happens,
6014as its first non-PHI instruction. The restrictions on the
6015"``landingpad``" instruction's tightly couples it to the "``invoke``"
6016instruction, so that the important information contained within the
6017"``landingpad``" instruction can't be lost through normal code motion.
6018
6019Arguments:
6020""""""""""
6021
6022This instruction requires several arguments:
6023
6024#. The optional "cconv" marker indicates which :ref:`calling
6025 convention <callingconv>` the call should use. If none is
6026 specified, the call defaults to using C calling conventions.
6027#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6028 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6029 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00006030#. '``ty``': the type of the call instruction itself which is also the
6031 type of the return value. Functions that return no value are marked
6032 ``void``.
6033#. '``fnty``': shall be the signature of the function being invoked. The
6034 argument types must match the types implied by this signature. This
6035 type can be omitted if the function is not varargs.
6036#. '``fnptrval``': An LLVM value containing a pointer to a function to
6037 be invoked. In most cases, this is a direct function invocation, but
6038 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
6039 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00006040#. '``function args``': argument list whose types match the function
6041 signature argument types and parameter attributes. All arguments must
6042 be of :ref:`first class <t_firstclass>` type. If the function signature
6043 indicates the function accepts a variable number of arguments, the
6044 extra arguments can be specified.
6045#. '``normal label``': the label reached when the called function
6046 executes a '``ret``' instruction.
6047#. '``exception label``': the label reached when a callee returns via
6048 the :ref:`resume <i_resume>` instruction or other exception handling
6049 mechanism.
George Burgess IV8a464a72017-04-13 05:00:31 +00006050#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006051#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00006052
6053Semantics:
6054""""""""""
6055
6056This instruction is designed to operate as a standard '``call``'
6057instruction in most regards. The primary difference is that it
6058establishes an association with a label, which is used by the runtime
6059library to unwind the stack.
6060
6061This instruction is used in languages with destructors to ensure that
6062proper cleanup is performed in the case of either a ``longjmp`` or a
6063thrown exception. Additionally, this is important for implementation of
6064'``catch``' clauses in high-level languages that support them.
6065
6066For the purposes of the SSA form, the definition of the value returned
6067by the '``invoke``' instruction is deemed to occur on the edge from the
6068current block to the "normal" label. If the callee unwinds then no
6069return value is available.
6070
6071Example:
6072""""""""
6073
6074.. code-block:: llvm
6075
6076 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006077 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006078 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006079 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006080
6081.. _i_resume:
6082
6083'``resume``' Instruction
6084^^^^^^^^^^^^^^^^^^^^^^^^
6085
6086Syntax:
6087"""""""
6088
6089::
6090
6091 resume <type> <value>
6092
6093Overview:
6094"""""""""
6095
6096The '``resume``' instruction is a terminator instruction that has no
6097successors.
6098
6099Arguments:
6100""""""""""
6101
6102The '``resume``' instruction requires one argument, which must have the
6103same type as the result of any '``landingpad``' instruction in the same
6104function.
6105
6106Semantics:
6107""""""""""
6108
6109The '``resume``' instruction resumes propagation of an existing
6110(in-flight) exception whose unwinding was interrupted with a
6111:ref:`landingpad <i_landingpad>` instruction.
6112
6113Example:
6114""""""""
6115
6116.. code-block:: llvm
6117
6118 resume { i8*, i32 } %exn
6119
David Majnemer8a1c45d2015-12-12 05:38:55 +00006120.. _i_catchswitch:
6121
6122'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00006123^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00006124
6125Syntax:
6126"""""""
6127
6128::
6129
6130 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
6131 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
6132
6133Overview:
6134"""""""""
6135
6136The '``catchswitch``' instruction is used by `LLVM's exception handling system
6137<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
6138that may be executed by the :ref:`EH personality routine <personalityfn>`.
6139
6140Arguments:
6141""""""""""
6142
6143The ``parent`` argument is the token of the funclet that contains the
6144``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
6145this operand may be the token ``none``.
6146
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006147The ``default`` argument is the label of another basic block beginning with
6148either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
6149must be a legal target with respect to the ``parent`` links, as described in
6150the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00006151
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006152The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00006153:ref:`catchpad <i_catchpad>` instruction.
6154
6155Semantics:
6156""""""""""
6157
6158Executing this instruction transfers control to one of the successors in
6159``handlers``, if appropriate, or continues to unwind via the unwind label if
6160present.
6161
6162The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
6163it must be both the first non-phi instruction and last instruction in the basic
6164block. Therefore, it must be the only non-phi instruction in the block.
6165
6166Example:
6167""""""""
6168
Renato Golin124f2592016-07-20 12:16:38 +00006169.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00006170
6171 dispatch1:
6172 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
6173 dispatch2:
6174 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
6175
David Majnemer654e1302015-07-31 17:58:14 +00006176.. _i_catchret:
6177
6178'``catchret``' Instruction
6179^^^^^^^^^^^^^^^^^^^^^^^^^^
6180
6181Syntax:
6182"""""""
6183
6184::
6185
David Majnemer8a1c45d2015-12-12 05:38:55 +00006186 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00006187
6188Overview:
6189"""""""""
6190
6191The '``catchret``' instruction is a terminator instruction that has a
6192single successor.
6193
6194
6195Arguments:
6196""""""""""
6197
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006198The first argument to a '``catchret``' indicates which ``catchpad`` it
6199exits. It must be a :ref:`catchpad <i_catchpad>`.
6200The second argument to a '``catchret``' specifies where control will
6201transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00006202
6203Semantics:
6204""""""""""
6205
David Majnemer8a1c45d2015-12-12 05:38:55 +00006206The '``catchret``' instruction ends an existing (in-flight) exception whose
6207unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
6208:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
6209code to, for example, destroy the active exception. Control then transfers to
6210``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006211
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006212The ``token`` argument must be a token produced by a ``catchpad`` instruction.
6213If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
6214funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6215the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00006216
6217Example:
6218""""""""
6219
Renato Golin124f2592016-07-20 12:16:38 +00006220.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006221
David Majnemer8a1c45d2015-12-12 05:38:55 +00006222 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006223
David Majnemer654e1302015-07-31 17:58:14 +00006224.. _i_cleanupret:
6225
6226'``cleanupret``' Instruction
6227^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6228
6229Syntax:
6230"""""""
6231
6232::
6233
David Majnemer8a1c45d2015-12-12 05:38:55 +00006234 cleanupret from <value> unwind label <continue>
6235 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00006236
6237Overview:
6238"""""""""
6239
6240The '``cleanupret``' instruction is a terminator instruction that has
6241an optional successor.
6242
6243
6244Arguments:
6245""""""""""
6246
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006247The '``cleanupret``' instruction requires one argument, which indicates
6248which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006249If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
6250funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6251the ``cleanupret``'s behavior is undefined.
6252
6253The '``cleanupret``' instruction also has an optional successor, ``continue``,
6254which must be the label of another basic block beginning with either a
6255``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
6256be a legal target with respect to the ``parent`` links, as described in the
6257`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00006258
6259Semantics:
6260""""""""""
6261
6262The '``cleanupret``' instruction indicates to the
6263:ref:`personality function <personalityfn>` that one
6264:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
6265It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006266
David Majnemer654e1302015-07-31 17:58:14 +00006267Example:
6268""""""""
6269
Renato Golin124f2592016-07-20 12:16:38 +00006270.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006271
David Majnemer8a1c45d2015-12-12 05:38:55 +00006272 cleanupret from %cleanup unwind to caller
6273 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00006274
Sean Silvab084af42012-12-07 10:36:55 +00006275.. _i_unreachable:
6276
6277'``unreachable``' Instruction
6278^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6279
6280Syntax:
6281"""""""
6282
6283::
6284
6285 unreachable
6286
6287Overview:
6288"""""""""
6289
6290The '``unreachable``' instruction has no defined semantics. This
6291instruction is used to inform the optimizer that a particular portion of
6292the code is not reachable. This can be used to indicate that the code
6293after a no-return function cannot be reached, and other facts.
6294
6295Semantics:
6296""""""""""
6297
6298The '``unreachable``' instruction has no defined semantics.
6299
6300.. _binaryops:
6301
6302Binary Operations
6303-----------------
6304
6305Binary operators are used to do most of the computation in a program.
6306They require two operands of the same type, execute an operation on
6307them, and produce a single value. The operands might represent multiple
6308data, as is the case with the :ref:`vector <t_vector>` data type. The
6309result value has the same type as its operands.
6310
6311There are several different binary operators:
6312
6313.. _i_add:
6314
6315'``add``' Instruction
6316^^^^^^^^^^^^^^^^^^^^^
6317
6318Syntax:
6319"""""""
6320
6321::
6322
Tim Northover675a0962014-06-13 14:24:23 +00006323 <result> = add <ty> <op1>, <op2> ; yields ty:result
6324 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
6325 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
6326 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006327
6328Overview:
6329"""""""""
6330
6331The '``add``' instruction returns the sum of its two operands.
6332
6333Arguments:
6334""""""""""
6335
6336The two arguments to the '``add``' instruction must be
6337:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6338arguments must have identical types.
6339
6340Semantics:
6341""""""""""
6342
6343The value produced is the integer sum of the two operands.
6344
6345If the sum has unsigned overflow, the result returned is the
6346mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6347the result.
6348
6349Because LLVM integers use a two's complement representation, this
6350instruction is appropriate for both signed and unsigned integers.
6351
6352``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6353respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6354result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
6355unsigned and/or signed overflow, respectively, occurs.
6356
6357Example:
6358""""""""
6359
Renato Golin124f2592016-07-20 12:16:38 +00006360.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006361
Tim Northover675a0962014-06-13 14:24:23 +00006362 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006363
6364.. _i_fadd:
6365
6366'``fadd``' Instruction
6367^^^^^^^^^^^^^^^^^^^^^^
6368
6369Syntax:
6370"""""""
6371
6372::
6373
Tim Northover675a0962014-06-13 14:24:23 +00006374 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006375
6376Overview:
6377"""""""""
6378
6379The '``fadd``' instruction returns the sum of its two operands.
6380
6381Arguments:
6382""""""""""
6383
6384The two arguments to the '``fadd``' instruction must be :ref:`floating
6385point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6386Both arguments must have identical types.
6387
6388Semantics:
6389""""""""""
6390
6391The value produced is the floating point sum of the two operands. This
6392instruction can also take any number of :ref:`fast-math flags <fastmath>`,
6393which are optimization hints to enable otherwise unsafe floating point
6394optimizations:
6395
6396Example:
6397""""""""
6398
Renato Golin124f2592016-07-20 12:16:38 +00006399.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006400
Tim Northover675a0962014-06-13 14:24:23 +00006401 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006402
6403'``sub``' Instruction
6404^^^^^^^^^^^^^^^^^^^^^
6405
6406Syntax:
6407"""""""
6408
6409::
6410
Tim Northover675a0962014-06-13 14:24:23 +00006411 <result> = sub <ty> <op1>, <op2> ; yields ty:result
6412 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
6413 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
6414 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006415
6416Overview:
6417"""""""""
6418
6419The '``sub``' instruction returns the difference of its two operands.
6420
6421Note that the '``sub``' instruction is used to represent the '``neg``'
6422instruction present in most other intermediate representations.
6423
6424Arguments:
6425""""""""""
6426
6427The two arguments to the '``sub``' instruction must be
6428:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6429arguments must have identical types.
6430
6431Semantics:
6432""""""""""
6433
6434The value produced is the integer difference of the two operands.
6435
6436If the difference has unsigned overflow, the result returned is the
6437mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6438the result.
6439
6440Because LLVM integers use a two's complement representation, this
6441instruction is appropriate for both signed and unsigned integers.
6442
6443``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6444respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6445result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
6446unsigned and/or signed overflow, respectively, occurs.
6447
6448Example:
6449""""""""
6450
Renato Golin124f2592016-07-20 12:16:38 +00006451.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006452
Tim Northover675a0962014-06-13 14:24:23 +00006453 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6454 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006455
6456.. _i_fsub:
6457
6458'``fsub``' Instruction
6459^^^^^^^^^^^^^^^^^^^^^^
6460
6461Syntax:
6462"""""""
6463
6464::
6465
Tim Northover675a0962014-06-13 14:24:23 +00006466 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006467
6468Overview:
6469"""""""""
6470
6471The '``fsub``' instruction returns the difference of its two operands.
6472
6473Note that the '``fsub``' instruction is used to represent the '``fneg``'
6474instruction present in most other intermediate representations.
6475
6476Arguments:
6477""""""""""
6478
6479The two arguments to the '``fsub``' instruction must be :ref:`floating
6480point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6481Both arguments must have identical types.
6482
6483Semantics:
6484""""""""""
6485
6486The value produced is the floating point difference of the two operands.
6487This instruction can also take any number of :ref:`fast-math
6488flags <fastmath>`, which are optimization hints to enable otherwise
6489unsafe floating point optimizations:
6490
6491Example:
6492""""""""
6493
Renato Golin124f2592016-07-20 12:16:38 +00006494.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006495
Tim Northover675a0962014-06-13 14:24:23 +00006496 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6497 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006498
6499'``mul``' Instruction
6500^^^^^^^^^^^^^^^^^^^^^
6501
6502Syntax:
6503"""""""
6504
6505::
6506
Tim Northover675a0962014-06-13 14:24:23 +00006507 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6508 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6509 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6510 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006511
6512Overview:
6513"""""""""
6514
6515The '``mul``' instruction returns the product of its two operands.
6516
6517Arguments:
6518""""""""""
6519
6520The two arguments to the '``mul``' instruction must be
6521:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6522arguments must have identical types.
6523
6524Semantics:
6525""""""""""
6526
6527The value produced is the integer product of the two operands.
6528
6529If the result of the multiplication has unsigned overflow, the result
6530returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6531bit width of the result.
6532
6533Because LLVM integers use a two's complement representation, and the
6534result is the same width as the operands, this instruction returns the
6535correct result for both signed and unsigned integers. If a full product
6536(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6537sign-extended or zero-extended as appropriate to the width of the full
6538product.
6539
6540``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6541respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6542result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6543unsigned and/or signed overflow, respectively, occurs.
6544
6545Example:
6546""""""""
6547
Renato Golin124f2592016-07-20 12:16:38 +00006548.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006549
Tim Northover675a0962014-06-13 14:24:23 +00006550 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006551
6552.. _i_fmul:
6553
6554'``fmul``' Instruction
6555^^^^^^^^^^^^^^^^^^^^^^
6556
6557Syntax:
6558"""""""
6559
6560::
6561
Tim Northover675a0962014-06-13 14:24:23 +00006562 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006563
6564Overview:
6565"""""""""
6566
6567The '``fmul``' instruction returns the product of its two operands.
6568
6569Arguments:
6570""""""""""
6571
6572The two arguments to the '``fmul``' instruction must be :ref:`floating
6573point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6574Both arguments must have identical types.
6575
6576Semantics:
6577""""""""""
6578
6579The value produced is the floating point product of the two operands.
6580This instruction can also take any number of :ref:`fast-math
6581flags <fastmath>`, which are optimization hints to enable otherwise
6582unsafe floating point optimizations:
6583
6584Example:
6585""""""""
6586
Renato Golin124f2592016-07-20 12:16:38 +00006587.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006588
Tim Northover675a0962014-06-13 14:24:23 +00006589 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006590
6591'``udiv``' Instruction
6592^^^^^^^^^^^^^^^^^^^^^^
6593
6594Syntax:
6595"""""""
6596
6597::
6598
Tim Northover675a0962014-06-13 14:24:23 +00006599 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6600 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006601
6602Overview:
6603"""""""""
6604
6605The '``udiv``' instruction returns the quotient of its two operands.
6606
6607Arguments:
6608""""""""""
6609
6610The two arguments to the '``udiv``' instruction must be
6611:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6612arguments must have identical types.
6613
6614Semantics:
6615""""""""""
6616
6617The value produced is the unsigned integer quotient of the two operands.
6618
6619Note that unsigned integer division and signed integer division are
6620distinct operations; for signed integer division, use '``sdiv``'.
6621
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006622Division by zero is undefined behavior. For vectors, if any element
6623of the divisor is zero, the operation has undefined behavior.
6624
Sean Silvab084af42012-12-07 10:36:55 +00006625
6626If the ``exact`` keyword is present, the result value of the ``udiv`` is
6627a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6628such, "((a udiv exact b) mul b) == a").
6629
6630Example:
6631""""""""
6632
Renato Golin124f2592016-07-20 12:16:38 +00006633.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006634
Tim Northover675a0962014-06-13 14:24:23 +00006635 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006636
6637'``sdiv``' Instruction
6638^^^^^^^^^^^^^^^^^^^^^^
6639
6640Syntax:
6641"""""""
6642
6643::
6644
Tim Northover675a0962014-06-13 14:24:23 +00006645 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6646 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006647
6648Overview:
6649"""""""""
6650
6651The '``sdiv``' instruction returns the quotient of its two operands.
6652
6653Arguments:
6654""""""""""
6655
6656The two arguments to the '``sdiv``' instruction must be
6657:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6658arguments must have identical types.
6659
6660Semantics:
6661""""""""""
6662
6663The value produced is the signed integer quotient of the two operands
6664rounded towards zero.
6665
6666Note that signed integer division and unsigned integer division are
6667distinct operations; for unsigned integer division, use '``udiv``'.
6668
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006669Division by zero is undefined behavior. For vectors, if any element
6670of the divisor is zero, the operation has undefined behavior.
6671Overflow also leads to undefined behavior; this is a rare case, but can
6672occur, for example, by doing a 32-bit division of -2147483648 by -1.
Sean Silvab084af42012-12-07 10:36:55 +00006673
6674If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6675a :ref:`poison value <poisonvalues>` if the result would be rounded.
6676
6677Example:
6678""""""""
6679
Renato Golin124f2592016-07-20 12:16:38 +00006680.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006681
Tim Northover675a0962014-06-13 14:24:23 +00006682 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006683
6684.. _i_fdiv:
6685
6686'``fdiv``' Instruction
6687^^^^^^^^^^^^^^^^^^^^^^
6688
6689Syntax:
6690"""""""
6691
6692::
6693
Tim Northover675a0962014-06-13 14:24:23 +00006694 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006695
6696Overview:
6697"""""""""
6698
6699The '``fdiv``' instruction returns the quotient of its two operands.
6700
6701Arguments:
6702""""""""""
6703
6704The two arguments to the '``fdiv``' instruction must be :ref:`floating
6705point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6706Both arguments must have identical types.
6707
6708Semantics:
6709""""""""""
6710
6711The value produced is the floating point quotient of the two operands.
6712This instruction can also take any number of :ref:`fast-math
6713flags <fastmath>`, which are optimization hints to enable otherwise
6714unsafe floating point optimizations:
6715
6716Example:
6717""""""""
6718
Renato Golin124f2592016-07-20 12:16:38 +00006719.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006720
Tim Northover675a0962014-06-13 14:24:23 +00006721 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006722
6723'``urem``' Instruction
6724^^^^^^^^^^^^^^^^^^^^^^
6725
6726Syntax:
6727"""""""
6728
6729::
6730
Tim Northover675a0962014-06-13 14:24:23 +00006731 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006732
6733Overview:
6734"""""""""
6735
6736The '``urem``' instruction returns the remainder from the unsigned
6737division of its two arguments.
6738
6739Arguments:
6740""""""""""
6741
6742The two arguments to the '``urem``' instruction must be
6743:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6744arguments must have identical types.
6745
6746Semantics:
6747""""""""""
6748
6749This instruction returns the unsigned integer *remainder* of a division.
6750This instruction always performs an unsigned division to get the
6751remainder.
6752
6753Note that unsigned integer remainder and signed integer remainder are
6754distinct operations; for signed integer remainder, use '``srem``'.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00006755
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006756Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00006757For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006758undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006759
6760Example:
6761""""""""
6762
Renato Golin124f2592016-07-20 12:16:38 +00006763.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006764
Tim Northover675a0962014-06-13 14:24:23 +00006765 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006766
6767'``srem``' Instruction
6768^^^^^^^^^^^^^^^^^^^^^^
6769
6770Syntax:
6771"""""""
6772
6773::
6774
Tim Northover675a0962014-06-13 14:24:23 +00006775 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006776
6777Overview:
6778"""""""""
6779
6780The '``srem``' instruction returns the remainder from the signed
6781division of its two operands. This instruction can also take
6782:ref:`vector <t_vector>` versions of the values in which case the elements
6783must be integers.
6784
6785Arguments:
6786""""""""""
6787
6788The two arguments to the '``srem``' instruction must be
6789:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6790arguments must have identical types.
6791
6792Semantics:
6793""""""""""
6794
6795This instruction returns the *remainder* of a division (where the result
6796is either zero or has the same sign as the dividend, ``op1``), not the
6797*modulo* operator (where the result is either zero or has the same sign
6798as the divisor, ``op2``) of a value. For more information about the
6799difference, see `The Math
6800Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6801table of how this is implemented in various languages, please see
6802`Wikipedia: modulo
6803operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6804
6805Note that signed integer remainder and unsigned integer remainder are
6806distinct operations; for unsigned integer remainder, use '``urem``'.
6807
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006808Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00006809For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006810undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006811Overflow also leads to undefined behavior; this is a rare case, but can
6812occur, for example, by taking the remainder of a 32-bit division of
6813-2147483648 by -1. (The remainder doesn't actually overflow, but this
6814rule lets srem be implemented using instructions that return both the
6815result of the division and the remainder.)
6816
6817Example:
6818""""""""
6819
Renato Golin124f2592016-07-20 12:16:38 +00006820.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006821
Tim Northover675a0962014-06-13 14:24:23 +00006822 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006823
6824.. _i_frem:
6825
6826'``frem``' Instruction
6827^^^^^^^^^^^^^^^^^^^^^^
6828
6829Syntax:
6830"""""""
6831
6832::
6833
Tim Northover675a0962014-06-13 14:24:23 +00006834 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006835
6836Overview:
6837"""""""""
6838
6839The '``frem``' instruction returns the remainder from the division of
6840its two operands.
6841
6842Arguments:
6843""""""""""
6844
6845The two arguments to the '``frem``' instruction must be :ref:`floating
6846point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6847Both arguments must have identical types.
6848
6849Semantics:
6850""""""""""
6851
Sanjay Patel7fb23122017-11-30 14:59:03 +00006852Return the same value as a libm '``fmod``' function but without trapping or
6853setting ``errno``.
6854
6855The remainder has the same sign as the dividend. This instruction can also
6856take any number of :ref:`fast-math flags <fastmath>`, which are optimization
6857hints to enable otherwise unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006858
6859Example:
6860""""""""
6861
Renato Golin124f2592016-07-20 12:16:38 +00006862.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006863
Tim Northover675a0962014-06-13 14:24:23 +00006864 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006865
6866.. _bitwiseops:
6867
6868Bitwise Binary Operations
6869-------------------------
6870
6871Bitwise binary operators are used to do various forms of bit-twiddling
6872in a program. They are generally very efficient instructions and can
6873commonly be strength reduced from other instructions. They require two
6874operands of the same type, execute an operation on them, and produce a
6875single value. The resulting value is the same type as its operands.
6876
6877'``shl``' Instruction
6878^^^^^^^^^^^^^^^^^^^^^
6879
6880Syntax:
6881"""""""
6882
6883::
6884
Tim Northover675a0962014-06-13 14:24:23 +00006885 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6886 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6887 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6888 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006889
6890Overview:
6891"""""""""
6892
6893The '``shl``' instruction returns the first operand shifted to the left
6894a specified number of bits.
6895
6896Arguments:
6897""""""""""
6898
6899Both arguments to the '``shl``' instruction must be the same
6900:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6901'``op2``' is treated as an unsigned value.
6902
6903Semantics:
6904""""""""""
6905
6906The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6907where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006908dynamically) equal to or larger than the number of bits in
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006909``op1``, this instruction returns a :ref:`poison value <poisonvalues>`.
6910If the arguments are vectors, each vector element of ``op1`` is shifted
6911by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006912
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006913If the ``nuw`` keyword is present, then the shift produces a poison
6914value if it shifts out any non-zero bits.
6915If the ``nsw`` keyword is present, then the shift produces a poison
6916value it shifts out any bits that disagree with the resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00006917
6918Example:
6919""""""""
6920
Renato Golin124f2592016-07-20 12:16:38 +00006921.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006922
Tim Northover675a0962014-06-13 14:24:23 +00006923 <result> = shl i32 4, %var ; yields i32: 4 << %var
6924 <result> = shl i32 4, 2 ; yields i32: 16
6925 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006926 <result> = shl i32 1, 32 ; undefined
6927 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6928
6929'``lshr``' Instruction
6930^^^^^^^^^^^^^^^^^^^^^^
6931
6932Syntax:
6933"""""""
6934
6935::
6936
Tim Northover675a0962014-06-13 14:24:23 +00006937 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6938 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006939
6940Overview:
6941"""""""""
6942
6943The '``lshr``' instruction (logical shift right) returns the first
6944operand shifted to the right a specified number of bits with zero fill.
6945
6946Arguments:
6947""""""""""
6948
6949Both arguments to the '``lshr``' instruction must be the same
6950:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6951'``op2``' is treated as an unsigned value.
6952
6953Semantics:
6954""""""""""
6955
6956This instruction always performs a logical shift right operation. The
6957most significant bits of the result will be filled with zero bits after
6958the shift. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006959than the number of bits in ``op1``, this instruction returns a :ref:`poison
6960value <poisonvalues>`. If the arguments are vectors, each vector element
6961of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006962
6963If the ``exact`` keyword is present, the result value of the ``lshr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006964a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00006965
6966Example:
6967""""""""
6968
Renato Golin124f2592016-07-20 12:16:38 +00006969.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006970
Tim Northover675a0962014-06-13 14:24:23 +00006971 <result> = lshr i32 4, 1 ; yields i32:result = 2
6972 <result> = lshr i32 4, 2 ; yields i32:result = 1
6973 <result> = lshr i8 4, 3 ; yields i8:result = 0
6974 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006975 <result> = lshr i32 1, 32 ; undefined
6976 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6977
6978'``ashr``' Instruction
6979^^^^^^^^^^^^^^^^^^^^^^
6980
6981Syntax:
6982"""""""
6983
6984::
6985
Tim Northover675a0962014-06-13 14:24:23 +00006986 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6987 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006988
6989Overview:
6990"""""""""
6991
6992The '``ashr``' instruction (arithmetic shift right) returns the first
6993operand shifted to the right a specified number of bits with sign
6994extension.
6995
6996Arguments:
6997""""""""""
6998
6999Both arguments to the '``ashr``' instruction must be the same
7000:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7001'``op2``' is treated as an unsigned value.
7002
7003Semantics:
7004""""""""""
7005
7006This instruction always performs an arithmetic shift right operation,
7007The most significant bits of the result will be filled with the sign bit
7008of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007009than the number of bits in ``op1``, this instruction returns a :ref:`poison
7010value <poisonvalues>`. If the arguments are vectors, each vector element
7011of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007012
7013If the ``exact`` keyword is present, the result value of the ``ashr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007014a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007015
7016Example:
7017""""""""
7018
Renato Golin124f2592016-07-20 12:16:38 +00007019.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007020
Tim Northover675a0962014-06-13 14:24:23 +00007021 <result> = ashr i32 4, 1 ; yields i32:result = 2
7022 <result> = ashr i32 4, 2 ; yields i32:result = 1
7023 <result> = ashr i8 4, 3 ; yields i8:result = 0
7024 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00007025 <result> = ashr i32 1, 32 ; undefined
7026 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
7027
7028'``and``' Instruction
7029^^^^^^^^^^^^^^^^^^^^^
7030
7031Syntax:
7032"""""""
7033
7034::
7035
Tim Northover675a0962014-06-13 14:24:23 +00007036 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007037
7038Overview:
7039"""""""""
7040
7041The '``and``' instruction returns the bitwise logical and of its two
7042operands.
7043
7044Arguments:
7045""""""""""
7046
7047The two arguments to the '``and``' instruction must be
7048:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7049arguments must have identical types.
7050
7051Semantics:
7052""""""""""
7053
7054The truth table used for the '``and``' instruction is:
7055
7056+-----+-----+-----+
7057| In0 | In1 | Out |
7058+-----+-----+-----+
7059| 0 | 0 | 0 |
7060+-----+-----+-----+
7061| 0 | 1 | 0 |
7062+-----+-----+-----+
7063| 1 | 0 | 0 |
7064+-----+-----+-----+
7065| 1 | 1 | 1 |
7066+-----+-----+-----+
7067
7068Example:
7069""""""""
7070
Renato Golin124f2592016-07-20 12:16:38 +00007071.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007072
Tim Northover675a0962014-06-13 14:24:23 +00007073 <result> = and i32 4, %var ; yields i32:result = 4 & %var
7074 <result> = and i32 15, 40 ; yields i32:result = 8
7075 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00007076
7077'``or``' Instruction
7078^^^^^^^^^^^^^^^^^^^^
7079
7080Syntax:
7081"""""""
7082
7083::
7084
Tim Northover675a0962014-06-13 14:24:23 +00007085 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007086
7087Overview:
7088"""""""""
7089
7090The '``or``' instruction returns the bitwise logical inclusive or of its
7091two operands.
7092
7093Arguments:
7094""""""""""
7095
7096The two arguments to the '``or``' instruction must be
7097:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7098arguments must have identical types.
7099
7100Semantics:
7101""""""""""
7102
7103The truth table used for the '``or``' instruction is:
7104
7105+-----+-----+-----+
7106| In0 | In1 | Out |
7107+-----+-----+-----+
7108| 0 | 0 | 0 |
7109+-----+-----+-----+
7110| 0 | 1 | 1 |
7111+-----+-----+-----+
7112| 1 | 0 | 1 |
7113+-----+-----+-----+
7114| 1 | 1 | 1 |
7115+-----+-----+-----+
7116
7117Example:
7118""""""""
7119
7120::
7121
Tim Northover675a0962014-06-13 14:24:23 +00007122 <result> = or i32 4, %var ; yields i32:result = 4 | %var
7123 <result> = or i32 15, 40 ; yields i32:result = 47
7124 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00007125
7126'``xor``' Instruction
7127^^^^^^^^^^^^^^^^^^^^^
7128
7129Syntax:
7130"""""""
7131
7132::
7133
Tim Northover675a0962014-06-13 14:24:23 +00007134 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007135
7136Overview:
7137"""""""""
7138
7139The '``xor``' instruction returns the bitwise logical exclusive or of
7140its two operands. The ``xor`` is used to implement the "one's
7141complement" operation, which is the "~" operator in C.
7142
7143Arguments:
7144""""""""""
7145
7146The two arguments to the '``xor``' instruction must be
7147:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7148arguments must have identical types.
7149
7150Semantics:
7151""""""""""
7152
7153The truth table used for the '``xor``' instruction is:
7154
7155+-----+-----+-----+
7156| In0 | In1 | Out |
7157+-----+-----+-----+
7158| 0 | 0 | 0 |
7159+-----+-----+-----+
7160| 0 | 1 | 1 |
7161+-----+-----+-----+
7162| 1 | 0 | 1 |
7163+-----+-----+-----+
7164| 1 | 1 | 0 |
7165+-----+-----+-----+
7166
7167Example:
7168""""""""
7169
Renato Golin124f2592016-07-20 12:16:38 +00007170.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007171
Tim Northover675a0962014-06-13 14:24:23 +00007172 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
7173 <result> = xor i32 15, 40 ; yields i32:result = 39
7174 <result> = xor i32 4, 8 ; yields i32:result = 12
7175 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00007176
7177Vector Operations
7178-----------------
7179
7180LLVM supports several instructions to represent vector operations in a
7181target-independent manner. These instructions cover the element-access
7182and vector-specific operations needed to process vectors effectively.
7183While LLVM does directly support these vector operations, many
7184sophisticated algorithms will want to use target-specific intrinsics to
7185take full advantage of a specific target.
7186
7187.. _i_extractelement:
7188
7189'``extractelement``' Instruction
7190^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7191
7192Syntax:
7193"""""""
7194
7195::
7196
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007197 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00007198
7199Overview:
7200"""""""""
7201
7202The '``extractelement``' instruction extracts a single scalar element
7203from a vector at a specified index.
7204
7205Arguments:
7206""""""""""
7207
7208The first operand of an '``extractelement``' instruction is a value of
7209:ref:`vector <t_vector>` type. The second operand is an index indicating
7210the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007211variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007212
7213Semantics:
7214""""""""""
7215
7216The result is a scalar of the same type as the element type of ``val``.
7217Its value is the value at position ``idx`` of ``val``. If ``idx``
7218exceeds the length of ``val``, the results are undefined.
7219
7220Example:
7221""""""""
7222
Renato Golin124f2592016-07-20 12:16:38 +00007223.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007224
7225 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
7226
7227.. _i_insertelement:
7228
7229'``insertelement``' Instruction
7230^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7231
7232Syntax:
7233"""""""
7234
7235::
7236
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007237 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00007238
7239Overview:
7240"""""""""
7241
7242The '``insertelement``' instruction inserts a scalar element into a
7243vector at a specified index.
7244
7245Arguments:
7246""""""""""
7247
7248The first operand of an '``insertelement``' instruction is a value of
7249:ref:`vector <t_vector>` type. The second operand is a scalar value whose
7250type must equal the element type of the first operand. The third operand
7251is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007252index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007253
7254Semantics:
7255""""""""""
7256
7257The result is a vector of the same type as ``val``. Its element values
7258are those of ``val`` except at position ``idx``, where it gets the value
7259``elt``. If ``idx`` exceeds the length of ``val``, the results are
7260undefined.
7261
7262Example:
7263""""""""
7264
Renato Golin124f2592016-07-20 12:16:38 +00007265.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007266
7267 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
7268
7269.. _i_shufflevector:
7270
7271'``shufflevector``' Instruction
7272^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7273
7274Syntax:
7275"""""""
7276
7277::
7278
7279 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
7280
7281Overview:
7282"""""""""
7283
7284The '``shufflevector``' instruction constructs a permutation of elements
7285from two input vectors, returning a vector with the same element type as
7286the input and length that is the same as the shuffle mask.
7287
7288Arguments:
7289""""""""""
7290
7291The first two operands of a '``shufflevector``' instruction are vectors
7292with the same type. The third argument is a shuffle mask whose element
7293type is always 'i32'. The result of the instruction is a vector whose
7294length is the same as the shuffle mask and whose element type is the
7295same as the element type of the first two operands.
7296
7297The shuffle mask operand is required to be a constant vector with either
7298constant integer or undef values.
7299
7300Semantics:
7301""""""""""
7302
7303The elements of the two input vectors are numbered from left to right
7304across both of the vectors. The shuffle mask operand specifies, for each
7305element of the result vector, which element of the two input vectors the
Sanjay Patel6e410182017-04-12 18:39:53 +00007306result element gets. If the shuffle mask is undef, the result vector is
7307undef. If any element of the mask operand is undef, that element of the
7308result is undef. If the shuffle mask selects an undef element from one
7309of the input vectors, the resulting element is undef.
Sean Silvab084af42012-12-07 10:36:55 +00007310
7311Example:
7312""""""""
7313
Renato Golin124f2592016-07-20 12:16:38 +00007314.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007315
7316 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7317 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
7318 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
7319 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
7320 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
7321 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
7322 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7323 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
7324
7325Aggregate Operations
7326--------------------
7327
7328LLVM supports several instructions for working with
7329:ref:`aggregate <t_aggregate>` values.
7330
7331.. _i_extractvalue:
7332
7333'``extractvalue``' Instruction
7334^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7335
7336Syntax:
7337"""""""
7338
7339::
7340
7341 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
7342
7343Overview:
7344"""""""""
7345
7346The '``extractvalue``' instruction extracts the value of a member field
7347from an :ref:`aggregate <t_aggregate>` value.
7348
7349Arguments:
7350""""""""""
7351
7352The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00007353:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00007354constant indices to specify which value to extract in a similar manner
7355as indices in a '``getelementptr``' instruction.
7356
7357The major differences to ``getelementptr`` indexing are:
7358
7359- Since the value being indexed is not a pointer, the first index is
7360 omitted and assumed to be zero.
7361- At least one index must be specified.
7362- Not only struct indices but also array indices must be in bounds.
7363
7364Semantics:
7365""""""""""
7366
7367The result is the value at the position in the aggregate specified by
7368the index operands.
7369
7370Example:
7371""""""""
7372
Renato Golin124f2592016-07-20 12:16:38 +00007373.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007374
7375 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
7376
7377.. _i_insertvalue:
7378
7379'``insertvalue``' Instruction
7380^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7381
7382Syntax:
7383"""""""
7384
7385::
7386
7387 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
7388
7389Overview:
7390"""""""""
7391
7392The '``insertvalue``' instruction inserts a value into a member field in
7393an :ref:`aggregate <t_aggregate>` value.
7394
7395Arguments:
7396""""""""""
7397
7398The first operand of an '``insertvalue``' instruction is a value of
7399:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
7400a first-class value to insert. The following operands are constant
7401indices indicating the position at which to insert the value in a
7402similar manner as indices in a '``extractvalue``' instruction. The value
7403to insert must have the same type as the value identified by the
7404indices.
7405
7406Semantics:
7407""""""""""
7408
7409The result is an aggregate of the same type as ``val``. Its value is
7410that of ``val`` except that the value at the position specified by the
7411indices is that of ``elt``.
7412
7413Example:
7414""""""""
7415
7416.. code-block:: llvm
7417
7418 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
7419 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00007420 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00007421
7422.. _memoryops:
7423
7424Memory Access and Addressing Operations
7425---------------------------------------
7426
7427A key design point of an SSA-based representation is how it represents
7428memory. In LLVM, no memory locations are in SSA form, which makes things
7429very simple. This section describes how to read, write, and allocate
7430memory in LLVM.
7431
7432.. _i_alloca:
7433
7434'``alloca``' Instruction
7435^^^^^^^^^^^^^^^^^^^^^^^^
7436
7437Syntax:
7438"""""""
7439
7440::
7441
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007442 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result
Sean Silvab084af42012-12-07 10:36:55 +00007443
7444Overview:
7445"""""""""
7446
7447The '``alloca``' instruction allocates memory on the stack frame of the
7448currently executing function, to be automatically released when this
7449function returns to its caller. The object is always allocated in the
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007450address space for allocas indicated in the datalayout.
Sean Silvab084af42012-12-07 10:36:55 +00007451
7452Arguments:
7453""""""""""
7454
7455The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7456bytes of memory on the runtime stack, returning a pointer of the
7457appropriate type to the program. If "NumElements" is specified, it is
7458the number of elements allocated, otherwise "NumElements" is defaulted
7459to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007460allocation is guaranteed to be aligned to at least that boundary. The
7461alignment may not be greater than ``1 << 29``. If not specified, or if
7462zero, the target can choose to align the allocation on any convenient
7463boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007464
7465'``type``' may be any sized type.
7466
7467Semantics:
7468""""""""""
7469
7470Memory is allocated; a pointer is returned. The operation is undefined
7471if there is insufficient stack space for the allocation. '``alloca``'d
7472memory is automatically released when the function returns. The
7473'``alloca``' instruction is commonly used to represent automatic
7474variables that must have an address available. When the function returns
7475(either with the ``ret`` or ``resume`` instructions), the memory is
7476reclaimed. Allocating zero bytes is legal, but the result is undefined.
7477The order in which memory is allocated (ie., which way the stack grows)
7478is not specified.
7479
7480Example:
7481""""""""
7482
7483.. code-block:: llvm
7484
Tim Northover675a0962014-06-13 14:24:23 +00007485 %ptr = alloca i32 ; yields i32*:ptr
7486 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7487 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7488 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007489
7490.. _i_load:
7491
7492'``load``' Instruction
7493^^^^^^^^^^^^^^^^^^^^^^
7494
7495Syntax:
7496"""""""
7497
7498::
7499
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007500 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007501 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007502 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007503 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007504 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007505
7506Overview:
7507"""""""""
7508
7509The '``load``' instruction is used to read from memory.
7510
7511Arguments:
7512""""""""""
7513
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007514The argument to the ``load`` instruction specifies the memory address from which
7515to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7516known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7517the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7518modify the number or order of execution of this ``load`` with other
7519:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007520
JF Bastiend1fb5852015-12-17 22:09:19 +00007521If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007522<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
7523``release`` and ``acq_rel`` orderings are not valid on ``load`` instructions.
7524Atomic loads produce :ref:`defined <memmodel>` results when they may see
7525multiple atomic stores. The type of the pointee must be an integer, pointer, or
7526floating-point type whose bit width is a power of two greater than or equal to
7527eight and less than or equal to a target-specific size limit. ``align`` must be
7528explicitly specified on atomic loads, and the load has undefined behavior if the
7529alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00007530pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007531
7532The optional constant ``align`` argument specifies the alignment of the
7533operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007534or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007535alignment for the target. It is the responsibility of the code emitter
7536to ensure that the alignment information is correct. Overestimating the
7537alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007538may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007539maximum possible alignment is ``1 << 29``. An alignment value higher
7540than the size of the loaded type implies memory up to the alignment
7541value bytes can be safely loaded without trapping in the default
7542address space. Access of the high bytes can interfere with debugging
7543tools, so should not be accessed if the function has the
7544``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007545
7546The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007547metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007548``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007549metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007550that this load is not expected to be reused in the cache. The code
7551generator may select special instructions to save cache bandwidth, such
7552as the ``MOVNT`` instruction on x86.
7553
7554The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007555metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007556entries. If a load instruction tagged with the ``!invariant.load``
7557metadata is executed, the optimizer may assume the memory location
7558referenced by the load contains the same value at all points in the
7559program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007560
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007561The optional ``!invariant.group`` metadata must reference a single metadata name
7562 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7563
Philip Reamescdb72f32014-10-20 22:40:55 +00007564The optional ``!nonnull`` metadata must reference a single
7565metadata name ``<index>`` corresponding to a metadata node with no
7566entries. The existence of the ``!nonnull`` metadata on the
7567instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007568never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007569on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007570to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007571
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007572The optional ``!dereferenceable`` metadata must reference a single metadata
7573name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007574entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007575tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007576The number of bytes known to be dereferenceable is specified by the integer
7577value in the metadata node. This is analogous to the ''dereferenceable''
7578attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007579to loads of a pointer type.
7580
7581The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007582metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7583``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007584instruction tells the optimizer that the value loaded is known to be either
7585dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007586The number of bytes known to be dereferenceable is specified by the integer
7587value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7588attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007589to loads of a pointer type.
7590
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007591The optional ``!align`` metadata must reference a single metadata name
7592``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7593The existence of the ``!align`` metadata on the instruction tells the
7594optimizer that the value loaded is known to be aligned to a boundary specified
7595by the integer value in the metadata node. The alignment must be a power of 2.
7596This is analogous to the ''align'' attribute on parameters and return values.
7597This metadata can only be applied to loads of a pointer type.
7598
Sean Silvab084af42012-12-07 10:36:55 +00007599Semantics:
7600""""""""""
7601
7602The location of memory pointed to is loaded. If the value being loaded
7603is of scalar type then the number of bytes read does not exceed the
7604minimum number of bytes needed to hold all bits of the type. For
7605example, loading an ``i24`` reads at most three bytes. When loading a
7606value of a type like ``i20`` with a size that is not an integral number
7607of bytes, the result is undefined if the value was not originally
7608written using a store of the same type.
7609
7610Examples:
7611"""""""""
7612
7613.. code-block:: llvm
7614
Tim Northover675a0962014-06-13 14:24:23 +00007615 %ptr = alloca i32 ; yields i32*:ptr
7616 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007617 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007618
7619.. _i_store:
7620
7621'``store``' Instruction
7622^^^^^^^^^^^^^^^^^^^^^^^
7623
7624Syntax:
7625"""""""
7626
7627::
7628
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007629 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007630 store atomic [volatile] <ty> <value>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007631
7632Overview:
7633"""""""""
7634
7635The '``store``' instruction is used to write to memory.
7636
7637Arguments:
7638""""""""""
7639
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007640There are two arguments to the ``store`` instruction: a value to store and an
7641address at which to store it. The type of the ``<pointer>`` operand must be a
7642pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7643operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7644allowed to modify the number or order of execution of this ``store`` with other
7645:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7646<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7647structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007648
JF Bastiend1fb5852015-12-17 22:09:19 +00007649If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007650<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
7651``acquire`` and ``acq_rel`` orderings aren't valid on ``store`` instructions.
7652Atomic loads produce :ref:`defined <memmodel>` results when they may see
7653multiple atomic stores. The type of the pointee must be an integer, pointer, or
7654floating-point type whose bit width is a power of two greater than or equal to
7655eight and less than or equal to a target-specific size limit. ``align`` must be
7656explicitly specified on atomic stores, and the store has undefined behavior if
7657the alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00007658pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007659
Eli Benderskyca380842013-04-17 17:17:20 +00007660The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007661operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007662or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007663alignment for the target. It is the responsibility of the code emitter
7664to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007665alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007666alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007667safe. The maximum possible alignment is ``1 << 29``. An alignment
7668value higher than the size of the stored type implies memory up to the
7669alignment value bytes can be stored to without trapping in the default
7670address space. Storing to the higher bytes however may result in data
7671races if another thread can access the same address. Introducing a
7672data race is not allowed. Storing to the extra bytes is not allowed
7673even in situations where a data race is known to not exist if the
7674function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007675
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007676The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007677name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007678value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007679tells the optimizer and code generator that this load is not expected to
7680be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007681instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007682x86.
7683
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007684The optional ``!invariant.group`` metadata must reference a
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007685single metadata name ``<index>``. See ``invariant.group`` metadata.
7686
Sean Silvab084af42012-12-07 10:36:55 +00007687Semantics:
7688""""""""""
7689
Eli Benderskyca380842013-04-17 17:17:20 +00007690The contents of memory are updated to contain ``<value>`` at the
7691location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007692of scalar type then the number of bytes written does not exceed the
7693minimum number of bytes needed to hold all bits of the type. For
7694example, storing an ``i24`` writes at most three bytes. When writing a
7695value of a type like ``i20`` with a size that is not an integral number
7696of bytes, it is unspecified what happens to the extra bits that do not
7697belong to the type, but they will typically be overwritten.
7698
7699Example:
7700""""""""
7701
7702.. code-block:: llvm
7703
Tim Northover675a0962014-06-13 14:24:23 +00007704 %ptr = alloca i32 ; yields i32*:ptr
7705 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007706 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007707
7708.. _i_fence:
7709
7710'``fence``' Instruction
7711^^^^^^^^^^^^^^^^^^^^^^^
7712
7713Syntax:
7714"""""""
7715
7716::
7717
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007718 fence [syncscope("<target-scope>")] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007719
7720Overview:
7721"""""""""
7722
7723The '``fence``' instruction is used to introduce happens-before edges
7724between operations.
7725
7726Arguments:
7727""""""""""
7728
7729'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7730defines what *synchronizes-with* edges they add. They can only be given
7731``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7732
7733Semantics:
7734""""""""""
7735
7736A fence A which has (at least) ``release`` ordering semantics
7737*synchronizes with* a fence B with (at least) ``acquire`` ordering
7738semantics if and only if there exist atomic operations X and Y, both
7739operating on some atomic object M, such that A is sequenced before X, X
7740modifies M (either directly or through some side effect of a sequence
7741headed by X), Y is sequenced before B, and Y observes M. This provides a
7742*happens-before* dependency between A and B. Rather than an explicit
7743``fence``, one (but not both) of the atomic operations X or Y might
7744provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7745still *synchronize-with* the explicit ``fence`` and establish the
7746*happens-before* edge.
7747
7748A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7749``acquire`` and ``release`` semantics specified above, participates in
7750the global program order of other ``seq_cst`` operations and/or fences.
7751
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007752A ``fence`` instruction can also take an optional
7753":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00007754
7755Example:
7756""""""""
7757
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007758.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007759
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007760 fence acquire ; yields void
7761 fence syncscope("singlethread") seq_cst ; yields void
7762 fence syncscope("agent") seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007763
7764.. _i_cmpxchg:
7765
7766'``cmpxchg``' Instruction
7767^^^^^^^^^^^^^^^^^^^^^^^^^
7768
7769Syntax:
7770"""""""
7771
7772::
7773
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007774 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [syncscope("<target-scope>")] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007775
7776Overview:
7777"""""""""
7778
7779The '``cmpxchg``' instruction is used to atomically modify memory. It
7780loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007781equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007782
7783Arguments:
7784""""""""""
7785
7786There are three arguments to the '``cmpxchg``' instruction: an address
7787to operate on, a value to compare to the value currently be at that
7788address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007789are equal. The type of '<cmp>' must be an integer or pointer type whose
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007790bit width is a power of two greater than or equal to eight and less
Philip Reames1960cfd2016-02-19 00:06:41 +00007791than or equal to a target-specific size limit. '<cmp>' and '<new>' must
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007792have the same type, and the type of '<pointer>' must be a pointer to
7793that type. If the ``cmpxchg`` is marked as ``volatile``, then the
Philip Reames1960cfd2016-02-19 00:06:41 +00007794optimizer is not allowed to modify the number or order of execution of
7795this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007796
Tim Northovere94a5182014-03-11 10:48:52 +00007797The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007798``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7799must be at least ``monotonic``, the ordering constraint on failure must be no
7800stronger than that on success, and the failure ordering cannot be either
7801``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007802
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007803A ``cmpxchg`` instruction can also take an optional
7804":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00007805
7806The pointer passed into cmpxchg must have alignment greater than or
7807equal to the size in memory of the operand.
7808
7809Semantics:
7810""""""""""
7811
Tim Northover420a2162014-06-13 14:24:07 +00007812The contents of memory at the location specified by the '``<pointer>``' operand
Matthias Braun93f2b4b2017-08-09 22:22:04 +00007813is read and compared to '``<cmp>``'; if the values are equal, '``<new>``' is
7814written to the location. The original value at the location is returned,
7815together with a flag indicating success (true) or failure (false).
Tim Northover420a2162014-06-13 14:24:07 +00007816
7817If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7818permitted: the operation may not write ``<new>`` even if the comparison
7819matched.
7820
7821If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7822if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007823
Tim Northovere94a5182014-03-11 10:48:52 +00007824A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7825identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7826load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007827
7828Example:
7829""""""""
7830
7831.. code-block:: llvm
7832
7833 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007834 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007835 br label %loop
7836
7837 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007838 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007839 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007840 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007841 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7842 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007843 br i1 %success, label %done, label %loop
7844
7845 done:
7846 ...
7847
7848.. _i_atomicrmw:
7849
7850'``atomicrmw``' Instruction
7851^^^^^^^^^^^^^^^^^^^^^^^^^^^
7852
7853Syntax:
7854"""""""
7855
7856::
7857
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007858 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [syncscope("<target-scope>")] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007859
7860Overview:
7861"""""""""
7862
7863The '``atomicrmw``' instruction is used to atomically modify memory.
7864
7865Arguments:
7866""""""""""
7867
7868There are three arguments to the '``atomicrmw``' instruction: an
7869operation to apply, an address whose value to modify, an argument to the
7870operation. The operation must be one of the following keywords:
7871
7872- xchg
7873- add
7874- sub
7875- and
7876- nand
7877- or
7878- xor
7879- max
7880- min
7881- umax
7882- umin
7883
7884The type of '<value>' must be an integer type whose bit width is a power
7885of two greater than or equal to eight and less than or equal to a
7886target-specific size limit. The type of the '``<pointer>``' operand must
7887be a pointer to that type. If the ``atomicrmw`` is marked as
7888``volatile``, then the optimizer is not allowed to modify the number or
7889order of execution of this ``atomicrmw`` with other :ref:`volatile
7890operations <volatile>`.
7891
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007892A ``atomicrmw`` instruction can also take an optional
7893":ref:`syncscope <syncscope>`" argument.
7894
Sean Silvab084af42012-12-07 10:36:55 +00007895Semantics:
7896""""""""""
7897
7898The contents of memory at the location specified by the '``<pointer>``'
7899operand are atomically read, modified, and written back. The original
7900value at the location is returned. The modification is specified by the
7901operation argument:
7902
7903- xchg: ``*ptr = val``
7904- add: ``*ptr = *ptr + val``
7905- sub: ``*ptr = *ptr - val``
7906- and: ``*ptr = *ptr & val``
7907- nand: ``*ptr = ~(*ptr & val)``
7908- or: ``*ptr = *ptr | val``
7909- xor: ``*ptr = *ptr ^ val``
7910- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7911- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7912- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7913 comparison)
7914- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7915 comparison)
7916
7917Example:
7918""""""""
7919
7920.. code-block:: llvm
7921
Tim Northover675a0962014-06-13 14:24:23 +00007922 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007923
7924.. _i_getelementptr:
7925
7926'``getelementptr``' Instruction
7927^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7928
7929Syntax:
7930"""""""
7931
7932::
7933
Peter Collingbourned93620b2016-11-10 22:34:55 +00007934 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7935 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7936 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007937
7938Overview:
7939"""""""""
7940
7941The '``getelementptr``' instruction is used to get the address of a
7942subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007943address calculation only and does not access memory. The instruction can also
7944be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007945
7946Arguments:
7947""""""""""
7948
David Blaikie16a97eb2015-03-04 22:02:58 +00007949The first argument is always a type used as the basis for the calculations.
7950The second argument is always a pointer or a vector of pointers, and is the
7951base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007952that indicate which of the elements of the aggregate object are indexed.
7953The interpretation of each index is dependent on the type being indexed
7954into. The first index always indexes the pointer value given as the
David Blaikief91b0302017-06-19 05:34:21 +00007955second argument, the second index indexes a value of the type pointed to
Sean Silvab084af42012-12-07 10:36:55 +00007956(not necessarily the value directly pointed to, since the first index
7957can be non-zero), etc. The first type indexed into must be a pointer
7958value, subsequent types can be arrays, vectors, and structs. Note that
7959subsequent types being indexed into can never be pointers, since that
7960would require loading the pointer before continuing calculation.
7961
7962The type of each index argument depends on the type it is indexing into.
7963When indexing into a (optionally packed) structure, only ``i32`` integer
7964**constants** are allowed (when using a vector of indices they must all
7965be the **same** ``i32`` integer constant). When indexing into an array,
7966pointer or vector, integers of any width are allowed, and they are not
7967required to be constant. These integers are treated as signed values
7968where relevant.
7969
7970For example, let's consider a C code fragment and how it gets compiled
7971to LLVM:
7972
7973.. code-block:: c
7974
7975 struct RT {
7976 char A;
7977 int B[10][20];
7978 char C;
7979 };
7980 struct ST {
7981 int X;
7982 double Y;
7983 struct RT Z;
7984 };
7985
7986 int *foo(struct ST *s) {
7987 return &s[1].Z.B[5][13];
7988 }
7989
7990The LLVM code generated by Clang is:
7991
7992.. code-block:: llvm
7993
7994 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7995 %struct.ST = type { i32, double, %struct.RT }
7996
7997 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7998 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007999 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00008000 ret i32* %arrayidx
8001 }
8002
8003Semantics:
8004""""""""""
8005
8006In the example above, the first index is indexing into the
8007'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
8008= '``{ i32, double, %struct.RT }``' type, a structure. The second index
8009indexes into the third element of the structure, yielding a
8010'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
8011structure. The third index indexes into the second element of the
8012structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
8013dimensions of the array are subscripted into, yielding an '``i32``'
8014type. The '``getelementptr``' instruction returns a pointer to this
8015element, thus computing a value of '``i32*``' type.
8016
8017Note that it is perfectly legal to index partially through a structure,
8018returning a pointer to an inner element. Because of this, the LLVM code
8019for the given testcase is equivalent to:
8020
8021.. code-block:: llvm
8022
8023 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00008024 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
8025 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
8026 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
8027 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
8028 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00008029 ret i32* %t5
8030 }
8031
8032If the ``inbounds`` keyword is present, the result value of the
8033``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
8034pointer is not an *in bounds* address of an allocated object, or if any
8035of the addresses that would be formed by successive addition of the
8036offsets implied by the indices to the base address with infinitely
8037precise signed arithmetic are not an *in bounds* address of that
8038allocated object. The *in bounds* addresses for an allocated object are
8039all the addresses that point into the object, plus the address one byte
Eli Friedman13f2e352017-02-23 00:48:18 +00008040past the end. The only *in bounds* address for a null pointer in the
8041default address-space is the null pointer itself. In cases where the
8042base is a vector of pointers the ``inbounds`` keyword applies to each
8043of the computations element-wise.
Sean Silvab084af42012-12-07 10:36:55 +00008044
8045If the ``inbounds`` keyword is not present, the offsets are added to the
8046base address with silently-wrapping two's complement arithmetic. If the
8047offsets have a different width from the pointer, they are sign-extended
8048or truncated to the width of the pointer. The result value of the
8049``getelementptr`` may be outside the object pointed to by the base
8050pointer. The result value may not necessarily be used to access memory
8051though, even if it happens to point into allocated storage. See the
8052:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
8053information.
8054
Peter Collingbourned93620b2016-11-10 22:34:55 +00008055If the ``inrange`` keyword is present before any index, loading from or
8056storing to any pointer derived from the ``getelementptr`` has undefined
8057behavior if the load or store would access memory outside of the bounds of
8058the element selected by the index marked as ``inrange``. The result of a
8059pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
8060involving memory) involving a pointer derived from a ``getelementptr`` with
8061the ``inrange`` keyword is undefined, with the exception of comparisons
8062in the case where both operands are in the range of the element selected
8063by the ``inrange`` keyword, inclusive of the address one past the end of
8064that element. Note that the ``inrange`` keyword is currently only allowed
8065in constant ``getelementptr`` expressions.
8066
Sean Silvab084af42012-12-07 10:36:55 +00008067The getelementptr instruction is often confusing. For some more insight
8068into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
8069
8070Example:
8071""""""""
8072
8073.. code-block:: llvm
8074
8075 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008076 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008077 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008078 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008079 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008080 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008081 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008082 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00008083
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008084Vector of pointers:
8085"""""""""""""""""""
8086
8087The ``getelementptr`` returns a vector of pointers, instead of a single address,
8088when one or more of its arguments is a vector. In such cases, all vector
8089arguments should have the same number of elements, and every scalar argument
8090will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00008091
8092.. code-block:: llvm
8093
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008094 ; All arguments are vectors:
8095 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
8096 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008097
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008098 ; Add the same scalar offset to each pointer of a vector:
8099 ; A[i] = ptrs[i] + offset*sizeof(i8)
8100 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00008101
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008102 ; Add distinct offsets to the same pointer:
8103 ; A[i] = ptr + offsets[i]*sizeof(i8)
8104 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008105
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008106 ; In all cases described above the type of the result is <4 x i8*>
8107
8108The two following instructions are equivalent:
8109
8110.. code-block:: llvm
8111
8112 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8113 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
8114 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
8115 <4 x i32> %ind4,
8116 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00008117
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008118 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8119 i32 2, i32 1, <4 x i32> %ind4, i64 13
8120
8121Let's look at the C code, where the vector version of ``getelementptr``
8122makes sense:
8123
8124.. code-block:: c
8125
8126 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00008127 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008128 for (int i = 0; i < size; ++i) {
8129 A[i] = B[C[i]];
8130 }
8131
8132.. code-block:: llvm
8133
8134 ; get pointers for 8 elements from array B
8135 %ptrs = getelementptr double, double* %B, <8 x i32> %C
8136 ; load 8 elements from array B into A
Elad Cohenef5798a2017-05-03 12:28:54 +00008137 %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008138 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00008139
8140Conversion Operations
8141---------------------
8142
8143The instructions in this category are the conversion instructions
8144(casting) which all take a single operand and a type. They perform
8145various bit conversions on the operand.
8146
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008147.. _i_trunc:
8148
Sean Silvab084af42012-12-07 10:36:55 +00008149'``trunc .. to``' Instruction
8150^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8151
8152Syntax:
8153"""""""
8154
8155::
8156
8157 <result> = trunc <ty> <value> to <ty2> ; yields ty2
8158
8159Overview:
8160"""""""""
8161
8162The '``trunc``' instruction truncates its operand to the type ``ty2``.
8163
8164Arguments:
8165""""""""""
8166
8167The '``trunc``' instruction takes a value to trunc, and a type to trunc
8168it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
8169of the same number of integers. The bit size of the ``value`` must be
8170larger than the bit size of the destination type, ``ty2``. Equal sized
8171types are not allowed.
8172
8173Semantics:
8174""""""""""
8175
8176The '``trunc``' instruction truncates the high order bits in ``value``
8177and converts the remaining bits to ``ty2``. Since the source size must
8178be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
8179It will always truncate bits.
8180
8181Example:
8182""""""""
8183
8184.. code-block:: llvm
8185
8186 %X = trunc i32 257 to i8 ; yields i8:1
8187 %Y = trunc i32 123 to i1 ; yields i1:true
8188 %Z = trunc i32 122 to i1 ; yields i1:false
8189 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
8190
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008191.. _i_zext:
8192
Sean Silvab084af42012-12-07 10:36:55 +00008193'``zext .. to``' Instruction
8194^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8195
8196Syntax:
8197"""""""
8198
8199::
8200
8201 <result> = zext <ty> <value> to <ty2> ; yields ty2
8202
8203Overview:
8204"""""""""
8205
8206The '``zext``' instruction zero extends its operand to type ``ty2``.
8207
8208Arguments:
8209""""""""""
8210
8211The '``zext``' instruction takes a value to cast, and a type to cast it
8212to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8213the same number of integers. The bit size of the ``value`` must be
8214smaller than the bit size of the destination type, ``ty2``.
8215
8216Semantics:
8217""""""""""
8218
8219The ``zext`` fills the high order bits of the ``value`` with zero bits
8220until it reaches the size of the destination type, ``ty2``.
8221
8222When zero extending from i1, the result will always be either 0 or 1.
8223
8224Example:
8225""""""""
8226
8227.. code-block:: llvm
8228
8229 %X = zext i32 257 to i64 ; yields i64:257
8230 %Y = zext i1 true to i32 ; yields i32:1
8231 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8232
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008233.. _i_sext:
8234
Sean Silvab084af42012-12-07 10:36:55 +00008235'``sext .. to``' Instruction
8236^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8237
8238Syntax:
8239"""""""
8240
8241::
8242
8243 <result> = sext <ty> <value> to <ty2> ; yields ty2
8244
8245Overview:
8246"""""""""
8247
8248The '``sext``' sign extends ``value`` to the type ``ty2``.
8249
8250Arguments:
8251""""""""""
8252
8253The '``sext``' instruction takes a value to cast, and a type to cast it
8254to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8255the same number of integers. The bit size of the ``value`` must be
8256smaller than the bit size of the destination type, ``ty2``.
8257
8258Semantics:
8259""""""""""
8260
8261The '``sext``' instruction performs a sign extension by copying the sign
8262bit (highest order bit) of the ``value`` until it reaches the bit size
8263of the type ``ty2``.
8264
8265When sign extending from i1, the extension always results in -1 or 0.
8266
8267Example:
8268""""""""
8269
8270.. code-block:: llvm
8271
8272 %X = sext i8 -1 to i16 ; yields i16 :65535
8273 %Y = sext i1 true to i32 ; yields i32:-1
8274 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8275
8276'``fptrunc .. to``' Instruction
8277^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8278
8279Syntax:
8280"""""""
8281
8282::
8283
8284 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
8285
8286Overview:
8287"""""""""
8288
8289The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
8290
8291Arguments:
8292""""""""""
8293
8294The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
8295value to cast and a :ref:`floating point <t_floating>` type to cast it to.
8296The size of ``value`` must be larger than the size of ``ty2``. This
8297implies that ``fptrunc`` cannot be used to make a *no-op cast*.
8298
8299Semantics:
8300""""""""""
8301
Dan Liew50456fb2015-09-03 18:43:56 +00008302The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00008303:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00008304point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
8305destination type, ``ty2``, then the results are undefined. If the cast produces
8306an inexact result, how rounding is performed (e.g. truncation, also known as
8307round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00008308
8309Example:
8310""""""""
8311
8312.. code-block:: llvm
8313
8314 %X = fptrunc double 123.0 to float ; yields float:123.0
8315 %Y = fptrunc double 1.0E+300 to float ; yields undefined
8316
8317'``fpext .. to``' Instruction
8318^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8319
8320Syntax:
8321"""""""
8322
8323::
8324
8325 <result> = fpext <ty> <value> to <ty2> ; yields ty2
8326
8327Overview:
8328"""""""""
8329
8330The '``fpext``' extends a floating point ``value`` to a larger floating
8331point value.
8332
8333Arguments:
8334""""""""""
8335
8336The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
8337``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
8338to. The source type must be smaller than the destination type.
8339
8340Semantics:
8341""""""""""
8342
8343The '``fpext``' instruction extends the ``value`` from a smaller
8344:ref:`floating point <t_floating>` type to a larger :ref:`floating
8345point <t_floating>` type. The ``fpext`` cannot be used to make a
8346*no-op cast* because it always changes bits. Use ``bitcast`` to make a
8347*no-op cast* for a floating point cast.
8348
8349Example:
8350""""""""
8351
8352.. code-block:: llvm
8353
8354 %X = fpext float 3.125 to double ; yields double:3.125000e+00
8355 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
8356
8357'``fptoui .. to``' Instruction
8358^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8359
8360Syntax:
8361"""""""
8362
8363::
8364
8365 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
8366
8367Overview:
8368"""""""""
8369
8370The '``fptoui``' converts a floating point ``value`` to its unsigned
8371integer equivalent of type ``ty2``.
8372
8373Arguments:
8374""""""""""
8375
8376The '``fptoui``' instruction takes a value to cast, which must be a
8377scalar or vector :ref:`floating point <t_floating>` value, and a type to
8378cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8379``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8380type with the same number of elements as ``ty``
8381
8382Semantics:
8383""""""""""
8384
8385The '``fptoui``' instruction converts its :ref:`floating
8386point <t_floating>` operand into the nearest (rounding towards zero)
8387unsigned integer value. If the value cannot fit in ``ty2``, the results
8388are undefined.
8389
8390Example:
8391""""""""
8392
8393.. code-block:: llvm
8394
8395 %X = fptoui double 123.0 to i32 ; yields i32:123
8396 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
8397 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
8398
8399'``fptosi .. to``' Instruction
8400^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8401
8402Syntax:
8403"""""""
8404
8405::
8406
8407 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
8408
8409Overview:
8410"""""""""
8411
8412The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
8413``value`` to type ``ty2``.
8414
8415Arguments:
8416""""""""""
8417
8418The '``fptosi``' instruction takes a value to cast, which must be a
8419scalar or vector :ref:`floating point <t_floating>` value, and a type to
8420cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8421``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8422type with the same number of elements as ``ty``
8423
8424Semantics:
8425""""""""""
8426
8427The '``fptosi``' instruction converts its :ref:`floating
8428point <t_floating>` operand into the nearest (rounding towards zero)
8429signed integer value. If the value cannot fit in ``ty2``, the results
8430are undefined.
8431
8432Example:
8433""""""""
8434
8435.. code-block:: llvm
8436
8437 %X = fptosi double -123.0 to i32 ; yields i32:-123
8438 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
8439 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
8440
8441'``uitofp .. to``' Instruction
8442^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8443
8444Syntax:
8445"""""""
8446
8447::
8448
8449 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
8450
8451Overview:
8452"""""""""
8453
8454The '``uitofp``' instruction regards ``value`` as an unsigned integer
8455and converts that value to the ``ty2`` type.
8456
8457Arguments:
8458""""""""""
8459
8460The '``uitofp``' instruction takes a value to cast, which must be a
8461scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8462``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8463``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8464type with the same number of elements as ``ty``
8465
8466Semantics:
8467""""""""""
8468
8469The '``uitofp``' instruction interprets its operand as an unsigned
8470integer quantity and converts it to the corresponding floating point
8471value. If the value cannot fit in the floating point value, the results
8472are undefined.
8473
8474Example:
8475""""""""
8476
8477.. code-block:: llvm
8478
8479 %X = uitofp i32 257 to float ; yields float:257.0
8480 %Y = uitofp i8 -1 to double ; yields double:255.0
8481
8482'``sitofp .. to``' Instruction
8483^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8484
8485Syntax:
8486"""""""
8487
8488::
8489
8490 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8491
8492Overview:
8493"""""""""
8494
8495The '``sitofp``' instruction regards ``value`` as a signed integer and
8496converts that value to the ``ty2`` type.
8497
8498Arguments:
8499""""""""""
8500
8501The '``sitofp``' instruction takes a value to cast, which must be a
8502scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8503``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8504``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8505type with the same number of elements as ``ty``
8506
8507Semantics:
8508""""""""""
8509
8510The '``sitofp``' instruction interprets its operand as a signed integer
8511quantity and converts it to the corresponding floating point value. If
8512the value cannot fit in the floating point value, the results are
8513undefined.
8514
8515Example:
8516""""""""
8517
8518.. code-block:: llvm
8519
8520 %X = sitofp i32 257 to float ; yields float:257.0
8521 %Y = sitofp i8 -1 to double ; yields double:-1.0
8522
8523.. _i_ptrtoint:
8524
8525'``ptrtoint .. to``' Instruction
8526^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8527
8528Syntax:
8529"""""""
8530
8531::
8532
8533 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8534
8535Overview:
8536"""""""""
8537
8538The '``ptrtoint``' instruction converts the pointer or a vector of
8539pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8540
8541Arguments:
8542""""""""""
8543
8544The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008545a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008546type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8547a vector of integers type.
8548
8549Semantics:
8550""""""""""
8551
8552The '``ptrtoint``' instruction converts ``value`` to integer type
8553``ty2`` by interpreting the pointer value as an integer and either
8554truncating or zero extending that value to the size of the integer type.
8555If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8556``value`` is larger than ``ty2`` then a truncation is done. If they are
8557the same size, then nothing is done (*no-op cast*) other than a type
8558change.
8559
8560Example:
8561""""""""
8562
8563.. code-block:: llvm
8564
8565 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8566 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8567 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8568
8569.. _i_inttoptr:
8570
8571'``inttoptr .. to``' Instruction
8572^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8573
8574Syntax:
8575"""""""
8576
8577::
8578
8579 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8580
8581Overview:
8582"""""""""
8583
8584The '``inttoptr``' instruction converts an integer ``value`` to a
8585pointer type, ``ty2``.
8586
8587Arguments:
8588""""""""""
8589
8590The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8591cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8592type.
8593
8594Semantics:
8595""""""""""
8596
8597The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8598applying either a zero extension or a truncation depending on the size
8599of the integer ``value``. If ``value`` is larger than the size of a
8600pointer then a truncation is done. If ``value`` is smaller than the size
8601of a pointer then a zero extension is done. If they are the same size,
8602nothing is done (*no-op cast*).
8603
8604Example:
8605""""""""
8606
8607.. code-block:: llvm
8608
8609 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8610 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8611 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8612 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8613
8614.. _i_bitcast:
8615
8616'``bitcast .. to``' Instruction
8617^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8618
8619Syntax:
8620"""""""
8621
8622::
8623
8624 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8625
8626Overview:
8627"""""""""
8628
8629The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8630changing any bits.
8631
8632Arguments:
8633""""""""""
8634
8635The '``bitcast``' instruction takes a value to cast, which must be a
8636non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008637also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8638bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008639identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008640also be a pointer of the same size. This instruction supports bitwise
8641conversion of vectors to integers and to vectors of other types (as
8642long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008643
8644Semantics:
8645""""""""""
8646
Matt Arsenault24b49c42013-07-31 17:49:08 +00008647The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8648is always a *no-op cast* because no bits change with this
8649conversion. The conversion is done as if the ``value`` had been stored
8650to memory and read back as type ``ty2``. Pointer (or vector of
8651pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008652pointers) types with the same address space through this instruction.
8653To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8654or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008655
8656Example:
8657""""""""
8658
Renato Golin124f2592016-07-20 12:16:38 +00008659.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008660
8661 %X = bitcast i8 255 to i8 ; yields i8 :-1
8662 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8663 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8664 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8665
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008666.. _i_addrspacecast:
8667
8668'``addrspacecast .. to``' Instruction
8669^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8670
8671Syntax:
8672"""""""
8673
8674::
8675
8676 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8677
8678Overview:
8679"""""""""
8680
8681The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8682address space ``n`` to type ``pty2`` in address space ``m``.
8683
8684Arguments:
8685""""""""""
8686
8687The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8688to cast and a pointer type to cast it to, which must have a different
8689address space.
8690
8691Semantics:
8692""""""""""
8693
8694The '``addrspacecast``' instruction converts the pointer value
8695``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008696value modification, depending on the target and the address space
8697pair. Pointer conversions within the same address space must be
8698performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008699conversion is legal then both result and operand refer to the same memory
8700location.
8701
8702Example:
8703""""""""
8704
8705.. code-block:: llvm
8706
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008707 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8708 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8709 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008710
Sean Silvab084af42012-12-07 10:36:55 +00008711.. _otherops:
8712
8713Other Operations
8714----------------
8715
8716The instructions in this category are the "miscellaneous" instructions,
8717which defy better classification.
8718
8719.. _i_icmp:
8720
8721'``icmp``' Instruction
8722^^^^^^^^^^^^^^^^^^^^^^
8723
8724Syntax:
8725"""""""
8726
8727::
8728
Tim Northover675a0962014-06-13 14:24:23 +00008729 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008730
8731Overview:
8732"""""""""
8733
8734The '``icmp``' instruction returns a boolean value or a vector of
8735boolean values based on comparison of its two integer, integer vector,
8736pointer, or pointer vector operands.
8737
8738Arguments:
8739""""""""""
8740
8741The '``icmp``' instruction takes three operands. The first operand is
8742the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008743not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008744
8745#. ``eq``: equal
8746#. ``ne``: not equal
8747#. ``ugt``: unsigned greater than
8748#. ``uge``: unsigned greater or equal
8749#. ``ult``: unsigned less than
8750#. ``ule``: unsigned less or equal
8751#. ``sgt``: signed greater than
8752#. ``sge``: signed greater or equal
8753#. ``slt``: signed less than
8754#. ``sle``: signed less or equal
8755
8756The remaining two arguments must be :ref:`integer <t_integer>` or
8757:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8758must also be identical types.
8759
8760Semantics:
8761""""""""""
8762
8763The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8764code given as ``cond``. The comparison performed always yields either an
8765:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8766
8767#. ``eq``: yields ``true`` if the operands are equal, ``false``
8768 otherwise. No sign interpretation is necessary or performed.
8769#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8770 otherwise. No sign interpretation is necessary or performed.
8771#. ``ugt``: interprets the operands as unsigned values and yields
8772 ``true`` if ``op1`` is greater than ``op2``.
8773#. ``uge``: interprets the operands as unsigned values and yields
8774 ``true`` if ``op1`` is greater than or equal to ``op2``.
8775#. ``ult``: interprets the operands as unsigned values and yields
8776 ``true`` if ``op1`` is less than ``op2``.
8777#. ``ule``: interprets the operands as unsigned values and yields
8778 ``true`` if ``op1`` is less than or equal to ``op2``.
8779#. ``sgt``: interprets the operands as signed values and yields ``true``
8780 if ``op1`` is greater than ``op2``.
8781#. ``sge``: interprets the operands as signed values and yields ``true``
8782 if ``op1`` is greater than or equal to ``op2``.
8783#. ``slt``: interprets the operands as signed values and yields ``true``
8784 if ``op1`` is less than ``op2``.
8785#. ``sle``: interprets the operands as signed values and yields ``true``
8786 if ``op1`` is less than or equal to ``op2``.
8787
8788If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8789are compared as if they were integers.
8790
8791If the operands are integer vectors, then they are compared element by
8792element. The result is an ``i1`` vector with the same number of elements
8793as the values being compared. Otherwise, the result is an ``i1``.
8794
8795Example:
8796""""""""
8797
Renato Golin124f2592016-07-20 12:16:38 +00008798.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008799
8800 <result> = icmp eq i32 4, 5 ; yields: result=false
8801 <result> = icmp ne float* %X, %X ; yields: result=false
8802 <result> = icmp ult i16 4, 5 ; yields: result=true
8803 <result> = icmp sgt i16 4, 5 ; yields: result=false
8804 <result> = icmp ule i16 -4, 5 ; yields: result=false
8805 <result> = icmp sge i16 4, 5 ; yields: result=false
8806
Sean Silvab084af42012-12-07 10:36:55 +00008807.. _i_fcmp:
8808
8809'``fcmp``' Instruction
8810^^^^^^^^^^^^^^^^^^^^^^
8811
8812Syntax:
8813"""""""
8814
8815::
8816
James Molloy88eb5352015-07-10 12:52:00 +00008817 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008818
8819Overview:
8820"""""""""
8821
8822The '``fcmp``' instruction returns a boolean value or vector of boolean
8823values based on comparison of its operands.
8824
8825If the operands are floating point scalars, then the result type is a
8826boolean (:ref:`i1 <t_integer>`).
8827
8828If the operands are floating point vectors, then the result type is a
8829vector of boolean with the same number of elements as the operands being
8830compared.
8831
8832Arguments:
8833""""""""""
8834
8835The '``fcmp``' instruction takes three operands. The first operand is
8836the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008837not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008838
8839#. ``false``: no comparison, always returns false
8840#. ``oeq``: ordered and equal
8841#. ``ogt``: ordered and greater than
8842#. ``oge``: ordered and greater than or equal
8843#. ``olt``: ordered and less than
8844#. ``ole``: ordered and less than or equal
8845#. ``one``: ordered and not equal
8846#. ``ord``: ordered (no nans)
8847#. ``ueq``: unordered or equal
8848#. ``ugt``: unordered or greater than
8849#. ``uge``: unordered or greater than or equal
8850#. ``ult``: unordered or less than
8851#. ``ule``: unordered or less than or equal
8852#. ``une``: unordered or not equal
8853#. ``uno``: unordered (either nans)
8854#. ``true``: no comparison, always returns true
8855
8856*Ordered* means that neither operand is a QNAN while *unordered* means
8857that either operand may be a QNAN.
8858
8859Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8860point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8861type. They must have identical types.
8862
8863Semantics:
8864""""""""""
8865
8866The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8867condition code given as ``cond``. If the operands are vectors, then the
8868vectors are compared element by element. Each comparison performed
8869always yields an :ref:`i1 <t_integer>` result, as follows:
8870
8871#. ``false``: always yields ``false``, regardless of operands.
8872#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8873 is equal to ``op2``.
8874#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8875 is greater than ``op2``.
8876#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8877 is greater than or equal to ``op2``.
8878#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8879 is less than ``op2``.
8880#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8881 is less than or equal to ``op2``.
8882#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8883 is not equal to ``op2``.
8884#. ``ord``: yields ``true`` if both operands are not a QNAN.
8885#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8886 equal to ``op2``.
8887#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8888 greater than ``op2``.
8889#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8890 greater than or equal to ``op2``.
8891#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8892 less than ``op2``.
8893#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8894 less than or equal to ``op2``.
8895#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8896 not equal to ``op2``.
8897#. ``uno``: yields ``true`` if either operand is a QNAN.
8898#. ``true``: always yields ``true``, regardless of operands.
8899
James Molloy88eb5352015-07-10 12:52:00 +00008900The ``fcmp`` instruction can also optionally take any number of
8901:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8902otherwise unsafe floating point optimizations.
8903
8904Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8905only flags that have any effect on its semantics are those that allow
8906assumptions to be made about the values of input arguments; namely
8907``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8908
Sean Silvab084af42012-12-07 10:36:55 +00008909Example:
8910""""""""
8911
Renato Golin124f2592016-07-20 12:16:38 +00008912.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008913
8914 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8915 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8916 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8917 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8918
Sean Silvab084af42012-12-07 10:36:55 +00008919.. _i_phi:
8920
8921'``phi``' Instruction
8922^^^^^^^^^^^^^^^^^^^^^
8923
8924Syntax:
8925"""""""
8926
8927::
8928
8929 <result> = phi <ty> [ <val0>, <label0>], ...
8930
8931Overview:
8932"""""""""
8933
8934The '``phi``' instruction is used to implement the φ node in the SSA
8935graph representing the function.
8936
8937Arguments:
8938""""""""""
8939
8940The type of the incoming values is specified with the first type field.
8941After this, the '``phi``' instruction takes a list of pairs as
8942arguments, with one pair for each predecessor basic block of the current
8943block. Only values of :ref:`first class <t_firstclass>` type may be used as
8944the value arguments to the PHI node. Only labels may be used as the
8945label arguments.
8946
8947There must be no non-phi instructions between the start of a basic block
8948and the PHI instructions: i.e. PHI instructions must be first in a basic
8949block.
8950
8951For the purposes of the SSA form, the use of each incoming value is
8952deemed to occur on the edge from the corresponding predecessor block to
8953the current block (but after any definition of an '``invoke``'
8954instruction's return value on the same edge).
8955
8956Semantics:
8957""""""""""
8958
8959At runtime, the '``phi``' instruction logically takes on the value
8960specified by the pair corresponding to the predecessor basic block that
8961executed just prior to the current block.
8962
8963Example:
8964""""""""
8965
8966.. code-block:: llvm
8967
8968 Loop: ; Infinite loop that counts from 0 on up...
8969 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8970 %nextindvar = add i32 %indvar, 1
8971 br label %Loop
8972
8973.. _i_select:
8974
8975'``select``' Instruction
8976^^^^^^^^^^^^^^^^^^^^^^^^
8977
8978Syntax:
8979"""""""
8980
8981::
8982
8983 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8984
8985 selty is either i1 or {<N x i1>}
8986
8987Overview:
8988"""""""""
8989
8990The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008991condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008992
8993Arguments:
8994""""""""""
8995
8996The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8997values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008998class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008999
9000Semantics:
9001""""""""""
9002
9003If the condition is an i1 and it evaluates to 1, the instruction returns
9004the first value argument; otherwise, it returns the second value
9005argument.
9006
9007If the condition is a vector of i1, then the value arguments must be
9008vectors of the same size, and the selection is done element by element.
9009
David Majnemer40a0b592015-03-03 22:45:47 +00009010If the condition is an i1 and the value arguments are vectors of the
9011same size, then an entire vector is selected.
9012
Sean Silvab084af42012-12-07 10:36:55 +00009013Example:
9014""""""""
9015
9016.. code-block:: llvm
9017
9018 %X = select i1 true, i8 17, i8 42 ; yields i8:17
9019
9020.. _i_call:
9021
9022'``call``' Instruction
9023^^^^^^^^^^^^^^^^^^^^^^
9024
9025Syntax:
9026"""""""
9027
9028::
9029
David Blaikieb83cf102016-07-13 17:21:34 +00009030 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00009031 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00009032
9033Overview:
9034"""""""""
9035
9036The '``call``' instruction represents a simple function call.
9037
9038Arguments:
9039""""""""""
9040
9041This instruction requires several arguments:
9042
Reid Kleckner5772b772014-04-24 20:14:34 +00009043#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00009044 should perform tail call optimization. The ``tail`` marker is a hint that
9045 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00009046 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00009047 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00009048
9049 #. The call will not cause unbounded stack growth if it is part of a
9050 recursive cycle in the call graph.
9051 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
9052 forwarded in place.
9053
Florian Hahnedae5a62018-01-17 23:29:25 +00009054 Both markers imply that the callee does not access allocas from the caller.
9055 The ``tail`` marker additionally implies that the callee does not access
9056 varargs from the caller, while ``musttail`` implies that varargs from the
9057 caller are passed to the callee. Calls marked ``musttail`` must obey the
9058 following additional rules:
Reid Kleckner5772b772014-04-24 20:14:34 +00009059
9060 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
9061 or a pointer bitcast followed by a ret instruction.
9062 - The ret instruction must return the (possibly bitcasted) value
9063 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00009064 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00009065 parameters or return types may differ in pointee type, but not
9066 in address space.
9067 - The calling conventions of the caller and callee must match.
9068 - All ABI-impacting function attributes, such as sret, byval, inreg,
9069 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00009070 - The callee must be varargs iff the caller is varargs. Bitcasting a
9071 non-varargs function to the appropriate varargs type is legal so
9072 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00009073
9074 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
9075 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00009076
9077 - Caller and callee both have the calling convention ``fastcc``.
9078 - The call is in tail position (ret immediately follows call and ret
9079 uses value of call or is void).
9080 - Option ``-tailcallopt`` is enabled, or
9081 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00009082 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00009083 met. <CodeGenerator.html#tailcallopt>`_
9084
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00009085#. The optional ``notail`` marker indicates that the optimizers should not add
9086 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
9087 call optimization from being performed on the call.
9088
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00009089#. The optional ``fast-math flags`` marker indicates that the call has one or more
Sanjay Patelfa54ace2015-12-14 21:59:03 +00009090 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
9091 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
9092 for calls that return a floating-point scalar or vector type.
9093
Sean Silvab084af42012-12-07 10:36:55 +00009094#. The optional "cconv" marker indicates which :ref:`calling
9095 convention <callingconv>` the call should use. If none is
9096 specified, the call defaults to using C calling conventions. The
9097 calling convention of the call must match the calling convention of
9098 the target function, or else the behavior is undefined.
9099#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
9100 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
9101 are valid here.
9102#. '``ty``': the type of the call instruction itself which is also the
9103 type of the return value. Functions that return no value are marked
9104 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00009105#. '``fnty``': shall be the signature of the function being called. The
9106 argument types must match the types implied by this signature. This
9107 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00009108#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00009109 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00009110 indirect ``call``'s are just as possible, calling an arbitrary pointer
9111 to function value.
9112#. '``function args``': argument list whose types match the function
9113 signature argument types and parameter attributes. All arguments must
9114 be of :ref:`first class <t_firstclass>` type. If the function signature
9115 indicates the function accepts a variable number of arguments, the
9116 extra arguments can be specified.
George Burgess IV39c91052017-04-13 04:01:55 +00009117#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00009118#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00009119
9120Semantics:
9121""""""""""
9122
9123The '``call``' instruction is used to cause control flow to transfer to
9124a specified function, with its incoming arguments bound to the specified
9125values. Upon a '``ret``' instruction in the called function, control
9126flow continues with the instruction after the function call, and the
9127return value of the function is bound to the result argument.
9128
9129Example:
9130""""""""
9131
9132.. code-block:: llvm
9133
9134 %retval = call i32 @test(i32 %argc)
9135 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
9136 %X = tail call i32 @foo() ; yields i32
9137 %Y = tail call fastcc i32 @foo() ; yields i32
9138 call void %foo(i8 97 signext)
9139
9140 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00009141 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00009142 %gr = extractvalue %struct.A %r, 0 ; yields i32
9143 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
9144 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
9145 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
9146
9147llvm treats calls to some functions with names and arguments that match
9148the standard C99 library as being the C99 library functions, and may
9149perform optimizations or generate code for them under that assumption.
9150This is something we'd like to change in the future to provide better
9151support for freestanding environments and non-C-based languages.
9152
9153.. _i_va_arg:
9154
9155'``va_arg``' Instruction
9156^^^^^^^^^^^^^^^^^^^^^^^^
9157
9158Syntax:
9159"""""""
9160
9161::
9162
9163 <resultval> = va_arg <va_list*> <arglist>, <argty>
9164
9165Overview:
9166"""""""""
9167
9168The '``va_arg``' instruction is used to access arguments passed through
9169the "variable argument" area of a function call. It is used to implement
9170the ``va_arg`` macro in C.
9171
9172Arguments:
9173""""""""""
9174
9175This instruction takes a ``va_list*`` value and the type of the
9176argument. It returns a value of the specified argument type and
9177increments the ``va_list`` to point to the next argument. The actual
9178type of ``va_list`` is target specific.
9179
9180Semantics:
9181""""""""""
9182
9183The '``va_arg``' instruction loads an argument of the specified type
9184from the specified ``va_list`` and causes the ``va_list`` to point to
9185the next argument. For more information, see the variable argument
9186handling :ref:`Intrinsic Functions <int_varargs>`.
9187
9188It is legal for this instruction to be called in a function which does
9189not take a variable number of arguments, for example, the ``vfprintf``
9190function.
9191
9192``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
9193function <intrinsics>` because it takes a type as an argument.
9194
9195Example:
9196""""""""
9197
9198See the :ref:`variable argument processing <int_varargs>` section.
9199
9200Note that the code generator does not yet fully support va\_arg on many
9201targets. Also, it does not currently support va\_arg with aggregate
9202types on any target.
9203
9204.. _i_landingpad:
9205
9206'``landingpad``' Instruction
9207^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9208
9209Syntax:
9210"""""""
9211
9212::
9213
David Majnemer7fddecc2015-06-17 20:52:32 +00009214 <resultval> = landingpad <resultty> <clause>+
9215 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00009216
9217 <clause> := catch <type> <value>
9218 <clause> := filter <array constant type> <array constant>
9219
9220Overview:
9221"""""""""
9222
9223The '``landingpad``' instruction is used by `LLVM's exception handling
9224system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009225is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00009226code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00009227defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00009228re-entry to the function. The ``resultval`` has the type ``resultty``.
9229
9230Arguments:
9231""""""""""
9232
David Majnemer7fddecc2015-06-17 20:52:32 +00009233The optional
Sean Silvab084af42012-12-07 10:36:55 +00009234``cleanup`` flag indicates that the landing pad block is a cleanup.
9235
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009236A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00009237contains the global variable representing the "type" that may be caught
9238or filtered respectively. Unlike the ``catch`` clause, the ``filter``
9239clause takes an array constant as its argument. Use
9240"``[0 x i8**] undef``" for a filter which cannot throw. The
9241'``landingpad``' instruction must contain *at least* one ``clause`` or
9242the ``cleanup`` flag.
9243
9244Semantics:
9245""""""""""
9246
9247The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00009248:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00009249therefore the "result type" of the ``landingpad`` instruction. As with
9250calling conventions, how the personality function results are
9251represented in LLVM IR is target specific.
9252
9253The clauses are applied in order from top to bottom. If two
9254``landingpad`` instructions are merged together through inlining, the
9255clauses from the calling function are appended to the list of clauses.
9256When the call stack is being unwound due to an exception being thrown,
9257the exception is compared against each ``clause`` in turn. If it doesn't
9258match any of the clauses, and the ``cleanup`` flag is not set, then
9259unwinding continues further up the call stack.
9260
9261The ``landingpad`` instruction has several restrictions:
9262
9263- A landing pad block is a basic block which is the unwind destination
9264 of an '``invoke``' instruction.
9265- A landing pad block must have a '``landingpad``' instruction as its
9266 first non-PHI instruction.
9267- There can be only one '``landingpad``' instruction within the landing
9268 pad block.
9269- A basic block that is not a landing pad block may not include a
9270 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009271
9272Example:
9273""""""""
9274
9275.. code-block:: llvm
9276
9277 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00009278 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009279 catch i8** @_ZTIi
9280 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00009281 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009282 cleanup
9283 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00009284 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009285 catch i8** @_ZTIi
9286 filter [1 x i8**] [@_ZTId]
9287
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009288.. _i_catchpad:
9289
9290'``catchpad``' Instruction
9291^^^^^^^^^^^^^^^^^^^^^^^^^^
9292
9293Syntax:
9294"""""""
9295
9296::
9297
9298 <resultval> = catchpad within <catchswitch> [<args>*]
9299
9300Overview:
9301"""""""""
9302
9303The '``catchpad``' instruction is used by `LLVM's exception handling
9304system <ExceptionHandling.html#overview>`_ to specify that a basic block
9305begins a catch handler --- one where a personality routine attempts to transfer
9306control to catch an exception.
9307
9308Arguments:
9309""""""""""
9310
9311The ``catchswitch`` operand must always be a token produced by a
9312:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
9313ensures that each ``catchpad`` has exactly one predecessor block, and it always
9314terminates in a ``catchswitch``.
9315
9316The ``args`` correspond to whatever information the personality routine
9317requires to know if this is an appropriate handler for the exception. Control
9318will transfer to the ``catchpad`` if this is the first appropriate handler for
9319the exception.
9320
9321The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
9322``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
9323pads.
9324
9325Semantics:
9326""""""""""
9327
9328When the call stack is being unwound due to an exception being thrown, the
9329exception is compared against the ``args``. If it doesn't match, control will
9330not reach the ``catchpad`` instruction. The representation of ``args`` is
9331entirely target and personality function-specific.
9332
9333Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
9334instruction must be the first non-phi of its parent basic block.
9335
9336The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
9337instructions is described in the
9338`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
9339
9340When a ``catchpad`` has been "entered" but not yet "exited" (as
9341described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9342it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9343that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
9344
9345Example:
9346""""""""
9347
Renato Golin124f2592016-07-20 12:16:38 +00009348.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009349
9350 dispatch:
9351 %cs = catchswitch within none [label %handler0] unwind to caller
9352 ;; A catch block which can catch an integer.
9353 handler0:
9354 %tok = catchpad within %cs [i8** @_ZTIi]
9355
David Majnemer654e1302015-07-31 17:58:14 +00009356.. _i_cleanuppad:
9357
9358'``cleanuppad``' Instruction
9359^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9360
9361Syntax:
9362"""""""
9363
9364::
9365
David Majnemer8a1c45d2015-12-12 05:38:55 +00009366 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00009367
9368Overview:
9369"""""""""
9370
9371The '``cleanuppad``' instruction is used by `LLVM's exception handling
9372system <ExceptionHandling.html#overview>`_ to specify that a basic block
9373is a cleanup block --- one where a personality routine attempts to
9374transfer control to run cleanup actions.
9375The ``args`` correspond to whatever additional
9376information the :ref:`personality function <personalityfn>` requires to
9377execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00009378The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00009379match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
9380The ``parent`` argument is the token of the funclet that contains the
9381``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
9382this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00009383
9384Arguments:
9385""""""""""
9386
9387The instruction takes a list of arbitrary values which are interpreted
9388by the :ref:`personality function <personalityfn>`.
9389
9390Semantics:
9391""""""""""
9392
David Majnemer654e1302015-07-31 17:58:14 +00009393When the call stack is being unwound due to an exception being thrown,
9394the :ref:`personality function <personalityfn>` transfers control to the
9395``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00009396As with calling conventions, how the personality function results are
9397represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00009398
9399The ``cleanuppad`` instruction has several restrictions:
9400
9401- A cleanup block is a basic block which is the unwind destination of
9402 an exceptional instruction.
9403- A cleanup block must have a '``cleanuppad``' instruction as its
9404 first non-PHI instruction.
9405- There can be only one '``cleanuppad``' instruction within the
9406 cleanup block.
9407- A basic block that is not a cleanup block may not include a
9408 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009409
Joseph Tremoulete28885e2016-01-10 04:28:38 +00009410When a ``cleanuppad`` has been "entered" but not yet "exited" (as
9411described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9412it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9413that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009414
David Majnemer654e1302015-07-31 17:58:14 +00009415Example:
9416""""""""
9417
Renato Golin124f2592016-07-20 12:16:38 +00009418.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00009419
David Majnemer8a1c45d2015-12-12 05:38:55 +00009420 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00009421
Sean Silvab084af42012-12-07 10:36:55 +00009422.. _intrinsics:
9423
9424Intrinsic Functions
9425===================
9426
9427LLVM supports the notion of an "intrinsic function". These functions
9428have well known names and semantics and are required to follow certain
9429restrictions. Overall, these intrinsics represent an extension mechanism
9430for the LLVM language that does not require changing all of the
9431transformations in LLVM when adding to the language (or the bitcode
9432reader/writer, the parser, etc...).
9433
9434Intrinsic function names must all start with an "``llvm.``" prefix. This
9435prefix is reserved in LLVM for intrinsic names; thus, function names may
9436not begin with this prefix. Intrinsic functions must always be external
9437functions: you cannot define the body of intrinsic functions. Intrinsic
9438functions may only be used in call or invoke instructions: it is illegal
9439to take the address of an intrinsic function. Additionally, because
9440intrinsic functions are part of the LLVM language, it is required if any
9441are added that they be documented here.
9442
9443Some intrinsic functions can be overloaded, i.e., the intrinsic
9444represents a family of functions that perform the same operation but on
9445different data types. Because LLVM can represent over 8 million
9446different integer types, overloading is used commonly to allow an
9447intrinsic function to operate on any integer type. One or more of the
9448argument types or the result type can be overloaded to accept any
9449integer type. Argument types may also be defined as exactly matching a
9450previous argument's type or the result type. This allows an intrinsic
9451function which accepts multiple arguments, but needs all of them to be
9452of the same type, to only be overloaded with respect to a single
9453argument or the result.
9454
9455Overloaded intrinsics will have the names of its overloaded argument
9456types encoded into its function name, each preceded by a period. Only
9457those types which are overloaded result in a name suffix. Arguments
9458whose type is matched against another type do not. For example, the
9459``llvm.ctpop`` function can take an integer of any width and returns an
9460integer of exactly the same integer width. This leads to a family of
9461functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
9462``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
9463overloaded, and only one type suffix is required. Because the argument's
9464type is matched against the return type, it does not require its own
9465name suffix.
9466
9467To learn how to add an intrinsic function, please see the `Extending
9468LLVM Guide <ExtendingLLVM.html>`_.
9469
9470.. _int_varargs:
9471
9472Variable Argument Handling Intrinsics
9473-------------------------------------
9474
9475Variable argument support is defined in LLVM with the
9476:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9477functions. These functions are related to the similarly named macros
9478defined in the ``<stdarg.h>`` header file.
9479
9480All of these functions operate on arguments that use a target-specific
9481value type "``va_list``". The LLVM assembly language reference manual
9482does not define what this type is, so all transformations should be
9483prepared to handle these functions regardless of the type used.
9484
9485This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9486variable argument handling intrinsic functions are used.
9487
9488.. code-block:: llvm
9489
Tim Northoverab60bb92014-11-02 01:21:51 +00009490 ; This struct is different for every platform. For most platforms,
9491 ; it is merely an i8*.
9492 %struct.va_list = type { i8* }
9493
9494 ; For Unix x86_64 platforms, va_list is the following struct:
9495 ; %struct.va_list = type { i32, i32, i8*, i8* }
9496
Sean Silvab084af42012-12-07 10:36:55 +00009497 define i32 @test(i32 %X, ...) {
9498 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009499 %ap = alloca %struct.va_list
9500 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009501 call void @llvm.va_start(i8* %ap2)
9502
9503 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009504 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009505
9506 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9507 %aq = alloca i8*
9508 %aq2 = bitcast i8** %aq to i8*
9509 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9510 call void @llvm.va_end(i8* %aq2)
9511
9512 ; Stop processing of arguments.
9513 call void @llvm.va_end(i8* %ap2)
9514 ret i32 %tmp
9515 }
9516
9517 declare void @llvm.va_start(i8*)
9518 declare void @llvm.va_copy(i8*, i8*)
9519 declare void @llvm.va_end(i8*)
9520
9521.. _int_va_start:
9522
9523'``llvm.va_start``' Intrinsic
9524^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9525
9526Syntax:
9527"""""""
9528
9529::
9530
Nick Lewycky04f6de02013-09-11 22:04:52 +00009531 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009532
9533Overview:
9534"""""""""
9535
9536The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9537subsequent use by ``va_arg``.
9538
9539Arguments:
9540""""""""""
9541
9542The argument is a pointer to a ``va_list`` element to initialize.
9543
9544Semantics:
9545""""""""""
9546
9547The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9548available in C. In a target-dependent way, it initializes the
9549``va_list`` element to which the argument points, so that the next call
9550to ``va_arg`` will produce the first variable argument passed to the
9551function. Unlike the C ``va_start`` macro, this intrinsic does not need
9552to know the last argument of the function as the compiler can figure
9553that out.
9554
9555'``llvm.va_end``' Intrinsic
9556^^^^^^^^^^^^^^^^^^^^^^^^^^^
9557
9558Syntax:
9559"""""""
9560
9561::
9562
9563 declare void @llvm.va_end(i8* <arglist>)
9564
9565Overview:
9566"""""""""
9567
9568The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9569initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9570
9571Arguments:
9572""""""""""
9573
9574The argument is a pointer to a ``va_list`` to destroy.
9575
9576Semantics:
9577""""""""""
9578
9579The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9580available in C. In a target-dependent way, it destroys the ``va_list``
9581element to which the argument points. Calls to
9582:ref:`llvm.va_start <int_va_start>` and
9583:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9584``llvm.va_end``.
9585
9586.. _int_va_copy:
9587
9588'``llvm.va_copy``' Intrinsic
9589^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9590
9591Syntax:
9592"""""""
9593
9594::
9595
9596 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9597
9598Overview:
9599"""""""""
9600
9601The '``llvm.va_copy``' intrinsic copies the current argument position
9602from the source argument list to the destination argument list.
9603
9604Arguments:
9605""""""""""
9606
9607The first argument is a pointer to a ``va_list`` element to initialize.
9608The second argument is a pointer to a ``va_list`` element to copy from.
9609
9610Semantics:
9611""""""""""
9612
9613The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9614available in C. In a target-dependent way, it copies the source
9615``va_list`` element into the destination ``va_list`` element. This
9616intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9617arbitrarily complex and require, for example, memory allocation.
9618
9619Accurate Garbage Collection Intrinsics
9620--------------------------------------
9621
Philip Reamesc5b0f562015-02-25 23:52:06 +00009622LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009623(GC) requires the frontend to generate code containing appropriate intrinsic
9624calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009625intrinsics in a manner which is appropriate for the target collector.
9626
Sean Silvab084af42012-12-07 10:36:55 +00009627These intrinsics allow identification of :ref:`GC roots on the
9628stack <int_gcroot>`, as well as garbage collector implementations that
9629require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009630Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009631these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009632details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009633
Philip Reamesf80bbff2015-02-25 23:45:20 +00009634Experimental Statepoint Intrinsics
9635^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9636
9637LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009638collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009639to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009640:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009641differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009642<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009643described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009644
9645.. _int_gcroot:
9646
9647'``llvm.gcroot``' Intrinsic
9648^^^^^^^^^^^^^^^^^^^^^^^^^^^
9649
9650Syntax:
9651"""""""
9652
9653::
9654
9655 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9656
9657Overview:
9658"""""""""
9659
9660The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9661the code generator, and allows some metadata to be associated with it.
9662
9663Arguments:
9664""""""""""
9665
9666The first argument specifies the address of a stack object that contains
9667the root pointer. The second pointer (which must be either a constant or
9668a global value address) contains the meta-data to be associated with the
9669root.
9670
9671Semantics:
9672""""""""""
9673
9674At runtime, a call to this intrinsic stores a null pointer into the
9675"ptrloc" location. At compile-time, the code generator generates
9676information to allow the runtime to find the pointer at GC safe points.
9677The '``llvm.gcroot``' intrinsic may only be used in a function which
9678:ref:`specifies a GC algorithm <gc>`.
9679
9680.. _int_gcread:
9681
9682'``llvm.gcread``' Intrinsic
9683^^^^^^^^^^^^^^^^^^^^^^^^^^^
9684
9685Syntax:
9686"""""""
9687
9688::
9689
9690 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9691
9692Overview:
9693"""""""""
9694
9695The '``llvm.gcread``' intrinsic identifies reads of references from heap
9696locations, allowing garbage collector implementations that require read
9697barriers.
9698
9699Arguments:
9700""""""""""
9701
9702The second argument is the address to read from, which should be an
9703address allocated from the garbage collector. The first object is a
9704pointer to the start of the referenced object, if needed by the language
9705runtime (otherwise null).
9706
9707Semantics:
9708""""""""""
9709
9710The '``llvm.gcread``' intrinsic has the same semantics as a load
9711instruction, but may be replaced with substantially more complex code by
9712the garbage collector runtime, as needed. The '``llvm.gcread``'
9713intrinsic may only be used in a function which :ref:`specifies a GC
9714algorithm <gc>`.
9715
9716.. _int_gcwrite:
9717
9718'``llvm.gcwrite``' Intrinsic
9719^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9720
9721Syntax:
9722"""""""
9723
9724::
9725
9726 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9727
9728Overview:
9729"""""""""
9730
9731The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9732locations, allowing garbage collector implementations that require write
9733barriers (such as generational or reference counting collectors).
9734
9735Arguments:
9736""""""""""
9737
9738The first argument is the reference to store, the second is the start of
9739the object to store it to, and the third is the address of the field of
9740Obj to store to. If the runtime does not require a pointer to the
9741object, Obj may be null.
9742
9743Semantics:
9744""""""""""
9745
9746The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9747instruction, but may be replaced with substantially more complex code by
9748the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9749intrinsic may only be used in a function which :ref:`specifies a GC
9750algorithm <gc>`.
9751
9752Code Generator Intrinsics
9753-------------------------
9754
9755These intrinsics are provided by LLVM to expose special features that
9756may only be implemented with code generator support.
9757
9758'``llvm.returnaddress``' Intrinsic
9759^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9760
9761Syntax:
9762"""""""
9763
9764::
9765
George Burgess IVfbc34982017-05-20 04:52:29 +00009766 declare i8* @llvm.returnaddress(i32 <level>)
Sean Silvab084af42012-12-07 10:36:55 +00009767
9768Overview:
9769"""""""""
9770
9771The '``llvm.returnaddress``' intrinsic attempts to compute a
9772target-specific value indicating the return address of the current
9773function or one of its callers.
9774
9775Arguments:
9776""""""""""
9777
9778The argument to this intrinsic indicates which function to return the
9779address for. Zero indicates the calling function, one indicates its
9780caller, etc. The argument is **required** to be a constant integer
9781value.
9782
9783Semantics:
9784""""""""""
9785
9786The '``llvm.returnaddress``' intrinsic either returns a pointer
9787indicating the return address of the specified call frame, or zero if it
9788cannot be identified. The value returned by this intrinsic is likely to
9789be incorrect or 0 for arguments other than zero, so it should only be
9790used for debugging purposes.
9791
9792Note that calling this intrinsic does not prevent function inlining or
9793other aggressive transformations, so the value returned may not be that
9794of the obvious source-language caller.
9795
Albert Gutowski795d7d62016-10-12 22:13:19 +00009796'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +00009797^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +00009798
9799Syntax:
9800"""""""
9801
9802::
9803
George Burgess IVfbc34982017-05-20 04:52:29 +00009804 declare i8* @llvm.addressofreturnaddress()
Albert Gutowski795d7d62016-10-12 22:13:19 +00009805
9806Overview:
9807"""""""""
9808
9809The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
9810pointer to the place in the stack frame where the return address of the
9811current function is stored.
9812
9813Semantics:
9814""""""""""
9815
9816Note that calling this intrinsic does not prevent function inlining or
9817other aggressive transformations, so the value returned may not be that
9818of the obvious source-language caller.
9819
9820This intrinsic is only implemented for x86.
9821
Sean Silvab084af42012-12-07 10:36:55 +00009822'``llvm.frameaddress``' Intrinsic
9823^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9824
9825Syntax:
9826"""""""
9827
9828::
9829
9830 declare i8* @llvm.frameaddress(i32 <level>)
9831
9832Overview:
9833"""""""""
9834
9835The '``llvm.frameaddress``' intrinsic attempts to return the
9836target-specific frame pointer value for the specified stack frame.
9837
9838Arguments:
9839""""""""""
9840
9841The argument to this intrinsic indicates which function to return the
9842frame pointer for. Zero indicates the calling function, one indicates
9843its caller, etc. The argument is **required** to be a constant integer
9844value.
9845
9846Semantics:
9847""""""""""
9848
9849The '``llvm.frameaddress``' intrinsic either returns a pointer
9850indicating the frame address of the specified call frame, or zero if it
9851cannot be identified. The value returned by this intrinsic is likely to
9852be incorrect or 0 for arguments other than zero, so it should only be
9853used for debugging purposes.
9854
9855Note that calling this intrinsic does not prevent function inlining or
9856other aggressive transformations, so the value returned may not be that
9857of the obvious source-language caller.
9858
Reid Kleckner60381792015-07-07 22:25:32 +00009859'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009860^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9861
9862Syntax:
9863"""""""
9864
9865::
9866
Reid Kleckner60381792015-07-07 22:25:32 +00009867 declare void @llvm.localescape(...)
9868 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009869
9870Overview:
9871"""""""""
9872
Reid Kleckner60381792015-07-07 22:25:32 +00009873The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9874allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009875live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009876computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009877
9878Arguments:
9879""""""""""
9880
Reid Kleckner60381792015-07-07 22:25:32 +00009881All arguments to '``llvm.localescape``' must be pointers to static allocas or
9882casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009883once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009884
Reid Kleckner60381792015-07-07 22:25:32 +00009885The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009886bitcasted pointer to a function defined in the current module. The code
9887generator cannot determine the frame allocation offset of functions defined in
9888other modules.
9889
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009890The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9891call frame that is currently live. The return value of '``llvm.localaddress``'
9892is one way to produce such a value, but various runtimes also expose a suitable
9893pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009894
Reid Kleckner60381792015-07-07 22:25:32 +00009895The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9896'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009897
Reid Klecknere9b89312015-01-13 00:48:10 +00009898Semantics:
9899""""""""""
9900
Reid Kleckner60381792015-07-07 22:25:32 +00009901These intrinsics allow a group of functions to share access to a set of local
9902stack allocations of a one parent function. The parent function may call the
9903'``llvm.localescape``' intrinsic once from the function entry block, and the
9904child functions can use '``llvm.localrecover``' to access the escaped allocas.
9905The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9906the escaped allocas are allocated, which would break attempts to use
9907'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009908
Renato Golinc7aea402014-05-06 16:51:25 +00009909.. _int_read_register:
9910.. _int_write_register:
9911
9912'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9913^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9914
9915Syntax:
9916"""""""
9917
9918::
9919
9920 declare i32 @llvm.read_register.i32(metadata)
9921 declare i64 @llvm.read_register.i64(metadata)
9922 declare void @llvm.write_register.i32(metadata, i32 @value)
9923 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009924 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009925
9926Overview:
9927"""""""""
9928
9929The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9930provides access to the named register. The register must be valid on
9931the architecture being compiled to. The type needs to be compatible
9932with the register being read.
9933
9934Semantics:
9935""""""""""
9936
9937The '``llvm.read_register``' intrinsic returns the current value of the
9938register, where possible. The '``llvm.write_register``' intrinsic sets
9939the current value of the register, where possible.
9940
9941This is useful to implement named register global variables that need
9942to always be mapped to a specific register, as is common practice on
9943bare-metal programs including OS kernels.
9944
9945The compiler doesn't check for register availability or use of the used
9946register in surrounding code, including inline assembly. Because of that,
9947allocatable registers are not supported.
9948
9949Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009950architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009951work is needed to support other registers and even more so, allocatable
9952registers.
9953
Sean Silvab084af42012-12-07 10:36:55 +00009954.. _int_stacksave:
9955
9956'``llvm.stacksave``' Intrinsic
9957^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9958
9959Syntax:
9960"""""""
9961
9962::
9963
9964 declare i8* @llvm.stacksave()
9965
9966Overview:
9967"""""""""
9968
9969The '``llvm.stacksave``' intrinsic is used to remember the current state
9970of the function stack, for use with
9971:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9972implementing language features like scoped automatic variable sized
9973arrays in C99.
9974
9975Semantics:
9976""""""""""
9977
9978This intrinsic returns a opaque pointer value that can be passed to
9979:ref:`llvm.stackrestore <int_stackrestore>`. When an
9980``llvm.stackrestore`` intrinsic is executed with a value saved from
9981``llvm.stacksave``, it effectively restores the state of the stack to
9982the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9983practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9984were allocated after the ``llvm.stacksave`` was executed.
9985
9986.. _int_stackrestore:
9987
9988'``llvm.stackrestore``' Intrinsic
9989^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9990
9991Syntax:
9992"""""""
9993
9994::
9995
9996 declare void @llvm.stackrestore(i8* %ptr)
9997
9998Overview:
9999"""""""""
10000
10001The '``llvm.stackrestore``' intrinsic is used to restore the state of
10002the function stack to the state it was in when the corresponding
10003:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
10004useful for implementing language features like scoped automatic variable
10005sized arrays in C99.
10006
10007Semantics:
10008""""""""""
10009
10010See the description for :ref:`llvm.stacksave <int_stacksave>`.
10011
Yury Gribovd7dbb662015-12-01 11:40:55 +000010012.. _int_get_dynamic_area_offset:
10013
10014'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +000010015^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +000010016
10017Syntax:
10018"""""""
10019
10020::
10021
10022 declare i32 @llvm.get.dynamic.area.offset.i32()
10023 declare i64 @llvm.get.dynamic.area.offset.i64()
10024
Lang Hames10239932016-10-08 00:20:42 +000010025Overview:
10026"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +000010027
10028 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
10029 get the offset from native stack pointer to the address of the most
10030 recent dynamic alloca on the caller's stack. These intrinsics are
10031 intendend for use in combination with
10032 :ref:`llvm.stacksave <int_stacksave>` to get a
10033 pointer to the most recent dynamic alloca. This is useful, for example,
10034 for AddressSanitizer's stack unpoisoning routines.
10035
10036Semantics:
10037""""""""""
10038
10039 These intrinsics return a non-negative integer value that can be used to
10040 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
10041 on the caller's stack. In particular, for targets where stack grows downwards,
10042 adding this offset to the native stack pointer would get the address of the most
10043 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +000010044 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +000010045 one past the end of the most recent dynamic alloca.
10046
10047 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
10048 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
10049 compile-time-known constant value.
10050
10051 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
Matt Arsenaultc749bdc2017-03-30 23:36:47 +000010052 must match the target's default address space's (address space 0) pointer type.
Yury Gribovd7dbb662015-12-01 11:40:55 +000010053
Sean Silvab084af42012-12-07 10:36:55 +000010054'``llvm.prefetch``' Intrinsic
10055^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10056
10057Syntax:
10058"""""""
10059
10060::
10061
10062 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
10063
10064Overview:
10065"""""""""
10066
10067The '``llvm.prefetch``' intrinsic is a hint to the code generator to
10068insert a prefetch instruction if supported; otherwise, it is a noop.
10069Prefetches have no effect on the behavior of the program but can change
10070its performance characteristics.
10071
10072Arguments:
10073""""""""""
10074
10075``address`` is the address to be prefetched, ``rw`` is the specifier
10076determining if the fetch should be for a read (0) or write (1), and
10077``locality`` is a temporal locality specifier ranging from (0) - no
10078locality, to (3) - extremely local keep in cache. The ``cache type``
10079specifies whether the prefetch is performed on the data (1) or
10080instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
10081arguments must be constant integers.
10082
10083Semantics:
10084""""""""""
10085
10086This intrinsic does not modify the behavior of the program. In
10087particular, prefetches cannot trap and do not produce a value. On
10088targets that support this intrinsic, the prefetch can provide hints to
10089the processor cache for better performance.
10090
10091'``llvm.pcmarker``' Intrinsic
10092^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10093
10094Syntax:
10095"""""""
10096
10097::
10098
10099 declare void @llvm.pcmarker(i32 <id>)
10100
10101Overview:
10102"""""""""
10103
10104The '``llvm.pcmarker``' intrinsic is a method to export a Program
10105Counter (PC) in a region of code to simulators and other tools. The
10106method is target specific, but it is expected that the marker will use
10107exported symbols to transmit the PC of the marker. The marker makes no
10108guarantees that it will remain with any specific instruction after
10109optimizations. It is possible that the presence of a marker will inhibit
10110optimizations. The intended use is to be inserted after optimizations to
10111allow correlations of simulation runs.
10112
10113Arguments:
10114""""""""""
10115
10116``id`` is a numerical id identifying the marker.
10117
10118Semantics:
10119""""""""""
10120
10121This intrinsic does not modify the behavior of the program. Backends
10122that do not support this intrinsic may ignore it.
10123
10124'``llvm.readcyclecounter``' Intrinsic
10125^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10126
10127Syntax:
10128"""""""
10129
10130::
10131
10132 declare i64 @llvm.readcyclecounter()
10133
10134Overview:
10135"""""""""
10136
10137The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
10138counter register (or similar low latency, high accuracy clocks) on those
10139targets that support it. On X86, it should map to RDTSC. On Alpha, it
10140should map to RPCC. As the backing counters overflow quickly (on the
10141order of 9 seconds on alpha), this should only be used for small
10142timings.
10143
10144Semantics:
10145""""""""""
10146
10147When directly supported, reading the cycle counter should not modify any
10148memory. Implementations are allowed to either return a application
10149specific value or a system wide value. On backends without support, this
10150is lowered to a constant 0.
10151
Tim Northoverbc933082013-05-23 19:11:20 +000010152Note that runtime support may be conditional on the privilege-level code is
10153running at and the host platform.
10154
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010155'``llvm.clear_cache``' Intrinsic
10156^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10157
10158Syntax:
10159"""""""
10160
10161::
10162
10163 declare void @llvm.clear_cache(i8*, i8*)
10164
10165Overview:
10166"""""""""
10167
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010168The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
10169in the specified range to the execution unit of the processor. On
10170targets with non-unified instruction and data cache, the implementation
10171flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010172
10173Semantics:
10174""""""""""
10175
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010176On platforms with coherent instruction and data caches (e.g. x86), this
10177intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +000010178cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010179instructions or a system call, if cache flushing requires special
10180privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010181
Sean Silvad02bf3e2014-04-07 22:29:53 +000010182The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010183time library.
Renato Golin93010e62014-03-26 14:01:32 +000010184
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010185This instrinsic does *not* empty the instruction pipeline. Modifications
10186of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010187
Justin Bogner61ba2e32014-12-08 18:02:35 +000010188'``llvm.instrprof_increment``' Intrinsic
10189^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10190
10191Syntax:
10192"""""""
10193
10194::
10195
10196 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
10197 i32 <num-counters>, i32 <index>)
10198
10199Overview:
10200"""""""""
10201
10202The '``llvm.instrprof_increment``' intrinsic can be emitted by a
10203frontend for use with instrumentation based profiling. These will be
10204lowered by the ``-instrprof`` pass to generate execution counts of a
10205program at runtime.
10206
10207Arguments:
10208""""""""""
10209
10210The first argument is a pointer to a global variable containing the
10211name of the entity being instrumented. This should generally be the
10212(mangled) function name for a set of counters.
10213
10214The second argument is a hash value that can be used by the consumer
10215of the profile data to detect changes to the instrumented source, and
10216the third is the number of counters associated with ``name``. It is an
10217error if ``hash`` or ``num-counters`` differ between two instances of
10218``instrprof_increment`` that refer to the same name.
10219
10220The last argument refers to which of the counters for ``name`` should
10221be incremented. It should be a value between 0 and ``num-counters``.
10222
10223Semantics:
10224""""""""""
10225
10226This intrinsic represents an increment of a profiling counter. It will
10227cause the ``-instrprof`` pass to generate the appropriate data
10228structures and the code to increment the appropriate value, in a
10229format that can be written out by a compiler runtime and consumed via
10230the ``llvm-profdata`` tool.
10231
Xinliang David Li4ca17332016-09-18 18:34:07 +000010232'``llvm.instrprof_increment_step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +000010233^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +000010234
10235Syntax:
10236"""""""
10237
10238::
10239
10240 declare void @llvm.instrprof_increment_step(i8* <name>, i64 <hash>,
10241 i32 <num-counters>,
10242 i32 <index>, i64 <step>)
10243
10244Overview:
10245"""""""""
10246
10247The '``llvm.instrprof_increment_step``' intrinsic is an extension to
10248the '``llvm.instrprof_increment``' intrinsic with an additional fifth
10249argument to specify the step of the increment.
10250
10251Arguments:
10252""""""""""
10253The first four arguments are the same as '``llvm.instrprof_increment``'
Pete Couperused9569d2017-08-23 20:58:22 +000010254intrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000010255
10256The last argument specifies the value of the increment of the counter variable.
10257
10258Semantics:
10259""""""""""
10260See description of '``llvm.instrprof_increment``' instrinsic.
10261
10262
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010263'``llvm.instrprof_value_profile``' Intrinsic
10264^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10265
10266Syntax:
10267"""""""
10268
10269::
10270
10271 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
10272 i64 <value>, i32 <value_kind>,
10273 i32 <index>)
10274
10275Overview:
10276"""""""""
10277
10278The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
10279frontend for use with instrumentation based profiling. This will be
10280lowered by the ``-instrprof`` pass to find out the target values,
10281instrumented expressions take in a program at runtime.
10282
10283Arguments:
10284""""""""""
10285
10286The first argument is a pointer to a global variable containing the
10287name of the entity being instrumented. ``name`` should generally be the
10288(mangled) function name for a set of counters.
10289
10290The second argument is a hash value that can be used by the consumer
10291of the profile data to detect changes to the instrumented source. It
10292is an error if ``hash`` differs between two instances of
10293``llvm.instrprof_*`` that refer to the same name.
10294
10295The third argument is the value of the expression being profiled. The profiled
10296expression's value should be representable as an unsigned 64-bit value. The
10297fourth argument represents the kind of value profiling that is being done. The
10298supported value profiling kinds are enumerated through the
10299``InstrProfValueKind`` type declared in the
10300``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
10301index of the instrumented expression within ``name``. It should be >= 0.
10302
10303Semantics:
10304""""""""""
10305
10306This intrinsic represents the point where a call to a runtime routine
10307should be inserted for value profiling of target expressions. ``-instrprof``
10308pass will generate the appropriate data structures and replace the
10309``llvm.instrprof_value_profile`` intrinsic with the call to the profile
10310runtime library with proper arguments.
10311
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000010312'``llvm.thread.pointer``' Intrinsic
10313^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10314
10315Syntax:
10316"""""""
10317
10318::
10319
10320 declare i8* @llvm.thread.pointer()
10321
10322Overview:
10323"""""""""
10324
10325The '``llvm.thread.pointer``' intrinsic returns the value of the thread
10326pointer.
10327
10328Semantics:
10329""""""""""
10330
10331The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
10332for the current thread. The exact semantics of this value are target
10333specific: it may point to the start of TLS area, to the end, or somewhere
10334in the middle. Depending on the target, this intrinsic may read a register,
10335call a helper function, read from an alternate memory space, or perform
10336other operations necessary to locate the TLS area. Not all targets support
10337this intrinsic.
10338
Sean Silvab084af42012-12-07 10:36:55 +000010339Standard C Library Intrinsics
10340-----------------------------
10341
10342LLVM provides intrinsics for a few important standard C library
10343functions. These intrinsics allow source-language front-ends to pass
10344information about the alignment of the pointer arguments to the code
10345generator, providing opportunity for more efficient code generation.
10346
10347.. _int_memcpy:
10348
10349'``llvm.memcpy``' Intrinsic
10350^^^^^^^^^^^^^^^^^^^^^^^^^^^
10351
10352Syntax:
10353"""""""
10354
10355This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
10356integer bit width and for different address spaces. Not all targets
10357support all bit widths however.
10358
10359::
10360
10361 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010362 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010363 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010364 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010365
10366Overview:
10367"""""""""
10368
10369The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10370source location to the destination location.
10371
10372Note that, unlike the standard libc function, the ``llvm.memcpy.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000010373intrinsics do not return a value, takes extra isvolatile
Sean Silvab084af42012-12-07 10:36:55 +000010374arguments and the pointers can be in specified address spaces.
10375
10376Arguments:
10377""""""""""
10378
10379The first argument is a pointer to the destination, the second is a
10380pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000010381specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000010382boolean indicating a volatile access.
10383
Daniel Neilson39eb6a52018-01-19 17:24:21 +000010384The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010385for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010386
10387If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
10388a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10389very cleanly specified and it is unwise to depend on it.
10390
10391Semantics:
10392""""""""""
10393
10394The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10395source location to the destination location, which are not allowed to
10396overlap. It copies "len" bytes of memory over. If the argument is known
10397to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +000010398argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010399
Daniel Neilson57226ef2017-07-12 15:25:26 +000010400.. _int_memmove:
10401
Sean Silvab084af42012-12-07 10:36:55 +000010402'``llvm.memmove``' Intrinsic
10403^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10404
10405Syntax:
10406"""""""
10407
10408This is an overloaded intrinsic. You can use llvm.memmove on any integer
10409bit width and for different address space. Not all targets support all
10410bit widths however.
10411
10412::
10413
10414 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010415 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010416 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010417 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010418
10419Overview:
10420"""""""""
10421
10422The '``llvm.memmove.*``' intrinsics move a block of memory from the
10423source location to the destination location. It is similar to the
10424'``llvm.memcpy``' intrinsic but allows the two memory locations to
10425overlap.
10426
10427Note that, unlike the standard libc function, the ``llvm.memmove.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000010428intrinsics do not return a value, takes an extra isvolatile
10429argument and the pointers can be in specified address spaces.
Sean Silvab084af42012-12-07 10:36:55 +000010430
10431Arguments:
10432""""""""""
10433
10434The first argument is a pointer to the destination, the second is a
10435pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000010436specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000010437boolean indicating a volatile access.
10438
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000010439The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010440for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010441
10442If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
10443is a :ref:`volatile operation <volatile>`. The detailed access behavior is
10444not very cleanly specified and it is unwise to depend on it.
10445
10446Semantics:
10447""""""""""
10448
10449The '``llvm.memmove.*``' intrinsics copy a block of memory from the
10450source location to the destination location, which may overlap. It
10451copies "len" bytes of memory over. If the argument is known to be
10452aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000010453otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010454
Daniel Neilson965613e2017-07-12 21:57:23 +000010455.. _int_memset:
10456
Sean Silvab084af42012-12-07 10:36:55 +000010457'``llvm.memset.*``' Intrinsics
10458^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10459
10460Syntax:
10461"""""""
10462
10463This is an overloaded intrinsic. You can use llvm.memset on any integer
10464bit width and for different address spaces. However, not all targets
10465support all bit widths.
10466
10467::
10468
10469 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010470 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010471 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010472 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010473
10474Overview:
10475"""""""""
10476
10477The '``llvm.memset.*``' intrinsics fill a block of memory with a
10478particular byte value.
10479
10480Note that, unlike the standard libc function, the ``llvm.memset``
Daniel Neilson1e687242018-01-19 17:13:12 +000010481intrinsic does not return a value and takes an extra volatile
10482argument. Also, the destination can be in an arbitrary address space.
Sean Silvab084af42012-12-07 10:36:55 +000010483
10484Arguments:
10485""""""""""
10486
10487The first argument is a pointer to the destination to fill, the second
10488is the byte value with which to fill it, the third argument is an
10489integer argument specifying the number of bytes to fill, and the fourth
Daniel Neilson1e687242018-01-19 17:13:12 +000010490is a boolean indicating a volatile access.
Sean Silvab084af42012-12-07 10:36:55 +000010491
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000010492The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010493for the first arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010494
10495If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10496a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10497very cleanly specified and it is unwise to depend on it.
10498
10499Semantics:
10500""""""""""
10501
10502The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
Daniel Neilson1e687242018-01-19 17:13:12 +000010503at the destination location.
Sean Silvab084af42012-12-07 10:36:55 +000010504
10505'``llvm.sqrt.*``' Intrinsic
10506^^^^^^^^^^^^^^^^^^^^^^^^^^^
10507
10508Syntax:
10509"""""""
10510
10511This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010512floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010513all types however.
10514
10515::
10516
10517 declare float @llvm.sqrt.f32(float %Val)
10518 declare double @llvm.sqrt.f64(double %Val)
10519 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10520 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10521 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10522
10523Overview:
10524"""""""""
10525
Sanjay Patel629c4112017-11-06 16:27:15 +000010526The '``llvm.sqrt``' intrinsics return the square root of the specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010527
10528Arguments:
10529""""""""""
10530
Sanjay Patel629c4112017-11-06 16:27:15 +000010531The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010532
10533Semantics:
10534""""""""""
10535
Sanjay Patel629c4112017-11-06 16:27:15 +000010536Return the same value as a corresponding libm '``sqrt``' function but without
10537trapping or setting ``errno``. For types specified by IEEE-754, the result
10538matches a conforming libm implementation.
10539
10540When specified with the fast-math-flag 'afn', the result may be approximated
10541using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010542
10543'``llvm.powi.*``' Intrinsic
10544^^^^^^^^^^^^^^^^^^^^^^^^^^^
10545
10546Syntax:
10547"""""""
10548
10549This is an overloaded intrinsic. You can use ``llvm.powi`` on any
10550floating point or vector of floating point type. Not all targets support
10551all types however.
10552
10553::
10554
10555 declare float @llvm.powi.f32(float %Val, i32 %power)
10556 declare double @llvm.powi.f64(double %Val, i32 %power)
10557 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10558 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10559 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10560
10561Overview:
10562"""""""""
10563
10564The '``llvm.powi.*``' intrinsics return the first operand raised to the
10565specified (positive or negative) power. The order of evaluation of
10566multiplications is not defined. When a vector of floating point type is
10567used, the second argument remains a scalar integer value.
10568
10569Arguments:
10570""""""""""
10571
10572The second argument is an integer power, and the first is a value to
10573raise to that power.
10574
10575Semantics:
10576""""""""""
10577
10578This function returns the first value raised to the second power with an
10579unspecified sequence of rounding operations.
10580
10581'``llvm.sin.*``' Intrinsic
10582^^^^^^^^^^^^^^^^^^^^^^^^^^
10583
10584Syntax:
10585"""""""
10586
10587This is an overloaded intrinsic. You can use ``llvm.sin`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010588floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010589all types however.
10590
10591::
10592
10593 declare float @llvm.sin.f32(float %Val)
10594 declare double @llvm.sin.f64(double %Val)
10595 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10596 declare fp128 @llvm.sin.f128(fp128 %Val)
10597 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10598
10599Overview:
10600"""""""""
10601
10602The '``llvm.sin.*``' intrinsics return the sine of the operand.
10603
10604Arguments:
10605""""""""""
10606
Sanjay Patel629c4112017-11-06 16:27:15 +000010607The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010608
10609Semantics:
10610""""""""""
10611
Sanjay Patel629c4112017-11-06 16:27:15 +000010612Return the same value as a corresponding libm '``sin``' function but without
10613trapping or setting ``errno``.
10614
10615When specified with the fast-math-flag 'afn', the result may be approximated
10616using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010617
10618'``llvm.cos.*``' Intrinsic
10619^^^^^^^^^^^^^^^^^^^^^^^^^^
10620
10621Syntax:
10622"""""""
10623
10624This is an overloaded intrinsic. You can use ``llvm.cos`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010625floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010626all types however.
10627
10628::
10629
10630 declare float @llvm.cos.f32(float %Val)
10631 declare double @llvm.cos.f64(double %Val)
10632 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10633 declare fp128 @llvm.cos.f128(fp128 %Val)
10634 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10635
10636Overview:
10637"""""""""
10638
10639The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10640
10641Arguments:
10642""""""""""
10643
Sanjay Patel629c4112017-11-06 16:27:15 +000010644The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010645
10646Semantics:
10647""""""""""
10648
Sanjay Patel629c4112017-11-06 16:27:15 +000010649Return the same value as a corresponding libm '``cos``' function but without
10650trapping or setting ``errno``.
10651
10652When specified with the fast-math-flag 'afn', the result may be approximated
10653using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010654
10655'``llvm.pow.*``' Intrinsic
10656^^^^^^^^^^^^^^^^^^^^^^^^^^
10657
10658Syntax:
10659"""""""
10660
10661This is an overloaded intrinsic. You can use ``llvm.pow`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010662floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010663all types however.
10664
10665::
10666
10667 declare float @llvm.pow.f32(float %Val, float %Power)
10668 declare double @llvm.pow.f64(double %Val, double %Power)
10669 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10670 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10671 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10672
10673Overview:
10674"""""""""
10675
10676The '``llvm.pow.*``' intrinsics return the first operand raised to the
10677specified (positive or negative) power.
10678
10679Arguments:
10680""""""""""
10681
Sanjay Patel629c4112017-11-06 16:27:15 +000010682The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010683
10684Semantics:
10685""""""""""
10686
Sanjay Patel629c4112017-11-06 16:27:15 +000010687Return the same value as a corresponding libm '``pow``' function but without
10688trapping or setting ``errno``.
10689
10690When specified with the fast-math-flag 'afn', the result may be approximated
10691using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010692
10693'``llvm.exp.*``' Intrinsic
10694^^^^^^^^^^^^^^^^^^^^^^^^^^
10695
10696Syntax:
10697"""""""
10698
10699This is an overloaded intrinsic. You can use ``llvm.exp`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010700floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010701all types however.
10702
10703::
10704
10705 declare float @llvm.exp.f32(float %Val)
10706 declare double @llvm.exp.f64(double %Val)
10707 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10708 declare fp128 @llvm.exp.f128(fp128 %Val)
10709 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10710
10711Overview:
10712"""""""""
10713
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010714The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
10715value.
Sean Silvab084af42012-12-07 10:36:55 +000010716
10717Arguments:
10718""""""""""
10719
Sanjay Patel629c4112017-11-06 16:27:15 +000010720The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010721
10722Semantics:
10723""""""""""
10724
Sanjay Patel629c4112017-11-06 16:27:15 +000010725Return the same value as a corresponding libm '``exp``' function but without
10726trapping or setting ``errno``.
10727
10728When specified with the fast-math-flag 'afn', the result may be approximated
10729using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010730
10731'``llvm.exp2.*``' Intrinsic
10732^^^^^^^^^^^^^^^^^^^^^^^^^^^
10733
10734Syntax:
10735"""""""
10736
10737This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010738floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010739all types however.
10740
10741::
10742
10743 declare float @llvm.exp2.f32(float %Val)
10744 declare double @llvm.exp2.f64(double %Val)
10745 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10746 declare fp128 @llvm.exp2.f128(fp128 %Val)
10747 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10748
10749Overview:
10750"""""""""
10751
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010752The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
10753specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010754
10755Arguments:
10756""""""""""
10757
Sanjay Patel629c4112017-11-06 16:27:15 +000010758The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010759
10760Semantics:
10761""""""""""
10762
Sanjay Patel629c4112017-11-06 16:27:15 +000010763Return the same value as a corresponding libm '``exp2``' function but without
10764trapping or setting ``errno``.
10765
10766When specified with the fast-math-flag 'afn', the result may be approximated
10767using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010768
10769'``llvm.log.*``' Intrinsic
10770^^^^^^^^^^^^^^^^^^^^^^^^^^
10771
10772Syntax:
10773"""""""
10774
10775This is an overloaded intrinsic. You can use ``llvm.log`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010776floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010777all types however.
10778
10779::
10780
10781 declare float @llvm.log.f32(float %Val)
10782 declare double @llvm.log.f64(double %Val)
10783 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10784 declare fp128 @llvm.log.f128(fp128 %Val)
10785 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10786
10787Overview:
10788"""""""""
10789
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010790The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
10791value.
Sean Silvab084af42012-12-07 10:36:55 +000010792
10793Arguments:
10794""""""""""
10795
Sanjay Patel629c4112017-11-06 16:27:15 +000010796The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010797
10798Semantics:
10799""""""""""
10800
Sanjay Patel629c4112017-11-06 16:27:15 +000010801Return the same value as a corresponding libm '``log``' function but without
10802trapping or setting ``errno``.
10803
10804When specified with the fast-math-flag 'afn', the result may be approximated
10805using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010806
10807'``llvm.log10.*``' Intrinsic
10808^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10809
10810Syntax:
10811"""""""
10812
10813This is an overloaded intrinsic. You can use ``llvm.log10`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010814floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010815all types however.
10816
10817::
10818
10819 declare float @llvm.log10.f32(float %Val)
10820 declare double @llvm.log10.f64(double %Val)
10821 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10822 declare fp128 @llvm.log10.f128(fp128 %Val)
10823 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10824
10825Overview:
10826"""""""""
10827
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010828The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
10829specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010830
10831Arguments:
10832""""""""""
10833
Sanjay Patel629c4112017-11-06 16:27:15 +000010834The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010835
10836Semantics:
10837""""""""""
10838
Sanjay Patel629c4112017-11-06 16:27:15 +000010839Return the same value as a corresponding libm '``log10``' function but without
10840trapping or setting ``errno``.
10841
10842When specified with the fast-math-flag 'afn', the result may be approximated
10843using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010844
10845'``llvm.log2.*``' Intrinsic
10846^^^^^^^^^^^^^^^^^^^^^^^^^^^
10847
10848Syntax:
10849"""""""
10850
10851This is an overloaded intrinsic. You can use ``llvm.log2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010852floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010853all types however.
10854
10855::
10856
10857 declare float @llvm.log2.f32(float %Val)
10858 declare double @llvm.log2.f64(double %Val)
10859 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10860 declare fp128 @llvm.log2.f128(fp128 %Val)
10861 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10862
10863Overview:
10864"""""""""
10865
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010866The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
10867value.
Sean Silvab084af42012-12-07 10:36:55 +000010868
10869Arguments:
10870""""""""""
10871
Sanjay Patel629c4112017-11-06 16:27:15 +000010872The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010873
10874Semantics:
10875""""""""""
10876
Sanjay Patel629c4112017-11-06 16:27:15 +000010877Return the same value as a corresponding libm '``log2``' function but without
10878trapping or setting ``errno``.
10879
10880When specified with the fast-math-flag 'afn', the result may be approximated
10881using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010882
10883'``llvm.fma.*``' Intrinsic
10884^^^^^^^^^^^^^^^^^^^^^^^^^^
10885
10886Syntax:
10887"""""""
10888
10889This is an overloaded intrinsic. You can use ``llvm.fma`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010890floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010891all types however.
10892
10893::
10894
10895 declare float @llvm.fma.f32(float %a, float %b, float %c)
10896 declare double @llvm.fma.f64(double %a, double %b, double %c)
10897 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10898 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10899 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10900
10901Overview:
10902"""""""""
10903
Sanjay Patel629c4112017-11-06 16:27:15 +000010904The '``llvm.fma.*``' intrinsics perform the fused multiply-add operation.
Sean Silvab084af42012-12-07 10:36:55 +000010905
10906Arguments:
10907""""""""""
10908
Sanjay Patel629c4112017-11-06 16:27:15 +000010909The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010910
10911Semantics:
10912""""""""""
10913
Sanjay Patel629c4112017-11-06 16:27:15 +000010914Return the same value as a corresponding libm '``fma``' function but without
10915trapping or setting ``errno``.
10916
10917When specified with the fast-math-flag 'afn', the result may be approximated
10918using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010919
10920'``llvm.fabs.*``' Intrinsic
10921^^^^^^^^^^^^^^^^^^^^^^^^^^^
10922
10923Syntax:
10924"""""""
10925
10926This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10927floating point or vector of floating point type. Not all targets support
10928all types however.
10929
10930::
10931
10932 declare float @llvm.fabs.f32(float %Val)
10933 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010934 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010935 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010936 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010937
10938Overview:
10939"""""""""
10940
10941The '``llvm.fabs.*``' intrinsics return the absolute value of the
10942operand.
10943
10944Arguments:
10945""""""""""
10946
10947The argument and return value are floating point numbers of the same
10948type.
10949
10950Semantics:
10951""""""""""
10952
10953This function returns the same values as the libm ``fabs`` functions
10954would, and handles error conditions in the same way.
10955
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010956'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010957^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010958
10959Syntax:
10960"""""""
10961
10962This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10963floating point or vector of floating point type. Not all targets support
10964all types however.
10965
10966::
10967
Matt Arsenault64313c92014-10-22 18:25:02 +000010968 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10969 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10970 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10971 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10972 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010973
10974Overview:
10975"""""""""
10976
10977The '``llvm.minnum.*``' intrinsics return the minimum of the two
10978arguments.
10979
10980
10981Arguments:
10982""""""""""
10983
10984The arguments and return value are floating point numbers of the same
10985type.
10986
10987Semantics:
10988""""""""""
10989
10990Follows the IEEE-754 semantics for minNum, which also match for libm's
10991fmin.
10992
10993If either operand is a NaN, returns the other non-NaN operand. Returns
10994NaN only if both operands are NaN. If the operands compare equal,
10995returns a value that compares equal to both operands. This means that
10996fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10997
10998'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010999^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011000
11001Syntax:
11002"""""""
11003
11004This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
11005floating point or vector of floating point type. Not all targets support
11006all types however.
11007
11008::
11009
Matt Arsenault64313c92014-10-22 18:25:02 +000011010 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
11011 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
11012 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11013 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
11014 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011015
11016Overview:
11017"""""""""
11018
11019The '``llvm.maxnum.*``' intrinsics return the maximum of the two
11020arguments.
11021
11022
11023Arguments:
11024""""""""""
11025
11026The arguments and return value are floating point numbers of the same
11027type.
11028
11029Semantics:
11030""""""""""
11031Follows the IEEE-754 semantics for maxNum, which also match for libm's
11032fmax.
11033
11034If either operand is a NaN, returns the other non-NaN operand. Returns
11035NaN only if both operands are NaN. If the operands compare equal,
11036returns a value that compares equal to both operands. This means that
11037fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
11038
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011039'``llvm.copysign.*``' Intrinsic
11040^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11041
11042Syntax:
11043"""""""
11044
11045This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
11046floating point or vector of floating point type. Not all targets support
11047all types however.
11048
11049::
11050
11051 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
11052 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
11053 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
11054 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
11055 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
11056
11057Overview:
11058"""""""""
11059
11060The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
11061first operand and the sign of the second operand.
11062
11063Arguments:
11064""""""""""
11065
11066The arguments and return value are floating point numbers of the same
11067type.
11068
11069Semantics:
11070""""""""""
11071
11072This function returns the same values as the libm ``copysign``
11073functions would, and handles error conditions in the same way.
11074
Sean Silvab084af42012-12-07 10:36:55 +000011075'``llvm.floor.*``' Intrinsic
11076^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11077
11078Syntax:
11079"""""""
11080
11081This is an overloaded intrinsic. You can use ``llvm.floor`` on any
11082floating point or vector of floating point type. Not all targets support
11083all types however.
11084
11085::
11086
11087 declare float @llvm.floor.f32(float %Val)
11088 declare double @llvm.floor.f64(double %Val)
11089 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
11090 declare fp128 @llvm.floor.f128(fp128 %Val)
11091 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
11092
11093Overview:
11094"""""""""
11095
11096The '``llvm.floor.*``' intrinsics return the floor of the operand.
11097
11098Arguments:
11099""""""""""
11100
11101The argument and return value are floating point numbers of the same
11102type.
11103
11104Semantics:
11105""""""""""
11106
11107This function returns the same values as the libm ``floor`` functions
11108would, and handles error conditions in the same way.
11109
11110'``llvm.ceil.*``' Intrinsic
11111^^^^^^^^^^^^^^^^^^^^^^^^^^^
11112
11113Syntax:
11114"""""""
11115
11116This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
11117floating point or vector of floating point type. Not all targets support
11118all types however.
11119
11120::
11121
11122 declare float @llvm.ceil.f32(float %Val)
11123 declare double @llvm.ceil.f64(double %Val)
11124 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
11125 declare fp128 @llvm.ceil.f128(fp128 %Val)
11126 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
11127
11128Overview:
11129"""""""""
11130
11131The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
11132
11133Arguments:
11134""""""""""
11135
11136The argument and return value are floating point numbers of the same
11137type.
11138
11139Semantics:
11140""""""""""
11141
11142This function returns the same values as the libm ``ceil`` functions
11143would, and handles error conditions in the same way.
11144
11145'``llvm.trunc.*``' Intrinsic
11146^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11147
11148Syntax:
11149"""""""
11150
11151This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
11152floating point or vector of floating point type. Not all targets support
11153all types however.
11154
11155::
11156
11157 declare float @llvm.trunc.f32(float %Val)
11158 declare double @llvm.trunc.f64(double %Val)
11159 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
11160 declare fp128 @llvm.trunc.f128(fp128 %Val)
11161 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
11162
11163Overview:
11164"""""""""
11165
11166The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
11167nearest integer not larger in magnitude than the operand.
11168
11169Arguments:
11170""""""""""
11171
11172The argument and return value are floating point numbers of the same
11173type.
11174
11175Semantics:
11176""""""""""
11177
11178This function returns the same values as the libm ``trunc`` functions
11179would, and handles error conditions in the same way.
11180
11181'``llvm.rint.*``' Intrinsic
11182^^^^^^^^^^^^^^^^^^^^^^^^^^^
11183
11184Syntax:
11185"""""""
11186
11187This is an overloaded intrinsic. You can use ``llvm.rint`` on any
11188floating point or vector of floating point type. Not all targets support
11189all types however.
11190
11191::
11192
11193 declare float @llvm.rint.f32(float %Val)
11194 declare double @llvm.rint.f64(double %Val)
11195 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
11196 declare fp128 @llvm.rint.f128(fp128 %Val)
11197 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
11198
11199Overview:
11200"""""""""
11201
11202The '``llvm.rint.*``' intrinsics returns the operand rounded to the
11203nearest integer. It may raise an inexact floating-point exception if the
11204operand isn't an integer.
11205
11206Arguments:
11207""""""""""
11208
11209The argument and return value are floating point numbers of the same
11210type.
11211
11212Semantics:
11213""""""""""
11214
11215This function returns the same values as the libm ``rint`` functions
11216would, and handles error conditions in the same way.
11217
11218'``llvm.nearbyint.*``' Intrinsic
11219^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11220
11221Syntax:
11222"""""""
11223
11224This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
11225floating point or vector of floating point type. Not all targets support
11226all types however.
11227
11228::
11229
11230 declare float @llvm.nearbyint.f32(float %Val)
11231 declare double @llvm.nearbyint.f64(double %Val)
11232 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
11233 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
11234 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
11235
11236Overview:
11237"""""""""
11238
11239The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
11240nearest integer.
11241
11242Arguments:
11243""""""""""
11244
11245The argument and return value are floating point numbers of the same
11246type.
11247
11248Semantics:
11249""""""""""
11250
11251This function returns the same values as the libm ``nearbyint``
11252functions would, and handles error conditions in the same way.
11253
Hal Finkel171817e2013-08-07 22:49:12 +000011254'``llvm.round.*``' Intrinsic
11255^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11256
11257Syntax:
11258"""""""
11259
11260This is an overloaded intrinsic. You can use ``llvm.round`` on any
11261floating point or vector of floating point type. Not all targets support
11262all types however.
11263
11264::
11265
11266 declare float @llvm.round.f32(float %Val)
11267 declare double @llvm.round.f64(double %Val)
11268 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
11269 declare fp128 @llvm.round.f128(fp128 %Val)
11270 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
11271
11272Overview:
11273"""""""""
11274
11275The '``llvm.round.*``' intrinsics returns the operand rounded to the
11276nearest integer.
11277
11278Arguments:
11279""""""""""
11280
11281The argument and return value are floating point numbers of the same
11282type.
11283
11284Semantics:
11285""""""""""
11286
11287This function returns the same values as the libm ``round``
11288functions would, and handles error conditions in the same way.
11289
Sean Silvab084af42012-12-07 10:36:55 +000011290Bit Manipulation Intrinsics
11291---------------------------
11292
11293LLVM provides intrinsics for a few important bit manipulation
11294operations. These allow efficient code generation for some algorithms.
11295
James Molloy90111f72015-11-12 12:29:09 +000011296'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000011297^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000011298
11299Syntax:
11300"""""""
11301
11302This is an overloaded intrinsic function. You can use bitreverse on any
11303integer type.
11304
11305::
11306
11307 declare i16 @llvm.bitreverse.i16(i16 <id>)
11308 declare i32 @llvm.bitreverse.i32(i32 <id>)
11309 declare i64 @llvm.bitreverse.i64(i64 <id>)
11310
11311Overview:
11312"""""""""
11313
11314The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000011315bitpattern of an integer value; for example ``0b10110110`` becomes
11316``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000011317
11318Semantics:
11319""""""""""
11320
Yichao Yu5abf14b2016-11-23 16:25:31 +000011321The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000011322``M`` in the input moved to bit ``N-M`` in the output.
11323
Sean Silvab084af42012-12-07 10:36:55 +000011324'``llvm.bswap.*``' Intrinsics
11325^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11326
11327Syntax:
11328"""""""
11329
11330This is an overloaded intrinsic function. You can use bswap on any
11331integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
11332
11333::
11334
11335 declare i16 @llvm.bswap.i16(i16 <id>)
11336 declare i32 @llvm.bswap.i32(i32 <id>)
11337 declare i64 @llvm.bswap.i64(i64 <id>)
11338
11339Overview:
11340"""""""""
11341
11342The '``llvm.bswap``' family of intrinsics is used to byte swap integer
11343values with an even number of bytes (positive multiple of 16 bits).
11344These are useful for performing operations on data that is not in the
11345target's native byte order.
11346
11347Semantics:
11348""""""""""
11349
11350The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
11351and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
11352intrinsic returns an i32 value that has the four bytes of the input i32
11353swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
11354returned i32 will have its bytes in 3, 2, 1, 0 order. The
11355``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
11356concept to additional even-byte lengths (6 bytes, 8 bytes and more,
11357respectively).
11358
11359'``llvm.ctpop.*``' Intrinsic
11360^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11361
11362Syntax:
11363"""""""
11364
11365This is an overloaded intrinsic. You can use llvm.ctpop on any integer
11366bit width, or on any vector with integer elements. Not all targets
11367support all bit widths or vector types, however.
11368
11369::
11370
11371 declare i8 @llvm.ctpop.i8(i8 <src>)
11372 declare i16 @llvm.ctpop.i16(i16 <src>)
11373 declare i32 @llvm.ctpop.i32(i32 <src>)
11374 declare i64 @llvm.ctpop.i64(i64 <src>)
11375 declare i256 @llvm.ctpop.i256(i256 <src>)
11376 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
11377
11378Overview:
11379"""""""""
11380
11381The '``llvm.ctpop``' family of intrinsics counts the number of bits set
11382in a value.
11383
11384Arguments:
11385""""""""""
11386
11387The only argument is the value to be counted. The argument may be of any
11388integer type, or a vector with integer elements. The return type must
11389match the argument type.
11390
11391Semantics:
11392""""""""""
11393
11394The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
11395each element of a vector.
11396
11397'``llvm.ctlz.*``' Intrinsic
11398^^^^^^^^^^^^^^^^^^^^^^^^^^^
11399
11400Syntax:
11401"""""""
11402
11403This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
11404integer bit width, or any vector whose elements are integers. Not all
11405targets support all bit widths or vector types, however.
11406
11407::
11408
11409 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
11410 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
11411 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
11412 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
11413 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011414 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011415
11416Overview:
11417"""""""""
11418
11419The '``llvm.ctlz``' family of intrinsic functions counts the number of
11420leading zeros in a variable.
11421
11422Arguments:
11423""""""""""
11424
11425The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011426any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011427type must match the first argument type.
11428
11429The second argument must be a constant and is a flag to indicate whether
11430the intrinsic should ensure that a zero as the first argument produces a
11431defined result. Historically some architectures did not provide a
11432defined result for zero values as efficiently, and many algorithms are
11433now predicated on avoiding zero-value inputs.
11434
11435Semantics:
11436""""""""""
11437
11438The '``llvm.ctlz``' intrinsic counts the leading (most significant)
11439zeros in a variable, or within each element of the vector. If
11440``src == 0`` then the result is the size in bits of the type of ``src``
11441if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11442``llvm.ctlz(i32 2) = 30``.
11443
11444'``llvm.cttz.*``' Intrinsic
11445^^^^^^^^^^^^^^^^^^^^^^^^^^^
11446
11447Syntax:
11448"""""""
11449
11450This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
11451integer bit width, or any vector of integer elements. Not all targets
11452support all bit widths or vector types, however.
11453
11454::
11455
11456 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
11457 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
11458 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
11459 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
11460 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011461 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011462
11463Overview:
11464"""""""""
11465
11466The '``llvm.cttz``' family of intrinsic functions counts the number of
11467trailing zeros.
11468
11469Arguments:
11470""""""""""
11471
11472The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011473any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011474type must match the first argument type.
11475
11476The second argument must be a constant and is a flag to indicate whether
11477the intrinsic should ensure that a zero as the first argument produces a
11478defined result. Historically some architectures did not provide a
11479defined result for zero values as efficiently, and many algorithms are
11480now predicated on avoiding zero-value inputs.
11481
11482Semantics:
11483""""""""""
11484
11485The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11486zeros in a variable, or within each element of a vector. If ``src == 0``
11487then the result is the size in bits of the type of ``src`` if
11488``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11489``llvm.cttz(2) = 1``.
11490
Philip Reames34843ae2015-03-05 05:55:55 +000011491.. _int_overflow:
11492
Sean Silvab084af42012-12-07 10:36:55 +000011493Arithmetic with Overflow Intrinsics
11494-----------------------------------
11495
John Regehr6a493f22016-05-12 20:55:09 +000011496LLVM provides intrinsics for fast arithmetic overflow checking.
11497
11498Each of these intrinsics returns a two-element struct. The first
11499element of this struct contains the result of the corresponding
11500arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
11501the result. Therefore, for example, the first element of the struct
11502returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
11503result of a 32-bit ``add`` instruction with the same operands, where
11504the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
11505
11506The second element of the result is an ``i1`` that is 1 if the
11507arithmetic operation overflowed and 0 otherwise. An operation
11508overflows if, for any values of its operands ``A`` and ``B`` and for
11509any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
11510not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
11511``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11512``op`` is the underlying arithmetic operation.
11513
11514The behavior of these intrinsics is well-defined for all argument
11515values.
Sean Silvab084af42012-12-07 10:36:55 +000011516
11517'``llvm.sadd.with.overflow.*``' Intrinsics
11518^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11519
11520Syntax:
11521"""""""
11522
11523This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11524on any integer bit width.
11525
11526::
11527
11528 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11529 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11530 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11531
11532Overview:
11533"""""""""
11534
11535The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11536a signed addition of the two arguments, and indicate whether an overflow
11537occurred during the signed summation.
11538
11539Arguments:
11540""""""""""
11541
11542The arguments (%a and %b) and the first element of the result structure
11543may be of integer types of any bit width, but they must have the same
11544bit width. The second element of the result structure must be of type
11545``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11546addition.
11547
11548Semantics:
11549""""""""""
11550
11551The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011552a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011553first element of which is the signed summation, and the second element
11554of which is a bit specifying if the signed summation resulted in an
11555overflow.
11556
11557Examples:
11558"""""""""
11559
11560.. code-block:: llvm
11561
11562 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11563 %sum = extractvalue {i32, i1} %res, 0
11564 %obit = extractvalue {i32, i1} %res, 1
11565 br i1 %obit, label %overflow, label %normal
11566
11567'``llvm.uadd.with.overflow.*``' Intrinsics
11568^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11569
11570Syntax:
11571"""""""
11572
11573This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11574on any integer bit width.
11575
11576::
11577
11578 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11579 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11580 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11581
11582Overview:
11583"""""""""
11584
11585The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11586an unsigned addition of the two arguments, and indicate whether a carry
11587occurred during the unsigned summation.
11588
11589Arguments:
11590""""""""""
11591
11592The arguments (%a and %b) and the first element of the result structure
11593may be of integer types of any bit width, but they must have the same
11594bit width. The second element of the result structure must be of type
11595``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11596addition.
11597
11598Semantics:
11599""""""""""
11600
11601The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011602an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011603first element of which is the sum, and the second element of which is a
11604bit specifying if the unsigned summation resulted in a carry.
11605
11606Examples:
11607"""""""""
11608
11609.. code-block:: llvm
11610
11611 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11612 %sum = extractvalue {i32, i1} %res, 0
11613 %obit = extractvalue {i32, i1} %res, 1
11614 br i1 %obit, label %carry, label %normal
11615
11616'``llvm.ssub.with.overflow.*``' Intrinsics
11617^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11618
11619Syntax:
11620"""""""
11621
11622This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11623on any integer bit width.
11624
11625::
11626
11627 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11628 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11629 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11630
11631Overview:
11632"""""""""
11633
11634The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11635a signed subtraction of the two arguments, and indicate whether an
11636overflow occurred during the signed subtraction.
11637
11638Arguments:
11639""""""""""
11640
11641The arguments (%a and %b) and the first element of the result structure
11642may be of integer types of any bit width, but they must have the same
11643bit width. The second element of the result structure must be of type
11644``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11645subtraction.
11646
11647Semantics:
11648""""""""""
11649
11650The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011651a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011652first element of which is the subtraction, and the second element of
11653which is a bit specifying if the signed subtraction resulted in an
11654overflow.
11655
11656Examples:
11657"""""""""
11658
11659.. code-block:: llvm
11660
11661 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11662 %sum = extractvalue {i32, i1} %res, 0
11663 %obit = extractvalue {i32, i1} %res, 1
11664 br i1 %obit, label %overflow, label %normal
11665
11666'``llvm.usub.with.overflow.*``' Intrinsics
11667^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11668
11669Syntax:
11670"""""""
11671
11672This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11673on any integer bit width.
11674
11675::
11676
11677 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11678 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11679 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11680
11681Overview:
11682"""""""""
11683
11684The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11685an unsigned subtraction of the two arguments, and indicate whether an
11686overflow occurred during the unsigned subtraction.
11687
11688Arguments:
11689""""""""""
11690
11691The arguments (%a and %b) and the first element of the result structure
11692may be of integer types of any bit width, but they must have the same
11693bit width. The second element of the result structure must be of type
11694``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11695subtraction.
11696
11697Semantics:
11698""""""""""
11699
11700The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011701an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011702the first element of which is the subtraction, and the second element of
11703which is a bit specifying if the unsigned subtraction resulted in an
11704overflow.
11705
11706Examples:
11707"""""""""
11708
11709.. code-block:: llvm
11710
11711 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11712 %sum = extractvalue {i32, i1} %res, 0
11713 %obit = extractvalue {i32, i1} %res, 1
11714 br i1 %obit, label %overflow, label %normal
11715
11716'``llvm.smul.with.overflow.*``' Intrinsics
11717^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11718
11719Syntax:
11720"""""""
11721
11722This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11723on any integer bit width.
11724
11725::
11726
11727 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11728 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11729 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11730
11731Overview:
11732"""""""""
11733
11734The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11735a signed multiplication of the two arguments, and indicate whether an
11736overflow occurred during the signed multiplication.
11737
11738Arguments:
11739""""""""""
11740
11741The arguments (%a and %b) and the first element of the result structure
11742may be of integer types of any bit width, but they must have the same
11743bit width. The second element of the result structure must be of type
11744``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11745multiplication.
11746
11747Semantics:
11748""""""""""
11749
11750The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011751a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011752the first element of which is the multiplication, and the second element
11753of which is a bit specifying if the signed multiplication resulted in an
11754overflow.
11755
11756Examples:
11757"""""""""
11758
11759.. code-block:: llvm
11760
11761 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11762 %sum = extractvalue {i32, i1} %res, 0
11763 %obit = extractvalue {i32, i1} %res, 1
11764 br i1 %obit, label %overflow, label %normal
11765
11766'``llvm.umul.with.overflow.*``' Intrinsics
11767^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11768
11769Syntax:
11770"""""""
11771
11772This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11773on any integer bit width.
11774
11775::
11776
11777 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11778 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11779 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11780
11781Overview:
11782"""""""""
11783
11784The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11785a unsigned multiplication of the two arguments, and indicate whether an
11786overflow occurred during the unsigned multiplication.
11787
11788Arguments:
11789""""""""""
11790
11791The arguments (%a and %b) and the first element of the result structure
11792may be of integer types of any bit width, but they must have the same
11793bit width. The second element of the result structure must be of type
11794``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11795multiplication.
11796
11797Semantics:
11798""""""""""
11799
11800The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011801an unsigned multiplication of the two arguments. They return a structure ---
11802the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011803element of which is a bit specifying if the unsigned multiplication
11804resulted in an overflow.
11805
11806Examples:
11807"""""""""
11808
11809.. code-block:: llvm
11810
11811 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11812 %sum = extractvalue {i32, i1} %res, 0
11813 %obit = extractvalue {i32, i1} %res, 1
11814 br i1 %obit, label %overflow, label %normal
11815
11816Specialised Arithmetic Intrinsics
11817---------------------------------
11818
Owen Anderson1056a922015-07-11 07:01:27 +000011819'``llvm.canonicalize.*``' Intrinsic
11820^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11821
11822Syntax:
11823"""""""
11824
11825::
11826
11827 declare float @llvm.canonicalize.f32(float %a)
11828 declare double @llvm.canonicalize.f64(double %b)
11829
11830Overview:
11831"""""""""
11832
11833The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011834encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011835implementing certain numeric primitives such as frexp. The canonical encoding is
11836defined by IEEE-754-2008 to be:
11837
11838::
11839
11840 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011841 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011842 numbers, infinities, and NaNs, especially in decimal formats.
11843
11844This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011845conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011846according to section 6.2.
11847
11848Examples of non-canonical encodings:
11849
Sean Silvaa1190322015-08-06 22:56:48 +000011850- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011851 converted to a canonical representation per hardware-specific protocol.
11852- Many normal decimal floating point numbers have non-canonical alternative
11853 encodings.
11854- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011855 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011856 a zero of the same sign by this operation.
11857
11858Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11859default exception handling must signal an invalid exception, and produce a
11860quiet NaN result.
11861
11862This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011863that the compiler does not constant fold the operation. Likewise, division by
118641.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011865-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11866
Sean Silvaa1190322015-08-06 22:56:48 +000011867``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011868
11869- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11870- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11871 to ``(x == y)``
11872
11873Additionally, the sign of zero must be conserved:
11874``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11875
11876The payload bits of a NaN must be conserved, with two exceptions.
11877First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011878must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011879usual methods.
11880
11881The canonicalization operation may be optimized away if:
11882
Sean Silvaa1190322015-08-06 22:56:48 +000011883- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011884 floating-point operation that is required by the standard to be canonical.
11885- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011886 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011887
Sean Silvab084af42012-12-07 10:36:55 +000011888'``llvm.fmuladd.*``' Intrinsic
11889^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11890
11891Syntax:
11892"""""""
11893
11894::
11895
11896 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11897 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11898
11899Overview:
11900"""""""""
11901
11902The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011903expressions that can be fused if the code generator determines that (a) the
11904target instruction set has support for a fused operation, and (b) that the
11905fused operation is more efficient than the equivalent, separate pair of mul
11906and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011907
11908Arguments:
11909""""""""""
11910
11911The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11912multiplicands, a and b, and an addend c.
11913
11914Semantics:
11915""""""""""
11916
11917The expression:
11918
11919::
11920
11921 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11922
11923is equivalent to the expression a \* b + c, except that rounding will
11924not be performed between the multiplication and addition steps if the
11925code generator fuses the operations. Fusion is not guaranteed, even if
11926the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011927corresponding llvm.fma.\* intrinsic function should be used
11928instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011929
11930Examples:
11931"""""""""
11932
11933.. code-block:: llvm
11934
Tim Northover675a0962014-06-13 14:24:23 +000011935 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011936
Amara Emersoncf9daa32017-05-09 10:43:25 +000011937
11938Experimental Vector Reduction Intrinsics
11939----------------------------------------
11940
11941Horizontal reductions of vectors can be expressed using the following
11942intrinsics. Each one takes a vector operand as an input and applies its
11943respective operation across all elements of the vector, returning a single
11944scalar result of the same element type.
11945
11946
11947'``llvm.experimental.vector.reduce.add.*``' Intrinsic
11948^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11949
11950Syntax:
11951"""""""
11952
11953::
11954
11955 declare i32 @llvm.experimental.vector.reduce.add.i32.v4i32(<4 x i32> %a)
11956 declare i64 @llvm.experimental.vector.reduce.add.i64.v2i64(<2 x i64> %a)
11957
11958Overview:
11959"""""""""
11960
11961The '``llvm.experimental.vector.reduce.add.*``' intrinsics do an integer ``ADD``
11962reduction of a vector, returning the result as a scalar. The return type matches
11963the element-type of the vector input.
11964
11965Arguments:
11966""""""""""
11967The argument to this intrinsic must be a vector of integer values.
11968
11969'``llvm.experimental.vector.reduce.fadd.*``' Intrinsic
11970^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11971
11972Syntax:
11973"""""""
11974
11975::
11976
11977 declare float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %a)
11978 declare double @llvm.experimental.vector.reduce.fadd.f64.v2f64(double %acc, <2 x double> %a)
11979
11980Overview:
11981"""""""""
11982
11983The '``llvm.experimental.vector.reduce.fadd.*``' intrinsics do a floating point
11984``ADD`` reduction of a vector, returning the result as a scalar. The return type
11985matches the element-type of the vector input.
11986
11987If the intrinsic call has fast-math flags, then the reduction will not preserve
11988the associativity of an equivalent scalarized counterpart. If it does not have
11989fast-math flags, then the reduction will be *ordered*, implying that the
11990operation respects the associativity of a scalarized reduction.
11991
11992
11993Arguments:
11994""""""""""
11995The first argument to this intrinsic is a scalar accumulator value, which is
11996only used when there are no fast-math flags attached. This argument may be undef
11997when fast-math flags are used.
11998
11999The second argument must be a vector of floating point values.
12000
12001Examples:
12002"""""""""
12003
12004.. code-block:: llvm
12005
12006 %fast = call fast float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
12007 %ord = call float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
12008
12009
12010'``llvm.experimental.vector.reduce.mul.*``' Intrinsic
12011^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12012
12013Syntax:
12014"""""""
12015
12016::
12017
12018 declare i32 @llvm.experimental.vector.reduce.mul.i32.v4i32(<4 x i32> %a)
12019 declare i64 @llvm.experimental.vector.reduce.mul.i64.v2i64(<2 x i64> %a)
12020
12021Overview:
12022"""""""""
12023
12024The '``llvm.experimental.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
12025reduction of a vector, returning the result as a scalar. The return type matches
12026the element-type of the vector input.
12027
12028Arguments:
12029""""""""""
12030The argument to this intrinsic must be a vector of integer values.
12031
12032'``llvm.experimental.vector.reduce.fmul.*``' Intrinsic
12033^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12034
12035Syntax:
12036"""""""
12037
12038::
12039
12040 declare float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %a)
12041 declare double @llvm.experimental.vector.reduce.fmul.f64.v2f64(double %acc, <2 x double> %a)
12042
12043Overview:
12044"""""""""
12045
12046The '``llvm.experimental.vector.reduce.fmul.*``' intrinsics do a floating point
12047``MUL`` reduction of a vector, returning the result as a scalar. The return type
12048matches the element-type of the vector input.
12049
12050If the intrinsic call has fast-math flags, then the reduction will not preserve
12051the associativity of an equivalent scalarized counterpart. If it does not have
12052fast-math flags, then the reduction will be *ordered*, implying that the
12053operation respects the associativity of a scalarized reduction.
12054
12055
12056Arguments:
12057""""""""""
12058The first argument to this intrinsic is a scalar accumulator value, which is
12059only used when there are no fast-math flags attached. This argument may be undef
12060when fast-math flags are used.
12061
12062The second argument must be a vector of floating point values.
12063
12064Examples:
12065"""""""""
12066
12067.. code-block:: llvm
12068
12069 %fast = call fast float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
12070 %ord = call float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
12071
12072'``llvm.experimental.vector.reduce.and.*``' Intrinsic
12073^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12074
12075Syntax:
12076"""""""
12077
12078::
12079
12080 declare i32 @llvm.experimental.vector.reduce.and.i32.v4i32(<4 x i32> %a)
12081
12082Overview:
12083"""""""""
12084
12085The '``llvm.experimental.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
12086reduction of a vector, returning the result as a scalar. The return type matches
12087the element-type of the vector input.
12088
12089Arguments:
12090""""""""""
12091The argument to this intrinsic must be a vector of integer values.
12092
12093'``llvm.experimental.vector.reduce.or.*``' Intrinsic
12094^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12095
12096Syntax:
12097"""""""
12098
12099::
12100
12101 declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
12102
12103Overview:
12104"""""""""
12105
12106The '``llvm.experimental.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
12107of a vector, returning the result as a scalar. The return type matches the
12108element-type of the vector input.
12109
12110Arguments:
12111""""""""""
12112The argument to this intrinsic must be a vector of integer values.
12113
12114'``llvm.experimental.vector.reduce.xor.*``' Intrinsic
12115^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12116
12117Syntax:
12118"""""""
12119
12120::
12121
12122 declare i32 @llvm.experimental.vector.reduce.xor.i32.v4i32(<4 x i32> %a)
12123
12124Overview:
12125"""""""""
12126
12127The '``llvm.experimental.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
12128reduction of a vector, returning the result as a scalar. The return type matches
12129the element-type of the vector input.
12130
12131Arguments:
12132""""""""""
12133The argument to this intrinsic must be a vector of integer values.
12134
12135'``llvm.experimental.vector.reduce.smax.*``' Intrinsic
12136^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12137
12138Syntax:
12139"""""""
12140
12141::
12142
12143 declare i32 @llvm.experimental.vector.reduce.smax.i32.v4i32(<4 x i32> %a)
12144
12145Overview:
12146"""""""""
12147
12148The '``llvm.experimental.vector.reduce.smax.*``' intrinsics do a signed integer
12149``MAX`` reduction of a vector, returning the result as a scalar. The return type
12150matches the element-type of the vector input.
12151
12152Arguments:
12153""""""""""
12154The argument to this intrinsic must be a vector of integer values.
12155
12156'``llvm.experimental.vector.reduce.smin.*``' Intrinsic
12157^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12158
12159Syntax:
12160"""""""
12161
12162::
12163
12164 declare i32 @llvm.experimental.vector.reduce.smin.i32.v4i32(<4 x i32> %a)
12165
12166Overview:
12167"""""""""
12168
12169The '``llvm.experimental.vector.reduce.smin.*``' intrinsics do a signed integer
12170``MIN`` reduction of a vector, returning the result as a scalar. The return type
12171matches the element-type of the vector input.
12172
12173Arguments:
12174""""""""""
12175The argument to this intrinsic must be a vector of integer values.
12176
12177'``llvm.experimental.vector.reduce.umax.*``' Intrinsic
12178^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12179
12180Syntax:
12181"""""""
12182
12183::
12184
12185 declare i32 @llvm.experimental.vector.reduce.umax.i32.v4i32(<4 x i32> %a)
12186
12187Overview:
12188"""""""""
12189
12190The '``llvm.experimental.vector.reduce.umax.*``' intrinsics do an unsigned
12191integer ``MAX`` reduction of a vector, returning the result as a scalar. The
12192return type matches the element-type of the vector input.
12193
12194Arguments:
12195""""""""""
12196The argument to this intrinsic must be a vector of integer values.
12197
12198'``llvm.experimental.vector.reduce.umin.*``' Intrinsic
12199^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12200
12201Syntax:
12202"""""""
12203
12204::
12205
12206 declare i32 @llvm.experimental.vector.reduce.umin.i32.v4i32(<4 x i32> %a)
12207
12208Overview:
12209"""""""""
12210
12211The '``llvm.experimental.vector.reduce.umin.*``' intrinsics do an unsigned
12212integer ``MIN`` reduction of a vector, returning the result as a scalar. The
12213return type matches the element-type of the vector input.
12214
12215Arguments:
12216""""""""""
12217The argument to this intrinsic must be a vector of integer values.
12218
12219'``llvm.experimental.vector.reduce.fmax.*``' Intrinsic
12220^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12221
12222Syntax:
12223"""""""
12224
12225::
12226
12227 declare float @llvm.experimental.vector.reduce.fmax.f32.v4f32(<4 x float> %a)
12228 declare double @llvm.experimental.vector.reduce.fmax.f64.v2f64(<2 x double> %a)
12229
12230Overview:
12231"""""""""
12232
12233The '``llvm.experimental.vector.reduce.fmax.*``' intrinsics do a floating point
12234``MAX`` reduction of a vector, returning the result as a scalar. The return type
12235matches the element-type of the vector input.
12236
12237If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12238assume that NaNs are not present in the input vector.
12239
12240Arguments:
12241""""""""""
12242The argument to this intrinsic must be a vector of floating point values.
12243
12244'``llvm.experimental.vector.reduce.fmin.*``' Intrinsic
12245^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12246
12247Syntax:
12248"""""""
12249
12250::
12251
12252 declare float @llvm.experimental.vector.reduce.fmin.f32.v4f32(<4 x float> %a)
12253 declare double @llvm.experimental.vector.reduce.fmin.f64.v2f64(<2 x double> %a)
12254
12255Overview:
12256"""""""""
12257
12258The '``llvm.experimental.vector.reduce.fmin.*``' intrinsics do a floating point
12259``MIN`` reduction of a vector, returning the result as a scalar. The return type
12260matches the element-type of the vector input.
12261
12262If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12263assume that NaNs are not present in the input vector.
12264
12265Arguments:
12266""""""""""
12267The argument to this intrinsic must be a vector of floating point values.
12268
Sean Silvab084af42012-12-07 10:36:55 +000012269Half Precision Floating Point Intrinsics
12270----------------------------------------
12271
12272For most target platforms, half precision floating point is a
12273storage-only format. This means that it is a dense encoding (in memory)
12274but does not support computation in the format.
12275
12276This means that code must first load the half-precision floating point
12277value as an i16, then convert it to float with
12278:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
12279then be performed on the float value (including extending to double
12280etc). To store the value back to memory, it is first converted to float
12281if needed, then converted to i16 with
12282:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
12283i16 value.
12284
12285.. _int_convert_to_fp16:
12286
12287'``llvm.convert.to.fp16``' Intrinsic
12288^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12289
12290Syntax:
12291"""""""
12292
12293::
12294
Tim Northoverfd7e4242014-07-17 10:51:23 +000012295 declare i16 @llvm.convert.to.fp16.f32(float %a)
12296 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000012297
12298Overview:
12299"""""""""
12300
Tim Northoverfd7e4242014-07-17 10:51:23 +000012301The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
12302conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000012303
12304Arguments:
12305""""""""""
12306
12307The intrinsic function contains single argument - the value to be
12308converted.
12309
12310Semantics:
12311""""""""""
12312
Tim Northoverfd7e4242014-07-17 10:51:23 +000012313The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
12314conventional floating point format to half precision floating point format. The
12315return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000012316
12317Examples:
12318"""""""""
12319
12320.. code-block:: llvm
12321
Tim Northoverfd7e4242014-07-17 10:51:23 +000012322 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000012323 store i16 %res, i16* @x, align 2
12324
12325.. _int_convert_from_fp16:
12326
12327'``llvm.convert.from.fp16``' Intrinsic
12328^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12329
12330Syntax:
12331"""""""
12332
12333::
12334
Tim Northoverfd7e4242014-07-17 10:51:23 +000012335 declare float @llvm.convert.from.fp16.f32(i16 %a)
12336 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012337
12338Overview:
12339"""""""""
12340
12341The '``llvm.convert.from.fp16``' intrinsic function performs a
12342conversion from half precision floating point format to single precision
12343floating point format.
12344
12345Arguments:
12346""""""""""
12347
12348The intrinsic function contains single argument - the value to be
12349converted.
12350
12351Semantics:
12352""""""""""
12353
12354The '``llvm.convert.from.fp16``' intrinsic function performs a
12355conversion from half single precision floating point format to single
12356precision floating point format. The input half-float value is
12357represented by an ``i16`` value.
12358
12359Examples:
12360"""""""""
12361
12362.. code-block:: llvm
12363
David Blaikiec7aabbb2015-03-04 22:06:14 +000012364 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000012365 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012366
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000012367.. _dbg_intrinsics:
12368
Sean Silvab084af42012-12-07 10:36:55 +000012369Debugger Intrinsics
12370-------------------
12371
12372The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
12373prefix), are described in the `LLVM Source Level
Hans Wennborg65195622017-09-28 15:16:37 +000012374Debugging <SourceLevelDebugging.html#format-common-intrinsics>`_
Sean Silvab084af42012-12-07 10:36:55 +000012375document.
12376
12377Exception Handling Intrinsics
12378-----------------------------
12379
12380The LLVM exception handling intrinsics (which all start with
12381``llvm.eh.`` prefix), are described in the `LLVM Exception
Hans Wennborg65195622017-09-28 15:16:37 +000012382Handling <ExceptionHandling.html#format-common-intrinsics>`_ document.
Sean Silvab084af42012-12-07 10:36:55 +000012383
12384.. _int_trampoline:
12385
12386Trampoline Intrinsics
12387---------------------
12388
12389These intrinsics make it possible to excise one parameter, marked with
12390the :ref:`nest <nest>` attribute, from a function. The result is a
12391callable function pointer lacking the nest parameter - the caller does
12392not need to provide a value for it. Instead, the value to use is stored
12393in advance in a "trampoline", a block of memory usually allocated on the
12394stack, which also contains code to splice the nest value into the
12395argument list. This is used to implement the GCC nested function address
12396extension.
12397
12398For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
12399then the resulting function pointer has signature ``i32 (i32, i32)*``.
12400It can be created as follows:
12401
12402.. code-block:: llvm
12403
12404 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000012405 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000012406 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
12407 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
12408 %fp = bitcast i8* %p to i32 (i32, i32)*
12409
12410The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
12411``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
12412
12413.. _int_it:
12414
12415'``llvm.init.trampoline``' Intrinsic
12416^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12417
12418Syntax:
12419"""""""
12420
12421::
12422
12423 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
12424
12425Overview:
12426"""""""""
12427
12428This fills the memory pointed to by ``tramp`` with executable code,
12429turning it into a trampoline.
12430
12431Arguments:
12432""""""""""
12433
12434The ``llvm.init.trampoline`` intrinsic takes three arguments, all
12435pointers. The ``tramp`` argument must point to a sufficiently large and
12436sufficiently aligned block of memory; this memory is written to by the
12437intrinsic. Note that the size and the alignment are target-specific -
12438LLVM currently provides no portable way of determining them, so a
12439front-end that generates this intrinsic needs to have some
12440target-specific knowledge. The ``func`` argument must hold a function
12441bitcast to an ``i8*``.
12442
12443Semantics:
12444""""""""""
12445
12446The block of memory pointed to by ``tramp`` is filled with target
12447dependent code, turning it into a function. Then ``tramp`` needs to be
12448passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
12449be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
12450function's signature is the same as that of ``func`` with any arguments
12451marked with the ``nest`` attribute removed. At most one such ``nest``
12452argument is allowed, and it must be of pointer type. Calling the new
12453function is equivalent to calling ``func`` with the same argument list,
12454but with ``nval`` used for the missing ``nest`` argument. If, after
12455calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
12456modified, then the effect of any later call to the returned function
12457pointer is undefined.
12458
12459.. _int_at:
12460
12461'``llvm.adjust.trampoline``' Intrinsic
12462^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12463
12464Syntax:
12465"""""""
12466
12467::
12468
12469 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
12470
12471Overview:
12472"""""""""
12473
12474This performs any required machine-specific adjustment to the address of
12475a trampoline (passed as ``tramp``).
12476
12477Arguments:
12478""""""""""
12479
12480``tramp`` must point to a block of memory which already has trampoline
12481code filled in by a previous call to
12482:ref:`llvm.init.trampoline <int_it>`.
12483
12484Semantics:
12485""""""""""
12486
12487On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012488different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000012489intrinsic returns the executable address corresponding to ``tramp``
12490after performing the required machine specific adjustments. The pointer
12491returned can then be :ref:`bitcast and executed <int_trampoline>`.
12492
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012493.. _int_mload_mstore:
12494
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012495Masked Vector Load and Store Intrinsics
12496---------------------------------------
12497
12498LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
12499
12500.. _int_mload:
12501
12502'``llvm.masked.load.*``' Intrinsics
12503^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12504
12505Syntax:
12506"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012507This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012508
12509::
12510
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012511 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12512 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012513 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012514 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012515 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012516 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012517
12518Overview:
12519"""""""""
12520
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012521Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012522
12523
12524Arguments:
12525""""""""""
12526
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012527The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012528
12529
12530Semantics:
12531""""""""""
12532
12533The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
12534The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
12535
12536
12537::
12538
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012539 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012540
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012541 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000012542 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012543 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012544
12545.. _int_mstore:
12546
12547'``llvm.masked.store.*``' Intrinsics
12548^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12549
12550Syntax:
12551"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012552This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012553
12554::
12555
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012556 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
12557 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012558 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012559 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012560 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012561 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012562
12563Overview:
12564"""""""""
12565
12566Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12567
12568Arguments:
12569""""""""""
12570
12571The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12572
12573
12574Semantics:
12575""""""""""
12576
12577The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
12578The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
12579
12580::
12581
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012582 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012583
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012584 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000012585 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012586 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
12587 store <16 x float> %res, <16 x float>* %ptr, align 4
12588
12589
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012590Masked Vector Gather and Scatter Intrinsics
12591-------------------------------------------
12592
12593LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
12594
12595.. _int_mgather:
12596
12597'``llvm.masked.gather.*``' Intrinsics
12598^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12599
12600Syntax:
12601"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012602This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012603
12604::
12605
Elad Cohenef5798a2017-05-03 12:28:54 +000012606 declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12607 declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64 (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
12608 declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012609
12610Overview:
12611"""""""""
12612
12613Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
12614
12615
12616Arguments:
12617""""""""""
12618
12619The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
12620
12621
12622Semantics:
12623""""""""""
12624
12625The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
12626The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
12627
12628
12629::
12630
Elad Cohenef5798a2017-05-03 12:28:54 +000012631 %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012632
12633 ;; The gather with all-true mask is equivalent to the following instruction sequence
12634 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
12635 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
12636 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
12637 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
12638
12639 %val0 = load double, double* %ptr0, align 8
12640 %val1 = load double, double* %ptr1, align 8
12641 %val2 = load double, double* %ptr2, align 8
12642 %val3 = load double, double* %ptr3, align 8
12643
12644 %vec0 = insertelement <4 x double>undef, %val0, 0
12645 %vec01 = insertelement <4 x double>%vec0, %val1, 1
12646 %vec012 = insertelement <4 x double>%vec01, %val2, 2
12647 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
12648
12649.. _int_mscatter:
12650
12651'``llvm.masked.scatter.*``' Intrinsics
12652^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12653
12654Syntax:
12655"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012656This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012657
12658::
12659
Elad Cohenef5798a2017-05-03 12:28:54 +000012660 declare void @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
12661 declare void @llvm.masked.scatter.v16f32.v16p1f32 (<16 x float> <value>, <16 x float addrspace(1)*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
12662 declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012663
12664Overview:
12665"""""""""
12666
12667Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12668
12669Arguments:
12670""""""""""
12671
12672The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12673
12674
12675Semantics:
12676""""""""""
12677
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000012678The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012679
12680::
12681
Sylvestre Ledru84666a12016-02-14 20:16:22 +000012682 ;; This instruction unconditionally stores data vector in multiple addresses
Elad Cohenef5798a2017-05-03 12:28:54 +000012683 call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012684
12685 ;; It is equivalent to a list of scalar stores
12686 %val0 = extractelement <8 x i32> %value, i32 0
12687 %val1 = extractelement <8 x i32> %value, i32 1
12688 ..
12689 %val7 = extractelement <8 x i32> %value, i32 7
12690 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
12691 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
12692 ..
12693 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
12694 ;; Note: the order of the following stores is important when they overlap:
12695 store i32 %val0, i32* %ptr0, align 4
12696 store i32 %val1, i32* %ptr1, align 4
12697 ..
12698 store i32 %val7, i32* %ptr7, align 4
12699
12700
Sean Silvab084af42012-12-07 10:36:55 +000012701Memory Use Markers
12702------------------
12703
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012704This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000012705memory objects and ranges where variables are immutable.
12706
Reid Klecknera534a382013-12-19 02:14:12 +000012707.. _int_lifestart:
12708
Sean Silvab084af42012-12-07 10:36:55 +000012709'``llvm.lifetime.start``' Intrinsic
12710^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12711
12712Syntax:
12713"""""""
12714
12715::
12716
12717 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
12718
12719Overview:
12720"""""""""
12721
12722The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
12723object's lifetime.
12724
12725Arguments:
12726""""""""""
12727
12728The first argument is a constant integer representing the size of the
12729object, or -1 if it is variable sized. The second argument is a pointer
12730to the object.
12731
12732Semantics:
12733""""""""""
12734
12735This intrinsic indicates that before this point in the code, the value
12736of the memory pointed to by ``ptr`` is dead. This means that it is known
12737to never be used and has an undefined value. A load from the pointer
12738that precedes this intrinsic can be replaced with ``'undef'``.
12739
Reid Klecknera534a382013-12-19 02:14:12 +000012740.. _int_lifeend:
12741
Sean Silvab084af42012-12-07 10:36:55 +000012742'``llvm.lifetime.end``' Intrinsic
12743^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12744
12745Syntax:
12746"""""""
12747
12748::
12749
12750 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
12751
12752Overview:
12753"""""""""
12754
12755The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
12756object's lifetime.
12757
12758Arguments:
12759""""""""""
12760
12761The first argument is a constant integer representing the size of the
12762object, or -1 if it is variable sized. The second argument is a pointer
12763to the object.
12764
12765Semantics:
12766""""""""""
12767
12768This intrinsic indicates that after this point in the code, the value of
12769the memory pointed to by ``ptr`` is dead. This means that it is known to
12770never be used and has an undefined value. Any stores into the memory
12771object following this intrinsic may be removed as dead.
12772
12773'``llvm.invariant.start``' Intrinsic
12774^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12775
12776Syntax:
12777"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012778This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012779
12780::
12781
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012782 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012783
12784Overview:
12785"""""""""
12786
12787The '``llvm.invariant.start``' intrinsic specifies that the contents of
12788a memory object will not change.
12789
12790Arguments:
12791""""""""""
12792
12793The first argument is a constant integer representing the size of the
12794object, or -1 if it is variable sized. The second argument is a pointer
12795to the object.
12796
12797Semantics:
12798""""""""""
12799
12800This intrinsic indicates that until an ``llvm.invariant.end`` that uses
12801the return value, the referenced memory location is constant and
12802unchanging.
12803
12804'``llvm.invariant.end``' Intrinsic
12805^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12806
12807Syntax:
12808"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012809This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012810
12811::
12812
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012813 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012814
12815Overview:
12816"""""""""
12817
12818The '``llvm.invariant.end``' intrinsic specifies that the contents of a
12819memory object are mutable.
12820
12821Arguments:
12822""""""""""
12823
12824The first argument is the matching ``llvm.invariant.start`` intrinsic.
12825The second argument is a constant integer representing the size of the
12826object, or -1 if it is variable sized and the third argument is a
12827pointer to the object.
12828
12829Semantics:
12830""""""""""
12831
12832This intrinsic indicates that the memory is mutable again.
12833
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012834'``llvm.invariant.group.barrier``' Intrinsic
12835^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12836
12837Syntax:
12838"""""""
Yaxun Liu407ca362017-11-16 16:32:16 +000012839This is an overloaded intrinsic. The memory object can belong to any address
12840space. The returned pointer must belong to the same address space as the
12841argument.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012842
12843::
12844
Yaxun Liu407ca362017-11-16 16:32:16 +000012845 declare i8* @llvm.invariant.group.barrier.p0i8(i8* <ptr>)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012846
12847Overview:
12848"""""""""
12849
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000012850The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012851established by invariant.group metadata no longer holds, to obtain a new pointer
12852value that does not carry the invariant information.
12853
12854
12855Arguments:
12856""""""""""
12857
12858The ``llvm.invariant.group.barrier`` takes only one argument, which is
12859the pointer to the memory for which the ``invariant.group`` no longer holds.
12860
12861Semantics:
12862""""""""""
12863
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000012864Returns another pointer that aliases its argument but which is considered different
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012865for the purposes of ``load``/``store`` ``invariant.group`` metadata.
12866
Andrew Kaylora0a11642017-01-26 23:27:59 +000012867Constrained Floating Point Intrinsics
12868-------------------------------------
12869
12870These intrinsics are used to provide special handling of floating point
12871operations when specific rounding mode or floating point exception behavior is
12872required. By default, LLVM optimization passes assume that the rounding mode is
12873round-to-nearest and that floating point exceptions will not be monitored.
12874Constrained FP intrinsics are used to support non-default rounding modes and
12875accurately preserve exception behavior without compromising LLVM's ability to
12876optimize FP code when the default behavior is used.
12877
12878Each of these intrinsics corresponds to a normal floating point operation. The
12879first two arguments and the return value are the same as the corresponding FP
12880operation.
12881
12882The third argument is a metadata argument specifying the rounding mode to be
12883assumed. This argument must be one of the following strings:
12884
12885::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012886
Andrew Kaylora0a11642017-01-26 23:27:59 +000012887 "round.dynamic"
12888 "round.tonearest"
12889 "round.downward"
12890 "round.upward"
12891 "round.towardzero"
12892
12893If this argument is "round.dynamic" optimization passes must assume that the
12894rounding mode is unknown and may change at runtime. No transformations that
12895depend on rounding mode may be performed in this case.
12896
12897The other possible values for the rounding mode argument correspond to the
12898similarly named IEEE rounding modes. If the argument is any of these values
12899optimization passes may perform transformations as long as they are consistent
12900with the specified rounding mode.
12901
12902For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
12903"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
12904'x-0' should evaluate to '-0' when rounding downward. However, this
12905transformation is legal for all other rounding modes.
12906
12907For values other than "round.dynamic" optimization passes may assume that the
12908actual runtime rounding mode (as defined in a target-specific manner) matches
12909the specified rounding mode, but this is not guaranteed. Using a specific
12910non-dynamic rounding mode which does not match the actual rounding mode at
12911runtime results in undefined behavior.
12912
12913The fourth argument to the constrained floating point intrinsics specifies the
12914required exception behavior. This argument must be one of the following
12915strings:
12916
12917::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012918
Andrew Kaylora0a11642017-01-26 23:27:59 +000012919 "fpexcept.ignore"
12920 "fpexcept.maytrap"
12921 "fpexcept.strict"
12922
12923If this argument is "fpexcept.ignore" optimization passes may assume that the
12924exception status flags will not be read and that floating point exceptions will
12925be masked. This allows transformations to be performed that may change the
12926exception semantics of the original code. For example, FP operations may be
12927speculatively executed in this case whereas they must not be for either of the
12928other possible values of this argument.
12929
12930If the exception behavior argument is "fpexcept.maytrap" optimization passes
12931must avoid transformations that may raise exceptions that would not have been
12932raised by the original code (such as speculatively executing FP operations), but
12933passes are not required to preserve all exceptions that are implied by the
12934original code. For example, exceptions may be potentially hidden by constant
12935folding.
12936
12937If the exception behavior argument is "fpexcept.strict" all transformations must
12938strictly preserve the floating point exception semantics of the original code.
12939Any FP exception that would have been raised by the original code must be raised
12940by the transformed code, and the transformed code must not raise any FP
12941exceptions that would not have been raised by the original code. This is the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000012942exception behavior argument that will be used if the code being compiled reads
Andrew Kaylora0a11642017-01-26 23:27:59 +000012943the FP exception status flags, but this mode can also be used with code that
12944unmasks FP exceptions.
12945
12946The number and order of floating point exceptions is NOT guaranteed. For
12947example, a series of FP operations that each may raise exceptions may be
12948vectorized into a single instruction that raises each unique exception a single
12949time.
12950
12951
12952'``llvm.experimental.constrained.fadd``' Intrinsic
12953^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12954
12955Syntax:
12956"""""""
12957
12958::
12959
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000012960 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000012961 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
12962 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012963 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012964
12965Overview:
12966"""""""""
12967
12968The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
12969two operands.
12970
12971
12972Arguments:
12973""""""""""
12974
12975The first two arguments to the '``llvm.experimental.constrained.fadd``'
12976intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
12977of floating point values. Both arguments must have identical types.
12978
12979The third and fourth arguments specify the rounding mode and exception
12980behavior as described above.
12981
12982Semantics:
12983""""""""""
12984
12985The value produced is the floating point sum of the two value operands and has
12986the same type as the operands.
12987
12988
12989'``llvm.experimental.constrained.fsub``' Intrinsic
12990^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12991
12992Syntax:
12993"""""""
12994
12995::
12996
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000012997 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000012998 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
12999 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013000 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013001
13002Overview:
13003"""""""""
13004
13005The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
13006of its two operands.
13007
13008
13009Arguments:
13010""""""""""
13011
13012The first two arguments to the '``llvm.experimental.constrained.fsub``'
13013intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
13014of floating point values. Both arguments must have identical types.
13015
13016The third and fourth arguments specify the rounding mode and exception
13017behavior as described above.
13018
13019Semantics:
13020""""""""""
13021
13022The value produced is the floating point difference of the two value operands
13023and has the same type as the operands.
13024
13025
13026'``llvm.experimental.constrained.fmul``' Intrinsic
13027^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13028
13029Syntax:
13030"""""""
13031
13032::
13033
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013034 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013035 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
13036 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013037 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013038
13039Overview:
13040"""""""""
13041
13042The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
13043its two operands.
13044
13045
13046Arguments:
13047""""""""""
13048
13049The first two arguments to the '``llvm.experimental.constrained.fmul``'
13050intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
13051of floating point values. Both arguments must have identical types.
13052
13053The third and fourth arguments specify the rounding mode and exception
13054behavior as described above.
13055
13056Semantics:
13057""""""""""
13058
13059The value produced is the floating point product of the two value operands and
13060has the same type as the operands.
13061
13062
13063'``llvm.experimental.constrained.fdiv``' Intrinsic
13064^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13065
13066Syntax:
13067"""""""
13068
13069::
13070
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013071 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013072 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
13073 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013074 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013075
13076Overview:
13077"""""""""
13078
13079The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
13080its two operands.
13081
13082
13083Arguments:
13084""""""""""
13085
13086The first two arguments to the '``llvm.experimental.constrained.fdiv``'
13087intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
13088of floating point values. Both arguments must have identical types.
13089
13090The third and fourth arguments specify the rounding mode and exception
13091behavior as described above.
13092
13093Semantics:
13094""""""""""
13095
13096The value produced is the floating point quotient of the two value operands and
13097has the same type as the operands.
13098
13099
13100'``llvm.experimental.constrained.frem``' Intrinsic
13101^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13102
13103Syntax:
13104"""""""
13105
13106::
13107
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013108 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013109 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
13110 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013111 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013112
13113Overview:
13114"""""""""
13115
13116The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
13117from the division of its two operands.
13118
13119
13120Arguments:
13121""""""""""
13122
13123The first two arguments to the '``llvm.experimental.constrained.frem``'
13124intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
13125of floating point values. Both arguments must have identical types.
13126
13127The third and fourth arguments specify the rounding mode and exception
13128behavior as described above. The rounding mode argument has no effect, since
13129the result of frem is never rounded, but the argument is included for
13130consistency with the other constrained floating point intrinsics.
13131
13132Semantics:
13133""""""""""
13134
13135The value produced is the floating point remainder from the division of the two
13136value operands and has the same type as the operands. The remainder has the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013137same sign as the dividend.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013138
Wei Dinga131d3f2017-08-24 04:18:24 +000013139'``llvm.experimental.constrained.fma``' Intrinsic
13140^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13141
13142Syntax:
13143"""""""
13144
13145::
13146
13147 declare <type>
13148 @llvm.experimental.constrained.fma(<type> <op1>, <type> <op2>, <type> <op3>,
13149 metadata <rounding mode>,
13150 metadata <exception behavior>)
13151
13152Overview:
13153"""""""""
13154
13155The '``llvm.experimental.constrained.fma``' intrinsic returns the result of a
13156fused-multiply-add operation on its operands.
13157
13158Arguments:
13159""""""""""
13160
13161The first three arguments to the '``llvm.experimental.constrained.fma``'
13162intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector
13163<t_vector>` of floating point values. All arguments must have identical types.
13164
13165The fourth and fifth arguments specify the rounding mode and exception behavior
13166as described above.
13167
13168Semantics:
13169""""""""""
13170
13171The result produced is the product of the first two operands added to the third
13172operand computed with infinite precision, and then rounded to the target
13173precision.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013174
Andrew Kaylorf4660012017-05-25 21:31:00 +000013175Constrained libm-equivalent Intrinsics
13176--------------------------------------
13177
13178In addition to the basic floating point operations for which constrained
13179intrinsics are described above, there are constrained versions of various
13180operations which provide equivalent behavior to a corresponding libm function.
13181These intrinsics allow the precise behavior of these operations with respect to
13182rounding mode and exception behavior to be controlled.
13183
13184As with the basic constrained floating point intrinsics, the rounding mode
13185and exception behavior arguments only control the behavior of the optimizer.
13186They do not change the runtime floating point environment.
13187
13188
13189'``llvm.experimental.constrained.sqrt``' Intrinsic
13190^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13191
13192Syntax:
13193"""""""
13194
13195::
13196
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013197 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013198 @llvm.experimental.constrained.sqrt(<type> <op1>,
13199 metadata <rounding mode>,
13200 metadata <exception behavior>)
13201
13202Overview:
13203"""""""""
13204
13205The '``llvm.experimental.constrained.sqrt``' intrinsic returns the square root
13206of the specified value, returning the same value as the libm '``sqrt``'
13207functions would, but without setting ``errno``.
13208
13209Arguments:
13210""""""""""
13211
13212The first argument and the return type are floating point numbers of the same
13213type.
13214
13215The second and third arguments specify the rounding mode and exception
13216behavior as described above.
13217
13218Semantics:
13219""""""""""
13220
13221This function returns the nonnegative square root of the specified value.
13222If the value is less than negative zero, a floating point exception occurs
Hiroshi Inoue760c0c92018-01-16 13:19:48 +000013223and the return value is architecture specific.
Andrew Kaylorf4660012017-05-25 21:31:00 +000013224
13225
13226'``llvm.experimental.constrained.pow``' Intrinsic
13227^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13228
13229Syntax:
13230"""""""
13231
13232::
13233
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013234 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013235 @llvm.experimental.constrained.pow(<type> <op1>, <type> <op2>,
13236 metadata <rounding mode>,
13237 metadata <exception behavior>)
13238
13239Overview:
13240"""""""""
13241
13242The '``llvm.experimental.constrained.pow``' intrinsic returns the first operand
13243raised to the (positive or negative) power specified by the second operand.
13244
13245Arguments:
13246""""""""""
13247
13248The first two arguments and the return value are floating point numbers of the
13249same type. The second argument specifies the power to which the first argument
13250should be raised.
13251
13252The third and fourth arguments specify the rounding mode and exception
13253behavior as described above.
13254
13255Semantics:
13256""""""""""
13257
13258This function returns the first value raised to the second power,
13259returning the same values as the libm ``pow`` functions would, and
13260handles error conditions in the same way.
13261
13262
13263'``llvm.experimental.constrained.powi``' Intrinsic
13264^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13265
13266Syntax:
13267"""""""
13268
13269::
13270
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013271 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013272 @llvm.experimental.constrained.powi(<type> <op1>, i32 <op2>,
13273 metadata <rounding mode>,
13274 metadata <exception behavior>)
13275
13276Overview:
13277"""""""""
13278
13279The '``llvm.experimental.constrained.powi``' intrinsic returns the first operand
13280raised to the (positive or negative) power specified by the second operand. The
13281order of evaluation of multiplications is not defined. When a vector of floating
13282point type is used, the second argument remains a scalar integer value.
13283
13284
13285Arguments:
13286""""""""""
13287
13288The first argument and the return value are floating point numbers of the same
13289type. The second argument is a 32-bit signed integer specifying the power to
13290which the first argument should be raised.
13291
13292The third and fourth arguments specify the rounding mode and exception
13293behavior as described above.
13294
13295Semantics:
13296""""""""""
13297
13298This function returns the first value raised to the second power with an
13299unspecified sequence of rounding operations.
13300
13301
13302'``llvm.experimental.constrained.sin``' Intrinsic
13303^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13304
13305Syntax:
13306"""""""
13307
13308::
13309
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013310 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013311 @llvm.experimental.constrained.sin(<type> <op1>,
13312 metadata <rounding mode>,
13313 metadata <exception behavior>)
13314
13315Overview:
13316"""""""""
13317
13318The '``llvm.experimental.constrained.sin``' intrinsic returns the sine of the
13319first operand.
13320
13321Arguments:
13322""""""""""
13323
13324The first argument and the return type are floating point numbers of the same
13325type.
13326
13327The second and third arguments specify the rounding mode and exception
13328behavior as described above.
13329
13330Semantics:
13331""""""""""
13332
13333This function returns the sine of the specified operand, returning the
13334same values as the libm ``sin`` functions would, and handles error
13335conditions in the same way.
13336
13337
13338'``llvm.experimental.constrained.cos``' Intrinsic
13339^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13340
13341Syntax:
13342"""""""
13343
13344::
13345
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013346 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013347 @llvm.experimental.constrained.cos(<type> <op1>,
13348 metadata <rounding mode>,
13349 metadata <exception behavior>)
13350
13351Overview:
13352"""""""""
13353
13354The '``llvm.experimental.constrained.cos``' intrinsic returns the cosine of the
13355first operand.
13356
13357Arguments:
13358""""""""""
13359
13360The first argument and the return type are floating point numbers of the same
13361type.
13362
13363The second and third arguments specify the rounding mode and exception
13364behavior as described above.
13365
13366Semantics:
13367""""""""""
13368
13369This function returns the cosine of the specified operand, returning the
13370same values as the libm ``cos`` functions would, and handles error
13371conditions in the same way.
13372
13373
13374'``llvm.experimental.constrained.exp``' Intrinsic
13375^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13376
13377Syntax:
13378"""""""
13379
13380::
13381
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013382 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013383 @llvm.experimental.constrained.exp(<type> <op1>,
13384 metadata <rounding mode>,
13385 metadata <exception behavior>)
13386
13387Overview:
13388"""""""""
13389
13390The '``llvm.experimental.constrained.exp``' intrinsic computes the base-e
13391exponential of the specified value.
13392
13393Arguments:
13394""""""""""
13395
13396The first argument and the return value are floating point numbers of the same
13397type.
13398
13399The second and third arguments specify the rounding mode and exception
13400behavior as described above.
13401
13402Semantics:
13403""""""""""
13404
13405This function returns the same values as the libm ``exp`` functions
13406would, and handles error conditions in the same way.
13407
13408
13409'``llvm.experimental.constrained.exp2``' Intrinsic
13410^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13411
13412Syntax:
13413"""""""
13414
13415::
13416
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013417 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013418 @llvm.experimental.constrained.exp2(<type> <op1>,
13419 metadata <rounding mode>,
13420 metadata <exception behavior>)
13421
13422Overview:
13423"""""""""
13424
13425The '``llvm.experimental.constrained.exp2``' intrinsic computes the base-2
13426exponential of the specified value.
13427
13428
13429Arguments:
13430""""""""""
13431
13432The first argument and the return value are floating point numbers of the same
13433type.
13434
13435The second and third arguments specify the rounding mode and exception
13436behavior as described above.
13437
13438Semantics:
13439""""""""""
13440
13441This function returns the same values as the libm ``exp2`` functions
13442would, and handles error conditions in the same way.
13443
13444
13445'``llvm.experimental.constrained.log``' Intrinsic
13446^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13447
13448Syntax:
13449"""""""
13450
13451::
13452
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013453 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013454 @llvm.experimental.constrained.log(<type> <op1>,
13455 metadata <rounding mode>,
13456 metadata <exception behavior>)
13457
13458Overview:
13459"""""""""
13460
13461The '``llvm.experimental.constrained.log``' intrinsic computes the base-e
13462logarithm of the specified value.
13463
13464Arguments:
13465""""""""""
13466
13467The first argument and the return value are floating point numbers of the same
13468type.
13469
13470The second and third arguments specify the rounding mode and exception
13471behavior as described above.
13472
13473
13474Semantics:
13475""""""""""
13476
13477This function returns the same values as the libm ``log`` functions
13478would, and handles error conditions in the same way.
13479
13480
13481'``llvm.experimental.constrained.log10``' Intrinsic
13482^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13483
13484Syntax:
13485"""""""
13486
13487::
13488
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013489 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013490 @llvm.experimental.constrained.log10(<type> <op1>,
13491 metadata <rounding mode>,
13492 metadata <exception behavior>)
13493
13494Overview:
13495"""""""""
13496
13497The '``llvm.experimental.constrained.log10``' intrinsic computes the base-10
13498logarithm of the specified value.
13499
13500Arguments:
13501""""""""""
13502
13503The first argument and the return value are floating point numbers of the same
13504type.
13505
13506The second and third arguments specify the rounding mode and exception
13507behavior as described above.
13508
13509Semantics:
13510""""""""""
13511
13512This function returns the same values as the libm ``log10`` functions
13513would, and handles error conditions in the same way.
13514
13515
13516'``llvm.experimental.constrained.log2``' Intrinsic
13517^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13518
13519Syntax:
13520"""""""
13521
13522::
13523
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013524 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013525 @llvm.experimental.constrained.log2(<type> <op1>,
13526 metadata <rounding mode>,
13527 metadata <exception behavior>)
13528
13529Overview:
13530"""""""""
13531
13532The '``llvm.experimental.constrained.log2``' intrinsic computes the base-2
13533logarithm of the specified value.
13534
13535Arguments:
13536""""""""""
13537
13538The first argument and the return value are floating point numbers of the same
13539type.
13540
13541The second and third arguments specify the rounding mode and exception
13542behavior as described above.
13543
13544Semantics:
13545""""""""""
13546
13547This function returns the same values as the libm ``log2`` functions
13548would, and handles error conditions in the same way.
13549
13550
13551'``llvm.experimental.constrained.rint``' Intrinsic
13552^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13553
13554Syntax:
13555"""""""
13556
13557::
13558
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013559 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013560 @llvm.experimental.constrained.rint(<type> <op1>,
13561 metadata <rounding mode>,
13562 metadata <exception behavior>)
13563
13564Overview:
13565"""""""""
13566
13567The '``llvm.experimental.constrained.rint``' intrinsic returns the first
13568operand rounded to the nearest integer. It may raise an inexact floating point
13569exception if the operand is not an integer.
13570
13571Arguments:
13572""""""""""
13573
13574The first argument and the return value are floating point numbers of the same
13575type.
13576
13577The second and third arguments specify the rounding mode and exception
13578behavior as described above.
13579
13580Semantics:
13581""""""""""
13582
13583This function returns the same values as the libm ``rint`` functions
13584would, and handles error conditions in the same way. The rounding mode is
13585described, not determined, by the rounding mode argument. The actual rounding
13586mode is determined by the runtime floating point environment. The rounding
13587mode argument is only intended as information to the compiler.
13588
13589
13590'``llvm.experimental.constrained.nearbyint``' Intrinsic
13591^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13592
13593Syntax:
13594"""""""
13595
13596::
13597
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013598 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013599 @llvm.experimental.constrained.nearbyint(<type> <op1>,
13600 metadata <rounding mode>,
13601 metadata <exception behavior>)
13602
13603Overview:
13604"""""""""
13605
13606The '``llvm.experimental.constrained.nearbyint``' intrinsic returns the first
13607operand rounded to the nearest integer. It will not raise an inexact floating
13608point exception if the operand is not an integer.
13609
13610
13611Arguments:
13612""""""""""
13613
13614The first argument and the return value are floating point numbers of the same
13615type.
13616
13617The second and third arguments specify the rounding mode and exception
13618behavior as described above.
13619
13620Semantics:
13621""""""""""
13622
13623This function returns the same values as the libm ``nearbyint`` functions
13624would, and handles error conditions in the same way. The rounding mode is
13625described, not determined, by the rounding mode argument. The actual rounding
13626mode is determined by the runtime floating point environment. The rounding
13627mode argument is only intended as information to the compiler.
13628
13629
Sean Silvab084af42012-12-07 10:36:55 +000013630General Intrinsics
13631------------------
13632
13633This class of intrinsics is designed to be generic and has no specific
13634purpose.
13635
13636'``llvm.var.annotation``' Intrinsic
13637^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13638
13639Syntax:
13640"""""""
13641
13642::
13643
13644 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
13645
13646Overview:
13647"""""""""
13648
13649The '``llvm.var.annotation``' intrinsic.
13650
13651Arguments:
13652""""""""""
13653
13654The first argument is a pointer to a value, the second is a pointer to a
13655global string, the third is a pointer to a global string which is the
13656source file name, and the last argument is the line number.
13657
13658Semantics:
13659""""""""""
13660
13661This intrinsic allows annotation of local variables with arbitrary
13662strings. This can be useful for special purpose optimizations that want
13663to look for these annotations. These have no other defined use; they are
13664ignored by code generation and optimization.
13665
Michael Gottesman88d18832013-03-26 00:34:27 +000013666'``llvm.ptr.annotation.*``' Intrinsic
13667^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13668
13669Syntax:
13670"""""""
13671
13672This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
13673pointer to an integer of any width. *NOTE* you must specify an address space for
13674the pointer. The identifier for the default address space is the integer
13675'``0``'.
13676
13677::
13678
13679 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
13680 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
13681 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
13682 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
13683 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
13684
13685Overview:
13686"""""""""
13687
13688The '``llvm.ptr.annotation``' intrinsic.
13689
13690Arguments:
13691""""""""""
13692
13693The first argument is a pointer to an integer value of arbitrary bitwidth
13694(result of some expression), the second is a pointer to a global string, the
13695third is a pointer to a global string which is the source file name, and the
13696last argument is the line number. It returns the value of the first argument.
13697
13698Semantics:
13699""""""""""
13700
13701This intrinsic allows annotation of a pointer to an integer with arbitrary
13702strings. This can be useful for special purpose optimizations that want to look
13703for these annotations. These have no other defined use; they are ignored by code
13704generation and optimization.
13705
Sean Silvab084af42012-12-07 10:36:55 +000013706'``llvm.annotation.*``' Intrinsic
13707^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13708
13709Syntax:
13710"""""""
13711
13712This is an overloaded intrinsic. You can use '``llvm.annotation``' on
13713any integer bit width.
13714
13715::
13716
13717 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
13718 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
13719 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
13720 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
13721 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
13722
13723Overview:
13724"""""""""
13725
13726The '``llvm.annotation``' intrinsic.
13727
13728Arguments:
13729""""""""""
13730
13731The first argument is an integer value (result of some expression), the
13732second is a pointer to a global string, the third is a pointer to a
13733global string which is the source file name, and the last argument is
13734the line number. It returns the value of the first argument.
13735
13736Semantics:
13737""""""""""
13738
13739This intrinsic allows annotations to be put on arbitrary expressions
13740with arbitrary strings. This can be useful for special purpose
13741optimizations that want to look for these annotations. These have no
13742other defined use; they are ignored by code generation and optimization.
13743
Reid Klecknere33c94f2017-09-05 20:14:58 +000013744'``llvm.codeview.annotation``' Intrinsic
Reid Klecknerd4523682017-09-05 20:26:25 +000013745^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Reid Klecknere33c94f2017-09-05 20:14:58 +000013746
13747Syntax:
13748"""""""
13749
13750This annotation emits a label at its program point and an associated
13751``S_ANNOTATION`` codeview record with some additional string metadata. This is
13752used to implement MSVC's ``__annotation`` intrinsic. It is marked
13753``noduplicate``, so calls to this intrinsic prevent inlining and should be
13754considered expensive.
13755
13756::
13757
13758 declare void @llvm.codeview.annotation(metadata)
13759
13760Arguments:
13761""""""""""
13762
13763The argument should be an MDTuple containing any number of MDStrings.
13764
Sean Silvab084af42012-12-07 10:36:55 +000013765'``llvm.trap``' Intrinsic
13766^^^^^^^^^^^^^^^^^^^^^^^^^
13767
13768Syntax:
13769"""""""
13770
13771::
13772
13773 declare void @llvm.trap() noreturn nounwind
13774
13775Overview:
13776"""""""""
13777
13778The '``llvm.trap``' intrinsic.
13779
13780Arguments:
13781""""""""""
13782
13783None.
13784
13785Semantics:
13786""""""""""
13787
13788This intrinsic is lowered to the target dependent trap instruction. If
13789the target does not have a trap instruction, this intrinsic will be
13790lowered to a call of the ``abort()`` function.
13791
13792'``llvm.debugtrap``' Intrinsic
13793^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13794
13795Syntax:
13796"""""""
13797
13798::
13799
13800 declare void @llvm.debugtrap() nounwind
13801
13802Overview:
13803"""""""""
13804
13805The '``llvm.debugtrap``' intrinsic.
13806
13807Arguments:
13808""""""""""
13809
13810None.
13811
13812Semantics:
13813""""""""""
13814
13815This intrinsic is lowered to code which is intended to cause an
13816execution trap with the intention of requesting the attention of a
13817debugger.
13818
13819'``llvm.stackprotector``' Intrinsic
13820^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13821
13822Syntax:
13823"""""""
13824
13825::
13826
13827 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
13828
13829Overview:
13830"""""""""
13831
13832The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
13833onto the stack at ``slot``. The stack slot is adjusted to ensure that it
13834is placed on the stack before local variables.
13835
13836Arguments:
13837""""""""""
13838
13839The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
13840The first argument is the value loaded from the stack guard
13841``@__stack_chk_guard``. The second variable is an ``alloca`` that has
13842enough space to hold the value of the guard.
13843
13844Semantics:
13845""""""""""
13846
Michael Gottesmandafc7d92013-08-12 18:35:32 +000013847This intrinsic causes the prologue/epilogue inserter to force the position of
13848the ``AllocaInst`` stack slot to be before local variables on the stack. This is
13849to ensure that if a local variable on the stack is overwritten, it will destroy
13850the value of the guard. When the function exits, the guard on the stack is
13851checked against the original guard by ``llvm.stackprotectorcheck``. If they are
13852different, then ``llvm.stackprotectorcheck`` causes the program to abort by
13853calling the ``__stack_chk_fail()`` function.
13854
Tim Shene885d5e2016-04-19 19:40:37 +000013855'``llvm.stackguard``' Intrinsic
13856^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13857
13858Syntax:
13859"""""""
13860
13861::
13862
13863 declare i8* @llvm.stackguard()
13864
13865Overview:
13866"""""""""
13867
13868The ``llvm.stackguard`` intrinsic returns the system stack guard value.
13869
13870It should not be generated by frontends, since it is only for internal usage.
13871The reason why we create this intrinsic is that we still support IR form Stack
13872Protector in FastISel.
13873
13874Arguments:
13875""""""""""
13876
13877None.
13878
13879Semantics:
13880""""""""""
13881
13882On some platforms, the value returned by this intrinsic remains unchanged
13883between loads in the same thread. On other platforms, it returns the same
13884global variable value, if any, e.g. ``@__stack_chk_guard``.
13885
13886Currently some platforms have IR-level customized stack guard loading (e.g.
13887X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
13888in the future.
13889
Sean Silvab084af42012-12-07 10:36:55 +000013890'``llvm.objectsize``' Intrinsic
13891^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13892
13893Syntax:
13894"""""""
13895
13896::
13897
George Burgess IV56c7e882017-03-21 20:08:59 +000013898 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>)
13899 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>)
Sean Silvab084af42012-12-07 10:36:55 +000013900
13901Overview:
13902"""""""""
13903
13904The ``llvm.objectsize`` intrinsic is designed to provide information to
13905the optimizers to determine at compile time whether a) an operation
13906(like memcpy) will overflow a buffer that corresponds to an object, or
13907b) that a runtime check for overflow isn't necessary. An object in this
13908context means an allocation of a specific class, structure, array, or
13909other object.
13910
13911Arguments:
13912""""""""""
13913
George Burgess IV56c7e882017-03-21 20:08:59 +000013914The ``llvm.objectsize`` intrinsic takes three arguments. The first argument is
13915a pointer to or into the ``object``. The second argument determines whether
13916``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size
13917is unknown. The third argument controls how ``llvm.objectsize`` acts when
13918``null`` is used as its pointer argument. If it's true and the pointer is in
13919address space 0, ``null`` is treated as an opaque value with an unknown number
13920of bytes. Otherwise, ``llvm.objectsize`` reports 0 bytes available when given
13921``null``.
13922
13923The second and third arguments only accept constants.
Sean Silvab084af42012-12-07 10:36:55 +000013924
13925Semantics:
13926""""""""""
13927
13928The ``llvm.objectsize`` intrinsic is lowered to a constant representing
13929the size of the object concerned. If the size cannot be determined at
13930compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
13931on the ``min`` argument).
13932
13933'``llvm.expect``' Intrinsic
13934^^^^^^^^^^^^^^^^^^^^^^^^^^^
13935
13936Syntax:
13937"""""""
13938
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000013939This is an overloaded intrinsic. You can use ``llvm.expect`` on any
13940integer bit width.
13941
Sean Silvab084af42012-12-07 10:36:55 +000013942::
13943
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000013944 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000013945 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
13946 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
13947
13948Overview:
13949"""""""""
13950
13951The ``llvm.expect`` intrinsic provides information about expected (the
13952most probable) value of ``val``, which can be used by optimizers.
13953
13954Arguments:
13955""""""""""
13956
13957The ``llvm.expect`` intrinsic takes two arguments. The first argument is
13958a value. The second argument is an expected value, this needs to be a
13959constant value, variables are not allowed.
13960
13961Semantics:
13962""""""""""
13963
13964This intrinsic is lowered to the ``val``.
13965
Philip Reamese0e90832015-04-26 22:23:12 +000013966.. _int_assume:
13967
Hal Finkel93046912014-07-25 21:13:35 +000013968'``llvm.assume``' Intrinsic
13969^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13970
13971Syntax:
13972"""""""
13973
13974::
13975
13976 declare void @llvm.assume(i1 %cond)
13977
13978Overview:
13979"""""""""
13980
13981The ``llvm.assume`` allows the optimizer to assume that the provided
13982condition is true. This information can then be used in simplifying other parts
13983of the code.
13984
13985Arguments:
13986""""""""""
13987
13988The condition which the optimizer may assume is always true.
13989
13990Semantics:
13991""""""""""
13992
13993The intrinsic allows the optimizer to assume that the provided condition is
13994always true whenever the control flow reaches the intrinsic call. No code is
13995generated for this intrinsic, and instructions that contribute only to the
13996provided condition are not used for code generation. If the condition is
13997violated during execution, the behavior is undefined.
13998
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000013999Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000014000used by the ``llvm.assume`` intrinsic in order to preserve the instructions
14001only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000014002if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000014003sufficient overall improvement in code quality. For this reason,
14004``llvm.assume`` should not be used to document basic mathematical invariants
14005that the optimizer can otherwise deduce or facts that are of little use to the
14006optimizer.
14007
Daniel Berlin2c438a32017-02-07 19:29:25 +000014008.. _int_ssa_copy:
14009
14010'``llvm.ssa_copy``' Intrinsic
14011^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14012
14013Syntax:
14014"""""""
14015
14016::
14017
14018 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
14019
14020Arguments:
14021""""""""""
14022
14023The first argument is an operand which is used as the returned value.
14024
14025Overview:
14026""""""""""
14027
14028The ``llvm.ssa_copy`` intrinsic can be used to attach information to
14029operations by copying them and giving them new names. For example,
14030the PredicateInfo utility uses it to build Extended SSA form, and
14031attach various forms of information to operands that dominate specific
14032uses. It is not meant for general use, only for building temporary
14033renaming forms that require value splits at certain points.
14034
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014035.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000014036
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014037'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000014038^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14039
14040Syntax:
14041"""""""
14042
14043::
14044
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014045 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000014046
14047
14048Arguments:
14049""""""""""
14050
14051The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014052metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000014053
14054Overview:
14055"""""""""
14056
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014057The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
14058with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000014059
Peter Collingbourne0312f612016-06-25 00:23:04 +000014060'``llvm.type.checked.load``' Intrinsic
14061^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14062
14063Syntax:
14064"""""""
14065
14066::
14067
14068 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
14069
14070
14071Arguments:
14072""""""""""
14073
14074The first argument is a pointer from which to load a function pointer. The
14075second argument is the byte offset from which to load the function pointer. The
14076third argument is a metadata object representing a :doc:`type identifier
14077<TypeMetadata>`.
14078
14079Overview:
14080"""""""""
14081
14082The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
14083virtual table pointer using type metadata. This intrinsic is used to implement
14084control flow integrity in conjunction with virtual call optimization. The
14085virtual call optimization pass will optimize away ``llvm.type.checked.load``
14086intrinsics associated with devirtualized calls, thereby removing the type
14087check in cases where it is not needed to enforce the control flow integrity
14088constraint.
14089
14090If the given pointer is associated with a type metadata identifier, this
14091function returns true as the second element of its return value. (Note that
14092the function may also return true if the given pointer is not associated
14093with a type metadata identifier.) If the function's return value's second
14094element is true, the following rules apply to the first element:
14095
14096- If the given pointer is associated with the given type metadata identifier,
14097 it is the function pointer loaded from the given byte offset from the given
14098 pointer.
14099
14100- If the given pointer is not associated with the given type metadata
14101 identifier, it is one of the following (the choice of which is unspecified):
14102
14103 1. The function pointer that would have been loaded from an arbitrarily chosen
14104 (through an unspecified mechanism) pointer associated with the type
14105 metadata.
14106
14107 2. If the function has a non-void return type, a pointer to a function that
14108 returns an unspecified value without causing side effects.
14109
14110If the function's return value's second element is false, the value of the
14111first element is undefined.
14112
14113
Sean Silvab084af42012-12-07 10:36:55 +000014114'``llvm.donothing``' Intrinsic
14115^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14116
14117Syntax:
14118"""""""
14119
14120::
14121
14122 declare void @llvm.donothing() nounwind readnone
14123
14124Overview:
14125"""""""""
14126
Juergen Ributzkac9161192014-10-23 22:36:13 +000014127The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000014128three intrinsics (besides ``llvm.experimental.patchpoint`` and
14129``llvm.experimental.gc.statepoint``) that can be called with an invoke
14130instruction.
Sean Silvab084af42012-12-07 10:36:55 +000014131
14132Arguments:
14133""""""""""
14134
14135None.
14136
14137Semantics:
14138""""""""""
14139
14140This intrinsic does nothing, and it's removed by optimizers and ignored
14141by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000014142
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014143'``llvm.experimental.deoptimize``' Intrinsic
14144^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14145
14146Syntax:
14147"""""""
14148
14149::
14150
14151 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
14152
14153Overview:
14154"""""""""
14155
14156This intrinsic, together with :ref:`deoptimization operand bundles
14157<deopt_opbundles>`, allow frontends to express transfer of control and
14158frame-local state from the currently executing (typically more specialized,
14159hence faster) version of a function into another (typically more generic, hence
14160slower) version.
14161
14162In languages with a fully integrated managed runtime like Java and JavaScript
14163this intrinsic can be used to implement "uncommon trap" or "side exit" like
14164functionality. In unmanaged languages like C and C++, this intrinsic can be
14165used to represent the slow paths of specialized functions.
14166
14167
14168Arguments:
14169""""""""""
14170
14171The intrinsic takes an arbitrary number of arguments, whose meaning is
14172decided by the :ref:`lowering strategy<deoptimize_lowering>`.
14173
14174Semantics:
14175""""""""""
14176
14177The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
14178deoptimization continuation (denoted using a :ref:`deoptimization
14179operand bundle <deopt_opbundles>`) and returns the value returned by
14180the deoptimization continuation. Defining the semantic properties of
14181the continuation itself is out of scope of the language reference --
14182as far as LLVM is concerned, the deoptimization continuation can
14183invoke arbitrary side effects, including reading from and writing to
14184the entire heap.
14185
14186Deoptimization continuations expressed using ``"deopt"`` operand bundles always
14187continue execution to the end of the physical frame containing them, so all
14188calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
14189
14190 - ``@llvm.experimental.deoptimize`` cannot be invoked.
14191 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
14192 - The ``ret`` instruction must return the value produced by the
14193 ``@llvm.experimental.deoptimize`` call if there is one, or void.
14194
14195Note that the above restrictions imply that the return type for a call to
14196``@llvm.experimental.deoptimize`` will match the return type of its immediate
14197caller.
14198
14199The inliner composes the ``"deopt"`` continuations of the caller into the
14200``"deopt"`` continuations present in the inlinee, and also updates calls to this
14201intrinsic to return directly from the frame of the function it inlined into.
14202
Sanjoy Dase0aa4142016-05-12 01:17:38 +000014203All declarations of ``@llvm.experimental.deoptimize`` must share the
14204same calling convention.
14205
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014206.. _deoptimize_lowering:
14207
14208Lowering:
14209"""""""""
14210
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000014211Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
14212symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
14213ensure that this symbol is defined). The call arguments to
14214``@llvm.experimental.deoptimize`` are lowered as if they were formal
14215arguments of the specified types, and not as varargs.
14216
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014217
Sanjoy Das021de052016-03-31 00:18:46 +000014218'``llvm.experimental.guard``' Intrinsic
14219^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14220
14221Syntax:
14222"""""""
14223
14224::
14225
14226 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
14227
14228Overview:
14229"""""""""
14230
14231This intrinsic, together with :ref:`deoptimization operand bundles
14232<deopt_opbundles>`, allows frontends to express guards or checks on
14233optimistic assumptions made during compilation. The semantics of
14234``@llvm.experimental.guard`` is defined in terms of
14235``@llvm.experimental.deoptimize`` -- its body is defined to be
14236equivalent to:
14237
Renato Golin124f2592016-07-20 12:16:38 +000014238.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000014239
Renato Golin124f2592016-07-20 12:16:38 +000014240 define void @llvm.experimental.guard(i1 %pred, <args...>) {
14241 %realPred = and i1 %pred, undef
14242 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000014243
Renato Golin124f2592016-07-20 12:16:38 +000014244 leave:
14245 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
14246 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000014247
Renato Golin124f2592016-07-20 12:16:38 +000014248 continue:
14249 ret void
14250 }
Sanjoy Das021de052016-03-31 00:18:46 +000014251
Sanjoy Das47cf2af2016-04-30 00:55:59 +000014252
14253with the optional ``[, !make.implicit !{}]`` present if and only if it
14254is present on the call site. For more details on ``!make.implicit``,
14255see :doc:`FaultMaps`.
14256
Sanjoy Das021de052016-03-31 00:18:46 +000014257In words, ``@llvm.experimental.guard`` executes the attached
14258``"deopt"`` continuation if (but **not** only if) its first argument
14259is ``false``. Since the optimizer is allowed to replace the ``undef``
14260with an arbitrary value, it can optimize guard to fail "spuriously",
14261i.e. without the original condition being false (hence the "not only
14262if"); and this allows for "check widening" type optimizations.
14263
14264``@llvm.experimental.guard`` cannot be invoked.
14265
14266
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000014267'``llvm.load.relative``' Intrinsic
14268^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14269
14270Syntax:
14271"""""""
14272
14273::
14274
14275 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
14276
14277Overview:
14278"""""""""
14279
14280This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
14281adds ``%ptr`` to that value and returns it. The constant folder specifically
14282recognizes the form of this intrinsic and the constant initializers it may
14283load from; if a loaded constant initializer is known to have the form
14284``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
14285
14286LLVM provides that the calculation of such a constant initializer will
14287not overflow at link time under the medium code model if ``x`` is an
14288``unnamed_addr`` function. However, it does not provide this guarantee for
14289a constant initializer folded into a function body. This intrinsic can be
14290used to avoid the possibility of overflows when loading from such a constant.
14291
Dan Gohman2c74fe92017-11-08 21:59:51 +000014292'``llvm.sideeffect``' Intrinsic
14293^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14294
14295Syntax:
14296"""""""
14297
14298::
14299
14300 declare void @llvm.sideeffect() inaccessiblememonly nounwind
14301
14302Overview:
14303"""""""""
14304
14305The ``llvm.sideeffect`` intrinsic doesn't perform any operation. Optimizers
14306treat it as having side effects, so it can be inserted into a loop to
14307indicate that the loop shouldn't be assumed to terminate (which could
14308potentially lead to the loop being optimized away entirely), even if it's
14309an infinite loop with no other side effects.
14310
14311Arguments:
14312""""""""""
14313
14314None.
14315
14316Semantics:
14317""""""""""
14318
14319This intrinsic actually does nothing, but optimizers must assume that it
14320has externally observable side effects.
14321
Andrew Trick5e029ce2013-12-24 02:57:25 +000014322Stack Map Intrinsics
14323--------------------
14324
14325LLVM provides experimental intrinsics to support runtime patching
14326mechanisms commonly desired in dynamic language JITs. These intrinsics
14327are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014328
14329Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000014330-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000014331
14332These intrinsics are similar to the standard library memory intrinsics except
14333that they perform memory transfer as a sequence of atomic memory accesses.
14334
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014335.. _int_memcpy_element_unordered_atomic:
Igor Laevsky4f31e522016-12-29 14:31:07 +000014336
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014337'``llvm.memcpy.element.unordered.atomic``' Intrinsic
14338^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000014339
14340Syntax:
14341"""""""
14342
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014343This is an overloaded intrinsic. You can use ``llvm.memcpy.element.unordered.atomic`` on
Igor Laevsky4f31e522016-12-29 14:31:07 +000014344any integer bit width and for different address spaces. Not all targets
14345support all bit widths however.
14346
14347::
14348
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014349 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
14350 i8* <src>,
14351 i32 <len>,
14352 i32 <element_size>)
14353 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
14354 i8* <src>,
14355 i64 <len>,
14356 i32 <element_size>)
Igor Laevsky4f31e522016-12-29 14:31:07 +000014357
14358Overview:
14359"""""""""
14360
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014361The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic is a specialization of the
14362'``llvm.memcpy.*``' intrinsic. It differs in that the ``dest`` and ``src`` are treated
14363as arrays with elements that are exactly ``element_size`` bytes, and the copy between
14364buffers uses a sequence of :ref:`unordered atomic <ordering>` load/store operations
14365that are a positive integer multiple of the ``element_size`` in size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014366
14367Arguments:
14368""""""""""
14369
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014370The first three arguments are the same as they are in the :ref:`@llvm.memcpy <int_memcpy>`
14371intrinsic, with the added constraint that ``len`` is required to be a positive integer
14372multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
14373``element_size``, then the behaviour of the intrinsic is undefined.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014374
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014375``element_size`` must be a compile-time constant positive power of two no greater than
14376target-specific atomic access size limit.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014377
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014378For each of the input pointers ``align`` parameter attribute must be specified. It
14379must be a power of two no less than the ``element_size``. Caller guarantees that
14380both the source and destination pointers are aligned to that boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014381
14382Semantics:
14383""""""""""
14384
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014385The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic copies ``len`` bytes of
14386memory from the source location to the destination location. These locations are not
14387allowed to overlap. The memory copy is performed as a sequence of load/store operations
14388where each access is guaranteed to be a multiple of ``element_size`` bytes wide and
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014389aligned at an ``element_size`` boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014390
14391The order of the copy is unspecified. The same value may be read from the source
14392buffer many times, but only one write is issued to the destination buffer per
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014393element. It is well defined to have concurrent reads and writes to both source and
14394destination provided those reads and writes are unordered atomic when specified.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014395
14396This intrinsic does not provide any additional ordering guarantees over those
14397provided by a set of unordered loads from the source location and stores to the
14398destination.
14399
14400Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000014401"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000014402
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014403In the most general case call to the '``llvm.memcpy.element.unordered.atomic.*``' is
14404lowered to a call to the symbol ``__llvm_memcpy_element_unordered_atomic_*``. Where '*'
14405is replaced with an actual element size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014406
Daniel Neilson57226ef2017-07-12 15:25:26 +000014407Optimizer is allowed to inline memory copy when it's profitable to do so.
14408
14409'``llvm.memmove.element.unordered.atomic``' Intrinsic
14410^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14411
14412Syntax:
14413"""""""
14414
14415This is an overloaded intrinsic. You can use
14416``llvm.memmove.element.unordered.atomic`` on any integer bit width and for
14417different address spaces. Not all targets support all bit widths however.
14418
14419::
14420
14421 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
14422 i8* <src>,
14423 i32 <len>,
14424 i32 <element_size>)
14425 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
14426 i8* <src>,
14427 i64 <len>,
14428 i32 <element_size>)
14429
14430Overview:
14431"""""""""
14432
14433The '``llvm.memmove.element.unordered.atomic.*``' intrinsic is a specialization
14434of the '``llvm.memmove.*``' intrinsic. It differs in that the ``dest`` and
14435``src`` are treated as arrays with elements that are exactly ``element_size``
14436bytes, and the copy between buffers uses a sequence of
14437:ref:`unordered atomic <ordering>` load/store operations that are a positive
14438integer multiple of the ``element_size`` in size.
14439
14440Arguments:
14441""""""""""
14442
14443The first three arguments are the same as they are in the
14444:ref:`@llvm.memmove <int_memmove>` intrinsic, with the added constraint that
14445``len`` is required to be a positive integer multiple of the ``element_size``.
14446If ``len`` is not a positive integer multiple of ``element_size``, then the
14447behaviour of the intrinsic is undefined.
14448
14449``element_size`` must be a compile-time constant positive power of two no
14450greater than a target-specific atomic access size limit.
14451
14452For each of the input pointers the ``align`` parameter attribute must be
14453specified. It must be a power of two no less than the ``element_size``. Caller
14454guarantees that both the source and destination pointers are aligned to that
14455boundary.
14456
14457Semantics:
14458""""""""""
14459
14460The '``llvm.memmove.element.unordered.atomic.*``' intrinsic copies ``len`` bytes
14461of memory from the source location to the destination location. These locations
14462are allowed to overlap. The memory copy is performed as a sequence of load/store
14463operations where each access is guaranteed to be a multiple of ``element_size``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014464bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson57226ef2017-07-12 15:25:26 +000014465
14466The order of the copy is unspecified. The same value may be read from the source
14467buffer many times, but only one write is issued to the destination buffer per
14468element. It is well defined to have concurrent reads and writes to both source
14469and destination provided those reads and writes are unordered atomic when
14470specified.
14471
14472This intrinsic does not provide any additional ordering guarantees over those
14473provided by a set of unordered loads from the source location and stores to the
14474destination.
14475
14476Lowering:
14477"""""""""
14478
14479In the most general case call to the
14480'``llvm.memmove.element.unordered.atomic.*``' is lowered to a call to the symbol
14481``__llvm_memmove_element_unordered_atomic_*``. Where '*' is replaced with an
14482actual element size.
14483
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014484The optimizer is allowed to inline the memory copy when it's profitable to do so.
Daniel Neilson965613e2017-07-12 21:57:23 +000014485
14486.. _int_memset_element_unordered_atomic:
14487
14488'``llvm.memset.element.unordered.atomic``' Intrinsic
14489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14490
14491Syntax:
14492"""""""
14493
14494This is an overloaded intrinsic. You can use ``llvm.memset.element.unordered.atomic`` on
14495any integer bit width and for different address spaces. Not all targets
14496support all bit widths however.
14497
14498::
14499
14500 declare void @llvm.memset.element.unordered.atomic.p0i8.i32(i8* <dest>,
14501 i8 <value>,
14502 i32 <len>,
14503 i32 <element_size>)
14504 declare void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* <dest>,
14505 i8 <value>,
14506 i64 <len>,
14507 i32 <element_size>)
14508
14509Overview:
14510"""""""""
14511
14512The '``llvm.memset.element.unordered.atomic.*``' intrinsic is a specialization of the
14513'``llvm.memset.*``' intrinsic. It differs in that the ``dest`` is treated as an array
14514with elements that are exactly ``element_size`` bytes, and the assignment to that array
14515uses uses a sequence of :ref:`unordered atomic <ordering>` store operations
14516that are a positive integer multiple of the ``element_size`` in size.
14517
14518Arguments:
14519""""""""""
14520
14521The first three arguments are the same as they are in the :ref:`@llvm.memset <int_memset>`
14522intrinsic, with the added constraint that ``len`` is required to be a positive integer
14523multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
14524``element_size``, then the behaviour of the intrinsic is undefined.
14525
14526``element_size`` must be a compile-time constant positive power of two no greater than
14527target-specific atomic access size limit.
14528
14529The ``dest`` input pointer must have the ``align`` parameter attribute specified. It
14530must be a power of two no less than the ``element_size``. Caller guarantees that
14531the destination pointer is aligned to that boundary.
14532
14533Semantics:
14534""""""""""
14535
14536The '``llvm.memset.element.unordered.atomic.*``' intrinsic sets the ``len`` bytes of
14537memory starting at the destination location to the given ``value``. The memory is
14538set with a sequence of store operations where each access is guaranteed to be a
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014539multiple of ``element_size`` bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson965613e2017-07-12 21:57:23 +000014540
14541The order of the assignment is unspecified. Only one write is issued to the
14542destination buffer per element. It is well defined to have concurrent reads and
14543writes to the destination provided those reads and writes are unordered atomic
14544when specified.
14545
14546This intrinsic does not provide any additional ordering guarantees over those
14547provided by a set of unordered stores to the destination.
14548
14549Lowering:
14550"""""""""
14551
14552In the most general case call to the '``llvm.memset.element.unordered.atomic.*``' is
14553lowered to a call to the symbol ``__llvm_memset_element_unordered_atomic_*``. Where '*'
14554is replaced with an actual element size.
14555
14556The optimizer is allowed to inline the memory assignment when it's profitable to do so.
14557