blob: 5bbbf32710d3203dd206d9abe46c122409ce58da [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
George Burgess IVfbc34982017-05-20 04:52:29 +0000164 ; Convert [13 x i8]* to i8*...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledru0604c5c2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvab084af42012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Sean Fertilec70d28b2017-10-26 15:00:26 +0000530.. _runtime_preemption_model:
531
532Runtime Preemption Specifiers
533-----------------------------
534
535Global variables, functions and aliases may have an optional runtime preemption
536specifier. If a preemption specifier isn't given explicitly, then a
537symbol is assumed to be ``dso_preemptable``.
538
539``dso_preemptable``
540 Indicates that the function or variable may be replaced by a symbol from
541 outside the linkage unit at runtime.
542
543``dso_local``
544 The compiler may assume that a function or variable marked as ``dso_local``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000545 will resolve to a symbol within the same linkage unit. Direct access will
Sean Fertilec70d28b2017-10-26 15:00:26 +0000546 be generated even if the definition is not within this compilation unit.
547
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000548.. _namedtypes:
549
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000550Structure Types
551---------------
Sean Silvab084af42012-12-07 10:36:55 +0000552
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000553LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000554types <t_struct>`. Literal types are uniqued structurally, but identified types
555are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000556to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000557
Sean Silva706fba52015-08-06 22:56:24 +0000558An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000559
560.. code-block:: llvm
561
562 %mytype = type { %mytype*, i32 }
563
Sean Silvaa1190322015-08-06 22:56:48 +0000564Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000565literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000566
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000567.. _nointptrtype:
568
569Non-Integral Pointer Type
570-------------------------
571
572Note: non-integral pointer types are a work in progress, and they should be
573considered experimental at this time.
574
575LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000576spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
577Non-integral pointer types represent pointers that have an *unspecified* bitwise
578representation; that is, the integral representation may be target dependent or
579unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000580
581``inttoptr`` instructions converting integers to non-integral pointer types are
582ill-typed, and so are ``ptrtoint`` instructions converting values of
583non-integral pointer types to integers. Vector versions of said instructions
584are ill-typed as well.
585
Sean Silvab084af42012-12-07 10:36:55 +0000586.. _globalvars:
587
588Global Variables
589----------------
590
591Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000592instead of run-time.
593
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000594Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000595
596Global variables in other translation units can also be declared, in which
597case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000598
Bob Wilson85b24f22014-06-12 20:40:33 +0000599Either global variable definitions or declarations may have an explicit section
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000600to be placed in and may have an optional explicit alignment specified. If there
601is a mismatch between the explicit or inferred section information for the
602variable declaration and its definition the resulting behavior is undefined.
Bob Wilson85b24f22014-06-12 20:40:33 +0000603
Michael Gottesman006039c2013-01-31 05:48:48 +0000604A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000605the contents of the variable will **never** be modified (enabling better
606optimization, allowing the global data to be placed in the read-only
607section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000608initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000609variable.
610
611LLVM explicitly allows *declarations* of global variables to be marked
612constant, even if the final definition of the global is not. This
613capability can be used to enable slightly better optimization of the
614program, but requires the language definition to guarantee that
615optimizations based on the 'constantness' are valid for the translation
616units that do not include the definition.
617
618As SSA values, global variables define pointer values that are in scope
619(i.e. they dominate) all basic blocks in the program. Global variables
620always define a pointer to their "content" type because they describe a
621region of memory, and all memory objects in LLVM are accessed through
622pointers.
623
624Global variables can be marked with ``unnamed_addr`` which indicates
625that the address is not significant, only the content. Constants marked
626like this can be merged with other constants if they have the same
627initializer. Note that a constant with significant address *can* be
628merged with a ``unnamed_addr`` constant, the result being a constant
629whose address is significant.
630
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000631If the ``local_unnamed_addr`` attribute is given, the address is known to
632not be significant within the module.
633
Sean Silvab084af42012-12-07 10:36:55 +0000634A global variable may be declared to reside in a target-specific
635numbered address space. For targets that support them, address spaces
636may affect how optimizations are performed and/or what target
637instructions are used to access the variable. The default address space
638is zero. The address space qualifier must precede any other attributes.
639
640LLVM allows an explicit section to be specified for globals. If the
641target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000642Additionally, the global can placed in a comdat if the target has the necessary
643support.
Sean Silvab084af42012-12-07 10:36:55 +0000644
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000645External declarations may have an explicit section specified. Section
646information is retained in LLVM IR for targets that make use of this
647information. Attaching section information to an external declaration is an
648assertion that its definition is located in the specified section. If the
649definition is located in a different section, the behavior is undefined.
Erich Keane0343ef82017-08-22 15:30:43 +0000650
Michael Gottesmane743a302013-02-04 03:22:00 +0000651By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000652variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000653initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000654true even for variables potentially accessible from outside the
655module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000656``@llvm.used`` or dllexported variables. This assumption may be suppressed
657by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659An explicit alignment may be specified for a global, which must be a
660power of 2. If not present, or if the alignment is set to zero, the
661alignment of the global is set by the target to whatever it feels
662convenient. If an explicit alignment is specified, the global is forced
663to have exactly that alignment. Targets and optimizers are not allowed
664to over-align the global if the global has an assigned section. In this
665case, the extra alignment could be observable: for example, code could
666assume that the globals are densely packed in their section and try to
667iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000668iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000669
Javed Absarf3d79042017-05-11 12:28:08 +0000670Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
Sean Fertilec70d28b2017-10-26 15:00:26 +0000671an optional :ref:`runtime preemption specifier <runtime_preemption_model>`,
Javed Absarf3d79042017-05-11 12:28:08 +0000672an optional :ref:`global attributes <glattrs>` and
673an optional list of attached :ref:`metadata <metadata>`.
Nico Rieck7157bb72014-01-14 15:22:47 +0000674
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000675Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000676:ref:`Thread Local Storage Model <tls_model>`.
677
Nico Rieck7157bb72014-01-14 15:22:47 +0000678Syntax::
679
Sean Fertilec70d28b2017-10-26 15:00:26 +0000680 @<GlobalVarName> = [Linkage] [PreemptionSpecifier] [Visibility]
681 [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000682 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
683 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000684 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000685 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000686 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000687
Sean Silvab084af42012-12-07 10:36:55 +0000688For example, the following defines a global in a numbered address space
689with an initializer, section, and alignment:
690
691.. code-block:: llvm
692
693 @G = addrspace(5) constant float 1.0, section "foo", align 4
694
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000695The following example just declares a global variable
696
697.. code-block:: llvm
698
699 @G = external global i32
700
Sean Silvab084af42012-12-07 10:36:55 +0000701The following example defines a thread-local global with the
702``initialexec`` TLS model:
703
704.. code-block:: llvm
705
706 @G = thread_local(initialexec) global i32 0, align 4
707
708.. _functionstructure:
709
710Functions
711---------
712
713LLVM function definitions consist of the "``define``" keyword, an
Sean Fertilec70d28b2017-10-26 15:00:26 +0000714optional :ref:`linkage type <linkage>`, an optional :ref:`runtime preemption
715specifier <runtime_preemption_model>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000716style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
717an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000718an optional ``unnamed_addr`` attribute, a return type, an optional
719:ref:`parameter attribute <paramattrs>` for the return type, a function
720name, a (possibly empty) argument list (each with optional :ref:`parameter
721attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000722an optional section, an optional alignment,
723an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000724an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000725an optional :ref:`prologue <prologuedata>`,
726an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000727an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000728an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000731optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
732<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
733optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
734or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
735attribute <paramattrs>` for the return type, a function name, a possibly
736empty list of arguments, an optional alignment, an optional :ref:`garbage
737collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
738:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000739
Bill Wendling6822ecb2013-10-27 05:09:12 +0000740A function definition contains a list of basic blocks, forming the CFG (Control
741Flow Graph) for the function. Each basic block may optionally start with a label
742(giving the basic block a symbol table entry), contains a list of instructions,
743and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
744function return). If an explicit label is not provided, a block is assigned an
745implicit numbered label, using the next value from the same counter as used for
746unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
747entry block does not have an explicit label, it will be assigned label "%0",
748then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000749
750The first basic block in a function is special in two ways: it is
751immediately executed on entrance to the function, and it is not allowed
752to have predecessor basic blocks (i.e. there can not be any branches to
753the entry block of a function). Because the block can have no
754predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
755
756LLVM allows an explicit section to be specified for functions. If the
757target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000758Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000759
760An explicit alignment may be specified for a function. If not present,
761or if the alignment is set to zero, the alignment of the function is set
762by the target to whatever it feels convenient. If an explicit alignment
763is specified, the function is forced to have at least that much
764alignment. All alignments must be a power of 2.
765
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000766If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000767be significant and two identical functions can be merged.
768
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000769If the ``local_unnamed_addr`` attribute is given, the address is known to
770not be significant within the module.
771
Sean Silvab084af42012-12-07 10:36:55 +0000772Syntax::
773
Sean Fertilec70d28b2017-10-26 15:00:26 +0000774 define [linkage] [PreemptionSpecifier] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000775 [cconv] [ret attrs]
776 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000777 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
778 [comdat [($name)]] [align N] [gc] [prefix Constant]
779 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000780
Sean Silva706fba52015-08-06 22:56:24 +0000781The argument list is a comma separated sequence of arguments where each
782argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000783
784Syntax::
785
786 <type> [parameter Attrs] [name]
787
788
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000789.. _langref_aliases:
790
Sean Silvab084af42012-12-07 10:36:55 +0000791Aliases
792-------
793
Rafael Espindola64c1e182014-06-03 02:41:57 +0000794Aliases, unlike function or variables, don't create any new data. They
795are just a new symbol and metadata for an existing position.
796
797Aliases have a name and an aliasee that is either a global value or a
798constant expression.
799
Nico Rieck7157bb72014-01-14 15:22:47 +0000800Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Sean Fertilec70d28b2017-10-26 15:00:26 +0000801:ref:`runtime preemption specifier <runtime_preemption_model>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000802:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
803<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000804
805Syntax::
806
Sean Fertilec70d28b2017-10-26 15:00:26 +0000807 @<Name> = [Linkage] [PreemptionSpecifier] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000808
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000809The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000810``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000811might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000812
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000813Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000814the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
815to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000816
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000817If the ``local_unnamed_addr`` attribute is given, the address is known to
818not be significant within the module.
819
Rafael Espindola64c1e182014-06-03 02:41:57 +0000820Since aliases are only a second name, some restrictions apply, of which
821some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000822
Rafael Espindola64c1e182014-06-03 02:41:57 +0000823* The expression defining the aliasee must be computable at assembly
824 time. Since it is just a name, no relocations can be used.
825
826* No alias in the expression can be weak as the possibility of the
827 intermediate alias being overridden cannot be represented in an
828 object file.
829
830* No global value in the expression can be a declaration, since that
831 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000832
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000833.. _langref_ifunc:
834
835IFuncs
836-------
837
838IFuncs, like as aliases, don't create any new data or func. They are just a new
839symbol that dynamic linker resolves at runtime by calling a resolver function.
840
841IFuncs have a name and a resolver that is a function called by dynamic linker
842that returns address of another function associated with the name.
843
844IFunc may have an optional :ref:`linkage type <linkage>` and an optional
845:ref:`visibility style <visibility>`.
846
847Syntax::
848
849 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
850
851
David Majnemerdad0a642014-06-27 18:19:56 +0000852.. _langref_comdats:
853
854Comdats
855-------
856
857Comdat IR provides access to COFF and ELF object file COMDAT functionality.
858
Sean Silvaa1190322015-08-06 22:56:48 +0000859Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000860specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000861that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000862aliasee computes to, if any.
863
864Comdats have a selection kind to provide input on how the linker should
865choose between keys in two different object files.
866
867Syntax::
868
869 $<Name> = comdat SelectionKind
870
871The selection kind must be one of the following:
872
873``any``
874 The linker may choose any COMDAT key, the choice is arbitrary.
875``exactmatch``
876 The linker may choose any COMDAT key but the sections must contain the
877 same data.
878``largest``
879 The linker will choose the section containing the largest COMDAT key.
880``noduplicates``
881 The linker requires that only section with this COMDAT key exist.
882``samesize``
883 The linker may choose any COMDAT key but the sections must contain the
884 same amount of data.
885
Sam Cleggea7cace2018-01-09 23:43:14 +0000886Note that the Mach-O platform doesn't support COMDATs, and ELF and WebAssembly
887only support ``any`` as a selection kind.
David Majnemerdad0a642014-06-27 18:19:56 +0000888
889Here is an example of a COMDAT group where a function will only be selected if
890the COMDAT key's section is the largest:
891
Renato Golin124f2592016-07-20 12:16:38 +0000892.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000893
894 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000895 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000896
Rafael Espindola83a362c2015-01-06 22:55:16 +0000897 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000898 ret void
899 }
900
Rafael Espindola83a362c2015-01-06 22:55:16 +0000901As a syntactic sugar the ``$name`` can be omitted if the name is the same as
902the global name:
903
Renato Golin124f2592016-07-20 12:16:38 +0000904.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000905
906 $foo = comdat any
907 @foo = global i32 2, comdat
908
909
David Majnemerdad0a642014-06-27 18:19:56 +0000910In a COFF object file, this will create a COMDAT section with selection kind
911``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
912and another COMDAT section with selection kind
913``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000914section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000915
916There are some restrictions on the properties of the global object.
917It, or an alias to it, must have the same name as the COMDAT group when
918targeting COFF.
919The contents and size of this object may be used during link-time to determine
920which COMDAT groups get selected depending on the selection kind.
921Because the name of the object must match the name of the COMDAT group, the
922linkage of the global object must not be local; local symbols can get renamed
923if a collision occurs in the symbol table.
924
925The combined use of COMDATS and section attributes may yield surprising results.
926For example:
927
Renato Golin124f2592016-07-20 12:16:38 +0000928.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000929
930 $foo = comdat any
931 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000932 @g1 = global i32 42, section "sec", comdat($foo)
933 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000934
935From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000936with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000937COMDAT groups and COMDATs, at the object file level, are represented by
938sections.
939
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000940Note that certain IR constructs like global variables and functions may
941create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000942COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000943in individual sections (e.g. when `-data-sections` or `-function-sections`
944is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000945
Sean Silvab084af42012-12-07 10:36:55 +0000946.. _namedmetadatastructure:
947
948Named Metadata
949--------------
950
951Named metadata is a collection of metadata. :ref:`Metadata
952nodes <metadata>` (but not metadata strings) are the only valid
953operands for a named metadata.
954
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000955#. Named metadata are represented as a string of characters with the
956 metadata prefix. The rules for metadata names are the same as for
957 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
958 are still valid, which allows any character to be part of a name.
959
Sean Silvab084af42012-12-07 10:36:55 +0000960Syntax::
961
962 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000963 !0 = !{!"zero"}
964 !1 = !{!"one"}
965 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000966 ; A named metadata.
967 !name = !{!0, !1, !2}
968
969.. _paramattrs:
970
971Parameter Attributes
972--------------------
973
974The return type and each parameter of a function type may have a set of
975*parameter attributes* associated with them. Parameter attributes are
976used to communicate additional information about the result or
977parameters of a function. Parameter attributes are considered to be part
978of the function, not of the function type, so functions with different
979parameter attributes can have the same function type.
980
981Parameter attributes are simple keywords that follow the type specified.
982If multiple parameter attributes are needed, they are space separated.
983For example:
984
985.. code-block:: llvm
986
987 declare i32 @printf(i8* noalias nocapture, ...)
988 declare i32 @atoi(i8 zeroext)
989 declare signext i8 @returns_signed_char()
990
991Note that any attributes for the function result (``nounwind``,
992``readonly``) come immediately after the argument list.
993
994Currently, only the following parameter attributes are defined:
995
996``zeroext``
997 This indicates to the code generator that the parameter or return
998 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000999 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +00001000``signext``
1001 This indicates to the code generator that the parameter or return
1002 value should be sign-extended to the extent required by the target's
1003 ABI (which is usually 32-bits) by the caller (for a parameter) or
1004 the callee (for a return value).
1005``inreg``
1006 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +00001007 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +00001008 a function call or return (usually, by putting it in a register as
1009 opposed to memory, though some targets use it to distinguish between
1010 two different kinds of registers). Use of this attribute is
1011 target-specific.
1012``byval``
1013 This indicates that the pointer parameter should really be passed by
1014 value to the function. The attribute implies that a hidden copy of
1015 the pointee is made between the caller and the callee, so the callee
1016 is unable to modify the value in the caller. This attribute is only
1017 valid on LLVM pointer arguments. It is generally used to pass
1018 structs and arrays by value, but is also valid on pointers to
1019 scalars. The copy is considered to belong to the caller not the
1020 callee (for example, ``readonly`` functions should not write to
1021 ``byval`` parameters). This is not a valid attribute for return
1022 values.
1023
1024 The byval attribute also supports specifying an alignment with the
1025 align attribute. It indicates the alignment of the stack slot to
1026 form and the known alignment of the pointer specified to the call
1027 site. If the alignment is not specified, then the code generator
1028 makes a target-specific assumption.
1029
Reid Klecknera534a382013-12-19 02:14:12 +00001030.. _attr_inalloca:
1031
1032``inalloca``
1033
Reid Kleckner60d3a832014-01-16 22:59:24 +00001034 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001035 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001036 be a pointer to stack memory produced by an ``alloca`` instruction.
1037 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001038 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001039 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001040
Reid Kleckner436c42e2014-01-17 23:58:17 +00001041 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001042 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001043 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001044 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001045 ``inalloca`` attribute also disables LLVM's implicit lowering of
1046 large aggregate return values, which means that frontend authors
1047 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001048
Reid Kleckner60d3a832014-01-16 22:59:24 +00001049 When the call site is reached, the argument allocation must have
1050 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001051 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001052 space after an argument allocation and before its call site, but it
1053 must be cleared off with :ref:`llvm.stackrestore
1054 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001055
1056 See :doc:`InAlloca` for more information on how to use this
1057 attribute.
1058
Sean Silvab084af42012-12-07 10:36:55 +00001059``sret``
1060 This indicates that the pointer parameter specifies the address of a
1061 structure that is the return value of the function in the source
1062 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001063 loads and stores to the structure may be assumed by the callee not
1064 to trap and to be properly aligned. This is not a valid attribute
1065 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001066
Daniel Neilson1e687242018-01-19 17:13:12 +00001067.. _attr_align:
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001068
Hal Finkelccc70902014-07-22 16:58:55 +00001069``align <n>``
1070 This indicates that the pointer value may be assumed by the optimizer to
1071 have the specified alignment.
1072
1073 Note that this attribute has additional semantics when combined with the
1074 ``byval`` attribute.
1075
Sean Silva1703e702014-04-08 21:06:22 +00001076.. _noalias:
1077
Sean Silvab084af42012-12-07 10:36:55 +00001078``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001079 This indicates that objects accessed via pointer values
1080 :ref:`based <pointeraliasing>` on the argument or return value are not also
1081 accessed, during the execution of the function, via pointer values not
1082 *based* on the argument or return value. The attribute on a return value
1083 also has additional semantics described below. The caller shares the
1084 responsibility with the callee for ensuring that these requirements are met.
1085 For further details, please see the discussion of the NoAlias response in
1086 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001087
1088 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001089 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001090
1091 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001092 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1093 attribute on return values are stronger than the semantics of the attribute
1094 when used on function arguments. On function return values, the ``noalias``
1095 attribute indicates that the function acts like a system memory allocation
1096 function, returning a pointer to allocated storage disjoint from the
1097 storage for any other object accessible to the caller.
1098
Sean Silvab084af42012-12-07 10:36:55 +00001099``nocapture``
1100 This indicates that the callee does not make any copies of the
1101 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001102 attribute for return values. Addresses used in volatile operations
1103 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001104
1105.. _nest:
1106
1107``nest``
1108 This indicates that the pointer parameter can be excised using the
1109 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001110 attribute for return values and can only be applied to one parameter.
1111
1112``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001113 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001114 value. This is a hint to the optimizer and code generator used when
1115 generating the caller, allowing value propagation, tail call optimization,
1116 and omission of register saves and restores in some cases; it is not
1117 checked or enforced when generating the callee. The parameter and the
1118 function return type must be valid operands for the
1119 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1120 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001121
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001122``nonnull``
1123 This indicates that the parameter or return pointer is not null. This
1124 attribute may only be applied to pointer typed parameters. This is not
1125 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001126 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001127 is non-null.
1128
Hal Finkelb0407ba2014-07-18 15:51:28 +00001129``dereferenceable(<n>)``
1130 This indicates that the parameter or return pointer is dereferenceable. This
1131 attribute may only be applied to pointer typed parameters. A pointer that
1132 is dereferenceable can be loaded from speculatively without a risk of
1133 trapping. The number of bytes known to be dereferenceable must be provided
1134 in parentheses. It is legal for the number of bytes to be less than the
1135 size of the pointee type. The ``nonnull`` attribute does not imply
1136 dereferenceability (consider a pointer to one element past the end of an
1137 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1138 ``addrspace(0)`` (which is the default address space).
1139
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001140``dereferenceable_or_null(<n>)``
1141 This indicates that the parameter or return value isn't both
1142 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001143 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001144 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1145 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1146 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1147 and in other address spaces ``dereferenceable_or_null(<n>)``
1148 implies that a pointer is at least one of ``dereferenceable(<n>)``
1149 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001150 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001151 pointer typed parameters.
1152
Manman Renf46262e2016-03-29 17:37:21 +00001153``swiftself``
1154 This indicates that the parameter is the self/context parameter. This is not
1155 a valid attribute for return values and can only be applied to one
1156 parameter.
1157
Manman Ren9bfd0d02016-04-01 21:41:15 +00001158``swifterror``
1159 This attribute is motivated to model and optimize Swift error handling. It
1160 can be applied to a parameter with pointer to pointer type or a
1161 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001162 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1163 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1164 the parameter or the alloca) can only be loaded and stored from, or used as
1165 a ``swifterror`` argument. This is not a valid attribute for return values
1166 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001167
1168 These constraints allow the calling convention to optimize access to
1169 ``swifterror`` variables by associating them with a specific register at
1170 call boundaries rather than placing them in memory. Since this does change
1171 the calling convention, a function which uses the ``swifterror`` attribute
1172 on a parameter is not ABI-compatible with one which does not.
1173
1174 These constraints also allow LLVM to assume that a ``swifterror`` argument
1175 does not alias any other memory visible within a function and that a
1176 ``swifterror`` alloca passed as an argument does not escape.
1177
Sean Silvab084af42012-12-07 10:36:55 +00001178.. _gc:
1179
Philip Reamesf80bbff2015-02-25 23:45:20 +00001180Garbage Collector Strategy Names
1181--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001182
Philip Reamesf80bbff2015-02-25 23:45:20 +00001183Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001184string:
1185
1186.. code-block:: llvm
1187
1188 define void @f() gc "name" { ... }
1189
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001190The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001191<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001192strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001193named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001194garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001195which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001196
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001197.. _prefixdata:
1198
1199Prefix Data
1200-----------
1201
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001202Prefix data is data associated with a function which the code
1203generator will emit immediately before the function's entrypoint.
1204The purpose of this feature is to allow frontends to associate
1205language-specific runtime metadata with specific functions and make it
1206available through the function pointer while still allowing the
1207function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001208
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001209To access the data for a given function, a program may bitcast the
1210function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001211index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001212the prefix data. For instance, take the example of a function annotated
1213with a single ``i32``,
1214
1215.. code-block:: llvm
1216
1217 define void @f() prefix i32 123 { ... }
1218
1219The prefix data can be referenced as,
1220
1221.. code-block:: llvm
1222
David Blaikie16a97eb2015-03-04 22:02:58 +00001223 %0 = bitcast void* () @f to i32*
1224 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001225 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001226
1227Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001228of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001229beginning of the prefix data is aligned. This means that if the size
1230of the prefix data is not a multiple of the alignment size, the
1231function's entrypoint will not be aligned. If alignment of the
1232function's entrypoint is desired, padding must be added to the prefix
1233data.
1234
Sean Silvaa1190322015-08-06 22:56:48 +00001235A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001236to the ``available_externally`` linkage in that the data may be used by the
1237optimizers but will not be emitted in the object file.
1238
1239.. _prologuedata:
1240
1241Prologue Data
1242-------------
1243
1244The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1245be inserted prior to the function body. This can be used for enabling
1246function hot-patching and instrumentation.
1247
1248To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001249have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001250bytes which decode to a sequence of machine instructions, valid for the
1251module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001252the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001253the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001254definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001255makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001256
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001257A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001258which encodes the ``nop`` instruction:
1259
Renato Golin124f2592016-07-20 12:16:38 +00001260.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001261
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001262 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001263
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001264Generally prologue data can be formed by encoding a relative branch instruction
1265which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001266x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1267
Renato Golin124f2592016-07-20 12:16:38 +00001268.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001269
1270 %0 = type <{ i8, i8, i8* }>
1271
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001272 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001273
Sean Silvaa1190322015-08-06 22:56:48 +00001274A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001275to the ``available_externally`` linkage in that the data may be used by the
1276optimizers but will not be emitted in the object file.
1277
David Majnemer7fddecc2015-06-17 20:52:32 +00001278.. _personalityfn:
1279
1280Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001281--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001282
1283The ``personality`` attribute permits functions to specify what function
1284to use for exception handling.
1285
Bill Wendling63b88192013-02-06 06:52:58 +00001286.. _attrgrp:
1287
1288Attribute Groups
1289----------------
1290
1291Attribute groups are groups of attributes that are referenced by objects within
1292the IR. They are important for keeping ``.ll`` files readable, because a lot of
1293functions will use the same set of attributes. In the degenerative case of a
1294``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1295group will capture the important command line flags used to build that file.
1296
1297An attribute group is a module-level object. To use an attribute group, an
1298object references the attribute group's ID (e.g. ``#37``). An object may refer
1299to more than one attribute group. In that situation, the attributes from the
1300different groups are merged.
1301
1302Here is an example of attribute groups for a function that should always be
1303inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1304
1305.. code-block:: llvm
1306
1307 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001308 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001309
1310 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001311 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001312
1313 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1314 define void @f() #0 #1 { ... }
1315
Sean Silvab084af42012-12-07 10:36:55 +00001316.. _fnattrs:
1317
1318Function Attributes
1319-------------------
1320
1321Function attributes are set to communicate additional information about
1322a function. Function attributes are considered to be part of the
1323function, not of the function type, so functions with different function
1324attributes can have the same function type.
1325
1326Function attributes are simple keywords that follow the type specified.
1327If multiple attributes are needed, they are space separated. For
1328example:
1329
1330.. code-block:: llvm
1331
1332 define void @f() noinline { ... }
1333 define void @f() alwaysinline { ... }
1334 define void @f() alwaysinline optsize { ... }
1335 define void @f() optsize { ... }
1336
Sean Silvab084af42012-12-07 10:36:55 +00001337``alignstack(<n>)``
1338 This attribute indicates that, when emitting the prologue and
1339 epilogue, the backend should forcibly align the stack pointer.
1340 Specify the desired alignment, which must be a power of two, in
1341 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001342``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1343 This attribute indicates that the annotated function will always return at
1344 least a given number of bytes (or null). Its arguments are zero-indexed
1345 parameter numbers; if one argument is provided, then it's assumed that at
1346 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1347 returned pointer. If two are provided, then it's assumed that
1348 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1349 available. The referenced parameters must be integer types. No assumptions
1350 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001351``alwaysinline``
1352 This attribute indicates that the inliner should attempt to inline
1353 this function into callers whenever possible, ignoring any active
1354 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001355``builtin``
1356 This indicates that the callee function at a call site should be
1357 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001358 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001359 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001360 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001361``cold``
1362 This attribute indicates that this function is rarely called. When
1363 computing edge weights, basic blocks post-dominated by a cold
1364 function call are also considered to be cold; and, thus, given low
1365 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001366``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001367 In some parallel execution models, there exist operations that cannot be
1368 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001369 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001370
Justin Lebar58535b12016-02-17 17:46:41 +00001371 The ``convergent`` attribute may appear on functions or call/invoke
1372 instructions. When it appears on a function, it indicates that calls to
1373 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001374 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001375 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001376 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001377
Justin Lebar58535b12016-02-17 17:46:41 +00001378 When it appears on a call/invoke, the ``convergent`` attribute indicates
1379 that we should treat the call as though we're calling a convergent
1380 function. This is particularly useful on indirect calls; without this we
1381 may treat such calls as though the target is non-convergent.
1382
1383 The optimizer may remove the ``convergent`` attribute on functions when it
1384 can prove that the function does not execute any convergent operations.
1385 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1386 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001387``inaccessiblememonly``
1388 This attribute indicates that the function may only access memory that
1389 is not accessible by the module being compiled. This is a weaker form
1390 of ``readnone``.
1391``inaccessiblemem_or_argmemonly``
1392 This attribute indicates that the function may only access memory that is
1393 either not accessible by the module being compiled, or is pointed to
1394 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001395``inlinehint``
1396 This attribute indicates that the source code contained a hint that
1397 inlining this function is desirable (such as the "inline" keyword in
1398 C/C++). It is just a hint; it imposes no requirements on the
1399 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001400``jumptable``
1401 This attribute indicates that the function should be added to a
1402 jump-instruction table at code-generation time, and that all address-taken
1403 references to this function should be replaced with a reference to the
1404 appropriate jump-instruction-table function pointer. Note that this creates
1405 a new pointer for the original function, which means that code that depends
1406 on function-pointer identity can break. So, any function annotated with
1407 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001408``minsize``
1409 This attribute suggests that optimization passes and code generator
1410 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001411 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001412 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001413``naked``
1414 This attribute disables prologue / epilogue emission for the
1415 function. This can have very system-specific consequences.
Sumanth Gundapaneni6af104e2017-07-28 22:26:22 +00001416``no-jump-tables``
1417 When this attribute is set to true, the jump tables and lookup tables that
1418 can be generated from a switch case lowering are disabled.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001419``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001420 This indicates that the callee function at a call site is not recognized as
1421 a built-in function. LLVM will retain the original call and not replace it
1422 with equivalent code based on the semantics of the built-in function, unless
1423 the call site uses the ``builtin`` attribute. This is valid at call sites
1424 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001425``noduplicate``
1426 This attribute indicates that calls to the function cannot be
1427 duplicated. A call to a ``noduplicate`` function may be moved
1428 within its parent function, but may not be duplicated within
1429 its parent function.
1430
1431 A function containing a ``noduplicate`` call may still
1432 be an inlining candidate, provided that the call is not
1433 duplicated by inlining. That implies that the function has
1434 internal linkage and only has one call site, so the original
1435 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001436``noimplicitfloat``
1437 This attributes disables implicit floating point instructions.
1438``noinline``
1439 This attribute indicates that the inliner should never inline this
1440 function in any situation. This attribute may not be used together
1441 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001442``nonlazybind``
1443 This attribute suppresses lazy symbol binding for the function. This
1444 may make calls to the function faster, at the cost of extra program
1445 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001446``noredzone``
1447 This attribute indicates that the code generator should not use a
1448 red zone, even if the target-specific ABI normally permits it.
1449``noreturn``
1450 This function attribute indicates that the function never returns
1451 normally. This produces undefined behavior at runtime if the
1452 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001453``norecurse``
1454 This function attribute indicates that the function does not call itself
1455 either directly or indirectly down any possible call path. This produces
1456 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001457``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001458 This function attribute indicates that the function never raises an
1459 exception. If the function does raise an exception, its runtime
1460 behavior is undefined. However, functions marked nounwind may still
1461 trap or generate asynchronous exceptions. Exception handling schemes
1462 that are recognized by LLVM to handle asynchronous exceptions, such
1463 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001464``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001465 This function attribute indicates that most optimization passes will skip
1466 this function, with the exception of interprocedural optimization passes.
1467 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001468 This attribute cannot be used together with the ``alwaysinline``
1469 attribute; this attribute is also incompatible
1470 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001471
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001472 This attribute requires the ``noinline`` attribute to be specified on
1473 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001474 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001475 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001476``optsize``
1477 This attribute suggests that optimization passes and code generator
1478 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001479 and otherwise do optimizations specifically to reduce code size as
1480 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001481``"patchable-function"``
1482 This attribute tells the code generator that the code
1483 generated for this function needs to follow certain conventions that
1484 make it possible for a runtime function to patch over it later.
1485 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001486 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001487
1488 * ``"prologue-short-redirect"`` - This style of patchable
1489 function is intended to support patching a function prologue to
1490 redirect control away from the function in a thread safe
1491 manner. It guarantees that the first instruction of the
1492 function will be large enough to accommodate a short jump
1493 instruction, and will be sufficiently aligned to allow being
1494 fully changed via an atomic compare-and-swap instruction.
1495 While the first requirement can be satisfied by inserting large
1496 enough NOP, LLVM can and will try to re-purpose an existing
1497 instruction (i.e. one that would have to be emitted anyway) as
1498 the patchable instruction larger than a short jump.
1499
1500 ``"prologue-short-redirect"`` is currently only supported on
1501 x86-64.
1502
1503 This attribute by itself does not imply restrictions on
1504 inter-procedural optimizations. All of the semantic effects the
1505 patching may have to be separately conveyed via the linkage type.
whitequarked54b4a2017-06-21 18:46:50 +00001506``"probe-stack"``
1507 This attribute indicates that the function will trigger a guard region
1508 in the end of the stack. It ensures that accesses to the stack must be
1509 no further apart than the size of the guard region to a previous
1510 access of the stack. It takes one required string value, the name of
1511 the stack probing function that will be called.
1512
1513 If a function that has a ``"probe-stack"`` attribute is inlined into
1514 a function with another ``"probe-stack"`` attribute, the resulting
1515 function has the ``"probe-stack"`` attribute of the caller. If a
1516 function that has a ``"probe-stack"`` attribute is inlined into a
1517 function that has no ``"probe-stack"`` attribute at all, the resulting
1518 function has the ``"probe-stack"`` attribute of the callee.
Sean Silvab084af42012-12-07 10:36:55 +00001519``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001520 On a function, this attribute indicates that the function computes its
1521 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001522 without dereferencing any pointer arguments or otherwise accessing
1523 any mutable state (e.g. memory, control registers, etc) visible to
1524 caller functions. It does not write through any pointer arguments
1525 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das5be2e842017-02-13 23:19:07 +00001526 to callers. This means while it cannot unwind exceptions by calling
1527 the ``C++`` exception throwing methods (since they write to memory), there may
1528 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1529 visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001530
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001531 On an argument, this attribute indicates that the function does not
1532 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001533 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001534``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001535 On a function, this attribute indicates that the function does not write
1536 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001537 modify any state (e.g. memory, control registers, etc) visible to
1538 caller functions. It may dereference pointer arguments and read
1539 state that may be set in the caller. A readonly function always
1540 returns the same value (or unwinds an exception identically) when
Sanjoy Das5be2e842017-02-13 23:19:07 +00001541 called with the same set of arguments and global state. This means while it
1542 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1543 (since they write to memory), there may be non-``C++`` mechanisms that throw
1544 exceptions without writing to LLVM visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001545
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001546 On an argument, this attribute indicates that the function does not write
1547 through this pointer argument, even though it may write to the memory that
1548 the pointer points to.
whitequark08b20352017-06-22 23:22:36 +00001549``"stack-probe-size"``
1550 This attribute controls the behavior of stack probes: either
1551 the ``"probe-stack"`` attribute, or ABI-required stack probes, if any.
1552 It defines the size of the guard region. It ensures that if the function
1553 may use more stack space than the size of the guard region, stack probing
1554 sequence will be emitted. It takes one required integer value, which
1555 is 4096 by default.
1556
1557 If a function that has a ``"stack-probe-size"`` attribute is inlined into
1558 a function with another ``"stack-probe-size"`` attribute, the resulting
1559 function has the ``"stack-probe-size"`` attribute that has the lower
1560 numeric value. If a function that has a ``"stack-probe-size"`` attribute is
1561 inlined into a function that has no ``"stack-probe-size"`` attribute
1562 at all, the resulting function has the ``"stack-probe-size"`` attribute
1563 of the callee.
Hans Wennborg89c35fc2018-02-23 13:46:25 +00001564``"no-stack-arg-probe"``
1565 This attribute disables ABI-required stack probes, if any.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001566``writeonly``
1567 On a function, this attribute indicates that the function may write to but
1568 does not read from memory.
1569
1570 On an argument, this attribute indicates that the function may write to but
1571 does not read through this pointer argument (even though it may read from
1572 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001573``argmemonly``
1574 This attribute indicates that the only memory accesses inside function are
1575 loads and stores from objects pointed to by its pointer-typed arguments,
1576 with arbitrary offsets. Or in other words, all memory operations in the
1577 function can refer to memory only using pointers based on its function
1578 arguments.
1579 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1580 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001581``returns_twice``
1582 This attribute indicates that this function can return twice. The C
1583 ``setjmp`` is an example of such a function. The compiler disables
1584 some optimizations (like tail calls) in the caller of these
1585 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001586``safestack``
1587 This attribute indicates that
1588 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1589 protection is enabled for this function.
1590
1591 If a function that has a ``safestack`` attribute is inlined into a
1592 function that doesn't have a ``safestack`` attribute or which has an
1593 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1594 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001595``sanitize_address``
1596 This attribute indicates that AddressSanitizer checks
1597 (dynamic address safety analysis) are enabled for this function.
1598``sanitize_memory``
1599 This attribute indicates that MemorySanitizer checks (dynamic detection
1600 of accesses to uninitialized memory) are enabled for this function.
1601``sanitize_thread``
1602 This attribute indicates that ThreadSanitizer checks
1603 (dynamic thread safety analysis) are enabled for this function.
Evgeniy Stepanovc667c1f2017-12-09 00:21:41 +00001604``sanitize_hwaddress``
1605 This attribute indicates that HWAddressSanitizer checks
1606 (dynamic address safety analysis based on tagged pointers) are enabled for
1607 this function.
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001608``speculatable``
1609 This function attribute indicates that the function does not have any
1610 effects besides calculating its result and does not have undefined behavior.
1611 Note that ``speculatable`` is not enough to conclude that along any
Xin Tongc7180202017-05-02 23:24:12 +00001612 particular execution path the number of calls to this function will not be
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001613 externally observable. This attribute is only valid on functions
1614 and declarations, not on individual call sites. If a function is
1615 incorrectly marked as speculatable and really does exhibit
1616 undefined behavior, the undefined behavior may be observed even
1617 if the call site is dead code.
1618
Sean Silvab084af42012-12-07 10:36:55 +00001619``ssp``
1620 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001621 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001622 placed on the stack before the local variables that's checked upon
1623 return from the function to see if it has been overwritten. A
1624 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001625 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001626
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001627 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1628 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1629 - Calls to alloca() with variable sizes or constant sizes greater than
1630 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001631
Josh Magee24c7f062014-02-01 01:36:16 +00001632 Variables that are identified as requiring a protector will be arranged
1633 on the stack such that they are adjacent to the stack protector guard.
1634
Sean Silvab084af42012-12-07 10:36:55 +00001635 If a function that has an ``ssp`` attribute is inlined into a
1636 function that doesn't have an ``ssp`` attribute, then the resulting
1637 function will have an ``ssp`` attribute.
1638``sspreq``
1639 This attribute indicates that the function should *always* emit a
1640 stack smashing protector. This overrides the ``ssp`` function
1641 attribute.
1642
Josh Magee24c7f062014-02-01 01:36:16 +00001643 Variables that are identified as requiring a protector will be arranged
1644 on the stack such that they are adjacent to the stack protector guard.
1645 The specific layout rules are:
1646
1647 #. Large arrays and structures containing large arrays
1648 (``>= ssp-buffer-size``) are closest to the stack protector.
1649 #. Small arrays and structures containing small arrays
1650 (``< ssp-buffer-size``) are 2nd closest to the protector.
1651 #. Variables that have had their address taken are 3rd closest to the
1652 protector.
1653
Sean Silvab084af42012-12-07 10:36:55 +00001654 If a function that has an ``sspreq`` attribute is inlined into a
1655 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001656 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1657 an ``sspreq`` attribute.
1658``sspstrong``
1659 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001660 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001661 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001662 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001663
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001664 - Arrays of any size and type
1665 - Aggregates containing an array of any size and type.
1666 - Calls to alloca().
1667 - Local variables that have had their address taken.
1668
Josh Magee24c7f062014-02-01 01:36:16 +00001669 Variables that are identified as requiring a protector will be arranged
1670 on the stack such that they are adjacent to the stack protector guard.
1671 The specific layout rules are:
1672
1673 #. Large arrays and structures containing large arrays
1674 (``>= ssp-buffer-size``) are closest to the stack protector.
1675 #. Small arrays and structures containing small arrays
1676 (``< ssp-buffer-size``) are 2nd closest to the protector.
1677 #. Variables that have had their address taken are 3rd closest to the
1678 protector.
1679
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001680 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001681
1682 If a function that has an ``sspstrong`` attribute is inlined into a
1683 function that doesn't have an ``sspstrong`` attribute, then the
1684 resulting function will have an ``sspstrong`` attribute.
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001685``strictfp``
1686 This attribute indicates that the function was called from a scope that
1687 requires strict floating point semantics. LLVM will not attempt any
1688 optimizations that require assumptions about the floating point rounding
1689 mode or that might alter the state of floating point status flags that
1690 might otherwise be set or cleared by calling this function.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001691``"thunk"``
1692 This attribute indicates that the function will delegate to some other
1693 function with a tail call. The prototype of a thunk should not be used for
1694 optimization purposes. The caller is expected to cast the thunk prototype to
1695 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001696``uwtable``
1697 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001698 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001699 show that no exceptions passes by it. This is normally the case for
1700 the ELF x86-64 abi, but it can be disabled for some compilation
1701 units.
Sean Silvab084af42012-12-07 10:36:55 +00001702
Javed Absarf3d79042017-05-11 12:28:08 +00001703.. _glattrs:
1704
1705Global Attributes
1706-----------------
1707
1708Attributes may be set to communicate additional information about a global variable.
1709Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
1710are grouped into a single :ref:`attribute group <attrgrp>`.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001711
1712.. _opbundles:
1713
1714Operand Bundles
1715---------------
1716
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001717Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001718with certain LLVM instructions (currently only ``call`` s and
1719``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001720incorrect and will change program semantics.
1721
1722Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001723
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001724 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001725 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1726 bundle operand ::= SSA value
1727 tag ::= string constant
1728
1729Operand bundles are **not** part of a function's signature, and a
1730given function may be called from multiple places with different kinds
1731of operand bundles. This reflects the fact that the operand bundles
1732are conceptually a part of the ``call`` (or ``invoke``), not the
1733callee being dispatched to.
1734
1735Operand bundles are a generic mechanism intended to support
1736runtime-introspection-like functionality for managed languages. While
1737the exact semantics of an operand bundle depend on the bundle tag,
1738there are certain limitations to how much the presence of an operand
1739bundle can influence the semantics of a program. These restrictions
1740are described as the semantics of an "unknown" operand bundle. As
1741long as the behavior of an operand bundle is describable within these
1742restrictions, LLVM does not need to have special knowledge of the
1743operand bundle to not miscompile programs containing it.
1744
David Majnemer34cacb42015-10-22 01:46:38 +00001745- The bundle operands for an unknown operand bundle escape in unknown
1746 ways before control is transferred to the callee or invokee.
1747- Calls and invokes with operand bundles have unknown read / write
1748 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001749 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001750 callsite specific attributes.
1751- An operand bundle at a call site cannot change the implementation
1752 of the called function. Inter-procedural optimizations work as
1753 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001754
Sanjoy Dascdafd842015-11-11 21:38:02 +00001755More specific types of operand bundles are described below.
1756
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001757.. _deopt_opbundles:
1758
Sanjoy Dascdafd842015-11-11 21:38:02 +00001759Deoptimization Operand Bundles
1760^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1761
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001762Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001763operand bundle tag. These operand bundles represent an alternate
1764"safe" continuation for the call site they're attached to, and can be
1765used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001766specified call site. There can be at most one ``"deopt"`` operand
1767bundle attached to a call site. Exact details of deoptimization is
1768out of scope for the language reference, but it usually involves
1769rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001770
1771From the compiler's perspective, deoptimization operand bundles make
1772the call sites they're attached to at least ``readonly``. They read
1773through all of their pointer typed operands (even if they're not
1774otherwise escaped) and the entire visible heap. Deoptimization
1775operand bundles do not capture their operands except during
1776deoptimization, in which case control will not be returned to the
1777compiled frame.
1778
Sanjoy Das2d161452015-11-18 06:23:38 +00001779The inliner knows how to inline through calls that have deoptimization
1780operand bundles. Just like inlining through a normal call site
1781involves composing the normal and exceptional continuations, inlining
1782through a call site with a deoptimization operand bundle needs to
1783appropriately compose the "safe" deoptimization continuation. The
1784inliner does this by prepending the parent's deoptimization
1785continuation to every deoptimization continuation in the inlined body.
1786E.g. inlining ``@f`` into ``@g`` in the following example
1787
1788.. code-block:: llvm
1789
1790 define void @f() {
1791 call void @x() ;; no deopt state
1792 call void @y() [ "deopt"(i32 10) ]
1793 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1794 ret void
1795 }
1796
1797 define void @g() {
1798 call void @f() [ "deopt"(i32 20) ]
1799 ret void
1800 }
1801
1802will result in
1803
1804.. code-block:: llvm
1805
1806 define void @g() {
1807 call void @x() ;; still no deopt state
1808 call void @y() [ "deopt"(i32 20, i32 10) ]
1809 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1810 ret void
1811 }
1812
1813It is the frontend's responsibility to structure or encode the
1814deoptimization state in a way that syntactically prepending the
1815caller's deoptimization state to the callee's deoptimization state is
1816semantically equivalent to composing the caller's deoptimization
1817continuation after the callee's deoptimization continuation.
1818
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001819.. _ob_funclet:
1820
David Majnemer3bb88c02015-12-15 21:27:27 +00001821Funclet Operand Bundles
1822^^^^^^^^^^^^^^^^^^^^^^^
1823
1824Funclet operand bundles are characterized by the ``"funclet"``
1825operand bundle tag. These operand bundles indicate that a call site
1826is within a particular funclet. There can be at most one
1827``"funclet"`` operand bundle attached to a call site and it must have
1828exactly one bundle operand.
1829
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001830If any funclet EH pads have been "entered" but not "exited" (per the
1831`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1832it is undefined behavior to execute a ``call`` or ``invoke`` which:
1833
1834* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1835 intrinsic, or
1836* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1837 not-yet-exited funclet EH pad.
1838
1839Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1840executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1841
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001842GC Transition Operand Bundles
1843^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1844
1845GC transition operand bundles are characterized by the
1846``"gc-transition"`` operand bundle tag. These operand bundles mark a
1847call as a transition between a function with one GC strategy to a
1848function with a different GC strategy. If coordinating the transition
1849between GC strategies requires additional code generation at the call
1850site, these bundles may contain any values that are needed by the
1851generated code. For more details, see :ref:`GC Transitions
1852<gc_transition_args>`.
1853
Sean Silvab084af42012-12-07 10:36:55 +00001854.. _moduleasm:
1855
1856Module-Level Inline Assembly
1857----------------------------
1858
1859Modules may contain "module-level inline asm" blocks, which corresponds
1860to the GCC "file scope inline asm" blocks. These blocks are internally
1861concatenated by LLVM and treated as a single unit, but may be separated
1862in the ``.ll`` file if desired. The syntax is very simple:
1863
1864.. code-block:: llvm
1865
1866 module asm "inline asm code goes here"
1867 module asm "more can go here"
1868
1869The strings can contain any character by escaping non-printable
1870characters. The escape sequence used is simply "\\xx" where "xx" is the
1871two digit hex code for the number.
1872
James Y Knightbc832ed2015-07-08 18:08:36 +00001873Note that the assembly string *must* be parseable by LLVM's integrated assembler
1874(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001875
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001876.. _langref_datalayout:
1877
Sean Silvab084af42012-12-07 10:36:55 +00001878Data Layout
1879-----------
1880
1881A module may specify a target specific data layout string that specifies
1882how data is to be laid out in memory. The syntax for the data layout is
1883simply:
1884
1885.. code-block:: llvm
1886
1887 target datalayout = "layout specification"
1888
1889The *layout specification* consists of a list of specifications
1890separated by the minus sign character ('-'). Each specification starts
1891with a letter and may include other information after the letter to
1892define some aspect of the data layout. The specifications accepted are
1893as follows:
1894
1895``E``
1896 Specifies that the target lays out data in big-endian form. That is,
1897 the bits with the most significance have the lowest address
1898 location.
1899``e``
1900 Specifies that the target lays out data in little-endian form. That
1901 is, the bits with the least significance have the lowest address
1902 location.
1903``S<size>``
1904 Specifies the natural alignment of the stack in bits. Alignment
1905 promotion of stack variables is limited to the natural stack
1906 alignment to avoid dynamic stack realignment. The stack alignment
1907 must be a multiple of 8-bits. If omitted, the natural stack
1908 alignment defaults to "unspecified", which does not prevent any
1909 alignment promotions.
Dylan McKayced2fe62018-02-19 09:56:22 +00001910``P<address space>``
1911 Specifies the address space that corresponds to program memory.
1912 Harvard architectures can use this to specify what space LLVM
1913 should place things such as functions into. If omitted, the
1914 program memory space defaults to the default address space of 0,
1915 which corresponds to a Von Neumann architecture that has code
1916 and data in the same space.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001917``A<address space>``
Dylan McKayced2fe62018-02-19 09:56:22 +00001918 Specifies the address space of objects created by '``alloca``'.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001919 Defaults to the default address space of 0.
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001920``p[n]:<size>:<abi>:<pref>:<idx>``
Sean Silvab084af42012-12-07 10:36:55 +00001921 This specifies the *size* of a pointer and its ``<abi>`` and
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001922 ``<pref>``\erred alignments for address space ``n``. The fourth parameter
1923 ``<idx>`` is a size of index that used for address calculation. If not
1924 specified, the default index size is equal to the pointer size. All sizes
1925 are in bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001926 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001927 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001928``i<size>:<abi>:<pref>``
1929 This specifies the alignment for an integer type of a given bit
1930 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1931``v<size>:<abi>:<pref>``
1932 This specifies the alignment for a vector type of a given bit
1933 ``<size>``.
1934``f<size>:<abi>:<pref>``
1935 This specifies the alignment for a floating point type of a given bit
1936 ``<size>``. Only values of ``<size>`` that are supported by the target
1937 will work. 32 (float) and 64 (double) are supported on all targets; 80
1938 or 128 (different flavors of long double) are also supported on some
1939 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001940``a:<abi>:<pref>``
1941 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001942``m:<mangling>``
Reid Klecknerf8b51c52018-03-16 20:13:32 +00001943 If present, specifies that llvm names are mangled in the output. Symbols
1944 prefixed with the mangling escape character ``\01`` are passed through
1945 directly to the assembler without the escape character. The mangling style
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001946 options are
1947
1948 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1949 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1950 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1951 symbols get a ``_`` prefix.
Reid Klecknerf8b51c52018-03-16 20:13:32 +00001952 * ``x``: Windows x86 COFF mangling: Private symbols get the usual prefix.
1953 Regular C symbols get a ``_`` prefix. Functions with ``__stdcall``,
1954 ``__fastcall``, and ``__vectorcall`` have custom mangling that appends
1955 ``@N`` where N is the number of bytes used to pass parameters. C++ symbols
1956 starting with ``?`` are not mangled in any way.
1957 * ``w``: Windows COFF mangling: Similar to ``x``, except that normal C
1958 symbols do not receive a ``_`` prefix.
Sean Silvab084af42012-12-07 10:36:55 +00001959``n<size1>:<size2>:<size3>...``
1960 This specifies a set of native integer widths for the target CPU in
1961 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1962 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1963 this set are considered to support most general arithmetic operations
1964 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001965``ni:<address space0>:<address space1>:<address space2>...``
1966 This specifies pointer types with the specified address spaces
1967 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1968 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001969
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001970On every specification that takes a ``<abi>:<pref>``, specifying the
1971``<pref>`` alignment is optional. If omitted, the preceding ``:``
1972should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1973
Sean Silvab084af42012-12-07 10:36:55 +00001974When constructing the data layout for a given target, LLVM starts with a
1975default set of specifications which are then (possibly) overridden by
1976the specifications in the ``datalayout`` keyword. The default
1977specifications are given in this list:
1978
1979- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001980- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1981- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1982 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001983- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001984- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1985- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1986- ``i16:16:16`` - i16 is 16-bit aligned
1987- ``i32:32:32`` - i32 is 32-bit aligned
1988- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1989 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001990- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001991- ``f32:32:32`` - float is 32-bit aligned
1992- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001993- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001994- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1995- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001996- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001997
1998When LLVM is determining the alignment for a given type, it uses the
1999following rules:
2000
2001#. If the type sought is an exact match for one of the specifications,
2002 that specification is used.
2003#. If no match is found, and the type sought is an integer type, then
2004 the smallest integer type that is larger than the bitwidth of the
2005 sought type is used. If none of the specifications are larger than
2006 the bitwidth then the largest integer type is used. For example,
2007 given the default specifications above, the i7 type will use the
2008 alignment of i8 (next largest) while both i65 and i256 will use the
2009 alignment of i64 (largest specified).
2010#. If no match is found, and the type sought is a vector type, then the
2011 largest vector type that is smaller than the sought vector type will
2012 be used as a fall back. This happens because <128 x double> can be
2013 implemented in terms of 64 <2 x double>, for example.
2014
2015The function of the data layout string may not be what you expect.
2016Notably, this is not a specification from the frontend of what alignment
2017the code generator should use.
2018
2019Instead, if specified, the target data layout is required to match what
2020the ultimate *code generator* expects. This string is used by the
2021mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00002022what the ultimate code generator uses. There is no way to generate IR
2023that does not embed this target-specific detail into the IR. If you
2024don't specify the string, the default specifications will be used to
2025generate a Data Layout and the optimization phases will operate
2026accordingly and introduce target specificity into the IR with respect to
2027these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00002028
Bill Wendling5cc90842013-10-18 23:41:25 +00002029.. _langref_triple:
2030
2031Target Triple
2032-------------
2033
2034A module may specify a target triple string that describes the target
2035host. The syntax for the target triple is simply:
2036
2037.. code-block:: llvm
2038
2039 target triple = "x86_64-apple-macosx10.7.0"
2040
2041The *target triple* string consists of a series of identifiers delimited
2042by the minus sign character ('-'). The canonical forms are:
2043
2044::
2045
2046 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
2047 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
2048
2049This information is passed along to the backend so that it generates
2050code for the proper architecture. It's possible to override this on the
2051command line with the ``-mtriple`` command line option.
2052
Sean Silvab084af42012-12-07 10:36:55 +00002053.. _pointeraliasing:
2054
2055Pointer Aliasing Rules
2056----------------------
2057
2058Any memory access must be done through a pointer value associated with
2059an address range of the memory access, otherwise the behavior is
2060undefined. Pointer values are associated with address ranges according
2061to the following rules:
2062
2063- A pointer value is associated with the addresses associated with any
2064 value it is *based* on.
2065- An address of a global variable is associated with the address range
2066 of the variable's storage.
2067- The result value of an allocation instruction is associated with the
2068 address range of the allocated storage.
2069- A null pointer in the default address-space is associated with no
2070 address.
2071- An integer constant other than zero or a pointer value returned from
2072 a function not defined within LLVM may be associated with address
2073 ranges allocated through mechanisms other than those provided by
2074 LLVM. Such ranges shall not overlap with any ranges of addresses
2075 allocated by mechanisms provided by LLVM.
2076
2077A pointer value is *based* on another pointer value according to the
2078following rules:
2079
Sanjoy Das6d489492017-09-13 18:49:22 +00002080- A pointer value formed from a scalar ``getelementptr`` operation is *based* on
2081 the pointer-typed operand of the ``getelementptr``.
2082- The pointer in lane *l* of the result of a vector ``getelementptr`` operation
2083 is *based* on the pointer in lane *l* of the vector-of-pointers-typed operand
2084 of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00002085- The result value of a ``bitcast`` is *based* on the operand of the
2086 ``bitcast``.
2087- A pointer value formed by an ``inttoptr`` is *based* on all pointer
2088 values that contribute (directly or indirectly) to the computation of
2089 the pointer's value.
2090- The "*based* on" relationship is transitive.
2091
2092Note that this definition of *"based"* is intentionally similar to the
2093definition of *"based"* in C99, though it is slightly weaker.
2094
2095LLVM IR does not associate types with memory. The result type of a
2096``load`` merely indicates the size and alignment of the memory from
2097which to load, as well as the interpretation of the value. The first
2098operand type of a ``store`` similarly only indicates the size and
2099alignment of the store.
2100
2101Consequently, type-based alias analysis, aka TBAA, aka
2102``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2103:ref:`Metadata <metadata>` may be used to encode additional information
2104which specialized optimization passes may use to implement type-based
2105alias analysis.
2106
2107.. _volatile:
2108
2109Volatile Memory Accesses
2110------------------------
2111
2112Certain memory accesses, such as :ref:`load <i_load>`'s,
2113:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2114marked ``volatile``. The optimizers must not change the number of
2115volatile operations or change their order of execution relative to other
2116volatile operations. The optimizers *may* change the order of volatile
2117operations relative to non-volatile operations. This is not Java's
2118"volatile" and has no cross-thread synchronization behavior.
2119
Andrew Trick89fc5a62013-01-30 21:19:35 +00002120IR-level volatile loads and stores cannot safely be optimized into
2121llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2122flagged volatile. Likewise, the backend should never split or merge
2123target-legal volatile load/store instructions.
2124
Andrew Trick7e6f9282013-01-31 00:49:39 +00002125.. admonition:: Rationale
2126
2127 Platforms may rely on volatile loads and stores of natively supported
2128 data width to be executed as single instruction. For example, in C
2129 this holds for an l-value of volatile primitive type with native
2130 hardware support, but not necessarily for aggregate types. The
2131 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002132 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002133 do not violate the frontend's contract with the language.
2134
Sean Silvab084af42012-12-07 10:36:55 +00002135.. _memmodel:
2136
2137Memory Model for Concurrent Operations
2138--------------------------------------
2139
2140The LLVM IR does not define any way to start parallel threads of
2141execution or to register signal handlers. Nonetheless, there are
2142platform-specific ways to create them, and we define LLVM IR's behavior
2143in their presence. This model is inspired by the C++0x memory model.
2144
2145For a more informal introduction to this model, see the :doc:`Atomics`.
2146
2147We define a *happens-before* partial order as the least partial order
2148that
2149
2150- Is a superset of single-thread program order, and
2151- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2152 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2153 techniques, like pthread locks, thread creation, thread joining,
2154 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2155 Constraints <ordering>`).
2156
2157Note that program order does not introduce *happens-before* edges
2158between a thread and signals executing inside that thread.
2159
2160Every (defined) read operation (load instructions, memcpy, atomic
2161loads/read-modify-writes, etc.) R reads a series of bytes written by
2162(defined) write operations (store instructions, atomic
2163stores/read-modify-writes, memcpy, etc.). For the purposes of this
2164section, initialized globals are considered to have a write of the
2165initializer which is atomic and happens before any other read or write
2166of the memory in question. For each byte of a read R, R\ :sub:`byte`
2167may see any write to the same byte, except:
2168
2169- If write\ :sub:`1` happens before write\ :sub:`2`, and
2170 write\ :sub:`2` happens before R\ :sub:`byte`, then
2171 R\ :sub:`byte` does not see write\ :sub:`1`.
2172- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2173 R\ :sub:`byte` does not see write\ :sub:`3`.
2174
2175Given that definition, R\ :sub:`byte` is defined as follows:
2176
2177- If R is volatile, the result is target-dependent. (Volatile is
2178 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002179 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002180 like normal memory. It does not generally provide cross-thread
2181 synchronization.)
2182- Otherwise, if there is no write to the same byte that happens before
2183 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2184- Otherwise, if R\ :sub:`byte` may see exactly one write,
2185 R\ :sub:`byte` returns the value written by that write.
2186- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2187 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2188 Memory Ordering Constraints <ordering>` section for additional
2189 constraints on how the choice is made.
2190- Otherwise R\ :sub:`byte` returns ``undef``.
2191
2192R returns the value composed of the series of bytes it read. This
2193implies that some bytes within the value may be ``undef`` **without**
2194the entire value being ``undef``. Note that this only defines the
2195semantics of the operation; it doesn't mean that targets will emit more
2196than one instruction to read the series of bytes.
2197
2198Note that in cases where none of the atomic intrinsics are used, this
2199model places only one restriction on IR transformations on top of what
2200is required for single-threaded execution: introducing a store to a byte
2201which might not otherwise be stored is not allowed in general.
2202(Specifically, in the case where another thread might write to and read
2203from an address, introducing a store can change a load that may see
2204exactly one write into a load that may see multiple writes.)
2205
2206.. _ordering:
2207
2208Atomic Memory Ordering Constraints
2209----------------------------------
2210
2211Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2212:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2213:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002214ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002215the same address they *synchronize with*. These semantics are borrowed
2216from Java and C++0x, but are somewhat more colloquial. If these
2217descriptions aren't precise enough, check those specs (see spec
2218references in the :doc:`atomics guide <Atomics>`).
2219:ref:`fence <i_fence>` instructions treat these orderings somewhat
2220differently since they don't take an address. See that instruction's
2221documentation for details.
2222
2223For a simpler introduction to the ordering constraints, see the
2224:doc:`Atomics`.
2225
2226``unordered``
2227 The set of values that can be read is governed by the happens-before
2228 partial order. A value cannot be read unless some operation wrote
2229 it. This is intended to provide a guarantee strong enough to model
2230 Java's non-volatile shared variables. This ordering cannot be
2231 specified for read-modify-write operations; it is not strong enough
2232 to make them atomic in any interesting way.
2233``monotonic``
2234 In addition to the guarantees of ``unordered``, there is a single
2235 total order for modifications by ``monotonic`` operations on each
2236 address. All modification orders must be compatible with the
2237 happens-before order. There is no guarantee that the modification
2238 orders can be combined to a global total order for the whole program
2239 (and this often will not be possible). The read in an atomic
2240 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2241 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2242 order immediately before the value it writes. If one atomic read
2243 happens before another atomic read of the same address, the later
2244 read must see the same value or a later value in the address's
2245 modification order. This disallows reordering of ``monotonic`` (or
2246 stronger) operations on the same address. If an address is written
2247 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2248 read that address repeatedly, the other threads must eventually see
2249 the write. This corresponds to the C++0x/C1x
2250 ``memory_order_relaxed``.
2251``acquire``
2252 In addition to the guarantees of ``monotonic``, a
2253 *synchronizes-with* edge may be formed with a ``release`` operation.
2254 This is intended to model C++'s ``memory_order_acquire``.
2255``release``
2256 In addition to the guarantees of ``monotonic``, if this operation
2257 writes a value which is subsequently read by an ``acquire``
2258 operation, it *synchronizes-with* that operation. (This isn't a
2259 complete description; see the C++0x definition of a release
2260 sequence.) This corresponds to the C++0x/C1x
2261 ``memory_order_release``.
2262``acq_rel`` (acquire+release)
2263 Acts as both an ``acquire`` and ``release`` operation on its
2264 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2265``seq_cst`` (sequentially consistent)
2266 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002267 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002268 writes), there is a global total order on all
2269 sequentially-consistent operations on all addresses, which is
2270 consistent with the *happens-before* partial order and with the
2271 modification orders of all the affected addresses. Each
2272 sequentially-consistent read sees the last preceding write to the
2273 same address in this global order. This corresponds to the C++0x/C1x
2274 ``memory_order_seq_cst`` and Java volatile.
2275
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002276.. _syncscope:
Sean Silvab084af42012-12-07 10:36:55 +00002277
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002278If an atomic operation is marked ``syncscope("singlethread")``, it only
2279*synchronizes with* and only participates in the seq\_cst total orderings of
2280other operations running in the same thread (for example, in signal handlers).
2281
2282If an atomic operation is marked ``syncscope("<target-scope>")``, where
2283``<target-scope>`` is a target specific synchronization scope, then it is target
2284dependent if it *synchronizes with* and participates in the seq\_cst total
2285orderings of other operations.
2286
2287Otherwise, an atomic operation that is not marked ``syncscope("singlethread")``
2288or ``syncscope("<target-scope>")`` *synchronizes with* and participates in the
2289seq\_cst total orderings of other operations that are not marked
2290``syncscope("singlethread")`` or ``syncscope("<target-scope>")``.
Sean Silvab084af42012-12-07 10:36:55 +00002291
2292.. _fastmath:
2293
2294Fast-Math Flags
2295---------------
2296
Sanjay Patel629c4112017-11-06 16:27:15 +00002297LLVM IR floating-point operations (:ref:`fadd <i_fadd>`,
Sean Silvab084af42012-12-07 10:36:55 +00002298:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002299:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002300may use the following flags to enable otherwise unsafe
Sanjay Patel629c4112017-11-06 16:27:15 +00002301floating-point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002302
2303``nnan``
2304 No NaNs - Allow optimizations to assume the arguments and result are not
2305 NaN. Such optimizations are required to retain defined behavior over
2306 NaNs, but the value of the result is undefined.
2307
2308``ninf``
2309 No Infs - Allow optimizations to assume the arguments and result are not
2310 +/-Inf. Such optimizations are required to retain defined behavior over
2311 +/-Inf, but the value of the result is undefined.
2312
2313``nsz``
2314 No Signed Zeros - Allow optimizations to treat the sign of a zero
2315 argument or result as insignificant.
2316
2317``arcp``
2318 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2319 argument rather than perform division.
2320
Adam Nemetcd847a82017-03-28 20:11:52 +00002321``contract``
2322 Allow floating-point contraction (e.g. fusing a multiply followed by an
2323 addition into a fused multiply-and-add).
2324
Sanjay Patel629c4112017-11-06 16:27:15 +00002325``afn``
2326 Approximate functions - Allow substitution of approximate calculations for
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002327 functions (sin, log, sqrt, etc). See floating-point intrinsic definitions
2328 for places where this can apply to LLVM's intrinsic math functions.
Sanjay Patel629c4112017-11-06 16:27:15 +00002329
2330``reassoc``
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002331 Allow reassociation transformations for floating-point instructions.
Sanjay Patel629c4112017-11-06 16:27:15 +00002332 This may dramatically change results in floating point.
2333
Sean Silvab084af42012-12-07 10:36:55 +00002334``fast``
Sanjay Patel629c4112017-11-06 16:27:15 +00002335 This flag implies all of the others.
Sean Silvab084af42012-12-07 10:36:55 +00002336
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002337.. _uselistorder:
2338
2339Use-list Order Directives
2340-------------------------
2341
2342Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002343order to be recreated. ``<order-indexes>`` is a comma-separated list of
2344indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002345value's use-list is immediately sorted by these indexes.
2346
Sean Silvaa1190322015-08-06 22:56:48 +00002347Use-list directives may appear at function scope or global scope. They are not
2348instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002349function scope, they must appear after the terminator of the final basic block.
2350
2351If basic blocks have their address taken via ``blockaddress()`` expressions,
2352``uselistorder_bb`` can be used to reorder their use-lists from outside their
2353function's scope.
2354
2355:Syntax:
2356
2357::
2358
2359 uselistorder <ty> <value>, { <order-indexes> }
2360 uselistorder_bb @function, %block { <order-indexes> }
2361
2362:Examples:
2363
2364::
2365
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002366 define void @foo(i32 %arg1, i32 %arg2) {
2367 entry:
2368 ; ... instructions ...
2369 bb:
2370 ; ... instructions ...
2371
2372 ; At function scope.
2373 uselistorder i32 %arg1, { 1, 0, 2 }
2374 uselistorder label %bb, { 1, 0 }
2375 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002376
2377 ; At global scope.
2378 uselistorder i32* @global, { 1, 2, 0 }
2379 uselistorder i32 7, { 1, 0 }
2380 uselistorder i32 (i32) @bar, { 1, 0 }
2381 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2382
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002383.. _source_filename:
2384
2385Source Filename
2386---------------
2387
2388The *source filename* string is set to the original module identifier,
2389which will be the name of the compiled source file when compiling from
2390source through the clang front end, for example. It is then preserved through
2391the IR and bitcode.
2392
2393This is currently necessary to generate a consistent unique global
2394identifier for local functions used in profile data, which prepends the
2395source file name to the local function name.
2396
2397The syntax for the source file name is simply:
2398
Renato Golin124f2592016-07-20 12:16:38 +00002399.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002400
2401 source_filename = "/path/to/source.c"
2402
Sean Silvab084af42012-12-07 10:36:55 +00002403.. _typesystem:
2404
2405Type System
2406===========
2407
2408The LLVM type system is one of the most important features of the
2409intermediate representation. Being typed enables a number of
2410optimizations to be performed on the intermediate representation
2411directly, without having to do extra analyses on the side before the
2412transformation. A strong type system makes it easier to read the
2413generated code and enables novel analyses and transformations that are
2414not feasible to perform on normal three address code representations.
2415
Rafael Espindola08013342013-12-07 19:34:20 +00002416.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002417
Rafael Espindola08013342013-12-07 19:34:20 +00002418Void Type
2419---------
Sean Silvab084af42012-12-07 10:36:55 +00002420
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002421:Overview:
2422
Rafael Espindola08013342013-12-07 19:34:20 +00002423
2424The void type does not represent any value and has no size.
2425
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002426:Syntax:
2427
Rafael Espindola08013342013-12-07 19:34:20 +00002428
2429::
2430
2431 void
Sean Silvab084af42012-12-07 10:36:55 +00002432
2433
Rafael Espindola08013342013-12-07 19:34:20 +00002434.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002435
Rafael Espindola08013342013-12-07 19:34:20 +00002436Function Type
2437-------------
Sean Silvab084af42012-12-07 10:36:55 +00002438
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002439:Overview:
2440
Sean Silvab084af42012-12-07 10:36:55 +00002441
Rafael Espindola08013342013-12-07 19:34:20 +00002442The function type can be thought of as a function signature. It consists of a
2443return type and a list of formal parameter types. The return type of a function
2444type is a void type or first class type --- except for :ref:`label <t_label>`
2445and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002446
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002447:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002448
Rafael Espindola08013342013-12-07 19:34:20 +00002449::
Sean Silvab084af42012-12-07 10:36:55 +00002450
Rafael Espindola08013342013-12-07 19:34:20 +00002451 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002452
Rafael Espindola08013342013-12-07 19:34:20 +00002453...where '``<parameter list>``' is a comma-separated list of type
2454specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002455indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002456argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002457handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002458except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002459
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002460:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002461
Rafael Espindola08013342013-12-07 19:34:20 +00002462+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2463| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2464+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2465| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2466+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2467| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2468+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2469| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2470+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2471
2472.. _t_firstclass:
2473
2474First Class Types
2475-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002476
2477The :ref:`first class <t_firstclass>` types are perhaps the most important.
2478Values of these types are the only ones which can be produced by
2479instructions.
2480
Rafael Espindola08013342013-12-07 19:34:20 +00002481.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002482
Rafael Espindola08013342013-12-07 19:34:20 +00002483Single Value Types
2484^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002485
Rafael Espindola08013342013-12-07 19:34:20 +00002486These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002487
2488.. _t_integer:
2489
2490Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002491""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002492
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002493:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002494
2495The integer type is a very simple type that simply specifies an
2496arbitrary bit width for the integer type desired. Any bit width from 1
2497bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2498
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002499:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002500
2501::
2502
2503 iN
2504
2505The number of bits the integer will occupy is specified by the ``N``
2506value.
2507
2508Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002509*********
Sean Silvab084af42012-12-07 10:36:55 +00002510
2511+----------------+------------------------------------------------+
2512| ``i1`` | a single-bit integer. |
2513+----------------+------------------------------------------------+
2514| ``i32`` | a 32-bit integer. |
2515+----------------+------------------------------------------------+
2516| ``i1942652`` | a really big integer of over 1 million bits. |
2517+----------------+------------------------------------------------+
2518
2519.. _t_floating:
2520
2521Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002522""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002523
2524.. list-table::
2525 :header-rows: 1
2526
2527 * - Type
2528 - Description
2529
2530 * - ``half``
2531 - 16-bit floating point value
2532
2533 * - ``float``
2534 - 32-bit floating point value
2535
2536 * - ``double``
2537 - 64-bit floating point value
2538
2539 * - ``fp128``
2540 - 128-bit floating point value (112-bit mantissa)
2541
2542 * - ``x86_fp80``
2543 - 80-bit floating point value (X87)
2544
2545 * - ``ppc_fp128``
2546 - 128-bit floating point value (two 64-bits)
2547
Reid Kleckner9a16d082014-03-05 02:41:37 +00002548X86_mmx Type
2549""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002550
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002551:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002552
Reid Kleckner9a16d082014-03-05 02:41:37 +00002553The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002554machine. The operations allowed on it are quite limited: parameters and
2555return values, load and store, and bitcast. User-specified MMX
2556instructions are represented as intrinsic or asm calls with arguments
2557and/or results of this type. There are no arrays, vectors or constants
2558of this type.
2559
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002560:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002561
2562::
2563
Reid Kleckner9a16d082014-03-05 02:41:37 +00002564 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002565
Sean Silvab084af42012-12-07 10:36:55 +00002566
Rafael Espindola08013342013-12-07 19:34:20 +00002567.. _t_pointer:
2568
2569Pointer Type
2570""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002571
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002572:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002573
Rafael Espindola08013342013-12-07 19:34:20 +00002574The pointer type is used to specify memory locations. Pointers are
2575commonly used to reference objects in memory.
2576
2577Pointer types may have an optional address space attribute defining the
2578numbered address space where the pointed-to object resides. The default
2579address space is number zero. The semantics of non-zero address spaces
2580are target-specific.
2581
2582Note that LLVM does not permit pointers to void (``void*``) nor does it
2583permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002584
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002585:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002586
2587::
2588
Rafael Espindola08013342013-12-07 19:34:20 +00002589 <type> *
2590
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002591:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002592
2593+-------------------------+--------------------------------------------------------------------------------------------------------------+
2594| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2595+-------------------------+--------------------------------------------------------------------------------------------------------------+
2596| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2597+-------------------------+--------------------------------------------------------------------------------------------------------------+
2598| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2599+-------------------------+--------------------------------------------------------------------------------------------------------------+
2600
2601.. _t_vector:
2602
2603Vector Type
2604"""""""""""
2605
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002606:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002607
2608A vector type is a simple derived type that represents a vector of
2609elements. Vector types are used when multiple primitive data are
2610operated in parallel using a single instruction (SIMD). A vector type
2611requires a size (number of elements) and an underlying primitive data
2612type. Vector types are considered :ref:`first class <t_firstclass>`.
2613
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002614:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002615
2616::
2617
2618 < <# elements> x <elementtype> >
2619
2620The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002621elementtype may be any integer, floating point or pointer type. Vectors
2622of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002623
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002624:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002625
2626+-------------------+--------------------------------------------------+
2627| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2628+-------------------+--------------------------------------------------+
2629| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2630+-------------------+--------------------------------------------------+
2631| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2632+-------------------+--------------------------------------------------+
2633| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2634+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002635
2636.. _t_label:
2637
2638Label Type
2639^^^^^^^^^^
2640
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002641:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002642
2643The label type represents code labels.
2644
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002645:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002646
2647::
2648
2649 label
2650
David Majnemerb611e3f2015-08-14 05:09:07 +00002651.. _t_token:
2652
2653Token Type
2654^^^^^^^^^^
2655
2656:Overview:
2657
2658The token type is used when a value is associated with an instruction
2659but all uses of the value must not attempt to introspect or obscure it.
2660As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2661:ref:`select <i_select>` of type token.
2662
2663:Syntax:
2664
2665::
2666
2667 token
2668
2669
2670
Sean Silvab084af42012-12-07 10:36:55 +00002671.. _t_metadata:
2672
2673Metadata Type
2674^^^^^^^^^^^^^
2675
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002676:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002677
2678The metadata type represents embedded metadata. No derived types may be
2679created from metadata except for :ref:`function <t_function>` arguments.
2680
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002681:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002682
2683::
2684
2685 metadata
2686
Sean Silvab084af42012-12-07 10:36:55 +00002687.. _t_aggregate:
2688
2689Aggregate Types
2690^^^^^^^^^^^^^^^
2691
2692Aggregate Types are a subset of derived types that can contain multiple
2693member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2694aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2695aggregate types.
2696
2697.. _t_array:
2698
2699Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002700""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002701
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002702:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002703
2704The array type is a very simple derived type that arranges elements
2705sequentially in memory. The array type requires a size (number of
2706elements) and an underlying data type.
2707
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002708:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002709
2710::
2711
2712 [<# elements> x <elementtype>]
2713
2714The number of elements is a constant integer value; ``elementtype`` may
2715be any type with a size.
2716
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002717:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002718
2719+------------------+--------------------------------------+
2720| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2721+------------------+--------------------------------------+
2722| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2723+------------------+--------------------------------------+
2724| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2725+------------------+--------------------------------------+
2726
2727Here are some examples of multidimensional arrays:
2728
2729+-----------------------------+----------------------------------------------------------+
2730| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2731+-----------------------------+----------------------------------------------------------+
2732| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2733+-----------------------------+----------------------------------------------------------+
2734| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2735+-----------------------------+----------------------------------------------------------+
2736
2737There is no restriction on indexing beyond the end of the array implied
2738by a static type (though there are restrictions on indexing beyond the
2739bounds of an allocated object in some cases). This means that
2740single-dimension 'variable sized array' addressing can be implemented in
2741LLVM with a zero length array type. An implementation of 'pascal style
2742arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2743example.
2744
Sean Silvab084af42012-12-07 10:36:55 +00002745.. _t_struct:
2746
2747Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002748""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002749
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002750:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002751
2752The structure type is used to represent a collection of data members
2753together in memory. The elements of a structure may be any type that has
2754a size.
2755
2756Structures in memory are accessed using '``load``' and '``store``' by
2757getting a pointer to a field with the '``getelementptr``' instruction.
2758Structures in registers are accessed using the '``extractvalue``' and
2759'``insertvalue``' instructions.
2760
2761Structures may optionally be "packed" structures, which indicate that
2762the alignment of the struct is one byte, and that there is no padding
2763between the elements. In non-packed structs, padding between field types
2764is inserted as defined by the DataLayout string in the module, which is
2765required to match what the underlying code generator expects.
2766
2767Structures can either be "literal" or "identified". A literal structure
2768is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2769identified types are always defined at the top level with a name.
2770Literal types are uniqued by their contents and can never be recursive
2771or opaque since there is no way to write one. Identified types can be
2772recursive, can be opaqued, and are never uniqued.
2773
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002774:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002775
2776::
2777
2778 %T1 = type { <type list> } ; Identified normal struct type
2779 %T2 = type <{ <type list> }> ; Identified packed struct type
2780
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002781:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002782
2783+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2784| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2785+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002786| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002787+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2788| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2789+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2790
2791.. _t_opaque:
2792
2793Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002794""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002795
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002796:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002797
2798Opaque structure types are used to represent named structure types that
2799do not have a body specified. This corresponds (for example) to the C
2800notion of a forward declared structure.
2801
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002802:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002803
2804::
2805
2806 %X = type opaque
2807 %52 = type opaque
2808
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002809:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002810
2811+--------------+-------------------+
2812| ``opaque`` | An opaque type. |
2813+--------------+-------------------+
2814
Sean Silva1703e702014-04-08 21:06:22 +00002815.. _constants:
2816
Sean Silvab084af42012-12-07 10:36:55 +00002817Constants
2818=========
2819
2820LLVM has several different basic types of constants. This section
2821describes them all and their syntax.
2822
2823Simple Constants
2824----------------
2825
2826**Boolean constants**
2827 The two strings '``true``' and '``false``' are both valid constants
2828 of the ``i1`` type.
2829**Integer constants**
2830 Standard integers (such as '4') are constants of the
2831 :ref:`integer <t_integer>` type. Negative numbers may be used with
2832 integer types.
2833**Floating point constants**
2834 Floating point constants use standard decimal notation (e.g.
2835 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2836 hexadecimal notation (see below). The assembler requires the exact
2837 decimal value of a floating-point constant. For example, the
2838 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2839 decimal in binary. Floating point constants must have a :ref:`floating
2840 point <t_floating>` type.
2841**Null pointer constants**
2842 The identifier '``null``' is recognized as a null pointer constant
2843 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002844**Token constants**
2845 The identifier '``none``' is recognized as an empty token constant
2846 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002847
2848The one non-intuitive notation for constants is the hexadecimal form of
2849floating point constants. For example, the form
2850'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2851than) '``double 4.5e+15``'. The only time hexadecimal floating point
2852constants are required (and the only time that they are generated by the
2853disassembler) is when a floating point constant must be emitted but it
2854cannot be represented as a decimal floating point number in a reasonable
2855number of digits. For example, NaN's, infinities, and other special
2856values are represented in their IEEE hexadecimal format so that assembly
2857and disassembly do not cause any bits to change in the constants.
2858
2859When using the hexadecimal form, constants of types half, float, and
2860double are represented using the 16-digit form shown above (which
2861matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002862must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002863precision, respectively. Hexadecimal format is always used for long
2864double, and there are three forms of long double. The 80-bit format used
2865by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2866128-bit format used by PowerPC (two adjacent doubles) is represented by
2867``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002868represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2869will only work if they match the long double format on your target.
2870The IEEE 16-bit format (half precision) is represented by ``0xH``
2871followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2872(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002873
Reid Kleckner9a16d082014-03-05 02:41:37 +00002874There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002875
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002876.. _complexconstants:
2877
Sean Silvab084af42012-12-07 10:36:55 +00002878Complex Constants
2879-----------------
2880
2881Complex constants are a (potentially recursive) combination of simple
2882constants and smaller complex constants.
2883
2884**Structure constants**
2885 Structure constants are represented with notation similar to
2886 structure type definitions (a comma separated list of elements,
2887 surrounded by braces (``{}``)). For example:
2888 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2889 "``@G = external global i32``". Structure constants must have
2890 :ref:`structure type <t_struct>`, and the number and types of elements
2891 must match those specified by the type.
2892**Array constants**
2893 Array constants are represented with notation similar to array type
2894 definitions (a comma separated list of elements, surrounded by
2895 square brackets (``[]``)). For example:
2896 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2897 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002898 match those specified by the type. As a special case, character array
2899 constants may also be represented as a double-quoted string using the ``c``
2900 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002901**Vector constants**
2902 Vector constants are represented with notation similar to vector
2903 type definitions (a comma separated list of elements, surrounded by
2904 less-than/greater-than's (``<>``)). For example:
2905 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2906 must have :ref:`vector type <t_vector>`, and the number and types of
2907 elements must match those specified by the type.
2908**Zero initialization**
2909 The string '``zeroinitializer``' can be used to zero initialize a
2910 value to zero of *any* type, including scalar and
2911 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2912 having to print large zero initializers (e.g. for large arrays) and
2913 is always exactly equivalent to using explicit zero initializers.
2914**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002915 A metadata node is a constant tuple without types. For example:
2916 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002917 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2918 Unlike other typed constants that are meant to be interpreted as part of
2919 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002920 information such as debug info.
2921
2922Global Variable and Function Addresses
2923--------------------------------------
2924
2925The addresses of :ref:`global variables <globalvars>` and
2926:ref:`functions <functionstructure>` are always implicitly valid
2927(link-time) constants. These constants are explicitly referenced when
2928the :ref:`identifier for the global <identifiers>` is used and always have
2929:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2930file:
2931
2932.. code-block:: llvm
2933
2934 @X = global i32 17
2935 @Y = global i32 42
2936 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2937
2938.. _undefvalues:
2939
2940Undefined Values
2941----------------
2942
2943The string '``undef``' can be used anywhere a constant is expected, and
2944indicates that the user of the value may receive an unspecified
2945bit-pattern. Undefined values may be of any type (other than '``label``'
2946or '``void``') and be used anywhere a constant is permitted.
2947
2948Undefined values are useful because they indicate to the compiler that
2949the program is well defined no matter what value is used. This gives the
2950compiler more freedom to optimize. Here are some examples of
2951(potentially surprising) transformations that are valid (in pseudo IR):
2952
2953.. code-block:: llvm
2954
2955 %A = add %X, undef
2956 %B = sub %X, undef
2957 %C = xor %X, undef
2958 Safe:
2959 %A = undef
2960 %B = undef
2961 %C = undef
2962
2963This is safe because all of the output bits are affected by the undef
2964bits. Any output bit can have a zero or one depending on the input bits.
2965
2966.. code-block:: llvm
2967
2968 %A = or %X, undef
2969 %B = and %X, undef
2970 Safe:
2971 %A = -1
2972 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00002973 Safe:
2974 %A = %X ;; By choosing undef as 0
2975 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00002976 Unsafe:
2977 %A = undef
2978 %B = undef
2979
2980These logical operations have bits that are not always affected by the
2981input. For example, if ``%X`` has a zero bit, then the output of the
2982'``and``' operation will always be a zero for that bit, no matter what
2983the corresponding bit from the '``undef``' is. As such, it is unsafe to
2984optimize or assume that the result of the '``and``' is '``undef``'.
2985However, it is safe to assume that all bits of the '``undef``' could be
29860, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2987all the bits of the '``undef``' operand to the '``or``' could be set,
2988allowing the '``or``' to be folded to -1.
2989
2990.. code-block:: llvm
2991
2992 %A = select undef, %X, %Y
2993 %B = select undef, 42, %Y
2994 %C = select %X, %Y, undef
2995 Safe:
2996 %A = %X (or %Y)
2997 %B = 42 (or %Y)
2998 %C = %Y
2999 Unsafe:
3000 %A = undef
3001 %B = undef
3002 %C = undef
3003
3004This set of examples shows that undefined '``select``' (and conditional
3005branch) conditions can go *either way*, but they have to come from one
3006of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
3007both known to have a clear low bit, then ``%A`` would have to have a
3008cleared low bit. However, in the ``%C`` example, the optimizer is
3009allowed to assume that the '``undef``' operand could be the same as
3010``%Y``, allowing the whole '``select``' to be eliminated.
3011
Renato Golin124f2592016-07-20 12:16:38 +00003012.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003013
3014 %A = xor undef, undef
3015
3016 %B = undef
3017 %C = xor %B, %B
3018
3019 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00003020 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00003021 %F = icmp gte %D, 4
3022
3023 Safe:
3024 %A = undef
3025 %B = undef
3026 %C = undef
3027 %D = undef
3028 %E = undef
3029 %F = undef
3030
3031This example points out that two '``undef``' operands are not
3032necessarily the same. This can be surprising to people (and also matches
3033C semantics) where they assume that "``X^X``" is always zero, even if
3034``X`` is undefined. This isn't true for a number of reasons, but the
3035short answer is that an '``undef``' "variable" can arbitrarily change
3036its value over its "live range". This is true because the variable
3037doesn't actually *have a live range*. Instead, the value is logically
3038read from arbitrary registers that happen to be around when needed, so
3039the value is not necessarily consistent over time. In fact, ``%A`` and
3040``%C`` need to have the same semantics or the core LLVM "replace all
3041uses with" concept would not hold.
3042
3043.. code-block:: llvm
3044
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003045 %A = sdiv undef, %X
3046 %B = sdiv %X, undef
Sean Silvab084af42012-12-07 10:36:55 +00003047 Safe:
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003048 %A = 0
Sean Silvab084af42012-12-07 10:36:55 +00003049 b: unreachable
3050
3051These examples show the crucial difference between an *undefined value*
3052and *undefined behavior*. An undefined value (like '``undef``') is
3053allowed to have an arbitrary bit-pattern. This means that the ``%A``
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003054operation can be constant folded to '``0``', because the '``undef``'
3055could be zero, and zero divided by any value is zero.
Sean Silvab084af42012-12-07 10:36:55 +00003056However, in the second example, we can make a more aggressive
3057assumption: because the ``undef`` is allowed to be an arbitrary value,
3058we are allowed to assume that it could be zero. Since a divide by zero
3059has *undefined behavior*, we are allowed to assume that the operation
3060does not execute at all. This allows us to delete the divide and all
3061code after it. Because the undefined operation "can't happen", the
3062optimizer can assume that it occurs in dead code.
3063
Renato Golin124f2592016-07-20 12:16:38 +00003064.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003065
3066 a: store undef -> %X
3067 b: store %X -> undef
3068 Safe:
3069 a: <deleted>
3070 b: unreachable
3071
Sanjay Patel7b722402018-03-07 17:18:22 +00003072A store *of* an undefined value can be assumed to not have any effect;
3073we can assume that the value is overwritten with bits that happen to
3074match what was already there. However, a store *to* an undefined
3075location could clobber arbitrary memory, therefore, it has undefined
3076behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003077
3078.. _poisonvalues:
3079
3080Poison Values
3081-------------
3082
3083Poison values are similar to :ref:`undef values <undefvalues>`, however
3084they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00003085that cannot evoke side effects has nevertheless detected a condition
3086that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003087
3088There is currently no way of representing a poison value in the IR; they
3089only exist when produced by operations such as :ref:`add <i_add>` with
3090the ``nsw`` flag.
3091
3092Poison value behavior is defined in terms of value *dependence*:
3093
3094- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
3095- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
3096 their dynamic predecessor basic block.
3097- Function arguments depend on the corresponding actual argument values
3098 in the dynamic callers of their functions.
3099- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
3100 instructions that dynamically transfer control back to them.
3101- :ref:`Invoke <i_invoke>` instructions depend on the
3102 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
3103 call instructions that dynamically transfer control back to them.
3104- Non-volatile loads and stores depend on the most recent stores to all
3105 of the referenced memory addresses, following the order in the IR
3106 (including loads and stores implied by intrinsics such as
3107 :ref:`@llvm.memcpy <int_memcpy>`.)
3108- An instruction with externally visible side effects depends on the
3109 most recent preceding instruction with externally visible side
3110 effects, following the order in the IR. (This includes :ref:`volatile
3111 operations <volatile>`.)
3112- An instruction *control-depends* on a :ref:`terminator
3113 instruction <terminators>` if the terminator instruction has
3114 multiple successors and the instruction is always executed when
3115 control transfers to one of the successors, and may not be executed
3116 when control is transferred to another.
3117- Additionally, an instruction also *control-depends* on a terminator
3118 instruction if the set of instructions it otherwise depends on would
3119 be different if the terminator had transferred control to a different
3120 successor.
3121- Dependence is transitive.
3122
Richard Smith32dbdf62014-07-31 04:25:36 +00003123Poison values have the same behavior as :ref:`undef values <undefvalues>`,
3124with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00003125on a poison value has undefined behavior.
3126
3127Here are some examples:
3128
3129.. code-block:: llvm
3130
3131 entry:
3132 %poison = sub nuw i32 0, 1 ; Results in a poison value.
3133 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00003134 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00003135 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3136
3137 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003138 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003139
3140 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3141
3142 %narrowaddr = bitcast i32* @g to i16*
3143 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003144 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3145 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003146
3147 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3148 br i1 %cmp, label %true, label %end ; Branch to either destination.
3149
3150 true:
3151 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3152 ; it has undefined behavior.
3153 br label %end
3154
3155 end:
3156 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3157 ; Both edges into this PHI are
3158 ; control-dependent on %cmp, so this
3159 ; always results in a poison value.
3160
3161 store volatile i32 0, i32* @g ; This would depend on the store in %true
3162 ; if %cmp is true, or the store in %entry
3163 ; otherwise, so this is undefined behavior.
3164
3165 br i1 %cmp, label %second_true, label %second_end
3166 ; The same branch again, but this time the
3167 ; true block doesn't have side effects.
3168
3169 second_true:
3170 ; No side effects!
3171 ret void
3172
3173 second_end:
3174 store volatile i32 0, i32* @g ; This time, the instruction always depends
3175 ; on the store in %end. Also, it is
3176 ; control-equivalent to %end, so this is
3177 ; well-defined (ignoring earlier undefined
3178 ; behavior in this example).
3179
3180.. _blockaddress:
3181
3182Addresses of Basic Blocks
3183-------------------------
3184
3185``blockaddress(@function, %block)``
3186
3187The '``blockaddress``' constant computes the address of the specified
3188basic block in the specified function, and always has an ``i8*`` type.
3189Taking the address of the entry block is illegal.
3190
3191This value only has defined behavior when used as an operand to the
3192':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3193against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003194undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003195no label is equal to the null pointer. This may be passed around as an
3196opaque pointer sized value as long as the bits are not inspected. This
3197allows ``ptrtoint`` and arithmetic to be performed on these values so
3198long as the original value is reconstituted before the ``indirectbr``
3199instruction.
3200
3201Finally, some targets may provide defined semantics when using the value
3202as the operand to an inline assembly, but that is target specific.
3203
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003204.. _constantexprs:
3205
Sean Silvab084af42012-12-07 10:36:55 +00003206Constant Expressions
3207--------------------
3208
3209Constant expressions are used to allow expressions involving other
3210constants to be used as constants. Constant expressions may be of any
3211:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3212that does not have side effects (e.g. load and call are not supported).
3213The following is the syntax for constant expressions:
3214
3215``trunc (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003216 Perform the :ref:`trunc operation <i_trunc>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003217``zext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003218 Perform the :ref:`zext operation <i_zext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003219``sext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003220 Perform the :ref:`sext operation <i_sext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003221``fptrunc (CST to TYPE)``
3222 Truncate a floating point constant to another floating point type.
3223 The size of CST must be larger than the size of TYPE. Both types
3224 must be floating point.
3225``fpext (CST to TYPE)``
3226 Floating point extend a constant to another type. The size of CST
3227 must be smaller or equal to the size of TYPE. Both types must be
3228 floating point.
3229``fptoui (CST to TYPE)``
3230 Convert a floating point constant to the corresponding unsigned
3231 integer constant. TYPE must be a scalar or vector integer type. CST
3232 must be of scalar or vector floating point type. Both CST and TYPE
3233 must be scalars, or vectors of the same number of elements. If the
3234 value won't fit in the integer type, the results are undefined.
3235``fptosi (CST to TYPE)``
3236 Convert a floating point constant to the corresponding signed
3237 integer constant. TYPE must be a scalar or vector integer type. CST
3238 must be of scalar or vector floating point type. Both CST and TYPE
3239 must be scalars, or vectors of the same number of elements. If the
3240 value won't fit in the integer type, the results are undefined.
3241``uitofp (CST to TYPE)``
3242 Convert an unsigned integer constant to the corresponding floating
3243 point constant. TYPE must be a scalar or vector floating point type.
3244 CST must be of scalar or vector integer type. Both CST and TYPE must
3245 be scalars, or vectors of the same number of elements. If the value
3246 won't fit in the floating point type, the results are undefined.
3247``sitofp (CST to TYPE)``
3248 Convert a signed integer constant to the corresponding floating
3249 point constant. TYPE must be a scalar or vector floating point type.
3250 CST must be of scalar or vector integer type. Both CST and TYPE must
3251 be scalars, or vectors of the same number of elements. If the value
3252 won't fit in the floating point type, the results are undefined.
3253``ptrtoint (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003254 Perform the :ref:`ptrtoint operation <i_ptrtoint>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003255``inttoptr (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003256 Perform the :ref:`inttoptr operation <i_inttoptr>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003257 This one is *really* dangerous!
3258``bitcast (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003259 Convert a constant, CST, to another TYPE.
3260 The constraints of the operands are the same as those for the
3261 :ref:`bitcast instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003262``addrspacecast (CST to TYPE)``
3263 Convert a constant pointer or constant vector of pointer, CST, to another
3264 TYPE in a different address space. The constraints of the operands are the
3265 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003266``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003267 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3268 constants. As with the :ref:`getelementptr <i_getelementptr>`
David Blaikief91b0302017-06-19 05:34:21 +00003269 instruction, the index list may have one or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003270 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003271``select (COND, VAL1, VAL2)``
3272 Perform the :ref:`select operation <i_select>` on constants.
3273``icmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003274 Perform the :ref:`icmp operation <i_icmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003275``fcmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003276 Perform the :ref:`fcmp operation <i_fcmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003277``extractelement (VAL, IDX)``
3278 Perform the :ref:`extractelement operation <i_extractelement>` on
3279 constants.
3280``insertelement (VAL, ELT, IDX)``
3281 Perform the :ref:`insertelement operation <i_insertelement>` on
3282 constants.
3283``shufflevector (VEC1, VEC2, IDXMASK)``
3284 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3285 constants.
3286``extractvalue (VAL, IDX0, IDX1, ...)``
3287 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3288 constants. The index list is interpreted in a similar manner as
3289 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3290 least one index value must be specified.
3291``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3292 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3293 The index list is interpreted in a similar manner as indices in a
3294 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3295 value must be specified.
3296``OPCODE (LHS, RHS)``
3297 Perform the specified operation of the LHS and RHS constants. OPCODE
3298 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3299 binary <bitwiseops>` operations. The constraints on operands are
3300 the same as those for the corresponding instruction (e.g. no bitwise
3301 operations on floating point values are allowed).
3302
3303Other Values
3304============
3305
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003306.. _inlineasmexprs:
3307
Sean Silvab084af42012-12-07 10:36:55 +00003308Inline Assembler Expressions
3309----------------------------
3310
3311LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003312Inline Assembly <moduleasm>`) through the use of a special value. This value
3313represents the inline assembler as a template string (containing the
3314instructions to emit), a list of operand constraints (stored as a string), a
3315flag that indicates whether or not the inline asm expression has side effects,
3316and a flag indicating whether the function containing the asm needs to align its
3317stack conservatively.
3318
3319The template string supports argument substitution of the operands using "``$``"
3320followed by a number, to indicate substitution of the given register/memory
3321location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3322be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3323operand (See :ref:`inline-asm-modifiers`).
3324
3325A literal "``$``" may be included by using "``$$``" in the template. To include
3326other special characters into the output, the usual "``\XX``" escapes may be
3327used, just as in other strings. Note that after template substitution, the
3328resulting assembly string is parsed by LLVM's integrated assembler unless it is
3329disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3330syntax known to LLVM.
3331
Reid Kleckner71cb1642017-02-06 18:08:45 +00003332LLVM also supports a few more substitions useful for writing inline assembly:
3333
3334- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3335 This substitution is useful when declaring a local label. Many standard
3336 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3337 Adding a blob-unique identifier ensures that the two labels will not conflict
3338 during assembly. This is used to implement `GCC's %= special format
3339 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3340- ``${:comment}``: Expands to the comment character of the current target's
3341 assembly dialect. This is usually ``#``, but many targets use other strings,
3342 such as ``;``, ``//``, or ``!``.
3343- ``${:private}``: Expands to the assembler private label prefix. Labels with
3344 this prefix will not appear in the symbol table of the assembled object.
3345 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3346 relatively popular.
3347
James Y Knightbc832ed2015-07-08 18:08:36 +00003348LLVM's support for inline asm is modeled closely on the requirements of Clang's
3349GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3350modifier codes listed here are similar or identical to those in GCC's inline asm
3351support. However, to be clear, the syntax of the template and constraint strings
3352described here is *not* the same as the syntax accepted by GCC and Clang, and,
3353while most constraint letters are passed through as-is by Clang, some get
3354translated to other codes when converting from the C source to the LLVM
3355assembly.
3356
3357An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003358
3359.. code-block:: llvm
3360
3361 i32 (i32) asm "bswap $0", "=r,r"
3362
3363Inline assembler expressions may **only** be used as the callee operand
3364of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3365Thus, typically we have:
3366
3367.. code-block:: llvm
3368
3369 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3370
3371Inline asms with side effects not visible in the constraint list must be
3372marked as having side effects. This is done through the use of the
3373'``sideeffect``' keyword, like so:
3374
3375.. code-block:: llvm
3376
3377 call void asm sideeffect "eieio", ""()
3378
3379In some cases inline asms will contain code that will not work unless
3380the stack is aligned in some way, such as calls or SSE instructions on
3381x86, yet will not contain code that does that alignment within the asm.
3382The compiler should make conservative assumptions about what the asm
3383might contain and should generate its usual stack alignment code in the
3384prologue if the '``alignstack``' keyword is present:
3385
3386.. code-block:: llvm
3387
3388 call void asm alignstack "eieio", ""()
3389
3390Inline asms also support using non-standard assembly dialects. The
3391assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3392the inline asm is using the Intel dialect. Currently, ATT and Intel are
3393the only supported dialects. An example is:
3394
3395.. code-block:: llvm
3396
3397 call void asm inteldialect "eieio", ""()
3398
3399If multiple keywords appear the '``sideeffect``' keyword must come
3400first, the '``alignstack``' keyword second and the '``inteldialect``'
3401keyword last.
3402
James Y Knightbc832ed2015-07-08 18:08:36 +00003403Inline Asm Constraint String
3404^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3405
3406The constraint list is a comma-separated string, each element containing one or
3407more constraint codes.
3408
3409For each element in the constraint list an appropriate register or memory
3410operand will be chosen, and it will be made available to assembly template
3411string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3412second, etc.
3413
3414There are three different types of constraints, which are distinguished by a
3415prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3416constraints must always be given in that order: outputs first, then inputs, then
3417clobbers. They cannot be intermingled.
3418
3419There are also three different categories of constraint codes:
3420
3421- Register constraint. This is either a register class, or a fixed physical
3422 register. This kind of constraint will allocate a register, and if necessary,
3423 bitcast the argument or result to the appropriate type.
3424- Memory constraint. This kind of constraint is for use with an instruction
3425 taking a memory operand. Different constraints allow for different addressing
3426 modes used by the target.
3427- Immediate value constraint. This kind of constraint is for an integer or other
3428 immediate value which can be rendered directly into an instruction. The
3429 various target-specific constraints allow the selection of a value in the
3430 proper range for the instruction you wish to use it with.
3431
3432Output constraints
3433""""""""""""""""""
3434
3435Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3436indicates that the assembly will write to this operand, and the operand will
3437then be made available as a return value of the ``asm`` expression. Output
3438constraints do not consume an argument from the call instruction. (Except, see
3439below about indirect outputs).
3440
3441Normally, it is expected that no output locations are written to by the assembly
3442expression until *all* of the inputs have been read. As such, LLVM may assign
3443the same register to an output and an input. If this is not safe (e.g. if the
3444assembly contains two instructions, where the first writes to one output, and
3445the second reads an input and writes to a second output), then the "``&``"
3446modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003447"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003448will not use the same register for any inputs (other than an input tied to this
3449output).
3450
3451Input constraints
3452"""""""""""""""""
3453
3454Input constraints do not have a prefix -- just the constraint codes. Each input
3455constraint will consume one argument from the call instruction. It is not
3456permitted for the asm to write to any input register or memory location (unless
3457that input is tied to an output). Note also that multiple inputs may all be
3458assigned to the same register, if LLVM can determine that they necessarily all
3459contain the same value.
3460
3461Instead of providing a Constraint Code, input constraints may also "tie"
3462themselves to an output constraint, by providing an integer as the constraint
3463string. Tied inputs still consume an argument from the call instruction, and
3464take up a position in the asm template numbering as is usual -- they will simply
3465be constrained to always use the same register as the output they've been tied
3466to. For example, a constraint string of "``=r,0``" says to assign a register for
3467output, and use that register as an input as well (it being the 0'th
3468constraint).
3469
3470It is permitted to tie an input to an "early-clobber" output. In that case, no
3471*other* input may share the same register as the input tied to the early-clobber
3472(even when the other input has the same value).
3473
3474You may only tie an input to an output which has a register constraint, not a
3475memory constraint. Only a single input may be tied to an output.
3476
3477There is also an "interesting" feature which deserves a bit of explanation: if a
3478register class constraint allocates a register which is too small for the value
3479type operand provided as input, the input value will be split into multiple
3480registers, and all of them passed to the inline asm.
3481
3482However, this feature is often not as useful as you might think.
3483
3484Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3485architectures that have instructions which operate on multiple consecutive
3486instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3487SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3488hardware then loads into both the named register, and the next register. This
3489feature of inline asm would not be useful to support that.)
3490
3491A few of the targets provide a template string modifier allowing explicit access
3492to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3493``D``). On such an architecture, you can actually access the second allocated
3494register (yet, still, not any subsequent ones). But, in that case, you're still
3495probably better off simply splitting the value into two separate operands, for
3496clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3497despite existing only for use with this feature, is not really a good idea to
3498use)
3499
3500Indirect inputs and outputs
3501"""""""""""""""""""""""""""
3502
3503Indirect output or input constraints can be specified by the "``*``" modifier
3504(which goes after the "``=``" in case of an output). This indicates that the asm
3505will write to or read from the contents of an *address* provided as an input
3506argument. (Note that in this way, indirect outputs act more like an *input* than
3507an output: just like an input, they consume an argument of the call expression,
3508rather than producing a return value. An indirect output constraint is an
3509"output" only in that the asm is expected to write to the contents of the input
3510memory location, instead of just read from it).
3511
3512This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3513address of a variable as a value.
3514
3515It is also possible to use an indirect *register* constraint, but only on output
3516(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3517value normally, and then, separately emit a store to the address provided as
3518input, after the provided inline asm. (It's not clear what value this
3519functionality provides, compared to writing the store explicitly after the asm
3520statement, and it can only produce worse code, since it bypasses many
3521optimization passes. I would recommend not using it.)
3522
3523
3524Clobber constraints
3525"""""""""""""""""""
3526
3527A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3528consume an input operand, nor generate an output. Clobbers cannot use any of the
3529general constraint code letters -- they may use only explicit register
3530constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3531"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3532memory locations -- not only the memory pointed to by a declared indirect
3533output.
3534
Peter Zotov00257232016-08-30 10:48:31 +00003535Note that clobbering named registers that are also present in output
3536constraints is not legal.
3537
James Y Knightbc832ed2015-07-08 18:08:36 +00003538
3539Constraint Codes
3540""""""""""""""""
3541After a potential prefix comes constraint code, or codes.
3542
3543A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3544followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3545(e.g. "``{eax}``").
3546
3547The one and two letter constraint codes are typically chosen to be the same as
3548GCC's constraint codes.
3549
3550A single constraint may include one or more than constraint code in it, leaving
3551it up to LLVM to choose which one to use. This is included mainly for
3552compatibility with the translation of GCC inline asm coming from clang.
3553
3554There are two ways to specify alternatives, and either or both may be used in an
3555inline asm constraint list:
3556
35571) Append the codes to each other, making a constraint code set. E.g. "``im``"
3558 or "``{eax}m``". This means "choose any of the options in the set". The
3559 choice of constraint is made independently for each constraint in the
3560 constraint list.
3561
35622) Use "``|``" between constraint code sets, creating alternatives. Every
3563 constraint in the constraint list must have the same number of alternative
3564 sets. With this syntax, the same alternative in *all* of the items in the
3565 constraint list will be chosen together.
3566
3567Putting those together, you might have a two operand constraint string like
3568``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3569operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3570may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3571
3572However, the use of either of the alternatives features is *NOT* recommended, as
3573LLVM is not able to make an intelligent choice about which one to use. (At the
3574point it currently needs to choose, not enough information is available to do so
3575in a smart way.) Thus, it simply tries to make a choice that's most likely to
3576compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3577always choose to use memory, not registers). And, if given multiple registers,
3578or multiple register classes, it will simply choose the first one. (In fact, it
3579doesn't currently even ensure explicitly specified physical registers are
3580unique, so specifying multiple physical registers as alternatives, like
3581``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3582intended.)
3583
3584Supported Constraint Code List
3585""""""""""""""""""""""""""""""
3586
3587The constraint codes are, in general, expected to behave the same way they do in
3588GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3589inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3590and GCC likely indicates a bug in LLVM.
3591
3592Some constraint codes are typically supported by all targets:
3593
3594- ``r``: A register in the target's general purpose register class.
3595- ``m``: A memory address operand. It is target-specific what addressing modes
3596 are supported, typical examples are register, or register + register offset,
3597 or register + immediate offset (of some target-specific size).
3598- ``i``: An integer constant (of target-specific width). Allows either a simple
3599 immediate, or a relocatable value.
3600- ``n``: An integer constant -- *not* including relocatable values.
3601- ``s``: An integer constant, but allowing *only* relocatable values.
3602- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3603 useful to pass a label for an asm branch or call.
3604
3605 .. FIXME: but that surely isn't actually okay to jump out of an asm
3606 block without telling llvm about the control transfer???)
3607
3608- ``{register-name}``: Requires exactly the named physical register.
3609
3610Other constraints are target-specific:
3611
3612AArch64:
3613
3614- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3615- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3616 i.e. 0 to 4095 with optional shift by 12.
3617- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3618 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3619- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3620 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3621- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3622 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3623- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3624 32-bit register. This is a superset of ``K``: in addition to the bitmask
3625 immediate, also allows immediate integers which can be loaded with a single
3626 ``MOVZ`` or ``MOVL`` instruction.
3627- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3628 64-bit register. This is a superset of ``L``.
3629- ``Q``: Memory address operand must be in a single register (no
3630 offsets). (However, LLVM currently does this for the ``m`` constraint as
3631 well.)
3632- ``r``: A 32 or 64-bit integer register (W* or X*).
3633- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3634- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3635
3636AMDGPU:
3637
3638- ``r``: A 32 or 64-bit integer register.
3639- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3640- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3641
3642
3643All ARM modes:
3644
3645- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3646 operand. Treated the same as operand ``m``, at the moment.
3647
3648ARM and ARM's Thumb2 mode:
3649
3650- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3651- ``I``: An immediate integer valid for a data-processing instruction.
3652- ``J``: An immediate integer between -4095 and 4095.
3653- ``K``: An immediate integer whose bitwise inverse is valid for a
3654 data-processing instruction. (Can be used with template modifier "``B``" to
3655 print the inverted value).
3656- ``L``: An immediate integer whose negation is valid for a data-processing
3657 instruction. (Can be used with template modifier "``n``" to print the negated
3658 value).
3659- ``M``: A power of two or a integer between 0 and 32.
3660- ``N``: Invalid immediate constraint.
3661- ``O``: Invalid immediate constraint.
3662- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3663- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3664 as ``r``.
3665- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3666 invalid.
3667- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3668 ``d0-d31``, or ``q0-q15``.
3669- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3670 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003671- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3672 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003673
3674ARM's Thumb1 mode:
3675
3676- ``I``: An immediate integer between 0 and 255.
3677- ``J``: An immediate integer between -255 and -1.
3678- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3679 some amount.
3680- ``L``: An immediate integer between -7 and 7.
3681- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3682- ``N``: An immediate integer between 0 and 31.
3683- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3684- ``r``: A low 32-bit GPR register (``r0-r7``).
3685- ``l``: A low 32-bit GPR register (``r0-r7``).
3686- ``h``: A high GPR register (``r0-r7``).
3687- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3688 ``d0-d31``, or ``q0-q15``.
3689- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3690 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003691- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3692 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003693
3694
3695Hexagon:
3696
3697- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3698 at the moment.
3699- ``r``: A 32 or 64-bit register.
3700
3701MSP430:
3702
3703- ``r``: An 8 or 16-bit register.
3704
3705MIPS:
3706
3707- ``I``: An immediate signed 16-bit integer.
3708- ``J``: An immediate integer zero.
3709- ``K``: An immediate unsigned 16-bit integer.
3710- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3711- ``N``: An immediate integer between -65535 and -1.
3712- ``O``: An immediate signed 15-bit integer.
3713- ``P``: An immediate integer between 1 and 65535.
3714- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3715 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3716- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3717 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3718 ``m``.
3719- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3720 ``sc`` instruction on the given subtarget (details vary).
3721- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3722- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003723 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3724 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003725- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3726 ``25``).
3727- ``l``: The ``lo`` register, 32 or 64-bit.
3728- ``x``: Invalid.
3729
3730NVPTX:
3731
3732- ``b``: A 1-bit integer register.
3733- ``c`` or ``h``: A 16-bit integer register.
3734- ``r``: A 32-bit integer register.
3735- ``l`` or ``N``: A 64-bit integer register.
3736- ``f``: A 32-bit float register.
3737- ``d``: A 64-bit float register.
3738
3739
3740PowerPC:
3741
3742- ``I``: An immediate signed 16-bit integer.
3743- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3744- ``K``: An immediate unsigned 16-bit integer.
3745- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3746- ``M``: An immediate integer greater than 31.
3747- ``N``: An immediate integer that is an exact power of 2.
3748- ``O``: The immediate integer constant 0.
3749- ``P``: An immediate integer constant whose negation is a signed 16-bit
3750 constant.
3751- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3752 treated the same as ``m``.
3753- ``r``: A 32 or 64-bit integer register.
3754- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3755 ``R1-R31``).
3756- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3757 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3758- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3759 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3760 altivec vector register (``V0-V31``).
3761
3762 .. FIXME: is this a bug that v accepts QPX registers? I think this
3763 is supposed to only use the altivec vector registers?
3764
3765- ``y``: Condition register (``CR0-CR7``).
3766- ``wc``: An individual CR bit in a CR register.
3767- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3768 register set (overlapping both the floating-point and vector register files).
3769- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3770 set.
3771
3772Sparc:
3773
3774- ``I``: An immediate 13-bit signed integer.
3775- ``r``: A 32-bit integer register.
James Y Knightd4e1b002017-05-12 15:59:10 +00003776- ``f``: Any floating-point register on SparcV8, or a floating point
3777 register in the "low" half of the registers on SparcV9.
3778- ``e``: Any floating point register. (Same as ``f`` on SparcV8.)
James Y Knightbc832ed2015-07-08 18:08:36 +00003779
3780SystemZ:
3781
3782- ``I``: An immediate unsigned 8-bit integer.
3783- ``J``: An immediate unsigned 12-bit integer.
3784- ``K``: An immediate signed 16-bit integer.
3785- ``L``: An immediate signed 20-bit integer.
3786- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003787- ``Q``: A memory address operand with a base address and a 12-bit immediate
3788 unsigned displacement.
3789- ``R``: A memory address operand with a base address, a 12-bit immediate
3790 unsigned displacement, and an index register.
3791- ``S``: A memory address operand with a base address and a 20-bit immediate
3792 signed displacement.
3793- ``T``: A memory address operand with a base address, a 20-bit immediate
3794 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003795- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3796- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3797 address context evaluates as zero).
3798- ``h``: A 32-bit value in the high part of a 64bit data register
3799 (LLVM-specific)
3800- ``f``: A 32, 64, or 128-bit floating point register.
3801
3802X86:
3803
3804- ``I``: An immediate integer between 0 and 31.
3805- ``J``: An immediate integer between 0 and 64.
3806- ``K``: An immediate signed 8-bit integer.
3807- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3808 0xffffffff.
3809- ``M``: An immediate integer between 0 and 3.
3810- ``N``: An immediate unsigned 8-bit integer.
3811- ``O``: An immediate integer between 0 and 127.
3812- ``e``: An immediate 32-bit signed integer.
3813- ``Z``: An immediate 32-bit unsigned integer.
3814- ``o``, ``v``: Treated the same as ``m``, at the moment.
3815- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3816 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3817 registers, and on X86-64, it is all of the integer registers.
3818- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3819 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3820- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3821- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3822 existed since i386, and can be accessed without the REX prefix.
3823- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3824- ``y``: A 64-bit MMX register, if MMX is enabled.
3825- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3826 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3827 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3828 512-bit vector operand in an AVX512 register, Otherwise, an error.
3829- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3830- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3831 32-bit mode, a 64-bit integer operand will get split into two registers). It
3832 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3833 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3834 you're better off splitting it yourself, before passing it to the asm
3835 statement.
3836
3837XCore:
3838
3839- ``r``: A 32-bit integer register.
3840
3841
3842.. _inline-asm-modifiers:
3843
3844Asm template argument modifiers
3845^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3846
3847In the asm template string, modifiers can be used on the operand reference, like
3848"``${0:n}``".
3849
3850The modifiers are, in general, expected to behave the same way they do in
3851GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3852inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3853and GCC likely indicates a bug in LLVM.
3854
3855Target-independent:
3856
Sean Silvaa1190322015-08-06 22:56:48 +00003857- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003858 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3859- ``n``: Negate and print immediate integer constant unadorned, without the
3860 target-specific immediate punctuation (e.g. no ``$`` prefix).
3861- ``l``: Print as an unadorned label, without the target-specific label
3862 punctuation (e.g. no ``$`` prefix).
3863
3864AArch64:
3865
3866- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3867 instead of ``x30``, print ``w30``.
3868- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3869- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3870 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3871 ``v*``.
3872
3873AMDGPU:
3874
3875- ``r``: No effect.
3876
3877ARM:
3878
3879- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3880 register).
3881- ``P``: No effect.
3882- ``q``: No effect.
3883- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3884 as ``d4[1]`` instead of ``s9``)
3885- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3886 prefix.
3887- ``L``: Print the low 16-bits of an immediate integer constant.
3888- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3889 register operands subsequent to the specified one (!), so use carefully.
3890- ``Q``: Print the low-order register of a register-pair, or the low-order
3891 register of a two-register operand.
3892- ``R``: Print the high-order register of a register-pair, or the high-order
3893 register of a two-register operand.
3894- ``H``: Print the second register of a register-pair. (On a big-endian system,
3895 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3896 to ``R``.)
3897
3898 .. FIXME: H doesn't currently support printing the second register
3899 of a two-register operand.
3900
3901- ``e``: Print the low doubleword register of a NEON quad register.
3902- ``f``: Print the high doubleword register of a NEON quad register.
3903- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3904 adornment.
3905
3906Hexagon:
3907
3908- ``L``: Print the second register of a two-register operand. Requires that it
3909 has been allocated consecutively to the first.
3910
3911 .. FIXME: why is it restricted to consecutive ones? And there's
3912 nothing that ensures that happens, is there?
3913
3914- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3915 nothing. Used to print 'addi' vs 'add' instructions.
3916
3917MSP430:
3918
3919No additional modifiers.
3920
3921MIPS:
3922
3923- ``X``: Print an immediate integer as hexadecimal
3924- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3925- ``d``: Print an immediate integer as decimal.
3926- ``m``: Subtract one and print an immediate integer as decimal.
3927- ``z``: Print $0 if an immediate zero, otherwise print normally.
3928- ``L``: Print the low-order register of a two-register operand, or prints the
3929 address of the low-order word of a double-word memory operand.
3930
3931 .. FIXME: L seems to be missing memory operand support.
3932
3933- ``M``: Print the high-order register of a two-register operand, or prints the
3934 address of the high-order word of a double-word memory operand.
3935
3936 .. FIXME: M seems to be missing memory operand support.
3937
3938- ``D``: Print the second register of a two-register operand, or prints the
3939 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3940 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3941 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003942- ``w``: No effect. Provided for compatibility with GCC which requires this
3943 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3944 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003945
3946NVPTX:
3947
3948- ``r``: No effect.
3949
3950PowerPC:
3951
3952- ``L``: Print the second register of a two-register operand. Requires that it
3953 has been allocated consecutively to the first.
3954
3955 .. FIXME: why is it restricted to consecutive ones? And there's
3956 nothing that ensures that happens, is there?
3957
3958- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3959 nothing. Used to print 'addi' vs 'add' instructions.
3960- ``y``: For a memory operand, prints formatter for a two-register X-form
3961 instruction. (Currently always prints ``r0,OPERAND``).
3962- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3963 otherwise. (NOTE: LLVM does not support update form, so this will currently
3964 always print nothing)
3965- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3966 not support indexed form, so this will currently always print nothing)
3967
3968Sparc:
3969
3970- ``r``: No effect.
3971
3972SystemZ:
3973
3974SystemZ implements only ``n``, and does *not* support any of the other
3975target-independent modifiers.
3976
3977X86:
3978
3979- ``c``: Print an unadorned integer or symbol name. (The latter is
3980 target-specific behavior for this typically target-independent modifier).
3981- ``A``: Print a register name with a '``*``' before it.
3982- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3983 operand.
3984- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3985 memory operand.
3986- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3987 operand.
3988- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3989 operand.
3990- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3991 available, otherwise the 32-bit register name; do nothing on a memory operand.
3992- ``n``: Negate and print an unadorned integer, or, for operands other than an
3993 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3994 the operand. (The behavior for relocatable symbol expressions is a
3995 target-specific behavior for this typically target-independent modifier)
3996- ``H``: Print a memory reference with additional offset +8.
3997- ``P``: Print a memory reference or operand for use as the argument of a call
3998 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3999
4000XCore:
4001
4002No additional modifiers.
4003
4004
Sean Silvab084af42012-12-07 10:36:55 +00004005Inline Asm Metadata
4006^^^^^^^^^^^^^^^^^^^
4007
4008The call instructions that wrap inline asm nodes may have a
4009"``!srcloc``" MDNode attached to it that contains a list of constant
4010integers. If present, the code generator will use the integer as the
4011location cookie value when report errors through the ``LLVMContext``
4012error reporting mechanisms. This allows a front-end to correlate backend
4013errors that occur with inline asm back to the source code that produced
4014it. For example:
4015
4016.. code-block:: llvm
4017
4018 call void asm sideeffect "something bad", ""(), !srcloc !42
4019 ...
4020 !42 = !{ i32 1234567 }
4021
4022It is up to the front-end to make sense of the magic numbers it places
4023in the IR. If the MDNode contains multiple constants, the code generator
4024will use the one that corresponds to the line of the asm that the error
4025occurs on.
4026
4027.. _metadata:
4028
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004029Metadata
4030========
Sean Silvab084af42012-12-07 10:36:55 +00004031
4032LLVM IR allows metadata to be attached to instructions in the program
4033that can convey extra information about the code to the optimizers and
4034code generator. One example application of metadata is source-level
4035debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004036
Sean Silvaa1190322015-08-06 22:56:48 +00004037Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004038``call`` instruction, it uses the ``metadata`` type.
4039
4040All metadata are identified in syntax by a exclamation point ('``!``').
4041
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004042.. _metadata-string:
4043
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004044Metadata Nodes and Metadata Strings
4045-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00004046
4047A metadata string is a string surrounded by double quotes. It can
4048contain any character by escaping non-printable characters with
4049"``\xx``" where "``xx``" is the two digit hex code. For example:
4050"``!"test\00"``".
4051
4052Metadata nodes are represented with notation similar to structure
4053constants (a comma separated list of elements, surrounded by braces and
4054preceded by an exclamation point). Metadata nodes can have any values as
4055their operand. For example:
4056
4057.. code-block:: llvm
4058
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004059 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00004060
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004061Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
4062
Renato Golin124f2592016-07-20 12:16:38 +00004063.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004064
4065 !0 = distinct !{!"test\00", i32 10}
4066
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004067``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00004068content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004069when metadata operands change.
4070
Sean Silvab084af42012-12-07 10:36:55 +00004071A :ref:`named metadata <namedmetadatastructure>` is a collection of
4072metadata nodes, which can be looked up in the module symbol table. For
4073example:
4074
4075.. code-block:: llvm
4076
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004077 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00004078
Adrian Prantl1b842da2017-07-28 20:44:29 +00004079Metadata can be used as function arguments. Here the ``llvm.dbg.value``
4080intrinsic is using three metadata arguments:
Sean Silvab084af42012-12-07 10:36:55 +00004081
4082.. code-block:: llvm
4083
Adrian Prantlabe04752017-07-28 20:21:02 +00004084 call void @llvm.dbg.value(metadata !24, metadata !25, metadata !26)
Sean Silvab084af42012-12-07 10:36:55 +00004085
Peter Collingbourne50108682015-11-06 02:41:02 +00004086Metadata can be attached to an instruction. Here metadata ``!21`` is attached
4087to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00004088
4089.. code-block:: llvm
4090
4091 %indvar.next = add i64 %indvar, 1, !dbg !21
4092
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004093Metadata can also be attached to a function or a global variable. Here metadata
4094``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
4095and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00004096
4097.. code-block:: llvm
4098
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004099 declare !dbg !22 void @f1()
4100 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00004101 ret void
4102 }
4103
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004104 @g1 = global i32 0, !dbg !22
4105 @g2 = external global i32, !dbg !22
4106
4107A transformation is required to drop any metadata attachment that it does not
4108know or know it can't preserve. Currently there is an exception for metadata
4109attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
4110unconditionally dropped unless the global is itself deleted.
4111
4112Metadata attached to a module using named metadata may not be dropped, with
4113the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
4114
Sean Silvab084af42012-12-07 10:36:55 +00004115More information about specific metadata nodes recognized by the
4116optimizers and code generator is found below.
4117
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004118.. _specialized-metadata:
4119
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004120Specialized Metadata Nodes
4121^^^^^^^^^^^^^^^^^^^^^^^^^^
4122
4123Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00004124to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004125order.
4126
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004127These aren't inherently debug info centric, but currently all the specialized
4128metadata nodes are related to debug info.
4129
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004130.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004131
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004132DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004133"""""""""""""
4134
Sean Silvaa1190322015-08-06 22:56:48 +00004135``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004136``retainedTypes:``, ``globals:``, ``imports:`` and ``macros:`` fields are tuples
4137containing the debug info to be emitted along with the compile unit, regardless
4138of code optimizations (some nodes are only emitted if there are references to
4139them from instructions). The ``debugInfoForProfiling:`` field is a boolean
4140indicating whether or not line-table discriminators are updated to provide
4141more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004142
Renato Golin124f2592016-07-20 12:16:38 +00004143.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004144
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004145 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004146 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004147 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004148 enums: !2, retainedTypes: !3, globals: !4, imports: !5,
4149 macros: !6, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004150
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004151Compile unit descriptors provide the root scope for objects declared in a
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004152specific compilation unit. File descriptors are defined using this scope. These
4153descriptors are collected by a named metadata node ``!llvm.dbg.cu``. They keep
4154track of global variables, type information, and imported entities (declarations
4155and namespaces).
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004156
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004157.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004158
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004159DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004160""""""
4161
Sean Silvaa1190322015-08-06 22:56:48 +00004162``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004163
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004164.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004165
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004166 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4167 checksumkind: CSK_MD5,
4168 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004169
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004170Files are sometimes used in ``scope:`` fields, and are the only valid target
4171for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004172Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004173
Michael Kuperstein605308a2015-05-14 10:58:59 +00004174.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004175
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004176DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004177"""""""""""
4178
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004179``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004180``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004181
Renato Golin124f2592016-07-20 12:16:38 +00004182.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004183
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004184 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004185 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004186 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004187
Sean Silvaa1190322015-08-06 22:56:48 +00004188The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004189following:
4190
Renato Golin124f2592016-07-20 12:16:38 +00004191.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004192
4193 DW_ATE_address = 1
4194 DW_ATE_boolean = 2
4195 DW_ATE_float = 4
4196 DW_ATE_signed = 5
4197 DW_ATE_signed_char = 6
4198 DW_ATE_unsigned = 7
4199 DW_ATE_unsigned_char = 8
4200
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004201.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004202
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004203DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004204""""""""""""""""
4205
Sean Silvaa1190322015-08-06 22:56:48 +00004206``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004207refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004208types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004209represents a function with no return value (such as ``void foo() {}`` in C++).
4210
Renato Golin124f2592016-07-20 12:16:38 +00004211.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004212
4213 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4214 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004215 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004216
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004217.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004218
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004219DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004220"""""""""""""
4221
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004222``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004223qualified types.
4224
Renato Golin124f2592016-07-20 12:16:38 +00004225.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004226
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004227 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004228 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004229 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004230 align: 32)
4231
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004232The following ``tag:`` values are valid:
4233
Renato Golin124f2592016-07-20 12:16:38 +00004234.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004235
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004236 DW_TAG_member = 13
4237 DW_TAG_pointer_type = 15
4238 DW_TAG_reference_type = 16
4239 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004240 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004241 DW_TAG_ptr_to_member_type = 31
4242 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004243 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004244 DW_TAG_volatile_type = 53
4245 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004246 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004247
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004248.. _DIDerivedTypeMember:
4249
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004250``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004251<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004252``offset:`` is the member's bit offset. If the composite type has an ODR
4253``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4254uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004255
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004256``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4257field of :ref:`composite types <DICompositeType>` to describe parents and
4258friends.
4259
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004260``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4261
4262``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004263``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4264are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004265
4266Note that the ``void *`` type is expressed as a type derived from NULL.
4267
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004268.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004269
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004270DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004271"""""""""""""""
4272
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004273``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004274structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004275
4276If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004277identifier used for type merging between modules. When specified,
4278:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4279derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4280``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004281
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004282For a given ``identifier:``, there should only be a single composite type that
4283does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4284together will unique such definitions at parse time via the ``identifier:``
4285field, even if the nodes are ``distinct``.
4286
Renato Golin124f2592016-07-20 12:16:38 +00004287.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004288
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004289 !0 = !DIEnumerator(name: "SixKind", value: 7)
4290 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4291 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4292 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004293 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4294 elements: !{!0, !1, !2})
4295
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004296The following ``tag:`` values are valid:
4297
Renato Golin124f2592016-07-20 12:16:38 +00004298.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004299
4300 DW_TAG_array_type = 1
4301 DW_TAG_class_type = 2
4302 DW_TAG_enumeration_type = 4
4303 DW_TAG_structure_type = 19
4304 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004305
4306For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004307descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004308level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004309array type is a native packed vector.
4310
4311For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004312descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004313value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004314``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004315
4316For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4317``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004318<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4319``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4320``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004321
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004322.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004323
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004324DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004325""""""""""
4326
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004327``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sander de Smalen1cb94312018-01-24 10:30:23 +00004328:ref:`DICompositeType`.
4329
4330- ``count: -1`` indicates an empty array.
4331- ``count: !9`` describes the count with a :ref:`DILocalVariable`.
4332- ``count: !11`` describes the count with a :ref:`DIGlobalVariable`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004333
4334.. code-block:: llvm
4335
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004336 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4337 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4338 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004339
Sander de Smalenfdf40912018-01-24 09:56:07 +00004340 ; Scopes used in rest of example
4341 !6 = !DIFile(filename: "vla.c", directory: "/path/to/file")
4342 !7 = distinct !DICompileUnit(language: DW_LANG_C99, ...
4343 !8 = distinct !DISubprogram(name: "foo", scope: !7, file: !6, line: 5, ...
4344
4345 ; Use of local variable as count value
4346 !9 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
4347 !10 = !DILocalVariable(name: "count", scope: !8, file: !6, line: 42, type: !9)
4348 !11 = !DISubrange(count !10, lowerBound: 0)
4349
4350 ; Use of global variable as count value
4351 !12 = !DIGlobalVariable(name: "count", scope: !8, file: !6, line: 22, type: !9)
4352 !13 = !DISubrange(count !12, lowerBound: 0)
4353
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004354.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004355
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004356DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004357""""""""""""
4358
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004359``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4360variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004361
4362.. code-block:: llvm
4363
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004364 !0 = !DIEnumerator(name: "SixKind", value: 7)
4365 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4366 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004367
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004368DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004369"""""""""""""""""""""""
4370
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004371``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004372language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004373:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004374
4375.. code-block:: llvm
4376
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004377 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004378
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004379DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004380""""""""""""""""""""""""
4381
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004382``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004383language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004384but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004385``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004386:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004387
4388.. code-block:: llvm
4389
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004390 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004391
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004392DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004393"""""""""""
4394
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004395``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004396
4397.. code-block:: llvm
4398
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004399 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004400
Sander de Smalen1cb94312018-01-24 10:30:23 +00004401.. _DIGlobalVariable:
4402
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004403DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004404""""""""""""""""
4405
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004406``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004407
4408.. code-block:: llvm
4409
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004410 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004411 file: !2, line: 7, type: !3, isLocal: true,
4412 isDefinition: false, variable: i32* @foo,
4413 declaration: !4)
4414
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004415All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004416:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004417
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004418.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004419
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004420DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004421""""""""""""
4422
Peter Collingbourne50108682015-11-06 02:41:02 +00004423``DISubprogram`` nodes represent functions from the source language. A
4424``DISubprogram`` may be attached to a function definition using ``!dbg``
4425metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4426that must be retained, even if their IR counterparts are optimized out of
4427the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004428
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004429.. _DISubprogramDeclaration:
4430
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004431When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004432tree as opposed to a definition of a function. If the scope is a composite
4433type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4434then the subprogram declaration is uniqued based only on its ``linkageName:``
4435and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004436
Renato Golin124f2592016-07-20 12:16:38 +00004437.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004438
Peter Collingbourne50108682015-11-06 02:41:02 +00004439 define void @_Z3foov() !dbg !0 {
4440 ...
4441 }
4442
4443 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4444 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004445 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004446 containingType: !4,
4447 virtuality: DW_VIRTUALITY_pure_virtual,
4448 virtualIndex: 10, flags: DIFlagPrototyped,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004449 isOptimized: true, unit: !5, templateParams: !6,
4450 declaration: !7, variables: !8, thrownTypes: !9)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004451
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004452.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004453
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004454DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004455""""""""""""""
4456
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004457``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004458<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004459two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004460fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004461
Renato Golin124f2592016-07-20 12:16:38 +00004462.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004463
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004464 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004465
4466Usually lexical blocks are ``distinct`` to prevent node merging based on
4467operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004468
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004469.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004470
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004471DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004472""""""""""""""""""
4473
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004474``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004475:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004476indicate textual inclusion, or the ``discriminator:`` field can be used to
4477discriminate between control flow within a single block in the source language.
4478
4479.. code-block:: llvm
4480
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004481 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4482 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4483 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004484
Michael Kuperstein605308a2015-05-14 10:58:59 +00004485.. _DILocation:
4486
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004487DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004488""""""""""
4489
Sean Silvaa1190322015-08-06 22:56:48 +00004490``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004491mandatory, and points at an :ref:`DILexicalBlockFile`, an
4492:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004493
4494.. code-block:: llvm
4495
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004496 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004497
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004498.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004499
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004500DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004501"""""""""""""""
4502
Sean Silvaa1190322015-08-06 22:56:48 +00004503``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004504the ``arg:`` field is set to non-zero, then this variable is a subprogram
4505parameter, and it will be included in the ``variables:`` field of its
4506:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004507
Renato Golin124f2592016-07-20 12:16:38 +00004508.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004509
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004510 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4511 type: !3, flags: DIFlagArtificial)
4512 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4513 type: !3)
4514 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004515
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004516DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004517""""""""""""
4518
Adrian Prantlb44c7762017-03-22 18:01:01 +00004519``DIExpression`` nodes represent expressions that are inspired by the DWARF
4520expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
4521(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
4522referenced LLVM variable relates to the source language variable.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004523
4524The current supported vocabulary is limited:
4525
Adrian Prantl6825fb62017-04-18 01:21:53 +00004526- ``DW_OP_deref`` dereferences the top of the expression stack.
Florian Hahnffc498d2017-06-14 13:14:38 +00004527- ``DW_OP_plus`` pops the last two entries from the expression stack, adds
4528 them together and appends the result to the expression stack.
4529- ``DW_OP_minus`` pops the last two entries from the expression stack, subtracts
4530 the last entry from the second last entry and appends the result to the
4531 expression stack.
Florian Hahnc9c403c2017-06-13 16:54:44 +00004532- ``DW_OP_plus_uconst, 93`` adds ``93`` to the working expression.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004533- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
4534 here, respectively) of the variable fragment from the working expression. Note
Hiroshi Inoue760c0c92018-01-16 13:19:48 +00004535 that contrary to DW_OP_bit_piece, the offset is describing the location
Adrian Prantlb44c7762017-03-22 18:01:01 +00004536 within the described source variable.
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004537- ``DW_OP_swap`` swaps top two stack entries.
4538- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
4539 of the stack is treated as an address. The second stack entry is treated as an
4540 address space identifier.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004541- ``DW_OP_stack_value`` marks a constant value.
4542
Adrian Prantl6825fb62017-04-18 01:21:53 +00004543DWARF specifies three kinds of simple location descriptions: Register, memory,
4544and implicit location descriptions. Register and memory location descriptions
4545describe the *location* of a source variable (in the sense that a debugger might
4546modify its value), whereas implicit locations describe merely the *value* of a
4547source variable. DIExpressions also follow this model: A DIExpression that
4548doesn't have a trailing ``DW_OP_stack_value`` will describe an *address* when
4549combined with a concrete location.
4550
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004551.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004552
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004553 !0 = !DIExpression(DW_OP_deref)
Florian Hahnc9c403c2017-06-13 16:54:44 +00004554 !1 = !DIExpression(DW_OP_plus_uconst, 3)
Florian Hahnffc498d2017-06-14 13:14:38 +00004555 !1 = !DIExpression(DW_OP_constu, 3, DW_OP_plus)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004556 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
Florian Hahnffc498d2017-06-14 13:14:38 +00004557 !3 = !DIExpression(DW_OP_deref, DW_OP_constu, 3, DW_OP_plus, DW_OP_LLVM_fragment, 3, 7)
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004558 !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004559 !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004560
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004561DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004562""""""""""""""
4563
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004564``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004565
4566.. code-block:: llvm
4567
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004568 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004569 getter: "getFoo", attributes: 7, type: !2)
4570
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004571DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004572""""""""""""""""
4573
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004574``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004575compile unit.
4576
Renato Golin124f2592016-07-20 12:16:38 +00004577.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004578
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004579 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004580 entity: !1, line: 7)
4581
Amjad Abouda9bcf162015-12-10 12:56:35 +00004582DIMacro
4583"""""""
4584
4585``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4586The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004587defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004588used to expand the macro identifier.
4589
Renato Golin124f2592016-07-20 12:16:38 +00004590.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004591
4592 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4593 value: "((x) + 1)")
4594 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4595
4596DIMacroFile
4597"""""""""""
4598
4599``DIMacroFile`` nodes represent inclusion of source files.
4600The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4601appear in the included source file.
4602
Renato Golin124f2592016-07-20 12:16:38 +00004603.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004604
4605 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4606 nodes: !3)
4607
Sean Silvab084af42012-12-07 10:36:55 +00004608'``tbaa``' Metadata
4609^^^^^^^^^^^^^^^^^^^
4610
4611In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004612suitable for doing type based alias analysis (TBAA). Instead, metadata is
4613added to the IR to describe a type system of a higher level language. This
4614can be used to implement C/C++ strict type aliasing rules, but it can also
4615be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004616
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004617This description of LLVM's TBAA system is broken into two parts:
4618:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4619:ref:`Representation<tbaa_node_representation>` talks about the metadata
4620encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004621
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004622It is always possible to trace any TBAA node to a "root" TBAA node (details
4623in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4624nodes with different roots have an unknown aliasing relationship, and LLVM
4625conservatively infers ``MayAlias`` between them. The rules mentioned in
4626this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004627
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004628.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004629
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004630Semantics
4631"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004632
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004633The TBAA metadata system, referred to as "struct path TBAA" (not to be
4634confused with ``tbaa.struct``), consists of the following high level
4635concepts: *Type Descriptors*, further subdivided into scalar type
4636descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004637
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004638**Type descriptors** describe the type system of the higher level language
4639being compiled. **Scalar type descriptors** describe types that do not
4640contain other types. Each scalar type has a parent type, which must also
4641be a scalar type or the TBAA root. Via this parent relation, scalar types
4642within a TBAA root form a tree. **Struct type descriptors** denote types
4643that contain a sequence of other type descriptors, at known offsets. These
4644contained type descriptors can either be struct type descriptors themselves
4645or scalar type descriptors.
4646
4647**Access tags** are metadata nodes attached to load and store instructions.
4648Access tags use type descriptors to describe the *location* being accessed
4649in terms of the type system of the higher level language. Access tags are
4650tuples consisting of a base type, an access type and an offset. The base
4651type is a scalar type descriptor or a struct type descriptor, the access
4652type is a scalar type descriptor, and the offset is a constant integer.
4653
4654The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4655things:
4656
4657 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4658 or store) of a value of type ``AccessTy`` contained in the struct type
4659 ``BaseTy`` at offset ``Offset``.
4660
4661 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4662 ``AccessTy`` must be the same; and the access tag describes a scalar
4663 access with scalar type ``AccessTy``.
4664
4665We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4666tuples this way:
4667
4668 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4669 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4670 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4671 undefined if ``Offset`` is non-zero.
4672
4673 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4674 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4675 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4676 to be relative within that inner type.
4677
4678A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4679aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4680Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4681Offset2)`` via the ``Parent`` relation or vice versa.
4682
4683As a concrete example, the type descriptor graph for the following program
4684
4685.. code-block:: c
4686
4687 struct Inner {
4688 int i; // offset 0
4689 float f; // offset 4
4690 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004691
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004692 struct Outer {
4693 float f; // offset 0
4694 double d; // offset 4
4695 struct Inner inner_a; // offset 12
4696 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004697
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004698 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4699 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4700 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
4701 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, IntScalarTy, 16)
4702 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4703 }
4704
4705is (note that in C and C++, ``char`` can be used to access any arbitrary
4706type):
4707
4708.. code-block:: text
4709
4710 Root = "TBAA Root"
4711 CharScalarTy = ("char", Root, 0)
4712 FloatScalarTy = ("float", CharScalarTy, 0)
4713 DoubleScalarTy = ("double", CharScalarTy, 0)
4714 IntScalarTy = ("int", CharScalarTy, 0)
4715 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4716 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4717 (InnerStructTy, 12)}
4718
4719
4720with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
47210)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4722``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4723
4724.. _tbaa_node_representation:
4725
4726Representation
4727""""""""""""""
4728
4729The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4730with exactly one ``MDString`` operand.
4731
4732Scalar type descriptors are represented as an ``MDNode`` s with two
4733operands. The first operand is an ``MDString`` denoting the name of the
4734struct type. LLVM does not assign meaning to the value of this operand, it
4735only cares about it being an ``MDString``. The second operand is an
4736``MDNode`` which points to the parent for said scalar type descriptor,
4737which is either another scalar type descriptor or the TBAA root. Scalar
4738type descriptors can have an optional third argument, but that must be the
4739constant integer zero.
4740
4741Struct type descriptors are represented as ``MDNode`` s with an odd number
4742of operands greater than 1. The first operand is an ``MDString`` denoting
4743the name of the struct type. Like in scalar type descriptors the actual
4744value of this name operand is irrelevant to LLVM. After the name operand,
4745the struct type descriptors have a sequence of alternating ``MDNode`` and
4746``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4747an ``MDNode``, denotes a contained field, and the 2N th operand, a
4748``ConstantInt``, is the offset of the said contained field. The offsets
4749must be in non-decreasing order.
4750
4751Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4752The first operand is an ``MDNode`` pointing to the node representing the
4753base type. The second operand is an ``MDNode`` pointing to the node
4754representing the access type. The third operand is a ``ConstantInt`` that
4755states the offset of the access. If a fourth field is present, it must be
4756a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4757that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004758``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004759AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4760the access type and the base type of an access tag must be the same, and
4761that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004762
4763'``tbaa.struct``' Metadata
4764^^^^^^^^^^^^^^^^^^^^^^^^^^
4765
4766The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4767aggregate assignment operations in C and similar languages, however it
4768is defined to copy a contiguous region of memory, which is more than
4769strictly necessary for aggregate types which contain holes due to
4770padding. Also, it doesn't contain any TBAA information about the fields
4771of the aggregate.
4772
4773``!tbaa.struct`` metadata can describe which memory subregions in a
4774memcpy are padding and what the TBAA tags of the struct are.
4775
4776The current metadata format is very simple. ``!tbaa.struct`` metadata
4777nodes are a list of operands which are in conceptual groups of three.
4778For each group of three, the first operand gives the byte offset of a
4779field in bytes, the second gives its size in bytes, and the third gives
4780its tbaa tag. e.g.:
4781
4782.. code-block:: llvm
4783
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004784 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004785
4786This describes a struct with two fields. The first is at offset 0 bytes
4787with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4788and has size 4 bytes and has tbaa tag !2.
4789
4790Note that the fields need not be contiguous. In this example, there is a
47914 byte gap between the two fields. This gap represents padding which
4792does not carry useful data and need not be preserved.
4793
Hal Finkel94146652014-07-24 14:25:39 +00004794'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004795^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004796
4797``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4798noalias memory-access sets. This means that some collection of memory access
4799instructions (loads, stores, memory-accessing calls, etc.) that carry
4800``noalias`` metadata can specifically be specified not to alias with some other
4801collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004802Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004803a domain.
4804
4805When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004806of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004807subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004808instruction's ``noalias`` list, then the two memory accesses are assumed not to
4809alias.
Hal Finkel94146652014-07-24 14:25:39 +00004810
Adam Nemet569a5b32016-04-27 00:52:48 +00004811Because scopes in one domain don't affect scopes in other domains, separate
4812domains can be used to compose multiple independent noalias sets. This is
4813used for example during inlining. As the noalias function parameters are
4814turned into noalias scope metadata, a new domain is used every time the
4815function is inlined.
4816
Hal Finkel029cde62014-07-25 15:50:02 +00004817The metadata identifying each domain is itself a list containing one or two
4818entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004819string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004820self-reference can be used to create globally unique domain names. A
4821descriptive string may optionally be provided as a second list entry.
4822
4823The metadata identifying each scope is also itself a list containing two or
4824three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004825is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004826self-reference can be used to create globally unique scope names. A metadata
4827reference to the scope's domain is the second entry. A descriptive string may
4828optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004829
4830For example,
4831
4832.. code-block:: llvm
4833
Hal Finkel029cde62014-07-25 15:50:02 +00004834 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004835 !0 = !{!0}
4836 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004837
Hal Finkel029cde62014-07-25 15:50:02 +00004838 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004839 !2 = !{!2, !0}
4840 !3 = !{!3, !0}
4841 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004842
Hal Finkel029cde62014-07-25 15:50:02 +00004843 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004844 !5 = !{!4} ; A list containing only scope !4
4845 !6 = !{!4, !3, !2}
4846 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004847
4848 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004849 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004850 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004851
Hal Finkel029cde62014-07-25 15:50:02 +00004852 ; These two instructions also don't alias (for domain !1, the set of scopes
4853 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004854 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004855 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004856
Adam Nemet0a8416f2015-05-11 08:30:28 +00004857 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004858 ; the !noalias list is not a superset of, or equal to, the scopes in the
4859 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004860 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004861 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004862
Sean Silvab084af42012-12-07 10:36:55 +00004863'``fpmath``' Metadata
4864^^^^^^^^^^^^^^^^^^^^^
4865
4866``fpmath`` metadata may be attached to any instruction of floating point
4867type. It can be used to express the maximum acceptable error in the
4868result of that instruction, in ULPs, thus potentially allowing the
4869compiler to use a more efficient but less accurate method of computing
4870it. ULP is defined as follows:
4871
4872 If ``x`` is a real number that lies between two finite consecutive
4873 floating-point numbers ``a`` and ``b``, without being equal to one
4874 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4875 distance between the two non-equal finite floating-point numbers
4876 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4877
Matt Arsenault82f41512016-06-27 19:43:15 +00004878The metadata node shall consist of a single positive float type number
4879representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004880
4881.. code-block:: llvm
4882
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004883 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004884
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004885.. _range-metadata:
4886
Sean Silvab084af42012-12-07 10:36:55 +00004887'``range``' Metadata
4888^^^^^^^^^^^^^^^^^^^^
4889
Jingyue Wu37fcb592014-06-19 16:50:16 +00004890``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4891integer types. It expresses the possible ranges the loaded value or the value
4892returned by the called function at this call site is in. The ranges are
4893represented with a flattened list of integers. The loaded value or the value
4894returned is known to be in the union of the ranges defined by each consecutive
4895pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004896
4897- The type must match the type loaded by the instruction.
4898- The pair ``a,b`` represents the range ``[a,b)``.
4899- Both ``a`` and ``b`` are constants.
4900- The range is allowed to wrap.
4901- The range should not represent the full or empty set. That is,
4902 ``a!=b``.
4903
4904In addition, the pairs must be in signed order of the lower bound and
4905they must be non-contiguous.
4906
4907Examples:
4908
4909.. code-block:: llvm
4910
David Blaikiec7aabbb2015-03-04 22:06:14 +00004911 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4912 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004913 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4914 %d = invoke i8 @bar() to label %cont
4915 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004916 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004917 !0 = !{ i8 0, i8 2 }
4918 !1 = !{ i8 255, i8 2 }
4919 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4920 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004921
Peter Collingbourne235c2752016-12-08 19:01:00 +00004922'``absolute_symbol``' Metadata
4923^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4924
4925``absolute_symbol`` metadata may be attached to a global variable
4926declaration. It marks the declaration as a reference to an absolute symbol,
4927which causes the backend to use absolute relocations for the symbol even
4928in position independent code, and expresses the possible ranges that the
4929global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00004930``range`` metadata, with the extension that the pair ``all-ones,all-ones``
4931may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00004932
Peter Collingbourned88f9282017-01-20 21:56:37 +00004933Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00004934
4935.. code-block:: llvm
4936
4937 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00004938 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00004939
4940 ...
4941 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00004942 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00004943
Matthew Simpson36bbc8c2017-10-16 22:22:11 +00004944'``callees``' Metadata
4945^^^^^^^^^^^^^^^^^^^^^^
4946
4947``callees`` metadata may be attached to indirect call sites. If ``callees``
4948metadata is attached to a call site, and any callee is not among the set of
4949functions provided by the metadata, the behavior is undefined. The intent of
4950this metadata is to facilitate optimizations such as indirect-call promotion.
4951For example, in the code below, the call instruction may only target the
4952``add`` or ``sub`` functions:
4953
4954.. code-block:: llvm
4955
4956 %result = call i64 %binop(i64 %x, i64 %y), !callees !0
4957
4958 ...
4959 !0 = !{i64 (i64, i64)* @add, i64 (i64, i64)* @sub}
4960
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004961'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004962^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004963
4964``unpredictable`` metadata may be attached to any branch or switch
4965instruction. It can be used to express the unpredictability of control
4966flow. Similar to the llvm.expect intrinsic, it may be used to alter
4967optimizations related to compare and branch instructions. The metadata
4968is treated as a boolean value; if it exists, it signals that the branch
4969or switch that it is attached to is completely unpredictable.
4970
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004971'``llvm.loop``'
4972^^^^^^^^^^^^^^^
4973
4974It is sometimes useful to attach information to loop constructs. Currently,
4975loop metadata is implemented as metadata attached to the branch instruction
4976in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004977guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004978specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004979
4980The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004981itself to avoid merging it with any other identifier metadata, e.g.,
4982during module linkage or function inlining. That is, each loop should refer
4983to their own identification metadata even if they reside in separate functions.
4984The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004985constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004986
4987.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004988
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004989 !0 = !{!0}
4990 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004991
Mark Heffernan893752a2014-07-18 19:24:51 +00004992The loop identifier metadata can be used to specify additional
4993per-loop metadata. Any operands after the first operand can be treated
4994as user-defined metadata. For example the ``llvm.loop.unroll.count``
4995suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004996
Paul Redmond5fdf8362013-05-28 20:00:34 +00004997.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004998
Paul Redmond5fdf8362013-05-28 20:00:34 +00004999 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
5000 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005001 !0 = !{!0, !1}
5002 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005003
Mark Heffernan9d20e422014-07-21 23:11:03 +00005004'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
5005^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00005006
Mark Heffernan9d20e422014-07-21 23:11:03 +00005007Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
5008used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00005009vectorization width and interleave count. These metadata should be used in
5010conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00005011``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
5012optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00005013it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00005014which contains information about loop-carried memory dependencies can be helpful
5015in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00005016
Mark Heffernan9d20e422014-07-21 23:11:03 +00005017'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00005018^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5019
Mark Heffernan9d20e422014-07-21 23:11:03 +00005020This metadata suggests an interleave count to the loop interleaver.
5021The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00005022second operand is an integer specifying the interleave count. For
5023example:
5024
5025.. code-block:: llvm
5026
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005027 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005028
Mark Heffernan9d20e422014-07-21 23:11:03 +00005029Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00005030multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00005031then the interleave count will be determined automatically.
5032
5033'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00005034^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00005035
5036This metadata selectively enables or disables vectorization for the loop. The
5037first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00005038is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000050390 disables vectorization:
5040
5041.. code-block:: llvm
5042
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005043 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
5044 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00005045
5046'``llvm.loop.vectorize.width``' Metadata
5047^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5048
5049This metadata sets the target width of the vectorizer. The first
5050operand is the string ``llvm.loop.vectorize.width`` and the second
5051operand is an integer specifying the width. For example:
5052
5053.. code-block:: llvm
5054
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005055 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005056
5057Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00005058vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000050590 or if the loop does not have this metadata the width will be
5060determined automatically.
5061
5062'``llvm.loop.unroll``'
5063^^^^^^^^^^^^^^^^^^^^^^
5064
5065Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
5066optimization hints such as the unroll factor. ``llvm.loop.unroll``
5067metadata should be used in conjunction with ``llvm.loop`` loop
5068identification metadata. The ``llvm.loop.unroll`` metadata are only
5069optimization hints and the unrolling will only be performed if the
5070optimizer believes it is safe to do so.
5071
Mark Heffernan893752a2014-07-18 19:24:51 +00005072'``llvm.loop.unroll.count``' Metadata
5073^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5074
5075This metadata suggests an unroll factor to the loop unroller. The
5076first operand is the string ``llvm.loop.unroll.count`` and the second
5077operand is a positive integer specifying the unroll factor. For
5078example:
5079
5080.. code-block:: llvm
5081
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005082 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005083
5084If the trip count of the loop is less than the unroll count the loop
5085will be partially unrolled.
5086
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005087'``llvm.loop.unroll.disable``' Metadata
5088^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5089
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005090This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00005091which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005092
5093.. code-block:: llvm
5094
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005095 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005096
Kevin Qin715b01e2015-03-09 06:14:18 +00005097'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00005098^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00005099
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005100This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00005101operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00005102
5103.. code-block:: llvm
5104
5105 !0 = !{!"llvm.loop.unroll.runtime.disable"}
5106
Mark Heffernan89391542015-08-10 17:28:08 +00005107'``llvm.loop.unroll.enable``' Metadata
5108^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5109
5110This metadata suggests that the loop should be fully unrolled if the trip count
5111is known at compile time and partially unrolled if the trip count is not known
5112at compile time. The metadata has a single operand which is the string
5113``llvm.loop.unroll.enable``. For example:
5114
5115.. code-block:: llvm
5116
5117 !0 = !{!"llvm.loop.unroll.enable"}
5118
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005119'``llvm.loop.unroll.full``' Metadata
5120^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5121
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005122This metadata suggests that the loop should be unrolled fully. The
5123metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005124For example:
5125
5126.. code-block:: llvm
5127
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005128 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005129
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005130'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00005131^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005132
5133This metadata indicates that the loop should not be versioned for the purpose
5134of enabling loop-invariant code motion (LICM). The metadata has a single operand
5135which is the string ``llvm.loop.licm_versioning.disable``. For example:
5136
5137.. code-block:: llvm
5138
5139 !0 = !{!"llvm.loop.licm_versioning.disable"}
5140
Adam Nemetd2fa4142016-04-27 05:28:18 +00005141'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00005142^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00005143
5144Loop distribution allows splitting a loop into multiple loops. Currently,
5145this is only performed if the entire loop cannot be vectorized due to unsafe
Hiroshi Inoueb93daec2017-07-02 12:44:27 +00005146memory dependencies. The transformation will attempt to isolate the unsafe
Adam Nemetd2fa4142016-04-27 05:28:18 +00005147dependencies into their own loop.
5148
5149This metadata can be used to selectively enable or disable distribution of the
5150loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
5151second operand is a bit. If the bit operand value is 1 distribution is
5152enabled. A value of 0 disables distribution:
5153
5154.. code-block:: llvm
5155
5156 !0 = !{!"llvm.loop.distribute.enable", i1 0}
5157 !1 = !{!"llvm.loop.distribute.enable", i1 1}
5158
5159This metadata should be used in conjunction with ``llvm.loop`` loop
5160identification metadata.
5161
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005162'``llvm.mem``'
5163^^^^^^^^^^^^^^^
5164
5165Metadata types used to annotate memory accesses with information helpful
5166for optimizations are prefixed with ``llvm.mem``.
5167
5168'``llvm.mem.parallel_loop_access``' Metadata
5169^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5170
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005171The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
5172or metadata containing a list of loop identifiers for nested loops.
5173The metadata is attached to memory accessing instructions and denotes that
5174no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00005175with the same loop identifier. The metadata on memory reads also implies that
5176if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005177
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005178Precisely, given two instructions ``m1`` and ``m2`` that both have the
5179``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
5180set of loops associated with that metadata, respectively, then there is no loop
5181carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005182``L2``.
5183
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005184As a special case, if all memory accessing instructions in a loop have
5185``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
5186loop has no loop carried memory dependences and is considered to be a parallel
5187loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005188
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005189Note that if not all memory access instructions have such metadata referring to
5190the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00005191memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005192safe mechanism, this causes loops that were originally parallel to be considered
5193sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005194insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005195
5196Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00005197both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005198metadata types that refer to the same loop identifier metadata.
5199
5200.. code-block:: llvm
5201
5202 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005203 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005204 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005205 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005206 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005207 ...
5208 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005209
5210 for.end:
5211 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005212 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005213
5214It is also possible to have nested parallel loops. In that case the
5215memory accesses refer to a list of loop identifier metadata nodes instead of
5216the loop identifier metadata node directly:
5217
5218.. code-block:: llvm
5219
5220 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005221 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005222 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005223 ...
5224 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005225
5226 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005227 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005228 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005229 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005230 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005231 ...
5232 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005233
5234 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005235 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005236 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00005237 ...
5238 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005239
5240 outer.for.end: ; preds = %for.body
5241 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005242 !0 = !{!1, !2} ; a list of loop identifiers
5243 !1 = !{!1} ; an identifier for the inner loop
5244 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005245
Hiroshi Yamauchidce9def2017-11-02 22:26:51 +00005246'``irr_loop``' Metadata
5247^^^^^^^^^^^^^^^^^^^^^^^
5248
5249``irr_loop`` metadata may be attached to the terminator instruction of a basic
5250block that's an irreducible loop header (note that an irreducible loop has more
5251than once header basic blocks.) If ``irr_loop`` metadata is attached to the
5252terminator instruction of a basic block that is not really an irreducible loop
5253header, the behavior is undefined. The intent of this metadata is to improve the
5254accuracy of the block frequency propagation. For example, in the code below, the
5255block ``header0`` may have a loop header weight (relative to the other headers of
5256the irreducible loop) of 100:
5257
5258.. code-block:: llvm
5259
5260 header0:
5261 ...
5262 br i1 %cmp, label %t1, label %t2, !irr_loop !0
5263
5264 ...
5265 !0 = !{"loop_header_weight", i64 100}
5266
5267Irreducible loop header weights are typically based on profile data.
5268
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005269'``invariant.group``' Metadata
5270^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5271
5272The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005273The existence of the ``invariant.group`` metadata on the instruction tells
5274the optimizer that every ``load`` and ``store`` to the same pointer operand
5275within the same invariant group can be assumed to load or store the same
5276value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005277when two pointers are considered the same). Pointers returned by bitcast or
5278getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005279
5280Examples:
5281
5282.. code-block:: llvm
5283
5284 @unknownPtr = external global i8
5285 ...
5286 %ptr = alloca i8
5287 store i8 42, i8* %ptr, !invariant.group !0
5288 call void @foo(i8* %ptr)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005289
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005290 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5291 call void @foo(i8* %ptr)
5292 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005293
5294 %newPtr = call i8* @getPointer(i8* %ptr)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005295 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005296
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005297 %unknownValue = load i8, i8* @unknownPtr
5298 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005299
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005300 call void @foo(i8* %ptr)
5301 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
5302 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005303
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005304 ...
5305 declare void @foo(i8*)
5306 declare i8* @getPointer(i8*)
5307 declare i8* @llvm.invariant.group.barrier(i8*)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005308
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005309 !0 = !{!"magic ptr"}
5310 !1 = !{!"other ptr"}
5311
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005312The invariant.group metadata must be dropped when replacing one pointer by
5313another based on aliasing information. This is because invariant.group is tied
5314to the SSA value of the pointer operand.
5315
5316.. code-block:: llvm
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005317
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005318 %v = load i8, i8* %x, !invariant.group !0
5319 ; if %x mustalias %y then we can replace the above instruction with
5320 %v = load i8, i8* %y
5321
5322
Peter Collingbournea333db82016-07-26 22:31:30 +00005323'``type``' Metadata
5324^^^^^^^^^^^^^^^^^^^
5325
5326See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005327
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005328'``associated``' Metadata
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005329^^^^^^^^^^^^^^^^^^^^^^^^^
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005330
5331The ``associated`` metadata may be attached to a global object
5332declaration with a single argument that references another global object.
5333
5334This metadata prevents discarding of the global object in linker GC
5335unless the referenced object is also discarded. The linker support for
5336this feature is spotty. For best compatibility, globals carrying this
5337metadata may also:
5338
5339- Be in a comdat with the referenced global.
5340- Be in @llvm.compiler.used.
5341- Have an explicit section with a name which is a valid C identifier.
5342
5343It does not have any effect on non-ELF targets.
5344
5345Example:
5346
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005347.. code-block:: text
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005348
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005349 $a = comdat any
5350 @a = global i32 1, comdat $a
5351 @b = internal global i32 2, comdat $a, section "abc", !associated !0
5352 !0 = !{i32* @a}
5353
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005354
Teresa Johnsond72f51c2017-06-15 15:57:12 +00005355'``prof``' Metadata
5356^^^^^^^^^^^^^^^^^^^
5357
5358The ``prof`` metadata is used to record profile data in the IR.
5359The first operand of the metadata node indicates the profile metadata
5360type. There are currently 3 types:
5361:ref:`branch_weights<prof_node_branch_weights>`,
5362:ref:`function_entry_count<prof_node_function_entry_count>`, and
5363:ref:`VP<prof_node_VP>`.
5364
5365.. _prof_node_branch_weights:
5366
5367branch_weights
5368""""""""""""""
5369
5370Branch weight metadata attached to a branch, select, switch or call instruction
5371represents the likeliness of the associated branch being taken.
5372For more information, see :doc:`BranchWeightMetadata`.
5373
5374.. _prof_node_function_entry_count:
5375
5376function_entry_count
5377""""""""""""""""""""
5378
5379Function entry count metadata can be attached to function definitions
5380to record the number of times the function is called. Used with BFI
5381information, it is also used to derive the basic block profile count.
5382For more information, see :doc:`BranchWeightMetadata`.
5383
5384.. _prof_node_VP:
5385
5386VP
5387""
5388
5389VP (value profile) metadata can be attached to instructions that have
5390value profile information. Currently this is indirect calls (where it
5391records the hottest callees) and calls to memory intrinsics such as memcpy,
5392memmove, and memset (where it records the hottest byte lengths).
5393
5394Each VP metadata node contains "VP" string, then a uint32_t value for the value
5395profiling kind, a uint64_t value for the total number of times the instruction
5396is executed, followed by uint64_t value and execution count pairs.
5397The value profiling kind is 0 for indirect call targets and 1 for memory
5398operations. For indirect call targets, each profile value is a hash
5399of the callee function name, and for memory operations each value is the
5400byte length.
5401
5402Note that the value counts do not need to add up to the total count
5403listed in the third operand (in practice only the top hottest values
5404are tracked and reported).
5405
5406Indirect call example:
5407
5408.. code-block:: llvm
5409
5410 call void %f(), !prof !1
5411 !1 = !{!"VP", i32 0, i64 1600, i64 7651369219802541373, i64 1030, i64 -4377547752858689819, i64 410}
5412
5413Note that the VP type is 0 (the second operand), which indicates this is
5414an indirect call value profile data. The third operand indicates that the
5415indirect call executed 1600 times. The 4th and 6th operands give the
5416hashes of the 2 hottest target functions' names (this is the same hash used
5417to represent function names in the profile database), and the 5th and 7th
5418operands give the execution count that each of the respective prior target
5419functions was called.
5420
Sean Silvab084af42012-12-07 10:36:55 +00005421Module Flags Metadata
5422=====================
5423
5424Information about the module as a whole is difficult to convey to LLVM's
5425subsystems. The LLVM IR isn't sufficient to transmit this information.
5426The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005427this. These flags are in the form of key / value pairs --- much like a
5428dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005429look it up.
5430
5431The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5432Each triplet has the following form:
5433
5434- The first element is a *behavior* flag, which specifies the behavior
5435 when two (or more) modules are merged together, and it encounters two
5436 (or more) metadata with the same ID. The supported behaviors are
5437 described below.
5438- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005439 metadata. Each module may only have one flag entry for each unique ID (not
5440 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005441- The third element is the value of the flag.
5442
5443When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005444``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5445each unique metadata ID string, there will be exactly one entry in the merged
5446modules ``llvm.module.flags`` metadata table, and the value for that entry will
5447be determined by the merge behavior flag, as described below. The only exception
5448is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005449
5450The following behaviors are supported:
5451
5452.. list-table::
5453 :header-rows: 1
5454 :widths: 10 90
5455
5456 * - Value
5457 - Behavior
5458
5459 * - 1
5460 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005461 Emits an error if two values disagree, otherwise the resulting value
5462 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005463
5464 * - 2
5465 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005466 Emits a warning if two values disagree. The result value will be the
5467 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005468
5469 * - 3
5470 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005471 Adds a requirement that another module flag be present and have a
5472 specified value after linking is performed. The value must be a
5473 metadata pair, where the first element of the pair is the ID of the
5474 module flag to be restricted, and the second element of the pair is
5475 the value the module flag should be restricted to. This behavior can
5476 be used to restrict the allowable results (via triggering of an
5477 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005478
5479 * - 4
5480 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005481 Uses the specified value, regardless of the behavior or value of the
5482 other module. If both modules specify **Override**, but the values
5483 differ, an error will be emitted.
5484
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005485 * - 5
5486 - **Append**
5487 Appends the two values, which are required to be metadata nodes.
5488
5489 * - 6
5490 - **AppendUnique**
5491 Appends the two values, which are required to be metadata
5492 nodes. However, duplicate entries in the second list are dropped
5493 during the append operation.
5494
Steven Wu86a511e2017-08-15 16:16:33 +00005495 * - 7
5496 - **Max**
5497 Takes the max of the two values, which are required to be integers.
5498
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005499It is an error for a particular unique flag ID to have multiple behaviors,
5500except in the case of **Require** (which adds restrictions on another metadata
5501value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005502
5503An example of module flags:
5504
5505.. code-block:: llvm
5506
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005507 !0 = !{ i32 1, !"foo", i32 1 }
5508 !1 = !{ i32 4, !"bar", i32 37 }
5509 !2 = !{ i32 2, !"qux", i32 42 }
5510 !3 = !{ i32 3, !"qux",
5511 !{
5512 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005513 }
5514 }
5515 !llvm.module.flags = !{ !0, !1, !2, !3 }
5516
5517- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5518 if two or more ``!"foo"`` flags are seen is to emit an error if their
5519 values are not equal.
5520
5521- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5522 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005523 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005524
5525- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5526 behavior if two or more ``!"qux"`` flags are seen is to emit a
5527 warning if their values are not equal.
5528
5529- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5530
5531 ::
5532
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005533 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005534
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005535 The behavior is to emit an error if the ``llvm.module.flags`` does not
5536 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5537 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005538
5539Objective-C Garbage Collection Module Flags Metadata
5540----------------------------------------------------
5541
5542On the Mach-O platform, Objective-C stores metadata about garbage
5543collection in a special section called "image info". The metadata
5544consists of a version number and a bitmask specifying what types of
5545garbage collection are supported (if any) by the file. If two or more
5546modules are linked together their garbage collection metadata needs to
5547be merged rather than appended together.
5548
5549The Objective-C garbage collection module flags metadata consists of the
5550following key-value pairs:
5551
5552.. list-table::
5553 :header-rows: 1
5554 :widths: 30 70
5555
5556 * - Key
5557 - Value
5558
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005559 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005560 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005561
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005562 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005563 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005564 always 0.
5565
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005566 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005567 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005568 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5569 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5570 Objective-C ABI version 2.
5571
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005572 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005573 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005574 not. Valid values are 0, for no garbage collection, and 2, for garbage
5575 collection supported.
5576
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005577 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005578 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005579 If present, its value must be 6. This flag requires that the
5580 ``Objective-C Garbage Collection`` flag have the value 2.
5581
5582Some important flag interactions:
5583
5584- If a module with ``Objective-C Garbage Collection`` set to 0 is
5585 merged with a module with ``Objective-C Garbage Collection`` set to
5586 2, then the resulting module has the
5587 ``Objective-C Garbage Collection`` flag set to 0.
5588- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5589 merged with a module with ``Objective-C GC Only`` set to 6.
5590
Oliver Stannard5dc29342014-06-20 10:08:11 +00005591C type width Module Flags Metadata
5592----------------------------------
5593
5594The ARM backend emits a section into each generated object file describing the
5595options that it was compiled with (in a compiler-independent way) to prevent
5596linking incompatible objects, and to allow automatic library selection. Some
5597of these options are not visible at the IR level, namely wchar_t width and enum
5598width.
5599
5600To pass this information to the backend, these options are encoded in module
5601flags metadata, using the following key-value pairs:
5602
5603.. list-table::
5604 :header-rows: 1
5605 :widths: 30 70
5606
5607 * - Key
5608 - Value
5609
5610 * - short_wchar
5611 - * 0 --- sizeof(wchar_t) == 4
5612 * 1 --- sizeof(wchar_t) == 2
5613
5614 * - short_enum
5615 - * 0 --- Enums are at least as large as an ``int``.
5616 * 1 --- Enums are stored in the smallest integer type which can
5617 represent all of its values.
5618
5619For example, the following metadata section specifies that the module was
5620compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5621enum is the smallest type which can represent all of its values::
5622
5623 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005624 !0 = !{i32 1, !"short_wchar", i32 1}
5625 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005626
Peter Collingbourne89061b22017-06-12 20:10:48 +00005627Automatic Linker Flags Named Metadata
5628=====================================
5629
5630Some targets support embedding flags to the linker inside individual object
5631files. Typically this is used in conjunction with language extensions which
5632allow source files to explicitly declare the libraries they depend on, and have
5633these automatically be transmitted to the linker via object files.
5634
5635These flags are encoded in the IR using named metadata with the name
5636``!llvm.linker.options``. Each operand is expected to be a metadata node
5637which should be a list of other metadata nodes, each of which should be a
5638list of metadata strings defining linker options.
5639
5640For example, the following metadata section specifies two separate sets of
5641linker options, presumably to link against ``libz`` and the ``Cocoa``
5642framework::
5643
5644 !0 = !{ !"-lz" },
5645 !1 = !{ !"-framework", !"Cocoa" } } }
5646 !llvm.linker.options = !{ !0, !1 }
5647
5648The metadata encoding as lists of lists of options, as opposed to a collapsed
5649list of options, is chosen so that the IR encoding can use multiple option
5650strings to specify e.g., a single library, while still having that specifier be
5651preserved as an atomic element that can be recognized by a target specific
5652assembly writer or object file emitter.
5653
5654Each individual option is required to be either a valid option for the target's
5655linker, or an option that is reserved by the target specific assembly writer or
5656object file emitter. No other aspect of these options is defined by the IR.
5657
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005658.. _intrinsicglobalvariables:
5659
Sean Silvab084af42012-12-07 10:36:55 +00005660Intrinsic Global Variables
5661==========================
5662
5663LLVM has a number of "magic" global variables that contain data that
5664affect code generation or other IR semantics. These are documented here.
5665All globals of this sort should have a section specified as
5666"``llvm.metadata``". This section and all globals that start with
5667"``llvm.``" are reserved for use by LLVM.
5668
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005669.. _gv_llvmused:
5670
Sean Silvab084af42012-12-07 10:36:55 +00005671The '``llvm.used``' Global Variable
5672-----------------------------------
5673
Rafael Espindola74f2e462013-04-22 14:58:02 +00005674The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005675:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005676pointers to named global variables, functions and aliases which may optionally
5677have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005678use of it is:
5679
5680.. code-block:: llvm
5681
5682 @X = global i8 4
5683 @Y = global i32 123
5684
5685 @llvm.used = appending global [2 x i8*] [
5686 i8* @X,
5687 i8* bitcast (i32* @Y to i8*)
5688 ], section "llvm.metadata"
5689
Rafael Espindola74f2e462013-04-22 14:58:02 +00005690If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5691and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005692symbol that it cannot see (which is why they have to be named). For example, if
5693a variable has internal linkage and no references other than that from the
5694``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5695references from inline asms and other things the compiler cannot "see", and
5696corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005697
5698On some targets, the code generator must emit a directive to the
5699assembler or object file to prevent the assembler and linker from
5700molesting the symbol.
5701
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005702.. _gv_llvmcompilerused:
5703
Sean Silvab084af42012-12-07 10:36:55 +00005704The '``llvm.compiler.used``' Global Variable
5705--------------------------------------------
5706
5707The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5708directive, except that it only prevents the compiler from touching the
5709symbol. On targets that support it, this allows an intelligent linker to
5710optimize references to the symbol without being impeded as it would be
5711by ``@llvm.used``.
5712
5713This is a rare construct that should only be used in rare circumstances,
5714and should not be exposed to source languages.
5715
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005716.. _gv_llvmglobalctors:
5717
Sean Silvab084af42012-12-07 10:36:55 +00005718The '``llvm.global_ctors``' Global Variable
5719-------------------------------------------
5720
5721.. code-block:: llvm
5722
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005723 %0 = type { i32, void ()*, i8* }
5724 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005725
5726The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005727functions, priorities, and an optional associated global or function.
5728The functions referenced by this array will be called in ascending order
5729of priority (i.e. lowest first) when the module is loaded. The order of
5730functions with the same priority is not defined.
5731
5732If the third field is present, non-null, and points to a global variable
5733or function, the initializer function will only run if the associated
5734data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005735
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005736.. _llvmglobaldtors:
5737
Sean Silvab084af42012-12-07 10:36:55 +00005738The '``llvm.global_dtors``' Global Variable
5739-------------------------------------------
5740
5741.. code-block:: llvm
5742
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005743 %0 = type { i32, void ()*, i8* }
5744 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005745
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005746The ``@llvm.global_dtors`` array contains a list of destructor
5747functions, priorities, and an optional associated global or function.
5748The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005749order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005750order of functions with the same priority is not defined.
5751
5752If the third field is present, non-null, and points to a global variable
5753or function, the destructor function will only run if the associated
5754data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005755
5756Instruction Reference
5757=====================
5758
5759The LLVM instruction set consists of several different classifications
5760of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5761instructions <binaryops>`, :ref:`bitwise binary
5762instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5763:ref:`other instructions <otherops>`.
5764
5765.. _terminators:
5766
5767Terminator Instructions
5768-----------------------
5769
5770As mentioned :ref:`previously <functionstructure>`, every basic block in a
5771program ends with a "Terminator" instruction, which indicates which
5772block should be executed after the current block is finished. These
5773terminator instructions typically yield a '``void``' value: they produce
5774control flow, not values (the one exception being the
5775':ref:`invoke <i_invoke>`' instruction).
5776
5777The terminator instructions are: ':ref:`ret <i_ret>`',
5778':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5779':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005780':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005781':ref:`catchret <i_catchret>`',
5782':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005783and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005784
5785.. _i_ret:
5786
5787'``ret``' Instruction
5788^^^^^^^^^^^^^^^^^^^^^
5789
5790Syntax:
5791"""""""
5792
5793::
5794
5795 ret <type> <value> ; Return a value from a non-void function
5796 ret void ; Return from void function
5797
5798Overview:
5799"""""""""
5800
5801The '``ret``' instruction is used to return control flow (and optionally
5802a value) from a function back to the caller.
5803
5804There are two forms of the '``ret``' instruction: one that returns a
5805value and then causes control flow, and one that just causes control
5806flow to occur.
5807
5808Arguments:
5809""""""""""
5810
5811The '``ret``' instruction optionally accepts a single argument, the
5812return value. The type of the return value must be a ':ref:`first
5813class <t_firstclass>`' type.
5814
5815A function is not :ref:`well formed <wellformed>` if it it has a non-void
5816return type and contains a '``ret``' instruction with no return value or
5817a return value with a type that does not match its type, or if it has a
5818void return type and contains a '``ret``' instruction with a return
5819value.
5820
5821Semantics:
5822""""""""""
5823
5824When the '``ret``' instruction is executed, control flow returns back to
5825the calling function's context. If the caller is a
5826":ref:`call <i_call>`" instruction, execution continues at the
5827instruction after the call. If the caller was an
5828":ref:`invoke <i_invoke>`" instruction, execution continues at the
5829beginning of the "normal" destination block. If the instruction returns
5830a value, that value shall set the call or invoke instruction's return
5831value.
5832
5833Example:
5834""""""""
5835
5836.. code-block:: llvm
5837
5838 ret i32 5 ; Return an integer value of 5
5839 ret void ; Return from a void function
5840 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5841
5842.. _i_br:
5843
5844'``br``' Instruction
5845^^^^^^^^^^^^^^^^^^^^
5846
5847Syntax:
5848"""""""
5849
5850::
5851
5852 br i1 <cond>, label <iftrue>, label <iffalse>
5853 br label <dest> ; Unconditional branch
5854
5855Overview:
5856"""""""""
5857
5858The '``br``' instruction is used to cause control flow to transfer to a
5859different basic block in the current function. There are two forms of
5860this instruction, corresponding to a conditional branch and an
5861unconditional branch.
5862
5863Arguments:
5864""""""""""
5865
5866The conditional branch form of the '``br``' instruction takes a single
5867'``i1``' value and two '``label``' values. The unconditional form of the
5868'``br``' instruction takes a single '``label``' value as a target.
5869
5870Semantics:
5871""""""""""
5872
5873Upon execution of a conditional '``br``' instruction, the '``i1``'
5874argument is evaluated. If the value is ``true``, control flows to the
5875'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5876to the '``iffalse``' ``label`` argument.
5877
5878Example:
5879""""""""
5880
5881.. code-block:: llvm
5882
5883 Test:
5884 %cond = icmp eq i32 %a, %b
5885 br i1 %cond, label %IfEqual, label %IfUnequal
5886 IfEqual:
5887 ret i32 1
5888 IfUnequal:
5889 ret i32 0
5890
5891.. _i_switch:
5892
5893'``switch``' Instruction
5894^^^^^^^^^^^^^^^^^^^^^^^^
5895
5896Syntax:
5897"""""""
5898
5899::
5900
5901 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5902
5903Overview:
5904"""""""""
5905
5906The '``switch``' instruction is used to transfer control flow to one of
5907several different places. It is a generalization of the '``br``'
5908instruction, allowing a branch to occur to one of many possible
5909destinations.
5910
5911Arguments:
5912""""""""""
5913
5914The '``switch``' instruction uses three parameters: an integer
5915comparison value '``value``', a default '``label``' destination, and an
5916array of pairs of comparison value constants and '``label``'s. The table
5917is not allowed to contain duplicate constant entries.
5918
5919Semantics:
5920""""""""""
5921
5922The ``switch`` instruction specifies a table of values and destinations.
5923When the '``switch``' instruction is executed, this table is searched
5924for the given value. If the value is found, control flow is transferred
5925to the corresponding destination; otherwise, control flow is transferred
5926to the default destination.
5927
5928Implementation:
5929"""""""""""""""
5930
5931Depending on properties of the target machine and the particular
5932``switch`` instruction, this instruction may be code generated in
5933different ways. For example, it could be generated as a series of
5934chained conditional branches or with a lookup table.
5935
5936Example:
5937""""""""
5938
5939.. code-block:: llvm
5940
5941 ; Emulate a conditional br instruction
5942 %Val = zext i1 %value to i32
5943 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5944
5945 ; Emulate an unconditional br instruction
5946 switch i32 0, label %dest [ ]
5947
5948 ; Implement a jump table:
5949 switch i32 %val, label %otherwise [ i32 0, label %onzero
5950 i32 1, label %onone
5951 i32 2, label %ontwo ]
5952
5953.. _i_indirectbr:
5954
5955'``indirectbr``' Instruction
5956^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5957
5958Syntax:
5959"""""""
5960
5961::
5962
5963 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5964
5965Overview:
5966"""""""""
5967
5968The '``indirectbr``' instruction implements an indirect branch to a
5969label within the current function, whose address is specified by
5970"``address``". Address must be derived from a
5971:ref:`blockaddress <blockaddress>` constant.
5972
5973Arguments:
5974""""""""""
5975
5976The '``address``' argument is the address of the label to jump to. The
5977rest of the arguments indicate the full set of possible destinations
5978that the address may point to. Blocks are allowed to occur multiple
5979times in the destination list, though this isn't particularly useful.
5980
5981This destination list is required so that dataflow analysis has an
5982accurate understanding of the CFG.
5983
5984Semantics:
5985""""""""""
5986
5987Control transfers to the block specified in the address argument. All
5988possible destination blocks must be listed in the label list, otherwise
5989this instruction has undefined behavior. This implies that jumps to
5990labels defined in other functions have undefined behavior as well.
5991
5992Implementation:
5993"""""""""""""""
5994
5995This is typically implemented with a jump through a register.
5996
5997Example:
5998""""""""
5999
6000.. code-block:: llvm
6001
6002 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
6003
6004.. _i_invoke:
6005
6006'``invoke``' Instruction
6007^^^^^^^^^^^^^^^^^^^^^^^^
6008
6009Syntax:
6010"""""""
6011
6012::
6013
David Blaikieb83cf102016-07-13 17:21:34 +00006014 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006015 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00006016
6017Overview:
6018"""""""""
6019
6020The '``invoke``' instruction causes control to transfer to a specified
6021function, with the possibility of control flow transfer to either the
6022'``normal``' label or the '``exception``' label. If the callee function
6023returns with the "``ret``" instruction, control flow will return to the
6024"normal" label. If the callee (or any indirect callees) returns via the
6025":ref:`resume <i_resume>`" instruction or other exception handling
6026mechanism, control is interrupted and continued at the dynamically
6027nearest "exception" label.
6028
6029The '``exception``' label is a `landing
6030pad <ExceptionHandling.html#overview>`_ for the exception. As such,
6031'``exception``' label is required to have the
6032":ref:`landingpad <i_landingpad>`" instruction, which contains the
6033information about the behavior of the program after unwinding happens,
6034as its first non-PHI instruction. The restrictions on the
6035"``landingpad``" instruction's tightly couples it to the "``invoke``"
6036instruction, so that the important information contained within the
6037"``landingpad``" instruction can't be lost through normal code motion.
6038
6039Arguments:
6040""""""""""
6041
6042This instruction requires several arguments:
6043
6044#. The optional "cconv" marker indicates which :ref:`calling
6045 convention <callingconv>` the call should use. If none is
6046 specified, the call defaults to using C calling conventions.
6047#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6048 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6049 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00006050#. '``ty``': the type of the call instruction itself which is also the
6051 type of the return value. Functions that return no value are marked
6052 ``void``.
6053#. '``fnty``': shall be the signature of the function being invoked. The
6054 argument types must match the types implied by this signature. This
6055 type can be omitted if the function is not varargs.
6056#. '``fnptrval``': An LLVM value containing a pointer to a function to
6057 be invoked. In most cases, this is a direct function invocation, but
6058 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
6059 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00006060#. '``function args``': argument list whose types match the function
6061 signature argument types and parameter attributes. All arguments must
6062 be of :ref:`first class <t_firstclass>` type. If the function signature
6063 indicates the function accepts a variable number of arguments, the
6064 extra arguments can be specified.
6065#. '``normal label``': the label reached when the called function
6066 executes a '``ret``' instruction.
6067#. '``exception label``': the label reached when a callee returns via
6068 the :ref:`resume <i_resume>` instruction or other exception handling
6069 mechanism.
George Burgess IV8a464a72017-04-13 05:00:31 +00006070#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006071#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00006072
6073Semantics:
6074""""""""""
6075
6076This instruction is designed to operate as a standard '``call``'
6077instruction in most regards. The primary difference is that it
6078establishes an association with a label, which is used by the runtime
6079library to unwind the stack.
6080
6081This instruction is used in languages with destructors to ensure that
6082proper cleanup is performed in the case of either a ``longjmp`` or a
6083thrown exception. Additionally, this is important for implementation of
6084'``catch``' clauses in high-level languages that support them.
6085
6086For the purposes of the SSA form, the definition of the value returned
6087by the '``invoke``' instruction is deemed to occur on the edge from the
6088current block to the "normal" label. If the callee unwinds then no
6089return value is available.
6090
6091Example:
6092""""""""
6093
6094.. code-block:: llvm
6095
6096 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006097 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006098 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006099 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006100
6101.. _i_resume:
6102
6103'``resume``' Instruction
6104^^^^^^^^^^^^^^^^^^^^^^^^
6105
6106Syntax:
6107"""""""
6108
6109::
6110
6111 resume <type> <value>
6112
6113Overview:
6114"""""""""
6115
6116The '``resume``' instruction is a terminator instruction that has no
6117successors.
6118
6119Arguments:
6120""""""""""
6121
6122The '``resume``' instruction requires one argument, which must have the
6123same type as the result of any '``landingpad``' instruction in the same
6124function.
6125
6126Semantics:
6127""""""""""
6128
6129The '``resume``' instruction resumes propagation of an existing
6130(in-flight) exception whose unwinding was interrupted with a
6131:ref:`landingpad <i_landingpad>` instruction.
6132
6133Example:
6134""""""""
6135
6136.. code-block:: llvm
6137
6138 resume { i8*, i32 } %exn
6139
David Majnemer8a1c45d2015-12-12 05:38:55 +00006140.. _i_catchswitch:
6141
6142'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00006143^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00006144
6145Syntax:
6146"""""""
6147
6148::
6149
6150 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
6151 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
6152
6153Overview:
6154"""""""""
6155
6156The '``catchswitch``' instruction is used by `LLVM's exception handling system
6157<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
6158that may be executed by the :ref:`EH personality routine <personalityfn>`.
6159
6160Arguments:
6161""""""""""
6162
6163The ``parent`` argument is the token of the funclet that contains the
6164``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
6165this operand may be the token ``none``.
6166
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006167The ``default`` argument is the label of another basic block beginning with
6168either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
6169must be a legal target with respect to the ``parent`` links, as described in
6170the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00006171
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006172The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00006173:ref:`catchpad <i_catchpad>` instruction.
6174
6175Semantics:
6176""""""""""
6177
6178Executing this instruction transfers control to one of the successors in
6179``handlers``, if appropriate, or continues to unwind via the unwind label if
6180present.
6181
6182The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
6183it must be both the first non-phi instruction and last instruction in the basic
6184block. Therefore, it must be the only non-phi instruction in the block.
6185
6186Example:
6187""""""""
6188
Renato Golin124f2592016-07-20 12:16:38 +00006189.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00006190
6191 dispatch1:
6192 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
6193 dispatch2:
6194 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
6195
David Majnemer654e1302015-07-31 17:58:14 +00006196.. _i_catchret:
6197
6198'``catchret``' Instruction
6199^^^^^^^^^^^^^^^^^^^^^^^^^^
6200
6201Syntax:
6202"""""""
6203
6204::
6205
David Majnemer8a1c45d2015-12-12 05:38:55 +00006206 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00006207
6208Overview:
6209"""""""""
6210
6211The '``catchret``' instruction is a terminator instruction that has a
6212single successor.
6213
6214
6215Arguments:
6216""""""""""
6217
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006218The first argument to a '``catchret``' indicates which ``catchpad`` it
6219exits. It must be a :ref:`catchpad <i_catchpad>`.
6220The second argument to a '``catchret``' specifies where control will
6221transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00006222
6223Semantics:
6224""""""""""
6225
David Majnemer8a1c45d2015-12-12 05:38:55 +00006226The '``catchret``' instruction ends an existing (in-flight) exception whose
6227unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
6228:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
6229code to, for example, destroy the active exception. Control then transfers to
6230``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006231
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006232The ``token`` argument must be a token produced by a ``catchpad`` instruction.
6233If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
6234funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6235the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00006236
6237Example:
6238""""""""
6239
Renato Golin124f2592016-07-20 12:16:38 +00006240.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006241
David Majnemer8a1c45d2015-12-12 05:38:55 +00006242 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006243
David Majnemer654e1302015-07-31 17:58:14 +00006244.. _i_cleanupret:
6245
6246'``cleanupret``' Instruction
6247^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6248
6249Syntax:
6250"""""""
6251
6252::
6253
David Majnemer8a1c45d2015-12-12 05:38:55 +00006254 cleanupret from <value> unwind label <continue>
6255 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00006256
6257Overview:
6258"""""""""
6259
6260The '``cleanupret``' instruction is a terminator instruction that has
6261an optional successor.
6262
6263
6264Arguments:
6265""""""""""
6266
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006267The '``cleanupret``' instruction requires one argument, which indicates
6268which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006269If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
6270funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6271the ``cleanupret``'s behavior is undefined.
6272
6273The '``cleanupret``' instruction also has an optional successor, ``continue``,
6274which must be the label of another basic block beginning with either a
6275``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
6276be a legal target with respect to the ``parent`` links, as described in the
6277`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00006278
6279Semantics:
6280""""""""""
6281
6282The '``cleanupret``' instruction indicates to the
6283:ref:`personality function <personalityfn>` that one
6284:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
6285It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006286
David Majnemer654e1302015-07-31 17:58:14 +00006287Example:
6288""""""""
6289
Renato Golin124f2592016-07-20 12:16:38 +00006290.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006291
David Majnemer8a1c45d2015-12-12 05:38:55 +00006292 cleanupret from %cleanup unwind to caller
6293 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00006294
Sean Silvab084af42012-12-07 10:36:55 +00006295.. _i_unreachable:
6296
6297'``unreachable``' Instruction
6298^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6299
6300Syntax:
6301"""""""
6302
6303::
6304
6305 unreachable
6306
6307Overview:
6308"""""""""
6309
6310The '``unreachable``' instruction has no defined semantics. This
6311instruction is used to inform the optimizer that a particular portion of
6312the code is not reachable. This can be used to indicate that the code
6313after a no-return function cannot be reached, and other facts.
6314
6315Semantics:
6316""""""""""
6317
6318The '``unreachable``' instruction has no defined semantics.
6319
6320.. _binaryops:
6321
6322Binary Operations
6323-----------------
6324
6325Binary operators are used to do most of the computation in a program.
6326They require two operands of the same type, execute an operation on
6327them, and produce a single value. The operands might represent multiple
6328data, as is the case with the :ref:`vector <t_vector>` data type. The
6329result value has the same type as its operands.
6330
6331There are several different binary operators:
6332
6333.. _i_add:
6334
6335'``add``' Instruction
6336^^^^^^^^^^^^^^^^^^^^^
6337
6338Syntax:
6339"""""""
6340
6341::
6342
Tim Northover675a0962014-06-13 14:24:23 +00006343 <result> = add <ty> <op1>, <op2> ; yields ty:result
6344 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
6345 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
6346 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006347
6348Overview:
6349"""""""""
6350
6351The '``add``' instruction returns the sum of its two operands.
6352
6353Arguments:
6354""""""""""
6355
6356The two arguments to the '``add``' instruction must be
6357:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6358arguments must have identical types.
6359
6360Semantics:
6361""""""""""
6362
6363The value produced is the integer sum of the two operands.
6364
6365If the sum has unsigned overflow, the result returned is the
6366mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6367the result.
6368
6369Because LLVM integers use a two's complement representation, this
6370instruction is appropriate for both signed and unsigned integers.
6371
6372``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6373respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6374result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
6375unsigned and/or signed overflow, respectively, occurs.
6376
6377Example:
6378""""""""
6379
Renato Golin124f2592016-07-20 12:16:38 +00006380.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006381
Tim Northover675a0962014-06-13 14:24:23 +00006382 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006383
6384.. _i_fadd:
6385
6386'``fadd``' Instruction
6387^^^^^^^^^^^^^^^^^^^^^^
6388
6389Syntax:
6390"""""""
6391
6392::
6393
Tim Northover675a0962014-06-13 14:24:23 +00006394 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006395
6396Overview:
6397"""""""""
6398
6399The '``fadd``' instruction returns the sum of its two operands.
6400
6401Arguments:
6402""""""""""
6403
6404The two arguments to the '``fadd``' instruction must be :ref:`floating
6405point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6406Both arguments must have identical types.
6407
6408Semantics:
6409""""""""""
6410
Sanjay Patel7b722402018-03-07 17:18:22 +00006411The value produced is the floating-point sum of the two operands.
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00006412This instruction is assumed to execute in the default floating-point
6413environment. It has no side effects. Users can not assume that any
6414floating-point exception state is updated by this instruction.
Sanjay Patel7b722402018-03-07 17:18:22 +00006415This instruction can also take any number of :ref:`fast-math
6416flags <fastmath>`, which are optimization hints to enable otherwise
6417unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006418
6419Example:
6420""""""""
6421
Renato Golin124f2592016-07-20 12:16:38 +00006422.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006423
Tim Northover675a0962014-06-13 14:24:23 +00006424 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006425
6426'``sub``' Instruction
6427^^^^^^^^^^^^^^^^^^^^^
6428
6429Syntax:
6430"""""""
6431
6432::
6433
Tim Northover675a0962014-06-13 14:24:23 +00006434 <result> = sub <ty> <op1>, <op2> ; yields ty:result
6435 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
6436 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
6437 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006438
6439Overview:
6440"""""""""
6441
6442The '``sub``' instruction returns the difference of its two operands.
6443
6444Note that the '``sub``' instruction is used to represent the '``neg``'
6445instruction present in most other intermediate representations.
6446
6447Arguments:
6448""""""""""
6449
6450The two arguments to the '``sub``' instruction must be
6451:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6452arguments must have identical types.
6453
6454Semantics:
6455""""""""""
6456
6457The value produced is the integer difference of the two operands.
6458
6459If the difference has unsigned overflow, the result returned is the
6460mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6461the result.
6462
6463Because LLVM integers use a two's complement representation, this
6464instruction is appropriate for both signed and unsigned integers.
6465
6466``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6467respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6468result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
6469unsigned and/or signed overflow, respectively, occurs.
6470
6471Example:
6472""""""""
6473
Renato Golin124f2592016-07-20 12:16:38 +00006474.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006475
Tim Northover675a0962014-06-13 14:24:23 +00006476 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6477 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006478
6479.. _i_fsub:
6480
6481'``fsub``' Instruction
6482^^^^^^^^^^^^^^^^^^^^^^
6483
6484Syntax:
6485"""""""
6486
6487::
6488
Tim Northover675a0962014-06-13 14:24:23 +00006489 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006490
6491Overview:
6492"""""""""
6493
6494The '``fsub``' instruction returns the difference of its two operands.
6495
6496Note that the '``fsub``' instruction is used to represent the '``fneg``'
6497instruction present in most other intermediate representations.
6498
6499Arguments:
6500""""""""""
6501
6502The two arguments to the '``fsub``' instruction must be :ref:`floating
6503point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6504Both arguments must have identical types.
6505
6506Semantics:
6507""""""""""
6508
Sanjay Patel7b722402018-03-07 17:18:22 +00006509The value produced is the floating-point difference of the two operands.
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00006510This instruction is assumed to execute in the default floating-point
6511environment. It has no side effects. Users can not assume that any
6512floating-point exception state is updated by this instruction.
Sean Silvab084af42012-12-07 10:36:55 +00006513This instruction can also take any number of :ref:`fast-math
6514flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00006515unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006516
6517Example:
6518""""""""
6519
Renato Golin124f2592016-07-20 12:16:38 +00006520.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006521
Tim Northover675a0962014-06-13 14:24:23 +00006522 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6523 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006524
6525'``mul``' Instruction
6526^^^^^^^^^^^^^^^^^^^^^
6527
6528Syntax:
6529"""""""
6530
6531::
6532
Tim Northover675a0962014-06-13 14:24:23 +00006533 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6534 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6535 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6536 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006537
6538Overview:
6539"""""""""
6540
6541The '``mul``' instruction returns the product of its two operands.
6542
6543Arguments:
6544""""""""""
6545
6546The two arguments to the '``mul``' instruction must be
6547:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6548arguments must have identical types.
6549
6550Semantics:
6551""""""""""
6552
6553The value produced is the integer product of the two operands.
6554
6555If the result of the multiplication has unsigned overflow, the result
6556returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6557bit width of the result.
6558
6559Because LLVM integers use a two's complement representation, and the
6560result is the same width as the operands, this instruction returns the
6561correct result for both signed and unsigned integers. If a full product
6562(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6563sign-extended or zero-extended as appropriate to the width of the full
6564product.
6565
6566``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6567respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6568result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6569unsigned and/or signed overflow, respectively, occurs.
6570
6571Example:
6572""""""""
6573
Renato Golin124f2592016-07-20 12:16:38 +00006574.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006575
Tim Northover675a0962014-06-13 14:24:23 +00006576 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006577
6578.. _i_fmul:
6579
6580'``fmul``' Instruction
6581^^^^^^^^^^^^^^^^^^^^^^
6582
6583Syntax:
6584"""""""
6585
6586::
6587
Tim Northover675a0962014-06-13 14:24:23 +00006588 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006589
6590Overview:
6591"""""""""
6592
6593The '``fmul``' instruction returns the product of its two operands.
6594
6595Arguments:
6596""""""""""
6597
6598The two arguments to the '``fmul``' instruction must be :ref:`floating
6599point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6600Both arguments must have identical types.
6601
6602Semantics:
6603""""""""""
6604
Sanjay Patel7b722402018-03-07 17:18:22 +00006605The value produced is the floating-point product of the two operands.
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00006606This instruction is assumed to execute in the default floating-point
6607environment. It has no side effects. Users can not assume that any
6608floating-point exception state is updated by this instruction.
Sean Silvab084af42012-12-07 10:36:55 +00006609This instruction can also take any number of :ref:`fast-math
6610flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00006611unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006612
6613Example:
6614""""""""
6615
Renato Golin124f2592016-07-20 12:16:38 +00006616.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006617
Tim Northover675a0962014-06-13 14:24:23 +00006618 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006619
6620'``udiv``' Instruction
6621^^^^^^^^^^^^^^^^^^^^^^
6622
6623Syntax:
6624"""""""
6625
6626::
6627
Tim Northover675a0962014-06-13 14:24:23 +00006628 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6629 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006630
6631Overview:
6632"""""""""
6633
6634The '``udiv``' instruction returns the quotient of its two operands.
6635
6636Arguments:
6637""""""""""
6638
6639The two arguments to the '``udiv``' instruction must be
6640:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6641arguments must have identical types.
6642
6643Semantics:
6644""""""""""
6645
6646The value produced is the unsigned integer quotient of the two operands.
6647
6648Note that unsigned integer division and signed integer division are
6649distinct operations; for signed integer division, use '``sdiv``'.
6650
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006651Division by zero is undefined behavior. For vectors, if any element
6652of the divisor is zero, the operation has undefined behavior.
6653
Sean Silvab084af42012-12-07 10:36:55 +00006654
6655If the ``exact`` keyword is present, the result value of the ``udiv`` is
6656a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6657such, "((a udiv exact b) mul b) == a").
6658
6659Example:
6660""""""""
6661
Renato Golin124f2592016-07-20 12:16:38 +00006662.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006663
Tim Northover675a0962014-06-13 14:24:23 +00006664 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006665
6666'``sdiv``' Instruction
6667^^^^^^^^^^^^^^^^^^^^^^
6668
6669Syntax:
6670"""""""
6671
6672::
6673
Tim Northover675a0962014-06-13 14:24:23 +00006674 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6675 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006676
6677Overview:
6678"""""""""
6679
6680The '``sdiv``' instruction returns the quotient of its two operands.
6681
6682Arguments:
6683""""""""""
6684
6685The two arguments to the '``sdiv``' instruction must be
6686:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6687arguments must have identical types.
6688
6689Semantics:
6690""""""""""
6691
6692The value produced is the signed integer quotient of the two operands
6693rounded towards zero.
6694
6695Note that signed integer division and unsigned integer division are
6696distinct operations; for unsigned integer division, use '``udiv``'.
6697
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006698Division by zero is undefined behavior. For vectors, if any element
6699of the divisor is zero, the operation has undefined behavior.
6700Overflow also leads to undefined behavior; this is a rare case, but can
6701occur, for example, by doing a 32-bit division of -2147483648 by -1.
Sean Silvab084af42012-12-07 10:36:55 +00006702
6703If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6704a :ref:`poison value <poisonvalues>` if the result would be rounded.
6705
6706Example:
6707""""""""
6708
Renato Golin124f2592016-07-20 12:16:38 +00006709.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006710
Tim Northover675a0962014-06-13 14:24:23 +00006711 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006712
6713.. _i_fdiv:
6714
6715'``fdiv``' Instruction
6716^^^^^^^^^^^^^^^^^^^^^^
6717
6718Syntax:
6719"""""""
6720
6721::
6722
Tim Northover675a0962014-06-13 14:24:23 +00006723 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006724
6725Overview:
6726"""""""""
6727
6728The '``fdiv``' instruction returns the quotient of its two operands.
6729
6730Arguments:
6731""""""""""
6732
6733The two arguments to the '``fdiv``' instruction must be :ref:`floating
6734point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6735Both arguments must have identical types.
6736
6737Semantics:
6738""""""""""
6739
Sanjay Patel7b722402018-03-07 17:18:22 +00006740The value produced is the floating-point quotient of the two operands.
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00006741This instruction is assumed to execute in the default floating-point
6742environment. It has no side effects. Users can not assume that any
6743floating-point exception state is updated by this instruction.
Sean Silvab084af42012-12-07 10:36:55 +00006744This instruction can also take any number of :ref:`fast-math
6745flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00006746unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006747
6748Example:
6749""""""""
6750
Renato Golin124f2592016-07-20 12:16:38 +00006751.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006752
Tim Northover675a0962014-06-13 14:24:23 +00006753 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006754
6755'``urem``' Instruction
6756^^^^^^^^^^^^^^^^^^^^^^
6757
6758Syntax:
6759"""""""
6760
6761::
6762
Tim Northover675a0962014-06-13 14:24:23 +00006763 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006764
6765Overview:
6766"""""""""
6767
6768The '``urem``' instruction returns the remainder from the unsigned
6769division of its two arguments.
6770
6771Arguments:
6772""""""""""
6773
6774The two arguments to the '``urem``' instruction must be
6775:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6776arguments must have identical types.
6777
6778Semantics:
6779""""""""""
6780
6781This instruction returns the unsigned integer *remainder* of a division.
6782This instruction always performs an unsigned division to get the
6783remainder.
6784
6785Note that unsigned integer remainder and signed integer remainder are
6786distinct operations; for signed integer remainder, use '``srem``'.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00006787
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006788Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00006789For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006790undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006791
6792Example:
6793""""""""
6794
Renato Golin124f2592016-07-20 12:16:38 +00006795.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006796
Tim Northover675a0962014-06-13 14:24:23 +00006797 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006798
6799'``srem``' Instruction
6800^^^^^^^^^^^^^^^^^^^^^^
6801
6802Syntax:
6803"""""""
6804
6805::
6806
Tim Northover675a0962014-06-13 14:24:23 +00006807 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006808
6809Overview:
6810"""""""""
6811
6812The '``srem``' instruction returns the remainder from the signed
6813division of its two operands. This instruction can also take
6814:ref:`vector <t_vector>` versions of the values in which case the elements
6815must be integers.
6816
6817Arguments:
6818""""""""""
6819
6820The two arguments to the '``srem``' instruction must be
6821:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6822arguments must have identical types.
6823
6824Semantics:
6825""""""""""
6826
6827This instruction returns the *remainder* of a division (where the result
6828is either zero or has the same sign as the dividend, ``op1``), not the
6829*modulo* operator (where the result is either zero or has the same sign
6830as the divisor, ``op2``) of a value. For more information about the
6831difference, see `The Math
6832Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6833table of how this is implemented in various languages, please see
6834`Wikipedia: modulo
6835operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6836
6837Note that signed integer remainder and unsigned integer remainder are
6838distinct operations; for unsigned integer remainder, use '``urem``'.
6839
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006840Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00006841For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006842undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006843Overflow also leads to undefined behavior; this is a rare case, but can
6844occur, for example, by taking the remainder of a 32-bit division of
6845-2147483648 by -1. (The remainder doesn't actually overflow, but this
6846rule lets srem be implemented using instructions that return both the
6847result of the division and the remainder.)
6848
6849Example:
6850""""""""
6851
Renato Golin124f2592016-07-20 12:16:38 +00006852.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006853
Tim Northover675a0962014-06-13 14:24:23 +00006854 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006855
6856.. _i_frem:
6857
6858'``frem``' Instruction
6859^^^^^^^^^^^^^^^^^^^^^^
6860
6861Syntax:
6862"""""""
6863
6864::
6865
Tim Northover675a0962014-06-13 14:24:23 +00006866 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006867
6868Overview:
6869"""""""""
6870
6871The '``frem``' instruction returns the remainder from the division of
6872its two operands.
6873
6874Arguments:
6875""""""""""
6876
6877The two arguments to the '``frem``' instruction must be :ref:`floating
6878point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6879Both arguments must have identical types.
6880
6881Semantics:
6882""""""""""
6883
Sanjay Patel7b722402018-03-07 17:18:22 +00006884The value produced is the floating-point remainder of the two operands.
6885This is the same output as a libm '``fmod``' function, but without any
6886possibility of setting ``errno``. The remainder has the same sign as the
6887dividend.
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00006888This instruction is assumed to execute in the default floating-point
6889environment. It has no side effects. Users can not assume that any
6890floating-point exception state is updated by this instruction.
Sanjay Patel7b722402018-03-07 17:18:22 +00006891This instruction can also take any number of :ref:`fast-math
6892flags <fastmath>`, which are optimization hints to enable otherwise
6893unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006894
6895Example:
6896""""""""
6897
Renato Golin124f2592016-07-20 12:16:38 +00006898.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006899
Tim Northover675a0962014-06-13 14:24:23 +00006900 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006901
6902.. _bitwiseops:
6903
6904Bitwise Binary Operations
6905-------------------------
6906
6907Bitwise binary operators are used to do various forms of bit-twiddling
6908in a program. They are generally very efficient instructions and can
6909commonly be strength reduced from other instructions. They require two
6910operands of the same type, execute an operation on them, and produce a
6911single value. The resulting value is the same type as its operands.
6912
6913'``shl``' Instruction
6914^^^^^^^^^^^^^^^^^^^^^
6915
6916Syntax:
6917"""""""
6918
6919::
6920
Tim Northover675a0962014-06-13 14:24:23 +00006921 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6922 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6923 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6924 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006925
6926Overview:
6927"""""""""
6928
6929The '``shl``' instruction returns the first operand shifted to the left
6930a specified number of bits.
6931
6932Arguments:
6933""""""""""
6934
6935Both arguments to the '``shl``' instruction must be the same
6936:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6937'``op2``' is treated as an unsigned value.
6938
6939Semantics:
6940""""""""""
6941
6942The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6943where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006944dynamically) equal to or larger than the number of bits in
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006945``op1``, this instruction returns a :ref:`poison value <poisonvalues>`.
6946If the arguments are vectors, each vector element of ``op1`` is shifted
6947by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006948
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006949If the ``nuw`` keyword is present, then the shift produces a poison
6950value if it shifts out any non-zero bits.
6951If the ``nsw`` keyword is present, then the shift produces a poison
6952value it shifts out any bits that disagree with the resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00006953
6954Example:
6955""""""""
6956
Renato Golin124f2592016-07-20 12:16:38 +00006957.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006958
Tim Northover675a0962014-06-13 14:24:23 +00006959 <result> = shl i32 4, %var ; yields i32: 4 << %var
6960 <result> = shl i32 4, 2 ; yields i32: 16
6961 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006962 <result> = shl i32 1, 32 ; undefined
6963 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6964
6965'``lshr``' Instruction
6966^^^^^^^^^^^^^^^^^^^^^^
6967
6968Syntax:
6969"""""""
6970
6971::
6972
Tim Northover675a0962014-06-13 14:24:23 +00006973 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6974 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006975
6976Overview:
6977"""""""""
6978
6979The '``lshr``' instruction (logical shift right) returns the first
6980operand shifted to the right a specified number of bits with zero fill.
6981
6982Arguments:
6983""""""""""
6984
6985Both arguments to the '``lshr``' instruction must be the same
6986:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6987'``op2``' is treated as an unsigned value.
6988
6989Semantics:
6990""""""""""
6991
6992This instruction always performs a logical shift right operation. The
6993most significant bits of the result will be filled with zero bits after
6994the shift. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006995than the number of bits in ``op1``, this instruction returns a :ref:`poison
6996value <poisonvalues>`. If the arguments are vectors, each vector element
6997of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006998
6999If the ``exact`` keyword is present, the result value of the ``lshr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007000a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007001
7002Example:
7003""""""""
7004
Renato Golin124f2592016-07-20 12:16:38 +00007005.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007006
Tim Northover675a0962014-06-13 14:24:23 +00007007 <result> = lshr i32 4, 1 ; yields i32:result = 2
7008 <result> = lshr i32 4, 2 ; yields i32:result = 1
7009 <result> = lshr i8 4, 3 ; yields i8:result = 0
7010 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00007011 <result> = lshr i32 1, 32 ; undefined
7012 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
7013
7014'``ashr``' Instruction
7015^^^^^^^^^^^^^^^^^^^^^^
7016
7017Syntax:
7018"""""""
7019
7020::
7021
Tim Northover675a0962014-06-13 14:24:23 +00007022 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
7023 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007024
7025Overview:
7026"""""""""
7027
7028The '``ashr``' instruction (arithmetic shift right) returns the first
7029operand shifted to the right a specified number of bits with sign
7030extension.
7031
7032Arguments:
7033""""""""""
7034
7035Both arguments to the '``ashr``' instruction must be the same
7036:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7037'``op2``' is treated as an unsigned value.
7038
7039Semantics:
7040""""""""""
7041
7042This instruction always performs an arithmetic shift right operation,
7043The most significant bits of the result will be filled with the sign bit
7044of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007045than the number of bits in ``op1``, this instruction returns a :ref:`poison
7046value <poisonvalues>`. If the arguments are vectors, each vector element
7047of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007048
7049If the ``exact`` keyword is present, the result value of the ``ashr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007050a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007051
7052Example:
7053""""""""
7054
Renato Golin124f2592016-07-20 12:16:38 +00007055.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007056
Tim Northover675a0962014-06-13 14:24:23 +00007057 <result> = ashr i32 4, 1 ; yields i32:result = 2
7058 <result> = ashr i32 4, 2 ; yields i32:result = 1
7059 <result> = ashr i8 4, 3 ; yields i8:result = 0
7060 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00007061 <result> = ashr i32 1, 32 ; undefined
7062 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
7063
7064'``and``' Instruction
7065^^^^^^^^^^^^^^^^^^^^^
7066
7067Syntax:
7068"""""""
7069
7070::
7071
Tim Northover675a0962014-06-13 14:24:23 +00007072 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007073
7074Overview:
7075"""""""""
7076
7077The '``and``' instruction returns the bitwise logical and of its two
7078operands.
7079
7080Arguments:
7081""""""""""
7082
7083The two arguments to the '``and``' instruction must be
7084:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7085arguments must have identical types.
7086
7087Semantics:
7088""""""""""
7089
7090The truth table used for the '``and``' instruction is:
7091
7092+-----+-----+-----+
7093| In0 | In1 | Out |
7094+-----+-----+-----+
7095| 0 | 0 | 0 |
7096+-----+-----+-----+
7097| 0 | 1 | 0 |
7098+-----+-----+-----+
7099| 1 | 0 | 0 |
7100+-----+-----+-----+
7101| 1 | 1 | 1 |
7102+-----+-----+-----+
7103
7104Example:
7105""""""""
7106
Renato Golin124f2592016-07-20 12:16:38 +00007107.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007108
Tim Northover675a0962014-06-13 14:24:23 +00007109 <result> = and i32 4, %var ; yields i32:result = 4 & %var
7110 <result> = and i32 15, 40 ; yields i32:result = 8
7111 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00007112
7113'``or``' Instruction
7114^^^^^^^^^^^^^^^^^^^^
7115
7116Syntax:
7117"""""""
7118
7119::
7120
Tim Northover675a0962014-06-13 14:24:23 +00007121 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007122
7123Overview:
7124"""""""""
7125
7126The '``or``' instruction returns the bitwise logical inclusive or of its
7127two operands.
7128
7129Arguments:
7130""""""""""
7131
7132The two arguments to the '``or``' instruction must be
7133:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7134arguments must have identical types.
7135
7136Semantics:
7137""""""""""
7138
7139The truth table used for the '``or``' instruction is:
7140
7141+-----+-----+-----+
7142| In0 | In1 | Out |
7143+-----+-----+-----+
7144| 0 | 0 | 0 |
7145+-----+-----+-----+
7146| 0 | 1 | 1 |
7147+-----+-----+-----+
7148| 1 | 0 | 1 |
7149+-----+-----+-----+
7150| 1 | 1 | 1 |
7151+-----+-----+-----+
7152
7153Example:
7154""""""""
7155
7156::
7157
Tim Northover675a0962014-06-13 14:24:23 +00007158 <result> = or i32 4, %var ; yields i32:result = 4 | %var
7159 <result> = or i32 15, 40 ; yields i32:result = 47
7160 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00007161
7162'``xor``' Instruction
7163^^^^^^^^^^^^^^^^^^^^^
7164
7165Syntax:
7166"""""""
7167
7168::
7169
Tim Northover675a0962014-06-13 14:24:23 +00007170 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007171
7172Overview:
7173"""""""""
7174
7175The '``xor``' instruction returns the bitwise logical exclusive or of
7176its two operands. The ``xor`` is used to implement the "one's
7177complement" operation, which is the "~" operator in C.
7178
7179Arguments:
7180""""""""""
7181
7182The two arguments to the '``xor``' instruction must be
7183:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7184arguments must have identical types.
7185
7186Semantics:
7187""""""""""
7188
7189The truth table used for the '``xor``' instruction is:
7190
7191+-----+-----+-----+
7192| In0 | In1 | Out |
7193+-----+-----+-----+
7194| 0 | 0 | 0 |
7195+-----+-----+-----+
7196| 0 | 1 | 1 |
7197+-----+-----+-----+
7198| 1 | 0 | 1 |
7199+-----+-----+-----+
7200| 1 | 1 | 0 |
7201+-----+-----+-----+
7202
7203Example:
7204""""""""
7205
Renato Golin124f2592016-07-20 12:16:38 +00007206.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007207
Tim Northover675a0962014-06-13 14:24:23 +00007208 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
7209 <result> = xor i32 15, 40 ; yields i32:result = 39
7210 <result> = xor i32 4, 8 ; yields i32:result = 12
7211 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00007212
7213Vector Operations
7214-----------------
7215
7216LLVM supports several instructions to represent vector operations in a
7217target-independent manner. These instructions cover the element-access
7218and vector-specific operations needed to process vectors effectively.
7219While LLVM does directly support these vector operations, many
7220sophisticated algorithms will want to use target-specific intrinsics to
7221take full advantage of a specific target.
7222
7223.. _i_extractelement:
7224
7225'``extractelement``' Instruction
7226^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7227
7228Syntax:
7229"""""""
7230
7231::
7232
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007233 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00007234
7235Overview:
7236"""""""""
7237
7238The '``extractelement``' instruction extracts a single scalar element
7239from a vector at a specified index.
7240
7241Arguments:
7242""""""""""
7243
7244The first operand of an '``extractelement``' instruction is a value of
7245:ref:`vector <t_vector>` type. The second operand is an index indicating
7246the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007247variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007248
7249Semantics:
7250""""""""""
7251
7252The result is a scalar of the same type as the element type of ``val``.
7253Its value is the value at position ``idx`` of ``val``. If ``idx``
7254exceeds the length of ``val``, the results are undefined.
7255
7256Example:
7257""""""""
7258
Renato Golin124f2592016-07-20 12:16:38 +00007259.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007260
7261 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
7262
7263.. _i_insertelement:
7264
7265'``insertelement``' Instruction
7266^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7267
7268Syntax:
7269"""""""
7270
7271::
7272
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007273 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00007274
7275Overview:
7276"""""""""
7277
7278The '``insertelement``' instruction inserts a scalar element into a
7279vector at a specified index.
7280
7281Arguments:
7282""""""""""
7283
7284The first operand of an '``insertelement``' instruction is a value of
7285:ref:`vector <t_vector>` type. The second operand is a scalar value whose
7286type must equal the element type of the first operand. The third operand
7287is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007288index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007289
7290Semantics:
7291""""""""""
7292
7293The result is a vector of the same type as ``val``. Its element values
7294are those of ``val`` except at position ``idx``, where it gets the value
7295``elt``. If ``idx`` exceeds the length of ``val``, the results are
7296undefined.
7297
7298Example:
7299""""""""
7300
Renato Golin124f2592016-07-20 12:16:38 +00007301.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007302
7303 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
7304
7305.. _i_shufflevector:
7306
7307'``shufflevector``' Instruction
7308^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7309
7310Syntax:
7311"""""""
7312
7313::
7314
7315 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
7316
7317Overview:
7318"""""""""
7319
7320The '``shufflevector``' instruction constructs a permutation of elements
7321from two input vectors, returning a vector with the same element type as
7322the input and length that is the same as the shuffle mask.
7323
7324Arguments:
7325""""""""""
7326
7327The first two operands of a '``shufflevector``' instruction are vectors
7328with the same type. The third argument is a shuffle mask whose element
7329type is always 'i32'. The result of the instruction is a vector whose
7330length is the same as the shuffle mask and whose element type is the
7331same as the element type of the first two operands.
7332
7333The shuffle mask operand is required to be a constant vector with either
7334constant integer or undef values.
7335
7336Semantics:
7337""""""""""
7338
7339The elements of the two input vectors are numbered from left to right
7340across both of the vectors. The shuffle mask operand specifies, for each
7341element of the result vector, which element of the two input vectors the
Sanjay Patel6e410182017-04-12 18:39:53 +00007342result element gets. If the shuffle mask is undef, the result vector is
7343undef. If any element of the mask operand is undef, that element of the
7344result is undef. If the shuffle mask selects an undef element from one
7345of the input vectors, the resulting element is undef.
Sean Silvab084af42012-12-07 10:36:55 +00007346
7347Example:
7348""""""""
7349
Renato Golin124f2592016-07-20 12:16:38 +00007350.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007351
7352 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7353 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
7354 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
7355 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
7356 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
7357 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
7358 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7359 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
7360
7361Aggregate Operations
7362--------------------
7363
7364LLVM supports several instructions for working with
7365:ref:`aggregate <t_aggregate>` values.
7366
7367.. _i_extractvalue:
7368
7369'``extractvalue``' Instruction
7370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7371
7372Syntax:
7373"""""""
7374
7375::
7376
7377 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
7378
7379Overview:
7380"""""""""
7381
7382The '``extractvalue``' instruction extracts the value of a member field
7383from an :ref:`aggregate <t_aggregate>` value.
7384
7385Arguments:
7386""""""""""
7387
7388The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00007389:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00007390constant indices to specify which value to extract in a similar manner
7391as indices in a '``getelementptr``' instruction.
7392
7393The major differences to ``getelementptr`` indexing are:
7394
7395- Since the value being indexed is not a pointer, the first index is
7396 omitted and assumed to be zero.
7397- At least one index must be specified.
7398- Not only struct indices but also array indices must be in bounds.
7399
7400Semantics:
7401""""""""""
7402
7403The result is the value at the position in the aggregate specified by
7404the index operands.
7405
7406Example:
7407""""""""
7408
Renato Golin124f2592016-07-20 12:16:38 +00007409.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007410
7411 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
7412
7413.. _i_insertvalue:
7414
7415'``insertvalue``' Instruction
7416^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7417
7418Syntax:
7419"""""""
7420
7421::
7422
7423 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
7424
7425Overview:
7426"""""""""
7427
7428The '``insertvalue``' instruction inserts a value into a member field in
7429an :ref:`aggregate <t_aggregate>` value.
7430
7431Arguments:
7432""""""""""
7433
7434The first operand of an '``insertvalue``' instruction is a value of
7435:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
7436a first-class value to insert. The following operands are constant
7437indices indicating the position at which to insert the value in a
7438similar manner as indices in a '``extractvalue``' instruction. The value
7439to insert must have the same type as the value identified by the
7440indices.
7441
7442Semantics:
7443""""""""""
7444
7445The result is an aggregate of the same type as ``val``. Its value is
7446that of ``val`` except that the value at the position specified by the
7447indices is that of ``elt``.
7448
7449Example:
7450""""""""
7451
7452.. code-block:: llvm
7453
7454 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
7455 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00007456 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00007457
7458.. _memoryops:
7459
7460Memory Access and Addressing Operations
7461---------------------------------------
7462
7463A key design point of an SSA-based representation is how it represents
7464memory. In LLVM, no memory locations are in SSA form, which makes things
7465very simple. This section describes how to read, write, and allocate
7466memory in LLVM.
7467
7468.. _i_alloca:
7469
7470'``alloca``' Instruction
7471^^^^^^^^^^^^^^^^^^^^^^^^
7472
7473Syntax:
7474"""""""
7475
7476::
7477
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007478 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result
Sean Silvab084af42012-12-07 10:36:55 +00007479
7480Overview:
7481"""""""""
7482
7483The '``alloca``' instruction allocates memory on the stack frame of the
7484currently executing function, to be automatically released when this
7485function returns to its caller. The object is always allocated in the
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007486address space for allocas indicated in the datalayout.
Sean Silvab084af42012-12-07 10:36:55 +00007487
7488Arguments:
7489""""""""""
7490
7491The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7492bytes of memory on the runtime stack, returning a pointer of the
7493appropriate type to the program. If "NumElements" is specified, it is
7494the number of elements allocated, otherwise "NumElements" is defaulted
7495to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007496allocation is guaranteed to be aligned to at least that boundary. The
7497alignment may not be greater than ``1 << 29``. If not specified, or if
7498zero, the target can choose to align the allocation on any convenient
7499boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007500
7501'``type``' may be any sized type.
7502
7503Semantics:
7504""""""""""
7505
7506Memory is allocated; a pointer is returned. The operation is undefined
7507if there is insufficient stack space for the allocation. '``alloca``'d
7508memory is automatically released when the function returns. The
7509'``alloca``' instruction is commonly used to represent automatic
7510variables that must have an address available. When the function returns
7511(either with the ``ret`` or ``resume`` instructions), the memory is
7512reclaimed. Allocating zero bytes is legal, but the result is undefined.
7513The order in which memory is allocated (ie., which way the stack grows)
7514is not specified.
7515
7516Example:
7517""""""""
7518
7519.. code-block:: llvm
7520
Tim Northover675a0962014-06-13 14:24:23 +00007521 %ptr = alloca i32 ; yields i32*:ptr
7522 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7523 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7524 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007525
7526.. _i_load:
7527
7528'``load``' Instruction
7529^^^^^^^^^^^^^^^^^^^^^^
7530
7531Syntax:
7532"""""""
7533
7534::
7535
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007536 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007537 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007538 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007539 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007540 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007541
7542Overview:
7543"""""""""
7544
7545The '``load``' instruction is used to read from memory.
7546
7547Arguments:
7548""""""""""
7549
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007550The argument to the ``load`` instruction specifies the memory address from which
7551to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7552known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7553the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7554modify the number or order of execution of this ``load`` with other
7555:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007556
JF Bastiend1fb5852015-12-17 22:09:19 +00007557If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007558<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
7559``release`` and ``acq_rel`` orderings are not valid on ``load`` instructions.
7560Atomic loads produce :ref:`defined <memmodel>` results when they may see
7561multiple atomic stores. The type of the pointee must be an integer, pointer, or
7562floating-point type whose bit width is a power of two greater than or equal to
7563eight and less than or equal to a target-specific size limit. ``align`` must be
7564explicitly specified on atomic loads, and the load has undefined behavior if the
7565alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00007566pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007567
7568The optional constant ``align`` argument specifies the alignment of the
7569operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007570or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007571alignment for the target. It is the responsibility of the code emitter
7572to ensure that the alignment information is correct. Overestimating the
7573alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007574may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007575maximum possible alignment is ``1 << 29``. An alignment value higher
7576than the size of the loaded type implies memory up to the alignment
7577value bytes can be safely loaded without trapping in the default
7578address space. Access of the high bytes can interfere with debugging
7579tools, so should not be accessed if the function has the
7580``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007581
7582The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007583metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007584``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007585metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007586that this load is not expected to be reused in the cache. The code
7587generator may select special instructions to save cache bandwidth, such
7588as the ``MOVNT`` instruction on x86.
7589
7590The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007591metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007592entries. If a load instruction tagged with the ``!invariant.load``
7593metadata is executed, the optimizer may assume the memory location
7594referenced by the load contains the same value at all points in the
7595program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007596
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007597The optional ``!invariant.group`` metadata must reference a single metadata name
7598 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7599
Philip Reamescdb72f32014-10-20 22:40:55 +00007600The optional ``!nonnull`` metadata must reference a single
7601metadata name ``<index>`` corresponding to a metadata node with no
7602entries. The existence of the ``!nonnull`` metadata on the
7603instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007604never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007605on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007606to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007607
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007608The optional ``!dereferenceable`` metadata must reference a single metadata
7609name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007610entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007611tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007612The number of bytes known to be dereferenceable is specified by the integer
7613value in the metadata node. This is analogous to the ''dereferenceable''
7614attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007615to loads of a pointer type.
7616
7617The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007618metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7619``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007620instruction tells the optimizer that the value loaded is known to be either
7621dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007622The number of bytes known to be dereferenceable is specified by the integer
7623value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7624attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007625to loads of a pointer type.
7626
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007627The optional ``!align`` metadata must reference a single metadata name
7628``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7629The existence of the ``!align`` metadata on the instruction tells the
7630optimizer that the value loaded is known to be aligned to a boundary specified
7631by the integer value in the metadata node. The alignment must be a power of 2.
7632This is analogous to the ''align'' attribute on parameters and return values.
7633This metadata can only be applied to loads of a pointer type.
7634
Sean Silvab084af42012-12-07 10:36:55 +00007635Semantics:
7636""""""""""
7637
7638The location of memory pointed to is loaded. If the value being loaded
7639is of scalar type then the number of bytes read does not exceed the
7640minimum number of bytes needed to hold all bits of the type. For
7641example, loading an ``i24`` reads at most three bytes. When loading a
7642value of a type like ``i20`` with a size that is not an integral number
7643of bytes, the result is undefined if the value was not originally
7644written using a store of the same type.
7645
7646Examples:
7647"""""""""
7648
7649.. code-block:: llvm
7650
Tim Northover675a0962014-06-13 14:24:23 +00007651 %ptr = alloca i32 ; yields i32*:ptr
7652 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007653 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007654
7655.. _i_store:
7656
7657'``store``' Instruction
7658^^^^^^^^^^^^^^^^^^^^^^^
7659
7660Syntax:
7661"""""""
7662
7663::
7664
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007665 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007666 store atomic [volatile] <ty> <value>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007667
7668Overview:
7669"""""""""
7670
7671The '``store``' instruction is used to write to memory.
7672
7673Arguments:
7674""""""""""
7675
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007676There are two arguments to the ``store`` instruction: a value to store and an
7677address at which to store it. The type of the ``<pointer>`` operand must be a
7678pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7679operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7680allowed to modify the number or order of execution of this ``store`` with other
7681:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7682<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7683structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007684
JF Bastiend1fb5852015-12-17 22:09:19 +00007685If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007686<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
7687``acquire`` and ``acq_rel`` orderings aren't valid on ``store`` instructions.
7688Atomic loads produce :ref:`defined <memmodel>` results when they may see
7689multiple atomic stores. The type of the pointee must be an integer, pointer, or
7690floating-point type whose bit width is a power of two greater than or equal to
7691eight and less than or equal to a target-specific size limit. ``align`` must be
7692explicitly specified on atomic stores, and the store has undefined behavior if
7693the alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00007694pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007695
Eli Benderskyca380842013-04-17 17:17:20 +00007696The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007697operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007698or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007699alignment for the target. It is the responsibility of the code emitter
7700to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007701alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007702alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007703safe. The maximum possible alignment is ``1 << 29``. An alignment
7704value higher than the size of the stored type implies memory up to the
7705alignment value bytes can be stored to without trapping in the default
7706address space. Storing to the higher bytes however may result in data
7707races if another thread can access the same address. Introducing a
7708data race is not allowed. Storing to the extra bytes is not allowed
7709even in situations where a data race is known to not exist if the
7710function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007711
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007712The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007713name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007714value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007715tells the optimizer and code generator that this load is not expected to
7716be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007717instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007718x86.
7719
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007720The optional ``!invariant.group`` metadata must reference a
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007721single metadata name ``<index>``. See ``invariant.group`` metadata.
7722
Sean Silvab084af42012-12-07 10:36:55 +00007723Semantics:
7724""""""""""
7725
Eli Benderskyca380842013-04-17 17:17:20 +00007726The contents of memory are updated to contain ``<value>`` at the
7727location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007728of scalar type then the number of bytes written does not exceed the
7729minimum number of bytes needed to hold all bits of the type. For
7730example, storing an ``i24`` writes at most three bytes. When writing a
7731value of a type like ``i20`` with a size that is not an integral number
7732of bytes, it is unspecified what happens to the extra bits that do not
7733belong to the type, but they will typically be overwritten.
7734
7735Example:
7736""""""""
7737
7738.. code-block:: llvm
7739
Tim Northover675a0962014-06-13 14:24:23 +00007740 %ptr = alloca i32 ; yields i32*:ptr
7741 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007742 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007743
7744.. _i_fence:
7745
7746'``fence``' Instruction
7747^^^^^^^^^^^^^^^^^^^^^^^
7748
7749Syntax:
7750"""""""
7751
7752::
7753
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007754 fence [syncscope("<target-scope>")] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007755
7756Overview:
7757"""""""""
7758
7759The '``fence``' instruction is used to introduce happens-before edges
7760between operations.
7761
7762Arguments:
7763""""""""""
7764
7765'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7766defines what *synchronizes-with* edges they add. They can only be given
7767``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7768
7769Semantics:
7770""""""""""
7771
7772A fence A which has (at least) ``release`` ordering semantics
7773*synchronizes with* a fence B with (at least) ``acquire`` ordering
7774semantics if and only if there exist atomic operations X and Y, both
7775operating on some atomic object M, such that A is sequenced before X, X
7776modifies M (either directly or through some side effect of a sequence
7777headed by X), Y is sequenced before B, and Y observes M. This provides a
7778*happens-before* dependency between A and B. Rather than an explicit
7779``fence``, one (but not both) of the atomic operations X or Y might
7780provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7781still *synchronize-with* the explicit ``fence`` and establish the
7782*happens-before* edge.
7783
7784A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7785``acquire`` and ``release`` semantics specified above, participates in
7786the global program order of other ``seq_cst`` operations and/or fences.
7787
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007788A ``fence`` instruction can also take an optional
7789":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00007790
7791Example:
7792""""""""
7793
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007794.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007795
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007796 fence acquire ; yields void
7797 fence syncscope("singlethread") seq_cst ; yields void
7798 fence syncscope("agent") seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007799
7800.. _i_cmpxchg:
7801
7802'``cmpxchg``' Instruction
7803^^^^^^^^^^^^^^^^^^^^^^^^^
7804
7805Syntax:
7806"""""""
7807
7808::
7809
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007810 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [syncscope("<target-scope>")] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007811
7812Overview:
7813"""""""""
7814
7815The '``cmpxchg``' instruction is used to atomically modify memory. It
7816loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007817equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007818
7819Arguments:
7820""""""""""
7821
7822There are three arguments to the '``cmpxchg``' instruction: an address
7823to operate on, a value to compare to the value currently be at that
7824address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007825are equal. The type of '<cmp>' must be an integer or pointer type whose
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007826bit width is a power of two greater than or equal to eight and less
Philip Reames1960cfd2016-02-19 00:06:41 +00007827than or equal to a target-specific size limit. '<cmp>' and '<new>' must
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007828have the same type, and the type of '<pointer>' must be a pointer to
7829that type. If the ``cmpxchg`` is marked as ``volatile``, then the
Philip Reames1960cfd2016-02-19 00:06:41 +00007830optimizer is not allowed to modify the number or order of execution of
7831this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007832
Tim Northovere94a5182014-03-11 10:48:52 +00007833The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007834``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7835must be at least ``monotonic``, the ordering constraint on failure must be no
7836stronger than that on success, and the failure ordering cannot be either
7837``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007838
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007839A ``cmpxchg`` instruction can also take an optional
7840":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00007841
7842The pointer passed into cmpxchg must have alignment greater than or
7843equal to the size in memory of the operand.
7844
7845Semantics:
7846""""""""""
7847
Tim Northover420a2162014-06-13 14:24:07 +00007848The contents of memory at the location specified by the '``<pointer>``' operand
Matthias Braun93f2b4b2017-08-09 22:22:04 +00007849is read and compared to '``<cmp>``'; if the values are equal, '``<new>``' is
7850written to the location. The original value at the location is returned,
7851together with a flag indicating success (true) or failure (false).
Tim Northover420a2162014-06-13 14:24:07 +00007852
7853If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7854permitted: the operation may not write ``<new>`` even if the comparison
7855matched.
7856
7857If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7858if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007859
Tim Northovere94a5182014-03-11 10:48:52 +00007860A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7861identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7862load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007863
7864Example:
7865""""""""
7866
7867.. code-block:: llvm
7868
7869 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007870 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007871 br label %loop
7872
7873 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007874 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007875 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007876 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007877 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7878 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007879 br i1 %success, label %done, label %loop
7880
7881 done:
7882 ...
7883
7884.. _i_atomicrmw:
7885
7886'``atomicrmw``' Instruction
7887^^^^^^^^^^^^^^^^^^^^^^^^^^^
7888
7889Syntax:
7890"""""""
7891
7892::
7893
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007894 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [syncscope("<target-scope>")] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007895
7896Overview:
7897"""""""""
7898
7899The '``atomicrmw``' instruction is used to atomically modify memory.
7900
7901Arguments:
7902""""""""""
7903
7904There are three arguments to the '``atomicrmw``' instruction: an
7905operation to apply, an address whose value to modify, an argument to the
7906operation. The operation must be one of the following keywords:
7907
7908- xchg
7909- add
7910- sub
7911- and
7912- nand
7913- or
7914- xor
7915- max
7916- min
7917- umax
7918- umin
7919
7920The type of '<value>' must be an integer type whose bit width is a power
7921of two greater than or equal to eight and less than or equal to a
7922target-specific size limit. The type of the '``<pointer>``' operand must
7923be a pointer to that type. If the ``atomicrmw`` is marked as
7924``volatile``, then the optimizer is not allowed to modify the number or
7925order of execution of this ``atomicrmw`` with other :ref:`volatile
7926operations <volatile>`.
7927
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007928A ``atomicrmw`` instruction can also take an optional
7929":ref:`syncscope <syncscope>`" argument.
7930
Sean Silvab084af42012-12-07 10:36:55 +00007931Semantics:
7932""""""""""
7933
7934The contents of memory at the location specified by the '``<pointer>``'
7935operand are atomically read, modified, and written back. The original
7936value at the location is returned. The modification is specified by the
7937operation argument:
7938
7939- xchg: ``*ptr = val``
7940- add: ``*ptr = *ptr + val``
7941- sub: ``*ptr = *ptr - val``
7942- and: ``*ptr = *ptr & val``
7943- nand: ``*ptr = ~(*ptr & val)``
7944- or: ``*ptr = *ptr | val``
7945- xor: ``*ptr = *ptr ^ val``
7946- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7947- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7948- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7949 comparison)
7950- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7951 comparison)
7952
7953Example:
7954""""""""
7955
7956.. code-block:: llvm
7957
Tim Northover675a0962014-06-13 14:24:23 +00007958 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007959
7960.. _i_getelementptr:
7961
7962'``getelementptr``' Instruction
7963^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7964
7965Syntax:
7966"""""""
7967
7968::
7969
Peter Collingbourned93620b2016-11-10 22:34:55 +00007970 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7971 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7972 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007973
7974Overview:
7975"""""""""
7976
7977The '``getelementptr``' instruction is used to get the address of a
7978subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007979address calculation only and does not access memory. The instruction can also
7980be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007981
7982Arguments:
7983""""""""""
7984
David Blaikie16a97eb2015-03-04 22:02:58 +00007985The first argument is always a type used as the basis for the calculations.
7986The second argument is always a pointer or a vector of pointers, and is the
7987base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007988that indicate which of the elements of the aggregate object are indexed.
7989The interpretation of each index is dependent on the type being indexed
7990into. The first index always indexes the pointer value given as the
David Blaikief91b0302017-06-19 05:34:21 +00007991second argument, the second index indexes a value of the type pointed to
Sean Silvab084af42012-12-07 10:36:55 +00007992(not necessarily the value directly pointed to, since the first index
7993can be non-zero), etc. The first type indexed into must be a pointer
7994value, subsequent types can be arrays, vectors, and structs. Note that
7995subsequent types being indexed into can never be pointers, since that
7996would require loading the pointer before continuing calculation.
7997
7998The type of each index argument depends on the type it is indexing into.
7999When indexing into a (optionally packed) structure, only ``i32`` integer
8000**constants** are allowed (when using a vector of indices they must all
8001be the **same** ``i32`` integer constant). When indexing into an array,
8002pointer or vector, integers of any width are allowed, and they are not
8003required to be constant. These integers are treated as signed values
8004where relevant.
8005
8006For example, let's consider a C code fragment and how it gets compiled
8007to LLVM:
8008
8009.. code-block:: c
8010
8011 struct RT {
8012 char A;
8013 int B[10][20];
8014 char C;
8015 };
8016 struct ST {
8017 int X;
8018 double Y;
8019 struct RT Z;
8020 };
8021
8022 int *foo(struct ST *s) {
8023 return &s[1].Z.B[5][13];
8024 }
8025
8026The LLVM code generated by Clang is:
8027
8028.. code-block:: llvm
8029
8030 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
8031 %struct.ST = type { i32, double, %struct.RT }
8032
8033 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
8034 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00008035 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00008036 ret i32* %arrayidx
8037 }
8038
8039Semantics:
8040""""""""""
8041
8042In the example above, the first index is indexing into the
8043'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
8044= '``{ i32, double, %struct.RT }``' type, a structure. The second index
8045indexes into the third element of the structure, yielding a
8046'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
8047structure. The third index indexes into the second element of the
8048structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
8049dimensions of the array are subscripted into, yielding an '``i32``'
8050type. The '``getelementptr``' instruction returns a pointer to this
8051element, thus computing a value of '``i32*``' type.
8052
8053Note that it is perfectly legal to index partially through a structure,
8054returning a pointer to an inner element. Because of this, the LLVM code
8055for the given testcase is equivalent to:
8056
8057.. code-block:: llvm
8058
8059 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00008060 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
8061 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
8062 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
8063 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
8064 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00008065 ret i32* %t5
8066 }
8067
8068If the ``inbounds`` keyword is present, the result value of the
8069``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
8070pointer is not an *in bounds* address of an allocated object, or if any
8071of the addresses that would be formed by successive addition of the
8072offsets implied by the indices to the base address with infinitely
8073precise signed arithmetic are not an *in bounds* address of that
8074allocated object. The *in bounds* addresses for an allocated object are
8075all the addresses that point into the object, plus the address one byte
Eli Friedman13f2e352017-02-23 00:48:18 +00008076past the end. The only *in bounds* address for a null pointer in the
8077default address-space is the null pointer itself. In cases where the
8078base is a vector of pointers the ``inbounds`` keyword applies to each
8079of the computations element-wise.
Sean Silvab084af42012-12-07 10:36:55 +00008080
8081If the ``inbounds`` keyword is not present, the offsets are added to the
8082base address with silently-wrapping two's complement arithmetic. If the
8083offsets have a different width from the pointer, they are sign-extended
8084or truncated to the width of the pointer. The result value of the
8085``getelementptr`` may be outside the object pointed to by the base
8086pointer. The result value may not necessarily be used to access memory
8087though, even if it happens to point into allocated storage. See the
8088:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
8089information.
8090
Peter Collingbourned93620b2016-11-10 22:34:55 +00008091If the ``inrange`` keyword is present before any index, loading from or
8092storing to any pointer derived from the ``getelementptr`` has undefined
8093behavior if the load or store would access memory outside of the bounds of
8094the element selected by the index marked as ``inrange``. The result of a
8095pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
8096involving memory) involving a pointer derived from a ``getelementptr`` with
8097the ``inrange`` keyword is undefined, with the exception of comparisons
8098in the case where both operands are in the range of the element selected
8099by the ``inrange`` keyword, inclusive of the address one past the end of
8100that element. Note that the ``inrange`` keyword is currently only allowed
8101in constant ``getelementptr`` expressions.
8102
Sean Silvab084af42012-12-07 10:36:55 +00008103The getelementptr instruction is often confusing. For some more insight
8104into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
8105
8106Example:
8107""""""""
8108
8109.. code-block:: llvm
8110
8111 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008112 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008113 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008114 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008115 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008116 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008117 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008118 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00008119
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008120Vector of pointers:
8121"""""""""""""""""""
8122
8123The ``getelementptr`` returns a vector of pointers, instead of a single address,
8124when one or more of its arguments is a vector. In such cases, all vector
8125arguments should have the same number of elements, and every scalar argument
8126will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00008127
8128.. code-block:: llvm
8129
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008130 ; All arguments are vectors:
8131 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
8132 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008133
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008134 ; Add the same scalar offset to each pointer of a vector:
8135 ; A[i] = ptrs[i] + offset*sizeof(i8)
8136 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00008137
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008138 ; Add distinct offsets to the same pointer:
8139 ; A[i] = ptr + offsets[i]*sizeof(i8)
8140 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008141
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008142 ; In all cases described above the type of the result is <4 x i8*>
8143
8144The two following instructions are equivalent:
8145
8146.. code-block:: llvm
8147
8148 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8149 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
8150 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
8151 <4 x i32> %ind4,
8152 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00008153
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008154 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8155 i32 2, i32 1, <4 x i32> %ind4, i64 13
8156
8157Let's look at the C code, where the vector version of ``getelementptr``
8158makes sense:
8159
8160.. code-block:: c
8161
8162 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00008163 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008164 for (int i = 0; i < size; ++i) {
8165 A[i] = B[C[i]];
8166 }
8167
8168.. code-block:: llvm
8169
8170 ; get pointers for 8 elements from array B
8171 %ptrs = getelementptr double, double* %B, <8 x i32> %C
8172 ; load 8 elements from array B into A
Elad Cohenef5798a2017-05-03 12:28:54 +00008173 %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008174 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00008175
8176Conversion Operations
8177---------------------
8178
8179The instructions in this category are the conversion instructions
8180(casting) which all take a single operand and a type. They perform
8181various bit conversions on the operand.
8182
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008183.. _i_trunc:
8184
Sean Silvab084af42012-12-07 10:36:55 +00008185'``trunc .. to``' Instruction
8186^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8187
8188Syntax:
8189"""""""
8190
8191::
8192
8193 <result> = trunc <ty> <value> to <ty2> ; yields ty2
8194
8195Overview:
8196"""""""""
8197
8198The '``trunc``' instruction truncates its operand to the type ``ty2``.
8199
8200Arguments:
8201""""""""""
8202
8203The '``trunc``' instruction takes a value to trunc, and a type to trunc
8204it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
8205of the same number of integers. The bit size of the ``value`` must be
8206larger than the bit size of the destination type, ``ty2``. Equal sized
8207types are not allowed.
8208
8209Semantics:
8210""""""""""
8211
8212The '``trunc``' instruction truncates the high order bits in ``value``
8213and converts the remaining bits to ``ty2``. Since the source size must
8214be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
8215It will always truncate bits.
8216
8217Example:
8218""""""""
8219
8220.. code-block:: llvm
8221
8222 %X = trunc i32 257 to i8 ; yields i8:1
8223 %Y = trunc i32 123 to i1 ; yields i1:true
8224 %Z = trunc i32 122 to i1 ; yields i1:false
8225 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
8226
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008227.. _i_zext:
8228
Sean Silvab084af42012-12-07 10:36:55 +00008229'``zext .. to``' Instruction
8230^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8231
8232Syntax:
8233"""""""
8234
8235::
8236
8237 <result> = zext <ty> <value> to <ty2> ; yields ty2
8238
8239Overview:
8240"""""""""
8241
8242The '``zext``' instruction zero extends its operand to type ``ty2``.
8243
8244Arguments:
8245""""""""""
8246
8247The '``zext``' instruction takes a value to cast, and a type to cast it
8248to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8249the same number of integers. The bit size of the ``value`` must be
8250smaller than the bit size of the destination type, ``ty2``.
8251
8252Semantics:
8253""""""""""
8254
8255The ``zext`` fills the high order bits of the ``value`` with zero bits
8256until it reaches the size of the destination type, ``ty2``.
8257
8258When zero extending from i1, the result will always be either 0 or 1.
8259
8260Example:
8261""""""""
8262
8263.. code-block:: llvm
8264
8265 %X = zext i32 257 to i64 ; yields i64:257
8266 %Y = zext i1 true to i32 ; yields i32:1
8267 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8268
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008269.. _i_sext:
8270
Sean Silvab084af42012-12-07 10:36:55 +00008271'``sext .. to``' Instruction
8272^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8273
8274Syntax:
8275"""""""
8276
8277::
8278
8279 <result> = sext <ty> <value> to <ty2> ; yields ty2
8280
8281Overview:
8282"""""""""
8283
8284The '``sext``' sign extends ``value`` to the type ``ty2``.
8285
8286Arguments:
8287""""""""""
8288
8289The '``sext``' instruction takes a value to cast, and a type to cast it
8290to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8291the same number of integers. The bit size of the ``value`` must be
8292smaller than the bit size of the destination type, ``ty2``.
8293
8294Semantics:
8295""""""""""
8296
8297The '``sext``' instruction performs a sign extension by copying the sign
8298bit (highest order bit) of the ``value`` until it reaches the bit size
8299of the type ``ty2``.
8300
8301When sign extending from i1, the extension always results in -1 or 0.
8302
8303Example:
8304""""""""
8305
8306.. code-block:: llvm
8307
8308 %X = sext i8 -1 to i16 ; yields i16 :65535
8309 %Y = sext i1 true to i32 ; yields i32:-1
8310 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8311
8312'``fptrunc .. to``' Instruction
8313^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8314
8315Syntax:
8316"""""""
8317
8318::
8319
8320 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
8321
8322Overview:
8323"""""""""
8324
8325The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
8326
8327Arguments:
8328""""""""""
8329
8330The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
8331value to cast and a :ref:`floating point <t_floating>` type to cast it to.
8332The size of ``value`` must be larger than the size of ``ty2``. This
8333implies that ``fptrunc`` cannot be used to make a *no-op cast*.
8334
8335Semantics:
8336""""""""""
8337
Dan Liew50456fb2015-09-03 18:43:56 +00008338The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00008339:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00008340point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
8341destination type, ``ty2``, then the results are undefined. If the cast produces
8342an inexact result, how rounding is performed (e.g. truncation, also known as
8343round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00008344
8345Example:
8346""""""""
8347
8348.. code-block:: llvm
8349
8350 %X = fptrunc double 123.0 to float ; yields float:123.0
8351 %Y = fptrunc double 1.0E+300 to float ; yields undefined
8352
8353'``fpext .. to``' Instruction
8354^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8355
8356Syntax:
8357"""""""
8358
8359::
8360
8361 <result> = fpext <ty> <value> to <ty2> ; yields ty2
8362
8363Overview:
8364"""""""""
8365
8366The '``fpext``' extends a floating point ``value`` to a larger floating
8367point value.
8368
8369Arguments:
8370""""""""""
8371
8372The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
8373``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
8374to. The source type must be smaller than the destination type.
8375
8376Semantics:
8377""""""""""
8378
8379The '``fpext``' instruction extends the ``value`` from a smaller
8380:ref:`floating point <t_floating>` type to a larger :ref:`floating
8381point <t_floating>` type. The ``fpext`` cannot be used to make a
8382*no-op cast* because it always changes bits. Use ``bitcast`` to make a
8383*no-op cast* for a floating point cast.
8384
8385Example:
8386""""""""
8387
8388.. code-block:: llvm
8389
8390 %X = fpext float 3.125 to double ; yields double:3.125000e+00
8391 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
8392
8393'``fptoui .. to``' Instruction
8394^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8395
8396Syntax:
8397"""""""
8398
8399::
8400
8401 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
8402
8403Overview:
8404"""""""""
8405
8406The '``fptoui``' converts a floating point ``value`` to its unsigned
8407integer equivalent of type ``ty2``.
8408
8409Arguments:
8410""""""""""
8411
8412The '``fptoui``' instruction takes a value to cast, which must be a
8413scalar or vector :ref:`floating point <t_floating>` value, and a type to
8414cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8415``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8416type with the same number of elements as ``ty``
8417
8418Semantics:
8419""""""""""
8420
8421The '``fptoui``' instruction converts its :ref:`floating
8422point <t_floating>` operand into the nearest (rounding towards zero)
8423unsigned integer value. If the value cannot fit in ``ty2``, the results
8424are undefined.
8425
8426Example:
8427""""""""
8428
8429.. code-block:: llvm
8430
8431 %X = fptoui double 123.0 to i32 ; yields i32:123
8432 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
8433 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
8434
8435'``fptosi .. to``' Instruction
8436^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8437
8438Syntax:
8439"""""""
8440
8441::
8442
8443 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
8444
8445Overview:
8446"""""""""
8447
8448The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
8449``value`` to type ``ty2``.
8450
8451Arguments:
8452""""""""""
8453
8454The '``fptosi``' instruction takes a value to cast, which must be a
8455scalar or vector :ref:`floating point <t_floating>` value, and a type to
8456cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8457``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8458type with the same number of elements as ``ty``
8459
8460Semantics:
8461""""""""""
8462
8463The '``fptosi``' instruction converts its :ref:`floating
8464point <t_floating>` operand into the nearest (rounding towards zero)
8465signed integer value. If the value cannot fit in ``ty2``, the results
8466are undefined.
8467
8468Example:
8469""""""""
8470
8471.. code-block:: llvm
8472
8473 %X = fptosi double -123.0 to i32 ; yields i32:-123
8474 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
8475 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
8476
8477'``uitofp .. to``' Instruction
8478^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8479
8480Syntax:
8481"""""""
8482
8483::
8484
8485 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
8486
8487Overview:
8488"""""""""
8489
8490The '``uitofp``' instruction regards ``value`` as an unsigned integer
8491and converts that value to the ``ty2`` type.
8492
8493Arguments:
8494""""""""""
8495
8496The '``uitofp``' instruction takes a value to cast, which must be a
8497scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8498``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8499``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8500type with the same number of elements as ``ty``
8501
8502Semantics:
8503""""""""""
8504
8505The '``uitofp``' instruction interprets its operand as an unsigned
8506integer quantity and converts it to the corresponding floating point
8507value. If the value cannot fit in the floating point value, the results
8508are undefined.
8509
8510Example:
8511""""""""
8512
8513.. code-block:: llvm
8514
8515 %X = uitofp i32 257 to float ; yields float:257.0
8516 %Y = uitofp i8 -1 to double ; yields double:255.0
8517
8518'``sitofp .. to``' Instruction
8519^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8520
8521Syntax:
8522"""""""
8523
8524::
8525
8526 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8527
8528Overview:
8529"""""""""
8530
8531The '``sitofp``' instruction regards ``value`` as a signed integer and
8532converts that value to the ``ty2`` type.
8533
8534Arguments:
8535""""""""""
8536
8537The '``sitofp``' instruction takes a value to cast, which must be a
8538scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8539``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8540``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8541type with the same number of elements as ``ty``
8542
8543Semantics:
8544""""""""""
8545
8546The '``sitofp``' instruction interprets its operand as a signed integer
8547quantity and converts it to the corresponding floating point value. If
8548the value cannot fit in the floating point value, the results are
8549undefined.
8550
8551Example:
8552""""""""
8553
8554.. code-block:: llvm
8555
8556 %X = sitofp i32 257 to float ; yields float:257.0
8557 %Y = sitofp i8 -1 to double ; yields double:-1.0
8558
8559.. _i_ptrtoint:
8560
8561'``ptrtoint .. to``' Instruction
8562^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8563
8564Syntax:
8565"""""""
8566
8567::
8568
8569 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8570
8571Overview:
8572"""""""""
8573
8574The '``ptrtoint``' instruction converts the pointer or a vector of
8575pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8576
8577Arguments:
8578""""""""""
8579
8580The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008581a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008582type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8583a vector of integers type.
8584
8585Semantics:
8586""""""""""
8587
8588The '``ptrtoint``' instruction converts ``value`` to integer type
8589``ty2`` by interpreting the pointer value as an integer and either
8590truncating or zero extending that value to the size of the integer type.
8591If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8592``value`` is larger than ``ty2`` then a truncation is done. If they are
8593the same size, then nothing is done (*no-op cast*) other than a type
8594change.
8595
8596Example:
8597""""""""
8598
8599.. code-block:: llvm
8600
8601 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8602 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8603 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8604
8605.. _i_inttoptr:
8606
8607'``inttoptr .. to``' Instruction
8608^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8609
8610Syntax:
8611"""""""
8612
8613::
8614
8615 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8616
8617Overview:
8618"""""""""
8619
8620The '``inttoptr``' instruction converts an integer ``value`` to a
8621pointer type, ``ty2``.
8622
8623Arguments:
8624""""""""""
8625
8626The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8627cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8628type.
8629
8630Semantics:
8631""""""""""
8632
8633The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8634applying either a zero extension or a truncation depending on the size
8635of the integer ``value``. If ``value`` is larger than the size of a
8636pointer then a truncation is done. If ``value`` is smaller than the size
8637of a pointer then a zero extension is done. If they are the same size,
8638nothing is done (*no-op cast*).
8639
8640Example:
8641""""""""
8642
8643.. code-block:: llvm
8644
8645 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8646 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8647 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8648 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8649
8650.. _i_bitcast:
8651
8652'``bitcast .. to``' Instruction
8653^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8654
8655Syntax:
8656"""""""
8657
8658::
8659
8660 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8661
8662Overview:
8663"""""""""
8664
8665The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8666changing any bits.
8667
8668Arguments:
8669""""""""""
8670
8671The '``bitcast``' instruction takes a value to cast, which must be a
8672non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008673also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8674bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008675identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008676also be a pointer of the same size. This instruction supports bitwise
8677conversion of vectors to integers and to vectors of other types (as
8678long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008679
8680Semantics:
8681""""""""""
8682
Matt Arsenault24b49c42013-07-31 17:49:08 +00008683The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8684is always a *no-op cast* because no bits change with this
8685conversion. The conversion is done as if the ``value`` had been stored
8686to memory and read back as type ``ty2``. Pointer (or vector of
8687pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008688pointers) types with the same address space through this instruction.
8689To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8690or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008691
8692Example:
8693""""""""
8694
Renato Golin124f2592016-07-20 12:16:38 +00008695.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008696
8697 %X = bitcast i8 255 to i8 ; yields i8 :-1
8698 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8699 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8700 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8701
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008702.. _i_addrspacecast:
8703
8704'``addrspacecast .. to``' Instruction
8705^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8706
8707Syntax:
8708"""""""
8709
8710::
8711
8712 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8713
8714Overview:
8715"""""""""
8716
8717The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8718address space ``n`` to type ``pty2`` in address space ``m``.
8719
8720Arguments:
8721""""""""""
8722
8723The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8724to cast and a pointer type to cast it to, which must have a different
8725address space.
8726
8727Semantics:
8728""""""""""
8729
8730The '``addrspacecast``' instruction converts the pointer value
8731``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008732value modification, depending on the target and the address space
8733pair. Pointer conversions within the same address space must be
8734performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008735conversion is legal then both result and operand refer to the same memory
8736location.
8737
8738Example:
8739""""""""
8740
8741.. code-block:: llvm
8742
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008743 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8744 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8745 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008746
Sean Silvab084af42012-12-07 10:36:55 +00008747.. _otherops:
8748
8749Other Operations
8750----------------
8751
8752The instructions in this category are the "miscellaneous" instructions,
8753which defy better classification.
8754
8755.. _i_icmp:
8756
8757'``icmp``' Instruction
8758^^^^^^^^^^^^^^^^^^^^^^
8759
8760Syntax:
8761"""""""
8762
8763::
8764
Tim Northover675a0962014-06-13 14:24:23 +00008765 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008766
8767Overview:
8768"""""""""
8769
8770The '``icmp``' instruction returns a boolean value or a vector of
8771boolean values based on comparison of its two integer, integer vector,
8772pointer, or pointer vector operands.
8773
8774Arguments:
8775""""""""""
8776
8777The '``icmp``' instruction takes three operands. The first operand is
8778the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008779not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008780
8781#. ``eq``: equal
8782#. ``ne``: not equal
8783#. ``ugt``: unsigned greater than
8784#. ``uge``: unsigned greater or equal
8785#. ``ult``: unsigned less than
8786#. ``ule``: unsigned less or equal
8787#. ``sgt``: signed greater than
8788#. ``sge``: signed greater or equal
8789#. ``slt``: signed less than
8790#. ``sle``: signed less or equal
8791
8792The remaining two arguments must be :ref:`integer <t_integer>` or
8793:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8794must also be identical types.
8795
8796Semantics:
8797""""""""""
8798
8799The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8800code given as ``cond``. The comparison performed always yields either an
8801:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8802
8803#. ``eq``: yields ``true`` if the operands are equal, ``false``
8804 otherwise. No sign interpretation is necessary or performed.
8805#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8806 otherwise. No sign interpretation is necessary or performed.
8807#. ``ugt``: interprets the operands as unsigned values and yields
8808 ``true`` if ``op1`` is greater than ``op2``.
8809#. ``uge``: interprets the operands as unsigned values and yields
8810 ``true`` if ``op1`` is greater than or equal to ``op2``.
8811#. ``ult``: interprets the operands as unsigned values and yields
8812 ``true`` if ``op1`` is less than ``op2``.
8813#. ``ule``: interprets the operands as unsigned values and yields
8814 ``true`` if ``op1`` is less than or equal to ``op2``.
8815#. ``sgt``: interprets the operands as signed values and yields ``true``
8816 if ``op1`` is greater than ``op2``.
8817#. ``sge``: interprets the operands as signed values and yields ``true``
8818 if ``op1`` is greater than or equal to ``op2``.
8819#. ``slt``: interprets the operands as signed values and yields ``true``
8820 if ``op1`` is less than ``op2``.
8821#. ``sle``: interprets the operands as signed values and yields ``true``
8822 if ``op1`` is less than or equal to ``op2``.
8823
8824If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8825are compared as if they were integers.
8826
8827If the operands are integer vectors, then they are compared element by
8828element. The result is an ``i1`` vector with the same number of elements
8829as the values being compared. Otherwise, the result is an ``i1``.
8830
8831Example:
8832""""""""
8833
Renato Golin124f2592016-07-20 12:16:38 +00008834.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008835
8836 <result> = icmp eq i32 4, 5 ; yields: result=false
8837 <result> = icmp ne float* %X, %X ; yields: result=false
8838 <result> = icmp ult i16 4, 5 ; yields: result=true
8839 <result> = icmp sgt i16 4, 5 ; yields: result=false
8840 <result> = icmp ule i16 -4, 5 ; yields: result=false
8841 <result> = icmp sge i16 4, 5 ; yields: result=false
8842
Sean Silvab084af42012-12-07 10:36:55 +00008843.. _i_fcmp:
8844
8845'``fcmp``' Instruction
8846^^^^^^^^^^^^^^^^^^^^^^
8847
8848Syntax:
8849"""""""
8850
8851::
8852
James Molloy88eb5352015-07-10 12:52:00 +00008853 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008854
8855Overview:
8856"""""""""
8857
8858The '``fcmp``' instruction returns a boolean value or vector of boolean
8859values based on comparison of its operands.
8860
8861If the operands are floating point scalars, then the result type is a
8862boolean (:ref:`i1 <t_integer>`).
8863
8864If the operands are floating point vectors, then the result type is a
8865vector of boolean with the same number of elements as the operands being
8866compared.
8867
8868Arguments:
8869""""""""""
8870
8871The '``fcmp``' instruction takes three operands. The first operand is
8872the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008873not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008874
8875#. ``false``: no comparison, always returns false
8876#. ``oeq``: ordered and equal
8877#. ``ogt``: ordered and greater than
8878#. ``oge``: ordered and greater than or equal
8879#. ``olt``: ordered and less than
8880#. ``ole``: ordered and less than or equal
8881#. ``one``: ordered and not equal
8882#. ``ord``: ordered (no nans)
8883#. ``ueq``: unordered or equal
8884#. ``ugt``: unordered or greater than
8885#. ``uge``: unordered or greater than or equal
8886#. ``ult``: unordered or less than
8887#. ``ule``: unordered or less than or equal
8888#. ``une``: unordered or not equal
8889#. ``uno``: unordered (either nans)
8890#. ``true``: no comparison, always returns true
8891
8892*Ordered* means that neither operand is a QNAN while *unordered* means
8893that either operand may be a QNAN.
8894
8895Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8896point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8897type. They must have identical types.
8898
8899Semantics:
8900""""""""""
8901
8902The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8903condition code given as ``cond``. If the operands are vectors, then the
8904vectors are compared element by element. Each comparison performed
8905always yields an :ref:`i1 <t_integer>` result, as follows:
8906
8907#. ``false``: always yields ``false``, regardless of operands.
8908#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8909 is equal to ``op2``.
8910#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8911 is greater than ``op2``.
8912#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8913 is greater than or equal to ``op2``.
8914#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8915 is less than ``op2``.
8916#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8917 is less than or equal to ``op2``.
8918#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8919 is not equal to ``op2``.
8920#. ``ord``: yields ``true`` if both operands are not a QNAN.
8921#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8922 equal to ``op2``.
8923#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8924 greater than ``op2``.
8925#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8926 greater than or equal to ``op2``.
8927#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8928 less than ``op2``.
8929#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8930 less than or equal to ``op2``.
8931#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8932 not equal to ``op2``.
8933#. ``uno``: yields ``true`` if either operand is a QNAN.
8934#. ``true``: always yields ``true``, regardless of operands.
8935
James Molloy88eb5352015-07-10 12:52:00 +00008936The ``fcmp`` instruction can also optionally take any number of
8937:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8938otherwise unsafe floating point optimizations.
8939
8940Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8941only flags that have any effect on its semantics are those that allow
8942assumptions to be made about the values of input arguments; namely
8943``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8944
Sean Silvab084af42012-12-07 10:36:55 +00008945Example:
8946""""""""
8947
Renato Golin124f2592016-07-20 12:16:38 +00008948.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008949
8950 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8951 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8952 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8953 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8954
Sean Silvab084af42012-12-07 10:36:55 +00008955.. _i_phi:
8956
8957'``phi``' Instruction
8958^^^^^^^^^^^^^^^^^^^^^
8959
8960Syntax:
8961"""""""
8962
8963::
8964
8965 <result> = phi <ty> [ <val0>, <label0>], ...
8966
8967Overview:
8968"""""""""
8969
8970The '``phi``' instruction is used to implement the φ node in the SSA
8971graph representing the function.
8972
8973Arguments:
8974""""""""""
8975
8976The type of the incoming values is specified with the first type field.
8977After this, the '``phi``' instruction takes a list of pairs as
8978arguments, with one pair for each predecessor basic block of the current
8979block. Only values of :ref:`first class <t_firstclass>` type may be used as
8980the value arguments to the PHI node. Only labels may be used as the
8981label arguments.
8982
8983There must be no non-phi instructions between the start of a basic block
8984and the PHI instructions: i.e. PHI instructions must be first in a basic
8985block.
8986
8987For the purposes of the SSA form, the use of each incoming value is
8988deemed to occur on the edge from the corresponding predecessor block to
8989the current block (but after any definition of an '``invoke``'
8990instruction's return value on the same edge).
8991
8992Semantics:
8993""""""""""
8994
8995At runtime, the '``phi``' instruction logically takes on the value
8996specified by the pair corresponding to the predecessor basic block that
8997executed just prior to the current block.
8998
8999Example:
9000""""""""
9001
9002.. code-block:: llvm
9003
9004 Loop: ; Infinite loop that counts from 0 on up...
9005 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
9006 %nextindvar = add i32 %indvar, 1
9007 br label %Loop
9008
9009.. _i_select:
9010
9011'``select``' Instruction
9012^^^^^^^^^^^^^^^^^^^^^^^^
9013
9014Syntax:
9015"""""""
9016
9017::
9018
9019 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
9020
9021 selty is either i1 or {<N x i1>}
9022
9023Overview:
9024"""""""""
9025
9026The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00009027condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00009028
9029Arguments:
9030""""""""""
9031
9032The '``select``' instruction requires an 'i1' value or a vector of 'i1'
9033values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00009034class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00009035
9036Semantics:
9037""""""""""
9038
9039If the condition is an i1 and it evaluates to 1, the instruction returns
9040the first value argument; otherwise, it returns the second value
9041argument.
9042
9043If the condition is a vector of i1, then the value arguments must be
9044vectors of the same size, and the selection is done element by element.
9045
David Majnemer40a0b592015-03-03 22:45:47 +00009046If the condition is an i1 and the value arguments are vectors of the
9047same size, then an entire vector is selected.
9048
Sean Silvab084af42012-12-07 10:36:55 +00009049Example:
9050""""""""
9051
9052.. code-block:: llvm
9053
9054 %X = select i1 true, i8 17, i8 42 ; yields i8:17
9055
9056.. _i_call:
9057
9058'``call``' Instruction
9059^^^^^^^^^^^^^^^^^^^^^^
9060
9061Syntax:
9062"""""""
9063
9064::
9065
David Blaikieb83cf102016-07-13 17:21:34 +00009066 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00009067 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00009068
9069Overview:
9070"""""""""
9071
9072The '``call``' instruction represents a simple function call.
9073
9074Arguments:
9075""""""""""
9076
9077This instruction requires several arguments:
9078
Reid Kleckner5772b772014-04-24 20:14:34 +00009079#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00009080 should perform tail call optimization. The ``tail`` marker is a hint that
9081 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00009082 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00009083 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00009084
9085 #. The call will not cause unbounded stack growth if it is part of a
9086 recursive cycle in the call graph.
9087 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
9088 forwarded in place.
9089
Florian Hahnedae5a62018-01-17 23:29:25 +00009090 Both markers imply that the callee does not access allocas from the caller.
9091 The ``tail`` marker additionally implies that the callee does not access
9092 varargs from the caller, while ``musttail`` implies that varargs from the
9093 caller are passed to the callee. Calls marked ``musttail`` must obey the
9094 following additional rules:
Reid Kleckner5772b772014-04-24 20:14:34 +00009095
9096 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
9097 or a pointer bitcast followed by a ret instruction.
9098 - The ret instruction must return the (possibly bitcasted) value
9099 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00009100 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00009101 parameters or return types may differ in pointee type, but not
9102 in address space.
9103 - The calling conventions of the caller and callee must match.
9104 - All ABI-impacting function attributes, such as sret, byval, inreg,
9105 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00009106 - The callee must be varargs iff the caller is varargs. Bitcasting a
9107 non-varargs function to the appropriate varargs type is legal so
9108 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00009109
9110 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
9111 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00009112
9113 - Caller and callee both have the calling convention ``fastcc``.
9114 - The call is in tail position (ret immediately follows call and ret
9115 uses value of call or is void).
9116 - Option ``-tailcallopt`` is enabled, or
9117 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00009118 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00009119 met. <CodeGenerator.html#tailcallopt>`_
9120
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00009121#. The optional ``notail`` marker indicates that the optimizers should not add
9122 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
9123 call optimization from being performed on the call.
9124
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00009125#. The optional ``fast-math flags`` marker indicates that the call has one or more
Sanjay Patelfa54ace2015-12-14 21:59:03 +00009126 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
9127 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
9128 for calls that return a floating-point scalar or vector type.
9129
Sean Silvab084af42012-12-07 10:36:55 +00009130#. The optional "cconv" marker indicates which :ref:`calling
9131 convention <callingconv>` the call should use. If none is
9132 specified, the call defaults to using C calling conventions. The
9133 calling convention of the call must match the calling convention of
9134 the target function, or else the behavior is undefined.
9135#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
9136 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
9137 are valid here.
9138#. '``ty``': the type of the call instruction itself which is also the
9139 type of the return value. Functions that return no value are marked
9140 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00009141#. '``fnty``': shall be the signature of the function being called. The
9142 argument types must match the types implied by this signature. This
9143 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00009144#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00009145 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00009146 indirect ``call``'s are just as possible, calling an arbitrary pointer
9147 to function value.
9148#. '``function args``': argument list whose types match the function
9149 signature argument types and parameter attributes. All arguments must
9150 be of :ref:`first class <t_firstclass>` type. If the function signature
9151 indicates the function accepts a variable number of arguments, the
9152 extra arguments can be specified.
George Burgess IV39c91052017-04-13 04:01:55 +00009153#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00009154#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00009155
9156Semantics:
9157""""""""""
9158
9159The '``call``' instruction is used to cause control flow to transfer to
9160a specified function, with its incoming arguments bound to the specified
9161values. Upon a '``ret``' instruction in the called function, control
9162flow continues with the instruction after the function call, and the
9163return value of the function is bound to the result argument.
9164
9165Example:
9166""""""""
9167
9168.. code-block:: llvm
9169
9170 %retval = call i32 @test(i32 %argc)
9171 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
9172 %X = tail call i32 @foo() ; yields i32
9173 %Y = tail call fastcc i32 @foo() ; yields i32
9174 call void %foo(i8 97 signext)
9175
9176 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00009177 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00009178 %gr = extractvalue %struct.A %r, 0 ; yields i32
9179 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
9180 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
9181 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
9182
9183llvm treats calls to some functions with names and arguments that match
9184the standard C99 library as being the C99 library functions, and may
9185perform optimizations or generate code for them under that assumption.
9186This is something we'd like to change in the future to provide better
9187support for freestanding environments and non-C-based languages.
9188
9189.. _i_va_arg:
9190
9191'``va_arg``' Instruction
9192^^^^^^^^^^^^^^^^^^^^^^^^
9193
9194Syntax:
9195"""""""
9196
9197::
9198
9199 <resultval> = va_arg <va_list*> <arglist>, <argty>
9200
9201Overview:
9202"""""""""
9203
9204The '``va_arg``' instruction is used to access arguments passed through
9205the "variable argument" area of a function call. It is used to implement
9206the ``va_arg`` macro in C.
9207
9208Arguments:
9209""""""""""
9210
9211This instruction takes a ``va_list*`` value and the type of the
9212argument. It returns a value of the specified argument type and
9213increments the ``va_list`` to point to the next argument. The actual
9214type of ``va_list`` is target specific.
9215
9216Semantics:
9217""""""""""
9218
9219The '``va_arg``' instruction loads an argument of the specified type
9220from the specified ``va_list`` and causes the ``va_list`` to point to
9221the next argument. For more information, see the variable argument
9222handling :ref:`Intrinsic Functions <int_varargs>`.
9223
9224It is legal for this instruction to be called in a function which does
9225not take a variable number of arguments, for example, the ``vfprintf``
9226function.
9227
9228``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
9229function <intrinsics>` because it takes a type as an argument.
9230
9231Example:
9232""""""""
9233
9234See the :ref:`variable argument processing <int_varargs>` section.
9235
9236Note that the code generator does not yet fully support va\_arg on many
9237targets. Also, it does not currently support va\_arg with aggregate
9238types on any target.
9239
9240.. _i_landingpad:
9241
9242'``landingpad``' Instruction
9243^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9244
9245Syntax:
9246"""""""
9247
9248::
9249
David Majnemer7fddecc2015-06-17 20:52:32 +00009250 <resultval> = landingpad <resultty> <clause>+
9251 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00009252
9253 <clause> := catch <type> <value>
9254 <clause> := filter <array constant type> <array constant>
9255
9256Overview:
9257"""""""""
9258
9259The '``landingpad``' instruction is used by `LLVM's exception handling
9260system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009261is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00009262code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00009263defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00009264re-entry to the function. The ``resultval`` has the type ``resultty``.
9265
9266Arguments:
9267""""""""""
9268
David Majnemer7fddecc2015-06-17 20:52:32 +00009269The optional
Sean Silvab084af42012-12-07 10:36:55 +00009270``cleanup`` flag indicates that the landing pad block is a cleanup.
9271
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009272A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00009273contains the global variable representing the "type" that may be caught
9274or filtered respectively. Unlike the ``catch`` clause, the ``filter``
9275clause takes an array constant as its argument. Use
9276"``[0 x i8**] undef``" for a filter which cannot throw. The
9277'``landingpad``' instruction must contain *at least* one ``clause`` or
9278the ``cleanup`` flag.
9279
9280Semantics:
9281""""""""""
9282
9283The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00009284:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00009285therefore the "result type" of the ``landingpad`` instruction. As with
9286calling conventions, how the personality function results are
9287represented in LLVM IR is target specific.
9288
9289The clauses are applied in order from top to bottom. If two
9290``landingpad`` instructions are merged together through inlining, the
9291clauses from the calling function are appended to the list of clauses.
9292When the call stack is being unwound due to an exception being thrown,
9293the exception is compared against each ``clause`` in turn. If it doesn't
9294match any of the clauses, and the ``cleanup`` flag is not set, then
9295unwinding continues further up the call stack.
9296
9297The ``landingpad`` instruction has several restrictions:
9298
9299- A landing pad block is a basic block which is the unwind destination
9300 of an '``invoke``' instruction.
9301- A landing pad block must have a '``landingpad``' instruction as its
9302 first non-PHI instruction.
9303- There can be only one '``landingpad``' instruction within the landing
9304 pad block.
9305- A basic block that is not a landing pad block may not include a
9306 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009307
9308Example:
9309""""""""
9310
9311.. code-block:: llvm
9312
9313 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00009314 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009315 catch i8** @_ZTIi
9316 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00009317 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009318 cleanup
9319 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00009320 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009321 catch i8** @_ZTIi
9322 filter [1 x i8**] [@_ZTId]
9323
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009324.. _i_catchpad:
9325
9326'``catchpad``' Instruction
9327^^^^^^^^^^^^^^^^^^^^^^^^^^
9328
9329Syntax:
9330"""""""
9331
9332::
9333
9334 <resultval> = catchpad within <catchswitch> [<args>*]
9335
9336Overview:
9337"""""""""
9338
9339The '``catchpad``' instruction is used by `LLVM's exception handling
9340system <ExceptionHandling.html#overview>`_ to specify that a basic block
9341begins a catch handler --- one where a personality routine attempts to transfer
9342control to catch an exception.
9343
9344Arguments:
9345""""""""""
9346
9347The ``catchswitch`` operand must always be a token produced by a
9348:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
9349ensures that each ``catchpad`` has exactly one predecessor block, and it always
9350terminates in a ``catchswitch``.
9351
9352The ``args`` correspond to whatever information the personality routine
9353requires to know if this is an appropriate handler for the exception. Control
9354will transfer to the ``catchpad`` if this is the first appropriate handler for
9355the exception.
9356
9357The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
9358``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
9359pads.
9360
9361Semantics:
9362""""""""""
9363
9364When the call stack is being unwound due to an exception being thrown, the
9365exception is compared against the ``args``. If it doesn't match, control will
9366not reach the ``catchpad`` instruction. The representation of ``args`` is
9367entirely target and personality function-specific.
9368
9369Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
9370instruction must be the first non-phi of its parent basic block.
9371
9372The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
9373instructions is described in the
9374`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
9375
9376When a ``catchpad`` has been "entered" but not yet "exited" (as
9377described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9378it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9379that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
9380
9381Example:
9382""""""""
9383
Renato Golin124f2592016-07-20 12:16:38 +00009384.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009385
9386 dispatch:
9387 %cs = catchswitch within none [label %handler0] unwind to caller
9388 ;; A catch block which can catch an integer.
9389 handler0:
9390 %tok = catchpad within %cs [i8** @_ZTIi]
9391
David Majnemer654e1302015-07-31 17:58:14 +00009392.. _i_cleanuppad:
9393
9394'``cleanuppad``' Instruction
9395^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9396
9397Syntax:
9398"""""""
9399
9400::
9401
David Majnemer8a1c45d2015-12-12 05:38:55 +00009402 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00009403
9404Overview:
9405"""""""""
9406
9407The '``cleanuppad``' instruction is used by `LLVM's exception handling
9408system <ExceptionHandling.html#overview>`_ to specify that a basic block
9409is a cleanup block --- one where a personality routine attempts to
9410transfer control to run cleanup actions.
9411The ``args`` correspond to whatever additional
9412information the :ref:`personality function <personalityfn>` requires to
9413execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00009414The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00009415match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
9416The ``parent`` argument is the token of the funclet that contains the
9417``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
9418this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00009419
9420Arguments:
9421""""""""""
9422
9423The instruction takes a list of arbitrary values which are interpreted
9424by the :ref:`personality function <personalityfn>`.
9425
9426Semantics:
9427""""""""""
9428
David Majnemer654e1302015-07-31 17:58:14 +00009429When the call stack is being unwound due to an exception being thrown,
9430the :ref:`personality function <personalityfn>` transfers control to the
9431``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00009432As with calling conventions, how the personality function results are
9433represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00009434
9435The ``cleanuppad`` instruction has several restrictions:
9436
9437- A cleanup block is a basic block which is the unwind destination of
9438 an exceptional instruction.
9439- A cleanup block must have a '``cleanuppad``' instruction as its
9440 first non-PHI instruction.
9441- There can be only one '``cleanuppad``' instruction within the
9442 cleanup block.
9443- A basic block that is not a cleanup block may not include a
9444 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009445
Joseph Tremoulete28885e2016-01-10 04:28:38 +00009446When a ``cleanuppad`` has been "entered" but not yet "exited" (as
9447described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9448it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9449that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009450
David Majnemer654e1302015-07-31 17:58:14 +00009451Example:
9452""""""""
9453
Renato Golin124f2592016-07-20 12:16:38 +00009454.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00009455
David Majnemer8a1c45d2015-12-12 05:38:55 +00009456 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00009457
Sean Silvab084af42012-12-07 10:36:55 +00009458.. _intrinsics:
9459
9460Intrinsic Functions
9461===================
9462
9463LLVM supports the notion of an "intrinsic function". These functions
9464have well known names and semantics and are required to follow certain
9465restrictions. Overall, these intrinsics represent an extension mechanism
9466for the LLVM language that does not require changing all of the
9467transformations in LLVM when adding to the language (or the bitcode
9468reader/writer, the parser, etc...).
9469
9470Intrinsic function names must all start with an "``llvm.``" prefix. This
9471prefix is reserved in LLVM for intrinsic names; thus, function names may
9472not begin with this prefix. Intrinsic functions must always be external
9473functions: you cannot define the body of intrinsic functions. Intrinsic
9474functions may only be used in call or invoke instructions: it is illegal
9475to take the address of an intrinsic function. Additionally, because
9476intrinsic functions are part of the LLVM language, it is required if any
9477are added that they be documented here.
9478
9479Some intrinsic functions can be overloaded, i.e., the intrinsic
9480represents a family of functions that perform the same operation but on
9481different data types. Because LLVM can represent over 8 million
9482different integer types, overloading is used commonly to allow an
9483intrinsic function to operate on any integer type. One or more of the
9484argument types or the result type can be overloaded to accept any
9485integer type. Argument types may also be defined as exactly matching a
9486previous argument's type or the result type. This allows an intrinsic
9487function which accepts multiple arguments, but needs all of them to be
9488of the same type, to only be overloaded with respect to a single
9489argument or the result.
9490
9491Overloaded intrinsics will have the names of its overloaded argument
9492types encoded into its function name, each preceded by a period. Only
9493those types which are overloaded result in a name suffix. Arguments
9494whose type is matched against another type do not. For example, the
9495``llvm.ctpop`` function can take an integer of any width and returns an
9496integer of exactly the same integer width. This leads to a family of
9497functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
9498``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
9499overloaded, and only one type suffix is required. Because the argument's
9500type is matched against the return type, it does not require its own
9501name suffix.
9502
9503To learn how to add an intrinsic function, please see the `Extending
9504LLVM Guide <ExtendingLLVM.html>`_.
9505
9506.. _int_varargs:
9507
9508Variable Argument Handling Intrinsics
9509-------------------------------------
9510
9511Variable argument support is defined in LLVM with the
9512:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9513functions. These functions are related to the similarly named macros
9514defined in the ``<stdarg.h>`` header file.
9515
9516All of these functions operate on arguments that use a target-specific
9517value type "``va_list``". The LLVM assembly language reference manual
9518does not define what this type is, so all transformations should be
9519prepared to handle these functions regardless of the type used.
9520
9521This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9522variable argument handling intrinsic functions are used.
9523
9524.. code-block:: llvm
9525
Tim Northoverab60bb92014-11-02 01:21:51 +00009526 ; This struct is different for every platform. For most platforms,
9527 ; it is merely an i8*.
9528 %struct.va_list = type { i8* }
9529
9530 ; For Unix x86_64 platforms, va_list is the following struct:
9531 ; %struct.va_list = type { i32, i32, i8*, i8* }
9532
Sean Silvab084af42012-12-07 10:36:55 +00009533 define i32 @test(i32 %X, ...) {
9534 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009535 %ap = alloca %struct.va_list
9536 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009537 call void @llvm.va_start(i8* %ap2)
9538
9539 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009540 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009541
9542 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9543 %aq = alloca i8*
9544 %aq2 = bitcast i8** %aq to i8*
9545 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9546 call void @llvm.va_end(i8* %aq2)
9547
9548 ; Stop processing of arguments.
9549 call void @llvm.va_end(i8* %ap2)
9550 ret i32 %tmp
9551 }
9552
9553 declare void @llvm.va_start(i8*)
9554 declare void @llvm.va_copy(i8*, i8*)
9555 declare void @llvm.va_end(i8*)
9556
9557.. _int_va_start:
9558
9559'``llvm.va_start``' Intrinsic
9560^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9561
9562Syntax:
9563"""""""
9564
9565::
9566
Nick Lewycky04f6de02013-09-11 22:04:52 +00009567 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009568
9569Overview:
9570"""""""""
9571
9572The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9573subsequent use by ``va_arg``.
9574
9575Arguments:
9576""""""""""
9577
9578The argument is a pointer to a ``va_list`` element to initialize.
9579
9580Semantics:
9581""""""""""
9582
9583The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9584available in C. In a target-dependent way, it initializes the
9585``va_list`` element to which the argument points, so that the next call
9586to ``va_arg`` will produce the first variable argument passed to the
9587function. Unlike the C ``va_start`` macro, this intrinsic does not need
9588to know the last argument of the function as the compiler can figure
9589that out.
9590
9591'``llvm.va_end``' Intrinsic
9592^^^^^^^^^^^^^^^^^^^^^^^^^^^
9593
9594Syntax:
9595"""""""
9596
9597::
9598
9599 declare void @llvm.va_end(i8* <arglist>)
9600
9601Overview:
9602"""""""""
9603
9604The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9605initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9606
9607Arguments:
9608""""""""""
9609
9610The argument is a pointer to a ``va_list`` to destroy.
9611
9612Semantics:
9613""""""""""
9614
9615The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9616available in C. In a target-dependent way, it destroys the ``va_list``
9617element to which the argument points. Calls to
9618:ref:`llvm.va_start <int_va_start>` and
9619:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9620``llvm.va_end``.
9621
9622.. _int_va_copy:
9623
9624'``llvm.va_copy``' Intrinsic
9625^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9626
9627Syntax:
9628"""""""
9629
9630::
9631
9632 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9633
9634Overview:
9635"""""""""
9636
9637The '``llvm.va_copy``' intrinsic copies the current argument position
9638from the source argument list to the destination argument list.
9639
9640Arguments:
9641""""""""""
9642
9643The first argument is a pointer to a ``va_list`` element to initialize.
9644The second argument is a pointer to a ``va_list`` element to copy from.
9645
9646Semantics:
9647""""""""""
9648
9649The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9650available in C. In a target-dependent way, it copies the source
9651``va_list`` element into the destination ``va_list`` element. This
9652intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9653arbitrarily complex and require, for example, memory allocation.
9654
9655Accurate Garbage Collection Intrinsics
9656--------------------------------------
9657
Philip Reamesc5b0f562015-02-25 23:52:06 +00009658LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009659(GC) requires the frontend to generate code containing appropriate intrinsic
9660calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009661intrinsics in a manner which is appropriate for the target collector.
9662
Sean Silvab084af42012-12-07 10:36:55 +00009663These intrinsics allow identification of :ref:`GC roots on the
9664stack <int_gcroot>`, as well as garbage collector implementations that
9665require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009666Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009667these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009668details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009669
Philip Reamesf80bbff2015-02-25 23:45:20 +00009670Experimental Statepoint Intrinsics
9671^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9672
9673LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009674collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009675to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009676:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009677differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009678<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009679described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009680
9681.. _int_gcroot:
9682
9683'``llvm.gcroot``' Intrinsic
9684^^^^^^^^^^^^^^^^^^^^^^^^^^^
9685
9686Syntax:
9687"""""""
9688
9689::
9690
9691 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9692
9693Overview:
9694"""""""""
9695
9696The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9697the code generator, and allows some metadata to be associated with it.
9698
9699Arguments:
9700""""""""""
9701
9702The first argument specifies the address of a stack object that contains
9703the root pointer. The second pointer (which must be either a constant or
9704a global value address) contains the meta-data to be associated with the
9705root.
9706
9707Semantics:
9708""""""""""
9709
9710At runtime, a call to this intrinsic stores a null pointer into the
9711"ptrloc" location. At compile-time, the code generator generates
9712information to allow the runtime to find the pointer at GC safe points.
9713The '``llvm.gcroot``' intrinsic may only be used in a function which
9714:ref:`specifies a GC algorithm <gc>`.
9715
9716.. _int_gcread:
9717
9718'``llvm.gcread``' Intrinsic
9719^^^^^^^^^^^^^^^^^^^^^^^^^^^
9720
9721Syntax:
9722"""""""
9723
9724::
9725
9726 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9727
9728Overview:
9729"""""""""
9730
9731The '``llvm.gcread``' intrinsic identifies reads of references from heap
9732locations, allowing garbage collector implementations that require read
9733barriers.
9734
9735Arguments:
9736""""""""""
9737
9738The second argument is the address to read from, which should be an
9739address allocated from the garbage collector. The first object is a
9740pointer to the start of the referenced object, if needed by the language
9741runtime (otherwise null).
9742
9743Semantics:
9744""""""""""
9745
9746The '``llvm.gcread``' intrinsic has the same semantics as a load
9747instruction, but may be replaced with substantially more complex code by
9748the garbage collector runtime, as needed. The '``llvm.gcread``'
9749intrinsic may only be used in a function which :ref:`specifies a GC
9750algorithm <gc>`.
9751
9752.. _int_gcwrite:
9753
9754'``llvm.gcwrite``' Intrinsic
9755^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9756
9757Syntax:
9758"""""""
9759
9760::
9761
9762 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9763
9764Overview:
9765"""""""""
9766
9767The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9768locations, allowing garbage collector implementations that require write
9769barriers (such as generational or reference counting collectors).
9770
9771Arguments:
9772""""""""""
9773
9774The first argument is the reference to store, the second is the start of
9775the object to store it to, and the third is the address of the field of
9776Obj to store to. If the runtime does not require a pointer to the
9777object, Obj may be null.
9778
9779Semantics:
9780""""""""""
9781
9782The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9783instruction, but may be replaced with substantially more complex code by
9784the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9785intrinsic may only be used in a function which :ref:`specifies a GC
9786algorithm <gc>`.
9787
9788Code Generator Intrinsics
9789-------------------------
9790
9791These intrinsics are provided by LLVM to expose special features that
9792may only be implemented with code generator support.
9793
9794'``llvm.returnaddress``' Intrinsic
9795^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9796
9797Syntax:
9798"""""""
9799
9800::
9801
George Burgess IVfbc34982017-05-20 04:52:29 +00009802 declare i8* @llvm.returnaddress(i32 <level>)
Sean Silvab084af42012-12-07 10:36:55 +00009803
9804Overview:
9805"""""""""
9806
9807The '``llvm.returnaddress``' intrinsic attempts to compute a
9808target-specific value indicating the return address of the current
9809function or one of its callers.
9810
9811Arguments:
9812""""""""""
9813
9814The argument to this intrinsic indicates which function to return the
9815address for. Zero indicates the calling function, one indicates its
9816caller, etc. The argument is **required** to be a constant integer
9817value.
9818
9819Semantics:
9820""""""""""
9821
9822The '``llvm.returnaddress``' intrinsic either returns a pointer
9823indicating the return address of the specified call frame, or zero if it
9824cannot be identified. The value returned by this intrinsic is likely to
9825be incorrect or 0 for arguments other than zero, so it should only be
9826used for debugging purposes.
9827
9828Note that calling this intrinsic does not prevent function inlining or
9829other aggressive transformations, so the value returned may not be that
9830of the obvious source-language caller.
9831
Albert Gutowski795d7d62016-10-12 22:13:19 +00009832'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +00009833^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +00009834
9835Syntax:
9836"""""""
9837
9838::
9839
George Burgess IVfbc34982017-05-20 04:52:29 +00009840 declare i8* @llvm.addressofreturnaddress()
Albert Gutowski795d7d62016-10-12 22:13:19 +00009841
9842Overview:
9843"""""""""
9844
9845The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
9846pointer to the place in the stack frame where the return address of the
9847current function is stored.
9848
9849Semantics:
9850""""""""""
9851
9852Note that calling this intrinsic does not prevent function inlining or
9853other aggressive transformations, so the value returned may not be that
9854of the obvious source-language caller.
9855
9856This intrinsic is only implemented for x86.
9857
Sean Silvab084af42012-12-07 10:36:55 +00009858'``llvm.frameaddress``' Intrinsic
9859^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9860
9861Syntax:
9862"""""""
9863
9864::
9865
9866 declare i8* @llvm.frameaddress(i32 <level>)
9867
9868Overview:
9869"""""""""
9870
9871The '``llvm.frameaddress``' intrinsic attempts to return the
9872target-specific frame pointer value for the specified stack frame.
9873
9874Arguments:
9875""""""""""
9876
9877The argument to this intrinsic indicates which function to return the
9878frame pointer for. Zero indicates the calling function, one indicates
9879its caller, etc. The argument is **required** to be a constant integer
9880value.
9881
9882Semantics:
9883""""""""""
9884
9885The '``llvm.frameaddress``' intrinsic either returns a pointer
9886indicating the frame address of the specified call frame, or zero if it
9887cannot be identified. The value returned by this intrinsic is likely to
9888be incorrect or 0 for arguments other than zero, so it should only be
9889used for debugging purposes.
9890
9891Note that calling this intrinsic does not prevent function inlining or
9892other aggressive transformations, so the value returned may not be that
9893of the obvious source-language caller.
9894
Reid Kleckner60381792015-07-07 22:25:32 +00009895'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009896^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9897
9898Syntax:
9899"""""""
9900
9901::
9902
Reid Kleckner60381792015-07-07 22:25:32 +00009903 declare void @llvm.localescape(...)
9904 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009905
9906Overview:
9907"""""""""
9908
Reid Kleckner60381792015-07-07 22:25:32 +00009909The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9910allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009911live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009912computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009913
9914Arguments:
9915""""""""""
9916
Reid Kleckner60381792015-07-07 22:25:32 +00009917All arguments to '``llvm.localescape``' must be pointers to static allocas or
9918casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009919once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009920
Reid Kleckner60381792015-07-07 22:25:32 +00009921The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009922bitcasted pointer to a function defined in the current module. The code
9923generator cannot determine the frame allocation offset of functions defined in
9924other modules.
9925
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009926The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9927call frame that is currently live. The return value of '``llvm.localaddress``'
9928is one way to produce such a value, but various runtimes also expose a suitable
9929pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009930
Reid Kleckner60381792015-07-07 22:25:32 +00009931The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9932'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009933
Reid Klecknere9b89312015-01-13 00:48:10 +00009934Semantics:
9935""""""""""
9936
Reid Kleckner60381792015-07-07 22:25:32 +00009937These intrinsics allow a group of functions to share access to a set of local
9938stack allocations of a one parent function. The parent function may call the
9939'``llvm.localescape``' intrinsic once from the function entry block, and the
9940child functions can use '``llvm.localrecover``' to access the escaped allocas.
9941The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9942the escaped allocas are allocated, which would break attempts to use
9943'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009944
Renato Golinc7aea402014-05-06 16:51:25 +00009945.. _int_read_register:
9946.. _int_write_register:
9947
9948'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9949^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9950
9951Syntax:
9952"""""""
9953
9954::
9955
9956 declare i32 @llvm.read_register.i32(metadata)
9957 declare i64 @llvm.read_register.i64(metadata)
9958 declare void @llvm.write_register.i32(metadata, i32 @value)
9959 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009960 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009961
9962Overview:
9963"""""""""
9964
9965The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9966provides access to the named register. The register must be valid on
9967the architecture being compiled to. The type needs to be compatible
9968with the register being read.
9969
9970Semantics:
9971""""""""""
9972
9973The '``llvm.read_register``' intrinsic returns the current value of the
9974register, where possible. The '``llvm.write_register``' intrinsic sets
9975the current value of the register, where possible.
9976
9977This is useful to implement named register global variables that need
9978to always be mapped to a specific register, as is common practice on
9979bare-metal programs including OS kernels.
9980
9981The compiler doesn't check for register availability or use of the used
9982register in surrounding code, including inline assembly. Because of that,
9983allocatable registers are not supported.
9984
9985Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009986architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009987work is needed to support other registers and even more so, allocatable
9988registers.
9989
Sean Silvab084af42012-12-07 10:36:55 +00009990.. _int_stacksave:
9991
9992'``llvm.stacksave``' Intrinsic
9993^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9994
9995Syntax:
9996"""""""
9997
9998::
9999
10000 declare i8* @llvm.stacksave()
10001
10002Overview:
10003"""""""""
10004
10005The '``llvm.stacksave``' intrinsic is used to remember the current state
10006of the function stack, for use with
10007:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
10008implementing language features like scoped automatic variable sized
10009arrays in C99.
10010
10011Semantics:
10012""""""""""
10013
10014This intrinsic returns a opaque pointer value that can be passed to
10015:ref:`llvm.stackrestore <int_stackrestore>`. When an
10016``llvm.stackrestore`` intrinsic is executed with a value saved from
10017``llvm.stacksave``, it effectively restores the state of the stack to
10018the state it was in when the ``llvm.stacksave`` intrinsic executed. In
10019practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
10020were allocated after the ``llvm.stacksave`` was executed.
10021
10022.. _int_stackrestore:
10023
10024'``llvm.stackrestore``' Intrinsic
10025^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10026
10027Syntax:
10028"""""""
10029
10030::
10031
10032 declare void @llvm.stackrestore(i8* %ptr)
10033
10034Overview:
10035"""""""""
10036
10037The '``llvm.stackrestore``' intrinsic is used to restore the state of
10038the function stack to the state it was in when the corresponding
10039:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
10040useful for implementing language features like scoped automatic variable
10041sized arrays in C99.
10042
10043Semantics:
10044""""""""""
10045
10046See the description for :ref:`llvm.stacksave <int_stacksave>`.
10047
Yury Gribovd7dbb662015-12-01 11:40:55 +000010048.. _int_get_dynamic_area_offset:
10049
10050'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +000010051^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +000010052
10053Syntax:
10054"""""""
10055
10056::
10057
10058 declare i32 @llvm.get.dynamic.area.offset.i32()
10059 declare i64 @llvm.get.dynamic.area.offset.i64()
10060
Lang Hames10239932016-10-08 00:20:42 +000010061Overview:
10062"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +000010063
10064 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
10065 get the offset from native stack pointer to the address of the most
10066 recent dynamic alloca on the caller's stack. These intrinsics are
10067 intendend for use in combination with
10068 :ref:`llvm.stacksave <int_stacksave>` to get a
10069 pointer to the most recent dynamic alloca. This is useful, for example,
10070 for AddressSanitizer's stack unpoisoning routines.
10071
10072Semantics:
10073""""""""""
10074
10075 These intrinsics return a non-negative integer value that can be used to
10076 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
10077 on the caller's stack. In particular, for targets where stack grows downwards,
10078 adding this offset to the native stack pointer would get the address of the most
10079 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +000010080 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +000010081 one past the end of the most recent dynamic alloca.
10082
10083 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
10084 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
10085 compile-time-known constant value.
10086
10087 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
Matt Arsenaultc749bdc2017-03-30 23:36:47 +000010088 must match the target's default address space's (address space 0) pointer type.
Yury Gribovd7dbb662015-12-01 11:40:55 +000010089
Sean Silvab084af42012-12-07 10:36:55 +000010090'``llvm.prefetch``' Intrinsic
10091^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10092
10093Syntax:
10094"""""""
10095
10096::
10097
10098 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
10099
10100Overview:
10101"""""""""
10102
10103The '``llvm.prefetch``' intrinsic is a hint to the code generator to
10104insert a prefetch instruction if supported; otherwise, it is a noop.
10105Prefetches have no effect on the behavior of the program but can change
10106its performance characteristics.
10107
10108Arguments:
10109""""""""""
10110
10111``address`` is the address to be prefetched, ``rw`` is the specifier
10112determining if the fetch should be for a read (0) or write (1), and
10113``locality`` is a temporal locality specifier ranging from (0) - no
10114locality, to (3) - extremely local keep in cache. The ``cache type``
10115specifies whether the prefetch is performed on the data (1) or
10116instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
10117arguments must be constant integers.
10118
10119Semantics:
10120""""""""""
10121
10122This intrinsic does not modify the behavior of the program. In
10123particular, prefetches cannot trap and do not produce a value. On
10124targets that support this intrinsic, the prefetch can provide hints to
10125the processor cache for better performance.
10126
10127'``llvm.pcmarker``' Intrinsic
10128^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10129
10130Syntax:
10131"""""""
10132
10133::
10134
10135 declare void @llvm.pcmarker(i32 <id>)
10136
10137Overview:
10138"""""""""
10139
10140The '``llvm.pcmarker``' intrinsic is a method to export a Program
10141Counter (PC) in a region of code to simulators and other tools. The
10142method is target specific, but it is expected that the marker will use
10143exported symbols to transmit the PC of the marker. The marker makes no
10144guarantees that it will remain with any specific instruction after
10145optimizations. It is possible that the presence of a marker will inhibit
10146optimizations. The intended use is to be inserted after optimizations to
10147allow correlations of simulation runs.
10148
10149Arguments:
10150""""""""""
10151
10152``id`` is a numerical id identifying the marker.
10153
10154Semantics:
10155""""""""""
10156
10157This intrinsic does not modify the behavior of the program. Backends
10158that do not support this intrinsic may ignore it.
10159
10160'``llvm.readcyclecounter``' Intrinsic
10161^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10162
10163Syntax:
10164"""""""
10165
10166::
10167
10168 declare i64 @llvm.readcyclecounter()
10169
10170Overview:
10171"""""""""
10172
10173The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
10174counter register (or similar low latency, high accuracy clocks) on those
10175targets that support it. On X86, it should map to RDTSC. On Alpha, it
10176should map to RPCC. As the backing counters overflow quickly (on the
10177order of 9 seconds on alpha), this should only be used for small
10178timings.
10179
10180Semantics:
10181""""""""""
10182
10183When directly supported, reading the cycle counter should not modify any
10184memory. Implementations are allowed to either return a application
10185specific value or a system wide value. On backends without support, this
10186is lowered to a constant 0.
10187
Tim Northoverbc933082013-05-23 19:11:20 +000010188Note that runtime support may be conditional on the privilege-level code is
10189running at and the host platform.
10190
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010191'``llvm.clear_cache``' Intrinsic
10192^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10193
10194Syntax:
10195"""""""
10196
10197::
10198
10199 declare void @llvm.clear_cache(i8*, i8*)
10200
10201Overview:
10202"""""""""
10203
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010204The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
10205in the specified range to the execution unit of the processor. On
10206targets with non-unified instruction and data cache, the implementation
10207flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010208
10209Semantics:
10210""""""""""
10211
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010212On platforms with coherent instruction and data caches (e.g. x86), this
10213intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +000010214cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010215instructions or a system call, if cache flushing requires special
10216privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010217
Sean Silvad02bf3e2014-04-07 22:29:53 +000010218The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010219time library.
Renato Golin93010e62014-03-26 14:01:32 +000010220
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010221This instrinsic does *not* empty the instruction pipeline. Modifications
10222of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010223
Vedant Kumar51ce6682018-01-26 23:54:25 +000010224'``llvm.instrprof.increment``' Intrinsic
Justin Bogner61ba2e32014-12-08 18:02:35 +000010225^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10226
10227Syntax:
10228"""""""
10229
10230::
10231
Vedant Kumar51ce6682018-01-26 23:54:25 +000010232 declare void @llvm.instrprof.increment(i8* <name>, i64 <hash>,
Justin Bogner61ba2e32014-12-08 18:02:35 +000010233 i32 <num-counters>, i32 <index>)
10234
10235Overview:
10236"""""""""
10237
Vedant Kumar51ce6682018-01-26 23:54:25 +000010238The '``llvm.instrprof.increment``' intrinsic can be emitted by a
Justin Bogner61ba2e32014-12-08 18:02:35 +000010239frontend for use with instrumentation based profiling. These will be
10240lowered by the ``-instrprof`` pass to generate execution counts of a
10241program at runtime.
10242
10243Arguments:
10244""""""""""
10245
10246The first argument is a pointer to a global variable containing the
10247name of the entity being instrumented. This should generally be the
10248(mangled) function name for a set of counters.
10249
10250The second argument is a hash value that can be used by the consumer
10251of the profile data to detect changes to the instrumented source, and
10252the third is the number of counters associated with ``name``. It is an
10253error if ``hash`` or ``num-counters`` differ between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000010254``instrprof.increment`` that refer to the same name.
Justin Bogner61ba2e32014-12-08 18:02:35 +000010255
10256The last argument refers to which of the counters for ``name`` should
10257be incremented. It should be a value between 0 and ``num-counters``.
10258
10259Semantics:
10260""""""""""
10261
10262This intrinsic represents an increment of a profiling counter. It will
10263cause the ``-instrprof`` pass to generate the appropriate data
10264structures and the code to increment the appropriate value, in a
10265format that can be written out by a compiler runtime and consumed via
10266the ``llvm-profdata`` tool.
10267
Vedant Kumar51ce6682018-01-26 23:54:25 +000010268'``llvm.instrprof.increment.step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +000010269^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +000010270
10271Syntax:
10272"""""""
10273
10274::
10275
Vedant Kumar51ce6682018-01-26 23:54:25 +000010276 declare void @llvm.instrprof.increment.step(i8* <name>, i64 <hash>,
Xinliang David Li4ca17332016-09-18 18:34:07 +000010277 i32 <num-counters>,
10278 i32 <index>, i64 <step>)
10279
10280Overview:
10281"""""""""
10282
Vedant Kumar51ce6682018-01-26 23:54:25 +000010283The '``llvm.instrprof.increment.step``' intrinsic is an extension to
10284the '``llvm.instrprof.increment``' intrinsic with an additional fifth
Xinliang David Li4ca17332016-09-18 18:34:07 +000010285argument to specify the step of the increment.
10286
10287Arguments:
10288""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000010289The first four arguments are the same as '``llvm.instrprof.increment``'
Pete Couperused9569d2017-08-23 20:58:22 +000010290intrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000010291
10292The last argument specifies the value of the increment of the counter variable.
10293
10294Semantics:
10295""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000010296See description of '``llvm.instrprof.increment``' instrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000010297
10298
Vedant Kumar51ce6682018-01-26 23:54:25 +000010299'``llvm.instrprof.value.profile``' Intrinsic
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010300^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10301
10302Syntax:
10303"""""""
10304
10305::
10306
Vedant Kumar51ce6682018-01-26 23:54:25 +000010307 declare void @llvm.instrprof.value.profile(i8* <name>, i64 <hash>,
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010308 i64 <value>, i32 <value_kind>,
10309 i32 <index>)
10310
10311Overview:
10312"""""""""
10313
Vedant Kumar51ce6682018-01-26 23:54:25 +000010314The '``llvm.instrprof.value.profile``' intrinsic can be emitted by a
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010315frontend for use with instrumentation based profiling. This will be
10316lowered by the ``-instrprof`` pass to find out the target values,
10317instrumented expressions take in a program at runtime.
10318
10319Arguments:
10320""""""""""
10321
10322The first argument is a pointer to a global variable containing the
10323name of the entity being instrumented. ``name`` should generally be the
10324(mangled) function name for a set of counters.
10325
10326The second argument is a hash value that can be used by the consumer
10327of the profile data to detect changes to the instrumented source. It
10328is an error if ``hash`` differs between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000010329``llvm.instrprof.*`` that refer to the same name.
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010330
10331The third argument is the value of the expression being profiled. The profiled
10332expression's value should be representable as an unsigned 64-bit value. The
10333fourth argument represents the kind of value profiling that is being done. The
10334supported value profiling kinds are enumerated through the
10335``InstrProfValueKind`` type declared in the
10336``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
10337index of the instrumented expression within ``name``. It should be >= 0.
10338
10339Semantics:
10340""""""""""
10341
10342This intrinsic represents the point where a call to a runtime routine
10343should be inserted for value profiling of target expressions. ``-instrprof``
10344pass will generate the appropriate data structures and replace the
Vedant Kumar51ce6682018-01-26 23:54:25 +000010345``llvm.instrprof.value.profile`` intrinsic with the call to the profile
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010346runtime library with proper arguments.
10347
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000010348'``llvm.thread.pointer``' Intrinsic
10349^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10350
10351Syntax:
10352"""""""
10353
10354::
10355
10356 declare i8* @llvm.thread.pointer()
10357
10358Overview:
10359"""""""""
10360
10361The '``llvm.thread.pointer``' intrinsic returns the value of the thread
10362pointer.
10363
10364Semantics:
10365""""""""""
10366
10367The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
10368for the current thread. The exact semantics of this value are target
10369specific: it may point to the start of TLS area, to the end, or somewhere
10370in the middle. Depending on the target, this intrinsic may read a register,
10371call a helper function, read from an alternate memory space, or perform
10372other operations necessary to locate the TLS area. Not all targets support
10373this intrinsic.
10374
Sean Silvab084af42012-12-07 10:36:55 +000010375Standard C Library Intrinsics
10376-----------------------------
10377
10378LLVM provides intrinsics for a few important standard C library
10379functions. These intrinsics allow source-language front-ends to pass
10380information about the alignment of the pointer arguments to the code
10381generator, providing opportunity for more efficient code generation.
10382
10383.. _int_memcpy:
10384
10385'``llvm.memcpy``' Intrinsic
10386^^^^^^^^^^^^^^^^^^^^^^^^^^^
10387
10388Syntax:
10389"""""""
10390
10391This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
10392integer bit width and for different address spaces. Not all targets
10393support all bit widths however.
10394
10395::
10396
10397 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010398 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010399 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010400 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010401
10402Overview:
10403"""""""""
10404
10405The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10406source location to the destination location.
10407
10408Note that, unlike the standard libc function, the ``llvm.memcpy.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000010409intrinsics do not return a value, takes extra isvolatile
Sean Silvab084af42012-12-07 10:36:55 +000010410arguments and the pointers can be in specified address spaces.
10411
10412Arguments:
10413""""""""""
10414
10415The first argument is a pointer to the destination, the second is a
10416pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000010417specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000010418boolean indicating a volatile access.
10419
Daniel Neilson39eb6a52018-01-19 17:24:21 +000010420The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010421for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010422
10423If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
10424a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10425very cleanly specified and it is unwise to depend on it.
10426
10427Semantics:
10428""""""""""
10429
10430The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10431source location to the destination location, which are not allowed to
10432overlap. It copies "len" bytes of memory over. If the argument is known
10433to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +000010434argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010435
Daniel Neilson57226ef2017-07-12 15:25:26 +000010436.. _int_memmove:
10437
Sean Silvab084af42012-12-07 10:36:55 +000010438'``llvm.memmove``' Intrinsic
10439^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10440
10441Syntax:
10442"""""""
10443
10444This is an overloaded intrinsic. You can use llvm.memmove on any integer
10445bit width and for different address space. Not all targets support all
10446bit widths however.
10447
10448::
10449
10450 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010451 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010452 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010453 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010454
10455Overview:
10456"""""""""
10457
10458The '``llvm.memmove.*``' intrinsics move a block of memory from the
10459source location to the destination location. It is similar to the
10460'``llvm.memcpy``' intrinsic but allows the two memory locations to
10461overlap.
10462
10463Note that, unlike the standard libc function, the ``llvm.memmove.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000010464intrinsics do not return a value, takes an extra isvolatile
10465argument and the pointers can be in specified address spaces.
Sean Silvab084af42012-12-07 10:36:55 +000010466
10467Arguments:
10468""""""""""
10469
10470The first argument is a pointer to the destination, the second is a
10471pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000010472specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000010473boolean indicating a volatile access.
10474
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000010475The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010476for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010477
10478If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
10479is a :ref:`volatile operation <volatile>`. The detailed access behavior is
10480not very cleanly specified and it is unwise to depend on it.
10481
10482Semantics:
10483""""""""""
10484
10485The '``llvm.memmove.*``' intrinsics copy a block of memory from the
10486source location to the destination location, which may overlap. It
10487copies "len" bytes of memory over. If the argument is known to be
10488aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000010489otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010490
Daniel Neilson965613e2017-07-12 21:57:23 +000010491.. _int_memset:
10492
Sean Silvab084af42012-12-07 10:36:55 +000010493'``llvm.memset.*``' Intrinsics
10494^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10495
10496Syntax:
10497"""""""
10498
10499This is an overloaded intrinsic. You can use llvm.memset on any integer
10500bit width and for different address spaces. However, not all targets
10501support all bit widths.
10502
10503::
10504
10505 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010506 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010507 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010508 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010509
10510Overview:
10511"""""""""
10512
10513The '``llvm.memset.*``' intrinsics fill a block of memory with a
10514particular byte value.
10515
10516Note that, unlike the standard libc function, the ``llvm.memset``
Daniel Neilson1e687242018-01-19 17:13:12 +000010517intrinsic does not return a value and takes an extra volatile
10518argument. Also, the destination can be in an arbitrary address space.
Sean Silvab084af42012-12-07 10:36:55 +000010519
10520Arguments:
10521""""""""""
10522
10523The first argument is a pointer to the destination to fill, the second
10524is the byte value with which to fill it, the third argument is an
10525integer argument specifying the number of bytes to fill, and the fourth
Daniel Neilson1e687242018-01-19 17:13:12 +000010526is a boolean indicating a volatile access.
Sean Silvab084af42012-12-07 10:36:55 +000010527
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000010528The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010529for the first arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010530
10531If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10532a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10533very cleanly specified and it is unwise to depend on it.
10534
10535Semantics:
10536""""""""""
10537
10538The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010539at the destination location.
Sean Silvab084af42012-12-07 10:36:55 +000010540
10541'``llvm.sqrt.*``' Intrinsic
10542^^^^^^^^^^^^^^^^^^^^^^^^^^^
10543
10544Syntax:
10545"""""""
10546
10547This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010548floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010549all types however.
10550
10551::
10552
10553 declare float @llvm.sqrt.f32(float %Val)
10554 declare double @llvm.sqrt.f64(double %Val)
10555 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10556 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10557 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10558
10559Overview:
10560"""""""""
10561
Sanjay Patel629c4112017-11-06 16:27:15 +000010562The '``llvm.sqrt``' intrinsics return the square root of the specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010563
10564Arguments:
10565""""""""""
10566
Sanjay Patel629c4112017-11-06 16:27:15 +000010567The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010568
10569Semantics:
10570""""""""""
10571
Sanjay Patel629c4112017-11-06 16:27:15 +000010572Return the same value as a corresponding libm '``sqrt``' function but without
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010573trapping or setting ``errno``. For types specified by IEEE-754, the result
Sanjay Patel629c4112017-11-06 16:27:15 +000010574matches a conforming libm implementation.
10575
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010576When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010577using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010578
10579'``llvm.powi.*``' Intrinsic
10580^^^^^^^^^^^^^^^^^^^^^^^^^^^
10581
10582Syntax:
10583"""""""
10584
10585This is an overloaded intrinsic. You can use ``llvm.powi`` on any
10586floating point or vector of floating point type. Not all targets support
10587all types however.
10588
10589::
10590
10591 declare float @llvm.powi.f32(float %Val, i32 %power)
10592 declare double @llvm.powi.f64(double %Val, i32 %power)
10593 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10594 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10595 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10596
10597Overview:
10598"""""""""
10599
10600The '``llvm.powi.*``' intrinsics return the first operand raised to the
10601specified (positive or negative) power. The order of evaluation of
10602multiplications is not defined. When a vector of floating point type is
10603used, the second argument remains a scalar integer value.
10604
10605Arguments:
10606""""""""""
10607
10608The second argument is an integer power, and the first is a value to
10609raise to that power.
10610
10611Semantics:
10612""""""""""
10613
10614This function returns the first value raised to the second power with an
10615unspecified sequence of rounding operations.
10616
10617'``llvm.sin.*``' Intrinsic
10618^^^^^^^^^^^^^^^^^^^^^^^^^^
10619
10620Syntax:
10621"""""""
10622
10623This is an overloaded intrinsic. You can use ``llvm.sin`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010624floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010625all types however.
10626
10627::
10628
10629 declare float @llvm.sin.f32(float %Val)
10630 declare double @llvm.sin.f64(double %Val)
10631 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10632 declare fp128 @llvm.sin.f128(fp128 %Val)
10633 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10634
10635Overview:
10636"""""""""
10637
10638The '``llvm.sin.*``' intrinsics return the sine of the operand.
10639
10640Arguments:
10641""""""""""
10642
Sanjay Patel629c4112017-11-06 16:27:15 +000010643The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010644
10645Semantics:
10646""""""""""
10647
Sanjay Patel629c4112017-11-06 16:27:15 +000010648Return the same value as a corresponding libm '``sin``' function but without
10649trapping or setting ``errno``.
10650
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010651When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010652using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010653
10654'``llvm.cos.*``' Intrinsic
10655^^^^^^^^^^^^^^^^^^^^^^^^^^
10656
10657Syntax:
10658"""""""
10659
10660This is an overloaded intrinsic. You can use ``llvm.cos`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010661floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010662all types however.
10663
10664::
10665
10666 declare float @llvm.cos.f32(float %Val)
10667 declare double @llvm.cos.f64(double %Val)
10668 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10669 declare fp128 @llvm.cos.f128(fp128 %Val)
10670 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10671
10672Overview:
10673"""""""""
10674
10675The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10676
10677Arguments:
10678""""""""""
10679
Sanjay Patel629c4112017-11-06 16:27:15 +000010680The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010681
10682Semantics:
10683""""""""""
10684
Sanjay Patel629c4112017-11-06 16:27:15 +000010685Return the same value as a corresponding libm '``cos``' function but without
10686trapping or setting ``errno``.
10687
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010688When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010689using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010690
10691'``llvm.pow.*``' Intrinsic
10692^^^^^^^^^^^^^^^^^^^^^^^^^^
10693
10694Syntax:
10695"""""""
10696
10697This is an overloaded intrinsic. You can use ``llvm.pow`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010698floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010699all types however.
10700
10701::
10702
10703 declare float @llvm.pow.f32(float %Val, float %Power)
10704 declare double @llvm.pow.f64(double %Val, double %Power)
10705 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10706 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10707 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10708
10709Overview:
10710"""""""""
10711
10712The '``llvm.pow.*``' intrinsics return the first operand raised to the
10713specified (positive or negative) power.
10714
10715Arguments:
10716""""""""""
10717
Sanjay Patel629c4112017-11-06 16:27:15 +000010718The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010719
10720Semantics:
10721""""""""""
10722
Sanjay Patel629c4112017-11-06 16:27:15 +000010723Return the same value as a corresponding libm '``pow``' function but without
10724trapping or setting ``errno``.
10725
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010726When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010727using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010728
10729'``llvm.exp.*``' Intrinsic
10730^^^^^^^^^^^^^^^^^^^^^^^^^^
10731
10732Syntax:
10733"""""""
10734
10735This is an overloaded intrinsic. You can use ``llvm.exp`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010736floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010737all types however.
10738
10739::
10740
10741 declare float @llvm.exp.f32(float %Val)
10742 declare double @llvm.exp.f64(double %Val)
10743 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10744 declare fp128 @llvm.exp.f128(fp128 %Val)
10745 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10746
10747Overview:
10748"""""""""
10749
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010750The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
10751value.
Sean Silvab084af42012-12-07 10:36:55 +000010752
10753Arguments:
10754""""""""""
10755
Sanjay Patel629c4112017-11-06 16:27:15 +000010756The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010757
10758Semantics:
10759""""""""""
10760
Sanjay Patel629c4112017-11-06 16:27:15 +000010761Return the same value as a corresponding libm '``exp``' function but without
10762trapping or setting ``errno``.
10763
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010764When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010765using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010766
10767'``llvm.exp2.*``' Intrinsic
10768^^^^^^^^^^^^^^^^^^^^^^^^^^^
10769
10770Syntax:
10771"""""""
10772
10773This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010774floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010775all types however.
10776
10777::
10778
10779 declare float @llvm.exp2.f32(float %Val)
10780 declare double @llvm.exp2.f64(double %Val)
10781 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10782 declare fp128 @llvm.exp2.f128(fp128 %Val)
10783 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10784
10785Overview:
10786"""""""""
10787
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010788The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
10789specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010790
10791Arguments:
10792""""""""""
10793
Sanjay Patel629c4112017-11-06 16:27:15 +000010794The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010795
10796Semantics:
10797""""""""""
10798
Sanjay Patel629c4112017-11-06 16:27:15 +000010799Return the same value as a corresponding libm '``exp2``' function but without
10800trapping or setting ``errno``.
10801
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010802When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010803using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010804
10805'``llvm.log.*``' Intrinsic
10806^^^^^^^^^^^^^^^^^^^^^^^^^^
10807
10808Syntax:
10809"""""""
10810
10811This is an overloaded intrinsic. You can use ``llvm.log`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010812floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010813all types however.
10814
10815::
10816
10817 declare float @llvm.log.f32(float %Val)
10818 declare double @llvm.log.f64(double %Val)
10819 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10820 declare fp128 @llvm.log.f128(fp128 %Val)
10821 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10822
10823Overview:
10824"""""""""
10825
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010826The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
10827value.
Sean Silvab084af42012-12-07 10:36:55 +000010828
10829Arguments:
10830""""""""""
10831
Sanjay Patel629c4112017-11-06 16:27:15 +000010832The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010833
10834Semantics:
10835""""""""""
10836
Sanjay Patel629c4112017-11-06 16:27:15 +000010837Return the same value as a corresponding libm '``log``' function but without
10838trapping or setting ``errno``.
10839
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010840When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010841using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010842
10843'``llvm.log10.*``' Intrinsic
10844^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10845
10846Syntax:
10847"""""""
10848
10849This is an overloaded intrinsic. You can use ``llvm.log10`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010850floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010851all types however.
10852
10853::
10854
10855 declare float @llvm.log10.f32(float %Val)
10856 declare double @llvm.log10.f64(double %Val)
10857 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10858 declare fp128 @llvm.log10.f128(fp128 %Val)
10859 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10860
10861Overview:
10862"""""""""
10863
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010864The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
10865specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010866
10867Arguments:
10868""""""""""
10869
Sanjay Patel629c4112017-11-06 16:27:15 +000010870The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010871
10872Semantics:
10873""""""""""
10874
Sanjay Patel629c4112017-11-06 16:27:15 +000010875Return the same value as a corresponding libm '``log10``' function but without
10876trapping or setting ``errno``.
10877
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010878When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010879using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010880
10881'``llvm.log2.*``' Intrinsic
10882^^^^^^^^^^^^^^^^^^^^^^^^^^^
10883
10884Syntax:
10885"""""""
10886
10887This is an overloaded intrinsic. You can use ``llvm.log2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010888floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010889all types however.
10890
10891::
10892
10893 declare float @llvm.log2.f32(float %Val)
10894 declare double @llvm.log2.f64(double %Val)
10895 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10896 declare fp128 @llvm.log2.f128(fp128 %Val)
10897 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10898
10899Overview:
10900"""""""""
10901
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010902The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
10903value.
Sean Silvab084af42012-12-07 10:36:55 +000010904
10905Arguments:
10906""""""""""
10907
Sanjay Patel629c4112017-11-06 16:27:15 +000010908The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010909
10910Semantics:
10911""""""""""
10912
Sanjay Patel629c4112017-11-06 16:27:15 +000010913Return the same value as a corresponding libm '``log2``' function but without
10914trapping or setting ``errno``.
10915
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010916When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010917using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010918
10919'``llvm.fma.*``' Intrinsic
10920^^^^^^^^^^^^^^^^^^^^^^^^^^
10921
10922Syntax:
10923"""""""
10924
10925This is an overloaded intrinsic. You can use ``llvm.fma`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010926floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010927all types however.
10928
10929::
10930
10931 declare float @llvm.fma.f32(float %a, float %b, float %c)
10932 declare double @llvm.fma.f64(double %a, double %b, double %c)
10933 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10934 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10935 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10936
10937Overview:
10938"""""""""
10939
Sanjay Patel629c4112017-11-06 16:27:15 +000010940The '``llvm.fma.*``' intrinsics perform the fused multiply-add operation.
Sean Silvab084af42012-12-07 10:36:55 +000010941
10942Arguments:
10943""""""""""
10944
Sanjay Patel629c4112017-11-06 16:27:15 +000010945The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010946
10947Semantics:
10948""""""""""
10949
Sanjay Patel629c4112017-11-06 16:27:15 +000010950Return the same value as a corresponding libm '``fma``' function but without
10951trapping or setting ``errno``.
10952
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010953When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010954using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010955
10956'``llvm.fabs.*``' Intrinsic
10957^^^^^^^^^^^^^^^^^^^^^^^^^^^
10958
10959Syntax:
10960"""""""
10961
10962This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10963floating point or vector of floating point type. Not all targets support
10964all types however.
10965
10966::
10967
10968 declare float @llvm.fabs.f32(float %Val)
10969 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010970 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010971 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010972 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010973
10974Overview:
10975"""""""""
10976
10977The '``llvm.fabs.*``' intrinsics return the absolute value of the
10978operand.
10979
10980Arguments:
10981""""""""""
10982
10983The argument and return value are floating point numbers of the same
10984type.
10985
10986Semantics:
10987""""""""""
10988
10989This function returns the same values as the libm ``fabs`` functions
10990would, and handles error conditions in the same way.
10991
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010992'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010993^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010994
10995Syntax:
10996"""""""
10997
10998This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10999floating point or vector of floating point type. Not all targets support
11000all types however.
11001
11002::
11003
Matt Arsenault64313c92014-10-22 18:25:02 +000011004 declare float @llvm.minnum.f32(float %Val0, float %Val1)
11005 declare double @llvm.minnum.f64(double %Val0, double %Val1)
11006 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11007 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
11008 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011009
11010Overview:
11011"""""""""
11012
11013The '``llvm.minnum.*``' intrinsics return the minimum of the two
11014arguments.
11015
11016
11017Arguments:
11018""""""""""
11019
11020The arguments and return value are floating point numbers of the same
11021type.
11022
11023Semantics:
11024""""""""""
11025
11026Follows the IEEE-754 semantics for minNum, which also match for libm's
11027fmin.
11028
11029If either operand is a NaN, returns the other non-NaN operand. Returns
11030NaN only if both operands are NaN. If the operands compare equal,
11031returns a value that compares equal to both operands. This means that
11032fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
11033
11034'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000011035^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011036
11037Syntax:
11038"""""""
11039
11040This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
11041floating point or vector of floating point type. Not all targets support
11042all types however.
11043
11044::
11045
Matt Arsenault64313c92014-10-22 18:25:02 +000011046 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
11047 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
11048 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11049 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
11050 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011051
11052Overview:
11053"""""""""
11054
11055The '``llvm.maxnum.*``' intrinsics return the maximum of the two
11056arguments.
11057
11058
11059Arguments:
11060""""""""""
11061
11062The arguments and return value are floating point numbers of the same
11063type.
11064
11065Semantics:
11066""""""""""
11067Follows the IEEE-754 semantics for maxNum, which also match for libm's
11068fmax.
11069
11070If either operand is a NaN, returns the other non-NaN operand. Returns
11071NaN only if both operands are NaN. If the operands compare equal,
11072returns a value that compares equal to both operands. This means that
11073fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
11074
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011075'``llvm.copysign.*``' Intrinsic
11076^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11077
11078Syntax:
11079"""""""
11080
11081This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
11082floating point or vector of floating point type. Not all targets support
11083all types however.
11084
11085::
11086
11087 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
11088 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
11089 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
11090 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
11091 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
11092
11093Overview:
11094"""""""""
11095
11096The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
11097first operand and the sign of the second operand.
11098
11099Arguments:
11100""""""""""
11101
11102The arguments and return value are floating point numbers of the same
11103type.
11104
11105Semantics:
11106""""""""""
11107
11108This function returns the same values as the libm ``copysign``
11109functions would, and handles error conditions in the same way.
11110
Sean Silvab084af42012-12-07 10:36:55 +000011111'``llvm.floor.*``' Intrinsic
11112^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11113
11114Syntax:
11115"""""""
11116
11117This is an overloaded intrinsic. You can use ``llvm.floor`` on any
11118floating point or vector of floating point type. Not all targets support
11119all types however.
11120
11121::
11122
11123 declare float @llvm.floor.f32(float %Val)
11124 declare double @llvm.floor.f64(double %Val)
11125 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
11126 declare fp128 @llvm.floor.f128(fp128 %Val)
11127 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
11128
11129Overview:
11130"""""""""
11131
11132The '``llvm.floor.*``' intrinsics return the floor of the operand.
11133
11134Arguments:
11135""""""""""
11136
11137The argument and return value are floating point numbers of the same
11138type.
11139
11140Semantics:
11141""""""""""
11142
11143This function returns the same values as the libm ``floor`` functions
11144would, and handles error conditions in the same way.
11145
11146'``llvm.ceil.*``' Intrinsic
11147^^^^^^^^^^^^^^^^^^^^^^^^^^^
11148
11149Syntax:
11150"""""""
11151
11152This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
11153floating point or vector of floating point type. Not all targets support
11154all types however.
11155
11156::
11157
11158 declare float @llvm.ceil.f32(float %Val)
11159 declare double @llvm.ceil.f64(double %Val)
11160 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
11161 declare fp128 @llvm.ceil.f128(fp128 %Val)
11162 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
11163
11164Overview:
11165"""""""""
11166
11167The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
11168
11169Arguments:
11170""""""""""
11171
11172The argument and return value are floating point numbers of the same
11173type.
11174
11175Semantics:
11176""""""""""
11177
11178This function returns the same values as the libm ``ceil`` functions
11179would, and handles error conditions in the same way.
11180
11181'``llvm.trunc.*``' Intrinsic
11182^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11183
11184Syntax:
11185"""""""
11186
11187This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
11188floating point or vector of floating point type. Not all targets support
11189all types however.
11190
11191::
11192
11193 declare float @llvm.trunc.f32(float %Val)
11194 declare double @llvm.trunc.f64(double %Val)
11195 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
11196 declare fp128 @llvm.trunc.f128(fp128 %Val)
11197 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
11198
11199Overview:
11200"""""""""
11201
11202The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
11203nearest integer not larger in magnitude than the operand.
11204
11205Arguments:
11206""""""""""
11207
11208The argument and return value are floating point numbers of the same
11209type.
11210
11211Semantics:
11212""""""""""
11213
11214This function returns the same values as the libm ``trunc`` functions
11215would, and handles error conditions in the same way.
11216
11217'``llvm.rint.*``' Intrinsic
11218^^^^^^^^^^^^^^^^^^^^^^^^^^^
11219
11220Syntax:
11221"""""""
11222
11223This is an overloaded intrinsic. You can use ``llvm.rint`` on any
11224floating point or vector of floating point type. Not all targets support
11225all types however.
11226
11227::
11228
11229 declare float @llvm.rint.f32(float %Val)
11230 declare double @llvm.rint.f64(double %Val)
11231 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
11232 declare fp128 @llvm.rint.f128(fp128 %Val)
11233 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
11234
11235Overview:
11236"""""""""
11237
11238The '``llvm.rint.*``' intrinsics returns the operand rounded to the
11239nearest integer. It may raise an inexact floating-point exception if the
11240operand isn't an integer.
11241
11242Arguments:
11243""""""""""
11244
11245The argument and return value are floating point numbers of the same
11246type.
11247
11248Semantics:
11249""""""""""
11250
11251This function returns the same values as the libm ``rint`` functions
11252would, and handles error conditions in the same way.
11253
11254'``llvm.nearbyint.*``' Intrinsic
11255^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11256
11257Syntax:
11258"""""""
11259
11260This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
11261floating point or vector of floating point type. Not all targets support
11262all types however.
11263
11264::
11265
11266 declare float @llvm.nearbyint.f32(float %Val)
11267 declare double @llvm.nearbyint.f64(double %Val)
11268 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
11269 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
11270 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
11271
11272Overview:
11273"""""""""
11274
11275The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
11276nearest integer.
11277
11278Arguments:
11279""""""""""
11280
11281The argument and return value are floating point numbers of the same
11282type.
11283
11284Semantics:
11285""""""""""
11286
11287This function returns the same values as the libm ``nearbyint``
11288functions would, and handles error conditions in the same way.
11289
Hal Finkel171817e2013-08-07 22:49:12 +000011290'``llvm.round.*``' Intrinsic
11291^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11292
11293Syntax:
11294"""""""
11295
11296This is an overloaded intrinsic. You can use ``llvm.round`` on any
11297floating point or vector of floating point type. Not all targets support
11298all types however.
11299
11300::
11301
11302 declare float @llvm.round.f32(float %Val)
11303 declare double @llvm.round.f64(double %Val)
11304 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
11305 declare fp128 @llvm.round.f128(fp128 %Val)
11306 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
11307
11308Overview:
11309"""""""""
11310
11311The '``llvm.round.*``' intrinsics returns the operand rounded to the
11312nearest integer.
11313
11314Arguments:
11315""""""""""
11316
11317The argument and return value are floating point numbers of the same
11318type.
11319
11320Semantics:
11321""""""""""
11322
11323This function returns the same values as the libm ``round``
11324functions would, and handles error conditions in the same way.
11325
Sean Silvab084af42012-12-07 10:36:55 +000011326Bit Manipulation Intrinsics
11327---------------------------
11328
11329LLVM provides intrinsics for a few important bit manipulation
11330operations. These allow efficient code generation for some algorithms.
11331
James Molloy90111f72015-11-12 12:29:09 +000011332'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000011333^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000011334
11335Syntax:
11336"""""""
11337
11338This is an overloaded intrinsic function. You can use bitreverse on any
11339integer type.
11340
11341::
11342
11343 declare i16 @llvm.bitreverse.i16(i16 <id>)
11344 declare i32 @llvm.bitreverse.i32(i32 <id>)
11345 declare i64 @llvm.bitreverse.i64(i64 <id>)
11346
11347Overview:
11348"""""""""
11349
11350The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000011351bitpattern of an integer value; for example ``0b10110110`` becomes
11352``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000011353
11354Semantics:
11355""""""""""
11356
Yichao Yu5abf14b2016-11-23 16:25:31 +000011357The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000011358``M`` in the input moved to bit ``N-M`` in the output.
11359
Sean Silvab084af42012-12-07 10:36:55 +000011360'``llvm.bswap.*``' Intrinsics
11361^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11362
11363Syntax:
11364"""""""
11365
11366This is an overloaded intrinsic function. You can use bswap on any
11367integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
11368
11369::
11370
11371 declare i16 @llvm.bswap.i16(i16 <id>)
11372 declare i32 @llvm.bswap.i32(i32 <id>)
11373 declare i64 @llvm.bswap.i64(i64 <id>)
11374
11375Overview:
11376"""""""""
11377
11378The '``llvm.bswap``' family of intrinsics is used to byte swap integer
11379values with an even number of bytes (positive multiple of 16 bits).
11380These are useful for performing operations on data that is not in the
11381target's native byte order.
11382
11383Semantics:
11384""""""""""
11385
11386The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
11387and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
11388intrinsic returns an i32 value that has the four bytes of the input i32
11389swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
11390returned i32 will have its bytes in 3, 2, 1, 0 order. The
11391``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
11392concept to additional even-byte lengths (6 bytes, 8 bytes and more,
11393respectively).
11394
11395'``llvm.ctpop.*``' Intrinsic
11396^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11397
11398Syntax:
11399"""""""
11400
11401This is an overloaded intrinsic. You can use llvm.ctpop on any integer
11402bit width, or on any vector with integer elements. Not all targets
11403support all bit widths or vector types, however.
11404
11405::
11406
11407 declare i8 @llvm.ctpop.i8(i8 <src>)
11408 declare i16 @llvm.ctpop.i16(i16 <src>)
11409 declare i32 @llvm.ctpop.i32(i32 <src>)
11410 declare i64 @llvm.ctpop.i64(i64 <src>)
11411 declare i256 @llvm.ctpop.i256(i256 <src>)
11412 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
11413
11414Overview:
11415"""""""""
11416
11417The '``llvm.ctpop``' family of intrinsics counts the number of bits set
11418in a value.
11419
11420Arguments:
11421""""""""""
11422
11423The only argument is the value to be counted. The argument may be of any
11424integer type, or a vector with integer elements. The return type must
11425match the argument type.
11426
11427Semantics:
11428""""""""""
11429
11430The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
11431each element of a vector.
11432
11433'``llvm.ctlz.*``' Intrinsic
11434^^^^^^^^^^^^^^^^^^^^^^^^^^^
11435
11436Syntax:
11437"""""""
11438
11439This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
11440integer bit width, or any vector whose elements are integers. Not all
11441targets support all bit widths or vector types, however.
11442
11443::
11444
11445 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
11446 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
11447 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
11448 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
11449 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011450 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011451
11452Overview:
11453"""""""""
11454
11455The '``llvm.ctlz``' family of intrinsic functions counts the number of
11456leading zeros in a variable.
11457
11458Arguments:
11459""""""""""
11460
11461The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011462any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011463type must match the first argument type.
11464
11465The second argument must be a constant and is a flag to indicate whether
11466the intrinsic should ensure that a zero as the first argument produces a
11467defined result. Historically some architectures did not provide a
11468defined result for zero values as efficiently, and many algorithms are
11469now predicated on avoiding zero-value inputs.
11470
11471Semantics:
11472""""""""""
11473
11474The '``llvm.ctlz``' intrinsic counts the leading (most significant)
11475zeros in a variable, or within each element of the vector. If
11476``src == 0`` then the result is the size in bits of the type of ``src``
11477if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11478``llvm.ctlz(i32 2) = 30``.
11479
11480'``llvm.cttz.*``' Intrinsic
11481^^^^^^^^^^^^^^^^^^^^^^^^^^^
11482
11483Syntax:
11484"""""""
11485
11486This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
11487integer bit width, or any vector of integer elements. Not all targets
11488support all bit widths or vector types, however.
11489
11490::
11491
11492 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
11493 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
11494 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
11495 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
11496 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011497 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011498
11499Overview:
11500"""""""""
11501
11502The '``llvm.cttz``' family of intrinsic functions counts the number of
11503trailing zeros.
11504
11505Arguments:
11506""""""""""
11507
11508The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011509any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011510type must match the first argument type.
11511
11512The second argument must be a constant and is a flag to indicate whether
11513the intrinsic should ensure that a zero as the first argument produces a
11514defined result. Historically some architectures did not provide a
11515defined result for zero values as efficiently, and many algorithms are
11516now predicated on avoiding zero-value inputs.
11517
11518Semantics:
11519""""""""""
11520
11521The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11522zeros in a variable, or within each element of a vector. If ``src == 0``
11523then the result is the size in bits of the type of ``src`` if
11524``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11525``llvm.cttz(2) = 1``.
11526
Philip Reames34843ae2015-03-05 05:55:55 +000011527.. _int_overflow:
11528
Sean Silvab084af42012-12-07 10:36:55 +000011529Arithmetic with Overflow Intrinsics
11530-----------------------------------
11531
John Regehr6a493f22016-05-12 20:55:09 +000011532LLVM provides intrinsics for fast arithmetic overflow checking.
11533
11534Each of these intrinsics returns a two-element struct. The first
11535element of this struct contains the result of the corresponding
11536arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
11537the result. Therefore, for example, the first element of the struct
11538returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
11539result of a 32-bit ``add`` instruction with the same operands, where
11540the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
11541
11542The second element of the result is an ``i1`` that is 1 if the
11543arithmetic operation overflowed and 0 otherwise. An operation
11544overflows if, for any values of its operands ``A`` and ``B`` and for
11545any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
11546not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
11547``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11548``op`` is the underlying arithmetic operation.
11549
11550The behavior of these intrinsics is well-defined for all argument
11551values.
Sean Silvab084af42012-12-07 10:36:55 +000011552
11553'``llvm.sadd.with.overflow.*``' Intrinsics
11554^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11555
11556Syntax:
11557"""""""
11558
11559This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11560on any integer bit width.
11561
11562::
11563
11564 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11565 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11566 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11567
11568Overview:
11569"""""""""
11570
11571The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11572a signed addition of the two arguments, and indicate whether an overflow
11573occurred during the signed summation.
11574
11575Arguments:
11576""""""""""
11577
11578The arguments (%a and %b) and the first element of the result structure
11579may be of integer types of any bit width, but they must have the same
11580bit width. The second element of the result structure must be of type
11581``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11582addition.
11583
11584Semantics:
11585""""""""""
11586
11587The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011588a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011589first element of which is the signed summation, and the second element
11590of which is a bit specifying if the signed summation resulted in an
11591overflow.
11592
11593Examples:
11594"""""""""
11595
11596.. code-block:: llvm
11597
11598 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11599 %sum = extractvalue {i32, i1} %res, 0
11600 %obit = extractvalue {i32, i1} %res, 1
11601 br i1 %obit, label %overflow, label %normal
11602
11603'``llvm.uadd.with.overflow.*``' Intrinsics
11604^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11605
11606Syntax:
11607"""""""
11608
11609This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11610on any integer bit width.
11611
11612::
11613
11614 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11615 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11616 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11617
11618Overview:
11619"""""""""
11620
11621The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11622an unsigned addition of the two arguments, and indicate whether a carry
11623occurred during the unsigned summation.
11624
11625Arguments:
11626""""""""""
11627
11628The arguments (%a and %b) and the first element of the result structure
11629may be of integer types of any bit width, but they must have the same
11630bit width. The second element of the result structure must be of type
11631``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11632addition.
11633
11634Semantics:
11635""""""""""
11636
11637The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011638an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011639first element of which is the sum, and the second element of which is a
11640bit specifying if the unsigned summation resulted in a carry.
11641
11642Examples:
11643"""""""""
11644
11645.. code-block:: llvm
11646
11647 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11648 %sum = extractvalue {i32, i1} %res, 0
11649 %obit = extractvalue {i32, i1} %res, 1
11650 br i1 %obit, label %carry, label %normal
11651
11652'``llvm.ssub.with.overflow.*``' Intrinsics
11653^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11654
11655Syntax:
11656"""""""
11657
11658This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11659on any integer bit width.
11660
11661::
11662
11663 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11664 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11665 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11666
11667Overview:
11668"""""""""
11669
11670The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11671a signed subtraction of the two arguments, and indicate whether an
11672overflow occurred during the signed subtraction.
11673
11674Arguments:
11675""""""""""
11676
11677The arguments (%a and %b) and the first element of the result structure
11678may be of integer types of any bit width, but they must have the same
11679bit width. The second element of the result structure must be of type
11680``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11681subtraction.
11682
11683Semantics:
11684""""""""""
11685
11686The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011687a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011688first element of which is the subtraction, and the second element of
11689which is a bit specifying if the signed subtraction resulted in an
11690overflow.
11691
11692Examples:
11693"""""""""
11694
11695.. code-block:: llvm
11696
11697 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11698 %sum = extractvalue {i32, i1} %res, 0
11699 %obit = extractvalue {i32, i1} %res, 1
11700 br i1 %obit, label %overflow, label %normal
11701
11702'``llvm.usub.with.overflow.*``' Intrinsics
11703^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11704
11705Syntax:
11706"""""""
11707
11708This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11709on any integer bit width.
11710
11711::
11712
11713 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11714 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11715 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11716
11717Overview:
11718"""""""""
11719
11720The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11721an unsigned subtraction of the two arguments, and indicate whether an
11722overflow occurred during the unsigned subtraction.
11723
11724Arguments:
11725""""""""""
11726
11727The arguments (%a and %b) and the first element of the result structure
11728may be of integer types of any bit width, but they must have the same
11729bit width. The second element of the result structure must be of type
11730``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11731subtraction.
11732
11733Semantics:
11734""""""""""
11735
11736The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011737an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011738the first element of which is the subtraction, and the second element of
11739which is a bit specifying if the unsigned subtraction resulted in an
11740overflow.
11741
11742Examples:
11743"""""""""
11744
11745.. code-block:: llvm
11746
11747 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11748 %sum = extractvalue {i32, i1} %res, 0
11749 %obit = extractvalue {i32, i1} %res, 1
11750 br i1 %obit, label %overflow, label %normal
11751
11752'``llvm.smul.with.overflow.*``' Intrinsics
11753^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11754
11755Syntax:
11756"""""""
11757
11758This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11759on any integer bit width.
11760
11761::
11762
11763 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11764 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11765 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11766
11767Overview:
11768"""""""""
11769
11770The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11771a signed multiplication of the two arguments, and indicate whether an
11772overflow occurred during the signed multiplication.
11773
11774Arguments:
11775""""""""""
11776
11777The arguments (%a and %b) and the first element of the result structure
11778may be of integer types of any bit width, but they must have the same
11779bit width. The second element of the result structure must be of type
11780``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11781multiplication.
11782
11783Semantics:
11784""""""""""
11785
11786The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011787a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011788the first element of which is the multiplication, and the second element
11789of which is a bit specifying if the signed multiplication resulted in an
11790overflow.
11791
11792Examples:
11793"""""""""
11794
11795.. code-block:: llvm
11796
11797 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11798 %sum = extractvalue {i32, i1} %res, 0
11799 %obit = extractvalue {i32, i1} %res, 1
11800 br i1 %obit, label %overflow, label %normal
11801
11802'``llvm.umul.with.overflow.*``' Intrinsics
11803^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11804
11805Syntax:
11806"""""""
11807
11808This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11809on any integer bit width.
11810
11811::
11812
11813 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11814 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11815 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11816
11817Overview:
11818"""""""""
11819
11820The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11821a unsigned multiplication of the two arguments, and indicate whether an
11822overflow occurred during the unsigned multiplication.
11823
11824Arguments:
11825""""""""""
11826
11827The arguments (%a and %b) and the first element of the result structure
11828may be of integer types of any bit width, but they must have the same
11829bit width. The second element of the result structure must be of type
11830``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11831multiplication.
11832
11833Semantics:
11834""""""""""
11835
11836The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011837an unsigned multiplication of the two arguments. They return a structure ---
11838the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011839element of which is a bit specifying if the unsigned multiplication
11840resulted in an overflow.
11841
11842Examples:
11843"""""""""
11844
11845.. code-block:: llvm
11846
11847 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11848 %sum = extractvalue {i32, i1} %res, 0
11849 %obit = extractvalue {i32, i1} %res, 1
11850 br i1 %obit, label %overflow, label %normal
11851
11852Specialised Arithmetic Intrinsics
11853---------------------------------
11854
Owen Anderson1056a922015-07-11 07:01:27 +000011855'``llvm.canonicalize.*``' Intrinsic
11856^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11857
11858Syntax:
11859"""""""
11860
11861::
11862
11863 declare float @llvm.canonicalize.f32(float %a)
11864 declare double @llvm.canonicalize.f64(double %b)
11865
11866Overview:
11867"""""""""
11868
11869The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011870encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011871implementing certain numeric primitives such as frexp. The canonical encoding is
11872defined by IEEE-754-2008 to be:
11873
11874::
11875
11876 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011877 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011878 numbers, infinities, and NaNs, especially in decimal formats.
11879
11880This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011881conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011882according to section 6.2.
11883
11884Examples of non-canonical encodings:
11885
Sean Silvaa1190322015-08-06 22:56:48 +000011886- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011887 converted to a canonical representation per hardware-specific protocol.
11888- Many normal decimal floating point numbers have non-canonical alternative
11889 encodings.
11890- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011891 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011892 a zero of the same sign by this operation.
11893
11894Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11895default exception handling must signal an invalid exception, and produce a
11896quiet NaN result.
11897
11898This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011899that the compiler does not constant fold the operation. Likewise, division by
119001.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011901-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11902
Sean Silvaa1190322015-08-06 22:56:48 +000011903``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011904
11905- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11906- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11907 to ``(x == y)``
11908
11909Additionally, the sign of zero must be conserved:
11910``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11911
11912The payload bits of a NaN must be conserved, with two exceptions.
11913First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011914must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011915usual methods.
11916
11917The canonicalization operation may be optimized away if:
11918
Sean Silvaa1190322015-08-06 22:56:48 +000011919- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011920 floating-point operation that is required by the standard to be canonical.
11921- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011922 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011923
Sean Silvab084af42012-12-07 10:36:55 +000011924'``llvm.fmuladd.*``' Intrinsic
11925^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11926
11927Syntax:
11928"""""""
11929
11930::
11931
11932 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11933 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11934
11935Overview:
11936"""""""""
11937
11938The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011939expressions that can be fused if the code generator determines that (a) the
11940target instruction set has support for a fused operation, and (b) that the
11941fused operation is more efficient than the equivalent, separate pair of mul
11942and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011943
11944Arguments:
11945""""""""""
11946
11947The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11948multiplicands, a and b, and an addend c.
11949
11950Semantics:
11951""""""""""
11952
11953The expression:
11954
11955::
11956
11957 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11958
11959is equivalent to the expression a \* b + c, except that rounding will
11960not be performed between the multiplication and addition steps if the
11961code generator fuses the operations. Fusion is not guaranteed, even if
11962the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011963corresponding llvm.fma.\* intrinsic function should be used
11964instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011965
11966Examples:
11967"""""""""
11968
11969.. code-block:: llvm
11970
Tim Northover675a0962014-06-13 14:24:23 +000011971 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011972
Amara Emersoncf9daa32017-05-09 10:43:25 +000011973
11974Experimental Vector Reduction Intrinsics
11975----------------------------------------
11976
11977Horizontal reductions of vectors can be expressed using the following
11978intrinsics. Each one takes a vector operand as an input and applies its
11979respective operation across all elements of the vector, returning a single
11980scalar result of the same element type.
11981
11982
11983'``llvm.experimental.vector.reduce.add.*``' Intrinsic
11984^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11985
11986Syntax:
11987"""""""
11988
11989::
11990
11991 declare i32 @llvm.experimental.vector.reduce.add.i32.v4i32(<4 x i32> %a)
11992 declare i64 @llvm.experimental.vector.reduce.add.i64.v2i64(<2 x i64> %a)
11993
11994Overview:
11995"""""""""
11996
11997The '``llvm.experimental.vector.reduce.add.*``' intrinsics do an integer ``ADD``
11998reduction of a vector, returning the result as a scalar. The return type matches
11999the element-type of the vector input.
12000
12001Arguments:
12002""""""""""
12003The argument to this intrinsic must be a vector of integer values.
12004
12005'``llvm.experimental.vector.reduce.fadd.*``' Intrinsic
12006^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12007
12008Syntax:
12009"""""""
12010
12011::
12012
12013 declare float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %a)
12014 declare double @llvm.experimental.vector.reduce.fadd.f64.v2f64(double %acc, <2 x double> %a)
12015
12016Overview:
12017"""""""""
12018
12019The '``llvm.experimental.vector.reduce.fadd.*``' intrinsics do a floating point
12020``ADD`` reduction of a vector, returning the result as a scalar. The return type
12021matches the element-type of the vector input.
12022
12023If the intrinsic call has fast-math flags, then the reduction will not preserve
12024the associativity of an equivalent scalarized counterpart. If it does not have
12025fast-math flags, then the reduction will be *ordered*, implying that the
12026operation respects the associativity of a scalarized reduction.
12027
12028
12029Arguments:
12030""""""""""
12031The first argument to this intrinsic is a scalar accumulator value, which is
12032only used when there are no fast-math flags attached. This argument may be undef
12033when fast-math flags are used.
12034
12035The second argument must be a vector of floating point values.
12036
12037Examples:
12038"""""""""
12039
12040.. code-block:: llvm
12041
12042 %fast = call fast float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
12043 %ord = call float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
12044
12045
12046'``llvm.experimental.vector.reduce.mul.*``' Intrinsic
12047^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12048
12049Syntax:
12050"""""""
12051
12052::
12053
12054 declare i32 @llvm.experimental.vector.reduce.mul.i32.v4i32(<4 x i32> %a)
12055 declare i64 @llvm.experimental.vector.reduce.mul.i64.v2i64(<2 x i64> %a)
12056
12057Overview:
12058"""""""""
12059
12060The '``llvm.experimental.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
12061reduction of a vector, returning the result as a scalar. The return type matches
12062the element-type of the vector input.
12063
12064Arguments:
12065""""""""""
12066The argument to this intrinsic must be a vector of integer values.
12067
12068'``llvm.experimental.vector.reduce.fmul.*``' Intrinsic
12069^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12070
12071Syntax:
12072"""""""
12073
12074::
12075
12076 declare float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %a)
12077 declare double @llvm.experimental.vector.reduce.fmul.f64.v2f64(double %acc, <2 x double> %a)
12078
12079Overview:
12080"""""""""
12081
12082The '``llvm.experimental.vector.reduce.fmul.*``' intrinsics do a floating point
12083``MUL`` reduction of a vector, returning the result as a scalar. The return type
12084matches the element-type of the vector input.
12085
12086If the intrinsic call has fast-math flags, then the reduction will not preserve
12087the associativity of an equivalent scalarized counterpart. If it does not have
12088fast-math flags, then the reduction will be *ordered*, implying that the
12089operation respects the associativity of a scalarized reduction.
12090
12091
12092Arguments:
12093""""""""""
12094The first argument to this intrinsic is a scalar accumulator value, which is
12095only used when there are no fast-math flags attached. This argument may be undef
12096when fast-math flags are used.
12097
12098The second argument must be a vector of floating point values.
12099
12100Examples:
12101"""""""""
12102
12103.. code-block:: llvm
12104
12105 %fast = call fast float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
12106 %ord = call float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
12107
12108'``llvm.experimental.vector.reduce.and.*``' Intrinsic
12109^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12110
12111Syntax:
12112"""""""
12113
12114::
12115
12116 declare i32 @llvm.experimental.vector.reduce.and.i32.v4i32(<4 x i32> %a)
12117
12118Overview:
12119"""""""""
12120
12121The '``llvm.experimental.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
12122reduction of a vector, returning the result as a scalar. The return type matches
12123the element-type of the vector input.
12124
12125Arguments:
12126""""""""""
12127The argument to this intrinsic must be a vector of integer values.
12128
12129'``llvm.experimental.vector.reduce.or.*``' Intrinsic
12130^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12131
12132Syntax:
12133"""""""
12134
12135::
12136
12137 declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
12138
12139Overview:
12140"""""""""
12141
12142The '``llvm.experimental.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
12143of a vector, returning the result as a scalar. The return type matches the
12144element-type of the vector input.
12145
12146Arguments:
12147""""""""""
12148The argument to this intrinsic must be a vector of integer values.
12149
12150'``llvm.experimental.vector.reduce.xor.*``' Intrinsic
12151^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12152
12153Syntax:
12154"""""""
12155
12156::
12157
12158 declare i32 @llvm.experimental.vector.reduce.xor.i32.v4i32(<4 x i32> %a)
12159
12160Overview:
12161"""""""""
12162
12163The '``llvm.experimental.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
12164reduction of a vector, returning the result as a scalar. The return type matches
12165the element-type of the vector input.
12166
12167Arguments:
12168""""""""""
12169The argument to this intrinsic must be a vector of integer values.
12170
12171'``llvm.experimental.vector.reduce.smax.*``' Intrinsic
12172^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12173
12174Syntax:
12175"""""""
12176
12177::
12178
12179 declare i32 @llvm.experimental.vector.reduce.smax.i32.v4i32(<4 x i32> %a)
12180
12181Overview:
12182"""""""""
12183
12184The '``llvm.experimental.vector.reduce.smax.*``' intrinsics do a signed integer
12185``MAX`` reduction of a vector, returning the result as a scalar. The return type
12186matches the element-type of the vector input.
12187
12188Arguments:
12189""""""""""
12190The argument to this intrinsic must be a vector of integer values.
12191
12192'``llvm.experimental.vector.reduce.smin.*``' Intrinsic
12193^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12194
12195Syntax:
12196"""""""
12197
12198::
12199
12200 declare i32 @llvm.experimental.vector.reduce.smin.i32.v4i32(<4 x i32> %a)
12201
12202Overview:
12203"""""""""
12204
12205The '``llvm.experimental.vector.reduce.smin.*``' intrinsics do a signed integer
12206``MIN`` reduction of a vector, returning the result as a scalar. The return type
12207matches the element-type of the vector input.
12208
12209Arguments:
12210""""""""""
12211The argument to this intrinsic must be a vector of integer values.
12212
12213'``llvm.experimental.vector.reduce.umax.*``' Intrinsic
12214^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12215
12216Syntax:
12217"""""""
12218
12219::
12220
12221 declare i32 @llvm.experimental.vector.reduce.umax.i32.v4i32(<4 x i32> %a)
12222
12223Overview:
12224"""""""""
12225
12226The '``llvm.experimental.vector.reduce.umax.*``' intrinsics do an unsigned
12227integer ``MAX`` reduction of a vector, returning the result as a scalar. The
12228return type matches the element-type of the vector input.
12229
12230Arguments:
12231""""""""""
12232The argument to this intrinsic must be a vector of integer values.
12233
12234'``llvm.experimental.vector.reduce.umin.*``' Intrinsic
12235^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12236
12237Syntax:
12238"""""""
12239
12240::
12241
12242 declare i32 @llvm.experimental.vector.reduce.umin.i32.v4i32(<4 x i32> %a)
12243
12244Overview:
12245"""""""""
12246
12247The '``llvm.experimental.vector.reduce.umin.*``' intrinsics do an unsigned
12248integer ``MIN`` reduction of a vector, returning the result as a scalar. The
12249return type matches the element-type of the vector input.
12250
12251Arguments:
12252""""""""""
12253The argument to this intrinsic must be a vector of integer values.
12254
12255'``llvm.experimental.vector.reduce.fmax.*``' Intrinsic
12256^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12257
12258Syntax:
12259"""""""
12260
12261::
12262
12263 declare float @llvm.experimental.vector.reduce.fmax.f32.v4f32(<4 x float> %a)
12264 declare double @llvm.experimental.vector.reduce.fmax.f64.v2f64(<2 x double> %a)
12265
12266Overview:
12267"""""""""
12268
12269The '``llvm.experimental.vector.reduce.fmax.*``' intrinsics do a floating point
12270``MAX`` reduction of a vector, returning the result as a scalar. The return type
12271matches the element-type of the vector input.
12272
12273If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12274assume that NaNs are not present in the input vector.
12275
12276Arguments:
12277""""""""""
12278The argument to this intrinsic must be a vector of floating point values.
12279
12280'``llvm.experimental.vector.reduce.fmin.*``' Intrinsic
12281^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12282
12283Syntax:
12284"""""""
12285
12286::
12287
12288 declare float @llvm.experimental.vector.reduce.fmin.f32.v4f32(<4 x float> %a)
12289 declare double @llvm.experimental.vector.reduce.fmin.f64.v2f64(<2 x double> %a)
12290
12291Overview:
12292"""""""""
12293
12294The '``llvm.experimental.vector.reduce.fmin.*``' intrinsics do a floating point
12295``MIN`` reduction of a vector, returning the result as a scalar. The return type
12296matches the element-type of the vector input.
12297
12298If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12299assume that NaNs are not present in the input vector.
12300
12301Arguments:
12302""""""""""
12303The argument to this intrinsic must be a vector of floating point values.
12304
Sean Silvab084af42012-12-07 10:36:55 +000012305Half Precision Floating Point Intrinsics
12306----------------------------------------
12307
12308For most target platforms, half precision floating point is a
12309storage-only format. This means that it is a dense encoding (in memory)
12310but does not support computation in the format.
12311
12312This means that code must first load the half-precision floating point
12313value as an i16, then convert it to float with
12314:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
12315then be performed on the float value (including extending to double
12316etc). To store the value back to memory, it is first converted to float
12317if needed, then converted to i16 with
12318:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
12319i16 value.
12320
12321.. _int_convert_to_fp16:
12322
12323'``llvm.convert.to.fp16``' Intrinsic
12324^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12325
12326Syntax:
12327"""""""
12328
12329::
12330
Tim Northoverfd7e4242014-07-17 10:51:23 +000012331 declare i16 @llvm.convert.to.fp16.f32(float %a)
12332 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000012333
12334Overview:
12335"""""""""
12336
Tim Northoverfd7e4242014-07-17 10:51:23 +000012337The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
12338conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000012339
12340Arguments:
12341""""""""""
12342
12343The intrinsic function contains single argument - the value to be
12344converted.
12345
12346Semantics:
12347""""""""""
12348
Tim Northoverfd7e4242014-07-17 10:51:23 +000012349The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
12350conventional floating point format to half precision floating point format. The
12351return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000012352
12353Examples:
12354"""""""""
12355
12356.. code-block:: llvm
12357
Tim Northoverfd7e4242014-07-17 10:51:23 +000012358 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000012359 store i16 %res, i16* @x, align 2
12360
12361.. _int_convert_from_fp16:
12362
12363'``llvm.convert.from.fp16``' Intrinsic
12364^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12365
12366Syntax:
12367"""""""
12368
12369::
12370
Tim Northoverfd7e4242014-07-17 10:51:23 +000012371 declare float @llvm.convert.from.fp16.f32(i16 %a)
12372 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012373
12374Overview:
12375"""""""""
12376
12377The '``llvm.convert.from.fp16``' intrinsic function performs a
12378conversion from half precision floating point format to single precision
12379floating point format.
12380
12381Arguments:
12382""""""""""
12383
12384The intrinsic function contains single argument - the value to be
12385converted.
12386
12387Semantics:
12388""""""""""
12389
12390The '``llvm.convert.from.fp16``' intrinsic function performs a
12391conversion from half single precision floating point format to single
12392precision floating point format. The input half-float value is
12393represented by an ``i16`` value.
12394
12395Examples:
12396"""""""""
12397
12398.. code-block:: llvm
12399
David Blaikiec7aabbb2015-03-04 22:06:14 +000012400 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000012401 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012402
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000012403.. _dbg_intrinsics:
12404
Sean Silvab084af42012-12-07 10:36:55 +000012405Debugger Intrinsics
12406-------------------
12407
12408The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
12409prefix), are described in the `LLVM Source Level
Hans Wennborg65195622017-09-28 15:16:37 +000012410Debugging <SourceLevelDebugging.html#format-common-intrinsics>`_
Sean Silvab084af42012-12-07 10:36:55 +000012411document.
12412
12413Exception Handling Intrinsics
12414-----------------------------
12415
12416The LLVM exception handling intrinsics (which all start with
12417``llvm.eh.`` prefix), are described in the `LLVM Exception
Hans Wennborg65195622017-09-28 15:16:37 +000012418Handling <ExceptionHandling.html#format-common-intrinsics>`_ document.
Sean Silvab084af42012-12-07 10:36:55 +000012419
12420.. _int_trampoline:
12421
12422Trampoline Intrinsics
12423---------------------
12424
12425These intrinsics make it possible to excise one parameter, marked with
12426the :ref:`nest <nest>` attribute, from a function. The result is a
12427callable function pointer lacking the nest parameter - the caller does
12428not need to provide a value for it. Instead, the value to use is stored
12429in advance in a "trampoline", a block of memory usually allocated on the
12430stack, which also contains code to splice the nest value into the
12431argument list. This is used to implement the GCC nested function address
12432extension.
12433
12434For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
12435then the resulting function pointer has signature ``i32 (i32, i32)*``.
12436It can be created as follows:
12437
12438.. code-block:: llvm
12439
12440 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000012441 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000012442 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
12443 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
12444 %fp = bitcast i8* %p to i32 (i32, i32)*
12445
12446The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
12447``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
12448
12449.. _int_it:
12450
12451'``llvm.init.trampoline``' Intrinsic
12452^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12453
12454Syntax:
12455"""""""
12456
12457::
12458
12459 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
12460
12461Overview:
12462"""""""""
12463
12464This fills the memory pointed to by ``tramp`` with executable code,
12465turning it into a trampoline.
12466
12467Arguments:
12468""""""""""
12469
12470The ``llvm.init.trampoline`` intrinsic takes three arguments, all
12471pointers. The ``tramp`` argument must point to a sufficiently large and
12472sufficiently aligned block of memory; this memory is written to by the
12473intrinsic. Note that the size and the alignment are target-specific -
12474LLVM currently provides no portable way of determining them, so a
12475front-end that generates this intrinsic needs to have some
12476target-specific knowledge. The ``func`` argument must hold a function
12477bitcast to an ``i8*``.
12478
12479Semantics:
12480""""""""""
12481
12482The block of memory pointed to by ``tramp`` is filled with target
12483dependent code, turning it into a function. Then ``tramp`` needs to be
12484passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
12485be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
12486function's signature is the same as that of ``func`` with any arguments
12487marked with the ``nest`` attribute removed. At most one such ``nest``
12488argument is allowed, and it must be of pointer type. Calling the new
12489function is equivalent to calling ``func`` with the same argument list,
12490but with ``nval`` used for the missing ``nest`` argument. If, after
12491calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
12492modified, then the effect of any later call to the returned function
12493pointer is undefined.
12494
12495.. _int_at:
12496
12497'``llvm.adjust.trampoline``' Intrinsic
12498^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12499
12500Syntax:
12501"""""""
12502
12503::
12504
12505 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
12506
12507Overview:
12508"""""""""
12509
12510This performs any required machine-specific adjustment to the address of
12511a trampoline (passed as ``tramp``).
12512
12513Arguments:
12514""""""""""
12515
12516``tramp`` must point to a block of memory which already has trampoline
12517code filled in by a previous call to
12518:ref:`llvm.init.trampoline <int_it>`.
12519
12520Semantics:
12521""""""""""
12522
12523On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012524different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000012525intrinsic returns the executable address corresponding to ``tramp``
12526after performing the required machine specific adjustments. The pointer
12527returned can then be :ref:`bitcast and executed <int_trampoline>`.
12528
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012529.. _int_mload_mstore:
12530
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012531Masked Vector Load and Store Intrinsics
12532---------------------------------------
12533
12534LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
12535
12536.. _int_mload:
12537
12538'``llvm.masked.load.*``' Intrinsics
12539^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12540
12541Syntax:
12542"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012543This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012544
12545::
12546
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012547 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12548 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012549 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012550 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012551 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012552 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012553
12554Overview:
12555"""""""""
12556
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012557Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012558
12559
12560Arguments:
12561""""""""""
12562
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012563The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012564
12565
12566Semantics:
12567""""""""""
12568
12569The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
12570The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
12571
12572
12573::
12574
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012575 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012576
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012577 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000012578 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012579 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012580
12581.. _int_mstore:
12582
12583'``llvm.masked.store.*``' Intrinsics
12584^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12585
12586Syntax:
12587"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012588This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012589
12590::
12591
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012592 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
12593 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012594 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012595 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012596 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012597 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012598
12599Overview:
12600"""""""""
12601
12602Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12603
12604Arguments:
12605""""""""""
12606
12607The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12608
12609
12610Semantics:
12611""""""""""
12612
12613The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
12614The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
12615
12616::
12617
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012618 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012619
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012620 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000012621 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012622 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
12623 store <16 x float> %res, <16 x float>* %ptr, align 4
12624
12625
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012626Masked Vector Gather and Scatter Intrinsics
12627-------------------------------------------
12628
12629LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
12630
12631.. _int_mgather:
12632
12633'``llvm.masked.gather.*``' Intrinsics
12634^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12635
12636Syntax:
12637"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012638This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012639
12640::
12641
Elad Cohenef5798a2017-05-03 12:28:54 +000012642 declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12643 declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64 (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
12644 declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012645
12646Overview:
12647"""""""""
12648
12649Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
12650
12651
12652Arguments:
12653""""""""""
12654
12655The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
12656
12657
12658Semantics:
12659""""""""""
12660
12661The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
12662The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
12663
12664
12665::
12666
Elad Cohenef5798a2017-05-03 12:28:54 +000012667 %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012668
12669 ;; The gather with all-true mask is equivalent to the following instruction sequence
12670 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
12671 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
12672 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
12673 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
12674
12675 %val0 = load double, double* %ptr0, align 8
12676 %val1 = load double, double* %ptr1, align 8
12677 %val2 = load double, double* %ptr2, align 8
12678 %val3 = load double, double* %ptr3, align 8
12679
12680 %vec0 = insertelement <4 x double>undef, %val0, 0
12681 %vec01 = insertelement <4 x double>%vec0, %val1, 1
12682 %vec012 = insertelement <4 x double>%vec01, %val2, 2
12683 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
12684
12685.. _int_mscatter:
12686
12687'``llvm.masked.scatter.*``' Intrinsics
12688^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12689
12690Syntax:
12691"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012692This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012693
12694::
12695
Elad Cohenef5798a2017-05-03 12:28:54 +000012696 declare void @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
12697 declare void @llvm.masked.scatter.v16f32.v16p1f32 (<16 x float> <value>, <16 x float addrspace(1)*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
12698 declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012699
12700Overview:
12701"""""""""
12702
12703Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12704
12705Arguments:
12706""""""""""
12707
12708The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12709
12710
12711Semantics:
12712""""""""""
12713
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000012714The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012715
12716::
12717
Sylvestre Ledru84666a12016-02-14 20:16:22 +000012718 ;; This instruction unconditionally stores data vector in multiple addresses
Elad Cohenef5798a2017-05-03 12:28:54 +000012719 call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012720
12721 ;; It is equivalent to a list of scalar stores
12722 %val0 = extractelement <8 x i32> %value, i32 0
12723 %val1 = extractelement <8 x i32> %value, i32 1
12724 ..
12725 %val7 = extractelement <8 x i32> %value, i32 7
12726 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
12727 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
12728 ..
12729 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
12730 ;; Note: the order of the following stores is important when they overlap:
12731 store i32 %val0, i32* %ptr0, align 4
12732 store i32 %val1, i32* %ptr1, align 4
12733 ..
12734 store i32 %val7, i32* %ptr7, align 4
12735
12736
Sean Silvab084af42012-12-07 10:36:55 +000012737Memory Use Markers
12738------------------
12739
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012740This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000012741memory objects and ranges where variables are immutable.
12742
Reid Klecknera534a382013-12-19 02:14:12 +000012743.. _int_lifestart:
12744
Sean Silvab084af42012-12-07 10:36:55 +000012745'``llvm.lifetime.start``' Intrinsic
12746^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12747
12748Syntax:
12749"""""""
12750
12751::
12752
12753 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
12754
12755Overview:
12756"""""""""
12757
12758The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
12759object's lifetime.
12760
12761Arguments:
12762""""""""""
12763
12764The first argument is a constant integer representing the size of the
12765object, or -1 if it is variable sized. The second argument is a pointer
12766to the object.
12767
12768Semantics:
12769""""""""""
12770
12771This intrinsic indicates that before this point in the code, the value
12772of the memory pointed to by ``ptr`` is dead. This means that it is known
12773to never be used and has an undefined value. A load from the pointer
12774that precedes this intrinsic can be replaced with ``'undef'``.
12775
Reid Klecknera534a382013-12-19 02:14:12 +000012776.. _int_lifeend:
12777
Sean Silvab084af42012-12-07 10:36:55 +000012778'``llvm.lifetime.end``' Intrinsic
12779^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12780
12781Syntax:
12782"""""""
12783
12784::
12785
12786 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
12787
12788Overview:
12789"""""""""
12790
12791The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
12792object's lifetime.
12793
12794Arguments:
12795""""""""""
12796
12797The first argument is a constant integer representing the size of the
12798object, or -1 if it is variable sized. The second argument is a pointer
12799to the object.
12800
12801Semantics:
12802""""""""""
12803
12804This intrinsic indicates that after this point in the code, the value of
12805the memory pointed to by ``ptr`` is dead. This means that it is known to
12806never be used and has an undefined value. Any stores into the memory
12807object following this intrinsic may be removed as dead.
12808
12809'``llvm.invariant.start``' Intrinsic
12810^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12811
12812Syntax:
12813"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012814This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012815
12816::
12817
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012818 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012819
12820Overview:
12821"""""""""
12822
12823The '``llvm.invariant.start``' intrinsic specifies that the contents of
12824a memory object will not change.
12825
12826Arguments:
12827""""""""""
12828
12829The first argument is a constant integer representing the size of the
12830object, or -1 if it is variable sized. The second argument is a pointer
12831to the object.
12832
12833Semantics:
12834""""""""""
12835
12836This intrinsic indicates that until an ``llvm.invariant.end`` that uses
12837the return value, the referenced memory location is constant and
12838unchanging.
12839
12840'``llvm.invariant.end``' Intrinsic
12841^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12842
12843Syntax:
12844"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012845This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012846
12847::
12848
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012849 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012850
12851Overview:
12852"""""""""
12853
12854The '``llvm.invariant.end``' intrinsic specifies that the contents of a
12855memory object are mutable.
12856
12857Arguments:
12858""""""""""
12859
12860The first argument is the matching ``llvm.invariant.start`` intrinsic.
12861The second argument is a constant integer representing the size of the
12862object, or -1 if it is variable sized and the third argument is a
12863pointer to the object.
12864
12865Semantics:
12866""""""""""
12867
12868This intrinsic indicates that the memory is mutable again.
12869
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012870'``llvm.invariant.group.barrier``' Intrinsic
12871^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12872
12873Syntax:
12874"""""""
Yaxun Liu407ca362017-11-16 16:32:16 +000012875This is an overloaded intrinsic. The memory object can belong to any address
12876space. The returned pointer must belong to the same address space as the
12877argument.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012878
12879::
12880
Yaxun Liu407ca362017-11-16 16:32:16 +000012881 declare i8* @llvm.invariant.group.barrier.p0i8(i8* <ptr>)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012882
12883Overview:
12884"""""""""
12885
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000012886The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012887established by invariant.group metadata no longer holds, to obtain a new pointer
12888value that does not carry the invariant information.
12889
12890
12891Arguments:
12892""""""""""
12893
12894The ``llvm.invariant.group.barrier`` takes only one argument, which is
12895the pointer to the memory for which the ``invariant.group`` no longer holds.
12896
12897Semantics:
12898""""""""""
12899
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000012900Returns another pointer that aliases its argument but which is considered different
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012901for the purposes of ``load``/``store`` ``invariant.group`` metadata.
12902
Andrew Kaylora0a11642017-01-26 23:27:59 +000012903Constrained Floating Point Intrinsics
12904-------------------------------------
12905
12906These intrinsics are used to provide special handling of floating point
12907operations when specific rounding mode or floating point exception behavior is
12908required. By default, LLVM optimization passes assume that the rounding mode is
12909round-to-nearest and that floating point exceptions will not be monitored.
12910Constrained FP intrinsics are used to support non-default rounding modes and
12911accurately preserve exception behavior without compromising LLVM's ability to
12912optimize FP code when the default behavior is used.
12913
12914Each of these intrinsics corresponds to a normal floating point operation. The
12915first two arguments and the return value are the same as the corresponding FP
12916operation.
12917
12918The third argument is a metadata argument specifying the rounding mode to be
12919assumed. This argument must be one of the following strings:
12920
12921::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012922
Andrew Kaylora0a11642017-01-26 23:27:59 +000012923 "round.dynamic"
12924 "round.tonearest"
12925 "round.downward"
12926 "round.upward"
12927 "round.towardzero"
12928
12929If this argument is "round.dynamic" optimization passes must assume that the
12930rounding mode is unknown and may change at runtime. No transformations that
12931depend on rounding mode may be performed in this case.
12932
12933The other possible values for the rounding mode argument correspond to the
12934similarly named IEEE rounding modes. If the argument is any of these values
12935optimization passes may perform transformations as long as they are consistent
12936with the specified rounding mode.
12937
12938For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
12939"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
12940'x-0' should evaluate to '-0' when rounding downward. However, this
12941transformation is legal for all other rounding modes.
12942
12943For values other than "round.dynamic" optimization passes may assume that the
12944actual runtime rounding mode (as defined in a target-specific manner) matches
12945the specified rounding mode, but this is not guaranteed. Using a specific
12946non-dynamic rounding mode which does not match the actual rounding mode at
12947runtime results in undefined behavior.
12948
12949The fourth argument to the constrained floating point intrinsics specifies the
12950required exception behavior. This argument must be one of the following
12951strings:
12952
12953::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012954
Andrew Kaylora0a11642017-01-26 23:27:59 +000012955 "fpexcept.ignore"
12956 "fpexcept.maytrap"
12957 "fpexcept.strict"
12958
12959If this argument is "fpexcept.ignore" optimization passes may assume that the
12960exception status flags will not be read and that floating point exceptions will
12961be masked. This allows transformations to be performed that may change the
12962exception semantics of the original code. For example, FP operations may be
12963speculatively executed in this case whereas they must not be for either of the
12964other possible values of this argument.
12965
12966If the exception behavior argument is "fpexcept.maytrap" optimization passes
12967must avoid transformations that may raise exceptions that would not have been
12968raised by the original code (such as speculatively executing FP operations), but
12969passes are not required to preserve all exceptions that are implied by the
12970original code. For example, exceptions may be potentially hidden by constant
12971folding.
12972
12973If the exception behavior argument is "fpexcept.strict" all transformations must
12974strictly preserve the floating point exception semantics of the original code.
12975Any FP exception that would have been raised by the original code must be raised
12976by the transformed code, and the transformed code must not raise any FP
12977exceptions that would not have been raised by the original code. This is the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000012978exception behavior argument that will be used if the code being compiled reads
Andrew Kaylora0a11642017-01-26 23:27:59 +000012979the FP exception status flags, but this mode can also be used with code that
12980unmasks FP exceptions.
12981
12982The number and order of floating point exceptions is NOT guaranteed. For
12983example, a series of FP operations that each may raise exceptions may be
12984vectorized into a single instruction that raises each unique exception a single
12985time.
12986
12987
12988'``llvm.experimental.constrained.fadd``' Intrinsic
12989^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12990
12991Syntax:
12992"""""""
12993
12994::
12995
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000012996 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000012997 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
12998 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012999 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013000
13001Overview:
13002"""""""""
13003
13004The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
13005two operands.
13006
13007
13008Arguments:
13009""""""""""
13010
13011The first two arguments to the '``llvm.experimental.constrained.fadd``'
13012intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
13013of floating point values. Both arguments must have identical types.
13014
13015The third and fourth arguments specify the rounding mode and exception
13016behavior as described above.
13017
13018Semantics:
13019""""""""""
13020
13021The value produced is the floating point sum of the two value operands and has
13022the same type as the operands.
13023
13024
13025'``llvm.experimental.constrained.fsub``' Intrinsic
13026^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13027
13028Syntax:
13029"""""""
13030
13031::
13032
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013033 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013034 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
13035 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013036 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013037
13038Overview:
13039"""""""""
13040
13041The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
13042of its two operands.
13043
13044
13045Arguments:
13046""""""""""
13047
13048The first two arguments to the '``llvm.experimental.constrained.fsub``'
13049intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
13050of floating point values. Both arguments must have identical types.
13051
13052The third and fourth arguments specify the rounding mode and exception
13053behavior as described above.
13054
13055Semantics:
13056""""""""""
13057
13058The value produced is the floating point difference of the two value operands
13059and has the same type as the operands.
13060
13061
13062'``llvm.experimental.constrained.fmul``' Intrinsic
13063^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13064
13065Syntax:
13066"""""""
13067
13068::
13069
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013070 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013071 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
13072 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013073 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013074
13075Overview:
13076"""""""""
13077
13078The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
13079its two operands.
13080
13081
13082Arguments:
13083""""""""""
13084
13085The first two arguments to the '``llvm.experimental.constrained.fmul``'
13086intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
13087of floating point values. Both arguments must have identical types.
13088
13089The third and fourth arguments specify the rounding mode and exception
13090behavior as described above.
13091
13092Semantics:
13093""""""""""
13094
13095The value produced is the floating point product of the two value operands and
13096has the same type as the operands.
13097
13098
13099'``llvm.experimental.constrained.fdiv``' Intrinsic
13100^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13101
13102Syntax:
13103"""""""
13104
13105::
13106
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013107 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013108 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
13109 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013110 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013111
13112Overview:
13113"""""""""
13114
13115The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
13116its two operands.
13117
13118
13119Arguments:
13120""""""""""
13121
13122The first two arguments to the '``llvm.experimental.constrained.fdiv``'
13123intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
13124of floating point values. Both arguments must have identical types.
13125
13126The third and fourth arguments specify the rounding mode and exception
13127behavior as described above.
13128
13129Semantics:
13130""""""""""
13131
13132The value produced is the floating point quotient of the two value operands and
13133has the same type as the operands.
13134
13135
13136'``llvm.experimental.constrained.frem``' Intrinsic
13137^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13138
13139Syntax:
13140"""""""
13141
13142::
13143
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013144 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013145 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
13146 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013147 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013148
13149Overview:
13150"""""""""
13151
13152The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
13153from the division of its two operands.
13154
13155
13156Arguments:
13157""""""""""
13158
13159The first two arguments to the '``llvm.experimental.constrained.frem``'
13160intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
13161of floating point values. Both arguments must have identical types.
13162
13163The third and fourth arguments specify the rounding mode and exception
13164behavior as described above. The rounding mode argument has no effect, since
13165the result of frem is never rounded, but the argument is included for
13166consistency with the other constrained floating point intrinsics.
13167
13168Semantics:
13169""""""""""
13170
13171The value produced is the floating point remainder from the division of the two
13172value operands and has the same type as the operands. The remainder has the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013173same sign as the dividend.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013174
Wei Dinga131d3f2017-08-24 04:18:24 +000013175'``llvm.experimental.constrained.fma``' Intrinsic
13176^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13177
13178Syntax:
13179"""""""
13180
13181::
13182
13183 declare <type>
13184 @llvm.experimental.constrained.fma(<type> <op1>, <type> <op2>, <type> <op3>,
13185 metadata <rounding mode>,
13186 metadata <exception behavior>)
13187
13188Overview:
13189"""""""""
13190
13191The '``llvm.experimental.constrained.fma``' intrinsic returns the result of a
13192fused-multiply-add operation on its operands.
13193
13194Arguments:
13195""""""""""
13196
13197The first three arguments to the '``llvm.experimental.constrained.fma``'
13198intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector
13199<t_vector>` of floating point values. All arguments must have identical types.
13200
13201The fourth and fifth arguments specify the rounding mode and exception behavior
13202as described above.
13203
13204Semantics:
13205""""""""""
13206
13207The result produced is the product of the first two operands added to the third
13208operand computed with infinite precision, and then rounded to the target
13209precision.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013210
Andrew Kaylorf4660012017-05-25 21:31:00 +000013211Constrained libm-equivalent Intrinsics
13212--------------------------------------
13213
13214In addition to the basic floating point operations for which constrained
13215intrinsics are described above, there are constrained versions of various
13216operations which provide equivalent behavior to a corresponding libm function.
13217These intrinsics allow the precise behavior of these operations with respect to
13218rounding mode and exception behavior to be controlled.
13219
13220As with the basic constrained floating point intrinsics, the rounding mode
13221and exception behavior arguments only control the behavior of the optimizer.
13222They do not change the runtime floating point environment.
13223
13224
13225'``llvm.experimental.constrained.sqrt``' Intrinsic
13226^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13227
13228Syntax:
13229"""""""
13230
13231::
13232
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013233 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013234 @llvm.experimental.constrained.sqrt(<type> <op1>,
13235 metadata <rounding mode>,
13236 metadata <exception behavior>)
13237
13238Overview:
13239"""""""""
13240
13241The '``llvm.experimental.constrained.sqrt``' intrinsic returns the square root
13242of the specified value, returning the same value as the libm '``sqrt``'
13243functions would, but without setting ``errno``.
13244
13245Arguments:
13246""""""""""
13247
13248The first argument and the return type are floating point numbers of the same
13249type.
13250
13251The second and third arguments specify the rounding mode and exception
13252behavior as described above.
13253
13254Semantics:
13255""""""""""
13256
13257This function returns the nonnegative square root of the specified value.
13258If the value is less than negative zero, a floating point exception occurs
Hiroshi Inoue760c0c92018-01-16 13:19:48 +000013259and the return value is architecture specific.
Andrew Kaylorf4660012017-05-25 21:31:00 +000013260
13261
13262'``llvm.experimental.constrained.pow``' Intrinsic
13263^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13264
13265Syntax:
13266"""""""
13267
13268::
13269
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013270 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013271 @llvm.experimental.constrained.pow(<type> <op1>, <type> <op2>,
13272 metadata <rounding mode>,
13273 metadata <exception behavior>)
13274
13275Overview:
13276"""""""""
13277
13278The '``llvm.experimental.constrained.pow``' intrinsic returns the first operand
13279raised to the (positive or negative) power specified by the second operand.
13280
13281Arguments:
13282""""""""""
13283
13284The first two arguments and the return value are floating point numbers of the
13285same type. The second argument specifies the power to which the first argument
13286should be raised.
13287
13288The third and fourth arguments specify the rounding mode and exception
13289behavior as described above.
13290
13291Semantics:
13292""""""""""
13293
13294This function returns the first value raised to the second power,
13295returning the same values as the libm ``pow`` functions would, and
13296handles error conditions in the same way.
13297
13298
13299'``llvm.experimental.constrained.powi``' Intrinsic
13300^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13301
13302Syntax:
13303"""""""
13304
13305::
13306
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013307 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013308 @llvm.experimental.constrained.powi(<type> <op1>, i32 <op2>,
13309 metadata <rounding mode>,
13310 metadata <exception behavior>)
13311
13312Overview:
13313"""""""""
13314
13315The '``llvm.experimental.constrained.powi``' intrinsic returns the first operand
13316raised to the (positive or negative) power specified by the second operand. The
13317order of evaluation of multiplications is not defined. When a vector of floating
13318point type is used, the second argument remains a scalar integer value.
13319
13320
13321Arguments:
13322""""""""""
13323
13324The first argument and the return value are floating point numbers of the same
13325type. The second argument is a 32-bit signed integer specifying the power to
13326which the first argument should be raised.
13327
13328The third and fourth arguments specify the rounding mode and exception
13329behavior as described above.
13330
13331Semantics:
13332""""""""""
13333
13334This function returns the first value raised to the second power with an
13335unspecified sequence of rounding operations.
13336
13337
13338'``llvm.experimental.constrained.sin``' Intrinsic
13339^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13340
13341Syntax:
13342"""""""
13343
13344::
13345
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013346 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013347 @llvm.experimental.constrained.sin(<type> <op1>,
13348 metadata <rounding mode>,
13349 metadata <exception behavior>)
13350
13351Overview:
13352"""""""""
13353
13354The '``llvm.experimental.constrained.sin``' intrinsic returns the sine of the
13355first operand.
13356
13357Arguments:
13358""""""""""
13359
13360The first argument and the return type are floating point numbers of the same
13361type.
13362
13363The second and third arguments specify the rounding mode and exception
13364behavior as described above.
13365
13366Semantics:
13367""""""""""
13368
13369This function returns the sine of the specified operand, returning the
13370same values as the libm ``sin`` functions would, and handles error
13371conditions in the same way.
13372
13373
13374'``llvm.experimental.constrained.cos``' Intrinsic
13375^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13376
13377Syntax:
13378"""""""
13379
13380::
13381
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013382 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013383 @llvm.experimental.constrained.cos(<type> <op1>,
13384 metadata <rounding mode>,
13385 metadata <exception behavior>)
13386
13387Overview:
13388"""""""""
13389
13390The '``llvm.experimental.constrained.cos``' intrinsic returns the cosine of the
13391first operand.
13392
13393Arguments:
13394""""""""""
13395
13396The first argument and the return type are floating point numbers of the same
13397type.
13398
13399The second and third arguments specify the rounding mode and exception
13400behavior as described above.
13401
13402Semantics:
13403""""""""""
13404
13405This function returns the cosine of the specified operand, returning the
13406same values as the libm ``cos`` functions would, and handles error
13407conditions in the same way.
13408
13409
13410'``llvm.experimental.constrained.exp``' Intrinsic
13411^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13412
13413Syntax:
13414"""""""
13415
13416::
13417
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013418 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013419 @llvm.experimental.constrained.exp(<type> <op1>,
13420 metadata <rounding mode>,
13421 metadata <exception behavior>)
13422
13423Overview:
13424"""""""""
13425
13426The '``llvm.experimental.constrained.exp``' intrinsic computes the base-e
13427exponential of the specified value.
13428
13429Arguments:
13430""""""""""
13431
13432The first argument and the return value are floating point numbers of the same
13433type.
13434
13435The second and third arguments specify the rounding mode and exception
13436behavior as described above.
13437
13438Semantics:
13439""""""""""
13440
13441This function returns the same values as the libm ``exp`` functions
13442would, and handles error conditions in the same way.
13443
13444
13445'``llvm.experimental.constrained.exp2``' Intrinsic
13446^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13447
13448Syntax:
13449"""""""
13450
13451::
13452
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013453 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013454 @llvm.experimental.constrained.exp2(<type> <op1>,
13455 metadata <rounding mode>,
13456 metadata <exception behavior>)
13457
13458Overview:
13459"""""""""
13460
13461The '``llvm.experimental.constrained.exp2``' intrinsic computes the base-2
13462exponential of the specified value.
13463
13464
13465Arguments:
13466""""""""""
13467
13468The first argument and the return value are floating point numbers of the same
13469type.
13470
13471The second and third arguments specify the rounding mode and exception
13472behavior as described above.
13473
13474Semantics:
13475""""""""""
13476
13477This function returns the same values as the libm ``exp2`` functions
13478would, and handles error conditions in the same way.
13479
13480
13481'``llvm.experimental.constrained.log``' Intrinsic
13482^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13483
13484Syntax:
13485"""""""
13486
13487::
13488
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013489 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013490 @llvm.experimental.constrained.log(<type> <op1>,
13491 metadata <rounding mode>,
13492 metadata <exception behavior>)
13493
13494Overview:
13495"""""""""
13496
13497The '``llvm.experimental.constrained.log``' intrinsic computes the base-e
13498logarithm of the specified value.
13499
13500Arguments:
13501""""""""""
13502
13503The first argument and the return value are floating point numbers of the same
13504type.
13505
13506The second and third arguments specify the rounding mode and exception
13507behavior as described above.
13508
13509
13510Semantics:
13511""""""""""
13512
13513This function returns the same values as the libm ``log`` functions
13514would, and handles error conditions in the same way.
13515
13516
13517'``llvm.experimental.constrained.log10``' Intrinsic
13518^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13519
13520Syntax:
13521"""""""
13522
13523::
13524
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013525 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013526 @llvm.experimental.constrained.log10(<type> <op1>,
13527 metadata <rounding mode>,
13528 metadata <exception behavior>)
13529
13530Overview:
13531"""""""""
13532
13533The '``llvm.experimental.constrained.log10``' intrinsic computes the base-10
13534logarithm of the specified value.
13535
13536Arguments:
13537""""""""""
13538
13539The first argument and the return value are floating point numbers of the same
13540type.
13541
13542The second and third arguments specify the rounding mode and exception
13543behavior as described above.
13544
13545Semantics:
13546""""""""""
13547
13548This function returns the same values as the libm ``log10`` functions
13549would, and handles error conditions in the same way.
13550
13551
13552'``llvm.experimental.constrained.log2``' Intrinsic
13553^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13554
13555Syntax:
13556"""""""
13557
13558::
13559
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013560 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013561 @llvm.experimental.constrained.log2(<type> <op1>,
13562 metadata <rounding mode>,
13563 metadata <exception behavior>)
13564
13565Overview:
13566"""""""""
13567
13568The '``llvm.experimental.constrained.log2``' intrinsic computes the base-2
13569logarithm of the specified value.
13570
13571Arguments:
13572""""""""""
13573
13574The first argument and the return value are floating point numbers of the same
13575type.
13576
13577The second and third arguments specify the rounding mode and exception
13578behavior as described above.
13579
13580Semantics:
13581""""""""""
13582
13583This function returns the same values as the libm ``log2`` functions
13584would, and handles error conditions in the same way.
13585
13586
13587'``llvm.experimental.constrained.rint``' Intrinsic
13588^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13589
13590Syntax:
13591"""""""
13592
13593::
13594
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013595 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013596 @llvm.experimental.constrained.rint(<type> <op1>,
13597 metadata <rounding mode>,
13598 metadata <exception behavior>)
13599
13600Overview:
13601"""""""""
13602
13603The '``llvm.experimental.constrained.rint``' intrinsic returns the first
13604operand rounded to the nearest integer. It may raise an inexact floating point
13605exception if the operand is not an integer.
13606
13607Arguments:
13608""""""""""
13609
13610The first argument and the return value are floating point numbers of the same
13611type.
13612
13613The second and third arguments specify the rounding mode and exception
13614behavior as described above.
13615
13616Semantics:
13617""""""""""
13618
13619This function returns the same values as the libm ``rint`` functions
13620would, and handles error conditions in the same way. The rounding mode is
13621described, not determined, by the rounding mode argument. The actual rounding
13622mode is determined by the runtime floating point environment. The rounding
13623mode argument is only intended as information to the compiler.
13624
13625
13626'``llvm.experimental.constrained.nearbyint``' Intrinsic
13627^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13628
13629Syntax:
13630"""""""
13631
13632::
13633
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013634 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013635 @llvm.experimental.constrained.nearbyint(<type> <op1>,
13636 metadata <rounding mode>,
13637 metadata <exception behavior>)
13638
13639Overview:
13640"""""""""
13641
13642The '``llvm.experimental.constrained.nearbyint``' intrinsic returns the first
13643operand rounded to the nearest integer. It will not raise an inexact floating
13644point exception if the operand is not an integer.
13645
13646
13647Arguments:
13648""""""""""
13649
13650The first argument and the return value are floating point numbers of the same
13651type.
13652
13653The second and third arguments specify the rounding mode and exception
13654behavior as described above.
13655
13656Semantics:
13657""""""""""
13658
13659This function returns the same values as the libm ``nearbyint`` functions
13660would, and handles error conditions in the same way. The rounding mode is
13661described, not determined, by the rounding mode argument. The actual rounding
13662mode is determined by the runtime floating point environment. The rounding
13663mode argument is only intended as information to the compiler.
13664
13665
Sean Silvab084af42012-12-07 10:36:55 +000013666General Intrinsics
13667------------------
13668
13669This class of intrinsics is designed to be generic and has no specific
13670purpose.
13671
13672'``llvm.var.annotation``' Intrinsic
13673^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13674
13675Syntax:
13676"""""""
13677
13678::
13679
13680 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
13681
13682Overview:
13683"""""""""
13684
13685The '``llvm.var.annotation``' intrinsic.
13686
13687Arguments:
13688""""""""""
13689
13690The first argument is a pointer to a value, the second is a pointer to a
13691global string, the third is a pointer to a global string which is the
13692source file name, and the last argument is the line number.
13693
13694Semantics:
13695""""""""""
13696
13697This intrinsic allows annotation of local variables with arbitrary
13698strings. This can be useful for special purpose optimizations that want
13699to look for these annotations. These have no other defined use; they are
13700ignored by code generation and optimization.
13701
Michael Gottesman88d18832013-03-26 00:34:27 +000013702'``llvm.ptr.annotation.*``' Intrinsic
13703^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13704
13705Syntax:
13706"""""""
13707
13708This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
13709pointer to an integer of any width. *NOTE* you must specify an address space for
13710the pointer. The identifier for the default address space is the integer
13711'``0``'.
13712
13713::
13714
13715 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
13716 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
13717 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
13718 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
13719 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
13720
13721Overview:
13722"""""""""
13723
13724The '``llvm.ptr.annotation``' intrinsic.
13725
13726Arguments:
13727""""""""""
13728
13729The first argument is a pointer to an integer value of arbitrary bitwidth
13730(result of some expression), the second is a pointer to a global string, the
13731third is a pointer to a global string which is the source file name, and the
13732last argument is the line number. It returns the value of the first argument.
13733
13734Semantics:
13735""""""""""
13736
13737This intrinsic allows annotation of a pointer to an integer with arbitrary
13738strings. This can be useful for special purpose optimizations that want to look
13739for these annotations. These have no other defined use; they are ignored by code
13740generation and optimization.
13741
Sean Silvab084af42012-12-07 10:36:55 +000013742'``llvm.annotation.*``' Intrinsic
13743^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13744
13745Syntax:
13746"""""""
13747
13748This is an overloaded intrinsic. You can use '``llvm.annotation``' on
13749any integer bit width.
13750
13751::
13752
13753 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
13754 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
13755 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
13756 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
13757 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
13758
13759Overview:
13760"""""""""
13761
13762The '``llvm.annotation``' intrinsic.
13763
13764Arguments:
13765""""""""""
13766
13767The first argument is an integer value (result of some expression), the
13768second is a pointer to a global string, the third is a pointer to a
13769global string which is the source file name, and the last argument is
13770the line number. It returns the value of the first argument.
13771
13772Semantics:
13773""""""""""
13774
13775This intrinsic allows annotations to be put on arbitrary expressions
13776with arbitrary strings. This can be useful for special purpose
13777optimizations that want to look for these annotations. These have no
13778other defined use; they are ignored by code generation and optimization.
13779
Reid Klecknere33c94f2017-09-05 20:14:58 +000013780'``llvm.codeview.annotation``' Intrinsic
Reid Klecknerd4523682017-09-05 20:26:25 +000013781^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Reid Klecknere33c94f2017-09-05 20:14:58 +000013782
13783Syntax:
13784"""""""
13785
13786This annotation emits a label at its program point and an associated
13787``S_ANNOTATION`` codeview record with some additional string metadata. This is
13788used to implement MSVC's ``__annotation`` intrinsic. It is marked
13789``noduplicate``, so calls to this intrinsic prevent inlining and should be
13790considered expensive.
13791
13792::
13793
13794 declare void @llvm.codeview.annotation(metadata)
13795
13796Arguments:
13797""""""""""
13798
13799The argument should be an MDTuple containing any number of MDStrings.
13800
Sean Silvab084af42012-12-07 10:36:55 +000013801'``llvm.trap``' Intrinsic
13802^^^^^^^^^^^^^^^^^^^^^^^^^
13803
13804Syntax:
13805"""""""
13806
13807::
13808
13809 declare void @llvm.trap() noreturn nounwind
13810
13811Overview:
13812"""""""""
13813
13814The '``llvm.trap``' intrinsic.
13815
13816Arguments:
13817""""""""""
13818
13819None.
13820
13821Semantics:
13822""""""""""
13823
13824This intrinsic is lowered to the target dependent trap instruction. If
13825the target does not have a trap instruction, this intrinsic will be
13826lowered to a call of the ``abort()`` function.
13827
13828'``llvm.debugtrap``' Intrinsic
13829^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13830
13831Syntax:
13832"""""""
13833
13834::
13835
13836 declare void @llvm.debugtrap() nounwind
13837
13838Overview:
13839"""""""""
13840
13841The '``llvm.debugtrap``' intrinsic.
13842
13843Arguments:
13844""""""""""
13845
13846None.
13847
13848Semantics:
13849""""""""""
13850
13851This intrinsic is lowered to code which is intended to cause an
13852execution trap with the intention of requesting the attention of a
13853debugger.
13854
13855'``llvm.stackprotector``' Intrinsic
13856^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13857
13858Syntax:
13859"""""""
13860
13861::
13862
13863 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
13864
13865Overview:
13866"""""""""
13867
13868The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
13869onto the stack at ``slot``. The stack slot is adjusted to ensure that it
13870is placed on the stack before local variables.
13871
13872Arguments:
13873""""""""""
13874
13875The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
13876The first argument is the value loaded from the stack guard
13877``@__stack_chk_guard``. The second variable is an ``alloca`` that has
13878enough space to hold the value of the guard.
13879
13880Semantics:
13881""""""""""
13882
Michael Gottesmandafc7d92013-08-12 18:35:32 +000013883This intrinsic causes the prologue/epilogue inserter to force the position of
13884the ``AllocaInst`` stack slot to be before local variables on the stack. This is
13885to ensure that if a local variable on the stack is overwritten, it will destroy
13886the value of the guard. When the function exits, the guard on the stack is
13887checked against the original guard by ``llvm.stackprotectorcheck``. If they are
13888different, then ``llvm.stackprotectorcheck`` causes the program to abort by
13889calling the ``__stack_chk_fail()`` function.
13890
Tim Shene885d5e2016-04-19 19:40:37 +000013891'``llvm.stackguard``' Intrinsic
13892^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13893
13894Syntax:
13895"""""""
13896
13897::
13898
13899 declare i8* @llvm.stackguard()
13900
13901Overview:
13902"""""""""
13903
13904The ``llvm.stackguard`` intrinsic returns the system stack guard value.
13905
13906It should not be generated by frontends, since it is only for internal usage.
13907The reason why we create this intrinsic is that we still support IR form Stack
13908Protector in FastISel.
13909
13910Arguments:
13911""""""""""
13912
13913None.
13914
13915Semantics:
13916""""""""""
13917
13918On some platforms, the value returned by this intrinsic remains unchanged
13919between loads in the same thread. On other platforms, it returns the same
13920global variable value, if any, e.g. ``@__stack_chk_guard``.
13921
13922Currently some platforms have IR-level customized stack guard loading (e.g.
13923X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
13924in the future.
13925
Sean Silvab084af42012-12-07 10:36:55 +000013926'``llvm.objectsize``' Intrinsic
13927^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13928
13929Syntax:
13930"""""""
13931
13932::
13933
George Burgess IV56c7e882017-03-21 20:08:59 +000013934 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>)
13935 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>)
Sean Silvab084af42012-12-07 10:36:55 +000013936
13937Overview:
13938"""""""""
13939
13940The ``llvm.objectsize`` intrinsic is designed to provide information to
13941the optimizers to determine at compile time whether a) an operation
13942(like memcpy) will overflow a buffer that corresponds to an object, or
13943b) that a runtime check for overflow isn't necessary. An object in this
13944context means an allocation of a specific class, structure, array, or
13945other object.
13946
13947Arguments:
13948""""""""""
13949
George Burgess IV56c7e882017-03-21 20:08:59 +000013950The ``llvm.objectsize`` intrinsic takes three arguments. The first argument is
13951a pointer to or into the ``object``. The second argument determines whether
13952``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size
13953is unknown. The third argument controls how ``llvm.objectsize`` acts when
13954``null`` is used as its pointer argument. If it's true and the pointer is in
13955address space 0, ``null`` is treated as an opaque value with an unknown number
13956of bytes. Otherwise, ``llvm.objectsize`` reports 0 bytes available when given
13957``null``.
13958
13959The second and third arguments only accept constants.
Sean Silvab084af42012-12-07 10:36:55 +000013960
13961Semantics:
13962""""""""""
13963
13964The ``llvm.objectsize`` intrinsic is lowered to a constant representing
13965the size of the object concerned. If the size cannot be determined at
13966compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
13967on the ``min`` argument).
13968
13969'``llvm.expect``' Intrinsic
13970^^^^^^^^^^^^^^^^^^^^^^^^^^^
13971
13972Syntax:
13973"""""""
13974
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000013975This is an overloaded intrinsic. You can use ``llvm.expect`` on any
13976integer bit width.
13977
Sean Silvab084af42012-12-07 10:36:55 +000013978::
13979
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000013980 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000013981 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
13982 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
13983
13984Overview:
13985"""""""""
13986
13987The ``llvm.expect`` intrinsic provides information about expected (the
13988most probable) value of ``val``, which can be used by optimizers.
13989
13990Arguments:
13991""""""""""
13992
13993The ``llvm.expect`` intrinsic takes two arguments. The first argument is
13994a value. The second argument is an expected value, this needs to be a
13995constant value, variables are not allowed.
13996
13997Semantics:
13998""""""""""
13999
14000This intrinsic is lowered to the ``val``.
14001
Philip Reamese0e90832015-04-26 22:23:12 +000014002.. _int_assume:
14003
Hal Finkel93046912014-07-25 21:13:35 +000014004'``llvm.assume``' Intrinsic
14005^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14006
14007Syntax:
14008"""""""
14009
14010::
14011
14012 declare void @llvm.assume(i1 %cond)
14013
14014Overview:
14015"""""""""
14016
14017The ``llvm.assume`` allows the optimizer to assume that the provided
14018condition is true. This information can then be used in simplifying other parts
14019of the code.
14020
14021Arguments:
14022""""""""""
14023
14024The condition which the optimizer may assume is always true.
14025
14026Semantics:
14027""""""""""
14028
14029The intrinsic allows the optimizer to assume that the provided condition is
14030always true whenever the control flow reaches the intrinsic call. No code is
14031generated for this intrinsic, and instructions that contribute only to the
14032provided condition are not used for code generation. If the condition is
14033violated during execution, the behavior is undefined.
14034
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000014035Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000014036used by the ``llvm.assume`` intrinsic in order to preserve the instructions
14037only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000014038if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000014039sufficient overall improvement in code quality. For this reason,
14040``llvm.assume`` should not be used to document basic mathematical invariants
14041that the optimizer can otherwise deduce or facts that are of little use to the
14042optimizer.
14043
Daniel Berlin2c438a32017-02-07 19:29:25 +000014044.. _int_ssa_copy:
14045
14046'``llvm.ssa_copy``' Intrinsic
14047^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14048
14049Syntax:
14050"""""""
14051
14052::
14053
14054 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
14055
14056Arguments:
14057""""""""""
14058
14059The first argument is an operand which is used as the returned value.
14060
14061Overview:
14062""""""""""
14063
14064The ``llvm.ssa_copy`` intrinsic can be used to attach information to
14065operations by copying them and giving them new names. For example,
14066the PredicateInfo utility uses it to build Extended SSA form, and
14067attach various forms of information to operands that dominate specific
14068uses. It is not meant for general use, only for building temporary
14069renaming forms that require value splits at certain points.
14070
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014071.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000014072
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014073'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000014074^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14075
14076Syntax:
14077"""""""
14078
14079::
14080
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014081 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000014082
14083
14084Arguments:
14085""""""""""
14086
14087The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014088metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000014089
14090Overview:
14091"""""""""
14092
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014093The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
14094with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000014095
Peter Collingbourne0312f612016-06-25 00:23:04 +000014096'``llvm.type.checked.load``' Intrinsic
14097^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14098
14099Syntax:
14100"""""""
14101
14102::
14103
14104 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
14105
14106
14107Arguments:
14108""""""""""
14109
14110The first argument is a pointer from which to load a function pointer. The
14111second argument is the byte offset from which to load the function pointer. The
14112third argument is a metadata object representing a :doc:`type identifier
14113<TypeMetadata>`.
14114
14115Overview:
14116"""""""""
14117
14118The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
14119virtual table pointer using type metadata. This intrinsic is used to implement
14120control flow integrity in conjunction with virtual call optimization. The
14121virtual call optimization pass will optimize away ``llvm.type.checked.load``
14122intrinsics associated with devirtualized calls, thereby removing the type
14123check in cases where it is not needed to enforce the control flow integrity
14124constraint.
14125
14126If the given pointer is associated with a type metadata identifier, this
14127function returns true as the second element of its return value. (Note that
14128the function may also return true if the given pointer is not associated
14129with a type metadata identifier.) If the function's return value's second
14130element is true, the following rules apply to the first element:
14131
14132- If the given pointer is associated with the given type metadata identifier,
14133 it is the function pointer loaded from the given byte offset from the given
14134 pointer.
14135
14136- If the given pointer is not associated with the given type metadata
14137 identifier, it is one of the following (the choice of which is unspecified):
14138
14139 1. The function pointer that would have been loaded from an arbitrarily chosen
14140 (through an unspecified mechanism) pointer associated with the type
14141 metadata.
14142
14143 2. If the function has a non-void return type, a pointer to a function that
14144 returns an unspecified value without causing side effects.
14145
14146If the function's return value's second element is false, the value of the
14147first element is undefined.
14148
14149
Sean Silvab084af42012-12-07 10:36:55 +000014150'``llvm.donothing``' Intrinsic
14151^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14152
14153Syntax:
14154"""""""
14155
14156::
14157
14158 declare void @llvm.donothing() nounwind readnone
14159
14160Overview:
14161"""""""""
14162
Juergen Ributzkac9161192014-10-23 22:36:13 +000014163The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000014164three intrinsics (besides ``llvm.experimental.patchpoint`` and
14165``llvm.experimental.gc.statepoint``) that can be called with an invoke
14166instruction.
Sean Silvab084af42012-12-07 10:36:55 +000014167
14168Arguments:
14169""""""""""
14170
14171None.
14172
14173Semantics:
14174""""""""""
14175
14176This intrinsic does nothing, and it's removed by optimizers and ignored
14177by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000014178
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014179'``llvm.experimental.deoptimize``' Intrinsic
14180^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14181
14182Syntax:
14183"""""""
14184
14185::
14186
14187 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
14188
14189Overview:
14190"""""""""
14191
14192This intrinsic, together with :ref:`deoptimization operand bundles
14193<deopt_opbundles>`, allow frontends to express transfer of control and
14194frame-local state from the currently executing (typically more specialized,
14195hence faster) version of a function into another (typically more generic, hence
14196slower) version.
14197
14198In languages with a fully integrated managed runtime like Java and JavaScript
14199this intrinsic can be used to implement "uncommon trap" or "side exit" like
14200functionality. In unmanaged languages like C and C++, this intrinsic can be
14201used to represent the slow paths of specialized functions.
14202
14203
14204Arguments:
14205""""""""""
14206
14207The intrinsic takes an arbitrary number of arguments, whose meaning is
14208decided by the :ref:`lowering strategy<deoptimize_lowering>`.
14209
14210Semantics:
14211""""""""""
14212
14213The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
14214deoptimization continuation (denoted using a :ref:`deoptimization
14215operand bundle <deopt_opbundles>`) and returns the value returned by
14216the deoptimization continuation. Defining the semantic properties of
14217the continuation itself is out of scope of the language reference --
14218as far as LLVM is concerned, the deoptimization continuation can
14219invoke arbitrary side effects, including reading from and writing to
14220the entire heap.
14221
14222Deoptimization continuations expressed using ``"deopt"`` operand bundles always
14223continue execution to the end of the physical frame containing them, so all
14224calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
14225
14226 - ``@llvm.experimental.deoptimize`` cannot be invoked.
14227 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
14228 - The ``ret`` instruction must return the value produced by the
14229 ``@llvm.experimental.deoptimize`` call if there is one, or void.
14230
14231Note that the above restrictions imply that the return type for a call to
14232``@llvm.experimental.deoptimize`` will match the return type of its immediate
14233caller.
14234
14235The inliner composes the ``"deopt"`` continuations of the caller into the
14236``"deopt"`` continuations present in the inlinee, and also updates calls to this
14237intrinsic to return directly from the frame of the function it inlined into.
14238
Sanjoy Dase0aa4142016-05-12 01:17:38 +000014239All declarations of ``@llvm.experimental.deoptimize`` must share the
14240same calling convention.
14241
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014242.. _deoptimize_lowering:
14243
14244Lowering:
14245"""""""""
14246
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000014247Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
14248symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
14249ensure that this symbol is defined). The call arguments to
14250``@llvm.experimental.deoptimize`` are lowered as if they were formal
14251arguments of the specified types, and not as varargs.
14252
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014253
Sanjoy Das021de052016-03-31 00:18:46 +000014254'``llvm.experimental.guard``' Intrinsic
14255^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14256
14257Syntax:
14258"""""""
14259
14260::
14261
14262 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
14263
14264Overview:
14265"""""""""
14266
14267This intrinsic, together with :ref:`deoptimization operand bundles
14268<deopt_opbundles>`, allows frontends to express guards or checks on
14269optimistic assumptions made during compilation. The semantics of
14270``@llvm.experimental.guard`` is defined in terms of
14271``@llvm.experimental.deoptimize`` -- its body is defined to be
14272equivalent to:
14273
Renato Golin124f2592016-07-20 12:16:38 +000014274.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000014275
Renato Golin124f2592016-07-20 12:16:38 +000014276 define void @llvm.experimental.guard(i1 %pred, <args...>) {
14277 %realPred = and i1 %pred, undef
14278 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000014279
Renato Golin124f2592016-07-20 12:16:38 +000014280 leave:
14281 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
14282 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000014283
Renato Golin124f2592016-07-20 12:16:38 +000014284 continue:
14285 ret void
14286 }
Sanjoy Das021de052016-03-31 00:18:46 +000014287
Sanjoy Das47cf2af2016-04-30 00:55:59 +000014288
14289with the optional ``[, !make.implicit !{}]`` present if and only if it
14290is present on the call site. For more details on ``!make.implicit``,
14291see :doc:`FaultMaps`.
14292
Sanjoy Das021de052016-03-31 00:18:46 +000014293In words, ``@llvm.experimental.guard`` executes the attached
14294``"deopt"`` continuation if (but **not** only if) its first argument
14295is ``false``. Since the optimizer is allowed to replace the ``undef``
14296with an arbitrary value, it can optimize guard to fail "spuriously",
14297i.e. without the original condition being false (hence the "not only
14298if"); and this allows for "check widening" type optimizations.
14299
14300``@llvm.experimental.guard`` cannot be invoked.
14301
14302
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000014303'``llvm.load.relative``' Intrinsic
14304^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14305
14306Syntax:
14307"""""""
14308
14309::
14310
14311 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
14312
14313Overview:
14314"""""""""
14315
14316This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
14317adds ``%ptr`` to that value and returns it. The constant folder specifically
14318recognizes the form of this intrinsic and the constant initializers it may
14319load from; if a loaded constant initializer is known to have the form
14320``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
14321
14322LLVM provides that the calculation of such a constant initializer will
14323not overflow at link time under the medium code model if ``x`` is an
14324``unnamed_addr`` function. However, it does not provide this guarantee for
14325a constant initializer folded into a function body. This intrinsic can be
14326used to avoid the possibility of overflows when loading from such a constant.
14327
Dan Gohman2c74fe92017-11-08 21:59:51 +000014328'``llvm.sideeffect``' Intrinsic
14329^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14330
14331Syntax:
14332"""""""
14333
14334::
14335
14336 declare void @llvm.sideeffect() inaccessiblememonly nounwind
14337
14338Overview:
14339"""""""""
14340
14341The ``llvm.sideeffect`` intrinsic doesn't perform any operation. Optimizers
14342treat it as having side effects, so it can be inserted into a loop to
14343indicate that the loop shouldn't be assumed to terminate (which could
14344potentially lead to the loop being optimized away entirely), even if it's
14345an infinite loop with no other side effects.
14346
14347Arguments:
14348""""""""""
14349
14350None.
14351
14352Semantics:
14353""""""""""
14354
14355This intrinsic actually does nothing, but optimizers must assume that it
14356has externally observable side effects.
14357
Andrew Trick5e029ce2013-12-24 02:57:25 +000014358Stack Map Intrinsics
14359--------------------
14360
14361LLVM provides experimental intrinsics to support runtime patching
14362mechanisms commonly desired in dynamic language JITs. These intrinsics
14363are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014364
14365Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000014366-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000014367
14368These intrinsics are similar to the standard library memory intrinsics except
14369that they perform memory transfer as a sequence of atomic memory accesses.
14370
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014371.. _int_memcpy_element_unordered_atomic:
Igor Laevsky4f31e522016-12-29 14:31:07 +000014372
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014373'``llvm.memcpy.element.unordered.atomic``' Intrinsic
14374^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000014375
14376Syntax:
14377"""""""
14378
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014379This is an overloaded intrinsic. You can use ``llvm.memcpy.element.unordered.atomic`` on
Igor Laevsky4f31e522016-12-29 14:31:07 +000014380any integer bit width and for different address spaces. Not all targets
14381support all bit widths however.
14382
14383::
14384
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014385 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
14386 i8* <src>,
14387 i32 <len>,
14388 i32 <element_size>)
14389 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
14390 i8* <src>,
14391 i64 <len>,
14392 i32 <element_size>)
Igor Laevsky4f31e522016-12-29 14:31:07 +000014393
14394Overview:
14395"""""""""
14396
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014397The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic is a specialization of the
14398'``llvm.memcpy.*``' intrinsic. It differs in that the ``dest`` and ``src`` are treated
14399as arrays with elements that are exactly ``element_size`` bytes, and the copy between
14400buffers uses a sequence of :ref:`unordered atomic <ordering>` load/store operations
14401that are a positive integer multiple of the ``element_size`` in size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014402
14403Arguments:
14404""""""""""
14405
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014406The first three arguments are the same as they are in the :ref:`@llvm.memcpy <int_memcpy>`
14407intrinsic, with the added constraint that ``len`` is required to be a positive integer
14408multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
14409``element_size``, then the behaviour of the intrinsic is undefined.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014410
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014411``element_size`` must be a compile-time constant positive power of two no greater than
14412target-specific atomic access size limit.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014413
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014414For each of the input pointers ``align`` parameter attribute must be specified. It
14415must be a power of two no less than the ``element_size``. Caller guarantees that
14416both the source and destination pointers are aligned to that boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014417
14418Semantics:
14419""""""""""
14420
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014421The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic copies ``len`` bytes of
14422memory from the source location to the destination location. These locations are not
14423allowed to overlap. The memory copy is performed as a sequence of load/store operations
14424where each access is guaranteed to be a multiple of ``element_size`` bytes wide and
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014425aligned at an ``element_size`` boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014426
14427The order of the copy is unspecified. The same value may be read from the source
14428buffer many times, but only one write is issued to the destination buffer per
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014429element. It is well defined to have concurrent reads and writes to both source and
14430destination provided those reads and writes are unordered atomic when specified.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014431
14432This intrinsic does not provide any additional ordering guarantees over those
14433provided by a set of unordered loads from the source location and stores to the
14434destination.
14435
14436Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000014437"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000014438
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014439In the most general case call to the '``llvm.memcpy.element.unordered.atomic.*``' is
14440lowered to a call to the symbol ``__llvm_memcpy_element_unordered_atomic_*``. Where '*'
14441is replaced with an actual element size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014442
Daniel Neilson57226ef2017-07-12 15:25:26 +000014443Optimizer is allowed to inline memory copy when it's profitable to do so.
14444
14445'``llvm.memmove.element.unordered.atomic``' Intrinsic
14446^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14447
14448Syntax:
14449"""""""
14450
14451This is an overloaded intrinsic. You can use
14452``llvm.memmove.element.unordered.atomic`` on any integer bit width and for
14453different address spaces. Not all targets support all bit widths however.
14454
14455::
14456
14457 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
14458 i8* <src>,
14459 i32 <len>,
14460 i32 <element_size>)
14461 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
14462 i8* <src>,
14463 i64 <len>,
14464 i32 <element_size>)
14465
14466Overview:
14467"""""""""
14468
14469The '``llvm.memmove.element.unordered.atomic.*``' intrinsic is a specialization
14470of the '``llvm.memmove.*``' intrinsic. It differs in that the ``dest`` and
14471``src`` are treated as arrays with elements that are exactly ``element_size``
14472bytes, and the copy between buffers uses a sequence of
14473:ref:`unordered atomic <ordering>` load/store operations that are a positive
14474integer multiple of the ``element_size`` in size.
14475
14476Arguments:
14477""""""""""
14478
14479The first three arguments are the same as they are in the
14480:ref:`@llvm.memmove <int_memmove>` intrinsic, with the added constraint that
14481``len`` is required to be a positive integer multiple of the ``element_size``.
14482If ``len`` is not a positive integer multiple of ``element_size``, then the
14483behaviour of the intrinsic is undefined.
14484
14485``element_size`` must be a compile-time constant positive power of two no
14486greater than a target-specific atomic access size limit.
14487
14488For each of the input pointers the ``align`` parameter attribute must be
14489specified. It must be a power of two no less than the ``element_size``. Caller
14490guarantees that both the source and destination pointers are aligned to that
14491boundary.
14492
14493Semantics:
14494""""""""""
14495
14496The '``llvm.memmove.element.unordered.atomic.*``' intrinsic copies ``len`` bytes
14497of memory from the source location to the destination location. These locations
14498are allowed to overlap. The memory copy is performed as a sequence of load/store
14499operations where each access is guaranteed to be a multiple of ``element_size``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014500bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson57226ef2017-07-12 15:25:26 +000014501
14502The order of the copy is unspecified. The same value may be read from the source
14503buffer many times, but only one write is issued to the destination buffer per
14504element. It is well defined to have concurrent reads and writes to both source
14505and destination provided those reads and writes are unordered atomic when
14506specified.
14507
14508This intrinsic does not provide any additional ordering guarantees over those
14509provided by a set of unordered loads from the source location and stores to the
14510destination.
14511
14512Lowering:
14513"""""""""
14514
14515In the most general case call to the
14516'``llvm.memmove.element.unordered.atomic.*``' is lowered to a call to the symbol
14517``__llvm_memmove_element_unordered_atomic_*``. Where '*' is replaced with an
14518actual element size.
14519
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014520The optimizer is allowed to inline the memory copy when it's profitable to do so.
Daniel Neilson965613e2017-07-12 21:57:23 +000014521
14522.. _int_memset_element_unordered_atomic:
14523
14524'``llvm.memset.element.unordered.atomic``' Intrinsic
14525^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14526
14527Syntax:
14528"""""""
14529
14530This is an overloaded intrinsic. You can use ``llvm.memset.element.unordered.atomic`` on
14531any integer bit width and for different address spaces. Not all targets
14532support all bit widths however.
14533
14534::
14535
14536 declare void @llvm.memset.element.unordered.atomic.p0i8.i32(i8* <dest>,
14537 i8 <value>,
14538 i32 <len>,
14539 i32 <element_size>)
14540 declare void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* <dest>,
14541 i8 <value>,
14542 i64 <len>,
14543 i32 <element_size>)
14544
14545Overview:
14546"""""""""
14547
14548The '``llvm.memset.element.unordered.atomic.*``' intrinsic is a specialization of the
14549'``llvm.memset.*``' intrinsic. It differs in that the ``dest`` is treated as an array
14550with elements that are exactly ``element_size`` bytes, and the assignment to that array
14551uses uses a sequence of :ref:`unordered atomic <ordering>` store operations
14552that are a positive integer multiple of the ``element_size`` in size.
14553
14554Arguments:
14555""""""""""
14556
14557The first three arguments are the same as they are in the :ref:`@llvm.memset <int_memset>`
14558intrinsic, with the added constraint that ``len`` is required to be a positive integer
14559multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
14560``element_size``, then the behaviour of the intrinsic is undefined.
14561
14562``element_size`` must be a compile-time constant positive power of two no greater than
14563target-specific atomic access size limit.
14564
14565The ``dest`` input pointer must have the ``align`` parameter attribute specified. It
14566must be a power of two no less than the ``element_size``. Caller guarantees that
14567the destination pointer is aligned to that boundary.
14568
14569Semantics:
14570""""""""""
14571
14572The '``llvm.memset.element.unordered.atomic.*``' intrinsic sets the ``len`` bytes of
14573memory starting at the destination location to the given ``value``. The memory is
14574set with a sequence of store operations where each access is guaranteed to be a
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014575multiple of ``element_size`` bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson965613e2017-07-12 21:57:23 +000014576
14577The order of the assignment is unspecified. Only one write is issued to the
14578destination buffer per element. It is well defined to have concurrent reads and
14579writes to the destination provided those reads and writes are unordered atomic
14580when specified.
14581
14582This intrinsic does not provide any additional ordering guarantees over those
14583provided by a set of unordered stores to the destination.
14584
14585Lowering:
14586"""""""""
14587
14588In the most general case call to the '``llvm.memset.element.unordered.atomic.*``' is
14589lowered to a call to the symbol ``__llvm_memset_element_unordered_atomic_*``. Where '*'
14590is replaced with an actual element size.
14591
14592The optimizer is allowed to inline the memory assignment when it's profitable to do so.