blob: 035019499c12c4959f4d8d9bf0d10c59d63c8156 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
George Burgess IVfbc34982017-05-20 04:52:29 +0000164 ; Convert [13 x i8]* to i8*...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledru0604c5c2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvab084af42012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
Sanjay Patel85fa9ef2018-03-21 14:15:33 +0000327 floating-point types are supported.
Sean Silvab084af42012-12-07 10:36:55 +0000328 - On *X86-64* only supports up to 10 bit type parameters and 6
Sanjay Patel85fa9ef2018-03-21 14:15:33 +0000329 floating-point parameters.
Sean Silvab084af42012-12-07 10:36:55 +0000330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Sean Fertilec70d28b2017-10-26 15:00:26 +0000530.. _runtime_preemption_model:
531
532Runtime Preemption Specifiers
533-----------------------------
534
535Global variables, functions and aliases may have an optional runtime preemption
536specifier. If a preemption specifier isn't given explicitly, then a
537symbol is assumed to be ``dso_preemptable``.
538
539``dso_preemptable``
540 Indicates that the function or variable may be replaced by a symbol from
541 outside the linkage unit at runtime.
542
543``dso_local``
544 The compiler may assume that a function or variable marked as ``dso_local``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000545 will resolve to a symbol within the same linkage unit. Direct access will
Sean Fertilec70d28b2017-10-26 15:00:26 +0000546 be generated even if the definition is not within this compilation unit.
547
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000548.. _namedtypes:
549
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000550Structure Types
551---------------
Sean Silvab084af42012-12-07 10:36:55 +0000552
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000553LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000554types <t_struct>`. Literal types are uniqued structurally, but identified types
555are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000556to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000557
Sean Silva706fba52015-08-06 22:56:24 +0000558An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000559
560.. code-block:: llvm
561
562 %mytype = type { %mytype*, i32 }
563
Sean Silvaa1190322015-08-06 22:56:48 +0000564Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000565literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000566
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000567.. _nointptrtype:
568
569Non-Integral Pointer Type
570-------------------------
571
572Note: non-integral pointer types are a work in progress, and they should be
573considered experimental at this time.
574
575LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000576spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
577Non-integral pointer types represent pointers that have an *unspecified* bitwise
578representation; that is, the integral representation may be target dependent or
579unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000580
581``inttoptr`` instructions converting integers to non-integral pointer types are
582ill-typed, and so are ``ptrtoint`` instructions converting values of
583non-integral pointer types to integers. Vector versions of said instructions
584are ill-typed as well.
585
Sean Silvab084af42012-12-07 10:36:55 +0000586.. _globalvars:
587
588Global Variables
589----------------
590
591Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000592instead of run-time.
593
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000594Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000595
596Global variables in other translation units can also be declared, in which
597case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000598
Bob Wilson85b24f22014-06-12 20:40:33 +0000599Either global variable definitions or declarations may have an explicit section
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000600to be placed in and may have an optional explicit alignment specified. If there
601is a mismatch between the explicit or inferred section information for the
602variable declaration and its definition the resulting behavior is undefined.
Bob Wilson85b24f22014-06-12 20:40:33 +0000603
Michael Gottesman006039c2013-01-31 05:48:48 +0000604A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000605the contents of the variable will **never** be modified (enabling better
606optimization, allowing the global data to be placed in the read-only
607section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000608initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000609variable.
610
611LLVM explicitly allows *declarations* of global variables to be marked
612constant, even if the final definition of the global is not. This
613capability can be used to enable slightly better optimization of the
614program, but requires the language definition to guarantee that
615optimizations based on the 'constantness' are valid for the translation
616units that do not include the definition.
617
618As SSA values, global variables define pointer values that are in scope
619(i.e. they dominate) all basic blocks in the program. Global variables
620always define a pointer to their "content" type because they describe a
621region of memory, and all memory objects in LLVM are accessed through
622pointers.
623
624Global variables can be marked with ``unnamed_addr`` which indicates
625that the address is not significant, only the content. Constants marked
626like this can be merged with other constants if they have the same
627initializer. Note that a constant with significant address *can* be
628merged with a ``unnamed_addr`` constant, the result being a constant
629whose address is significant.
630
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000631If the ``local_unnamed_addr`` attribute is given, the address is known to
632not be significant within the module.
633
Sean Silvab084af42012-12-07 10:36:55 +0000634A global variable may be declared to reside in a target-specific
635numbered address space. For targets that support them, address spaces
636may affect how optimizations are performed and/or what target
637instructions are used to access the variable. The default address space
638is zero. The address space qualifier must precede any other attributes.
639
640LLVM allows an explicit section to be specified for globals. If the
641target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000642Additionally, the global can placed in a comdat if the target has the necessary
643support.
Sean Silvab084af42012-12-07 10:36:55 +0000644
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000645External declarations may have an explicit section specified. Section
646information is retained in LLVM IR for targets that make use of this
647information. Attaching section information to an external declaration is an
648assertion that its definition is located in the specified section. If the
649definition is located in a different section, the behavior is undefined.
Erich Keane0343ef82017-08-22 15:30:43 +0000650
Michael Gottesmane743a302013-02-04 03:22:00 +0000651By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000652variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000653initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000654true even for variables potentially accessible from outside the
655module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000656``@llvm.used`` or dllexported variables. This assumption may be suppressed
657by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659An explicit alignment may be specified for a global, which must be a
660power of 2. If not present, or if the alignment is set to zero, the
661alignment of the global is set by the target to whatever it feels
662convenient. If an explicit alignment is specified, the global is forced
663to have exactly that alignment. Targets and optimizers are not allowed
664to over-align the global if the global has an assigned section. In this
665case, the extra alignment could be observable: for example, code could
666assume that the globals are densely packed in their section and try to
667iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000668iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000669
Javed Absarf3d79042017-05-11 12:28:08 +0000670Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
Sean Fertilec70d28b2017-10-26 15:00:26 +0000671an optional :ref:`runtime preemption specifier <runtime_preemption_model>`,
Javed Absarf3d79042017-05-11 12:28:08 +0000672an optional :ref:`global attributes <glattrs>` and
673an optional list of attached :ref:`metadata <metadata>`.
Nico Rieck7157bb72014-01-14 15:22:47 +0000674
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000675Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000676:ref:`Thread Local Storage Model <tls_model>`.
677
Nico Rieck7157bb72014-01-14 15:22:47 +0000678Syntax::
679
Sean Fertilec70d28b2017-10-26 15:00:26 +0000680 @<GlobalVarName> = [Linkage] [PreemptionSpecifier] [Visibility]
681 [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000682 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
683 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000684 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000685 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000686 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000687
Sean Silvab084af42012-12-07 10:36:55 +0000688For example, the following defines a global in a numbered address space
689with an initializer, section, and alignment:
690
691.. code-block:: llvm
692
693 @G = addrspace(5) constant float 1.0, section "foo", align 4
694
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000695The following example just declares a global variable
696
697.. code-block:: llvm
698
699 @G = external global i32
700
Sean Silvab084af42012-12-07 10:36:55 +0000701The following example defines a thread-local global with the
702``initialexec`` TLS model:
703
704.. code-block:: llvm
705
706 @G = thread_local(initialexec) global i32 0, align 4
707
708.. _functionstructure:
709
710Functions
711---------
712
713LLVM function definitions consist of the "``define``" keyword, an
Sean Fertilec70d28b2017-10-26 15:00:26 +0000714optional :ref:`linkage type <linkage>`, an optional :ref:`runtime preemption
715specifier <runtime_preemption_model>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000716style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
717an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000718an optional ``unnamed_addr`` attribute, a return type, an optional
719:ref:`parameter attribute <paramattrs>` for the return type, a function
720name, a (possibly empty) argument list (each with optional :ref:`parameter
721attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000722an optional section, an optional alignment,
723an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000724an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000725an optional :ref:`prologue <prologuedata>`,
726an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000727an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000728an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000731optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
732<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
733optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
734or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
735attribute <paramattrs>` for the return type, a function name, a possibly
736empty list of arguments, an optional alignment, an optional :ref:`garbage
737collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
738:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000739
Bill Wendling6822ecb2013-10-27 05:09:12 +0000740A function definition contains a list of basic blocks, forming the CFG (Control
741Flow Graph) for the function. Each basic block may optionally start with a label
742(giving the basic block a symbol table entry), contains a list of instructions,
743and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
744function return). If an explicit label is not provided, a block is assigned an
745implicit numbered label, using the next value from the same counter as used for
746unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
747entry block does not have an explicit label, it will be assigned label "%0",
748then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000749
750The first basic block in a function is special in two ways: it is
751immediately executed on entrance to the function, and it is not allowed
752to have predecessor basic blocks (i.e. there can not be any branches to
753the entry block of a function). Because the block can have no
754predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
755
756LLVM allows an explicit section to be specified for functions. If the
757target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000758Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000759
760An explicit alignment may be specified for a function. If not present,
761or if the alignment is set to zero, the alignment of the function is set
762by the target to whatever it feels convenient. If an explicit alignment
763is specified, the function is forced to have at least that much
764alignment. All alignments must be a power of 2.
765
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000766If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000767be significant and two identical functions can be merged.
768
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000769If the ``local_unnamed_addr`` attribute is given, the address is known to
770not be significant within the module.
771
Sean Silvab084af42012-12-07 10:36:55 +0000772Syntax::
773
Sean Fertilec70d28b2017-10-26 15:00:26 +0000774 define [linkage] [PreemptionSpecifier] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000775 [cconv] [ret attrs]
776 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000777 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
778 [comdat [($name)]] [align N] [gc] [prefix Constant]
779 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000780
Sean Silva706fba52015-08-06 22:56:24 +0000781The argument list is a comma separated sequence of arguments where each
782argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000783
784Syntax::
785
786 <type> [parameter Attrs] [name]
787
788
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000789.. _langref_aliases:
790
Sean Silvab084af42012-12-07 10:36:55 +0000791Aliases
792-------
793
Rafael Espindola64c1e182014-06-03 02:41:57 +0000794Aliases, unlike function or variables, don't create any new data. They
795are just a new symbol and metadata for an existing position.
796
797Aliases have a name and an aliasee that is either a global value or a
798constant expression.
799
Nico Rieck7157bb72014-01-14 15:22:47 +0000800Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Sean Fertilec70d28b2017-10-26 15:00:26 +0000801:ref:`runtime preemption specifier <runtime_preemption_model>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000802:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
803<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000804
805Syntax::
806
Sean Fertilec70d28b2017-10-26 15:00:26 +0000807 @<Name> = [Linkage] [PreemptionSpecifier] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000808
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000809The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000810``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000811might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000812
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000813Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000814the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
815to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000816
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000817If the ``local_unnamed_addr`` attribute is given, the address is known to
818not be significant within the module.
819
Rafael Espindola64c1e182014-06-03 02:41:57 +0000820Since aliases are only a second name, some restrictions apply, of which
821some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000822
Rafael Espindola64c1e182014-06-03 02:41:57 +0000823* The expression defining the aliasee must be computable at assembly
824 time. Since it is just a name, no relocations can be used.
825
826* No alias in the expression can be weak as the possibility of the
827 intermediate alias being overridden cannot be represented in an
828 object file.
829
830* No global value in the expression can be a declaration, since that
831 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000832
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000833.. _langref_ifunc:
834
835IFuncs
836-------
837
838IFuncs, like as aliases, don't create any new data or func. They are just a new
839symbol that dynamic linker resolves at runtime by calling a resolver function.
840
841IFuncs have a name and a resolver that is a function called by dynamic linker
842that returns address of another function associated with the name.
843
844IFunc may have an optional :ref:`linkage type <linkage>` and an optional
845:ref:`visibility style <visibility>`.
846
847Syntax::
848
849 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
850
851
David Majnemerdad0a642014-06-27 18:19:56 +0000852.. _langref_comdats:
853
854Comdats
855-------
856
857Comdat IR provides access to COFF and ELF object file COMDAT functionality.
858
Sean Silvaa1190322015-08-06 22:56:48 +0000859Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000860specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000861that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000862aliasee computes to, if any.
863
864Comdats have a selection kind to provide input on how the linker should
865choose between keys in two different object files.
866
867Syntax::
868
869 $<Name> = comdat SelectionKind
870
871The selection kind must be one of the following:
872
873``any``
874 The linker may choose any COMDAT key, the choice is arbitrary.
875``exactmatch``
876 The linker may choose any COMDAT key but the sections must contain the
877 same data.
878``largest``
879 The linker will choose the section containing the largest COMDAT key.
880``noduplicates``
881 The linker requires that only section with this COMDAT key exist.
882``samesize``
883 The linker may choose any COMDAT key but the sections must contain the
884 same amount of data.
885
Sam Cleggea7cace2018-01-09 23:43:14 +0000886Note that the Mach-O platform doesn't support COMDATs, and ELF and WebAssembly
887only support ``any`` as a selection kind.
David Majnemerdad0a642014-06-27 18:19:56 +0000888
889Here is an example of a COMDAT group where a function will only be selected if
890the COMDAT key's section is the largest:
891
Renato Golin124f2592016-07-20 12:16:38 +0000892.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000893
894 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000895 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000896
Rafael Espindola83a362c2015-01-06 22:55:16 +0000897 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000898 ret void
899 }
900
Rafael Espindola83a362c2015-01-06 22:55:16 +0000901As a syntactic sugar the ``$name`` can be omitted if the name is the same as
902the global name:
903
Renato Golin124f2592016-07-20 12:16:38 +0000904.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000905
906 $foo = comdat any
907 @foo = global i32 2, comdat
908
909
David Majnemerdad0a642014-06-27 18:19:56 +0000910In a COFF object file, this will create a COMDAT section with selection kind
911``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
912and another COMDAT section with selection kind
913``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000914section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000915
916There are some restrictions on the properties of the global object.
917It, or an alias to it, must have the same name as the COMDAT group when
918targeting COFF.
919The contents and size of this object may be used during link-time to determine
920which COMDAT groups get selected depending on the selection kind.
921Because the name of the object must match the name of the COMDAT group, the
922linkage of the global object must not be local; local symbols can get renamed
923if a collision occurs in the symbol table.
924
925The combined use of COMDATS and section attributes may yield surprising results.
926For example:
927
Renato Golin124f2592016-07-20 12:16:38 +0000928.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000929
930 $foo = comdat any
931 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000932 @g1 = global i32 42, section "sec", comdat($foo)
933 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000934
935From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000936with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000937COMDAT groups and COMDATs, at the object file level, are represented by
938sections.
939
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000940Note that certain IR constructs like global variables and functions may
941create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000942COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000943in individual sections (e.g. when `-data-sections` or `-function-sections`
944is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000945
Sean Silvab084af42012-12-07 10:36:55 +0000946.. _namedmetadatastructure:
947
948Named Metadata
949--------------
950
951Named metadata is a collection of metadata. :ref:`Metadata
952nodes <metadata>` (but not metadata strings) are the only valid
953operands for a named metadata.
954
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000955#. Named metadata are represented as a string of characters with the
956 metadata prefix. The rules for metadata names are the same as for
957 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
958 are still valid, which allows any character to be part of a name.
959
Sean Silvab084af42012-12-07 10:36:55 +0000960Syntax::
961
962 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000963 !0 = !{!"zero"}
964 !1 = !{!"one"}
965 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000966 ; A named metadata.
967 !name = !{!0, !1, !2}
968
969.. _paramattrs:
970
971Parameter Attributes
972--------------------
973
974The return type and each parameter of a function type may have a set of
975*parameter attributes* associated with them. Parameter attributes are
976used to communicate additional information about the result or
977parameters of a function. Parameter attributes are considered to be part
978of the function, not of the function type, so functions with different
979parameter attributes can have the same function type.
980
981Parameter attributes are simple keywords that follow the type specified.
982If multiple parameter attributes are needed, they are space separated.
983For example:
984
985.. code-block:: llvm
986
987 declare i32 @printf(i8* noalias nocapture, ...)
988 declare i32 @atoi(i8 zeroext)
989 declare signext i8 @returns_signed_char()
990
991Note that any attributes for the function result (``nounwind``,
992``readonly``) come immediately after the argument list.
993
994Currently, only the following parameter attributes are defined:
995
996``zeroext``
997 This indicates to the code generator that the parameter or return
998 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000999 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +00001000``signext``
1001 This indicates to the code generator that the parameter or return
1002 value should be sign-extended to the extent required by the target's
1003 ABI (which is usually 32-bits) by the caller (for a parameter) or
1004 the callee (for a return value).
1005``inreg``
1006 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +00001007 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +00001008 a function call or return (usually, by putting it in a register as
1009 opposed to memory, though some targets use it to distinguish between
1010 two different kinds of registers). Use of this attribute is
1011 target-specific.
1012``byval``
1013 This indicates that the pointer parameter should really be passed by
1014 value to the function. The attribute implies that a hidden copy of
1015 the pointee is made between the caller and the callee, so the callee
1016 is unable to modify the value in the caller. This attribute is only
1017 valid on LLVM pointer arguments. It is generally used to pass
1018 structs and arrays by value, but is also valid on pointers to
1019 scalars. The copy is considered to belong to the caller not the
1020 callee (for example, ``readonly`` functions should not write to
1021 ``byval`` parameters). This is not a valid attribute for return
1022 values.
1023
1024 The byval attribute also supports specifying an alignment with the
1025 align attribute. It indicates the alignment of the stack slot to
1026 form and the known alignment of the pointer specified to the call
1027 site. If the alignment is not specified, then the code generator
1028 makes a target-specific assumption.
1029
Reid Klecknera534a382013-12-19 02:14:12 +00001030.. _attr_inalloca:
1031
1032``inalloca``
1033
Reid Kleckner60d3a832014-01-16 22:59:24 +00001034 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001035 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001036 be a pointer to stack memory produced by an ``alloca`` instruction.
1037 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001038 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001039 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001040
Reid Kleckner436c42e2014-01-17 23:58:17 +00001041 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001042 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001043 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001044 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001045 ``inalloca`` attribute also disables LLVM's implicit lowering of
1046 large aggregate return values, which means that frontend authors
1047 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001048
Reid Kleckner60d3a832014-01-16 22:59:24 +00001049 When the call site is reached, the argument allocation must have
1050 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001051 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001052 space after an argument allocation and before its call site, but it
1053 must be cleared off with :ref:`llvm.stackrestore
1054 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001055
1056 See :doc:`InAlloca` for more information on how to use this
1057 attribute.
1058
Sean Silvab084af42012-12-07 10:36:55 +00001059``sret``
1060 This indicates that the pointer parameter specifies the address of a
1061 structure that is the return value of the function in the source
1062 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001063 loads and stores to the structure may be assumed by the callee not
1064 to trap and to be properly aligned. This is not a valid attribute
1065 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001066
Daniel Neilson1e687242018-01-19 17:13:12 +00001067.. _attr_align:
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001068
Hal Finkelccc70902014-07-22 16:58:55 +00001069``align <n>``
1070 This indicates that the pointer value may be assumed by the optimizer to
1071 have the specified alignment.
1072
1073 Note that this attribute has additional semantics when combined with the
1074 ``byval`` attribute.
1075
Sean Silva1703e702014-04-08 21:06:22 +00001076.. _noalias:
1077
Sean Silvab084af42012-12-07 10:36:55 +00001078``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001079 This indicates that objects accessed via pointer values
1080 :ref:`based <pointeraliasing>` on the argument or return value are not also
1081 accessed, during the execution of the function, via pointer values not
1082 *based* on the argument or return value. The attribute on a return value
1083 also has additional semantics described below. The caller shares the
1084 responsibility with the callee for ensuring that these requirements are met.
1085 For further details, please see the discussion of the NoAlias response in
1086 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001087
1088 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001089 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001090
1091 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001092 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1093 attribute on return values are stronger than the semantics of the attribute
1094 when used on function arguments. On function return values, the ``noalias``
1095 attribute indicates that the function acts like a system memory allocation
1096 function, returning a pointer to allocated storage disjoint from the
1097 storage for any other object accessible to the caller.
1098
Sean Silvab084af42012-12-07 10:36:55 +00001099``nocapture``
1100 This indicates that the callee does not make any copies of the
1101 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001102 attribute for return values. Addresses used in volatile operations
1103 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001104
1105.. _nest:
1106
1107``nest``
1108 This indicates that the pointer parameter can be excised using the
1109 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001110 attribute for return values and can only be applied to one parameter.
1111
1112``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001113 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001114 value. This is a hint to the optimizer and code generator used when
1115 generating the caller, allowing value propagation, tail call optimization,
1116 and omission of register saves and restores in some cases; it is not
1117 checked or enforced when generating the callee. The parameter and the
1118 function return type must be valid operands for the
1119 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1120 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001121
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001122``nonnull``
1123 This indicates that the parameter or return pointer is not null. This
1124 attribute may only be applied to pointer typed parameters. This is not
1125 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001126 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001127 is non-null.
1128
Hal Finkelb0407ba2014-07-18 15:51:28 +00001129``dereferenceable(<n>)``
1130 This indicates that the parameter or return pointer is dereferenceable. This
1131 attribute may only be applied to pointer typed parameters. A pointer that
1132 is dereferenceable can be loaded from speculatively without a risk of
1133 trapping. The number of bytes known to be dereferenceable must be provided
1134 in parentheses. It is legal for the number of bytes to be less than the
1135 size of the pointee type. The ``nonnull`` attribute does not imply
1136 dereferenceability (consider a pointer to one element past the end of an
1137 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1138 ``addrspace(0)`` (which is the default address space).
1139
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001140``dereferenceable_or_null(<n>)``
1141 This indicates that the parameter or return value isn't both
1142 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001143 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001144 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1145 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1146 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1147 and in other address spaces ``dereferenceable_or_null(<n>)``
1148 implies that a pointer is at least one of ``dereferenceable(<n>)``
1149 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001150 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001151 pointer typed parameters.
1152
Manman Renf46262e2016-03-29 17:37:21 +00001153``swiftself``
1154 This indicates that the parameter is the self/context parameter. This is not
1155 a valid attribute for return values and can only be applied to one
1156 parameter.
1157
Manman Ren9bfd0d02016-04-01 21:41:15 +00001158``swifterror``
1159 This attribute is motivated to model and optimize Swift error handling. It
1160 can be applied to a parameter with pointer to pointer type or a
1161 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001162 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1163 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1164 the parameter or the alloca) can only be loaded and stored from, or used as
1165 a ``swifterror`` argument. This is not a valid attribute for return values
1166 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001167
1168 These constraints allow the calling convention to optimize access to
1169 ``swifterror`` variables by associating them with a specific register at
1170 call boundaries rather than placing them in memory. Since this does change
1171 the calling convention, a function which uses the ``swifterror`` attribute
1172 on a parameter is not ABI-compatible with one which does not.
1173
1174 These constraints also allow LLVM to assume that a ``swifterror`` argument
1175 does not alias any other memory visible within a function and that a
1176 ``swifterror`` alloca passed as an argument does not escape.
1177
Sean Silvab084af42012-12-07 10:36:55 +00001178.. _gc:
1179
Philip Reamesf80bbff2015-02-25 23:45:20 +00001180Garbage Collector Strategy Names
1181--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001182
Philip Reamesf80bbff2015-02-25 23:45:20 +00001183Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001184string:
1185
1186.. code-block:: llvm
1187
1188 define void @f() gc "name" { ... }
1189
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001190The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001191<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001192strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001193named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001194garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001195which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001196
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001197.. _prefixdata:
1198
1199Prefix Data
1200-----------
1201
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001202Prefix data is data associated with a function which the code
1203generator will emit immediately before the function's entrypoint.
1204The purpose of this feature is to allow frontends to associate
1205language-specific runtime metadata with specific functions and make it
1206available through the function pointer while still allowing the
1207function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001208
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001209To access the data for a given function, a program may bitcast the
1210function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001211index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001212the prefix data. For instance, take the example of a function annotated
1213with a single ``i32``,
1214
1215.. code-block:: llvm
1216
1217 define void @f() prefix i32 123 { ... }
1218
1219The prefix data can be referenced as,
1220
1221.. code-block:: llvm
1222
David Blaikie16a97eb2015-03-04 22:02:58 +00001223 %0 = bitcast void* () @f to i32*
1224 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001225 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001226
1227Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001228of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001229beginning of the prefix data is aligned. This means that if the size
1230of the prefix data is not a multiple of the alignment size, the
1231function's entrypoint will not be aligned. If alignment of the
1232function's entrypoint is desired, padding must be added to the prefix
1233data.
1234
Sean Silvaa1190322015-08-06 22:56:48 +00001235A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001236to the ``available_externally`` linkage in that the data may be used by the
1237optimizers but will not be emitted in the object file.
1238
1239.. _prologuedata:
1240
1241Prologue Data
1242-------------
1243
1244The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1245be inserted prior to the function body. This can be used for enabling
1246function hot-patching and instrumentation.
1247
1248To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001249have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001250bytes which decode to a sequence of machine instructions, valid for the
1251module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001252the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001253the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001254definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001255makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001256
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001257A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001258which encodes the ``nop`` instruction:
1259
Renato Golin124f2592016-07-20 12:16:38 +00001260.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001261
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001262 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001263
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001264Generally prologue data can be formed by encoding a relative branch instruction
1265which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001266x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1267
Renato Golin124f2592016-07-20 12:16:38 +00001268.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001269
1270 %0 = type <{ i8, i8, i8* }>
1271
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001272 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001273
Sean Silvaa1190322015-08-06 22:56:48 +00001274A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001275to the ``available_externally`` linkage in that the data may be used by the
1276optimizers but will not be emitted in the object file.
1277
David Majnemer7fddecc2015-06-17 20:52:32 +00001278.. _personalityfn:
1279
1280Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001281--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001282
1283The ``personality`` attribute permits functions to specify what function
1284to use for exception handling.
1285
Bill Wendling63b88192013-02-06 06:52:58 +00001286.. _attrgrp:
1287
1288Attribute Groups
1289----------------
1290
1291Attribute groups are groups of attributes that are referenced by objects within
1292the IR. They are important for keeping ``.ll`` files readable, because a lot of
1293functions will use the same set of attributes. In the degenerative case of a
1294``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1295group will capture the important command line flags used to build that file.
1296
1297An attribute group is a module-level object. To use an attribute group, an
1298object references the attribute group's ID (e.g. ``#37``). An object may refer
1299to more than one attribute group. In that situation, the attributes from the
1300different groups are merged.
1301
1302Here is an example of attribute groups for a function that should always be
1303inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1304
1305.. code-block:: llvm
1306
1307 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001308 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001309
1310 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001311 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001312
1313 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1314 define void @f() #0 #1 { ... }
1315
Sean Silvab084af42012-12-07 10:36:55 +00001316.. _fnattrs:
1317
1318Function Attributes
1319-------------------
1320
1321Function attributes are set to communicate additional information about
1322a function. Function attributes are considered to be part of the
1323function, not of the function type, so functions with different function
1324attributes can have the same function type.
1325
1326Function attributes are simple keywords that follow the type specified.
1327If multiple attributes are needed, they are space separated. For
1328example:
1329
1330.. code-block:: llvm
1331
1332 define void @f() noinline { ... }
1333 define void @f() alwaysinline { ... }
1334 define void @f() alwaysinline optsize { ... }
1335 define void @f() optsize { ... }
1336
Sean Silvab084af42012-12-07 10:36:55 +00001337``alignstack(<n>)``
1338 This attribute indicates that, when emitting the prologue and
1339 epilogue, the backend should forcibly align the stack pointer.
1340 Specify the desired alignment, which must be a power of two, in
1341 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001342``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1343 This attribute indicates that the annotated function will always return at
1344 least a given number of bytes (or null). Its arguments are zero-indexed
1345 parameter numbers; if one argument is provided, then it's assumed that at
1346 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1347 returned pointer. If two are provided, then it's assumed that
1348 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1349 available. The referenced parameters must be integer types. No assumptions
1350 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001351``alwaysinline``
1352 This attribute indicates that the inliner should attempt to inline
1353 this function into callers whenever possible, ignoring any active
1354 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001355``builtin``
1356 This indicates that the callee function at a call site should be
1357 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001358 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001359 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001360 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001361``cold``
1362 This attribute indicates that this function is rarely called. When
1363 computing edge weights, basic blocks post-dominated by a cold
1364 function call are also considered to be cold; and, thus, given low
1365 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001366``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001367 In some parallel execution models, there exist operations that cannot be
1368 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001369 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001370
Justin Lebar58535b12016-02-17 17:46:41 +00001371 The ``convergent`` attribute may appear on functions or call/invoke
1372 instructions. When it appears on a function, it indicates that calls to
1373 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001374 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001375 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001376 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001377
Justin Lebar58535b12016-02-17 17:46:41 +00001378 When it appears on a call/invoke, the ``convergent`` attribute indicates
1379 that we should treat the call as though we're calling a convergent
1380 function. This is particularly useful on indirect calls; without this we
1381 may treat such calls as though the target is non-convergent.
1382
1383 The optimizer may remove the ``convergent`` attribute on functions when it
1384 can prove that the function does not execute any convergent operations.
1385 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1386 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001387``inaccessiblememonly``
1388 This attribute indicates that the function may only access memory that
1389 is not accessible by the module being compiled. This is a weaker form
1390 of ``readnone``.
1391``inaccessiblemem_or_argmemonly``
1392 This attribute indicates that the function may only access memory that is
1393 either not accessible by the module being compiled, or is pointed to
1394 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001395``inlinehint``
1396 This attribute indicates that the source code contained a hint that
1397 inlining this function is desirable (such as the "inline" keyword in
1398 C/C++). It is just a hint; it imposes no requirements on the
1399 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001400``jumptable``
1401 This attribute indicates that the function should be added to a
1402 jump-instruction table at code-generation time, and that all address-taken
1403 references to this function should be replaced with a reference to the
1404 appropriate jump-instruction-table function pointer. Note that this creates
1405 a new pointer for the original function, which means that code that depends
1406 on function-pointer identity can break. So, any function annotated with
1407 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001408``minsize``
1409 This attribute suggests that optimization passes and code generator
1410 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001411 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001412 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001413``naked``
1414 This attribute disables prologue / epilogue emission for the
1415 function. This can have very system-specific consequences.
Sumanth Gundapaneni6af104e2017-07-28 22:26:22 +00001416``no-jump-tables``
1417 When this attribute is set to true, the jump tables and lookup tables that
1418 can be generated from a switch case lowering are disabled.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001419``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001420 This indicates that the callee function at a call site is not recognized as
1421 a built-in function. LLVM will retain the original call and not replace it
1422 with equivalent code based on the semantics of the built-in function, unless
1423 the call site uses the ``builtin`` attribute. This is valid at call sites
1424 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001425``noduplicate``
1426 This attribute indicates that calls to the function cannot be
1427 duplicated. A call to a ``noduplicate`` function may be moved
1428 within its parent function, but may not be duplicated within
1429 its parent function.
1430
1431 A function containing a ``noduplicate`` call may still
1432 be an inlining candidate, provided that the call is not
1433 duplicated by inlining. That implies that the function has
1434 internal linkage and only has one call site, so the original
1435 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001436``noimplicitfloat``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001437 This attributes disables implicit floating-point instructions.
Sean Silvab084af42012-12-07 10:36:55 +00001438``noinline``
1439 This attribute indicates that the inliner should never inline this
1440 function in any situation. This attribute may not be used together
1441 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001442``nonlazybind``
1443 This attribute suppresses lazy symbol binding for the function. This
1444 may make calls to the function faster, at the cost of extra program
1445 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001446``noredzone``
1447 This attribute indicates that the code generator should not use a
1448 red zone, even if the target-specific ABI normally permits it.
1449``noreturn``
1450 This function attribute indicates that the function never returns
1451 normally. This produces undefined behavior at runtime if the
1452 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001453``norecurse``
1454 This function attribute indicates that the function does not call itself
1455 either directly or indirectly down any possible call path. This produces
1456 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001457``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001458 This function attribute indicates that the function never raises an
1459 exception. If the function does raise an exception, its runtime
1460 behavior is undefined. However, functions marked nounwind may still
1461 trap or generate asynchronous exceptions. Exception handling schemes
1462 that are recognized by LLVM to handle asynchronous exceptions, such
1463 as SEH, will still provide their implementation defined semantics.
Matt Morehouse31819412018-03-22 19:50:10 +00001464``optforfuzzing``
1465 This attribute indicates that this function should be optimized
1466 for maximum fuzzing signal.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001467``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001468 This function attribute indicates that most optimization passes will skip
1469 this function, with the exception of interprocedural optimization passes.
1470 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001471 This attribute cannot be used together with the ``alwaysinline``
1472 attribute; this attribute is also incompatible
1473 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001474
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001475 This attribute requires the ``noinline`` attribute to be specified on
1476 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001477 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001478 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001479``optsize``
1480 This attribute suggests that optimization passes and code generator
1481 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001482 and otherwise do optimizations specifically to reduce code size as
1483 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001484``"patchable-function"``
1485 This attribute tells the code generator that the code
1486 generated for this function needs to follow certain conventions that
1487 make it possible for a runtime function to patch over it later.
1488 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001489 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001490
1491 * ``"prologue-short-redirect"`` - This style of patchable
1492 function is intended to support patching a function prologue to
1493 redirect control away from the function in a thread safe
1494 manner. It guarantees that the first instruction of the
1495 function will be large enough to accommodate a short jump
1496 instruction, and will be sufficiently aligned to allow being
1497 fully changed via an atomic compare-and-swap instruction.
1498 While the first requirement can be satisfied by inserting large
1499 enough NOP, LLVM can and will try to re-purpose an existing
1500 instruction (i.e. one that would have to be emitted anyway) as
1501 the patchable instruction larger than a short jump.
1502
1503 ``"prologue-short-redirect"`` is currently only supported on
1504 x86-64.
1505
1506 This attribute by itself does not imply restrictions on
1507 inter-procedural optimizations. All of the semantic effects the
1508 patching may have to be separately conveyed via the linkage type.
whitequarked54b4a2017-06-21 18:46:50 +00001509``"probe-stack"``
1510 This attribute indicates that the function will trigger a guard region
1511 in the end of the stack. It ensures that accesses to the stack must be
1512 no further apart than the size of the guard region to a previous
1513 access of the stack. It takes one required string value, the name of
1514 the stack probing function that will be called.
1515
1516 If a function that has a ``"probe-stack"`` attribute is inlined into
1517 a function with another ``"probe-stack"`` attribute, the resulting
1518 function has the ``"probe-stack"`` attribute of the caller. If a
1519 function that has a ``"probe-stack"`` attribute is inlined into a
1520 function that has no ``"probe-stack"`` attribute at all, the resulting
1521 function has the ``"probe-stack"`` attribute of the callee.
Sean Silvab084af42012-12-07 10:36:55 +00001522``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001523 On a function, this attribute indicates that the function computes its
1524 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001525 without dereferencing any pointer arguments or otherwise accessing
1526 any mutable state (e.g. memory, control registers, etc) visible to
1527 caller functions. It does not write through any pointer arguments
1528 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das5be2e842017-02-13 23:19:07 +00001529 to callers. This means while it cannot unwind exceptions by calling
1530 the ``C++`` exception throwing methods (since they write to memory), there may
1531 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1532 visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001533
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001534 On an argument, this attribute indicates that the function does not
1535 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001536 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001537``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001538 On a function, this attribute indicates that the function does not write
1539 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001540 modify any state (e.g. memory, control registers, etc) visible to
1541 caller functions. It may dereference pointer arguments and read
1542 state that may be set in the caller. A readonly function always
1543 returns the same value (or unwinds an exception identically) when
Sanjoy Das5be2e842017-02-13 23:19:07 +00001544 called with the same set of arguments and global state. This means while it
1545 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1546 (since they write to memory), there may be non-``C++`` mechanisms that throw
1547 exceptions without writing to LLVM visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001548
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001549 On an argument, this attribute indicates that the function does not write
1550 through this pointer argument, even though it may write to the memory that
1551 the pointer points to.
whitequark08b20352017-06-22 23:22:36 +00001552``"stack-probe-size"``
1553 This attribute controls the behavior of stack probes: either
1554 the ``"probe-stack"`` attribute, or ABI-required stack probes, if any.
1555 It defines the size of the guard region. It ensures that if the function
1556 may use more stack space than the size of the guard region, stack probing
1557 sequence will be emitted. It takes one required integer value, which
1558 is 4096 by default.
1559
1560 If a function that has a ``"stack-probe-size"`` attribute is inlined into
1561 a function with another ``"stack-probe-size"`` attribute, the resulting
1562 function has the ``"stack-probe-size"`` attribute that has the lower
1563 numeric value. If a function that has a ``"stack-probe-size"`` attribute is
1564 inlined into a function that has no ``"stack-probe-size"`` attribute
1565 at all, the resulting function has the ``"stack-probe-size"`` attribute
1566 of the callee.
Hans Wennborg89c35fc2018-02-23 13:46:25 +00001567``"no-stack-arg-probe"``
1568 This attribute disables ABI-required stack probes, if any.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001569``writeonly``
1570 On a function, this attribute indicates that the function may write to but
1571 does not read from memory.
1572
1573 On an argument, this attribute indicates that the function may write to but
1574 does not read through this pointer argument (even though it may read from
1575 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001576``argmemonly``
1577 This attribute indicates that the only memory accesses inside function are
1578 loads and stores from objects pointed to by its pointer-typed arguments,
1579 with arbitrary offsets. Or in other words, all memory operations in the
1580 function can refer to memory only using pointers based on its function
1581 arguments.
1582 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1583 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001584``returns_twice``
1585 This attribute indicates that this function can return twice. The C
1586 ``setjmp`` is an example of such a function. The compiler disables
1587 some optimizations (like tail calls) in the caller of these
1588 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001589``safestack``
1590 This attribute indicates that
1591 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1592 protection is enabled for this function.
1593
1594 If a function that has a ``safestack`` attribute is inlined into a
1595 function that doesn't have a ``safestack`` attribute or which has an
1596 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1597 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001598``sanitize_address``
1599 This attribute indicates that AddressSanitizer checks
1600 (dynamic address safety analysis) are enabled for this function.
1601``sanitize_memory``
1602 This attribute indicates that MemorySanitizer checks (dynamic detection
1603 of accesses to uninitialized memory) are enabled for this function.
1604``sanitize_thread``
1605 This attribute indicates that ThreadSanitizer checks
1606 (dynamic thread safety analysis) are enabled for this function.
Evgeniy Stepanovc667c1f2017-12-09 00:21:41 +00001607``sanitize_hwaddress``
1608 This attribute indicates that HWAddressSanitizer checks
1609 (dynamic address safety analysis based on tagged pointers) are enabled for
1610 this function.
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001611``speculatable``
1612 This function attribute indicates that the function does not have any
1613 effects besides calculating its result and does not have undefined behavior.
1614 Note that ``speculatable`` is not enough to conclude that along any
Xin Tongc7180202017-05-02 23:24:12 +00001615 particular execution path the number of calls to this function will not be
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001616 externally observable. This attribute is only valid on functions
1617 and declarations, not on individual call sites. If a function is
1618 incorrectly marked as speculatable and really does exhibit
1619 undefined behavior, the undefined behavior may be observed even
1620 if the call site is dead code.
1621
Sean Silvab084af42012-12-07 10:36:55 +00001622``ssp``
1623 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001624 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001625 placed on the stack before the local variables that's checked upon
1626 return from the function to see if it has been overwritten. A
1627 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001628 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001629
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001630 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1631 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1632 - Calls to alloca() with variable sizes or constant sizes greater than
1633 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001634
Josh Magee24c7f062014-02-01 01:36:16 +00001635 Variables that are identified as requiring a protector will be arranged
1636 on the stack such that they are adjacent to the stack protector guard.
1637
Sean Silvab084af42012-12-07 10:36:55 +00001638 If a function that has an ``ssp`` attribute is inlined into a
1639 function that doesn't have an ``ssp`` attribute, then the resulting
1640 function will have an ``ssp`` attribute.
1641``sspreq``
1642 This attribute indicates that the function should *always* emit a
1643 stack smashing protector. This overrides the ``ssp`` function
1644 attribute.
1645
Josh Magee24c7f062014-02-01 01:36:16 +00001646 Variables that are identified as requiring a protector will be arranged
1647 on the stack such that they are adjacent to the stack protector guard.
1648 The specific layout rules are:
1649
1650 #. Large arrays and structures containing large arrays
1651 (``>= ssp-buffer-size``) are closest to the stack protector.
1652 #. Small arrays and structures containing small arrays
1653 (``< ssp-buffer-size``) are 2nd closest to the protector.
1654 #. Variables that have had their address taken are 3rd closest to the
1655 protector.
1656
Sean Silvab084af42012-12-07 10:36:55 +00001657 If a function that has an ``sspreq`` attribute is inlined into a
1658 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001659 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1660 an ``sspreq`` attribute.
1661``sspstrong``
1662 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001663 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001664 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001665 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001666
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001667 - Arrays of any size and type
1668 - Aggregates containing an array of any size and type.
1669 - Calls to alloca().
1670 - Local variables that have had their address taken.
1671
Josh Magee24c7f062014-02-01 01:36:16 +00001672 Variables that are identified as requiring a protector will be arranged
1673 on the stack such that they are adjacent to the stack protector guard.
1674 The specific layout rules are:
1675
1676 #. Large arrays and structures containing large arrays
1677 (``>= ssp-buffer-size``) are closest to the stack protector.
1678 #. Small arrays and structures containing small arrays
1679 (``< ssp-buffer-size``) are 2nd closest to the protector.
1680 #. Variables that have had their address taken are 3rd closest to the
1681 protector.
1682
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001683 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001684
1685 If a function that has an ``sspstrong`` attribute is inlined into a
1686 function that doesn't have an ``sspstrong`` attribute, then the
1687 resulting function will have an ``sspstrong`` attribute.
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001688``strictfp``
1689 This attribute indicates that the function was called from a scope that
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001690 requires strict floating-point semantics. LLVM will not attempt any
1691 optimizations that require assumptions about the floating-point rounding
1692 mode or that might alter the state of floating-point status flags that
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001693 might otherwise be set or cleared by calling this function.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001694``"thunk"``
1695 This attribute indicates that the function will delegate to some other
1696 function with a tail call. The prototype of a thunk should not be used for
1697 optimization purposes. The caller is expected to cast the thunk prototype to
1698 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001699``uwtable``
1700 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001701 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001702 show that no exceptions passes by it. This is normally the case for
1703 the ELF x86-64 abi, but it can be disabled for some compilation
1704 units.
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001705``nocf_check``
1706 This attribute indicates that no control-flow check will be perfomed on
1707 the attributed entity. It disables -fcf-protection=<> for a specific
1708 entity to fine grain the HW control flow protection mechanism. The flag
1709 is target independant and currently appertains to a function or function
1710 pointer.
Sean Silvab084af42012-12-07 10:36:55 +00001711
Javed Absarf3d79042017-05-11 12:28:08 +00001712.. _glattrs:
1713
1714Global Attributes
1715-----------------
1716
1717Attributes may be set to communicate additional information about a global variable.
1718Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
1719are grouped into a single :ref:`attribute group <attrgrp>`.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001720
1721.. _opbundles:
1722
1723Operand Bundles
1724---------------
1725
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001726Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001727with certain LLVM instructions (currently only ``call`` s and
1728``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001729incorrect and will change program semantics.
1730
1731Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001732
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001733 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001734 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1735 bundle operand ::= SSA value
1736 tag ::= string constant
1737
1738Operand bundles are **not** part of a function's signature, and a
1739given function may be called from multiple places with different kinds
1740of operand bundles. This reflects the fact that the operand bundles
1741are conceptually a part of the ``call`` (or ``invoke``), not the
1742callee being dispatched to.
1743
1744Operand bundles are a generic mechanism intended to support
1745runtime-introspection-like functionality for managed languages. While
1746the exact semantics of an operand bundle depend on the bundle tag,
1747there are certain limitations to how much the presence of an operand
1748bundle can influence the semantics of a program. These restrictions
1749are described as the semantics of an "unknown" operand bundle. As
1750long as the behavior of an operand bundle is describable within these
1751restrictions, LLVM does not need to have special knowledge of the
1752operand bundle to not miscompile programs containing it.
1753
David Majnemer34cacb42015-10-22 01:46:38 +00001754- The bundle operands for an unknown operand bundle escape in unknown
1755 ways before control is transferred to the callee or invokee.
1756- Calls and invokes with operand bundles have unknown read / write
1757 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001758 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001759 callsite specific attributes.
1760- An operand bundle at a call site cannot change the implementation
1761 of the called function. Inter-procedural optimizations work as
1762 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001763
Sanjoy Dascdafd842015-11-11 21:38:02 +00001764More specific types of operand bundles are described below.
1765
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001766.. _deopt_opbundles:
1767
Sanjoy Dascdafd842015-11-11 21:38:02 +00001768Deoptimization Operand Bundles
1769^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1770
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001771Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001772operand bundle tag. These operand bundles represent an alternate
1773"safe" continuation for the call site they're attached to, and can be
1774used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001775specified call site. There can be at most one ``"deopt"`` operand
1776bundle attached to a call site. Exact details of deoptimization is
1777out of scope for the language reference, but it usually involves
1778rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001779
1780From the compiler's perspective, deoptimization operand bundles make
1781the call sites they're attached to at least ``readonly``. They read
1782through all of their pointer typed operands (even if they're not
1783otherwise escaped) and the entire visible heap. Deoptimization
1784operand bundles do not capture their operands except during
1785deoptimization, in which case control will not be returned to the
1786compiled frame.
1787
Sanjoy Das2d161452015-11-18 06:23:38 +00001788The inliner knows how to inline through calls that have deoptimization
1789operand bundles. Just like inlining through a normal call site
1790involves composing the normal and exceptional continuations, inlining
1791through a call site with a deoptimization operand bundle needs to
1792appropriately compose the "safe" deoptimization continuation. The
1793inliner does this by prepending the parent's deoptimization
1794continuation to every deoptimization continuation in the inlined body.
1795E.g. inlining ``@f`` into ``@g`` in the following example
1796
1797.. code-block:: llvm
1798
1799 define void @f() {
1800 call void @x() ;; no deopt state
1801 call void @y() [ "deopt"(i32 10) ]
1802 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1803 ret void
1804 }
1805
1806 define void @g() {
1807 call void @f() [ "deopt"(i32 20) ]
1808 ret void
1809 }
1810
1811will result in
1812
1813.. code-block:: llvm
1814
1815 define void @g() {
1816 call void @x() ;; still no deopt state
1817 call void @y() [ "deopt"(i32 20, i32 10) ]
1818 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1819 ret void
1820 }
1821
1822It is the frontend's responsibility to structure or encode the
1823deoptimization state in a way that syntactically prepending the
1824caller's deoptimization state to the callee's deoptimization state is
1825semantically equivalent to composing the caller's deoptimization
1826continuation after the callee's deoptimization continuation.
1827
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001828.. _ob_funclet:
1829
David Majnemer3bb88c02015-12-15 21:27:27 +00001830Funclet Operand Bundles
1831^^^^^^^^^^^^^^^^^^^^^^^
1832
1833Funclet operand bundles are characterized by the ``"funclet"``
1834operand bundle tag. These operand bundles indicate that a call site
1835is within a particular funclet. There can be at most one
1836``"funclet"`` operand bundle attached to a call site and it must have
1837exactly one bundle operand.
1838
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001839If any funclet EH pads have been "entered" but not "exited" (per the
1840`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1841it is undefined behavior to execute a ``call`` or ``invoke`` which:
1842
1843* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1844 intrinsic, or
1845* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1846 not-yet-exited funclet EH pad.
1847
1848Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1849executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1850
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001851GC Transition Operand Bundles
1852^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1853
1854GC transition operand bundles are characterized by the
1855``"gc-transition"`` operand bundle tag. These operand bundles mark a
1856call as a transition between a function with one GC strategy to a
1857function with a different GC strategy. If coordinating the transition
1858between GC strategies requires additional code generation at the call
1859site, these bundles may contain any values that are needed by the
1860generated code. For more details, see :ref:`GC Transitions
1861<gc_transition_args>`.
1862
Sean Silvab084af42012-12-07 10:36:55 +00001863.. _moduleasm:
1864
1865Module-Level Inline Assembly
1866----------------------------
1867
1868Modules may contain "module-level inline asm" blocks, which corresponds
1869to the GCC "file scope inline asm" blocks. These blocks are internally
1870concatenated by LLVM and treated as a single unit, but may be separated
1871in the ``.ll`` file if desired. The syntax is very simple:
1872
1873.. code-block:: llvm
1874
1875 module asm "inline asm code goes here"
1876 module asm "more can go here"
1877
1878The strings can contain any character by escaping non-printable
1879characters. The escape sequence used is simply "\\xx" where "xx" is the
1880two digit hex code for the number.
1881
James Y Knightbc832ed2015-07-08 18:08:36 +00001882Note that the assembly string *must* be parseable by LLVM's integrated assembler
1883(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001884
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001885.. _langref_datalayout:
1886
Sean Silvab084af42012-12-07 10:36:55 +00001887Data Layout
1888-----------
1889
1890A module may specify a target specific data layout string that specifies
1891how data is to be laid out in memory. The syntax for the data layout is
1892simply:
1893
1894.. code-block:: llvm
1895
1896 target datalayout = "layout specification"
1897
1898The *layout specification* consists of a list of specifications
1899separated by the minus sign character ('-'). Each specification starts
1900with a letter and may include other information after the letter to
1901define some aspect of the data layout. The specifications accepted are
1902as follows:
1903
1904``E``
1905 Specifies that the target lays out data in big-endian form. That is,
1906 the bits with the most significance have the lowest address
1907 location.
1908``e``
1909 Specifies that the target lays out data in little-endian form. That
1910 is, the bits with the least significance have the lowest address
1911 location.
1912``S<size>``
1913 Specifies the natural alignment of the stack in bits. Alignment
1914 promotion of stack variables is limited to the natural stack
1915 alignment to avoid dynamic stack realignment. The stack alignment
1916 must be a multiple of 8-bits. If omitted, the natural stack
1917 alignment defaults to "unspecified", which does not prevent any
1918 alignment promotions.
Dylan McKayced2fe62018-02-19 09:56:22 +00001919``P<address space>``
1920 Specifies the address space that corresponds to program memory.
1921 Harvard architectures can use this to specify what space LLVM
1922 should place things such as functions into. If omitted, the
1923 program memory space defaults to the default address space of 0,
1924 which corresponds to a Von Neumann architecture that has code
1925 and data in the same space.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001926``A<address space>``
Dylan McKayced2fe62018-02-19 09:56:22 +00001927 Specifies the address space of objects created by '``alloca``'.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001928 Defaults to the default address space of 0.
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001929``p[n]:<size>:<abi>:<pref>:<idx>``
Sean Silvab084af42012-12-07 10:36:55 +00001930 This specifies the *size* of a pointer and its ``<abi>`` and
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001931 ``<pref>``\erred alignments for address space ``n``. The fourth parameter
1932 ``<idx>`` is a size of index that used for address calculation. If not
1933 specified, the default index size is equal to the pointer size. All sizes
1934 are in bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001935 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001936 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001937``i<size>:<abi>:<pref>``
1938 This specifies the alignment for an integer type of a given bit
1939 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1940``v<size>:<abi>:<pref>``
1941 This specifies the alignment for a vector type of a given bit
1942 ``<size>``.
1943``f<size>:<abi>:<pref>``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001944 This specifies the alignment for a floating-point type of a given bit
Sean Silvab084af42012-12-07 10:36:55 +00001945 ``<size>``. Only values of ``<size>`` that are supported by the target
1946 will work. 32 (float) and 64 (double) are supported on all targets; 80
1947 or 128 (different flavors of long double) are also supported on some
1948 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001949``a:<abi>:<pref>``
1950 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001951``m:<mangling>``
Reid Klecknerf8b51c52018-03-16 20:13:32 +00001952 If present, specifies that llvm names are mangled in the output. Symbols
1953 prefixed with the mangling escape character ``\01`` are passed through
1954 directly to the assembler without the escape character. The mangling style
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001955 options are
1956
1957 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1958 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1959 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1960 symbols get a ``_`` prefix.
Reid Klecknerf8b51c52018-03-16 20:13:32 +00001961 * ``x``: Windows x86 COFF mangling: Private symbols get the usual prefix.
1962 Regular C symbols get a ``_`` prefix. Functions with ``__stdcall``,
1963 ``__fastcall``, and ``__vectorcall`` have custom mangling that appends
1964 ``@N`` where N is the number of bytes used to pass parameters. C++ symbols
1965 starting with ``?`` are not mangled in any way.
1966 * ``w``: Windows COFF mangling: Similar to ``x``, except that normal C
1967 symbols do not receive a ``_`` prefix.
Sean Silvab084af42012-12-07 10:36:55 +00001968``n<size1>:<size2>:<size3>...``
1969 This specifies a set of native integer widths for the target CPU in
1970 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1971 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1972 this set are considered to support most general arithmetic operations
1973 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001974``ni:<address space0>:<address space1>:<address space2>...``
1975 This specifies pointer types with the specified address spaces
1976 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1977 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001978
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001979On every specification that takes a ``<abi>:<pref>``, specifying the
1980``<pref>`` alignment is optional. If omitted, the preceding ``:``
1981should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1982
Sean Silvab084af42012-12-07 10:36:55 +00001983When constructing the data layout for a given target, LLVM starts with a
1984default set of specifications which are then (possibly) overridden by
1985the specifications in the ``datalayout`` keyword. The default
1986specifications are given in this list:
1987
1988- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001989- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1990- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1991 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001992- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001993- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1994- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1995- ``i16:16:16`` - i16 is 16-bit aligned
1996- ``i32:32:32`` - i32 is 32-bit aligned
1997- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1998 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001999- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002000- ``f32:32:32`` - float is 32-bit aligned
2001- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002002- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002003- ``v64:64:64`` - 64-bit vector is 64-bit aligned
2004- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00002005- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002006
2007When LLVM is determining the alignment for a given type, it uses the
2008following rules:
2009
2010#. If the type sought is an exact match for one of the specifications,
2011 that specification is used.
2012#. If no match is found, and the type sought is an integer type, then
2013 the smallest integer type that is larger than the bitwidth of the
2014 sought type is used. If none of the specifications are larger than
2015 the bitwidth then the largest integer type is used. For example,
2016 given the default specifications above, the i7 type will use the
2017 alignment of i8 (next largest) while both i65 and i256 will use the
2018 alignment of i64 (largest specified).
2019#. If no match is found, and the type sought is a vector type, then the
2020 largest vector type that is smaller than the sought vector type will
2021 be used as a fall back. This happens because <128 x double> can be
2022 implemented in terms of 64 <2 x double>, for example.
2023
2024The function of the data layout string may not be what you expect.
2025Notably, this is not a specification from the frontend of what alignment
2026the code generator should use.
2027
2028Instead, if specified, the target data layout is required to match what
2029the ultimate *code generator* expects. This string is used by the
2030mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00002031what the ultimate code generator uses. There is no way to generate IR
2032that does not embed this target-specific detail into the IR. If you
2033don't specify the string, the default specifications will be used to
2034generate a Data Layout and the optimization phases will operate
2035accordingly and introduce target specificity into the IR with respect to
2036these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00002037
Bill Wendling5cc90842013-10-18 23:41:25 +00002038.. _langref_triple:
2039
2040Target Triple
2041-------------
2042
2043A module may specify a target triple string that describes the target
2044host. The syntax for the target triple is simply:
2045
2046.. code-block:: llvm
2047
2048 target triple = "x86_64-apple-macosx10.7.0"
2049
2050The *target triple* string consists of a series of identifiers delimited
2051by the minus sign character ('-'). The canonical forms are:
2052
2053::
2054
2055 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
2056 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
2057
2058This information is passed along to the backend so that it generates
2059code for the proper architecture. It's possible to override this on the
2060command line with the ``-mtriple`` command line option.
2061
Sean Silvab084af42012-12-07 10:36:55 +00002062.. _pointeraliasing:
2063
2064Pointer Aliasing Rules
2065----------------------
2066
2067Any memory access must be done through a pointer value associated with
2068an address range of the memory access, otherwise the behavior is
2069undefined. Pointer values are associated with address ranges according
2070to the following rules:
2071
2072- A pointer value is associated with the addresses associated with any
2073 value it is *based* on.
2074- An address of a global variable is associated with the address range
2075 of the variable's storage.
2076- The result value of an allocation instruction is associated with the
2077 address range of the allocated storage.
2078- A null pointer in the default address-space is associated with no
2079 address.
2080- An integer constant other than zero or a pointer value returned from
2081 a function not defined within LLVM may be associated with address
2082 ranges allocated through mechanisms other than those provided by
2083 LLVM. Such ranges shall not overlap with any ranges of addresses
2084 allocated by mechanisms provided by LLVM.
2085
2086A pointer value is *based* on another pointer value according to the
2087following rules:
2088
Sanjoy Das6d489492017-09-13 18:49:22 +00002089- A pointer value formed from a scalar ``getelementptr`` operation is *based* on
2090 the pointer-typed operand of the ``getelementptr``.
2091- The pointer in lane *l* of the result of a vector ``getelementptr`` operation
2092 is *based* on the pointer in lane *l* of the vector-of-pointers-typed operand
2093 of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00002094- The result value of a ``bitcast`` is *based* on the operand of the
2095 ``bitcast``.
2096- A pointer value formed by an ``inttoptr`` is *based* on all pointer
2097 values that contribute (directly or indirectly) to the computation of
2098 the pointer's value.
2099- The "*based* on" relationship is transitive.
2100
2101Note that this definition of *"based"* is intentionally similar to the
2102definition of *"based"* in C99, though it is slightly weaker.
2103
2104LLVM IR does not associate types with memory. The result type of a
2105``load`` merely indicates the size and alignment of the memory from
2106which to load, as well as the interpretation of the value. The first
2107operand type of a ``store`` similarly only indicates the size and
2108alignment of the store.
2109
2110Consequently, type-based alias analysis, aka TBAA, aka
2111``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2112:ref:`Metadata <metadata>` may be used to encode additional information
2113which specialized optimization passes may use to implement type-based
2114alias analysis.
2115
2116.. _volatile:
2117
2118Volatile Memory Accesses
2119------------------------
2120
2121Certain memory accesses, such as :ref:`load <i_load>`'s,
2122:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2123marked ``volatile``. The optimizers must not change the number of
2124volatile operations or change their order of execution relative to other
2125volatile operations. The optimizers *may* change the order of volatile
2126operations relative to non-volatile operations. This is not Java's
2127"volatile" and has no cross-thread synchronization behavior.
2128
Andrew Trick89fc5a62013-01-30 21:19:35 +00002129IR-level volatile loads and stores cannot safely be optimized into
2130llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2131flagged volatile. Likewise, the backend should never split or merge
2132target-legal volatile load/store instructions.
2133
Andrew Trick7e6f9282013-01-31 00:49:39 +00002134.. admonition:: Rationale
2135
2136 Platforms may rely on volatile loads and stores of natively supported
2137 data width to be executed as single instruction. For example, in C
2138 this holds for an l-value of volatile primitive type with native
2139 hardware support, but not necessarily for aggregate types. The
2140 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002141 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002142 do not violate the frontend's contract with the language.
2143
Sean Silvab084af42012-12-07 10:36:55 +00002144.. _memmodel:
2145
2146Memory Model for Concurrent Operations
2147--------------------------------------
2148
2149The LLVM IR does not define any way to start parallel threads of
2150execution or to register signal handlers. Nonetheless, there are
2151platform-specific ways to create them, and we define LLVM IR's behavior
2152in their presence. This model is inspired by the C++0x memory model.
2153
2154For a more informal introduction to this model, see the :doc:`Atomics`.
2155
2156We define a *happens-before* partial order as the least partial order
2157that
2158
2159- Is a superset of single-thread program order, and
2160- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2161 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2162 techniques, like pthread locks, thread creation, thread joining,
2163 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2164 Constraints <ordering>`).
2165
2166Note that program order does not introduce *happens-before* edges
2167between a thread and signals executing inside that thread.
2168
2169Every (defined) read operation (load instructions, memcpy, atomic
2170loads/read-modify-writes, etc.) R reads a series of bytes written by
2171(defined) write operations (store instructions, atomic
2172stores/read-modify-writes, memcpy, etc.). For the purposes of this
2173section, initialized globals are considered to have a write of the
2174initializer which is atomic and happens before any other read or write
2175of the memory in question. For each byte of a read R, R\ :sub:`byte`
2176may see any write to the same byte, except:
2177
2178- If write\ :sub:`1` happens before write\ :sub:`2`, and
2179 write\ :sub:`2` happens before R\ :sub:`byte`, then
2180 R\ :sub:`byte` does not see write\ :sub:`1`.
2181- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2182 R\ :sub:`byte` does not see write\ :sub:`3`.
2183
2184Given that definition, R\ :sub:`byte` is defined as follows:
2185
2186- If R is volatile, the result is target-dependent. (Volatile is
2187 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002188 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002189 like normal memory. It does not generally provide cross-thread
2190 synchronization.)
2191- Otherwise, if there is no write to the same byte that happens before
2192 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2193- Otherwise, if R\ :sub:`byte` may see exactly one write,
2194 R\ :sub:`byte` returns the value written by that write.
2195- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2196 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2197 Memory Ordering Constraints <ordering>` section for additional
2198 constraints on how the choice is made.
2199- Otherwise R\ :sub:`byte` returns ``undef``.
2200
2201R returns the value composed of the series of bytes it read. This
2202implies that some bytes within the value may be ``undef`` **without**
2203the entire value being ``undef``. Note that this only defines the
2204semantics of the operation; it doesn't mean that targets will emit more
2205than one instruction to read the series of bytes.
2206
2207Note that in cases where none of the atomic intrinsics are used, this
2208model places only one restriction on IR transformations on top of what
2209is required for single-threaded execution: introducing a store to a byte
2210which might not otherwise be stored is not allowed in general.
2211(Specifically, in the case where another thread might write to and read
2212from an address, introducing a store can change a load that may see
2213exactly one write into a load that may see multiple writes.)
2214
2215.. _ordering:
2216
2217Atomic Memory Ordering Constraints
2218----------------------------------
2219
2220Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2221:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2222:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002223ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002224the same address they *synchronize with*. These semantics are borrowed
2225from Java and C++0x, but are somewhat more colloquial. If these
2226descriptions aren't precise enough, check those specs (see spec
2227references in the :doc:`atomics guide <Atomics>`).
2228:ref:`fence <i_fence>` instructions treat these orderings somewhat
2229differently since they don't take an address. See that instruction's
2230documentation for details.
2231
2232For a simpler introduction to the ordering constraints, see the
2233:doc:`Atomics`.
2234
2235``unordered``
2236 The set of values that can be read is governed by the happens-before
2237 partial order. A value cannot be read unless some operation wrote
2238 it. This is intended to provide a guarantee strong enough to model
2239 Java's non-volatile shared variables. This ordering cannot be
2240 specified for read-modify-write operations; it is not strong enough
2241 to make them atomic in any interesting way.
2242``monotonic``
2243 In addition to the guarantees of ``unordered``, there is a single
2244 total order for modifications by ``monotonic`` operations on each
2245 address. All modification orders must be compatible with the
2246 happens-before order. There is no guarantee that the modification
2247 orders can be combined to a global total order for the whole program
2248 (and this often will not be possible). The read in an atomic
2249 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2250 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2251 order immediately before the value it writes. If one atomic read
2252 happens before another atomic read of the same address, the later
2253 read must see the same value or a later value in the address's
2254 modification order. This disallows reordering of ``monotonic`` (or
2255 stronger) operations on the same address. If an address is written
2256 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2257 read that address repeatedly, the other threads must eventually see
2258 the write. This corresponds to the C++0x/C1x
2259 ``memory_order_relaxed``.
2260``acquire``
2261 In addition to the guarantees of ``monotonic``, a
2262 *synchronizes-with* edge may be formed with a ``release`` operation.
2263 This is intended to model C++'s ``memory_order_acquire``.
2264``release``
2265 In addition to the guarantees of ``monotonic``, if this operation
2266 writes a value which is subsequently read by an ``acquire``
2267 operation, it *synchronizes-with* that operation. (This isn't a
2268 complete description; see the C++0x definition of a release
2269 sequence.) This corresponds to the C++0x/C1x
2270 ``memory_order_release``.
2271``acq_rel`` (acquire+release)
2272 Acts as both an ``acquire`` and ``release`` operation on its
2273 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2274``seq_cst`` (sequentially consistent)
2275 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002276 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002277 writes), there is a global total order on all
2278 sequentially-consistent operations on all addresses, which is
2279 consistent with the *happens-before* partial order and with the
2280 modification orders of all the affected addresses. Each
2281 sequentially-consistent read sees the last preceding write to the
2282 same address in this global order. This corresponds to the C++0x/C1x
2283 ``memory_order_seq_cst`` and Java volatile.
2284
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002285.. _syncscope:
Sean Silvab084af42012-12-07 10:36:55 +00002286
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002287If an atomic operation is marked ``syncscope("singlethread")``, it only
2288*synchronizes with* and only participates in the seq\_cst total orderings of
2289other operations running in the same thread (for example, in signal handlers).
2290
2291If an atomic operation is marked ``syncscope("<target-scope>")``, where
2292``<target-scope>`` is a target specific synchronization scope, then it is target
2293dependent if it *synchronizes with* and participates in the seq\_cst total
2294orderings of other operations.
2295
2296Otherwise, an atomic operation that is not marked ``syncscope("singlethread")``
2297or ``syncscope("<target-scope>")`` *synchronizes with* and participates in the
2298seq\_cst total orderings of other operations that are not marked
2299``syncscope("singlethread")`` or ``syncscope("<target-scope>")``.
Sean Silvab084af42012-12-07 10:36:55 +00002300
Sanjay Patel54b161e2018-03-20 16:38:22 +00002301.. _floatenv:
2302
2303Floating-Point Environment
2304--------------------------
2305
2306The default LLVM floating-point environment assumes that floating-point
2307instructions do not have side effects. Results assume the round-to-nearest
2308rounding mode. No floating-point exception state is maintained in this
2309environment. Therefore, there is no attempt to create or preserve invalid
2310operation (SNaN) or division-by-zero exceptions in these examples:
2311
2312.. code-block:: llvm
2313
2314 %A = fdiv 0x7ff0000000000001, %X ; 64-bit SNaN hex value
2315 %B = fdiv %X, 0.0
2316 Safe:
2317 %A = NaN
2318 %B = NaN
2319
2320The benefit of this exception-free assumption is that floating-point
2321operations may be speculated freely without any other fast-math relaxations
2322to the floating-point model.
2323
2324Code that requires different behavior than this should use the
Sanjay Patelec95e0e2018-03-20 17:05:19 +00002325:ref:`Constrained Floating-Point Intrinsics <constrainedfp>`.
Sanjay Patel54b161e2018-03-20 16:38:22 +00002326
Sean Silvab084af42012-12-07 10:36:55 +00002327.. _fastmath:
2328
2329Fast-Math Flags
2330---------------
2331
Sanjay Patel629c4112017-11-06 16:27:15 +00002332LLVM IR floating-point operations (:ref:`fadd <i_fadd>`,
Sean Silvab084af42012-12-07 10:36:55 +00002333:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002334:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002335may use the following flags to enable otherwise unsafe
Sanjay Patel629c4112017-11-06 16:27:15 +00002336floating-point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002337
2338``nnan``
2339 No NaNs - Allow optimizations to assume the arguments and result are not
2340 NaN. Such optimizations are required to retain defined behavior over
2341 NaNs, but the value of the result is undefined.
2342
2343``ninf``
2344 No Infs - Allow optimizations to assume the arguments and result are not
2345 +/-Inf. Such optimizations are required to retain defined behavior over
2346 +/-Inf, but the value of the result is undefined.
2347
2348``nsz``
2349 No Signed Zeros - Allow optimizations to treat the sign of a zero
2350 argument or result as insignificant.
2351
2352``arcp``
2353 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2354 argument rather than perform division.
2355
Adam Nemetcd847a82017-03-28 20:11:52 +00002356``contract``
2357 Allow floating-point contraction (e.g. fusing a multiply followed by an
2358 addition into a fused multiply-and-add).
2359
Sanjay Patel629c4112017-11-06 16:27:15 +00002360``afn``
2361 Approximate functions - Allow substitution of approximate calculations for
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002362 functions (sin, log, sqrt, etc). See floating-point intrinsic definitions
2363 for places where this can apply to LLVM's intrinsic math functions.
Sanjay Patel629c4112017-11-06 16:27:15 +00002364
2365``reassoc``
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002366 Allow reassociation transformations for floating-point instructions.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002367 This may dramatically change results in floating-point.
Sanjay Patel629c4112017-11-06 16:27:15 +00002368
Sean Silvab084af42012-12-07 10:36:55 +00002369``fast``
Sanjay Patel629c4112017-11-06 16:27:15 +00002370 This flag implies all of the others.
Sean Silvab084af42012-12-07 10:36:55 +00002371
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002372.. _uselistorder:
2373
2374Use-list Order Directives
2375-------------------------
2376
2377Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002378order to be recreated. ``<order-indexes>`` is a comma-separated list of
2379indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002380value's use-list is immediately sorted by these indexes.
2381
Sean Silvaa1190322015-08-06 22:56:48 +00002382Use-list directives may appear at function scope or global scope. They are not
2383instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002384function scope, they must appear after the terminator of the final basic block.
2385
2386If basic blocks have their address taken via ``blockaddress()`` expressions,
2387``uselistorder_bb`` can be used to reorder their use-lists from outside their
2388function's scope.
2389
2390:Syntax:
2391
2392::
2393
2394 uselistorder <ty> <value>, { <order-indexes> }
2395 uselistorder_bb @function, %block { <order-indexes> }
2396
2397:Examples:
2398
2399::
2400
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002401 define void @foo(i32 %arg1, i32 %arg2) {
2402 entry:
2403 ; ... instructions ...
2404 bb:
2405 ; ... instructions ...
2406
2407 ; At function scope.
2408 uselistorder i32 %arg1, { 1, 0, 2 }
2409 uselistorder label %bb, { 1, 0 }
2410 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002411
2412 ; At global scope.
2413 uselistorder i32* @global, { 1, 2, 0 }
2414 uselistorder i32 7, { 1, 0 }
2415 uselistorder i32 (i32) @bar, { 1, 0 }
2416 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2417
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002418.. _source_filename:
2419
2420Source Filename
2421---------------
2422
2423The *source filename* string is set to the original module identifier,
2424which will be the name of the compiled source file when compiling from
2425source through the clang front end, for example. It is then preserved through
2426the IR and bitcode.
2427
2428This is currently necessary to generate a consistent unique global
2429identifier for local functions used in profile data, which prepends the
2430source file name to the local function name.
2431
2432The syntax for the source file name is simply:
2433
Renato Golin124f2592016-07-20 12:16:38 +00002434.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002435
2436 source_filename = "/path/to/source.c"
2437
Sean Silvab084af42012-12-07 10:36:55 +00002438.. _typesystem:
2439
2440Type System
2441===========
2442
2443The LLVM type system is one of the most important features of the
2444intermediate representation. Being typed enables a number of
2445optimizations to be performed on the intermediate representation
2446directly, without having to do extra analyses on the side before the
2447transformation. A strong type system makes it easier to read the
2448generated code and enables novel analyses and transformations that are
2449not feasible to perform on normal three address code representations.
2450
Rafael Espindola08013342013-12-07 19:34:20 +00002451.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002452
Rafael Espindola08013342013-12-07 19:34:20 +00002453Void Type
2454---------
Sean Silvab084af42012-12-07 10:36:55 +00002455
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002456:Overview:
2457
Rafael Espindola08013342013-12-07 19:34:20 +00002458
2459The void type does not represent any value and has no size.
2460
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002461:Syntax:
2462
Rafael Espindola08013342013-12-07 19:34:20 +00002463
2464::
2465
2466 void
Sean Silvab084af42012-12-07 10:36:55 +00002467
2468
Rafael Espindola08013342013-12-07 19:34:20 +00002469.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002470
Rafael Espindola08013342013-12-07 19:34:20 +00002471Function Type
2472-------------
Sean Silvab084af42012-12-07 10:36:55 +00002473
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002474:Overview:
2475
Sean Silvab084af42012-12-07 10:36:55 +00002476
Rafael Espindola08013342013-12-07 19:34:20 +00002477The function type can be thought of as a function signature. It consists of a
2478return type and a list of formal parameter types. The return type of a function
2479type is a void type or first class type --- except for :ref:`label <t_label>`
2480and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002481
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002482:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002483
Rafael Espindola08013342013-12-07 19:34:20 +00002484::
Sean Silvab084af42012-12-07 10:36:55 +00002485
Rafael Espindola08013342013-12-07 19:34:20 +00002486 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002487
Rafael Espindola08013342013-12-07 19:34:20 +00002488...where '``<parameter list>``' is a comma-separated list of type
2489specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002490indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002491argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002492handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002493except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002494
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002495:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002496
Rafael Espindola08013342013-12-07 19:34:20 +00002497+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2498| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2499+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2500| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2501+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2502| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2503+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2504| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2505+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2506
2507.. _t_firstclass:
2508
2509First Class Types
2510-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002511
2512The :ref:`first class <t_firstclass>` types are perhaps the most important.
2513Values of these types are the only ones which can be produced by
2514instructions.
2515
Rafael Espindola08013342013-12-07 19:34:20 +00002516.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002517
Rafael Espindola08013342013-12-07 19:34:20 +00002518Single Value Types
2519^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002520
Rafael Espindola08013342013-12-07 19:34:20 +00002521These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002522
2523.. _t_integer:
2524
2525Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002526""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002527
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002528:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002529
2530The integer type is a very simple type that simply specifies an
2531arbitrary bit width for the integer type desired. Any bit width from 1
2532bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2533
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002534:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002535
2536::
2537
2538 iN
2539
2540The number of bits the integer will occupy is specified by the ``N``
2541value.
2542
2543Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002544*********
Sean Silvab084af42012-12-07 10:36:55 +00002545
2546+----------------+------------------------------------------------+
2547| ``i1`` | a single-bit integer. |
2548+----------------+------------------------------------------------+
2549| ``i32`` | a 32-bit integer. |
2550+----------------+------------------------------------------------+
2551| ``i1942652`` | a really big integer of over 1 million bits. |
2552+----------------+------------------------------------------------+
2553
2554.. _t_floating:
2555
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002556Floating-Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002557""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002558
2559.. list-table::
2560 :header-rows: 1
2561
2562 * - Type
2563 - Description
2564
2565 * - ``half``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002566 - 16-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002567
2568 * - ``float``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002569 - 32-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002570
2571 * - ``double``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002572 - 64-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002573
2574 * - ``fp128``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002575 - 128-bit floating-point value (112-bit mantissa)
Sean Silvab084af42012-12-07 10:36:55 +00002576
2577 * - ``x86_fp80``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002578 - 80-bit floating-point value (X87)
Sean Silvab084af42012-12-07 10:36:55 +00002579
2580 * - ``ppc_fp128``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002581 - 128-bit floating-point value (two 64-bits)
Sean Silvab084af42012-12-07 10:36:55 +00002582
Sanjay Patelbab6ce02018-03-21 15:22:09 +00002583The binary format of half, float, double, and fp128 correspond to the
2584IEEE-754-2008 specifications for binary16, binary32, binary64, and binary128
2585respectively.
2586
Reid Kleckner9a16d082014-03-05 02:41:37 +00002587X86_mmx Type
2588""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002589
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002590:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002591
Reid Kleckner9a16d082014-03-05 02:41:37 +00002592The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002593machine. The operations allowed on it are quite limited: parameters and
2594return values, load and store, and bitcast. User-specified MMX
2595instructions are represented as intrinsic or asm calls with arguments
2596and/or results of this type. There are no arrays, vectors or constants
2597of this type.
2598
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002599:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002600
2601::
2602
Reid Kleckner9a16d082014-03-05 02:41:37 +00002603 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002604
Sean Silvab084af42012-12-07 10:36:55 +00002605
Rafael Espindola08013342013-12-07 19:34:20 +00002606.. _t_pointer:
2607
2608Pointer Type
2609""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002610
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002611:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002612
Rafael Espindola08013342013-12-07 19:34:20 +00002613The pointer type is used to specify memory locations. Pointers are
2614commonly used to reference objects in memory.
2615
2616Pointer types may have an optional address space attribute defining the
2617numbered address space where the pointed-to object resides. The default
2618address space is number zero. The semantics of non-zero address spaces
2619are target-specific.
2620
2621Note that LLVM does not permit pointers to void (``void*``) nor does it
2622permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002623
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002624:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002625
2626::
2627
Rafael Espindola08013342013-12-07 19:34:20 +00002628 <type> *
2629
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002630:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002631
2632+-------------------------+--------------------------------------------------------------------------------------------------------------+
2633| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2634+-------------------------+--------------------------------------------------------------------------------------------------------------+
2635| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2636+-------------------------+--------------------------------------------------------------------------------------------------------------+
2637| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2638+-------------------------+--------------------------------------------------------------------------------------------------------------+
2639
2640.. _t_vector:
2641
2642Vector Type
2643"""""""""""
2644
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002645:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002646
2647A vector type is a simple derived type that represents a vector of
2648elements. Vector types are used when multiple primitive data are
2649operated in parallel using a single instruction (SIMD). A vector type
2650requires a size (number of elements) and an underlying primitive data
2651type. Vector types are considered :ref:`first class <t_firstclass>`.
2652
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002653:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002654
2655::
2656
2657 < <# elements> x <elementtype> >
2658
2659The number of elements is a constant integer value larger than 0;
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002660elementtype may be any integer, floating-point or pointer type. Vectors
Manuel Jacob961f7872014-07-30 12:30:06 +00002661of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002662
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002663:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002664
2665+-------------------+--------------------------------------------------+
2666| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2667+-------------------+--------------------------------------------------+
2668| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2669+-------------------+--------------------------------------------------+
2670| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2671+-------------------+--------------------------------------------------+
2672| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2673+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002674
2675.. _t_label:
2676
2677Label Type
2678^^^^^^^^^^
2679
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002680:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002681
2682The label type represents code labels.
2683
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002684:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002685
2686::
2687
2688 label
2689
David Majnemerb611e3f2015-08-14 05:09:07 +00002690.. _t_token:
2691
2692Token Type
2693^^^^^^^^^^
2694
2695:Overview:
2696
2697The token type is used when a value is associated with an instruction
2698but all uses of the value must not attempt to introspect or obscure it.
2699As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2700:ref:`select <i_select>` of type token.
2701
2702:Syntax:
2703
2704::
2705
2706 token
2707
2708
2709
Sean Silvab084af42012-12-07 10:36:55 +00002710.. _t_metadata:
2711
2712Metadata Type
2713^^^^^^^^^^^^^
2714
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002715:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002716
2717The metadata type represents embedded metadata. No derived types may be
2718created from metadata except for :ref:`function <t_function>` arguments.
2719
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002720:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002721
2722::
2723
2724 metadata
2725
Sean Silvab084af42012-12-07 10:36:55 +00002726.. _t_aggregate:
2727
2728Aggregate Types
2729^^^^^^^^^^^^^^^
2730
2731Aggregate Types are a subset of derived types that can contain multiple
2732member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2733aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2734aggregate types.
2735
2736.. _t_array:
2737
2738Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002739""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002740
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002741:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002742
2743The array type is a very simple derived type that arranges elements
2744sequentially in memory. The array type requires a size (number of
2745elements) and an underlying data type.
2746
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002747:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002748
2749::
2750
2751 [<# elements> x <elementtype>]
2752
2753The number of elements is a constant integer value; ``elementtype`` may
2754be any type with a size.
2755
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002756:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002757
2758+------------------+--------------------------------------+
2759| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2760+------------------+--------------------------------------+
2761| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2762+------------------+--------------------------------------+
2763| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2764+------------------+--------------------------------------+
2765
2766Here are some examples of multidimensional arrays:
2767
2768+-----------------------------+----------------------------------------------------------+
2769| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2770+-----------------------------+----------------------------------------------------------+
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002771| ``[12 x [10 x float]]`` | 12x10 array of single precision floating-point values. |
Sean Silvab084af42012-12-07 10:36:55 +00002772+-----------------------------+----------------------------------------------------------+
2773| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2774+-----------------------------+----------------------------------------------------------+
2775
2776There is no restriction on indexing beyond the end of the array implied
2777by a static type (though there are restrictions on indexing beyond the
2778bounds of an allocated object in some cases). This means that
2779single-dimension 'variable sized array' addressing can be implemented in
2780LLVM with a zero length array type. An implementation of 'pascal style
2781arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2782example.
2783
Sean Silvab084af42012-12-07 10:36:55 +00002784.. _t_struct:
2785
2786Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002787""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002788
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002789:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002790
2791The structure type is used to represent a collection of data members
2792together in memory. The elements of a structure may be any type that has
2793a size.
2794
2795Structures in memory are accessed using '``load``' and '``store``' by
2796getting a pointer to a field with the '``getelementptr``' instruction.
2797Structures in registers are accessed using the '``extractvalue``' and
2798'``insertvalue``' instructions.
2799
2800Structures may optionally be "packed" structures, which indicate that
2801the alignment of the struct is one byte, and that there is no padding
2802between the elements. In non-packed structs, padding between field types
2803is inserted as defined by the DataLayout string in the module, which is
2804required to match what the underlying code generator expects.
2805
2806Structures can either be "literal" or "identified". A literal structure
2807is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2808identified types are always defined at the top level with a name.
2809Literal types are uniqued by their contents and can never be recursive
2810or opaque since there is no way to write one. Identified types can be
2811recursive, can be opaqued, and are never uniqued.
2812
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002813:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002814
2815::
2816
2817 %T1 = type { <type list> } ; Identified normal struct type
2818 %T2 = type <{ <type list> }> ; Identified packed struct type
2819
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002820:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002821
2822+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2823| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2824+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002825| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002826+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2827| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2828+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2829
2830.. _t_opaque:
2831
2832Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002833""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002834
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002835:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002836
2837Opaque structure types are used to represent named structure types that
2838do not have a body specified. This corresponds (for example) to the C
2839notion of a forward declared structure.
2840
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002841:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002842
2843::
2844
2845 %X = type opaque
2846 %52 = type opaque
2847
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002848:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002849
2850+--------------+-------------------+
2851| ``opaque`` | An opaque type. |
2852+--------------+-------------------+
2853
Sean Silva1703e702014-04-08 21:06:22 +00002854.. _constants:
2855
Sean Silvab084af42012-12-07 10:36:55 +00002856Constants
2857=========
2858
2859LLVM has several different basic types of constants. This section
2860describes them all and their syntax.
2861
2862Simple Constants
2863----------------
2864
2865**Boolean constants**
2866 The two strings '``true``' and '``false``' are both valid constants
2867 of the ``i1`` type.
2868**Integer constants**
2869 Standard integers (such as '4') are constants of the
2870 :ref:`integer <t_integer>` type. Negative numbers may be used with
2871 integer types.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002872**Floating-point constants**
2873 Floating-point constants use standard decimal notation (e.g.
Sean Silvab084af42012-12-07 10:36:55 +00002874 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2875 hexadecimal notation (see below). The assembler requires the exact
2876 decimal value of a floating-point constant. For example, the
2877 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002878 decimal in binary. Floating-point constants must have a
2879 :ref:`floating-point <t_floating>` type.
Sean Silvab084af42012-12-07 10:36:55 +00002880**Null pointer constants**
2881 The identifier '``null``' is recognized as a null pointer constant
2882 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002883**Token constants**
2884 The identifier '``none``' is recognized as an empty token constant
2885 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002886
2887The one non-intuitive notation for constants is the hexadecimal form of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002888floating-point constants. For example, the form
Sean Silvab084af42012-12-07 10:36:55 +00002889'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002890than) '``double 4.5e+15``'. The only time hexadecimal floating-point
Sean Silvab084af42012-12-07 10:36:55 +00002891constants are required (and the only time that they are generated by the
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002892disassembler) is when a floating-point constant must be emitted but it
2893cannot be represented as a decimal floating-point number in a reasonable
Sean Silvab084af42012-12-07 10:36:55 +00002894number of digits. For example, NaN's, infinities, and other special
2895values are represented in their IEEE hexadecimal format so that assembly
2896and disassembly do not cause any bits to change in the constants.
2897
2898When using the hexadecimal form, constants of types half, float, and
2899double are represented using the 16-digit form shown above (which
2900matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002901must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002902precision, respectively. Hexadecimal format is always used for long
2903double, and there are three forms of long double. The 80-bit format used
2904by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2905128-bit format used by PowerPC (two adjacent doubles) is represented by
2906``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002907represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2908will only work if they match the long double format on your target.
2909The IEEE 16-bit format (half precision) is represented by ``0xH``
2910followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2911(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002912
Reid Kleckner9a16d082014-03-05 02:41:37 +00002913There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002914
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002915.. _complexconstants:
2916
Sean Silvab084af42012-12-07 10:36:55 +00002917Complex Constants
2918-----------------
2919
2920Complex constants are a (potentially recursive) combination of simple
2921constants and smaller complex constants.
2922
2923**Structure constants**
2924 Structure constants are represented with notation similar to
2925 structure type definitions (a comma separated list of elements,
2926 surrounded by braces (``{}``)). For example:
2927 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2928 "``@G = external global i32``". Structure constants must have
2929 :ref:`structure type <t_struct>`, and the number and types of elements
2930 must match those specified by the type.
2931**Array constants**
2932 Array constants are represented with notation similar to array type
2933 definitions (a comma separated list of elements, surrounded by
2934 square brackets (``[]``)). For example:
2935 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2936 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002937 match those specified by the type. As a special case, character array
2938 constants may also be represented as a double-quoted string using the ``c``
2939 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002940**Vector constants**
2941 Vector constants are represented with notation similar to vector
2942 type definitions (a comma separated list of elements, surrounded by
2943 less-than/greater-than's (``<>``)). For example:
2944 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2945 must have :ref:`vector type <t_vector>`, and the number and types of
2946 elements must match those specified by the type.
2947**Zero initialization**
2948 The string '``zeroinitializer``' can be used to zero initialize a
2949 value to zero of *any* type, including scalar and
2950 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2951 having to print large zero initializers (e.g. for large arrays) and
2952 is always exactly equivalent to using explicit zero initializers.
2953**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002954 A metadata node is a constant tuple without types. For example:
2955 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002956 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2957 Unlike other typed constants that are meant to be interpreted as part of
2958 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002959 information such as debug info.
2960
2961Global Variable and Function Addresses
2962--------------------------------------
2963
2964The addresses of :ref:`global variables <globalvars>` and
2965:ref:`functions <functionstructure>` are always implicitly valid
2966(link-time) constants. These constants are explicitly referenced when
2967the :ref:`identifier for the global <identifiers>` is used and always have
2968:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2969file:
2970
2971.. code-block:: llvm
2972
2973 @X = global i32 17
2974 @Y = global i32 42
2975 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2976
2977.. _undefvalues:
2978
2979Undefined Values
2980----------------
2981
2982The string '``undef``' can be used anywhere a constant is expected, and
2983indicates that the user of the value may receive an unspecified
2984bit-pattern. Undefined values may be of any type (other than '``label``'
2985or '``void``') and be used anywhere a constant is permitted.
2986
2987Undefined values are useful because they indicate to the compiler that
2988the program is well defined no matter what value is used. This gives the
2989compiler more freedom to optimize. Here are some examples of
2990(potentially surprising) transformations that are valid (in pseudo IR):
2991
2992.. code-block:: llvm
2993
2994 %A = add %X, undef
2995 %B = sub %X, undef
2996 %C = xor %X, undef
2997 Safe:
2998 %A = undef
2999 %B = undef
3000 %C = undef
3001
3002This is safe because all of the output bits are affected by the undef
3003bits. Any output bit can have a zero or one depending on the input bits.
3004
3005.. code-block:: llvm
3006
3007 %A = or %X, undef
3008 %B = and %X, undef
3009 Safe:
3010 %A = -1
3011 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00003012 Safe:
3013 %A = %X ;; By choosing undef as 0
3014 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00003015 Unsafe:
3016 %A = undef
3017 %B = undef
3018
3019These logical operations have bits that are not always affected by the
3020input. For example, if ``%X`` has a zero bit, then the output of the
3021'``and``' operation will always be a zero for that bit, no matter what
3022the corresponding bit from the '``undef``' is. As such, it is unsafe to
3023optimize or assume that the result of the '``and``' is '``undef``'.
3024However, it is safe to assume that all bits of the '``undef``' could be
30250, and optimize the '``and``' to 0. Likewise, it is safe to assume that
3026all the bits of the '``undef``' operand to the '``or``' could be set,
3027allowing the '``or``' to be folded to -1.
3028
3029.. code-block:: llvm
3030
3031 %A = select undef, %X, %Y
3032 %B = select undef, 42, %Y
3033 %C = select %X, %Y, undef
3034 Safe:
3035 %A = %X (or %Y)
3036 %B = 42 (or %Y)
3037 %C = %Y
3038 Unsafe:
3039 %A = undef
3040 %B = undef
3041 %C = undef
3042
3043This set of examples shows that undefined '``select``' (and conditional
3044branch) conditions can go *either way*, but they have to come from one
3045of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
3046both known to have a clear low bit, then ``%A`` would have to have a
3047cleared low bit. However, in the ``%C`` example, the optimizer is
3048allowed to assume that the '``undef``' operand could be the same as
3049``%Y``, allowing the whole '``select``' to be eliminated.
3050
Renato Golin124f2592016-07-20 12:16:38 +00003051.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003052
3053 %A = xor undef, undef
3054
3055 %B = undef
3056 %C = xor %B, %B
3057
3058 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00003059 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00003060 %F = icmp gte %D, 4
3061
3062 Safe:
3063 %A = undef
3064 %B = undef
3065 %C = undef
3066 %D = undef
3067 %E = undef
3068 %F = undef
3069
3070This example points out that two '``undef``' operands are not
3071necessarily the same. This can be surprising to people (and also matches
3072C semantics) where they assume that "``X^X``" is always zero, even if
3073``X`` is undefined. This isn't true for a number of reasons, but the
3074short answer is that an '``undef``' "variable" can arbitrarily change
3075its value over its "live range". This is true because the variable
3076doesn't actually *have a live range*. Instead, the value is logically
3077read from arbitrary registers that happen to be around when needed, so
3078the value is not necessarily consistent over time. In fact, ``%A`` and
3079``%C`` need to have the same semantics or the core LLVM "replace all
3080uses with" concept would not hold.
3081
3082.. code-block:: llvm
3083
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003084 %A = sdiv undef, %X
3085 %B = sdiv %X, undef
Sean Silvab084af42012-12-07 10:36:55 +00003086 Safe:
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003087 %A = 0
Sean Silvab084af42012-12-07 10:36:55 +00003088 b: unreachable
3089
3090These examples show the crucial difference between an *undefined value*
3091and *undefined behavior*. An undefined value (like '``undef``') is
3092allowed to have an arbitrary bit-pattern. This means that the ``%A``
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003093operation can be constant folded to '``0``', because the '``undef``'
3094could be zero, and zero divided by any value is zero.
Sean Silvab084af42012-12-07 10:36:55 +00003095However, in the second example, we can make a more aggressive
3096assumption: because the ``undef`` is allowed to be an arbitrary value,
3097we are allowed to assume that it could be zero. Since a divide by zero
3098has *undefined behavior*, we are allowed to assume that the operation
3099does not execute at all. This allows us to delete the divide and all
3100code after it. Because the undefined operation "can't happen", the
3101optimizer can assume that it occurs in dead code.
3102
Renato Golin124f2592016-07-20 12:16:38 +00003103.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003104
3105 a: store undef -> %X
3106 b: store %X -> undef
3107 Safe:
3108 a: <deleted>
3109 b: unreachable
3110
Sanjay Patel7b722402018-03-07 17:18:22 +00003111A store *of* an undefined value can be assumed to not have any effect;
3112we can assume that the value is overwritten with bits that happen to
3113match what was already there. However, a store *to* an undefined
3114location could clobber arbitrary memory, therefore, it has undefined
3115behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003116
3117.. _poisonvalues:
3118
3119Poison Values
3120-------------
3121
3122Poison values are similar to :ref:`undef values <undefvalues>`, however
3123they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00003124that cannot evoke side effects has nevertheless detected a condition
3125that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003126
3127There is currently no way of representing a poison value in the IR; they
3128only exist when produced by operations such as :ref:`add <i_add>` with
3129the ``nsw`` flag.
3130
3131Poison value behavior is defined in terms of value *dependence*:
3132
3133- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
3134- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
3135 their dynamic predecessor basic block.
3136- Function arguments depend on the corresponding actual argument values
3137 in the dynamic callers of their functions.
3138- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
3139 instructions that dynamically transfer control back to them.
3140- :ref:`Invoke <i_invoke>` instructions depend on the
3141 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
3142 call instructions that dynamically transfer control back to them.
3143- Non-volatile loads and stores depend on the most recent stores to all
3144 of the referenced memory addresses, following the order in the IR
3145 (including loads and stores implied by intrinsics such as
3146 :ref:`@llvm.memcpy <int_memcpy>`.)
3147- An instruction with externally visible side effects depends on the
3148 most recent preceding instruction with externally visible side
3149 effects, following the order in the IR. (This includes :ref:`volatile
3150 operations <volatile>`.)
3151- An instruction *control-depends* on a :ref:`terminator
3152 instruction <terminators>` if the terminator instruction has
3153 multiple successors and the instruction is always executed when
3154 control transfers to one of the successors, and may not be executed
3155 when control is transferred to another.
3156- Additionally, an instruction also *control-depends* on a terminator
3157 instruction if the set of instructions it otherwise depends on would
3158 be different if the terminator had transferred control to a different
3159 successor.
3160- Dependence is transitive.
3161
Richard Smith32dbdf62014-07-31 04:25:36 +00003162Poison values have the same behavior as :ref:`undef values <undefvalues>`,
3163with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00003164on a poison value has undefined behavior.
3165
3166Here are some examples:
3167
3168.. code-block:: llvm
3169
3170 entry:
3171 %poison = sub nuw i32 0, 1 ; Results in a poison value.
3172 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00003173 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00003174 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3175
3176 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003177 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003178
3179 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3180
3181 %narrowaddr = bitcast i32* @g to i16*
3182 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003183 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3184 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003185
3186 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3187 br i1 %cmp, label %true, label %end ; Branch to either destination.
3188
3189 true:
3190 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3191 ; it has undefined behavior.
3192 br label %end
3193
3194 end:
3195 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3196 ; Both edges into this PHI are
3197 ; control-dependent on %cmp, so this
3198 ; always results in a poison value.
3199
3200 store volatile i32 0, i32* @g ; This would depend on the store in %true
3201 ; if %cmp is true, or the store in %entry
3202 ; otherwise, so this is undefined behavior.
3203
3204 br i1 %cmp, label %second_true, label %second_end
3205 ; The same branch again, but this time the
3206 ; true block doesn't have side effects.
3207
3208 second_true:
3209 ; No side effects!
3210 ret void
3211
3212 second_end:
3213 store volatile i32 0, i32* @g ; This time, the instruction always depends
3214 ; on the store in %end. Also, it is
3215 ; control-equivalent to %end, so this is
3216 ; well-defined (ignoring earlier undefined
3217 ; behavior in this example).
3218
3219.. _blockaddress:
3220
3221Addresses of Basic Blocks
3222-------------------------
3223
3224``blockaddress(@function, %block)``
3225
3226The '``blockaddress``' constant computes the address of the specified
3227basic block in the specified function, and always has an ``i8*`` type.
3228Taking the address of the entry block is illegal.
3229
3230This value only has defined behavior when used as an operand to the
3231':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3232against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003233undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003234no label is equal to the null pointer. This may be passed around as an
3235opaque pointer sized value as long as the bits are not inspected. This
3236allows ``ptrtoint`` and arithmetic to be performed on these values so
3237long as the original value is reconstituted before the ``indirectbr``
3238instruction.
3239
3240Finally, some targets may provide defined semantics when using the value
3241as the operand to an inline assembly, but that is target specific.
3242
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003243.. _constantexprs:
3244
Sean Silvab084af42012-12-07 10:36:55 +00003245Constant Expressions
3246--------------------
3247
3248Constant expressions are used to allow expressions involving other
3249constants to be used as constants. Constant expressions may be of any
3250:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3251that does not have side effects (e.g. load and call are not supported).
3252The following is the syntax for constant expressions:
3253
3254``trunc (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003255 Perform the :ref:`trunc operation <i_trunc>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003256``zext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003257 Perform the :ref:`zext operation <i_zext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003258``sext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003259 Perform the :ref:`sext operation <i_sext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003260``fptrunc (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003261 Truncate a floating-point constant to another floating-point type.
Sean Silvab084af42012-12-07 10:36:55 +00003262 The size of CST must be larger than the size of TYPE. Both types
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003263 must be floating-point.
Sean Silvab084af42012-12-07 10:36:55 +00003264``fpext (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003265 Floating-point extend a constant to another type. The size of CST
Sean Silvab084af42012-12-07 10:36:55 +00003266 must be smaller or equal to the size of TYPE. Both types must be
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003267 floating-point.
Sean Silvab084af42012-12-07 10:36:55 +00003268``fptoui (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003269 Convert a floating-point constant to the corresponding unsigned
Sean Silvab084af42012-12-07 10:36:55 +00003270 integer constant. TYPE must be a scalar or vector integer type. CST
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003271 must be of scalar or vector floating-point type. Both CST and TYPE
Sean Silvab084af42012-12-07 10:36:55 +00003272 must be scalars, or vectors of the same number of elements. If the
3273 value won't fit in the integer type, the results are undefined.
3274``fptosi (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003275 Convert a floating-point constant to the corresponding signed
Sean Silvab084af42012-12-07 10:36:55 +00003276 integer constant. TYPE must be a scalar or vector integer type. CST
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003277 must be of scalar or vector floating-point type. Both CST and TYPE
Sean Silvab084af42012-12-07 10:36:55 +00003278 must be scalars, or vectors of the same number of elements. If the
3279 value won't fit in the integer type, the results are undefined.
3280``uitofp (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003281 Convert an unsigned integer constant to the corresponding
3282 floating-point constant. TYPE must be a scalar or vector floating-point
3283 type. CST must be of scalar or vector integer type. Both CST and TYPE must
Sean Silvab084af42012-12-07 10:36:55 +00003284 be scalars, or vectors of the same number of elements. If the value
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003285 won't fit in the floating-point type, the results are undefined.
Sean Silvab084af42012-12-07 10:36:55 +00003286``sitofp (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003287 Convert a signed integer constant to the corresponding floating-point
3288 constant. TYPE must be a scalar or vector floating-point type.
Sean Silvab084af42012-12-07 10:36:55 +00003289 CST must be of scalar or vector integer type. Both CST and TYPE must
3290 be scalars, or vectors of the same number of elements. If the value
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003291 won't fit in the floating-point type, the results are undefined.
Sean Silvab084af42012-12-07 10:36:55 +00003292``ptrtoint (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003293 Perform the :ref:`ptrtoint operation <i_ptrtoint>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003294``inttoptr (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003295 Perform the :ref:`inttoptr operation <i_inttoptr>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003296 This one is *really* dangerous!
3297``bitcast (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003298 Convert a constant, CST, to another TYPE.
3299 The constraints of the operands are the same as those for the
3300 :ref:`bitcast instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003301``addrspacecast (CST to TYPE)``
3302 Convert a constant pointer or constant vector of pointer, CST, to another
3303 TYPE in a different address space. The constraints of the operands are the
3304 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003305``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003306 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3307 constants. As with the :ref:`getelementptr <i_getelementptr>`
David Blaikief91b0302017-06-19 05:34:21 +00003308 instruction, the index list may have one or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003309 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003310``select (COND, VAL1, VAL2)``
3311 Perform the :ref:`select operation <i_select>` on constants.
3312``icmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003313 Perform the :ref:`icmp operation <i_icmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003314``fcmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003315 Perform the :ref:`fcmp operation <i_fcmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003316``extractelement (VAL, IDX)``
3317 Perform the :ref:`extractelement operation <i_extractelement>` on
3318 constants.
3319``insertelement (VAL, ELT, IDX)``
3320 Perform the :ref:`insertelement operation <i_insertelement>` on
3321 constants.
3322``shufflevector (VEC1, VEC2, IDXMASK)``
3323 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3324 constants.
3325``extractvalue (VAL, IDX0, IDX1, ...)``
3326 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3327 constants. The index list is interpreted in a similar manner as
3328 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3329 least one index value must be specified.
3330``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3331 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3332 The index list is interpreted in a similar manner as indices in a
3333 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3334 value must be specified.
3335``OPCODE (LHS, RHS)``
3336 Perform the specified operation of the LHS and RHS constants. OPCODE
3337 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3338 binary <bitwiseops>` operations. The constraints on operands are
3339 the same as those for the corresponding instruction (e.g. no bitwise
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003340 operations on floating-point values are allowed).
Sean Silvab084af42012-12-07 10:36:55 +00003341
3342Other Values
3343============
3344
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003345.. _inlineasmexprs:
3346
Sean Silvab084af42012-12-07 10:36:55 +00003347Inline Assembler Expressions
3348----------------------------
3349
3350LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003351Inline Assembly <moduleasm>`) through the use of a special value. This value
3352represents the inline assembler as a template string (containing the
3353instructions to emit), a list of operand constraints (stored as a string), a
3354flag that indicates whether or not the inline asm expression has side effects,
3355and a flag indicating whether the function containing the asm needs to align its
3356stack conservatively.
3357
3358The template string supports argument substitution of the operands using "``$``"
3359followed by a number, to indicate substitution of the given register/memory
3360location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3361be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3362operand (See :ref:`inline-asm-modifiers`).
3363
3364A literal "``$``" may be included by using "``$$``" in the template. To include
3365other special characters into the output, the usual "``\XX``" escapes may be
3366used, just as in other strings. Note that after template substitution, the
3367resulting assembly string is parsed by LLVM's integrated assembler unless it is
3368disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3369syntax known to LLVM.
3370
Reid Kleckner71cb1642017-02-06 18:08:45 +00003371LLVM also supports a few more substitions useful for writing inline assembly:
3372
3373- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3374 This substitution is useful when declaring a local label. Many standard
3375 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3376 Adding a blob-unique identifier ensures that the two labels will not conflict
3377 during assembly. This is used to implement `GCC's %= special format
3378 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3379- ``${:comment}``: Expands to the comment character of the current target's
3380 assembly dialect. This is usually ``#``, but many targets use other strings,
3381 such as ``;``, ``//``, or ``!``.
3382- ``${:private}``: Expands to the assembler private label prefix. Labels with
3383 this prefix will not appear in the symbol table of the assembled object.
3384 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3385 relatively popular.
3386
James Y Knightbc832ed2015-07-08 18:08:36 +00003387LLVM's support for inline asm is modeled closely on the requirements of Clang's
3388GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3389modifier codes listed here are similar or identical to those in GCC's inline asm
3390support. However, to be clear, the syntax of the template and constraint strings
3391described here is *not* the same as the syntax accepted by GCC and Clang, and,
3392while most constraint letters are passed through as-is by Clang, some get
3393translated to other codes when converting from the C source to the LLVM
3394assembly.
3395
3396An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003397
3398.. code-block:: llvm
3399
3400 i32 (i32) asm "bswap $0", "=r,r"
3401
3402Inline assembler expressions may **only** be used as the callee operand
3403of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3404Thus, typically we have:
3405
3406.. code-block:: llvm
3407
3408 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3409
3410Inline asms with side effects not visible in the constraint list must be
3411marked as having side effects. This is done through the use of the
3412'``sideeffect``' keyword, like so:
3413
3414.. code-block:: llvm
3415
3416 call void asm sideeffect "eieio", ""()
3417
3418In some cases inline asms will contain code that will not work unless
3419the stack is aligned in some way, such as calls or SSE instructions on
3420x86, yet will not contain code that does that alignment within the asm.
3421The compiler should make conservative assumptions about what the asm
3422might contain and should generate its usual stack alignment code in the
3423prologue if the '``alignstack``' keyword is present:
3424
3425.. code-block:: llvm
3426
3427 call void asm alignstack "eieio", ""()
3428
3429Inline asms also support using non-standard assembly dialects. The
3430assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3431the inline asm is using the Intel dialect. Currently, ATT and Intel are
3432the only supported dialects. An example is:
3433
3434.. code-block:: llvm
3435
3436 call void asm inteldialect "eieio", ""()
3437
3438If multiple keywords appear the '``sideeffect``' keyword must come
3439first, the '``alignstack``' keyword second and the '``inteldialect``'
3440keyword last.
3441
James Y Knightbc832ed2015-07-08 18:08:36 +00003442Inline Asm Constraint String
3443^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3444
3445The constraint list is a comma-separated string, each element containing one or
3446more constraint codes.
3447
3448For each element in the constraint list an appropriate register or memory
3449operand will be chosen, and it will be made available to assembly template
3450string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3451second, etc.
3452
3453There are three different types of constraints, which are distinguished by a
3454prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3455constraints must always be given in that order: outputs first, then inputs, then
3456clobbers. They cannot be intermingled.
3457
3458There are also three different categories of constraint codes:
3459
3460- Register constraint. This is either a register class, or a fixed physical
3461 register. This kind of constraint will allocate a register, and if necessary,
3462 bitcast the argument or result to the appropriate type.
3463- Memory constraint. This kind of constraint is for use with an instruction
3464 taking a memory operand. Different constraints allow for different addressing
3465 modes used by the target.
3466- Immediate value constraint. This kind of constraint is for an integer or other
3467 immediate value which can be rendered directly into an instruction. The
3468 various target-specific constraints allow the selection of a value in the
3469 proper range for the instruction you wish to use it with.
3470
3471Output constraints
3472""""""""""""""""""
3473
3474Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3475indicates that the assembly will write to this operand, and the operand will
3476then be made available as a return value of the ``asm`` expression. Output
3477constraints do not consume an argument from the call instruction. (Except, see
3478below about indirect outputs).
3479
3480Normally, it is expected that no output locations are written to by the assembly
3481expression until *all* of the inputs have been read. As such, LLVM may assign
3482the same register to an output and an input. If this is not safe (e.g. if the
3483assembly contains two instructions, where the first writes to one output, and
3484the second reads an input and writes to a second output), then the "``&``"
3485modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003486"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003487will not use the same register for any inputs (other than an input tied to this
3488output).
3489
3490Input constraints
3491"""""""""""""""""
3492
3493Input constraints do not have a prefix -- just the constraint codes. Each input
3494constraint will consume one argument from the call instruction. It is not
3495permitted for the asm to write to any input register or memory location (unless
3496that input is tied to an output). Note also that multiple inputs may all be
3497assigned to the same register, if LLVM can determine that they necessarily all
3498contain the same value.
3499
3500Instead of providing a Constraint Code, input constraints may also "tie"
3501themselves to an output constraint, by providing an integer as the constraint
3502string. Tied inputs still consume an argument from the call instruction, and
3503take up a position in the asm template numbering as is usual -- they will simply
3504be constrained to always use the same register as the output they've been tied
3505to. For example, a constraint string of "``=r,0``" says to assign a register for
3506output, and use that register as an input as well (it being the 0'th
3507constraint).
3508
3509It is permitted to tie an input to an "early-clobber" output. In that case, no
3510*other* input may share the same register as the input tied to the early-clobber
3511(even when the other input has the same value).
3512
3513You may only tie an input to an output which has a register constraint, not a
3514memory constraint. Only a single input may be tied to an output.
3515
3516There is also an "interesting" feature which deserves a bit of explanation: if a
3517register class constraint allocates a register which is too small for the value
3518type operand provided as input, the input value will be split into multiple
3519registers, and all of them passed to the inline asm.
3520
3521However, this feature is often not as useful as you might think.
3522
3523Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3524architectures that have instructions which operate on multiple consecutive
3525instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3526SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3527hardware then loads into both the named register, and the next register. This
3528feature of inline asm would not be useful to support that.)
3529
3530A few of the targets provide a template string modifier allowing explicit access
3531to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3532``D``). On such an architecture, you can actually access the second allocated
3533register (yet, still, not any subsequent ones). But, in that case, you're still
3534probably better off simply splitting the value into two separate operands, for
3535clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3536despite existing only for use with this feature, is not really a good idea to
3537use)
3538
3539Indirect inputs and outputs
3540"""""""""""""""""""""""""""
3541
3542Indirect output or input constraints can be specified by the "``*``" modifier
3543(which goes after the "``=``" in case of an output). This indicates that the asm
3544will write to or read from the contents of an *address* provided as an input
3545argument. (Note that in this way, indirect outputs act more like an *input* than
3546an output: just like an input, they consume an argument of the call expression,
3547rather than producing a return value. An indirect output constraint is an
3548"output" only in that the asm is expected to write to the contents of the input
3549memory location, instead of just read from it).
3550
3551This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3552address of a variable as a value.
3553
3554It is also possible to use an indirect *register* constraint, but only on output
3555(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3556value normally, and then, separately emit a store to the address provided as
3557input, after the provided inline asm. (It's not clear what value this
3558functionality provides, compared to writing the store explicitly after the asm
3559statement, and it can only produce worse code, since it bypasses many
3560optimization passes. I would recommend not using it.)
3561
3562
3563Clobber constraints
3564"""""""""""""""""""
3565
3566A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3567consume an input operand, nor generate an output. Clobbers cannot use any of the
3568general constraint code letters -- they may use only explicit register
3569constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3570"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3571memory locations -- not only the memory pointed to by a declared indirect
3572output.
3573
Peter Zotov00257232016-08-30 10:48:31 +00003574Note that clobbering named registers that are also present in output
3575constraints is not legal.
3576
James Y Knightbc832ed2015-07-08 18:08:36 +00003577
3578Constraint Codes
3579""""""""""""""""
3580After a potential prefix comes constraint code, or codes.
3581
3582A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3583followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3584(e.g. "``{eax}``").
3585
3586The one and two letter constraint codes are typically chosen to be the same as
3587GCC's constraint codes.
3588
3589A single constraint may include one or more than constraint code in it, leaving
3590it up to LLVM to choose which one to use. This is included mainly for
3591compatibility with the translation of GCC inline asm coming from clang.
3592
3593There are two ways to specify alternatives, and either or both may be used in an
3594inline asm constraint list:
3595
35961) Append the codes to each other, making a constraint code set. E.g. "``im``"
3597 or "``{eax}m``". This means "choose any of the options in the set". The
3598 choice of constraint is made independently for each constraint in the
3599 constraint list.
3600
36012) Use "``|``" between constraint code sets, creating alternatives. Every
3602 constraint in the constraint list must have the same number of alternative
3603 sets. With this syntax, the same alternative in *all* of the items in the
3604 constraint list will be chosen together.
3605
3606Putting those together, you might have a two operand constraint string like
3607``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3608operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3609may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3610
3611However, the use of either of the alternatives features is *NOT* recommended, as
3612LLVM is not able to make an intelligent choice about which one to use. (At the
3613point it currently needs to choose, not enough information is available to do so
3614in a smart way.) Thus, it simply tries to make a choice that's most likely to
3615compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3616always choose to use memory, not registers). And, if given multiple registers,
3617or multiple register classes, it will simply choose the first one. (In fact, it
3618doesn't currently even ensure explicitly specified physical registers are
3619unique, so specifying multiple physical registers as alternatives, like
3620``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3621intended.)
3622
3623Supported Constraint Code List
3624""""""""""""""""""""""""""""""
3625
3626The constraint codes are, in general, expected to behave the same way they do in
3627GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3628inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3629and GCC likely indicates a bug in LLVM.
3630
3631Some constraint codes are typically supported by all targets:
3632
3633- ``r``: A register in the target's general purpose register class.
3634- ``m``: A memory address operand. It is target-specific what addressing modes
3635 are supported, typical examples are register, or register + register offset,
3636 or register + immediate offset (of some target-specific size).
3637- ``i``: An integer constant (of target-specific width). Allows either a simple
3638 immediate, or a relocatable value.
3639- ``n``: An integer constant -- *not* including relocatable values.
3640- ``s``: An integer constant, but allowing *only* relocatable values.
3641- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3642 useful to pass a label for an asm branch or call.
3643
3644 .. FIXME: but that surely isn't actually okay to jump out of an asm
3645 block without telling llvm about the control transfer???)
3646
3647- ``{register-name}``: Requires exactly the named physical register.
3648
3649Other constraints are target-specific:
3650
3651AArch64:
3652
3653- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3654- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3655 i.e. 0 to 4095 with optional shift by 12.
3656- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3657 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3658- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3659 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3660- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3661 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3662- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3663 32-bit register. This is a superset of ``K``: in addition to the bitmask
3664 immediate, also allows immediate integers which can be loaded with a single
3665 ``MOVZ`` or ``MOVL`` instruction.
3666- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3667 64-bit register. This is a superset of ``L``.
3668- ``Q``: Memory address operand must be in a single register (no
3669 offsets). (However, LLVM currently does this for the ``m`` constraint as
3670 well.)
3671- ``r``: A 32 or 64-bit integer register (W* or X*).
3672- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3673- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3674
3675AMDGPU:
3676
3677- ``r``: A 32 or 64-bit integer register.
3678- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3679- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3680
3681
3682All ARM modes:
3683
3684- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3685 operand. Treated the same as operand ``m``, at the moment.
3686
3687ARM and ARM's Thumb2 mode:
3688
3689- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3690- ``I``: An immediate integer valid for a data-processing instruction.
3691- ``J``: An immediate integer between -4095 and 4095.
3692- ``K``: An immediate integer whose bitwise inverse is valid for a
3693 data-processing instruction. (Can be used with template modifier "``B``" to
3694 print the inverted value).
3695- ``L``: An immediate integer whose negation is valid for a data-processing
3696 instruction. (Can be used with template modifier "``n``" to print the negated
3697 value).
3698- ``M``: A power of two or a integer between 0 and 32.
3699- ``N``: Invalid immediate constraint.
3700- ``O``: Invalid immediate constraint.
3701- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3702- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3703 as ``r``.
3704- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3705 invalid.
3706- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3707 ``d0-d31``, or ``q0-q15``.
3708- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3709 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003710- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3711 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003712
3713ARM's Thumb1 mode:
3714
3715- ``I``: An immediate integer between 0 and 255.
3716- ``J``: An immediate integer between -255 and -1.
3717- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3718 some amount.
3719- ``L``: An immediate integer between -7 and 7.
3720- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3721- ``N``: An immediate integer between 0 and 31.
3722- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3723- ``r``: A low 32-bit GPR register (``r0-r7``).
3724- ``l``: A low 32-bit GPR register (``r0-r7``).
3725- ``h``: A high GPR register (``r0-r7``).
3726- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3727 ``d0-d31``, or ``q0-q15``.
3728- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3729 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003730- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3731 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003732
3733
3734Hexagon:
3735
3736- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3737 at the moment.
3738- ``r``: A 32 or 64-bit register.
3739
3740MSP430:
3741
3742- ``r``: An 8 or 16-bit register.
3743
3744MIPS:
3745
3746- ``I``: An immediate signed 16-bit integer.
3747- ``J``: An immediate integer zero.
3748- ``K``: An immediate unsigned 16-bit integer.
3749- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3750- ``N``: An immediate integer between -65535 and -1.
3751- ``O``: An immediate signed 15-bit integer.
3752- ``P``: An immediate integer between 1 and 65535.
3753- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3754 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3755- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3756 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3757 ``m``.
3758- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3759 ``sc`` instruction on the given subtarget (details vary).
3760- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3761- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003762 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3763 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003764- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3765 ``25``).
3766- ``l``: The ``lo`` register, 32 or 64-bit.
3767- ``x``: Invalid.
3768
3769NVPTX:
3770
3771- ``b``: A 1-bit integer register.
3772- ``c`` or ``h``: A 16-bit integer register.
3773- ``r``: A 32-bit integer register.
3774- ``l`` or ``N``: A 64-bit integer register.
3775- ``f``: A 32-bit float register.
3776- ``d``: A 64-bit float register.
3777
3778
3779PowerPC:
3780
3781- ``I``: An immediate signed 16-bit integer.
3782- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3783- ``K``: An immediate unsigned 16-bit integer.
3784- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3785- ``M``: An immediate integer greater than 31.
3786- ``N``: An immediate integer that is an exact power of 2.
3787- ``O``: The immediate integer constant 0.
3788- ``P``: An immediate integer constant whose negation is a signed 16-bit
3789 constant.
3790- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3791 treated the same as ``m``.
3792- ``r``: A 32 or 64-bit integer register.
3793- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3794 ``R1-R31``).
3795- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3796 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3797- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3798 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3799 altivec vector register (``V0-V31``).
3800
3801 .. FIXME: is this a bug that v accepts QPX registers? I think this
3802 is supposed to only use the altivec vector registers?
3803
3804- ``y``: Condition register (``CR0-CR7``).
3805- ``wc``: An individual CR bit in a CR register.
3806- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3807 register set (overlapping both the floating-point and vector register files).
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003808- ``ws``: A 32 or 64-bit floating-point register, from the full VSX register
James Y Knightbc832ed2015-07-08 18:08:36 +00003809 set.
3810
3811Sparc:
3812
3813- ``I``: An immediate 13-bit signed integer.
3814- ``r``: A 32-bit integer register.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003815- ``f``: Any floating-point register on SparcV8, or a floating-point
James Y Knightd4e1b002017-05-12 15:59:10 +00003816 register in the "low" half of the registers on SparcV9.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003817- ``e``: Any floating-point register. (Same as ``f`` on SparcV8.)
James Y Knightbc832ed2015-07-08 18:08:36 +00003818
3819SystemZ:
3820
3821- ``I``: An immediate unsigned 8-bit integer.
3822- ``J``: An immediate unsigned 12-bit integer.
3823- ``K``: An immediate signed 16-bit integer.
3824- ``L``: An immediate signed 20-bit integer.
3825- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003826- ``Q``: A memory address operand with a base address and a 12-bit immediate
3827 unsigned displacement.
3828- ``R``: A memory address operand with a base address, a 12-bit immediate
3829 unsigned displacement, and an index register.
3830- ``S``: A memory address operand with a base address and a 20-bit immediate
3831 signed displacement.
3832- ``T``: A memory address operand with a base address, a 20-bit immediate
3833 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003834- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3835- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3836 address context evaluates as zero).
3837- ``h``: A 32-bit value in the high part of a 64bit data register
3838 (LLVM-specific)
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003839- ``f``: A 32, 64, or 128-bit floating-point register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003840
3841X86:
3842
3843- ``I``: An immediate integer between 0 and 31.
3844- ``J``: An immediate integer between 0 and 64.
3845- ``K``: An immediate signed 8-bit integer.
3846- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3847 0xffffffff.
3848- ``M``: An immediate integer between 0 and 3.
3849- ``N``: An immediate unsigned 8-bit integer.
3850- ``O``: An immediate integer between 0 and 127.
3851- ``e``: An immediate 32-bit signed integer.
3852- ``Z``: An immediate 32-bit unsigned integer.
3853- ``o``, ``v``: Treated the same as ``m``, at the moment.
3854- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3855 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3856 registers, and on X86-64, it is all of the integer registers.
3857- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3858 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3859- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3860- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3861 existed since i386, and can be accessed without the REX prefix.
3862- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3863- ``y``: A 64-bit MMX register, if MMX is enabled.
3864- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3865 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3866 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3867 512-bit vector operand in an AVX512 register, Otherwise, an error.
3868- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3869- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3870 32-bit mode, a 64-bit integer operand will get split into two registers). It
3871 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3872 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3873 you're better off splitting it yourself, before passing it to the asm
3874 statement.
3875
3876XCore:
3877
3878- ``r``: A 32-bit integer register.
3879
3880
3881.. _inline-asm-modifiers:
3882
3883Asm template argument modifiers
3884^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3885
3886In the asm template string, modifiers can be used on the operand reference, like
3887"``${0:n}``".
3888
3889The modifiers are, in general, expected to behave the same way they do in
3890GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3891inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3892and GCC likely indicates a bug in LLVM.
3893
3894Target-independent:
3895
Sean Silvaa1190322015-08-06 22:56:48 +00003896- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003897 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3898- ``n``: Negate and print immediate integer constant unadorned, without the
3899 target-specific immediate punctuation (e.g. no ``$`` prefix).
3900- ``l``: Print as an unadorned label, without the target-specific label
3901 punctuation (e.g. no ``$`` prefix).
3902
3903AArch64:
3904
3905- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3906 instead of ``x30``, print ``w30``.
3907- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3908- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3909 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3910 ``v*``.
3911
3912AMDGPU:
3913
3914- ``r``: No effect.
3915
3916ARM:
3917
3918- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3919 register).
3920- ``P``: No effect.
3921- ``q``: No effect.
3922- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3923 as ``d4[1]`` instead of ``s9``)
3924- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3925 prefix.
3926- ``L``: Print the low 16-bits of an immediate integer constant.
3927- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3928 register operands subsequent to the specified one (!), so use carefully.
3929- ``Q``: Print the low-order register of a register-pair, or the low-order
3930 register of a two-register operand.
3931- ``R``: Print the high-order register of a register-pair, or the high-order
3932 register of a two-register operand.
3933- ``H``: Print the second register of a register-pair. (On a big-endian system,
3934 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3935 to ``R``.)
3936
3937 .. FIXME: H doesn't currently support printing the second register
3938 of a two-register operand.
3939
3940- ``e``: Print the low doubleword register of a NEON quad register.
3941- ``f``: Print the high doubleword register of a NEON quad register.
3942- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3943 adornment.
3944
3945Hexagon:
3946
3947- ``L``: Print the second register of a two-register operand. Requires that it
3948 has been allocated consecutively to the first.
3949
3950 .. FIXME: why is it restricted to consecutive ones? And there's
3951 nothing that ensures that happens, is there?
3952
3953- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3954 nothing. Used to print 'addi' vs 'add' instructions.
3955
3956MSP430:
3957
3958No additional modifiers.
3959
3960MIPS:
3961
3962- ``X``: Print an immediate integer as hexadecimal
3963- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3964- ``d``: Print an immediate integer as decimal.
3965- ``m``: Subtract one and print an immediate integer as decimal.
3966- ``z``: Print $0 if an immediate zero, otherwise print normally.
3967- ``L``: Print the low-order register of a two-register operand, or prints the
3968 address of the low-order word of a double-word memory operand.
3969
3970 .. FIXME: L seems to be missing memory operand support.
3971
3972- ``M``: Print the high-order register of a two-register operand, or prints the
3973 address of the high-order word of a double-word memory operand.
3974
3975 .. FIXME: M seems to be missing memory operand support.
3976
3977- ``D``: Print the second register of a two-register operand, or prints the
3978 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3979 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3980 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003981- ``w``: No effect. Provided for compatibility with GCC which requires this
3982 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3983 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003984
3985NVPTX:
3986
3987- ``r``: No effect.
3988
3989PowerPC:
3990
3991- ``L``: Print the second register of a two-register operand. Requires that it
3992 has been allocated consecutively to the first.
3993
3994 .. FIXME: why is it restricted to consecutive ones? And there's
3995 nothing that ensures that happens, is there?
3996
3997- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3998 nothing. Used to print 'addi' vs 'add' instructions.
3999- ``y``: For a memory operand, prints formatter for a two-register X-form
4000 instruction. (Currently always prints ``r0,OPERAND``).
4001- ``U``: Prints 'u' if the memory operand is an update form, and nothing
4002 otherwise. (NOTE: LLVM does not support update form, so this will currently
4003 always print nothing)
4004- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
4005 not support indexed form, so this will currently always print nothing)
4006
4007Sparc:
4008
4009- ``r``: No effect.
4010
4011SystemZ:
4012
4013SystemZ implements only ``n``, and does *not* support any of the other
4014target-independent modifiers.
4015
4016X86:
4017
4018- ``c``: Print an unadorned integer or symbol name. (The latter is
4019 target-specific behavior for this typically target-independent modifier).
4020- ``A``: Print a register name with a '``*``' before it.
4021- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
4022 operand.
4023- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
4024 memory operand.
4025- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
4026 operand.
4027- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
4028 operand.
4029- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
4030 available, otherwise the 32-bit register name; do nothing on a memory operand.
4031- ``n``: Negate and print an unadorned integer, or, for operands other than an
4032 immediate integer (e.g. a relocatable symbol expression), print a '-' before
4033 the operand. (The behavior for relocatable symbol expressions is a
4034 target-specific behavior for this typically target-independent modifier)
4035- ``H``: Print a memory reference with additional offset +8.
4036- ``P``: Print a memory reference or operand for use as the argument of a call
4037 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
4038
4039XCore:
4040
4041No additional modifiers.
4042
4043
Sean Silvab084af42012-12-07 10:36:55 +00004044Inline Asm Metadata
4045^^^^^^^^^^^^^^^^^^^
4046
4047The call instructions that wrap inline asm nodes may have a
4048"``!srcloc``" MDNode attached to it that contains a list of constant
4049integers. If present, the code generator will use the integer as the
4050location cookie value when report errors through the ``LLVMContext``
4051error reporting mechanisms. This allows a front-end to correlate backend
4052errors that occur with inline asm back to the source code that produced
4053it. For example:
4054
4055.. code-block:: llvm
4056
4057 call void asm sideeffect "something bad", ""(), !srcloc !42
4058 ...
4059 !42 = !{ i32 1234567 }
4060
4061It is up to the front-end to make sense of the magic numbers it places
4062in the IR. If the MDNode contains multiple constants, the code generator
4063will use the one that corresponds to the line of the asm that the error
4064occurs on.
4065
4066.. _metadata:
4067
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004068Metadata
4069========
Sean Silvab084af42012-12-07 10:36:55 +00004070
4071LLVM IR allows metadata to be attached to instructions in the program
4072that can convey extra information about the code to the optimizers and
4073code generator. One example application of metadata is source-level
4074debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004075
Sean Silvaa1190322015-08-06 22:56:48 +00004076Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004077``call`` instruction, it uses the ``metadata`` type.
4078
4079All metadata are identified in syntax by a exclamation point ('``!``').
4080
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004081.. _metadata-string:
4082
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004083Metadata Nodes and Metadata Strings
4084-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00004085
4086A metadata string is a string surrounded by double quotes. It can
4087contain any character by escaping non-printable characters with
4088"``\xx``" where "``xx``" is the two digit hex code. For example:
4089"``!"test\00"``".
4090
4091Metadata nodes are represented with notation similar to structure
4092constants (a comma separated list of elements, surrounded by braces and
4093preceded by an exclamation point). Metadata nodes can have any values as
4094their operand. For example:
4095
4096.. code-block:: llvm
4097
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004098 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00004099
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004100Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
4101
Renato Golin124f2592016-07-20 12:16:38 +00004102.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004103
4104 !0 = distinct !{!"test\00", i32 10}
4105
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004106``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00004107content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004108when metadata operands change.
4109
Sean Silvab084af42012-12-07 10:36:55 +00004110A :ref:`named metadata <namedmetadatastructure>` is a collection of
4111metadata nodes, which can be looked up in the module symbol table. For
4112example:
4113
4114.. code-block:: llvm
4115
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004116 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00004117
Adrian Prantl1b842da2017-07-28 20:44:29 +00004118Metadata can be used as function arguments. Here the ``llvm.dbg.value``
4119intrinsic is using three metadata arguments:
Sean Silvab084af42012-12-07 10:36:55 +00004120
4121.. code-block:: llvm
4122
Adrian Prantlabe04752017-07-28 20:21:02 +00004123 call void @llvm.dbg.value(metadata !24, metadata !25, metadata !26)
Sean Silvab084af42012-12-07 10:36:55 +00004124
Peter Collingbourne50108682015-11-06 02:41:02 +00004125Metadata can be attached to an instruction. Here metadata ``!21`` is attached
4126to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00004127
4128.. code-block:: llvm
4129
4130 %indvar.next = add i64 %indvar, 1, !dbg !21
4131
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004132Metadata can also be attached to a function or a global variable. Here metadata
4133``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
4134and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00004135
4136.. code-block:: llvm
4137
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004138 declare !dbg !22 void @f1()
4139 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00004140 ret void
4141 }
4142
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004143 @g1 = global i32 0, !dbg !22
4144 @g2 = external global i32, !dbg !22
4145
4146A transformation is required to drop any metadata attachment that it does not
4147know or know it can't preserve. Currently there is an exception for metadata
4148attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
4149unconditionally dropped unless the global is itself deleted.
4150
4151Metadata attached to a module using named metadata may not be dropped, with
4152the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
4153
Sean Silvab084af42012-12-07 10:36:55 +00004154More information about specific metadata nodes recognized by the
4155optimizers and code generator is found below.
4156
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004157.. _specialized-metadata:
4158
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004159Specialized Metadata Nodes
4160^^^^^^^^^^^^^^^^^^^^^^^^^^
4161
4162Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00004163to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004164order.
4165
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004166These aren't inherently debug info centric, but currently all the specialized
4167metadata nodes are related to debug info.
4168
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004169.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004170
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004171DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004172"""""""""""""
4173
Sean Silvaa1190322015-08-06 22:56:48 +00004174``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004175``retainedTypes:``, ``globals:``, ``imports:`` and ``macros:`` fields are tuples
4176containing the debug info to be emitted along with the compile unit, regardless
4177of code optimizations (some nodes are only emitted if there are references to
4178them from instructions). The ``debugInfoForProfiling:`` field is a boolean
4179indicating whether or not line-table discriminators are updated to provide
4180more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004181
Renato Golin124f2592016-07-20 12:16:38 +00004182.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004183
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004184 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004185 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004186 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004187 enums: !2, retainedTypes: !3, globals: !4, imports: !5,
4188 macros: !6, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004189
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004190Compile unit descriptors provide the root scope for objects declared in a
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004191specific compilation unit. File descriptors are defined using this scope. These
4192descriptors are collected by a named metadata node ``!llvm.dbg.cu``. They keep
4193track of global variables, type information, and imported entities (declarations
4194and namespaces).
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004195
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004196.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004197
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004198DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004199""""""
4200
Sean Silvaa1190322015-08-06 22:56:48 +00004201``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004202
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004203.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004204
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004205 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4206 checksumkind: CSK_MD5,
4207 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004208
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004209Files are sometimes used in ``scope:`` fields, and are the only valid target
4210for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004211Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004212
Michael Kuperstein605308a2015-05-14 10:58:59 +00004213.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004214
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004215DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004216"""""""""""
4217
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004218``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004219``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004220
Renato Golin124f2592016-07-20 12:16:38 +00004221.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004222
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004223 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004224 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004225 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004226
Sean Silvaa1190322015-08-06 22:56:48 +00004227The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004228following:
4229
Renato Golin124f2592016-07-20 12:16:38 +00004230.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004231
4232 DW_ATE_address = 1
4233 DW_ATE_boolean = 2
4234 DW_ATE_float = 4
4235 DW_ATE_signed = 5
4236 DW_ATE_signed_char = 6
4237 DW_ATE_unsigned = 7
4238 DW_ATE_unsigned_char = 8
4239
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004240.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004241
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004242DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004243""""""""""""""""
4244
Sean Silvaa1190322015-08-06 22:56:48 +00004245``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004246refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004247types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004248represents a function with no return value (such as ``void foo() {}`` in C++).
4249
Renato Golin124f2592016-07-20 12:16:38 +00004250.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004251
4252 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4253 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004254 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004255
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004256.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004257
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004258DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004259"""""""""""""
4260
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004261``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004262qualified types.
4263
Renato Golin124f2592016-07-20 12:16:38 +00004264.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004265
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004266 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004267 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004268 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004269 align: 32)
4270
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004271The following ``tag:`` values are valid:
4272
Renato Golin124f2592016-07-20 12:16:38 +00004273.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004274
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004275 DW_TAG_member = 13
4276 DW_TAG_pointer_type = 15
4277 DW_TAG_reference_type = 16
4278 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004279 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004280 DW_TAG_ptr_to_member_type = 31
4281 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004282 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004283 DW_TAG_volatile_type = 53
4284 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004285 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004286
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004287.. _DIDerivedTypeMember:
4288
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004289``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004290<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004291``offset:`` is the member's bit offset. If the composite type has an ODR
4292``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4293uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004294
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004295``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4296field of :ref:`composite types <DICompositeType>` to describe parents and
4297friends.
4298
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004299``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4300
4301``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004302``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4303are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004304
4305Note that the ``void *`` type is expressed as a type derived from NULL.
4306
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004307.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004308
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004309DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004310"""""""""""""""
4311
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004312``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004313structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004314
4315If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004316identifier used for type merging between modules. When specified,
4317:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4318derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4319``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004320
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004321For a given ``identifier:``, there should only be a single composite type that
4322does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4323together will unique such definitions at parse time via the ``identifier:``
4324field, even if the nodes are ``distinct``.
4325
Renato Golin124f2592016-07-20 12:16:38 +00004326.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004327
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004328 !0 = !DIEnumerator(name: "SixKind", value: 7)
4329 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4330 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4331 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004332 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4333 elements: !{!0, !1, !2})
4334
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004335The following ``tag:`` values are valid:
4336
Renato Golin124f2592016-07-20 12:16:38 +00004337.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004338
4339 DW_TAG_array_type = 1
4340 DW_TAG_class_type = 2
4341 DW_TAG_enumeration_type = 4
4342 DW_TAG_structure_type = 19
4343 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004344
4345For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004346descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004347level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004348array type is a native packed vector.
4349
4350For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004351descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004352value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004353``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004354
4355For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4356``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004357<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4358``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4359``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004360
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004361.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004362
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004363DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004364""""""""""
4365
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004366``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sander de Smalen1cb94312018-01-24 10:30:23 +00004367:ref:`DICompositeType`.
4368
4369- ``count: -1`` indicates an empty array.
4370- ``count: !9`` describes the count with a :ref:`DILocalVariable`.
4371- ``count: !11`` describes the count with a :ref:`DIGlobalVariable`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004372
4373.. code-block:: llvm
4374
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004375 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4376 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4377 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004378
Sander de Smalenfdf40912018-01-24 09:56:07 +00004379 ; Scopes used in rest of example
4380 !6 = !DIFile(filename: "vla.c", directory: "/path/to/file")
4381 !7 = distinct !DICompileUnit(language: DW_LANG_C99, ...
4382 !8 = distinct !DISubprogram(name: "foo", scope: !7, file: !6, line: 5, ...
4383
4384 ; Use of local variable as count value
4385 !9 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
4386 !10 = !DILocalVariable(name: "count", scope: !8, file: !6, line: 42, type: !9)
4387 !11 = !DISubrange(count !10, lowerBound: 0)
4388
4389 ; Use of global variable as count value
4390 !12 = !DIGlobalVariable(name: "count", scope: !8, file: !6, line: 22, type: !9)
4391 !13 = !DISubrange(count !12, lowerBound: 0)
4392
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004393.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004394
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004395DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004396""""""""""""
4397
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004398``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4399variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004400
4401.. code-block:: llvm
4402
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004403 !0 = !DIEnumerator(name: "SixKind", value: 7)
4404 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4405 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004406
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004407DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004408"""""""""""""""""""""""
4409
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004410``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004411language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004412:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004413
4414.. code-block:: llvm
4415
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004416 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004417
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004418DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004419""""""""""""""""""""""""
4420
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004421``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004422language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004423but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004424``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004425:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004426
4427.. code-block:: llvm
4428
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004429 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004430
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004431DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004432"""""""""""
4433
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004434``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004435
4436.. code-block:: llvm
4437
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004438 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004439
Sander de Smalen1cb94312018-01-24 10:30:23 +00004440.. _DIGlobalVariable:
4441
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004442DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004443""""""""""""""""
4444
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004445``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004446
4447.. code-block:: llvm
4448
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004449 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004450 file: !2, line: 7, type: !3, isLocal: true,
4451 isDefinition: false, variable: i32* @foo,
4452 declaration: !4)
4453
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004454All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004455:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004456
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004457.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004458
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004459DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004460""""""""""""
4461
Peter Collingbourne50108682015-11-06 02:41:02 +00004462``DISubprogram`` nodes represent functions from the source language. A
4463``DISubprogram`` may be attached to a function definition using ``!dbg``
4464metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4465that must be retained, even if their IR counterparts are optimized out of
4466the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004467
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004468.. _DISubprogramDeclaration:
4469
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004470When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004471tree as opposed to a definition of a function. If the scope is a composite
4472type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4473then the subprogram declaration is uniqued based only on its ``linkageName:``
4474and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004475
Renato Golin124f2592016-07-20 12:16:38 +00004476.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004477
Peter Collingbourne50108682015-11-06 02:41:02 +00004478 define void @_Z3foov() !dbg !0 {
4479 ...
4480 }
4481
4482 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4483 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004484 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004485 containingType: !4,
4486 virtuality: DW_VIRTUALITY_pure_virtual,
4487 virtualIndex: 10, flags: DIFlagPrototyped,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004488 isOptimized: true, unit: !5, templateParams: !6,
4489 declaration: !7, variables: !8, thrownTypes: !9)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004490
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004491.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004492
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004493DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004494""""""""""""""
4495
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004496``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004497<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004498two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004499fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004500
Renato Golin124f2592016-07-20 12:16:38 +00004501.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004502
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004503 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004504
4505Usually lexical blocks are ``distinct`` to prevent node merging based on
4506operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004507
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004508.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004509
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004510DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004511""""""""""""""""""
4512
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004513``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004514:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004515indicate textual inclusion, or the ``discriminator:`` field can be used to
4516discriminate between control flow within a single block in the source language.
4517
4518.. code-block:: llvm
4519
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004520 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4521 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4522 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004523
Michael Kuperstein605308a2015-05-14 10:58:59 +00004524.. _DILocation:
4525
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004526DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004527""""""""""
4528
Sean Silvaa1190322015-08-06 22:56:48 +00004529``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004530mandatory, and points at an :ref:`DILexicalBlockFile`, an
4531:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004532
4533.. code-block:: llvm
4534
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004535 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004536
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004537.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004538
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004539DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004540"""""""""""""""
4541
Sean Silvaa1190322015-08-06 22:56:48 +00004542``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004543the ``arg:`` field is set to non-zero, then this variable is a subprogram
4544parameter, and it will be included in the ``variables:`` field of its
4545:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004546
Renato Golin124f2592016-07-20 12:16:38 +00004547.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004548
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004549 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4550 type: !3, flags: DIFlagArtificial)
4551 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4552 type: !3)
4553 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004554
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004555DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004556""""""""""""
4557
Adrian Prantlb44c7762017-03-22 18:01:01 +00004558``DIExpression`` nodes represent expressions that are inspired by the DWARF
4559expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
4560(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
4561referenced LLVM variable relates to the source language variable.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004562
4563The current supported vocabulary is limited:
4564
Adrian Prantl6825fb62017-04-18 01:21:53 +00004565- ``DW_OP_deref`` dereferences the top of the expression stack.
Florian Hahnffc498d2017-06-14 13:14:38 +00004566- ``DW_OP_plus`` pops the last two entries from the expression stack, adds
4567 them together and appends the result to the expression stack.
4568- ``DW_OP_minus`` pops the last two entries from the expression stack, subtracts
4569 the last entry from the second last entry and appends the result to the
4570 expression stack.
Florian Hahnc9c403c2017-06-13 16:54:44 +00004571- ``DW_OP_plus_uconst, 93`` adds ``93`` to the working expression.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004572- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
4573 here, respectively) of the variable fragment from the working expression. Note
Hiroshi Inoue760c0c92018-01-16 13:19:48 +00004574 that contrary to DW_OP_bit_piece, the offset is describing the location
Adrian Prantlb44c7762017-03-22 18:01:01 +00004575 within the described source variable.
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004576- ``DW_OP_swap`` swaps top two stack entries.
4577- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
4578 of the stack is treated as an address. The second stack entry is treated as an
4579 address space identifier.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004580- ``DW_OP_stack_value`` marks a constant value.
4581
Adrian Prantl6825fb62017-04-18 01:21:53 +00004582DWARF specifies three kinds of simple location descriptions: Register, memory,
4583and implicit location descriptions. Register and memory location descriptions
4584describe the *location* of a source variable (in the sense that a debugger might
4585modify its value), whereas implicit locations describe merely the *value* of a
4586source variable. DIExpressions also follow this model: A DIExpression that
4587doesn't have a trailing ``DW_OP_stack_value`` will describe an *address* when
4588combined with a concrete location.
4589
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004590.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004591
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004592 !0 = !DIExpression(DW_OP_deref)
Florian Hahnc9c403c2017-06-13 16:54:44 +00004593 !1 = !DIExpression(DW_OP_plus_uconst, 3)
Florian Hahnffc498d2017-06-14 13:14:38 +00004594 !1 = !DIExpression(DW_OP_constu, 3, DW_OP_plus)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004595 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
Florian Hahnffc498d2017-06-14 13:14:38 +00004596 !3 = !DIExpression(DW_OP_deref, DW_OP_constu, 3, DW_OP_plus, DW_OP_LLVM_fragment, 3, 7)
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004597 !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004598 !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004599
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004600DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004601""""""""""""""
4602
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004603``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004604
4605.. code-block:: llvm
4606
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004607 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004608 getter: "getFoo", attributes: 7, type: !2)
4609
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004610DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004611""""""""""""""""
4612
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004613``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004614compile unit.
4615
Renato Golin124f2592016-07-20 12:16:38 +00004616.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004617
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004618 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004619 entity: !1, line: 7)
4620
Amjad Abouda9bcf162015-12-10 12:56:35 +00004621DIMacro
4622"""""""
4623
4624``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4625The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004626defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004627used to expand the macro identifier.
4628
Renato Golin124f2592016-07-20 12:16:38 +00004629.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004630
4631 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4632 value: "((x) + 1)")
4633 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4634
4635DIMacroFile
4636"""""""""""
4637
4638``DIMacroFile`` nodes represent inclusion of source files.
4639The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4640appear in the included source file.
4641
Renato Golin124f2592016-07-20 12:16:38 +00004642.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004643
4644 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4645 nodes: !3)
4646
Sean Silvab084af42012-12-07 10:36:55 +00004647'``tbaa``' Metadata
4648^^^^^^^^^^^^^^^^^^^
4649
4650In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004651suitable for doing type based alias analysis (TBAA). Instead, metadata is
4652added to the IR to describe a type system of a higher level language. This
4653can be used to implement C/C++ strict type aliasing rules, but it can also
4654be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004655
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004656This description of LLVM's TBAA system is broken into two parts:
4657:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4658:ref:`Representation<tbaa_node_representation>` talks about the metadata
4659encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004660
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004661It is always possible to trace any TBAA node to a "root" TBAA node (details
4662in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4663nodes with different roots have an unknown aliasing relationship, and LLVM
4664conservatively infers ``MayAlias`` between them. The rules mentioned in
4665this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004666
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004667.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004668
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004669Semantics
4670"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004671
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004672The TBAA metadata system, referred to as "struct path TBAA" (not to be
4673confused with ``tbaa.struct``), consists of the following high level
4674concepts: *Type Descriptors*, further subdivided into scalar type
4675descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004676
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004677**Type descriptors** describe the type system of the higher level language
4678being compiled. **Scalar type descriptors** describe types that do not
4679contain other types. Each scalar type has a parent type, which must also
4680be a scalar type or the TBAA root. Via this parent relation, scalar types
4681within a TBAA root form a tree. **Struct type descriptors** denote types
4682that contain a sequence of other type descriptors, at known offsets. These
4683contained type descriptors can either be struct type descriptors themselves
4684or scalar type descriptors.
4685
4686**Access tags** are metadata nodes attached to load and store instructions.
4687Access tags use type descriptors to describe the *location* being accessed
4688in terms of the type system of the higher level language. Access tags are
4689tuples consisting of a base type, an access type and an offset. The base
4690type is a scalar type descriptor or a struct type descriptor, the access
4691type is a scalar type descriptor, and the offset is a constant integer.
4692
4693The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4694things:
4695
4696 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4697 or store) of a value of type ``AccessTy`` contained in the struct type
4698 ``BaseTy`` at offset ``Offset``.
4699
4700 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4701 ``AccessTy`` must be the same; and the access tag describes a scalar
4702 access with scalar type ``AccessTy``.
4703
4704We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4705tuples this way:
4706
4707 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4708 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4709 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4710 undefined if ``Offset`` is non-zero.
4711
4712 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4713 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4714 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4715 to be relative within that inner type.
4716
4717A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4718aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4719Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4720Offset2)`` via the ``Parent`` relation or vice versa.
4721
4722As a concrete example, the type descriptor graph for the following program
4723
4724.. code-block:: c
4725
4726 struct Inner {
4727 int i; // offset 0
4728 float f; // offset 4
4729 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004730
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004731 struct Outer {
4732 float f; // offset 0
4733 double d; // offset 4
4734 struct Inner inner_a; // offset 12
4735 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004736
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004737 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4738 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4739 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
4740 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, IntScalarTy, 16)
4741 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4742 }
4743
4744is (note that in C and C++, ``char`` can be used to access any arbitrary
4745type):
4746
4747.. code-block:: text
4748
4749 Root = "TBAA Root"
4750 CharScalarTy = ("char", Root, 0)
4751 FloatScalarTy = ("float", CharScalarTy, 0)
4752 DoubleScalarTy = ("double", CharScalarTy, 0)
4753 IntScalarTy = ("int", CharScalarTy, 0)
4754 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4755 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4756 (InnerStructTy, 12)}
4757
4758
4759with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
47600)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4761``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4762
4763.. _tbaa_node_representation:
4764
4765Representation
4766""""""""""""""
4767
4768The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4769with exactly one ``MDString`` operand.
4770
4771Scalar type descriptors are represented as an ``MDNode`` s with two
4772operands. The first operand is an ``MDString`` denoting the name of the
4773struct type. LLVM does not assign meaning to the value of this operand, it
4774only cares about it being an ``MDString``. The second operand is an
4775``MDNode`` which points to the parent for said scalar type descriptor,
4776which is either another scalar type descriptor or the TBAA root. Scalar
4777type descriptors can have an optional third argument, but that must be the
4778constant integer zero.
4779
4780Struct type descriptors are represented as ``MDNode`` s with an odd number
4781of operands greater than 1. The first operand is an ``MDString`` denoting
4782the name of the struct type. Like in scalar type descriptors the actual
4783value of this name operand is irrelevant to LLVM. After the name operand,
4784the struct type descriptors have a sequence of alternating ``MDNode`` and
4785``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4786an ``MDNode``, denotes a contained field, and the 2N th operand, a
4787``ConstantInt``, is the offset of the said contained field. The offsets
4788must be in non-decreasing order.
4789
4790Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4791The first operand is an ``MDNode`` pointing to the node representing the
4792base type. The second operand is an ``MDNode`` pointing to the node
4793representing the access type. The third operand is a ``ConstantInt`` that
4794states the offset of the access. If a fourth field is present, it must be
4795a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4796that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004797``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004798AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4799the access type and the base type of an access tag must be the same, and
4800that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004801
4802'``tbaa.struct``' Metadata
4803^^^^^^^^^^^^^^^^^^^^^^^^^^
4804
4805The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4806aggregate assignment operations in C and similar languages, however it
4807is defined to copy a contiguous region of memory, which is more than
4808strictly necessary for aggregate types which contain holes due to
4809padding. Also, it doesn't contain any TBAA information about the fields
4810of the aggregate.
4811
4812``!tbaa.struct`` metadata can describe which memory subregions in a
4813memcpy are padding and what the TBAA tags of the struct are.
4814
4815The current metadata format is very simple. ``!tbaa.struct`` metadata
4816nodes are a list of operands which are in conceptual groups of three.
4817For each group of three, the first operand gives the byte offset of a
4818field in bytes, the second gives its size in bytes, and the third gives
4819its tbaa tag. e.g.:
4820
4821.. code-block:: llvm
4822
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004823 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004824
4825This describes a struct with two fields. The first is at offset 0 bytes
4826with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4827and has size 4 bytes and has tbaa tag !2.
4828
4829Note that the fields need not be contiguous. In this example, there is a
48304 byte gap between the two fields. This gap represents padding which
4831does not carry useful data and need not be preserved.
4832
Hal Finkel94146652014-07-24 14:25:39 +00004833'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004834^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004835
4836``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4837noalias memory-access sets. This means that some collection of memory access
4838instructions (loads, stores, memory-accessing calls, etc.) that carry
4839``noalias`` metadata can specifically be specified not to alias with some other
4840collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004841Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004842a domain.
4843
4844When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004845of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004846subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004847instruction's ``noalias`` list, then the two memory accesses are assumed not to
4848alias.
Hal Finkel94146652014-07-24 14:25:39 +00004849
Adam Nemet569a5b32016-04-27 00:52:48 +00004850Because scopes in one domain don't affect scopes in other domains, separate
4851domains can be used to compose multiple independent noalias sets. This is
4852used for example during inlining. As the noalias function parameters are
4853turned into noalias scope metadata, a new domain is used every time the
4854function is inlined.
4855
Hal Finkel029cde62014-07-25 15:50:02 +00004856The metadata identifying each domain is itself a list containing one or two
4857entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004858string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004859self-reference can be used to create globally unique domain names. A
4860descriptive string may optionally be provided as a second list entry.
4861
4862The metadata identifying each scope is also itself a list containing two or
4863three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004864is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004865self-reference can be used to create globally unique scope names. A metadata
4866reference to the scope's domain is the second entry. A descriptive string may
4867optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004868
4869For example,
4870
4871.. code-block:: llvm
4872
Hal Finkel029cde62014-07-25 15:50:02 +00004873 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004874 !0 = !{!0}
4875 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004876
Hal Finkel029cde62014-07-25 15:50:02 +00004877 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004878 !2 = !{!2, !0}
4879 !3 = !{!3, !0}
4880 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004881
Hal Finkel029cde62014-07-25 15:50:02 +00004882 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004883 !5 = !{!4} ; A list containing only scope !4
4884 !6 = !{!4, !3, !2}
4885 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004886
4887 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004888 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004889 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004890
Hal Finkel029cde62014-07-25 15:50:02 +00004891 ; These two instructions also don't alias (for domain !1, the set of scopes
4892 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004893 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004894 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004895
Adam Nemet0a8416f2015-05-11 08:30:28 +00004896 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004897 ; the !noalias list is not a superset of, or equal to, the scopes in the
4898 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004899 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004900 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004901
Sean Silvab084af42012-12-07 10:36:55 +00004902'``fpmath``' Metadata
4903^^^^^^^^^^^^^^^^^^^^^
4904
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00004905``fpmath`` metadata may be attached to any instruction of floating-point
Sean Silvab084af42012-12-07 10:36:55 +00004906type. It can be used to express the maximum acceptable error in the
4907result of that instruction, in ULPs, thus potentially allowing the
4908compiler to use a more efficient but less accurate method of computing
4909it. ULP is defined as follows:
4910
4911 If ``x`` is a real number that lies between two finite consecutive
4912 floating-point numbers ``a`` and ``b``, without being equal to one
4913 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4914 distance between the two non-equal finite floating-point numbers
4915 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4916
Matt Arsenault82f41512016-06-27 19:43:15 +00004917The metadata node shall consist of a single positive float type number
4918representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004919
4920.. code-block:: llvm
4921
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004922 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004923
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004924.. _range-metadata:
4925
Sean Silvab084af42012-12-07 10:36:55 +00004926'``range``' Metadata
4927^^^^^^^^^^^^^^^^^^^^
4928
Jingyue Wu37fcb592014-06-19 16:50:16 +00004929``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4930integer types. It expresses the possible ranges the loaded value or the value
4931returned by the called function at this call site is in. The ranges are
4932represented with a flattened list of integers. The loaded value or the value
4933returned is known to be in the union of the ranges defined by each consecutive
4934pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004935
4936- The type must match the type loaded by the instruction.
4937- The pair ``a,b`` represents the range ``[a,b)``.
4938- Both ``a`` and ``b`` are constants.
4939- The range is allowed to wrap.
4940- The range should not represent the full or empty set. That is,
4941 ``a!=b``.
4942
4943In addition, the pairs must be in signed order of the lower bound and
4944they must be non-contiguous.
4945
4946Examples:
4947
4948.. code-block:: llvm
4949
David Blaikiec7aabbb2015-03-04 22:06:14 +00004950 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4951 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004952 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4953 %d = invoke i8 @bar() to label %cont
4954 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004955 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004956 !0 = !{ i8 0, i8 2 }
4957 !1 = !{ i8 255, i8 2 }
4958 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4959 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004960
Peter Collingbourne235c2752016-12-08 19:01:00 +00004961'``absolute_symbol``' Metadata
4962^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4963
4964``absolute_symbol`` metadata may be attached to a global variable
4965declaration. It marks the declaration as a reference to an absolute symbol,
4966which causes the backend to use absolute relocations for the symbol even
4967in position independent code, and expresses the possible ranges that the
4968global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00004969``range`` metadata, with the extension that the pair ``all-ones,all-ones``
4970may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00004971
Peter Collingbourned88f9282017-01-20 21:56:37 +00004972Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00004973
4974.. code-block:: llvm
4975
4976 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00004977 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00004978
4979 ...
4980 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00004981 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00004982
Matthew Simpson36bbc8c2017-10-16 22:22:11 +00004983'``callees``' Metadata
4984^^^^^^^^^^^^^^^^^^^^^^
4985
4986``callees`` metadata may be attached to indirect call sites. If ``callees``
4987metadata is attached to a call site, and any callee is not among the set of
4988functions provided by the metadata, the behavior is undefined. The intent of
4989this metadata is to facilitate optimizations such as indirect-call promotion.
4990For example, in the code below, the call instruction may only target the
4991``add`` or ``sub`` functions:
4992
4993.. code-block:: llvm
4994
4995 %result = call i64 %binop(i64 %x, i64 %y), !callees !0
4996
4997 ...
4998 !0 = !{i64 (i64, i64)* @add, i64 (i64, i64)* @sub}
4999
Sanjay Patela99ab1f2015-09-02 19:06:43 +00005000'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00005001^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00005002
5003``unpredictable`` metadata may be attached to any branch or switch
5004instruction. It can be used to express the unpredictability of control
5005flow. Similar to the llvm.expect intrinsic, it may be used to alter
5006optimizations related to compare and branch instructions. The metadata
5007is treated as a boolean value; if it exists, it signals that the branch
5008or switch that it is attached to is completely unpredictable.
5009
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005010'``llvm.loop``'
5011^^^^^^^^^^^^^^^
5012
5013It is sometimes useful to attach information to loop constructs. Currently,
5014loop metadata is implemented as metadata attached to the branch instruction
5015in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00005016guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00005017specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005018
5019The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00005020itself to avoid merging it with any other identifier metadata, e.g.,
5021during module linkage or function inlining. That is, each loop should refer
5022to their own identification metadata even if they reside in separate functions.
5023The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00005024constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005025
5026.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00005027
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005028 !0 = !{!0}
5029 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00005030
Mark Heffernan893752a2014-07-18 19:24:51 +00005031The loop identifier metadata can be used to specify additional
5032per-loop metadata. Any operands after the first operand can be treated
5033as user-defined metadata. For example the ``llvm.loop.unroll.count``
5034suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005035
Paul Redmond5fdf8362013-05-28 20:00:34 +00005036.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005037
Paul Redmond5fdf8362013-05-28 20:00:34 +00005038 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
5039 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005040 !0 = !{!0, !1}
5041 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005042
Mark Heffernan9d20e422014-07-21 23:11:03 +00005043'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
5044^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00005045
Mark Heffernan9d20e422014-07-21 23:11:03 +00005046Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
5047used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00005048vectorization width and interleave count. These metadata should be used in
5049conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00005050``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
5051optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00005052it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00005053which contains information about loop-carried memory dependencies can be helpful
5054in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00005055
Mark Heffernan9d20e422014-07-21 23:11:03 +00005056'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00005057^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5058
Mark Heffernan9d20e422014-07-21 23:11:03 +00005059This metadata suggests an interleave count to the loop interleaver.
5060The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00005061second operand is an integer specifying the interleave count. For
5062example:
5063
5064.. code-block:: llvm
5065
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005066 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005067
Mark Heffernan9d20e422014-07-21 23:11:03 +00005068Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00005069multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00005070then the interleave count will be determined automatically.
5071
5072'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00005073^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00005074
5075This metadata selectively enables or disables vectorization for the loop. The
5076first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00005077is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000050780 disables vectorization:
5079
5080.. code-block:: llvm
5081
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005082 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
5083 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00005084
5085'``llvm.loop.vectorize.width``' Metadata
5086^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5087
5088This metadata sets the target width of the vectorizer. The first
5089operand is the string ``llvm.loop.vectorize.width`` and the second
5090operand is an integer specifying the width. For example:
5091
5092.. code-block:: llvm
5093
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005094 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005095
5096Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00005097vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000050980 or if the loop does not have this metadata the width will be
5099determined automatically.
5100
5101'``llvm.loop.unroll``'
5102^^^^^^^^^^^^^^^^^^^^^^
5103
5104Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
5105optimization hints such as the unroll factor. ``llvm.loop.unroll``
5106metadata should be used in conjunction with ``llvm.loop`` loop
5107identification metadata. The ``llvm.loop.unroll`` metadata are only
5108optimization hints and the unrolling will only be performed if the
5109optimizer believes it is safe to do so.
5110
Mark Heffernan893752a2014-07-18 19:24:51 +00005111'``llvm.loop.unroll.count``' Metadata
5112^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5113
5114This metadata suggests an unroll factor to the loop unroller. The
5115first operand is the string ``llvm.loop.unroll.count`` and the second
5116operand is a positive integer specifying the unroll factor. For
5117example:
5118
5119.. code-block:: llvm
5120
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005121 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005122
5123If the trip count of the loop is less than the unroll count the loop
5124will be partially unrolled.
5125
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005126'``llvm.loop.unroll.disable``' Metadata
5127^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5128
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005129This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00005130which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005131
5132.. code-block:: llvm
5133
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005134 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005135
Kevin Qin715b01e2015-03-09 06:14:18 +00005136'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00005137^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00005138
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005139This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00005140operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00005141
5142.. code-block:: llvm
5143
5144 !0 = !{!"llvm.loop.unroll.runtime.disable"}
5145
Mark Heffernan89391542015-08-10 17:28:08 +00005146'``llvm.loop.unroll.enable``' Metadata
5147^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5148
5149This metadata suggests that the loop should be fully unrolled if the trip count
5150is known at compile time and partially unrolled if the trip count is not known
5151at compile time. The metadata has a single operand which is the string
5152``llvm.loop.unroll.enable``. For example:
5153
5154.. code-block:: llvm
5155
5156 !0 = !{!"llvm.loop.unroll.enable"}
5157
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005158'``llvm.loop.unroll.full``' Metadata
5159^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5160
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005161This metadata suggests that the loop should be unrolled fully. The
5162metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005163For example:
5164
5165.. code-block:: llvm
5166
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005167 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005168
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005169'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00005170^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005171
5172This metadata indicates that the loop should not be versioned for the purpose
5173of enabling loop-invariant code motion (LICM). The metadata has a single operand
5174which is the string ``llvm.loop.licm_versioning.disable``. For example:
5175
5176.. code-block:: llvm
5177
5178 !0 = !{!"llvm.loop.licm_versioning.disable"}
5179
Adam Nemetd2fa4142016-04-27 05:28:18 +00005180'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00005181^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00005182
5183Loop distribution allows splitting a loop into multiple loops. Currently,
5184this is only performed if the entire loop cannot be vectorized due to unsafe
Hiroshi Inoueb93daec2017-07-02 12:44:27 +00005185memory dependencies. The transformation will attempt to isolate the unsafe
Adam Nemetd2fa4142016-04-27 05:28:18 +00005186dependencies into their own loop.
5187
5188This metadata can be used to selectively enable or disable distribution of the
5189loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
5190second operand is a bit. If the bit operand value is 1 distribution is
5191enabled. A value of 0 disables distribution:
5192
5193.. code-block:: llvm
5194
5195 !0 = !{!"llvm.loop.distribute.enable", i1 0}
5196 !1 = !{!"llvm.loop.distribute.enable", i1 1}
5197
5198This metadata should be used in conjunction with ``llvm.loop`` loop
5199identification metadata.
5200
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005201'``llvm.mem``'
5202^^^^^^^^^^^^^^^
5203
5204Metadata types used to annotate memory accesses with information helpful
5205for optimizations are prefixed with ``llvm.mem``.
5206
5207'``llvm.mem.parallel_loop_access``' Metadata
5208^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5209
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005210The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
5211or metadata containing a list of loop identifiers for nested loops.
5212The metadata is attached to memory accessing instructions and denotes that
5213no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00005214with the same loop identifier. The metadata on memory reads also implies that
5215if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005216
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005217Precisely, given two instructions ``m1`` and ``m2`` that both have the
5218``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
5219set of loops associated with that metadata, respectively, then there is no loop
5220carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005221``L2``.
5222
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005223As a special case, if all memory accessing instructions in a loop have
5224``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
5225loop has no loop carried memory dependences and is considered to be a parallel
5226loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005227
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005228Note that if not all memory access instructions have such metadata referring to
5229the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00005230memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005231safe mechanism, this causes loops that were originally parallel to be considered
5232sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005233insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005234
5235Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00005236both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005237metadata types that refer to the same loop identifier metadata.
5238
5239.. code-block:: llvm
5240
5241 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005242 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005243 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005244 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005245 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005246 ...
5247 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005248
5249 for.end:
5250 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005251 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005252
5253It is also possible to have nested parallel loops. In that case the
5254memory accesses refer to a list of loop identifier metadata nodes instead of
5255the loop identifier metadata node directly:
5256
5257.. code-block:: llvm
5258
5259 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005260 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005261 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005262 ...
5263 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005264
5265 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005266 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005267 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005268 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005269 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005270 ...
5271 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005272
5273 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005274 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005275 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00005276 ...
5277 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005278
5279 outer.for.end: ; preds = %for.body
5280 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005281 !0 = !{!1, !2} ; a list of loop identifiers
5282 !1 = !{!1} ; an identifier for the inner loop
5283 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005284
Hiroshi Yamauchidce9def2017-11-02 22:26:51 +00005285'``irr_loop``' Metadata
5286^^^^^^^^^^^^^^^^^^^^^^^
5287
5288``irr_loop`` metadata may be attached to the terminator instruction of a basic
5289block that's an irreducible loop header (note that an irreducible loop has more
5290than once header basic blocks.) If ``irr_loop`` metadata is attached to the
5291terminator instruction of a basic block that is not really an irreducible loop
5292header, the behavior is undefined. The intent of this metadata is to improve the
5293accuracy of the block frequency propagation. For example, in the code below, the
5294block ``header0`` may have a loop header weight (relative to the other headers of
5295the irreducible loop) of 100:
5296
5297.. code-block:: llvm
5298
5299 header0:
5300 ...
5301 br i1 %cmp, label %t1, label %t2, !irr_loop !0
5302
5303 ...
5304 !0 = !{"loop_header_weight", i64 100}
5305
5306Irreducible loop header weights are typically based on profile data.
5307
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005308'``invariant.group``' Metadata
5309^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5310
5311The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005312The existence of the ``invariant.group`` metadata on the instruction tells
5313the optimizer that every ``load`` and ``store`` to the same pointer operand
5314within the same invariant group can be assumed to load or store the same
5315value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005316when two pointers are considered the same). Pointers returned by bitcast or
5317getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005318
5319Examples:
5320
5321.. code-block:: llvm
5322
5323 @unknownPtr = external global i8
5324 ...
5325 %ptr = alloca i8
5326 store i8 42, i8* %ptr, !invariant.group !0
5327 call void @foo(i8* %ptr)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005328
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005329 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5330 call void @foo(i8* %ptr)
5331 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005332
5333 %newPtr = call i8* @getPointer(i8* %ptr)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005334 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005335
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005336 %unknownValue = load i8, i8* @unknownPtr
5337 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005338
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005339 call void @foo(i8* %ptr)
5340 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
5341 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005342
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005343 ...
5344 declare void @foo(i8*)
5345 declare i8* @getPointer(i8*)
5346 declare i8* @llvm.invariant.group.barrier(i8*)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005347
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005348 !0 = !{!"magic ptr"}
5349 !1 = !{!"other ptr"}
5350
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005351The invariant.group metadata must be dropped when replacing one pointer by
5352another based on aliasing information. This is because invariant.group is tied
5353to the SSA value of the pointer operand.
5354
5355.. code-block:: llvm
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005356
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005357 %v = load i8, i8* %x, !invariant.group !0
5358 ; if %x mustalias %y then we can replace the above instruction with
5359 %v = load i8, i8* %y
5360
5361
Peter Collingbournea333db82016-07-26 22:31:30 +00005362'``type``' Metadata
5363^^^^^^^^^^^^^^^^^^^
5364
5365See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005366
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005367'``associated``' Metadata
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005368^^^^^^^^^^^^^^^^^^^^^^^^^
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005369
5370The ``associated`` metadata may be attached to a global object
5371declaration with a single argument that references another global object.
5372
5373This metadata prevents discarding of the global object in linker GC
5374unless the referenced object is also discarded. The linker support for
5375this feature is spotty. For best compatibility, globals carrying this
5376metadata may also:
5377
5378- Be in a comdat with the referenced global.
5379- Be in @llvm.compiler.used.
5380- Have an explicit section with a name which is a valid C identifier.
5381
5382It does not have any effect on non-ELF targets.
5383
5384Example:
5385
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005386.. code-block:: text
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005387
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005388 $a = comdat any
5389 @a = global i32 1, comdat $a
5390 @b = internal global i32 2, comdat $a, section "abc", !associated !0
5391 !0 = !{i32* @a}
5392
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005393
Teresa Johnsond72f51c2017-06-15 15:57:12 +00005394'``prof``' Metadata
5395^^^^^^^^^^^^^^^^^^^
5396
5397The ``prof`` metadata is used to record profile data in the IR.
5398The first operand of the metadata node indicates the profile metadata
5399type. There are currently 3 types:
5400:ref:`branch_weights<prof_node_branch_weights>`,
5401:ref:`function_entry_count<prof_node_function_entry_count>`, and
5402:ref:`VP<prof_node_VP>`.
5403
5404.. _prof_node_branch_weights:
5405
5406branch_weights
5407""""""""""""""
5408
5409Branch weight metadata attached to a branch, select, switch or call instruction
5410represents the likeliness of the associated branch being taken.
5411For more information, see :doc:`BranchWeightMetadata`.
5412
5413.. _prof_node_function_entry_count:
5414
5415function_entry_count
5416""""""""""""""""""""
5417
5418Function entry count metadata can be attached to function definitions
5419to record the number of times the function is called. Used with BFI
5420information, it is also used to derive the basic block profile count.
5421For more information, see :doc:`BranchWeightMetadata`.
5422
5423.. _prof_node_VP:
5424
5425VP
5426""
5427
5428VP (value profile) metadata can be attached to instructions that have
5429value profile information. Currently this is indirect calls (where it
5430records the hottest callees) and calls to memory intrinsics such as memcpy,
5431memmove, and memset (where it records the hottest byte lengths).
5432
5433Each VP metadata node contains "VP" string, then a uint32_t value for the value
5434profiling kind, a uint64_t value for the total number of times the instruction
5435is executed, followed by uint64_t value and execution count pairs.
5436The value profiling kind is 0 for indirect call targets and 1 for memory
5437operations. For indirect call targets, each profile value is a hash
5438of the callee function name, and for memory operations each value is the
5439byte length.
5440
5441Note that the value counts do not need to add up to the total count
5442listed in the third operand (in practice only the top hottest values
5443are tracked and reported).
5444
5445Indirect call example:
5446
5447.. code-block:: llvm
5448
5449 call void %f(), !prof !1
5450 !1 = !{!"VP", i32 0, i64 1600, i64 7651369219802541373, i64 1030, i64 -4377547752858689819, i64 410}
5451
5452Note that the VP type is 0 (the second operand), which indicates this is
5453an indirect call value profile data. The third operand indicates that the
5454indirect call executed 1600 times. The 4th and 6th operands give the
5455hashes of the 2 hottest target functions' names (this is the same hash used
5456to represent function names in the profile database), and the 5th and 7th
5457operands give the execution count that each of the respective prior target
5458functions was called.
5459
Sean Silvab084af42012-12-07 10:36:55 +00005460Module Flags Metadata
5461=====================
5462
5463Information about the module as a whole is difficult to convey to LLVM's
5464subsystems. The LLVM IR isn't sufficient to transmit this information.
5465The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005466this. These flags are in the form of key / value pairs --- much like a
5467dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005468look it up.
5469
5470The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5471Each triplet has the following form:
5472
5473- The first element is a *behavior* flag, which specifies the behavior
5474 when two (or more) modules are merged together, and it encounters two
5475 (or more) metadata with the same ID. The supported behaviors are
5476 described below.
5477- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005478 metadata. Each module may only have one flag entry for each unique ID (not
5479 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005480- The third element is the value of the flag.
5481
5482When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005483``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5484each unique metadata ID string, there will be exactly one entry in the merged
5485modules ``llvm.module.flags`` metadata table, and the value for that entry will
5486be determined by the merge behavior flag, as described below. The only exception
5487is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005488
5489The following behaviors are supported:
5490
5491.. list-table::
5492 :header-rows: 1
5493 :widths: 10 90
5494
5495 * - Value
5496 - Behavior
5497
5498 * - 1
5499 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005500 Emits an error if two values disagree, otherwise the resulting value
5501 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005502
5503 * - 2
5504 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005505 Emits a warning if two values disagree. The result value will be the
5506 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005507
5508 * - 3
5509 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005510 Adds a requirement that another module flag be present and have a
5511 specified value after linking is performed. The value must be a
5512 metadata pair, where the first element of the pair is the ID of the
5513 module flag to be restricted, and the second element of the pair is
5514 the value the module flag should be restricted to. This behavior can
5515 be used to restrict the allowable results (via triggering of an
5516 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005517
5518 * - 4
5519 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005520 Uses the specified value, regardless of the behavior or value of the
5521 other module. If both modules specify **Override**, but the values
5522 differ, an error will be emitted.
5523
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005524 * - 5
5525 - **Append**
5526 Appends the two values, which are required to be metadata nodes.
5527
5528 * - 6
5529 - **AppendUnique**
5530 Appends the two values, which are required to be metadata
5531 nodes. However, duplicate entries in the second list are dropped
5532 during the append operation.
5533
Steven Wu86a511e2017-08-15 16:16:33 +00005534 * - 7
5535 - **Max**
5536 Takes the max of the two values, which are required to be integers.
5537
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005538It is an error for a particular unique flag ID to have multiple behaviors,
5539except in the case of **Require** (which adds restrictions on another metadata
5540value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005541
5542An example of module flags:
5543
5544.. code-block:: llvm
5545
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005546 !0 = !{ i32 1, !"foo", i32 1 }
5547 !1 = !{ i32 4, !"bar", i32 37 }
5548 !2 = !{ i32 2, !"qux", i32 42 }
5549 !3 = !{ i32 3, !"qux",
5550 !{
5551 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005552 }
5553 }
5554 !llvm.module.flags = !{ !0, !1, !2, !3 }
5555
5556- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5557 if two or more ``!"foo"`` flags are seen is to emit an error if their
5558 values are not equal.
5559
5560- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5561 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005562 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005563
5564- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5565 behavior if two or more ``!"qux"`` flags are seen is to emit a
5566 warning if their values are not equal.
5567
5568- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5569
5570 ::
5571
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005572 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005573
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005574 The behavior is to emit an error if the ``llvm.module.flags`` does not
5575 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5576 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005577
5578Objective-C Garbage Collection Module Flags Metadata
5579----------------------------------------------------
5580
5581On the Mach-O platform, Objective-C stores metadata about garbage
5582collection in a special section called "image info". The metadata
5583consists of a version number and a bitmask specifying what types of
5584garbage collection are supported (if any) by the file. If two or more
5585modules are linked together their garbage collection metadata needs to
5586be merged rather than appended together.
5587
5588The Objective-C garbage collection module flags metadata consists of the
5589following key-value pairs:
5590
5591.. list-table::
5592 :header-rows: 1
5593 :widths: 30 70
5594
5595 * - Key
5596 - Value
5597
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005598 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005599 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005600
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005601 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005602 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005603 always 0.
5604
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005605 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005606 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005607 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5608 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5609 Objective-C ABI version 2.
5610
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005611 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005612 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005613 not. Valid values are 0, for no garbage collection, and 2, for garbage
5614 collection supported.
5615
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005616 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005617 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005618 If present, its value must be 6. This flag requires that the
5619 ``Objective-C Garbage Collection`` flag have the value 2.
5620
5621Some important flag interactions:
5622
5623- If a module with ``Objective-C Garbage Collection`` set to 0 is
5624 merged with a module with ``Objective-C Garbage Collection`` set to
5625 2, then the resulting module has the
5626 ``Objective-C Garbage Collection`` flag set to 0.
5627- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5628 merged with a module with ``Objective-C GC Only`` set to 6.
5629
Oliver Stannard5dc29342014-06-20 10:08:11 +00005630C type width Module Flags Metadata
5631----------------------------------
5632
5633The ARM backend emits a section into each generated object file describing the
5634options that it was compiled with (in a compiler-independent way) to prevent
5635linking incompatible objects, and to allow automatic library selection. Some
5636of these options are not visible at the IR level, namely wchar_t width and enum
5637width.
5638
5639To pass this information to the backend, these options are encoded in module
5640flags metadata, using the following key-value pairs:
5641
5642.. list-table::
5643 :header-rows: 1
5644 :widths: 30 70
5645
5646 * - Key
5647 - Value
5648
5649 * - short_wchar
5650 - * 0 --- sizeof(wchar_t) == 4
5651 * 1 --- sizeof(wchar_t) == 2
5652
5653 * - short_enum
5654 - * 0 --- Enums are at least as large as an ``int``.
5655 * 1 --- Enums are stored in the smallest integer type which can
5656 represent all of its values.
5657
5658For example, the following metadata section specifies that the module was
5659compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5660enum is the smallest type which can represent all of its values::
5661
5662 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005663 !0 = !{i32 1, !"short_wchar", i32 1}
5664 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005665
Peter Collingbourne89061b22017-06-12 20:10:48 +00005666Automatic Linker Flags Named Metadata
5667=====================================
5668
5669Some targets support embedding flags to the linker inside individual object
5670files. Typically this is used in conjunction with language extensions which
5671allow source files to explicitly declare the libraries they depend on, and have
5672these automatically be transmitted to the linker via object files.
5673
5674These flags are encoded in the IR using named metadata with the name
5675``!llvm.linker.options``. Each operand is expected to be a metadata node
5676which should be a list of other metadata nodes, each of which should be a
5677list of metadata strings defining linker options.
5678
5679For example, the following metadata section specifies two separate sets of
5680linker options, presumably to link against ``libz`` and the ``Cocoa``
5681framework::
5682
5683 !0 = !{ !"-lz" },
5684 !1 = !{ !"-framework", !"Cocoa" } } }
5685 !llvm.linker.options = !{ !0, !1 }
5686
5687The metadata encoding as lists of lists of options, as opposed to a collapsed
5688list of options, is chosen so that the IR encoding can use multiple option
5689strings to specify e.g., a single library, while still having that specifier be
5690preserved as an atomic element that can be recognized by a target specific
5691assembly writer or object file emitter.
5692
5693Each individual option is required to be either a valid option for the target's
5694linker, or an option that is reserved by the target specific assembly writer or
5695object file emitter. No other aspect of these options is defined by the IR.
5696
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005697.. _intrinsicglobalvariables:
5698
Sean Silvab084af42012-12-07 10:36:55 +00005699Intrinsic Global Variables
5700==========================
5701
5702LLVM has a number of "magic" global variables that contain data that
5703affect code generation or other IR semantics. These are documented here.
5704All globals of this sort should have a section specified as
5705"``llvm.metadata``". This section and all globals that start with
5706"``llvm.``" are reserved for use by LLVM.
5707
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005708.. _gv_llvmused:
5709
Sean Silvab084af42012-12-07 10:36:55 +00005710The '``llvm.used``' Global Variable
5711-----------------------------------
5712
Rafael Espindola74f2e462013-04-22 14:58:02 +00005713The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005714:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005715pointers to named global variables, functions and aliases which may optionally
5716have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005717use of it is:
5718
5719.. code-block:: llvm
5720
5721 @X = global i8 4
5722 @Y = global i32 123
5723
5724 @llvm.used = appending global [2 x i8*] [
5725 i8* @X,
5726 i8* bitcast (i32* @Y to i8*)
5727 ], section "llvm.metadata"
5728
Rafael Espindola74f2e462013-04-22 14:58:02 +00005729If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5730and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005731symbol that it cannot see (which is why they have to be named). For example, if
5732a variable has internal linkage and no references other than that from the
5733``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5734references from inline asms and other things the compiler cannot "see", and
5735corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005736
5737On some targets, the code generator must emit a directive to the
5738assembler or object file to prevent the assembler and linker from
5739molesting the symbol.
5740
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005741.. _gv_llvmcompilerused:
5742
Sean Silvab084af42012-12-07 10:36:55 +00005743The '``llvm.compiler.used``' Global Variable
5744--------------------------------------------
5745
5746The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5747directive, except that it only prevents the compiler from touching the
5748symbol. On targets that support it, this allows an intelligent linker to
5749optimize references to the symbol without being impeded as it would be
5750by ``@llvm.used``.
5751
5752This is a rare construct that should only be used in rare circumstances,
5753and should not be exposed to source languages.
5754
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005755.. _gv_llvmglobalctors:
5756
Sean Silvab084af42012-12-07 10:36:55 +00005757The '``llvm.global_ctors``' Global Variable
5758-------------------------------------------
5759
5760.. code-block:: llvm
5761
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005762 %0 = type { i32, void ()*, i8* }
5763 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005764
5765The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005766functions, priorities, and an optional associated global or function.
5767The functions referenced by this array will be called in ascending order
5768of priority (i.e. lowest first) when the module is loaded. The order of
5769functions with the same priority is not defined.
5770
5771If the third field is present, non-null, and points to a global variable
5772or function, the initializer function will only run if the associated
5773data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005774
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005775.. _llvmglobaldtors:
5776
Sean Silvab084af42012-12-07 10:36:55 +00005777The '``llvm.global_dtors``' Global Variable
5778-------------------------------------------
5779
5780.. code-block:: llvm
5781
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005782 %0 = type { i32, void ()*, i8* }
5783 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005784
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005785The ``@llvm.global_dtors`` array contains a list of destructor
5786functions, priorities, and an optional associated global or function.
5787The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005788order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005789order of functions with the same priority is not defined.
5790
5791If the third field is present, non-null, and points to a global variable
5792or function, the destructor function will only run if the associated
5793data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005794
5795Instruction Reference
5796=====================
5797
5798The LLVM instruction set consists of several different classifications
5799of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5800instructions <binaryops>`, :ref:`bitwise binary
5801instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5802:ref:`other instructions <otherops>`.
5803
5804.. _terminators:
5805
5806Terminator Instructions
5807-----------------------
5808
5809As mentioned :ref:`previously <functionstructure>`, every basic block in a
5810program ends with a "Terminator" instruction, which indicates which
5811block should be executed after the current block is finished. These
5812terminator instructions typically yield a '``void``' value: they produce
5813control flow, not values (the one exception being the
5814':ref:`invoke <i_invoke>`' instruction).
5815
5816The terminator instructions are: ':ref:`ret <i_ret>`',
5817':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5818':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005819':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005820':ref:`catchret <i_catchret>`',
5821':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005822and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005823
5824.. _i_ret:
5825
5826'``ret``' Instruction
5827^^^^^^^^^^^^^^^^^^^^^
5828
5829Syntax:
5830"""""""
5831
5832::
5833
5834 ret <type> <value> ; Return a value from a non-void function
5835 ret void ; Return from void function
5836
5837Overview:
5838"""""""""
5839
5840The '``ret``' instruction is used to return control flow (and optionally
5841a value) from a function back to the caller.
5842
5843There are two forms of the '``ret``' instruction: one that returns a
5844value and then causes control flow, and one that just causes control
5845flow to occur.
5846
5847Arguments:
5848""""""""""
5849
5850The '``ret``' instruction optionally accepts a single argument, the
5851return value. The type of the return value must be a ':ref:`first
5852class <t_firstclass>`' type.
5853
5854A function is not :ref:`well formed <wellformed>` if it it has a non-void
5855return type and contains a '``ret``' instruction with no return value or
5856a return value with a type that does not match its type, or if it has a
5857void return type and contains a '``ret``' instruction with a return
5858value.
5859
5860Semantics:
5861""""""""""
5862
5863When the '``ret``' instruction is executed, control flow returns back to
5864the calling function's context. If the caller is a
5865":ref:`call <i_call>`" instruction, execution continues at the
5866instruction after the call. If the caller was an
5867":ref:`invoke <i_invoke>`" instruction, execution continues at the
5868beginning of the "normal" destination block. If the instruction returns
5869a value, that value shall set the call or invoke instruction's return
5870value.
5871
5872Example:
5873""""""""
5874
5875.. code-block:: llvm
5876
5877 ret i32 5 ; Return an integer value of 5
5878 ret void ; Return from a void function
5879 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5880
5881.. _i_br:
5882
5883'``br``' Instruction
5884^^^^^^^^^^^^^^^^^^^^
5885
5886Syntax:
5887"""""""
5888
5889::
5890
5891 br i1 <cond>, label <iftrue>, label <iffalse>
5892 br label <dest> ; Unconditional branch
5893
5894Overview:
5895"""""""""
5896
5897The '``br``' instruction is used to cause control flow to transfer to a
5898different basic block in the current function. There are two forms of
5899this instruction, corresponding to a conditional branch and an
5900unconditional branch.
5901
5902Arguments:
5903""""""""""
5904
5905The conditional branch form of the '``br``' instruction takes a single
5906'``i1``' value and two '``label``' values. The unconditional form of the
5907'``br``' instruction takes a single '``label``' value as a target.
5908
5909Semantics:
5910""""""""""
5911
5912Upon execution of a conditional '``br``' instruction, the '``i1``'
5913argument is evaluated. If the value is ``true``, control flows to the
5914'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5915to the '``iffalse``' ``label`` argument.
5916
5917Example:
5918""""""""
5919
5920.. code-block:: llvm
5921
5922 Test:
5923 %cond = icmp eq i32 %a, %b
5924 br i1 %cond, label %IfEqual, label %IfUnequal
5925 IfEqual:
5926 ret i32 1
5927 IfUnequal:
5928 ret i32 0
5929
5930.. _i_switch:
5931
5932'``switch``' Instruction
5933^^^^^^^^^^^^^^^^^^^^^^^^
5934
5935Syntax:
5936"""""""
5937
5938::
5939
5940 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5941
5942Overview:
5943"""""""""
5944
5945The '``switch``' instruction is used to transfer control flow to one of
5946several different places. It is a generalization of the '``br``'
5947instruction, allowing a branch to occur to one of many possible
5948destinations.
5949
5950Arguments:
5951""""""""""
5952
5953The '``switch``' instruction uses three parameters: an integer
5954comparison value '``value``', a default '``label``' destination, and an
5955array of pairs of comparison value constants and '``label``'s. The table
5956is not allowed to contain duplicate constant entries.
5957
5958Semantics:
5959""""""""""
5960
5961The ``switch`` instruction specifies a table of values and destinations.
5962When the '``switch``' instruction is executed, this table is searched
5963for the given value. If the value is found, control flow is transferred
5964to the corresponding destination; otherwise, control flow is transferred
5965to the default destination.
5966
5967Implementation:
5968"""""""""""""""
5969
5970Depending on properties of the target machine and the particular
5971``switch`` instruction, this instruction may be code generated in
5972different ways. For example, it could be generated as a series of
5973chained conditional branches or with a lookup table.
5974
5975Example:
5976""""""""
5977
5978.. code-block:: llvm
5979
5980 ; Emulate a conditional br instruction
5981 %Val = zext i1 %value to i32
5982 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5983
5984 ; Emulate an unconditional br instruction
5985 switch i32 0, label %dest [ ]
5986
5987 ; Implement a jump table:
5988 switch i32 %val, label %otherwise [ i32 0, label %onzero
5989 i32 1, label %onone
5990 i32 2, label %ontwo ]
5991
5992.. _i_indirectbr:
5993
5994'``indirectbr``' Instruction
5995^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5996
5997Syntax:
5998"""""""
5999
6000::
6001
6002 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
6003
6004Overview:
6005"""""""""
6006
6007The '``indirectbr``' instruction implements an indirect branch to a
6008label within the current function, whose address is specified by
6009"``address``". Address must be derived from a
6010:ref:`blockaddress <blockaddress>` constant.
6011
6012Arguments:
6013""""""""""
6014
6015The '``address``' argument is the address of the label to jump to. The
6016rest of the arguments indicate the full set of possible destinations
6017that the address may point to. Blocks are allowed to occur multiple
6018times in the destination list, though this isn't particularly useful.
6019
6020This destination list is required so that dataflow analysis has an
6021accurate understanding of the CFG.
6022
6023Semantics:
6024""""""""""
6025
6026Control transfers to the block specified in the address argument. All
6027possible destination blocks must be listed in the label list, otherwise
6028this instruction has undefined behavior. This implies that jumps to
6029labels defined in other functions have undefined behavior as well.
6030
6031Implementation:
6032"""""""""""""""
6033
6034This is typically implemented with a jump through a register.
6035
6036Example:
6037""""""""
6038
6039.. code-block:: llvm
6040
6041 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
6042
6043.. _i_invoke:
6044
6045'``invoke``' Instruction
6046^^^^^^^^^^^^^^^^^^^^^^^^
6047
6048Syntax:
6049"""""""
6050
6051::
6052
David Blaikieb83cf102016-07-13 17:21:34 +00006053 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006054 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00006055
6056Overview:
6057"""""""""
6058
6059The '``invoke``' instruction causes control to transfer to a specified
6060function, with the possibility of control flow transfer to either the
6061'``normal``' label or the '``exception``' label. If the callee function
6062returns with the "``ret``" instruction, control flow will return to the
6063"normal" label. If the callee (or any indirect callees) returns via the
6064":ref:`resume <i_resume>`" instruction or other exception handling
6065mechanism, control is interrupted and continued at the dynamically
6066nearest "exception" label.
6067
6068The '``exception``' label is a `landing
6069pad <ExceptionHandling.html#overview>`_ for the exception. As such,
6070'``exception``' label is required to have the
6071":ref:`landingpad <i_landingpad>`" instruction, which contains the
6072information about the behavior of the program after unwinding happens,
6073as its first non-PHI instruction. The restrictions on the
6074"``landingpad``" instruction's tightly couples it to the "``invoke``"
6075instruction, so that the important information contained within the
6076"``landingpad``" instruction can't be lost through normal code motion.
6077
6078Arguments:
6079""""""""""
6080
6081This instruction requires several arguments:
6082
6083#. The optional "cconv" marker indicates which :ref:`calling
6084 convention <callingconv>` the call should use. If none is
6085 specified, the call defaults to using C calling conventions.
6086#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6087 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6088 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00006089#. '``ty``': the type of the call instruction itself which is also the
6090 type of the return value. Functions that return no value are marked
6091 ``void``.
6092#. '``fnty``': shall be the signature of the function being invoked. The
6093 argument types must match the types implied by this signature. This
6094 type can be omitted if the function is not varargs.
6095#. '``fnptrval``': An LLVM value containing a pointer to a function to
6096 be invoked. In most cases, this is a direct function invocation, but
6097 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
6098 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00006099#. '``function args``': argument list whose types match the function
6100 signature argument types and parameter attributes. All arguments must
6101 be of :ref:`first class <t_firstclass>` type. If the function signature
6102 indicates the function accepts a variable number of arguments, the
6103 extra arguments can be specified.
6104#. '``normal label``': the label reached when the called function
6105 executes a '``ret``' instruction.
6106#. '``exception label``': the label reached when a callee returns via
6107 the :ref:`resume <i_resume>` instruction or other exception handling
6108 mechanism.
George Burgess IV8a464a72017-04-13 05:00:31 +00006109#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006110#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00006111
6112Semantics:
6113""""""""""
6114
6115This instruction is designed to operate as a standard '``call``'
6116instruction in most regards. The primary difference is that it
6117establishes an association with a label, which is used by the runtime
6118library to unwind the stack.
6119
6120This instruction is used in languages with destructors to ensure that
6121proper cleanup is performed in the case of either a ``longjmp`` or a
6122thrown exception. Additionally, this is important for implementation of
6123'``catch``' clauses in high-level languages that support them.
6124
6125For the purposes of the SSA form, the definition of the value returned
6126by the '``invoke``' instruction is deemed to occur on the edge from the
6127current block to the "normal" label. If the callee unwinds then no
6128return value is available.
6129
6130Example:
6131""""""""
6132
6133.. code-block:: llvm
6134
6135 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006136 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006137 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006138 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006139
6140.. _i_resume:
6141
6142'``resume``' Instruction
6143^^^^^^^^^^^^^^^^^^^^^^^^
6144
6145Syntax:
6146"""""""
6147
6148::
6149
6150 resume <type> <value>
6151
6152Overview:
6153"""""""""
6154
6155The '``resume``' instruction is a terminator instruction that has no
6156successors.
6157
6158Arguments:
6159""""""""""
6160
6161The '``resume``' instruction requires one argument, which must have the
6162same type as the result of any '``landingpad``' instruction in the same
6163function.
6164
6165Semantics:
6166""""""""""
6167
6168The '``resume``' instruction resumes propagation of an existing
6169(in-flight) exception whose unwinding was interrupted with a
6170:ref:`landingpad <i_landingpad>` instruction.
6171
6172Example:
6173""""""""
6174
6175.. code-block:: llvm
6176
6177 resume { i8*, i32 } %exn
6178
David Majnemer8a1c45d2015-12-12 05:38:55 +00006179.. _i_catchswitch:
6180
6181'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00006182^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00006183
6184Syntax:
6185"""""""
6186
6187::
6188
6189 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
6190 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
6191
6192Overview:
6193"""""""""
6194
6195The '``catchswitch``' instruction is used by `LLVM's exception handling system
6196<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
6197that may be executed by the :ref:`EH personality routine <personalityfn>`.
6198
6199Arguments:
6200""""""""""
6201
6202The ``parent`` argument is the token of the funclet that contains the
6203``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
6204this operand may be the token ``none``.
6205
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006206The ``default`` argument is the label of another basic block beginning with
6207either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
6208must be a legal target with respect to the ``parent`` links, as described in
6209the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00006210
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006211The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00006212:ref:`catchpad <i_catchpad>` instruction.
6213
6214Semantics:
6215""""""""""
6216
6217Executing this instruction transfers control to one of the successors in
6218``handlers``, if appropriate, or continues to unwind via the unwind label if
6219present.
6220
6221The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
6222it must be both the first non-phi instruction and last instruction in the basic
6223block. Therefore, it must be the only non-phi instruction in the block.
6224
6225Example:
6226""""""""
6227
Renato Golin124f2592016-07-20 12:16:38 +00006228.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00006229
6230 dispatch1:
6231 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
6232 dispatch2:
6233 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
6234
David Majnemer654e1302015-07-31 17:58:14 +00006235.. _i_catchret:
6236
6237'``catchret``' Instruction
6238^^^^^^^^^^^^^^^^^^^^^^^^^^
6239
6240Syntax:
6241"""""""
6242
6243::
6244
David Majnemer8a1c45d2015-12-12 05:38:55 +00006245 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00006246
6247Overview:
6248"""""""""
6249
6250The '``catchret``' instruction is a terminator instruction that has a
6251single successor.
6252
6253
6254Arguments:
6255""""""""""
6256
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006257The first argument to a '``catchret``' indicates which ``catchpad`` it
6258exits. It must be a :ref:`catchpad <i_catchpad>`.
6259The second argument to a '``catchret``' specifies where control will
6260transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00006261
6262Semantics:
6263""""""""""
6264
David Majnemer8a1c45d2015-12-12 05:38:55 +00006265The '``catchret``' instruction ends an existing (in-flight) exception whose
6266unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
6267:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
6268code to, for example, destroy the active exception. Control then transfers to
6269``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006270
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006271The ``token`` argument must be a token produced by a ``catchpad`` instruction.
6272If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
6273funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6274the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00006275
6276Example:
6277""""""""
6278
Renato Golin124f2592016-07-20 12:16:38 +00006279.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006280
David Majnemer8a1c45d2015-12-12 05:38:55 +00006281 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006282
David Majnemer654e1302015-07-31 17:58:14 +00006283.. _i_cleanupret:
6284
6285'``cleanupret``' Instruction
6286^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6287
6288Syntax:
6289"""""""
6290
6291::
6292
David Majnemer8a1c45d2015-12-12 05:38:55 +00006293 cleanupret from <value> unwind label <continue>
6294 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00006295
6296Overview:
6297"""""""""
6298
6299The '``cleanupret``' instruction is a terminator instruction that has
6300an optional successor.
6301
6302
6303Arguments:
6304""""""""""
6305
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006306The '``cleanupret``' instruction requires one argument, which indicates
6307which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006308If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
6309funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6310the ``cleanupret``'s behavior is undefined.
6311
6312The '``cleanupret``' instruction also has an optional successor, ``continue``,
6313which must be the label of another basic block beginning with either a
6314``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
6315be a legal target with respect to the ``parent`` links, as described in the
6316`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00006317
6318Semantics:
6319""""""""""
6320
6321The '``cleanupret``' instruction indicates to the
6322:ref:`personality function <personalityfn>` that one
6323:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
6324It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006325
David Majnemer654e1302015-07-31 17:58:14 +00006326Example:
6327""""""""
6328
Renato Golin124f2592016-07-20 12:16:38 +00006329.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006330
David Majnemer8a1c45d2015-12-12 05:38:55 +00006331 cleanupret from %cleanup unwind to caller
6332 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00006333
Sean Silvab084af42012-12-07 10:36:55 +00006334.. _i_unreachable:
6335
6336'``unreachable``' Instruction
6337^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6338
6339Syntax:
6340"""""""
6341
6342::
6343
6344 unreachable
6345
6346Overview:
6347"""""""""
6348
6349The '``unreachable``' instruction has no defined semantics. This
6350instruction is used to inform the optimizer that a particular portion of
6351the code is not reachable. This can be used to indicate that the code
6352after a no-return function cannot be reached, and other facts.
6353
6354Semantics:
6355""""""""""
6356
6357The '``unreachable``' instruction has no defined semantics.
6358
6359.. _binaryops:
6360
6361Binary Operations
6362-----------------
6363
6364Binary operators are used to do most of the computation in a program.
6365They require two operands of the same type, execute an operation on
6366them, and produce a single value. The operands might represent multiple
6367data, as is the case with the :ref:`vector <t_vector>` data type. The
6368result value has the same type as its operands.
6369
6370There are several different binary operators:
6371
6372.. _i_add:
6373
6374'``add``' Instruction
6375^^^^^^^^^^^^^^^^^^^^^
6376
6377Syntax:
6378"""""""
6379
6380::
6381
Tim Northover675a0962014-06-13 14:24:23 +00006382 <result> = add <ty> <op1>, <op2> ; yields ty:result
6383 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
6384 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
6385 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006386
6387Overview:
6388"""""""""
6389
6390The '``add``' instruction returns the sum of its two operands.
6391
6392Arguments:
6393""""""""""
6394
6395The two arguments to the '``add``' instruction must be
6396:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6397arguments must have identical types.
6398
6399Semantics:
6400""""""""""
6401
6402The value produced is the integer sum of the two operands.
6403
6404If the sum has unsigned overflow, the result returned is the
6405mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6406the result.
6407
6408Because LLVM integers use a two's complement representation, this
6409instruction is appropriate for both signed and unsigned integers.
6410
6411``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6412respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6413result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
6414unsigned and/or signed overflow, respectively, occurs.
6415
6416Example:
6417""""""""
6418
Renato Golin124f2592016-07-20 12:16:38 +00006419.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006420
Tim Northover675a0962014-06-13 14:24:23 +00006421 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006422
6423.. _i_fadd:
6424
6425'``fadd``' Instruction
6426^^^^^^^^^^^^^^^^^^^^^^
6427
6428Syntax:
6429"""""""
6430
6431::
6432
Tim Northover675a0962014-06-13 14:24:23 +00006433 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006434
6435Overview:
6436"""""""""
6437
6438The '``fadd``' instruction returns the sum of its two operands.
6439
6440Arguments:
6441""""""""""
6442
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00006443The two arguments to the '``fadd``' instruction must be
6444:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
6445floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00006446
6447Semantics:
6448""""""""""
6449
Sanjay Patel7b722402018-03-07 17:18:22 +00006450The value produced is the floating-point sum of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00006451This instruction is assumed to execute in the default :ref:`floating-point
6452environment <floatenv>`.
Sanjay Patel7b722402018-03-07 17:18:22 +00006453This instruction can also take any number of :ref:`fast-math
6454flags <fastmath>`, which are optimization hints to enable otherwise
6455unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006456
6457Example:
6458""""""""
6459
Renato Golin124f2592016-07-20 12:16:38 +00006460.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006461
Tim Northover675a0962014-06-13 14:24:23 +00006462 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006463
6464'``sub``' Instruction
6465^^^^^^^^^^^^^^^^^^^^^
6466
6467Syntax:
6468"""""""
6469
6470::
6471
Tim Northover675a0962014-06-13 14:24:23 +00006472 <result> = sub <ty> <op1>, <op2> ; yields ty:result
6473 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
6474 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
6475 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006476
6477Overview:
6478"""""""""
6479
6480The '``sub``' instruction returns the difference of its two operands.
6481
6482Note that the '``sub``' instruction is used to represent the '``neg``'
6483instruction present in most other intermediate representations.
6484
6485Arguments:
6486""""""""""
6487
6488The two arguments to the '``sub``' instruction must be
6489:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6490arguments must have identical types.
6491
6492Semantics:
6493""""""""""
6494
6495The value produced is the integer difference of the two operands.
6496
6497If the difference has unsigned overflow, the result returned is the
6498mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6499the result.
6500
6501Because LLVM integers use a two's complement representation, this
6502instruction is appropriate for both signed and unsigned integers.
6503
6504``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6505respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6506result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
6507unsigned and/or signed overflow, respectively, occurs.
6508
6509Example:
6510""""""""
6511
Renato Golin124f2592016-07-20 12:16:38 +00006512.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006513
Tim Northover675a0962014-06-13 14:24:23 +00006514 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6515 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006516
6517.. _i_fsub:
6518
6519'``fsub``' Instruction
6520^^^^^^^^^^^^^^^^^^^^^^
6521
6522Syntax:
6523"""""""
6524
6525::
6526
Tim Northover675a0962014-06-13 14:24:23 +00006527 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006528
6529Overview:
6530"""""""""
6531
6532The '``fsub``' instruction returns the difference of its two operands.
6533
6534Note that the '``fsub``' instruction is used to represent the '``fneg``'
6535instruction present in most other intermediate representations.
6536
6537Arguments:
6538""""""""""
6539
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00006540The two arguments to the '``fsub``' instruction must be
6541:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
6542floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00006543
6544Semantics:
6545""""""""""
6546
Sanjay Patel7b722402018-03-07 17:18:22 +00006547The value produced is the floating-point difference of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00006548This instruction is assumed to execute in the default :ref:`floating-point
6549environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00006550This instruction can also take any number of :ref:`fast-math
6551flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00006552unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006553
6554Example:
6555""""""""
6556
Renato Golin124f2592016-07-20 12:16:38 +00006557.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006558
Tim Northover675a0962014-06-13 14:24:23 +00006559 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6560 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006561
6562'``mul``' Instruction
6563^^^^^^^^^^^^^^^^^^^^^
6564
6565Syntax:
6566"""""""
6567
6568::
6569
Tim Northover675a0962014-06-13 14:24:23 +00006570 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6571 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6572 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6573 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006574
6575Overview:
6576"""""""""
6577
6578The '``mul``' instruction returns the product of its two operands.
6579
6580Arguments:
6581""""""""""
6582
6583The two arguments to the '``mul``' instruction must be
6584:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6585arguments must have identical types.
6586
6587Semantics:
6588""""""""""
6589
6590The value produced is the integer product of the two operands.
6591
6592If the result of the multiplication has unsigned overflow, the result
6593returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6594bit width of the result.
6595
6596Because LLVM integers use a two's complement representation, and the
6597result is the same width as the operands, this instruction returns the
6598correct result for both signed and unsigned integers. If a full product
6599(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6600sign-extended or zero-extended as appropriate to the width of the full
6601product.
6602
6603``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6604respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6605result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6606unsigned and/or signed overflow, respectively, occurs.
6607
6608Example:
6609""""""""
6610
Renato Golin124f2592016-07-20 12:16:38 +00006611.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006612
Tim Northover675a0962014-06-13 14:24:23 +00006613 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006614
6615.. _i_fmul:
6616
6617'``fmul``' Instruction
6618^^^^^^^^^^^^^^^^^^^^^^
6619
6620Syntax:
6621"""""""
6622
6623::
6624
Tim Northover675a0962014-06-13 14:24:23 +00006625 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006626
6627Overview:
6628"""""""""
6629
6630The '``fmul``' instruction returns the product of its two operands.
6631
6632Arguments:
6633""""""""""
6634
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00006635The two arguments to the '``fmul``' instruction must be
6636:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
6637floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00006638
6639Semantics:
6640""""""""""
6641
Sanjay Patel7b722402018-03-07 17:18:22 +00006642The value produced is the floating-point product of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00006643This instruction is assumed to execute in the default :ref:`floating-point
6644environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00006645This instruction can also take any number of :ref:`fast-math
6646flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00006647unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006648
6649Example:
6650""""""""
6651
Renato Golin124f2592016-07-20 12:16:38 +00006652.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006653
Tim Northover675a0962014-06-13 14:24:23 +00006654 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006655
6656'``udiv``' Instruction
6657^^^^^^^^^^^^^^^^^^^^^^
6658
6659Syntax:
6660"""""""
6661
6662::
6663
Tim Northover675a0962014-06-13 14:24:23 +00006664 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6665 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006666
6667Overview:
6668"""""""""
6669
6670The '``udiv``' instruction returns the quotient of its two operands.
6671
6672Arguments:
6673""""""""""
6674
6675The two arguments to the '``udiv``' instruction must be
6676:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6677arguments must have identical types.
6678
6679Semantics:
6680""""""""""
6681
6682The value produced is the unsigned integer quotient of the two operands.
6683
6684Note that unsigned integer division and signed integer division are
6685distinct operations; for signed integer division, use '``sdiv``'.
6686
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006687Division by zero is undefined behavior. For vectors, if any element
6688of the divisor is zero, the operation has undefined behavior.
6689
Sean Silvab084af42012-12-07 10:36:55 +00006690
6691If the ``exact`` keyword is present, the result value of the ``udiv`` is
6692a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6693such, "((a udiv exact b) mul b) == a").
6694
6695Example:
6696""""""""
6697
Renato Golin124f2592016-07-20 12:16:38 +00006698.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006699
Tim Northover675a0962014-06-13 14:24:23 +00006700 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006701
6702'``sdiv``' Instruction
6703^^^^^^^^^^^^^^^^^^^^^^
6704
6705Syntax:
6706"""""""
6707
6708::
6709
Tim Northover675a0962014-06-13 14:24:23 +00006710 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6711 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006712
6713Overview:
6714"""""""""
6715
6716The '``sdiv``' instruction returns the quotient of its two operands.
6717
6718Arguments:
6719""""""""""
6720
6721The two arguments to the '``sdiv``' instruction must be
6722:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6723arguments must have identical types.
6724
6725Semantics:
6726""""""""""
6727
6728The value produced is the signed integer quotient of the two operands
6729rounded towards zero.
6730
6731Note that signed integer division and unsigned integer division are
6732distinct operations; for unsigned integer division, use '``udiv``'.
6733
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006734Division by zero is undefined behavior. For vectors, if any element
6735of the divisor is zero, the operation has undefined behavior.
6736Overflow also leads to undefined behavior; this is a rare case, but can
6737occur, for example, by doing a 32-bit division of -2147483648 by -1.
Sean Silvab084af42012-12-07 10:36:55 +00006738
6739If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6740a :ref:`poison value <poisonvalues>` if the result would be rounded.
6741
6742Example:
6743""""""""
6744
Renato Golin124f2592016-07-20 12:16:38 +00006745.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006746
Tim Northover675a0962014-06-13 14:24:23 +00006747 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006748
6749.. _i_fdiv:
6750
6751'``fdiv``' Instruction
6752^^^^^^^^^^^^^^^^^^^^^^
6753
6754Syntax:
6755"""""""
6756
6757::
6758
Tim Northover675a0962014-06-13 14:24:23 +00006759 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006760
6761Overview:
6762"""""""""
6763
6764The '``fdiv``' instruction returns the quotient of its two operands.
6765
6766Arguments:
6767""""""""""
6768
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00006769The two arguments to the '``fdiv``' instruction must be
6770:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
6771floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00006772
6773Semantics:
6774""""""""""
6775
Sanjay Patel7b722402018-03-07 17:18:22 +00006776The value produced is the floating-point quotient of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00006777This instruction is assumed to execute in the default :ref:`floating-point
6778environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00006779This instruction can also take any number of :ref:`fast-math
6780flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00006781unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006782
6783Example:
6784""""""""
6785
Renato Golin124f2592016-07-20 12:16:38 +00006786.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006787
Tim Northover675a0962014-06-13 14:24:23 +00006788 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006789
6790'``urem``' Instruction
6791^^^^^^^^^^^^^^^^^^^^^^
6792
6793Syntax:
6794"""""""
6795
6796::
6797
Tim Northover675a0962014-06-13 14:24:23 +00006798 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006799
6800Overview:
6801"""""""""
6802
6803The '``urem``' instruction returns the remainder from the unsigned
6804division of its two arguments.
6805
6806Arguments:
6807""""""""""
6808
6809The two arguments to the '``urem``' instruction must be
6810:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6811arguments must have identical types.
6812
6813Semantics:
6814""""""""""
6815
6816This instruction returns the unsigned integer *remainder* of a division.
6817This instruction always performs an unsigned division to get the
6818remainder.
6819
6820Note that unsigned integer remainder and signed integer remainder are
6821distinct operations; for signed integer remainder, use '``srem``'.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00006822
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006823Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00006824For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006825undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006826
6827Example:
6828""""""""
6829
Renato Golin124f2592016-07-20 12:16:38 +00006830.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006831
Tim Northover675a0962014-06-13 14:24:23 +00006832 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006833
6834'``srem``' Instruction
6835^^^^^^^^^^^^^^^^^^^^^^
6836
6837Syntax:
6838"""""""
6839
6840::
6841
Tim Northover675a0962014-06-13 14:24:23 +00006842 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006843
6844Overview:
6845"""""""""
6846
6847The '``srem``' instruction returns the remainder from the signed
6848division of its two operands. This instruction can also take
6849:ref:`vector <t_vector>` versions of the values in which case the elements
6850must be integers.
6851
6852Arguments:
6853""""""""""
6854
6855The two arguments to the '``srem``' instruction must be
6856:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6857arguments must have identical types.
6858
6859Semantics:
6860""""""""""
6861
6862This instruction returns the *remainder* of a division (where the result
6863is either zero or has the same sign as the dividend, ``op1``), not the
6864*modulo* operator (where the result is either zero or has the same sign
6865as the divisor, ``op2``) of a value. For more information about the
6866difference, see `The Math
6867Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6868table of how this is implemented in various languages, please see
6869`Wikipedia: modulo
6870operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6871
6872Note that signed integer remainder and unsigned integer remainder are
6873distinct operations; for unsigned integer remainder, use '``urem``'.
6874
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006875Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00006876For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006877undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006878Overflow also leads to undefined behavior; this is a rare case, but can
6879occur, for example, by taking the remainder of a 32-bit division of
6880-2147483648 by -1. (The remainder doesn't actually overflow, but this
6881rule lets srem be implemented using instructions that return both the
6882result of the division and the remainder.)
6883
6884Example:
6885""""""""
6886
Renato Golin124f2592016-07-20 12:16:38 +00006887.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006888
Tim Northover675a0962014-06-13 14:24:23 +00006889 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006890
6891.. _i_frem:
6892
6893'``frem``' Instruction
6894^^^^^^^^^^^^^^^^^^^^^^
6895
6896Syntax:
6897"""""""
6898
6899::
6900
Tim Northover675a0962014-06-13 14:24:23 +00006901 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006902
6903Overview:
6904"""""""""
6905
6906The '``frem``' instruction returns the remainder from the division of
6907its two operands.
6908
6909Arguments:
6910""""""""""
6911
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00006912The two arguments to the '``frem``' instruction must be
6913:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
6914floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00006915
6916Semantics:
6917""""""""""
6918
Sanjay Patel7b722402018-03-07 17:18:22 +00006919The value produced is the floating-point remainder of the two operands.
6920This is the same output as a libm '``fmod``' function, but without any
6921possibility of setting ``errno``. The remainder has the same sign as the
6922dividend.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00006923This instruction is assumed to execute in the default :ref:`floating-point
6924environment <floatenv>`.
Sanjay Patel7b722402018-03-07 17:18:22 +00006925This instruction can also take any number of :ref:`fast-math
6926flags <fastmath>`, which are optimization hints to enable otherwise
6927unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006928
6929Example:
6930""""""""
6931
Renato Golin124f2592016-07-20 12:16:38 +00006932.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006933
Tim Northover675a0962014-06-13 14:24:23 +00006934 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006935
6936.. _bitwiseops:
6937
6938Bitwise Binary Operations
6939-------------------------
6940
6941Bitwise binary operators are used to do various forms of bit-twiddling
6942in a program. They are generally very efficient instructions and can
6943commonly be strength reduced from other instructions. They require two
6944operands of the same type, execute an operation on them, and produce a
6945single value. The resulting value is the same type as its operands.
6946
6947'``shl``' Instruction
6948^^^^^^^^^^^^^^^^^^^^^
6949
6950Syntax:
6951"""""""
6952
6953::
6954
Tim Northover675a0962014-06-13 14:24:23 +00006955 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6956 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6957 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6958 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006959
6960Overview:
6961"""""""""
6962
6963The '``shl``' instruction returns the first operand shifted to the left
6964a specified number of bits.
6965
6966Arguments:
6967""""""""""
6968
6969Both arguments to the '``shl``' instruction must be the same
6970:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6971'``op2``' is treated as an unsigned value.
6972
6973Semantics:
6974""""""""""
6975
6976The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6977where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006978dynamically) equal to or larger than the number of bits in
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006979``op1``, this instruction returns a :ref:`poison value <poisonvalues>`.
6980If the arguments are vectors, each vector element of ``op1`` is shifted
6981by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006982
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006983If the ``nuw`` keyword is present, then the shift produces a poison
6984value if it shifts out any non-zero bits.
6985If the ``nsw`` keyword is present, then the shift produces a poison
6986value it shifts out any bits that disagree with the resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00006987
6988Example:
6989""""""""
6990
Renato Golin124f2592016-07-20 12:16:38 +00006991.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006992
Tim Northover675a0962014-06-13 14:24:23 +00006993 <result> = shl i32 4, %var ; yields i32: 4 << %var
6994 <result> = shl i32 4, 2 ; yields i32: 16
6995 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006996 <result> = shl i32 1, 32 ; undefined
6997 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6998
6999'``lshr``' Instruction
7000^^^^^^^^^^^^^^^^^^^^^^
7001
7002Syntax:
7003"""""""
7004
7005::
7006
Tim Northover675a0962014-06-13 14:24:23 +00007007 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
7008 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007009
7010Overview:
7011"""""""""
7012
7013The '``lshr``' instruction (logical shift right) returns the first
7014operand shifted to the right a specified number of bits with zero fill.
7015
7016Arguments:
7017""""""""""
7018
7019Both arguments to the '``lshr``' instruction must be the same
7020:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7021'``op2``' is treated as an unsigned value.
7022
7023Semantics:
7024""""""""""
7025
7026This instruction always performs a logical shift right operation. The
7027most significant bits of the result will be filled with zero bits after
7028the shift. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007029than the number of bits in ``op1``, this instruction returns a :ref:`poison
7030value <poisonvalues>`. If the arguments are vectors, each vector element
7031of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007032
7033If the ``exact`` keyword is present, the result value of the ``lshr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007034a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007035
7036Example:
7037""""""""
7038
Renato Golin124f2592016-07-20 12:16:38 +00007039.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007040
Tim Northover675a0962014-06-13 14:24:23 +00007041 <result> = lshr i32 4, 1 ; yields i32:result = 2
7042 <result> = lshr i32 4, 2 ; yields i32:result = 1
7043 <result> = lshr i8 4, 3 ; yields i8:result = 0
7044 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00007045 <result> = lshr i32 1, 32 ; undefined
7046 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
7047
7048'``ashr``' Instruction
7049^^^^^^^^^^^^^^^^^^^^^^
7050
7051Syntax:
7052"""""""
7053
7054::
7055
Tim Northover675a0962014-06-13 14:24:23 +00007056 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
7057 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007058
7059Overview:
7060"""""""""
7061
7062The '``ashr``' instruction (arithmetic shift right) returns the first
7063operand shifted to the right a specified number of bits with sign
7064extension.
7065
7066Arguments:
7067""""""""""
7068
7069Both arguments to the '``ashr``' instruction must be the same
7070:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7071'``op2``' is treated as an unsigned value.
7072
7073Semantics:
7074""""""""""
7075
7076This instruction always performs an arithmetic shift right operation,
7077The most significant bits of the result will be filled with the sign bit
7078of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007079than the number of bits in ``op1``, this instruction returns a :ref:`poison
7080value <poisonvalues>`. If the arguments are vectors, each vector element
7081of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007082
7083If the ``exact`` keyword is present, the result value of the ``ashr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007084a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007085
7086Example:
7087""""""""
7088
Renato Golin124f2592016-07-20 12:16:38 +00007089.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007090
Tim Northover675a0962014-06-13 14:24:23 +00007091 <result> = ashr i32 4, 1 ; yields i32:result = 2
7092 <result> = ashr i32 4, 2 ; yields i32:result = 1
7093 <result> = ashr i8 4, 3 ; yields i8:result = 0
7094 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00007095 <result> = ashr i32 1, 32 ; undefined
7096 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
7097
7098'``and``' Instruction
7099^^^^^^^^^^^^^^^^^^^^^
7100
7101Syntax:
7102"""""""
7103
7104::
7105
Tim Northover675a0962014-06-13 14:24:23 +00007106 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007107
7108Overview:
7109"""""""""
7110
7111The '``and``' instruction returns the bitwise logical and of its two
7112operands.
7113
7114Arguments:
7115""""""""""
7116
7117The two arguments to the '``and``' instruction must be
7118:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7119arguments must have identical types.
7120
7121Semantics:
7122""""""""""
7123
7124The truth table used for the '``and``' instruction is:
7125
7126+-----+-----+-----+
7127| In0 | In1 | Out |
7128+-----+-----+-----+
7129| 0 | 0 | 0 |
7130+-----+-----+-----+
7131| 0 | 1 | 0 |
7132+-----+-----+-----+
7133| 1 | 0 | 0 |
7134+-----+-----+-----+
7135| 1 | 1 | 1 |
7136+-----+-----+-----+
7137
7138Example:
7139""""""""
7140
Renato Golin124f2592016-07-20 12:16:38 +00007141.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007142
Tim Northover675a0962014-06-13 14:24:23 +00007143 <result> = and i32 4, %var ; yields i32:result = 4 & %var
7144 <result> = and i32 15, 40 ; yields i32:result = 8
7145 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00007146
7147'``or``' Instruction
7148^^^^^^^^^^^^^^^^^^^^
7149
7150Syntax:
7151"""""""
7152
7153::
7154
Tim Northover675a0962014-06-13 14:24:23 +00007155 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007156
7157Overview:
7158"""""""""
7159
7160The '``or``' instruction returns the bitwise logical inclusive or of its
7161two operands.
7162
7163Arguments:
7164""""""""""
7165
7166The two arguments to the '``or``' instruction must be
7167:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7168arguments must have identical types.
7169
7170Semantics:
7171""""""""""
7172
7173The truth table used for the '``or``' instruction is:
7174
7175+-----+-----+-----+
7176| In0 | In1 | Out |
7177+-----+-----+-----+
7178| 0 | 0 | 0 |
7179+-----+-----+-----+
7180| 0 | 1 | 1 |
7181+-----+-----+-----+
7182| 1 | 0 | 1 |
7183+-----+-----+-----+
7184| 1 | 1 | 1 |
7185+-----+-----+-----+
7186
7187Example:
7188""""""""
7189
7190::
7191
Tim Northover675a0962014-06-13 14:24:23 +00007192 <result> = or i32 4, %var ; yields i32:result = 4 | %var
7193 <result> = or i32 15, 40 ; yields i32:result = 47
7194 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00007195
7196'``xor``' Instruction
7197^^^^^^^^^^^^^^^^^^^^^
7198
7199Syntax:
7200"""""""
7201
7202::
7203
Tim Northover675a0962014-06-13 14:24:23 +00007204 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007205
7206Overview:
7207"""""""""
7208
7209The '``xor``' instruction returns the bitwise logical exclusive or of
7210its two operands. The ``xor`` is used to implement the "one's
7211complement" operation, which is the "~" operator in C.
7212
7213Arguments:
7214""""""""""
7215
7216The two arguments to the '``xor``' instruction must be
7217:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7218arguments must have identical types.
7219
7220Semantics:
7221""""""""""
7222
7223The truth table used for the '``xor``' instruction is:
7224
7225+-----+-----+-----+
7226| In0 | In1 | Out |
7227+-----+-----+-----+
7228| 0 | 0 | 0 |
7229+-----+-----+-----+
7230| 0 | 1 | 1 |
7231+-----+-----+-----+
7232| 1 | 0 | 1 |
7233+-----+-----+-----+
7234| 1 | 1 | 0 |
7235+-----+-----+-----+
7236
7237Example:
7238""""""""
7239
Renato Golin124f2592016-07-20 12:16:38 +00007240.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007241
Tim Northover675a0962014-06-13 14:24:23 +00007242 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
7243 <result> = xor i32 15, 40 ; yields i32:result = 39
7244 <result> = xor i32 4, 8 ; yields i32:result = 12
7245 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00007246
7247Vector Operations
7248-----------------
7249
7250LLVM supports several instructions to represent vector operations in a
7251target-independent manner. These instructions cover the element-access
7252and vector-specific operations needed to process vectors effectively.
7253While LLVM does directly support these vector operations, many
7254sophisticated algorithms will want to use target-specific intrinsics to
7255take full advantage of a specific target.
7256
7257.. _i_extractelement:
7258
7259'``extractelement``' Instruction
7260^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7261
7262Syntax:
7263"""""""
7264
7265::
7266
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007267 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00007268
7269Overview:
7270"""""""""
7271
7272The '``extractelement``' instruction extracts a single scalar element
7273from a vector at a specified index.
7274
7275Arguments:
7276""""""""""
7277
7278The first operand of an '``extractelement``' instruction is a value of
7279:ref:`vector <t_vector>` type. The second operand is an index indicating
7280the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007281variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007282
7283Semantics:
7284""""""""""
7285
7286The result is a scalar of the same type as the element type of ``val``.
7287Its value is the value at position ``idx`` of ``val``. If ``idx``
7288exceeds the length of ``val``, the results are undefined.
7289
7290Example:
7291""""""""
7292
Renato Golin124f2592016-07-20 12:16:38 +00007293.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007294
7295 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
7296
7297.. _i_insertelement:
7298
7299'``insertelement``' Instruction
7300^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7301
7302Syntax:
7303"""""""
7304
7305::
7306
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007307 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00007308
7309Overview:
7310"""""""""
7311
7312The '``insertelement``' instruction inserts a scalar element into a
7313vector at a specified index.
7314
7315Arguments:
7316""""""""""
7317
7318The first operand of an '``insertelement``' instruction is a value of
7319:ref:`vector <t_vector>` type. The second operand is a scalar value whose
7320type must equal the element type of the first operand. The third operand
7321is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007322index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007323
7324Semantics:
7325""""""""""
7326
7327The result is a vector of the same type as ``val``. Its element values
7328are those of ``val`` except at position ``idx``, where it gets the value
7329``elt``. If ``idx`` exceeds the length of ``val``, the results are
7330undefined.
7331
7332Example:
7333""""""""
7334
Renato Golin124f2592016-07-20 12:16:38 +00007335.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007336
7337 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
7338
7339.. _i_shufflevector:
7340
7341'``shufflevector``' Instruction
7342^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7343
7344Syntax:
7345"""""""
7346
7347::
7348
7349 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
7350
7351Overview:
7352"""""""""
7353
7354The '``shufflevector``' instruction constructs a permutation of elements
7355from two input vectors, returning a vector with the same element type as
7356the input and length that is the same as the shuffle mask.
7357
7358Arguments:
7359""""""""""
7360
7361The first two operands of a '``shufflevector``' instruction are vectors
7362with the same type. The third argument is a shuffle mask whose element
7363type is always 'i32'. The result of the instruction is a vector whose
7364length is the same as the shuffle mask and whose element type is the
7365same as the element type of the first two operands.
7366
7367The shuffle mask operand is required to be a constant vector with either
7368constant integer or undef values.
7369
7370Semantics:
7371""""""""""
7372
7373The elements of the two input vectors are numbered from left to right
7374across both of the vectors. The shuffle mask operand specifies, for each
7375element of the result vector, which element of the two input vectors the
Sanjay Patel6e410182017-04-12 18:39:53 +00007376result element gets. If the shuffle mask is undef, the result vector is
7377undef. If any element of the mask operand is undef, that element of the
7378result is undef. If the shuffle mask selects an undef element from one
7379of the input vectors, the resulting element is undef.
Sean Silvab084af42012-12-07 10:36:55 +00007380
7381Example:
7382""""""""
7383
Renato Golin124f2592016-07-20 12:16:38 +00007384.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007385
7386 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7387 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
7388 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
7389 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
7390 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
7391 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
7392 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7393 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
7394
7395Aggregate Operations
7396--------------------
7397
7398LLVM supports several instructions for working with
7399:ref:`aggregate <t_aggregate>` values.
7400
7401.. _i_extractvalue:
7402
7403'``extractvalue``' Instruction
7404^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7405
7406Syntax:
7407"""""""
7408
7409::
7410
7411 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
7412
7413Overview:
7414"""""""""
7415
7416The '``extractvalue``' instruction extracts the value of a member field
7417from an :ref:`aggregate <t_aggregate>` value.
7418
7419Arguments:
7420""""""""""
7421
7422The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00007423:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00007424constant indices to specify which value to extract in a similar manner
7425as indices in a '``getelementptr``' instruction.
7426
7427The major differences to ``getelementptr`` indexing are:
7428
7429- Since the value being indexed is not a pointer, the first index is
7430 omitted and assumed to be zero.
7431- At least one index must be specified.
7432- Not only struct indices but also array indices must be in bounds.
7433
7434Semantics:
7435""""""""""
7436
7437The result is the value at the position in the aggregate specified by
7438the index operands.
7439
7440Example:
7441""""""""
7442
Renato Golin124f2592016-07-20 12:16:38 +00007443.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007444
7445 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
7446
7447.. _i_insertvalue:
7448
7449'``insertvalue``' Instruction
7450^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7451
7452Syntax:
7453"""""""
7454
7455::
7456
7457 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
7458
7459Overview:
7460"""""""""
7461
7462The '``insertvalue``' instruction inserts a value into a member field in
7463an :ref:`aggregate <t_aggregate>` value.
7464
7465Arguments:
7466""""""""""
7467
7468The first operand of an '``insertvalue``' instruction is a value of
7469:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
7470a first-class value to insert. The following operands are constant
7471indices indicating the position at which to insert the value in a
7472similar manner as indices in a '``extractvalue``' instruction. The value
7473to insert must have the same type as the value identified by the
7474indices.
7475
7476Semantics:
7477""""""""""
7478
7479The result is an aggregate of the same type as ``val``. Its value is
7480that of ``val`` except that the value at the position specified by the
7481indices is that of ``elt``.
7482
7483Example:
7484""""""""
7485
7486.. code-block:: llvm
7487
7488 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
7489 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00007490 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00007491
7492.. _memoryops:
7493
7494Memory Access and Addressing Operations
7495---------------------------------------
7496
7497A key design point of an SSA-based representation is how it represents
7498memory. In LLVM, no memory locations are in SSA form, which makes things
7499very simple. This section describes how to read, write, and allocate
7500memory in LLVM.
7501
7502.. _i_alloca:
7503
7504'``alloca``' Instruction
7505^^^^^^^^^^^^^^^^^^^^^^^^
7506
7507Syntax:
7508"""""""
7509
7510::
7511
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007512 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result
Sean Silvab084af42012-12-07 10:36:55 +00007513
7514Overview:
7515"""""""""
7516
7517The '``alloca``' instruction allocates memory on the stack frame of the
7518currently executing function, to be automatically released when this
7519function returns to its caller. The object is always allocated in the
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007520address space for allocas indicated in the datalayout.
Sean Silvab084af42012-12-07 10:36:55 +00007521
7522Arguments:
7523""""""""""
7524
7525The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7526bytes of memory on the runtime stack, returning a pointer of the
7527appropriate type to the program. If "NumElements" is specified, it is
7528the number of elements allocated, otherwise "NumElements" is defaulted
7529to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007530allocation is guaranteed to be aligned to at least that boundary. The
7531alignment may not be greater than ``1 << 29``. If not specified, or if
7532zero, the target can choose to align the allocation on any convenient
7533boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007534
7535'``type``' may be any sized type.
7536
7537Semantics:
7538""""""""""
7539
7540Memory is allocated; a pointer is returned. The operation is undefined
7541if there is insufficient stack space for the allocation. '``alloca``'d
7542memory is automatically released when the function returns. The
7543'``alloca``' instruction is commonly used to represent automatic
7544variables that must have an address available. When the function returns
7545(either with the ``ret`` or ``resume`` instructions), the memory is
7546reclaimed. Allocating zero bytes is legal, but the result is undefined.
7547The order in which memory is allocated (ie., which way the stack grows)
7548is not specified.
7549
7550Example:
7551""""""""
7552
7553.. code-block:: llvm
7554
Tim Northover675a0962014-06-13 14:24:23 +00007555 %ptr = alloca i32 ; yields i32*:ptr
7556 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7557 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7558 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007559
7560.. _i_load:
7561
7562'``load``' Instruction
7563^^^^^^^^^^^^^^^^^^^^^^
7564
7565Syntax:
7566"""""""
7567
7568::
7569
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007570 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007571 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007572 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007573 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007574 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007575
7576Overview:
7577"""""""""
7578
7579The '``load``' instruction is used to read from memory.
7580
7581Arguments:
7582""""""""""
7583
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007584The argument to the ``load`` instruction specifies the memory address from which
7585to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7586known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7587the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7588modify the number or order of execution of this ``load`` with other
7589:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007590
JF Bastiend1fb5852015-12-17 22:09:19 +00007591If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007592<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
7593``release`` and ``acq_rel`` orderings are not valid on ``load`` instructions.
7594Atomic loads produce :ref:`defined <memmodel>` results when they may see
7595multiple atomic stores. The type of the pointee must be an integer, pointer, or
7596floating-point type whose bit width is a power of two greater than or equal to
7597eight and less than or equal to a target-specific size limit. ``align`` must be
7598explicitly specified on atomic loads, and the load has undefined behavior if the
7599alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00007600pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007601
7602The optional constant ``align`` argument specifies the alignment of the
7603operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007604or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007605alignment for the target. It is the responsibility of the code emitter
7606to ensure that the alignment information is correct. Overestimating the
7607alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007608may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007609maximum possible alignment is ``1 << 29``. An alignment value higher
7610than the size of the loaded type implies memory up to the alignment
7611value bytes can be safely loaded without trapping in the default
7612address space. Access of the high bytes can interfere with debugging
7613tools, so should not be accessed if the function has the
7614``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007615
7616The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007617metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007618``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007619metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007620that this load is not expected to be reused in the cache. The code
7621generator may select special instructions to save cache bandwidth, such
7622as the ``MOVNT`` instruction on x86.
7623
7624The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007625metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007626entries. If a load instruction tagged with the ``!invariant.load``
7627metadata is executed, the optimizer may assume the memory location
7628referenced by the load contains the same value at all points in the
7629program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007630
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007631The optional ``!invariant.group`` metadata must reference a single metadata name
7632 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7633
Philip Reamescdb72f32014-10-20 22:40:55 +00007634The optional ``!nonnull`` metadata must reference a single
7635metadata name ``<index>`` corresponding to a metadata node with no
7636entries. The existence of the ``!nonnull`` metadata on the
7637instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007638never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007639on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007640to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007641
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007642The optional ``!dereferenceable`` metadata must reference a single metadata
7643name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007644entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007645tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007646The number of bytes known to be dereferenceable is specified by the integer
7647value in the metadata node. This is analogous to the ''dereferenceable''
7648attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007649to loads of a pointer type.
7650
7651The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007652metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7653``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007654instruction tells the optimizer that the value loaded is known to be either
7655dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007656The number of bytes known to be dereferenceable is specified by the integer
7657value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7658attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007659to loads of a pointer type.
7660
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007661The optional ``!align`` metadata must reference a single metadata name
7662``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7663The existence of the ``!align`` metadata on the instruction tells the
7664optimizer that the value loaded is known to be aligned to a boundary specified
7665by the integer value in the metadata node. The alignment must be a power of 2.
7666This is analogous to the ''align'' attribute on parameters and return values.
7667This metadata can only be applied to loads of a pointer type.
7668
Sean Silvab084af42012-12-07 10:36:55 +00007669Semantics:
7670""""""""""
7671
7672The location of memory pointed to is loaded. If the value being loaded
7673is of scalar type then the number of bytes read does not exceed the
7674minimum number of bytes needed to hold all bits of the type. For
7675example, loading an ``i24`` reads at most three bytes. When loading a
7676value of a type like ``i20`` with a size that is not an integral number
7677of bytes, the result is undefined if the value was not originally
7678written using a store of the same type.
7679
7680Examples:
7681"""""""""
7682
7683.. code-block:: llvm
7684
Tim Northover675a0962014-06-13 14:24:23 +00007685 %ptr = alloca i32 ; yields i32*:ptr
7686 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007687 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007688
7689.. _i_store:
7690
7691'``store``' Instruction
7692^^^^^^^^^^^^^^^^^^^^^^^
7693
7694Syntax:
7695"""""""
7696
7697::
7698
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007699 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007700 store atomic [volatile] <ty> <value>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007701
7702Overview:
7703"""""""""
7704
7705The '``store``' instruction is used to write to memory.
7706
7707Arguments:
7708""""""""""
7709
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007710There are two arguments to the ``store`` instruction: a value to store and an
7711address at which to store it. The type of the ``<pointer>`` operand must be a
7712pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7713operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7714allowed to modify the number or order of execution of this ``store`` with other
7715:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7716<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7717structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007718
JF Bastiend1fb5852015-12-17 22:09:19 +00007719If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007720<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
7721``acquire`` and ``acq_rel`` orderings aren't valid on ``store`` instructions.
7722Atomic loads produce :ref:`defined <memmodel>` results when they may see
7723multiple atomic stores. The type of the pointee must be an integer, pointer, or
7724floating-point type whose bit width is a power of two greater than or equal to
7725eight and less than or equal to a target-specific size limit. ``align`` must be
7726explicitly specified on atomic stores, and the store has undefined behavior if
7727the alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00007728pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007729
Eli Benderskyca380842013-04-17 17:17:20 +00007730The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007731operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007732or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007733alignment for the target. It is the responsibility of the code emitter
7734to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007735alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007736alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007737safe. The maximum possible alignment is ``1 << 29``. An alignment
7738value higher than the size of the stored type implies memory up to the
7739alignment value bytes can be stored to without trapping in the default
7740address space. Storing to the higher bytes however may result in data
7741races if another thread can access the same address. Introducing a
7742data race is not allowed. Storing to the extra bytes is not allowed
7743even in situations where a data race is known to not exist if the
7744function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007745
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007746The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007747name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007748value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007749tells the optimizer and code generator that this load is not expected to
7750be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007751instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007752x86.
7753
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007754The optional ``!invariant.group`` metadata must reference a
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007755single metadata name ``<index>``. See ``invariant.group`` metadata.
7756
Sean Silvab084af42012-12-07 10:36:55 +00007757Semantics:
7758""""""""""
7759
Eli Benderskyca380842013-04-17 17:17:20 +00007760The contents of memory are updated to contain ``<value>`` at the
7761location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007762of scalar type then the number of bytes written does not exceed the
7763minimum number of bytes needed to hold all bits of the type. For
7764example, storing an ``i24`` writes at most three bytes. When writing a
7765value of a type like ``i20`` with a size that is not an integral number
7766of bytes, it is unspecified what happens to the extra bits that do not
7767belong to the type, but they will typically be overwritten.
7768
7769Example:
7770""""""""
7771
7772.. code-block:: llvm
7773
Tim Northover675a0962014-06-13 14:24:23 +00007774 %ptr = alloca i32 ; yields i32*:ptr
7775 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007776 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007777
7778.. _i_fence:
7779
7780'``fence``' Instruction
7781^^^^^^^^^^^^^^^^^^^^^^^
7782
7783Syntax:
7784"""""""
7785
7786::
7787
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007788 fence [syncscope("<target-scope>")] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007789
7790Overview:
7791"""""""""
7792
7793The '``fence``' instruction is used to introduce happens-before edges
7794between operations.
7795
7796Arguments:
7797""""""""""
7798
7799'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7800defines what *synchronizes-with* edges they add. They can only be given
7801``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7802
7803Semantics:
7804""""""""""
7805
7806A fence A which has (at least) ``release`` ordering semantics
7807*synchronizes with* a fence B with (at least) ``acquire`` ordering
7808semantics if and only if there exist atomic operations X and Y, both
7809operating on some atomic object M, such that A is sequenced before X, X
7810modifies M (either directly or through some side effect of a sequence
7811headed by X), Y is sequenced before B, and Y observes M. This provides a
7812*happens-before* dependency between A and B. Rather than an explicit
7813``fence``, one (but not both) of the atomic operations X or Y might
7814provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7815still *synchronize-with* the explicit ``fence`` and establish the
7816*happens-before* edge.
7817
7818A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7819``acquire`` and ``release`` semantics specified above, participates in
7820the global program order of other ``seq_cst`` operations and/or fences.
7821
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007822A ``fence`` instruction can also take an optional
7823":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00007824
7825Example:
7826""""""""
7827
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007828.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007829
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007830 fence acquire ; yields void
7831 fence syncscope("singlethread") seq_cst ; yields void
7832 fence syncscope("agent") seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007833
7834.. _i_cmpxchg:
7835
7836'``cmpxchg``' Instruction
7837^^^^^^^^^^^^^^^^^^^^^^^^^
7838
7839Syntax:
7840"""""""
7841
7842::
7843
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007844 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [syncscope("<target-scope>")] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007845
7846Overview:
7847"""""""""
7848
7849The '``cmpxchg``' instruction is used to atomically modify memory. It
7850loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007851equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007852
7853Arguments:
7854""""""""""
7855
7856There are three arguments to the '``cmpxchg``' instruction: an address
7857to operate on, a value to compare to the value currently be at that
7858address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007859are equal. The type of '<cmp>' must be an integer or pointer type whose
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007860bit width is a power of two greater than or equal to eight and less
Philip Reames1960cfd2016-02-19 00:06:41 +00007861than or equal to a target-specific size limit. '<cmp>' and '<new>' must
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007862have the same type, and the type of '<pointer>' must be a pointer to
7863that type. If the ``cmpxchg`` is marked as ``volatile``, then the
Philip Reames1960cfd2016-02-19 00:06:41 +00007864optimizer is not allowed to modify the number or order of execution of
7865this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007866
Tim Northovere94a5182014-03-11 10:48:52 +00007867The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007868``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7869must be at least ``monotonic``, the ordering constraint on failure must be no
7870stronger than that on success, and the failure ordering cannot be either
7871``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007872
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007873A ``cmpxchg`` instruction can also take an optional
7874":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00007875
7876The pointer passed into cmpxchg must have alignment greater than or
7877equal to the size in memory of the operand.
7878
7879Semantics:
7880""""""""""
7881
Tim Northover420a2162014-06-13 14:24:07 +00007882The contents of memory at the location specified by the '``<pointer>``' operand
Matthias Braun93f2b4b2017-08-09 22:22:04 +00007883is read and compared to '``<cmp>``'; if the values are equal, '``<new>``' is
7884written to the location. The original value at the location is returned,
7885together with a flag indicating success (true) or failure (false).
Tim Northover420a2162014-06-13 14:24:07 +00007886
7887If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7888permitted: the operation may not write ``<new>`` even if the comparison
7889matched.
7890
7891If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7892if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007893
Tim Northovere94a5182014-03-11 10:48:52 +00007894A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7895identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7896load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007897
7898Example:
7899""""""""
7900
7901.. code-block:: llvm
7902
7903 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007904 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007905 br label %loop
7906
7907 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007908 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007909 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007910 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007911 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7912 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007913 br i1 %success, label %done, label %loop
7914
7915 done:
7916 ...
7917
7918.. _i_atomicrmw:
7919
7920'``atomicrmw``' Instruction
7921^^^^^^^^^^^^^^^^^^^^^^^^^^^
7922
7923Syntax:
7924"""""""
7925
7926::
7927
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007928 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [syncscope("<target-scope>")] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007929
7930Overview:
7931"""""""""
7932
7933The '``atomicrmw``' instruction is used to atomically modify memory.
7934
7935Arguments:
7936""""""""""
7937
7938There are three arguments to the '``atomicrmw``' instruction: an
7939operation to apply, an address whose value to modify, an argument to the
7940operation. The operation must be one of the following keywords:
7941
7942- xchg
7943- add
7944- sub
7945- and
7946- nand
7947- or
7948- xor
7949- max
7950- min
7951- umax
7952- umin
7953
7954The type of '<value>' must be an integer type whose bit width is a power
7955of two greater than or equal to eight and less than or equal to a
7956target-specific size limit. The type of the '``<pointer>``' operand must
7957be a pointer to that type. If the ``atomicrmw`` is marked as
7958``volatile``, then the optimizer is not allowed to modify the number or
7959order of execution of this ``atomicrmw`` with other :ref:`volatile
7960operations <volatile>`.
7961
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007962A ``atomicrmw`` instruction can also take an optional
7963":ref:`syncscope <syncscope>`" argument.
7964
Sean Silvab084af42012-12-07 10:36:55 +00007965Semantics:
7966""""""""""
7967
7968The contents of memory at the location specified by the '``<pointer>``'
7969operand are atomically read, modified, and written back. The original
7970value at the location is returned. The modification is specified by the
7971operation argument:
7972
7973- xchg: ``*ptr = val``
7974- add: ``*ptr = *ptr + val``
7975- sub: ``*ptr = *ptr - val``
7976- and: ``*ptr = *ptr & val``
7977- nand: ``*ptr = ~(*ptr & val)``
7978- or: ``*ptr = *ptr | val``
7979- xor: ``*ptr = *ptr ^ val``
7980- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7981- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7982- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7983 comparison)
7984- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7985 comparison)
7986
7987Example:
7988""""""""
7989
7990.. code-block:: llvm
7991
Tim Northover675a0962014-06-13 14:24:23 +00007992 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007993
7994.. _i_getelementptr:
7995
7996'``getelementptr``' Instruction
7997^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7998
7999Syntax:
8000"""""""
8001
8002::
8003
Peter Collingbourned93620b2016-11-10 22:34:55 +00008004 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
8005 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
8006 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00008007
8008Overview:
8009"""""""""
8010
8011The '``getelementptr``' instruction is used to get the address of a
8012subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008013address calculation only and does not access memory. The instruction can also
8014be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00008015
8016Arguments:
8017""""""""""
8018
David Blaikie16a97eb2015-03-04 22:02:58 +00008019The first argument is always a type used as the basis for the calculations.
8020The second argument is always a pointer or a vector of pointers, and is the
8021base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00008022that indicate which of the elements of the aggregate object are indexed.
8023The interpretation of each index is dependent on the type being indexed
8024into. The first index always indexes the pointer value given as the
David Blaikief91b0302017-06-19 05:34:21 +00008025second argument, the second index indexes a value of the type pointed to
Sean Silvab084af42012-12-07 10:36:55 +00008026(not necessarily the value directly pointed to, since the first index
8027can be non-zero), etc. The first type indexed into must be a pointer
8028value, subsequent types can be arrays, vectors, and structs. Note that
8029subsequent types being indexed into can never be pointers, since that
8030would require loading the pointer before continuing calculation.
8031
8032The type of each index argument depends on the type it is indexing into.
8033When indexing into a (optionally packed) structure, only ``i32`` integer
8034**constants** are allowed (when using a vector of indices they must all
8035be the **same** ``i32`` integer constant). When indexing into an array,
8036pointer or vector, integers of any width are allowed, and they are not
8037required to be constant. These integers are treated as signed values
8038where relevant.
8039
8040For example, let's consider a C code fragment and how it gets compiled
8041to LLVM:
8042
8043.. code-block:: c
8044
8045 struct RT {
8046 char A;
8047 int B[10][20];
8048 char C;
8049 };
8050 struct ST {
8051 int X;
8052 double Y;
8053 struct RT Z;
8054 };
8055
8056 int *foo(struct ST *s) {
8057 return &s[1].Z.B[5][13];
8058 }
8059
8060The LLVM code generated by Clang is:
8061
8062.. code-block:: llvm
8063
8064 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
8065 %struct.ST = type { i32, double, %struct.RT }
8066
8067 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
8068 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00008069 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00008070 ret i32* %arrayidx
8071 }
8072
8073Semantics:
8074""""""""""
8075
8076In the example above, the first index is indexing into the
8077'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
8078= '``{ i32, double, %struct.RT }``' type, a structure. The second index
8079indexes into the third element of the structure, yielding a
8080'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
8081structure. The third index indexes into the second element of the
8082structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
8083dimensions of the array are subscripted into, yielding an '``i32``'
8084type. The '``getelementptr``' instruction returns a pointer to this
8085element, thus computing a value of '``i32*``' type.
8086
8087Note that it is perfectly legal to index partially through a structure,
8088returning a pointer to an inner element. Because of this, the LLVM code
8089for the given testcase is equivalent to:
8090
8091.. code-block:: llvm
8092
8093 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00008094 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
8095 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
8096 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
8097 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
8098 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00008099 ret i32* %t5
8100 }
8101
8102If the ``inbounds`` keyword is present, the result value of the
8103``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
8104pointer is not an *in bounds* address of an allocated object, or if any
8105of the addresses that would be formed by successive addition of the
8106offsets implied by the indices to the base address with infinitely
8107precise signed arithmetic are not an *in bounds* address of that
8108allocated object. The *in bounds* addresses for an allocated object are
8109all the addresses that point into the object, plus the address one byte
Eli Friedman13f2e352017-02-23 00:48:18 +00008110past the end. The only *in bounds* address for a null pointer in the
8111default address-space is the null pointer itself. In cases where the
8112base is a vector of pointers the ``inbounds`` keyword applies to each
8113of the computations element-wise.
Sean Silvab084af42012-12-07 10:36:55 +00008114
8115If the ``inbounds`` keyword is not present, the offsets are added to the
8116base address with silently-wrapping two's complement arithmetic. If the
8117offsets have a different width from the pointer, they are sign-extended
8118or truncated to the width of the pointer. The result value of the
8119``getelementptr`` may be outside the object pointed to by the base
8120pointer. The result value may not necessarily be used to access memory
8121though, even if it happens to point into allocated storage. See the
8122:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
8123information.
8124
Peter Collingbourned93620b2016-11-10 22:34:55 +00008125If the ``inrange`` keyword is present before any index, loading from or
8126storing to any pointer derived from the ``getelementptr`` has undefined
8127behavior if the load or store would access memory outside of the bounds of
8128the element selected by the index marked as ``inrange``. The result of a
8129pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
8130involving memory) involving a pointer derived from a ``getelementptr`` with
8131the ``inrange`` keyword is undefined, with the exception of comparisons
8132in the case where both operands are in the range of the element selected
8133by the ``inrange`` keyword, inclusive of the address one past the end of
8134that element. Note that the ``inrange`` keyword is currently only allowed
8135in constant ``getelementptr`` expressions.
8136
Sean Silvab084af42012-12-07 10:36:55 +00008137The getelementptr instruction is often confusing. For some more insight
8138into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
8139
8140Example:
8141""""""""
8142
8143.. code-block:: llvm
8144
8145 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008146 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008147 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008148 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008149 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008150 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008151 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008152 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00008153
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008154Vector of pointers:
8155"""""""""""""""""""
8156
8157The ``getelementptr`` returns a vector of pointers, instead of a single address,
8158when one or more of its arguments is a vector. In such cases, all vector
8159arguments should have the same number of elements, and every scalar argument
8160will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00008161
8162.. code-block:: llvm
8163
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008164 ; All arguments are vectors:
8165 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
8166 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008167
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008168 ; Add the same scalar offset to each pointer of a vector:
8169 ; A[i] = ptrs[i] + offset*sizeof(i8)
8170 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00008171
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008172 ; Add distinct offsets to the same pointer:
8173 ; A[i] = ptr + offsets[i]*sizeof(i8)
8174 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008175
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008176 ; In all cases described above the type of the result is <4 x i8*>
8177
8178The two following instructions are equivalent:
8179
8180.. code-block:: llvm
8181
8182 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8183 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
8184 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
8185 <4 x i32> %ind4,
8186 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00008187
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008188 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8189 i32 2, i32 1, <4 x i32> %ind4, i64 13
8190
8191Let's look at the C code, where the vector version of ``getelementptr``
8192makes sense:
8193
8194.. code-block:: c
8195
8196 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00008197 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008198 for (int i = 0; i < size; ++i) {
8199 A[i] = B[C[i]];
8200 }
8201
8202.. code-block:: llvm
8203
8204 ; get pointers for 8 elements from array B
8205 %ptrs = getelementptr double, double* %B, <8 x i32> %C
8206 ; load 8 elements from array B into A
Elad Cohenef5798a2017-05-03 12:28:54 +00008207 %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008208 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00008209
8210Conversion Operations
8211---------------------
8212
8213The instructions in this category are the conversion instructions
8214(casting) which all take a single operand and a type. They perform
8215various bit conversions on the operand.
8216
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008217.. _i_trunc:
8218
Sean Silvab084af42012-12-07 10:36:55 +00008219'``trunc .. to``' Instruction
8220^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8221
8222Syntax:
8223"""""""
8224
8225::
8226
8227 <result> = trunc <ty> <value> to <ty2> ; yields ty2
8228
8229Overview:
8230"""""""""
8231
8232The '``trunc``' instruction truncates its operand to the type ``ty2``.
8233
8234Arguments:
8235""""""""""
8236
8237The '``trunc``' instruction takes a value to trunc, and a type to trunc
8238it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
8239of the same number of integers. The bit size of the ``value`` must be
8240larger than the bit size of the destination type, ``ty2``. Equal sized
8241types are not allowed.
8242
8243Semantics:
8244""""""""""
8245
8246The '``trunc``' instruction truncates the high order bits in ``value``
8247and converts the remaining bits to ``ty2``. Since the source size must
8248be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
8249It will always truncate bits.
8250
8251Example:
8252""""""""
8253
8254.. code-block:: llvm
8255
8256 %X = trunc i32 257 to i8 ; yields i8:1
8257 %Y = trunc i32 123 to i1 ; yields i1:true
8258 %Z = trunc i32 122 to i1 ; yields i1:false
8259 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
8260
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008261.. _i_zext:
8262
Sean Silvab084af42012-12-07 10:36:55 +00008263'``zext .. to``' Instruction
8264^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8265
8266Syntax:
8267"""""""
8268
8269::
8270
8271 <result> = zext <ty> <value> to <ty2> ; yields ty2
8272
8273Overview:
8274"""""""""
8275
8276The '``zext``' instruction zero extends its operand to type ``ty2``.
8277
8278Arguments:
8279""""""""""
8280
8281The '``zext``' instruction takes a value to cast, and a type to cast it
8282to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8283the same number of integers. The bit size of the ``value`` must be
8284smaller than the bit size of the destination type, ``ty2``.
8285
8286Semantics:
8287""""""""""
8288
8289The ``zext`` fills the high order bits of the ``value`` with zero bits
8290until it reaches the size of the destination type, ``ty2``.
8291
8292When zero extending from i1, the result will always be either 0 or 1.
8293
8294Example:
8295""""""""
8296
8297.. code-block:: llvm
8298
8299 %X = zext i32 257 to i64 ; yields i64:257
8300 %Y = zext i1 true to i32 ; yields i32:1
8301 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8302
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008303.. _i_sext:
8304
Sean Silvab084af42012-12-07 10:36:55 +00008305'``sext .. to``' Instruction
8306^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8307
8308Syntax:
8309"""""""
8310
8311::
8312
8313 <result> = sext <ty> <value> to <ty2> ; yields ty2
8314
8315Overview:
8316"""""""""
8317
8318The '``sext``' sign extends ``value`` to the type ``ty2``.
8319
8320Arguments:
8321""""""""""
8322
8323The '``sext``' instruction takes a value to cast, and a type to cast it
8324to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8325the same number of integers. The bit size of the ``value`` must be
8326smaller than the bit size of the destination type, ``ty2``.
8327
8328Semantics:
8329""""""""""
8330
8331The '``sext``' instruction performs a sign extension by copying the sign
8332bit (highest order bit) of the ``value`` until it reaches the bit size
8333of the type ``ty2``.
8334
8335When sign extending from i1, the extension always results in -1 or 0.
8336
8337Example:
8338""""""""
8339
8340.. code-block:: llvm
8341
8342 %X = sext i8 -1 to i16 ; yields i16 :65535
8343 %Y = sext i1 true to i32 ; yields i32:-1
8344 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8345
8346'``fptrunc .. to``' Instruction
8347^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8348
8349Syntax:
8350"""""""
8351
8352::
8353
8354 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
8355
8356Overview:
8357"""""""""
8358
8359The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
8360
8361Arguments:
8362""""""""""
8363
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008364The '``fptrunc``' instruction takes a :ref:`floating-point <t_floating>`
8365value to cast and a :ref:`floating-point <t_floating>` type to cast it to.
Sean Silvab084af42012-12-07 10:36:55 +00008366The size of ``value`` must be larger than the size of ``ty2``. This
8367implies that ``fptrunc`` cannot be used to make a *no-op cast*.
8368
8369Semantics:
8370""""""""""
8371
Dan Liew50456fb2015-09-03 18:43:56 +00008372The '``fptrunc``' instruction casts a ``value`` from a larger
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008373:ref:`floating-point <t_floating>` type to a smaller :ref:`floating-point
8374<t_floating>` type. If the value cannot fit (i.e. overflows) within the
Dan Liew50456fb2015-09-03 18:43:56 +00008375destination type, ``ty2``, then the results are undefined. If the cast produces
8376an inexact result, how rounding is performed (e.g. truncation, also known as
8377round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00008378
8379Example:
8380""""""""
8381
8382.. code-block:: llvm
8383
8384 %X = fptrunc double 123.0 to float ; yields float:123.0
8385 %Y = fptrunc double 1.0E+300 to float ; yields undefined
8386
8387'``fpext .. to``' Instruction
8388^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8389
8390Syntax:
8391"""""""
8392
8393::
8394
8395 <result> = fpext <ty> <value> to <ty2> ; yields ty2
8396
8397Overview:
8398"""""""""
8399
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008400The '``fpext``' extends a floating-point ``value`` to a larger floating-point
8401value.
Sean Silvab084af42012-12-07 10:36:55 +00008402
8403Arguments:
8404""""""""""
8405
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008406The '``fpext``' instruction takes a :ref:`floating-point <t_floating>`
8407``value`` to cast, and a :ref:`floating-point <t_floating>` type to cast it
Sean Silvab084af42012-12-07 10:36:55 +00008408to. The source type must be smaller than the destination type.
8409
8410Semantics:
8411""""""""""
8412
8413The '``fpext``' instruction extends the ``value`` from a smaller
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008414:ref:`floating-point <t_floating>` type to a larger :ref:`floating-point
8415<t_floating>` type. The ``fpext`` cannot be used to make a
Sean Silvab084af42012-12-07 10:36:55 +00008416*no-op cast* because it always changes bits. Use ``bitcast`` to make a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008417*no-op cast* for a floating-point cast.
Sean Silvab084af42012-12-07 10:36:55 +00008418
8419Example:
8420""""""""
8421
8422.. code-block:: llvm
8423
8424 %X = fpext float 3.125 to double ; yields double:3.125000e+00
8425 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
8426
8427'``fptoui .. to``' Instruction
8428^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8429
8430Syntax:
8431"""""""
8432
8433::
8434
8435 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
8436
8437Overview:
8438"""""""""
8439
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008440The '``fptoui``' converts a floating-point ``value`` to its unsigned
Sean Silvab084af42012-12-07 10:36:55 +00008441integer equivalent of type ``ty2``.
8442
8443Arguments:
8444""""""""""
8445
8446The '``fptoui``' instruction takes a value to cast, which must be a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008447scalar or vector :ref:`floating-point <t_floating>` value, and a type to
Sean Silvab084af42012-12-07 10:36:55 +00008448cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008449``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
Sean Silvab084af42012-12-07 10:36:55 +00008450type with the same number of elements as ``ty``
8451
8452Semantics:
8453""""""""""
8454
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008455The '``fptoui``' instruction converts its :ref:`floating-point
8456<t_floating>` operand into the nearest (rounding towards zero)
Sean Silvab084af42012-12-07 10:36:55 +00008457unsigned integer value. If the value cannot fit in ``ty2``, the results
8458are undefined.
8459
8460Example:
8461""""""""
8462
8463.. code-block:: llvm
8464
8465 %X = fptoui double 123.0 to i32 ; yields i32:123
8466 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
8467 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
8468
8469'``fptosi .. to``' Instruction
8470^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8471
8472Syntax:
8473"""""""
8474
8475::
8476
8477 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
8478
8479Overview:
8480"""""""""
8481
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008482The '``fptosi``' instruction converts :ref:`floating-point <t_floating>`
Sean Silvab084af42012-12-07 10:36:55 +00008483``value`` to type ``ty2``.
8484
8485Arguments:
8486""""""""""
8487
8488The '``fptosi``' instruction takes a value to cast, which must be a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008489scalar or vector :ref:`floating-point <t_floating>` value, and a type to
Sean Silvab084af42012-12-07 10:36:55 +00008490cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008491``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
Sean Silvab084af42012-12-07 10:36:55 +00008492type with the same number of elements as ``ty``
8493
8494Semantics:
8495""""""""""
8496
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008497The '``fptosi``' instruction converts its :ref:`floating-point
8498<t_floating>` operand into the nearest (rounding towards zero)
Sean Silvab084af42012-12-07 10:36:55 +00008499signed integer value. If the value cannot fit in ``ty2``, the results
8500are undefined.
8501
8502Example:
8503""""""""
8504
8505.. code-block:: llvm
8506
8507 %X = fptosi double -123.0 to i32 ; yields i32:-123
8508 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
8509 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
8510
8511'``uitofp .. to``' Instruction
8512^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8513
8514Syntax:
8515"""""""
8516
8517::
8518
8519 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
8520
8521Overview:
8522"""""""""
8523
8524The '``uitofp``' instruction regards ``value`` as an unsigned integer
8525and converts that value to the ``ty2`` type.
8526
8527Arguments:
8528""""""""""
8529
8530The '``uitofp``' instruction takes a value to cast, which must be a
8531scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008532``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
8533``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
Sean Silvab084af42012-12-07 10:36:55 +00008534type with the same number of elements as ``ty``
8535
8536Semantics:
8537""""""""""
8538
8539The '``uitofp``' instruction interprets its operand as an unsigned
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008540integer quantity and converts it to the corresponding floating-point
8541value. If the value cannot fit in the floating-point value, the results
Sean Silvab084af42012-12-07 10:36:55 +00008542are undefined.
8543
8544Example:
8545""""""""
8546
8547.. code-block:: llvm
8548
8549 %X = uitofp i32 257 to float ; yields float:257.0
8550 %Y = uitofp i8 -1 to double ; yields double:255.0
8551
8552'``sitofp .. to``' Instruction
8553^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8554
8555Syntax:
8556"""""""
8557
8558::
8559
8560 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8561
8562Overview:
8563"""""""""
8564
8565The '``sitofp``' instruction regards ``value`` as a signed integer and
8566converts that value to the ``ty2`` type.
8567
8568Arguments:
8569""""""""""
8570
8571The '``sitofp``' instruction takes a value to cast, which must be a
8572scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008573``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
8574``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
Sean Silvab084af42012-12-07 10:36:55 +00008575type with the same number of elements as ``ty``
8576
8577Semantics:
8578""""""""""
8579
8580The '``sitofp``' instruction interprets its operand as a signed integer
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008581quantity and converts it to the corresponding floating-point value. If
8582the value cannot fit in the floating-point value, the results are
Sean Silvab084af42012-12-07 10:36:55 +00008583undefined.
8584
8585Example:
8586""""""""
8587
8588.. code-block:: llvm
8589
8590 %X = sitofp i32 257 to float ; yields float:257.0
8591 %Y = sitofp i8 -1 to double ; yields double:-1.0
8592
8593.. _i_ptrtoint:
8594
8595'``ptrtoint .. to``' Instruction
8596^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8597
8598Syntax:
8599"""""""
8600
8601::
8602
8603 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8604
8605Overview:
8606"""""""""
8607
8608The '``ptrtoint``' instruction converts the pointer or a vector of
8609pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8610
8611Arguments:
8612""""""""""
8613
8614The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008615a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008616type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8617a vector of integers type.
8618
8619Semantics:
8620""""""""""
8621
8622The '``ptrtoint``' instruction converts ``value`` to integer type
8623``ty2`` by interpreting the pointer value as an integer and either
8624truncating or zero extending that value to the size of the integer type.
8625If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8626``value`` is larger than ``ty2`` then a truncation is done. If they are
8627the same size, then nothing is done (*no-op cast*) other than a type
8628change.
8629
8630Example:
8631""""""""
8632
8633.. code-block:: llvm
8634
8635 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8636 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8637 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8638
8639.. _i_inttoptr:
8640
8641'``inttoptr .. to``' Instruction
8642^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8643
8644Syntax:
8645"""""""
8646
8647::
8648
8649 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8650
8651Overview:
8652"""""""""
8653
8654The '``inttoptr``' instruction converts an integer ``value`` to a
8655pointer type, ``ty2``.
8656
8657Arguments:
8658""""""""""
8659
8660The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8661cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8662type.
8663
8664Semantics:
8665""""""""""
8666
8667The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8668applying either a zero extension or a truncation depending on the size
8669of the integer ``value``. If ``value`` is larger than the size of a
8670pointer then a truncation is done. If ``value`` is smaller than the size
8671of a pointer then a zero extension is done. If they are the same size,
8672nothing is done (*no-op cast*).
8673
8674Example:
8675""""""""
8676
8677.. code-block:: llvm
8678
8679 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8680 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8681 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8682 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8683
8684.. _i_bitcast:
8685
8686'``bitcast .. to``' Instruction
8687^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8688
8689Syntax:
8690"""""""
8691
8692::
8693
8694 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8695
8696Overview:
8697"""""""""
8698
8699The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8700changing any bits.
8701
8702Arguments:
8703""""""""""
8704
8705The '``bitcast``' instruction takes a value to cast, which must be a
8706non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008707also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8708bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008709identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008710also be a pointer of the same size. This instruction supports bitwise
8711conversion of vectors to integers and to vectors of other types (as
8712long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008713
8714Semantics:
8715""""""""""
8716
Matt Arsenault24b49c42013-07-31 17:49:08 +00008717The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8718is always a *no-op cast* because no bits change with this
8719conversion. The conversion is done as if the ``value`` had been stored
8720to memory and read back as type ``ty2``. Pointer (or vector of
8721pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008722pointers) types with the same address space through this instruction.
8723To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8724or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008725
8726Example:
8727""""""""
8728
Renato Golin124f2592016-07-20 12:16:38 +00008729.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008730
8731 %X = bitcast i8 255 to i8 ; yields i8 :-1
8732 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8733 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8734 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8735
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008736.. _i_addrspacecast:
8737
8738'``addrspacecast .. to``' Instruction
8739^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8740
8741Syntax:
8742"""""""
8743
8744::
8745
8746 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8747
8748Overview:
8749"""""""""
8750
8751The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8752address space ``n`` to type ``pty2`` in address space ``m``.
8753
8754Arguments:
8755""""""""""
8756
8757The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8758to cast and a pointer type to cast it to, which must have a different
8759address space.
8760
8761Semantics:
8762""""""""""
8763
8764The '``addrspacecast``' instruction converts the pointer value
8765``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008766value modification, depending on the target and the address space
8767pair. Pointer conversions within the same address space must be
8768performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008769conversion is legal then both result and operand refer to the same memory
8770location.
8771
8772Example:
8773""""""""
8774
8775.. code-block:: llvm
8776
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008777 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8778 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8779 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008780
Sean Silvab084af42012-12-07 10:36:55 +00008781.. _otherops:
8782
8783Other Operations
8784----------------
8785
8786The instructions in this category are the "miscellaneous" instructions,
8787which defy better classification.
8788
8789.. _i_icmp:
8790
8791'``icmp``' Instruction
8792^^^^^^^^^^^^^^^^^^^^^^
8793
8794Syntax:
8795"""""""
8796
8797::
8798
Tim Northover675a0962014-06-13 14:24:23 +00008799 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008800
8801Overview:
8802"""""""""
8803
8804The '``icmp``' instruction returns a boolean value or a vector of
8805boolean values based on comparison of its two integer, integer vector,
8806pointer, or pointer vector operands.
8807
8808Arguments:
8809""""""""""
8810
8811The '``icmp``' instruction takes three operands. The first operand is
8812the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008813not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008814
8815#. ``eq``: equal
8816#. ``ne``: not equal
8817#. ``ugt``: unsigned greater than
8818#. ``uge``: unsigned greater or equal
8819#. ``ult``: unsigned less than
8820#. ``ule``: unsigned less or equal
8821#. ``sgt``: signed greater than
8822#. ``sge``: signed greater or equal
8823#. ``slt``: signed less than
8824#. ``sle``: signed less or equal
8825
8826The remaining two arguments must be :ref:`integer <t_integer>` or
8827:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8828must also be identical types.
8829
8830Semantics:
8831""""""""""
8832
8833The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8834code given as ``cond``. The comparison performed always yields either an
8835:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8836
8837#. ``eq``: yields ``true`` if the operands are equal, ``false``
8838 otherwise. No sign interpretation is necessary or performed.
8839#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8840 otherwise. No sign interpretation is necessary or performed.
8841#. ``ugt``: interprets the operands as unsigned values and yields
8842 ``true`` if ``op1`` is greater than ``op2``.
8843#. ``uge``: interprets the operands as unsigned values and yields
8844 ``true`` if ``op1`` is greater than or equal to ``op2``.
8845#. ``ult``: interprets the operands as unsigned values and yields
8846 ``true`` if ``op1`` is less than ``op2``.
8847#. ``ule``: interprets the operands as unsigned values and yields
8848 ``true`` if ``op1`` is less than or equal to ``op2``.
8849#. ``sgt``: interprets the operands as signed values and yields ``true``
8850 if ``op1`` is greater than ``op2``.
8851#. ``sge``: interprets the operands as signed values and yields ``true``
8852 if ``op1`` is greater than or equal to ``op2``.
8853#. ``slt``: interprets the operands as signed values and yields ``true``
8854 if ``op1`` is less than ``op2``.
8855#. ``sle``: interprets the operands as signed values and yields ``true``
8856 if ``op1`` is less than or equal to ``op2``.
8857
8858If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8859are compared as if they were integers.
8860
8861If the operands are integer vectors, then they are compared element by
8862element. The result is an ``i1`` vector with the same number of elements
8863as the values being compared. Otherwise, the result is an ``i1``.
8864
8865Example:
8866""""""""
8867
Renato Golin124f2592016-07-20 12:16:38 +00008868.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008869
8870 <result> = icmp eq i32 4, 5 ; yields: result=false
8871 <result> = icmp ne float* %X, %X ; yields: result=false
8872 <result> = icmp ult i16 4, 5 ; yields: result=true
8873 <result> = icmp sgt i16 4, 5 ; yields: result=false
8874 <result> = icmp ule i16 -4, 5 ; yields: result=false
8875 <result> = icmp sge i16 4, 5 ; yields: result=false
8876
Sean Silvab084af42012-12-07 10:36:55 +00008877.. _i_fcmp:
8878
8879'``fcmp``' Instruction
8880^^^^^^^^^^^^^^^^^^^^^^
8881
8882Syntax:
8883"""""""
8884
8885::
8886
James Molloy88eb5352015-07-10 12:52:00 +00008887 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008888
8889Overview:
8890"""""""""
8891
8892The '``fcmp``' instruction returns a boolean value or vector of boolean
8893values based on comparison of its operands.
8894
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008895If the operands are floating-point scalars, then the result type is a
Sean Silvab084af42012-12-07 10:36:55 +00008896boolean (:ref:`i1 <t_integer>`).
8897
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008898If the operands are floating-point vectors, then the result type is a
Sean Silvab084af42012-12-07 10:36:55 +00008899vector of boolean with the same number of elements as the operands being
8900compared.
8901
8902Arguments:
8903""""""""""
8904
8905The '``fcmp``' instruction takes three operands. The first operand is
8906the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008907not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008908
8909#. ``false``: no comparison, always returns false
8910#. ``oeq``: ordered and equal
8911#. ``ogt``: ordered and greater than
8912#. ``oge``: ordered and greater than or equal
8913#. ``olt``: ordered and less than
8914#. ``ole``: ordered and less than or equal
8915#. ``one``: ordered and not equal
8916#. ``ord``: ordered (no nans)
8917#. ``ueq``: unordered or equal
8918#. ``ugt``: unordered or greater than
8919#. ``uge``: unordered or greater than or equal
8920#. ``ult``: unordered or less than
8921#. ``ule``: unordered or less than or equal
8922#. ``une``: unordered or not equal
8923#. ``uno``: unordered (either nans)
8924#. ``true``: no comparison, always returns true
8925
8926*Ordered* means that neither operand is a QNAN while *unordered* means
8927that either operand may be a QNAN.
8928
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008929Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating-point
8930<t_floating>` type or a :ref:`vector <t_vector>` of floating-point type.
8931They must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00008932
8933Semantics:
8934""""""""""
8935
8936The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8937condition code given as ``cond``. If the operands are vectors, then the
8938vectors are compared element by element. Each comparison performed
8939always yields an :ref:`i1 <t_integer>` result, as follows:
8940
8941#. ``false``: always yields ``false``, regardless of operands.
8942#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8943 is equal to ``op2``.
8944#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8945 is greater than ``op2``.
8946#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8947 is greater than or equal to ``op2``.
8948#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8949 is less than ``op2``.
8950#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8951 is less than or equal to ``op2``.
8952#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8953 is not equal to ``op2``.
8954#. ``ord``: yields ``true`` if both operands are not a QNAN.
8955#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8956 equal to ``op2``.
8957#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8958 greater than ``op2``.
8959#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8960 greater than or equal to ``op2``.
8961#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8962 less than ``op2``.
8963#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8964 less than or equal to ``op2``.
8965#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8966 not equal to ``op2``.
8967#. ``uno``: yields ``true`` if either operand is a QNAN.
8968#. ``true``: always yields ``true``, regardless of operands.
8969
James Molloy88eb5352015-07-10 12:52:00 +00008970The ``fcmp`` instruction can also optionally take any number of
8971:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008972otherwise unsafe floating-point optimizations.
James Molloy88eb5352015-07-10 12:52:00 +00008973
8974Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8975only flags that have any effect on its semantics are those that allow
8976assumptions to be made about the values of input arguments; namely
8977``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8978
Sean Silvab084af42012-12-07 10:36:55 +00008979Example:
8980""""""""
8981
Renato Golin124f2592016-07-20 12:16:38 +00008982.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008983
8984 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8985 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8986 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8987 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8988
Sean Silvab084af42012-12-07 10:36:55 +00008989.. _i_phi:
8990
8991'``phi``' Instruction
8992^^^^^^^^^^^^^^^^^^^^^
8993
8994Syntax:
8995"""""""
8996
8997::
8998
8999 <result> = phi <ty> [ <val0>, <label0>], ...
9000
9001Overview:
9002"""""""""
9003
9004The '``phi``' instruction is used to implement the φ node in the SSA
9005graph representing the function.
9006
9007Arguments:
9008""""""""""
9009
9010The type of the incoming values is specified with the first type field.
9011After this, the '``phi``' instruction takes a list of pairs as
9012arguments, with one pair for each predecessor basic block of the current
9013block. Only values of :ref:`first class <t_firstclass>` type may be used as
9014the value arguments to the PHI node. Only labels may be used as the
9015label arguments.
9016
9017There must be no non-phi instructions between the start of a basic block
9018and the PHI instructions: i.e. PHI instructions must be first in a basic
9019block.
9020
9021For the purposes of the SSA form, the use of each incoming value is
9022deemed to occur on the edge from the corresponding predecessor block to
9023the current block (but after any definition of an '``invoke``'
9024instruction's return value on the same edge).
9025
9026Semantics:
9027""""""""""
9028
9029At runtime, the '``phi``' instruction logically takes on the value
9030specified by the pair corresponding to the predecessor basic block that
9031executed just prior to the current block.
9032
9033Example:
9034""""""""
9035
9036.. code-block:: llvm
9037
9038 Loop: ; Infinite loop that counts from 0 on up...
9039 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
9040 %nextindvar = add i32 %indvar, 1
9041 br label %Loop
9042
9043.. _i_select:
9044
9045'``select``' Instruction
9046^^^^^^^^^^^^^^^^^^^^^^^^
9047
9048Syntax:
9049"""""""
9050
9051::
9052
9053 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
9054
9055 selty is either i1 or {<N x i1>}
9056
9057Overview:
9058"""""""""
9059
9060The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00009061condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00009062
9063Arguments:
9064""""""""""
9065
9066The '``select``' instruction requires an 'i1' value or a vector of 'i1'
9067values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00009068class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00009069
9070Semantics:
9071""""""""""
9072
9073If the condition is an i1 and it evaluates to 1, the instruction returns
9074the first value argument; otherwise, it returns the second value
9075argument.
9076
9077If the condition is a vector of i1, then the value arguments must be
9078vectors of the same size, and the selection is done element by element.
9079
David Majnemer40a0b592015-03-03 22:45:47 +00009080If the condition is an i1 and the value arguments are vectors of the
9081same size, then an entire vector is selected.
9082
Sean Silvab084af42012-12-07 10:36:55 +00009083Example:
9084""""""""
9085
9086.. code-block:: llvm
9087
9088 %X = select i1 true, i8 17, i8 42 ; yields i8:17
9089
9090.. _i_call:
9091
9092'``call``' Instruction
9093^^^^^^^^^^^^^^^^^^^^^^
9094
9095Syntax:
9096"""""""
9097
9098::
9099
David Blaikieb83cf102016-07-13 17:21:34 +00009100 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00009101 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00009102
9103Overview:
9104"""""""""
9105
9106The '``call``' instruction represents a simple function call.
9107
9108Arguments:
9109""""""""""
9110
9111This instruction requires several arguments:
9112
Reid Kleckner5772b772014-04-24 20:14:34 +00009113#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00009114 should perform tail call optimization. The ``tail`` marker is a hint that
9115 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00009116 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00009117 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00009118
9119 #. The call will not cause unbounded stack growth if it is part of a
9120 recursive cycle in the call graph.
9121 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
9122 forwarded in place.
9123
Florian Hahnedae5a62018-01-17 23:29:25 +00009124 Both markers imply that the callee does not access allocas from the caller.
9125 The ``tail`` marker additionally implies that the callee does not access
9126 varargs from the caller, while ``musttail`` implies that varargs from the
9127 caller are passed to the callee. Calls marked ``musttail`` must obey the
9128 following additional rules:
Reid Kleckner5772b772014-04-24 20:14:34 +00009129
9130 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
9131 or a pointer bitcast followed by a ret instruction.
9132 - The ret instruction must return the (possibly bitcasted) value
9133 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00009134 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00009135 parameters or return types may differ in pointee type, but not
9136 in address space.
9137 - The calling conventions of the caller and callee must match.
9138 - All ABI-impacting function attributes, such as sret, byval, inreg,
9139 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00009140 - The callee must be varargs iff the caller is varargs. Bitcasting a
9141 non-varargs function to the appropriate varargs type is legal so
9142 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00009143
9144 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
9145 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00009146
9147 - Caller and callee both have the calling convention ``fastcc``.
9148 - The call is in tail position (ret immediately follows call and ret
9149 uses value of call or is void).
9150 - Option ``-tailcallopt`` is enabled, or
9151 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00009152 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00009153 met. <CodeGenerator.html#tailcallopt>`_
9154
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00009155#. The optional ``notail`` marker indicates that the optimizers should not add
9156 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
9157 call optimization from being performed on the call.
9158
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00009159#. The optional ``fast-math flags`` marker indicates that the call has one or more
Sanjay Patelfa54ace2015-12-14 21:59:03 +00009160 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
9161 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
9162 for calls that return a floating-point scalar or vector type.
9163
Sean Silvab084af42012-12-07 10:36:55 +00009164#. The optional "cconv" marker indicates which :ref:`calling
9165 convention <callingconv>` the call should use. If none is
9166 specified, the call defaults to using C calling conventions. The
9167 calling convention of the call must match the calling convention of
9168 the target function, or else the behavior is undefined.
9169#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
9170 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
9171 are valid here.
9172#. '``ty``': the type of the call instruction itself which is also the
9173 type of the return value. Functions that return no value are marked
9174 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00009175#. '``fnty``': shall be the signature of the function being called. The
9176 argument types must match the types implied by this signature. This
9177 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00009178#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00009179 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00009180 indirect ``call``'s are just as possible, calling an arbitrary pointer
9181 to function value.
9182#. '``function args``': argument list whose types match the function
9183 signature argument types and parameter attributes. All arguments must
9184 be of :ref:`first class <t_firstclass>` type. If the function signature
9185 indicates the function accepts a variable number of arguments, the
9186 extra arguments can be specified.
George Burgess IV39c91052017-04-13 04:01:55 +00009187#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00009188#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00009189
9190Semantics:
9191""""""""""
9192
9193The '``call``' instruction is used to cause control flow to transfer to
9194a specified function, with its incoming arguments bound to the specified
9195values. Upon a '``ret``' instruction in the called function, control
9196flow continues with the instruction after the function call, and the
9197return value of the function is bound to the result argument.
9198
9199Example:
9200""""""""
9201
9202.. code-block:: llvm
9203
9204 %retval = call i32 @test(i32 %argc)
9205 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
9206 %X = tail call i32 @foo() ; yields i32
9207 %Y = tail call fastcc i32 @foo() ; yields i32
9208 call void %foo(i8 97 signext)
9209
9210 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00009211 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00009212 %gr = extractvalue %struct.A %r, 0 ; yields i32
9213 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
9214 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
9215 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
9216
9217llvm treats calls to some functions with names and arguments that match
9218the standard C99 library as being the C99 library functions, and may
9219perform optimizations or generate code for them under that assumption.
9220This is something we'd like to change in the future to provide better
9221support for freestanding environments and non-C-based languages.
9222
9223.. _i_va_arg:
9224
9225'``va_arg``' Instruction
9226^^^^^^^^^^^^^^^^^^^^^^^^
9227
9228Syntax:
9229"""""""
9230
9231::
9232
9233 <resultval> = va_arg <va_list*> <arglist>, <argty>
9234
9235Overview:
9236"""""""""
9237
9238The '``va_arg``' instruction is used to access arguments passed through
9239the "variable argument" area of a function call. It is used to implement
9240the ``va_arg`` macro in C.
9241
9242Arguments:
9243""""""""""
9244
9245This instruction takes a ``va_list*`` value and the type of the
9246argument. It returns a value of the specified argument type and
9247increments the ``va_list`` to point to the next argument. The actual
9248type of ``va_list`` is target specific.
9249
9250Semantics:
9251""""""""""
9252
9253The '``va_arg``' instruction loads an argument of the specified type
9254from the specified ``va_list`` and causes the ``va_list`` to point to
9255the next argument. For more information, see the variable argument
9256handling :ref:`Intrinsic Functions <int_varargs>`.
9257
9258It is legal for this instruction to be called in a function which does
9259not take a variable number of arguments, for example, the ``vfprintf``
9260function.
9261
9262``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
9263function <intrinsics>` because it takes a type as an argument.
9264
9265Example:
9266""""""""
9267
9268See the :ref:`variable argument processing <int_varargs>` section.
9269
9270Note that the code generator does not yet fully support va\_arg on many
9271targets. Also, it does not currently support va\_arg with aggregate
9272types on any target.
9273
9274.. _i_landingpad:
9275
9276'``landingpad``' Instruction
9277^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9278
9279Syntax:
9280"""""""
9281
9282::
9283
David Majnemer7fddecc2015-06-17 20:52:32 +00009284 <resultval> = landingpad <resultty> <clause>+
9285 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00009286
9287 <clause> := catch <type> <value>
9288 <clause> := filter <array constant type> <array constant>
9289
9290Overview:
9291"""""""""
9292
9293The '``landingpad``' instruction is used by `LLVM's exception handling
9294system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009295is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00009296code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00009297defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00009298re-entry to the function. The ``resultval`` has the type ``resultty``.
9299
9300Arguments:
9301""""""""""
9302
David Majnemer7fddecc2015-06-17 20:52:32 +00009303The optional
Sean Silvab084af42012-12-07 10:36:55 +00009304``cleanup`` flag indicates that the landing pad block is a cleanup.
9305
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009306A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00009307contains the global variable representing the "type" that may be caught
9308or filtered respectively. Unlike the ``catch`` clause, the ``filter``
9309clause takes an array constant as its argument. Use
9310"``[0 x i8**] undef``" for a filter which cannot throw. The
9311'``landingpad``' instruction must contain *at least* one ``clause`` or
9312the ``cleanup`` flag.
9313
9314Semantics:
9315""""""""""
9316
9317The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00009318:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00009319therefore the "result type" of the ``landingpad`` instruction. As with
9320calling conventions, how the personality function results are
9321represented in LLVM IR is target specific.
9322
9323The clauses are applied in order from top to bottom. If two
9324``landingpad`` instructions are merged together through inlining, the
9325clauses from the calling function are appended to the list of clauses.
9326When the call stack is being unwound due to an exception being thrown,
9327the exception is compared against each ``clause`` in turn. If it doesn't
9328match any of the clauses, and the ``cleanup`` flag is not set, then
9329unwinding continues further up the call stack.
9330
9331The ``landingpad`` instruction has several restrictions:
9332
9333- A landing pad block is a basic block which is the unwind destination
9334 of an '``invoke``' instruction.
9335- A landing pad block must have a '``landingpad``' instruction as its
9336 first non-PHI instruction.
9337- There can be only one '``landingpad``' instruction within the landing
9338 pad block.
9339- A basic block that is not a landing pad block may not include a
9340 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009341
9342Example:
9343""""""""
9344
9345.. code-block:: llvm
9346
9347 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00009348 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009349 catch i8** @_ZTIi
9350 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00009351 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009352 cleanup
9353 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00009354 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009355 catch i8** @_ZTIi
9356 filter [1 x i8**] [@_ZTId]
9357
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009358.. _i_catchpad:
9359
9360'``catchpad``' Instruction
9361^^^^^^^^^^^^^^^^^^^^^^^^^^
9362
9363Syntax:
9364"""""""
9365
9366::
9367
9368 <resultval> = catchpad within <catchswitch> [<args>*]
9369
9370Overview:
9371"""""""""
9372
9373The '``catchpad``' instruction is used by `LLVM's exception handling
9374system <ExceptionHandling.html#overview>`_ to specify that a basic block
9375begins a catch handler --- one where a personality routine attempts to transfer
9376control to catch an exception.
9377
9378Arguments:
9379""""""""""
9380
9381The ``catchswitch`` operand must always be a token produced by a
9382:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
9383ensures that each ``catchpad`` has exactly one predecessor block, and it always
9384terminates in a ``catchswitch``.
9385
9386The ``args`` correspond to whatever information the personality routine
9387requires to know if this is an appropriate handler for the exception. Control
9388will transfer to the ``catchpad`` if this is the first appropriate handler for
9389the exception.
9390
9391The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
9392``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
9393pads.
9394
9395Semantics:
9396""""""""""
9397
9398When the call stack is being unwound due to an exception being thrown, the
9399exception is compared against the ``args``. If it doesn't match, control will
9400not reach the ``catchpad`` instruction. The representation of ``args`` is
9401entirely target and personality function-specific.
9402
9403Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
9404instruction must be the first non-phi of its parent basic block.
9405
9406The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
9407instructions is described in the
9408`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
9409
9410When a ``catchpad`` has been "entered" but not yet "exited" (as
9411described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9412it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9413that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
9414
9415Example:
9416""""""""
9417
Renato Golin124f2592016-07-20 12:16:38 +00009418.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009419
9420 dispatch:
9421 %cs = catchswitch within none [label %handler0] unwind to caller
9422 ;; A catch block which can catch an integer.
9423 handler0:
9424 %tok = catchpad within %cs [i8** @_ZTIi]
9425
David Majnemer654e1302015-07-31 17:58:14 +00009426.. _i_cleanuppad:
9427
9428'``cleanuppad``' Instruction
9429^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9430
9431Syntax:
9432"""""""
9433
9434::
9435
David Majnemer8a1c45d2015-12-12 05:38:55 +00009436 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00009437
9438Overview:
9439"""""""""
9440
9441The '``cleanuppad``' instruction is used by `LLVM's exception handling
9442system <ExceptionHandling.html#overview>`_ to specify that a basic block
9443is a cleanup block --- one where a personality routine attempts to
9444transfer control to run cleanup actions.
9445The ``args`` correspond to whatever additional
9446information the :ref:`personality function <personalityfn>` requires to
9447execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00009448The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00009449match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
9450The ``parent`` argument is the token of the funclet that contains the
9451``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
9452this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00009453
9454Arguments:
9455""""""""""
9456
9457The instruction takes a list of arbitrary values which are interpreted
9458by the :ref:`personality function <personalityfn>`.
9459
9460Semantics:
9461""""""""""
9462
David Majnemer654e1302015-07-31 17:58:14 +00009463When the call stack is being unwound due to an exception being thrown,
9464the :ref:`personality function <personalityfn>` transfers control to the
9465``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00009466As with calling conventions, how the personality function results are
9467represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00009468
9469The ``cleanuppad`` instruction has several restrictions:
9470
9471- A cleanup block is a basic block which is the unwind destination of
9472 an exceptional instruction.
9473- A cleanup block must have a '``cleanuppad``' instruction as its
9474 first non-PHI instruction.
9475- There can be only one '``cleanuppad``' instruction within the
9476 cleanup block.
9477- A basic block that is not a cleanup block may not include a
9478 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009479
Joseph Tremoulete28885e2016-01-10 04:28:38 +00009480When a ``cleanuppad`` has been "entered" but not yet "exited" (as
9481described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9482it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9483that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009484
David Majnemer654e1302015-07-31 17:58:14 +00009485Example:
9486""""""""
9487
Renato Golin124f2592016-07-20 12:16:38 +00009488.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00009489
David Majnemer8a1c45d2015-12-12 05:38:55 +00009490 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00009491
Sean Silvab084af42012-12-07 10:36:55 +00009492.. _intrinsics:
9493
9494Intrinsic Functions
9495===================
9496
9497LLVM supports the notion of an "intrinsic function". These functions
9498have well known names and semantics and are required to follow certain
9499restrictions. Overall, these intrinsics represent an extension mechanism
9500for the LLVM language that does not require changing all of the
9501transformations in LLVM when adding to the language (or the bitcode
9502reader/writer, the parser, etc...).
9503
9504Intrinsic function names must all start with an "``llvm.``" prefix. This
9505prefix is reserved in LLVM for intrinsic names; thus, function names may
9506not begin with this prefix. Intrinsic functions must always be external
9507functions: you cannot define the body of intrinsic functions. Intrinsic
9508functions may only be used in call or invoke instructions: it is illegal
9509to take the address of an intrinsic function. Additionally, because
9510intrinsic functions are part of the LLVM language, it is required if any
9511are added that they be documented here.
9512
9513Some intrinsic functions can be overloaded, i.e., the intrinsic
9514represents a family of functions that perform the same operation but on
9515different data types. Because LLVM can represent over 8 million
9516different integer types, overloading is used commonly to allow an
9517intrinsic function to operate on any integer type. One or more of the
9518argument types or the result type can be overloaded to accept any
9519integer type. Argument types may also be defined as exactly matching a
9520previous argument's type or the result type. This allows an intrinsic
9521function which accepts multiple arguments, but needs all of them to be
9522of the same type, to only be overloaded with respect to a single
9523argument or the result.
9524
9525Overloaded intrinsics will have the names of its overloaded argument
9526types encoded into its function name, each preceded by a period. Only
9527those types which are overloaded result in a name suffix. Arguments
9528whose type is matched against another type do not. For example, the
9529``llvm.ctpop`` function can take an integer of any width and returns an
9530integer of exactly the same integer width. This leads to a family of
9531functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
9532``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
9533overloaded, and only one type suffix is required. Because the argument's
9534type is matched against the return type, it does not require its own
9535name suffix.
9536
9537To learn how to add an intrinsic function, please see the `Extending
9538LLVM Guide <ExtendingLLVM.html>`_.
9539
9540.. _int_varargs:
9541
9542Variable Argument Handling Intrinsics
9543-------------------------------------
9544
9545Variable argument support is defined in LLVM with the
9546:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9547functions. These functions are related to the similarly named macros
9548defined in the ``<stdarg.h>`` header file.
9549
9550All of these functions operate on arguments that use a target-specific
9551value type "``va_list``". The LLVM assembly language reference manual
9552does not define what this type is, so all transformations should be
9553prepared to handle these functions regardless of the type used.
9554
9555This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9556variable argument handling intrinsic functions are used.
9557
9558.. code-block:: llvm
9559
Tim Northoverab60bb92014-11-02 01:21:51 +00009560 ; This struct is different for every platform. For most platforms,
9561 ; it is merely an i8*.
9562 %struct.va_list = type { i8* }
9563
9564 ; For Unix x86_64 platforms, va_list is the following struct:
9565 ; %struct.va_list = type { i32, i32, i8*, i8* }
9566
Sean Silvab084af42012-12-07 10:36:55 +00009567 define i32 @test(i32 %X, ...) {
9568 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009569 %ap = alloca %struct.va_list
9570 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009571 call void @llvm.va_start(i8* %ap2)
9572
9573 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009574 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009575
9576 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9577 %aq = alloca i8*
9578 %aq2 = bitcast i8** %aq to i8*
9579 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9580 call void @llvm.va_end(i8* %aq2)
9581
9582 ; Stop processing of arguments.
9583 call void @llvm.va_end(i8* %ap2)
9584 ret i32 %tmp
9585 }
9586
9587 declare void @llvm.va_start(i8*)
9588 declare void @llvm.va_copy(i8*, i8*)
9589 declare void @llvm.va_end(i8*)
9590
9591.. _int_va_start:
9592
9593'``llvm.va_start``' Intrinsic
9594^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9595
9596Syntax:
9597"""""""
9598
9599::
9600
Nick Lewycky04f6de02013-09-11 22:04:52 +00009601 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009602
9603Overview:
9604"""""""""
9605
9606The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9607subsequent use by ``va_arg``.
9608
9609Arguments:
9610""""""""""
9611
9612The argument is a pointer to a ``va_list`` element to initialize.
9613
9614Semantics:
9615""""""""""
9616
9617The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9618available in C. In a target-dependent way, it initializes the
9619``va_list`` element to which the argument points, so that the next call
9620to ``va_arg`` will produce the first variable argument passed to the
9621function. Unlike the C ``va_start`` macro, this intrinsic does not need
9622to know the last argument of the function as the compiler can figure
9623that out.
9624
9625'``llvm.va_end``' Intrinsic
9626^^^^^^^^^^^^^^^^^^^^^^^^^^^
9627
9628Syntax:
9629"""""""
9630
9631::
9632
9633 declare void @llvm.va_end(i8* <arglist>)
9634
9635Overview:
9636"""""""""
9637
9638The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9639initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9640
9641Arguments:
9642""""""""""
9643
9644The argument is a pointer to a ``va_list`` to destroy.
9645
9646Semantics:
9647""""""""""
9648
9649The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9650available in C. In a target-dependent way, it destroys the ``va_list``
9651element to which the argument points. Calls to
9652:ref:`llvm.va_start <int_va_start>` and
9653:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9654``llvm.va_end``.
9655
9656.. _int_va_copy:
9657
9658'``llvm.va_copy``' Intrinsic
9659^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9660
9661Syntax:
9662"""""""
9663
9664::
9665
9666 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9667
9668Overview:
9669"""""""""
9670
9671The '``llvm.va_copy``' intrinsic copies the current argument position
9672from the source argument list to the destination argument list.
9673
9674Arguments:
9675""""""""""
9676
9677The first argument is a pointer to a ``va_list`` element to initialize.
9678The second argument is a pointer to a ``va_list`` element to copy from.
9679
9680Semantics:
9681""""""""""
9682
9683The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9684available in C. In a target-dependent way, it copies the source
9685``va_list`` element into the destination ``va_list`` element. This
9686intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9687arbitrarily complex and require, for example, memory allocation.
9688
9689Accurate Garbage Collection Intrinsics
9690--------------------------------------
9691
Philip Reamesc5b0f562015-02-25 23:52:06 +00009692LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009693(GC) requires the frontend to generate code containing appropriate intrinsic
9694calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009695intrinsics in a manner which is appropriate for the target collector.
9696
Sean Silvab084af42012-12-07 10:36:55 +00009697These intrinsics allow identification of :ref:`GC roots on the
9698stack <int_gcroot>`, as well as garbage collector implementations that
9699require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009700Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009701these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009702details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009703
Philip Reamesf80bbff2015-02-25 23:45:20 +00009704Experimental Statepoint Intrinsics
9705^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9706
9707LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009708collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009709to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009710:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009711differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009712<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009713described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009714
9715.. _int_gcroot:
9716
9717'``llvm.gcroot``' Intrinsic
9718^^^^^^^^^^^^^^^^^^^^^^^^^^^
9719
9720Syntax:
9721"""""""
9722
9723::
9724
9725 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9726
9727Overview:
9728"""""""""
9729
9730The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9731the code generator, and allows some metadata to be associated with it.
9732
9733Arguments:
9734""""""""""
9735
9736The first argument specifies the address of a stack object that contains
9737the root pointer. The second pointer (which must be either a constant or
9738a global value address) contains the meta-data to be associated with the
9739root.
9740
9741Semantics:
9742""""""""""
9743
9744At runtime, a call to this intrinsic stores a null pointer into the
9745"ptrloc" location. At compile-time, the code generator generates
9746information to allow the runtime to find the pointer at GC safe points.
9747The '``llvm.gcroot``' intrinsic may only be used in a function which
9748:ref:`specifies a GC algorithm <gc>`.
9749
9750.. _int_gcread:
9751
9752'``llvm.gcread``' Intrinsic
9753^^^^^^^^^^^^^^^^^^^^^^^^^^^
9754
9755Syntax:
9756"""""""
9757
9758::
9759
9760 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9761
9762Overview:
9763"""""""""
9764
9765The '``llvm.gcread``' intrinsic identifies reads of references from heap
9766locations, allowing garbage collector implementations that require read
9767barriers.
9768
9769Arguments:
9770""""""""""
9771
9772The second argument is the address to read from, which should be an
9773address allocated from the garbage collector. The first object is a
9774pointer to the start of the referenced object, if needed by the language
9775runtime (otherwise null).
9776
9777Semantics:
9778""""""""""
9779
9780The '``llvm.gcread``' intrinsic has the same semantics as a load
9781instruction, but may be replaced with substantially more complex code by
9782the garbage collector runtime, as needed. The '``llvm.gcread``'
9783intrinsic may only be used in a function which :ref:`specifies a GC
9784algorithm <gc>`.
9785
9786.. _int_gcwrite:
9787
9788'``llvm.gcwrite``' Intrinsic
9789^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9790
9791Syntax:
9792"""""""
9793
9794::
9795
9796 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9797
9798Overview:
9799"""""""""
9800
9801The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9802locations, allowing garbage collector implementations that require write
9803barriers (such as generational or reference counting collectors).
9804
9805Arguments:
9806""""""""""
9807
9808The first argument is the reference to store, the second is the start of
9809the object to store it to, and the third is the address of the field of
9810Obj to store to. If the runtime does not require a pointer to the
9811object, Obj may be null.
9812
9813Semantics:
9814""""""""""
9815
9816The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9817instruction, but may be replaced with substantially more complex code by
9818the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9819intrinsic may only be used in a function which :ref:`specifies a GC
9820algorithm <gc>`.
9821
9822Code Generator Intrinsics
9823-------------------------
9824
9825These intrinsics are provided by LLVM to expose special features that
9826may only be implemented with code generator support.
9827
9828'``llvm.returnaddress``' Intrinsic
9829^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9830
9831Syntax:
9832"""""""
9833
9834::
9835
George Burgess IVfbc34982017-05-20 04:52:29 +00009836 declare i8* @llvm.returnaddress(i32 <level>)
Sean Silvab084af42012-12-07 10:36:55 +00009837
9838Overview:
9839"""""""""
9840
9841The '``llvm.returnaddress``' intrinsic attempts to compute a
9842target-specific value indicating the return address of the current
9843function or one of its callers.
9844
9845Arguments:
9846""""""""""
9847
9848The argument to this intrinsic indicates which function to return the
9849address for. Zero indicates the calling function, one indicates its
9850caller, etc. The argument is **required** to be a constant integer
9851value.
9852
9853Semantics:
9854""""""""""
9855
9856The '``llvm.returnaddress``' intrinsic either returns a pointer
9857indicating the return address of the specified call frame, or zero if it
9858cannot be identified. The value returned by this intrinsic is likely to
9859be incorrect or 0 for arguments other than zero, so it should only be
9860used for debugging purposes.
9861
9862Note that calling this intrinsic does not prevent function inlining or
9863other aggressive transformations, so the value returned may not be that
9864of the obvious source-language caller.
9865
Albert Gutowski795d7d62016-10-12 22:13:19 +00009866'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +00009867^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +00009868
9869Syntax:
9870"""""""
9871
9872::
9873
George Burgess IVfbc34982017-05-20 04:52:29 +00009874 declare i8* @llvm.addressofreturnaddress()
Albert Gutowski795d7d62016-10-12 22:13:19 +00009875
9876Overview:
9877"""""""""
9878
9879The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
9880pointer to the place in the stack frame where the return address of the
9881current function is stored.
9882
9883Semantics:
9884""""""""""
9885
9886Note that calling this intrinsic does not prevent function inlining or
9887other aggressive transformations, so the value returned may not be that
9888of the obvious source-language caller.
9889
9890This intrinsic is only implemented for x86.
9891
Sean Silvab084af42012-12-07 10:36:55 +00009892'``llvm.frameaddress``' Intrinsic
9893^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9894
9895Syntax:
9896"""""""
9897
9898::
9899
9900 declare i8* @llvm.frameaddress(i32 <level>)
9901
9902Overview:
9903"""""""""
9904
9905The '``llvm.frameaddress``' intrinsic attempts to return the
9906target-specific frame pointer value for the specified stack frame.
9907
9908Arguments:
9909""""""""""
9910
9911The argument to this intrinsic indicates which function to return the
9912frame pointer for. Zero indicates the calling function, one indicates
9913its caller, etc. The argument is **required** to be a constant integer
9914value.
9915
9916Semantics:
9917""""""""""
9918
9919The '``llvm.frameaddress``' intrinsic either returns a pointer
9920indicating the frame address of the specified call frame, or zero if it
9921cannot be identified. The value returned by this intrinsic is likely to
9922be incorrect or 0 for arguments other than zero, so it should only be
9923used for debugging purposes.
9924
9925Note that calling this intrinsic does not prevent function inlining or
9926other aggressive transformations, so the value returned may not be that
9927of the obvious source-language caller.
9928
Reid Kleckner60381792015-07-07 22:25:32 +00009929'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009930^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9931
9932Syntax:
9933"""""""
9934
9935::
9936
Reid Kleckner60381792015-07-07 22:25:32 +00009937 declare void @llvm.localescape(...)
9938 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009939
9940Overview:
9941"""""""""
9942
Reid Kleckner60381792015-07-07 22:25:32 +00009943The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9944allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009945live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009946computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009947
9948Arguments:
9949""""""""""
9950
Reid Kleckner60381792015-07-07 22:25:32 +00009951All arguments to '``llvm.localescape``' must be pointers to static allocas or
9952casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009953once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009954
Reid Kleckner60381792015-07-07 22:25:32 +00009955The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009956bitcasted pointer to a function defined in the current module. The code
9957generator cannot determine the frame allocation offset of functions defined in
9958other modules.
9959
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009960The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9961call frame that is currently live. The return value of '``llvm.localaddress``'
9962is one way to produce such a value, but various runtimes also expose a suitable
9963pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009964
Reid Kleckner60381792015-07-07 22:25:32 +00009965The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9966'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009967
Reid Klecknere9b89312015-01-13 00:48:10 +00009968Semantics:
9969""""""""""
9970
Reid Kleckner60381792015-07-07 22:25:32 +00009971These intrinsics allow a group of functions to share access to a set of local
9972stack allocations of a one parent function. The parent function may call the
9973'``llvm.localescape``' intrinsic once from the function entry block, and the
9974child functions can use '``llvm.localrecover``' to access the escaped allocas.
9975The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9976the escaped allocas are allocated, which would break attempts to use
9977'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009978
Renato Golinc7aea402014-05-06 16:51:25 +00009979.. _int_read_register:
9980.. _int_write_register:
9981
9982'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9983^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9984
9985Syntax:
9986"""""""
9987
9988::
9989
9990 declare i32 @llvm.read_register.i32(metadata)
9991 declare i64 @llvm.read_register.i64(metadata)
9992 declare void @llvm.write_register.i32(metadata, i32 @value)
9993 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009994 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009995
9996Overview:
9997"""""""""
9998
9999The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
10000provides access to the named register. The register must be valid on
10001the architecture being compiled to. The type needs to be compatible
10002with the register being read.
10003
10004Semantics:
10005""""""""""
10006
10007The '``llvm.read_register``' intrinsic returns the current value of the
10008register, where possible. The '``llvm.write_register``' intrinsic sets
10009the current value of the register, where possible.
10010
10011This is useful to implement named register global variables that need
10012to always be mapped to a specific register, as is common practice on
10013bare-metal programs including OS kernels.
10014
10015The compiler doesn't check for register availability or use of the used
10016register in surrounding code, including inline assembly. Because of that,
10017allocatable registers are not supported.
10018
10019Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +000010020architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +000010021work is needed to support other registers and even more so, allocatable
10022registers.
10023
Sean Silvab084af42012-12-07 10:36:55 +000010024.. _int_stacksave:
10025
10026'``llvm.stacksave``' Intrinsic
10027^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10028
10029Syntax:
10030"""""""
10031
10032::
10033
10034 declare i8* @llvm.stacksave()
10035
10036Overview:
10037"""""""""
10038
10039The '``llvm.stacksave``' intrinsic is used to remember the current state
10040of the function stack, for use with
10041:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
10042implementing language features like scoped automatic variable sized
10043arrays in C99.
10044
10045Semantics:
10046""""""""""
10047
10048This intrinsic returns a opaque pointer value that can be passed to
10049:ref:`llvm.stackrestore <int_stackrestore>`. When an
10050``llvm.stackrestore`` intrinsic is executed with a value saved from
10051``llvm.stacksave``, it effectively restores the state of the stack to
10052the state it was in when the ``llvm.stacksave`` intrinsic executed. In
10053practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
10054were allocated after the ``llvm.stacksave`` was executed.
10055
10056.. _int_stackrestore:
10057
10058'``llvm.stackrestore``' Intrinsic
10059^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10060
10061Syntax:
10062"""""""
10063
10064::
10065
10066 declare void @llvm.stackrestore(i8* %ptr)
10067
10068Overview:
10069"""""""""
10070
10071The '``llvm.stackrestore``' intrinsic is used to restore the state of
10072the function stack to the state it was in when the corresponding
10073:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
10074useful for implementing language features like scoped automatic variable
10075sized arrays in C99.
10076
10077Semantics:
10078""""""""""
10079
10080See the description for :ref:`llvm.stacksave <int_stacksave>`.
10081
Yury Gribovd7dbb662015-12-01 11:40:55 +000010082.. _int_get_dynamic_area_offset:
10083
10084'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +000010085^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +000010086
10087Syntax:
10088"""""""
10089
10090::
10091
10092 declare i32 @llvm.get.dynamic.area.offset.i32()
10093 declare i64 @llvm.get.dynamic.area.offset.i64()
10094
Lang Hames10239932016-10-08 00:20:42 +000010095Overview:
10096"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +000010097
10098 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
10099 get the offset from native stack pointer to the address of the most
10100 recent dynamic alloca on the caller's stack. These intrinsics are
10101 intendend for use in combination with
10102 :ref:`llvm.stacksave <int_stacksave>` to get a
10103 pointer to the most recent dynamic alloca. This is useful, for example,
10104 for AddressSanitizer's stack unpoisoning routines.
10105
10106Semantics:
10107""""""""""
10108
10109 These intrinsics return a non-negative integer value that can be used to
10110 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
10111 on the caller's stack. In particular, for targets where stack grows downwards,
10112 adding this offset to the native stack pointer would get the address of the most
10113 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +000010114 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +000010115 one past the end of the most recent dynamic alloca.
10116
10117 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
10118 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
10119 compile-time-known constant value.
10120
10121 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
Matt Arsenaultc749bdc2017-03-30 23:36:47 +000010122 must match the target's default address space's (address space 0) pointer type.
Yury Gribovd7dbb662015-12-01 11:40:55 +000010123
Sean Silvab084af42012-12-07 10:36:55 +000010124'``llvm.prefetch``' Intrinsic
10125^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10126
10127Syntax:
10128"""""""
10129
10130::
10131
10132 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
10133
10134Overview:
10135"""""""""
10136
10137The '``llvm.prefetch``' intrinsic is a hint to the code generator to
10138insert a prefetch instruction if supported; otherwise, it is a noop.
10139Prefetches have no effect on the behavior of the program but can change
10140its performance characteristics.
10141
10142Arguments:
10143""""""""""
10144
10145``address`` is the address to be prefetched, ``rw`` is the specifier
10146determining if the fetch should be for a read (0) or write (1), and
10147``locality`` is a temporal locality specifier ranging from (0) - no
10148locality, to (3) - extremely local keep in cache. The ``cache type``
10149specifies whether the prefetch is performed on the data (1) or
10150instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
10151arguments must be constant integers.
10152
10153Semantics:
10154""""""""""
10155
10156This intrinsic does not modify the behavior of the program. In
10157particular, prefetches cannot trap and do not produce a value. On
10158targets that support this intrinsic, the prefetch can provide hints to
10159the processor cache for better performance.
10160
10161'``llvm.pcmarker``' Intrinsic
10162^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10163
10164Syntax:
10165"""""""
10166
10167::
10168
10169 declare void @llvm.pcmarker(i32 <id>)
10170
10171Overview:
10172"""""""""
10173
10174The '``llvm.pcmarker``' intrinsic is a method to export a Program
10175Counter (PC) in a region of code to simulators and other tools. The
10176method is target specific, but it is expected that the marker will use
10177exported symbols to transmit the PC of the marker. The marker makes no
10178guarantees that it will remain with any specific instruction after
10179optimizations. It is possible that the presence of a marker will inhibit
10180optimizations. The intended use is to be inserted after optimizations to
10181allow correlations of simulation runs.
10182
10183Arguments:
10184""""""""""
10185
10186``id`` is a numerical id identifying the marker.
10187
10188Semantics:
10189""""""""""
10190
10191This intrinsic does not modify the behavior of the program. Backends
10192that do not support this intrinsic may ignore it.
10193
10194'``llvm.readcyclecounter``' Intrinsic
10195^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10196
10197Syntax:
10198"""""""
10199
10200::
10201
10202 declare i64 @llvm.readcyclecounter()
10203
10204Overview:
10205"""""""""
10206
10207The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
10208counter register (or similar low latency, high accuracy clocks) on those
10209targets that support it. On X86, it should map to RDTSC. On Alpha, it
10210should map to RPCC. As the backing counters overflow quickly (on the
10211order of 9 seconds on alpha), this should only be used for small
10212timings.
10213
10214Semantics:
10215""""""""""
10216
10217When directly supported, reading the cycle counter should not modify any
10218memory. Implementations are allowed to either return a application
10219specific value or a system wide value. On backends without support, this
10220is lowered to a constant 0.
10221
Tim Northoverbc933082013-05-23 19:11:20 +000010222Note that runtime support may be conditional on the privilege-level code is
10223running at and the host platform.
10224
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010225'``llvm.clear_cache``' Intrinsic
10226^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10227
10228Syntax:
10229"""""""
10230
10231::
10232
10233 declare void @llvm.clear_cache(i8*, i8*)
10234
10235Overview:
10236"""""""""
10237
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010238The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
10239in the specified range to the execution unit of the processor. On
10240targets with non-unified instruction and data cache, the implementation
10241flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010242
10243Semantics:
10244""""""""""
10245
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010246On platforms with coherent instruction and data caches (e.g. x86), this
10247intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +000010248cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010249instructions or a system call, if cache flushing requires special
10250privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010251
Sean Silvad02bf3e2014-04-07 22:29:53 +000010252The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010253time library.
Renato Golin93010e62014-03-26 14:01:32 +000010254
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010255This instrinsic does *not* empty the instruction pipeline. Modifications
10256of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010257
Vedant Kumar51ce6682018-01-26 23:54:25 +000010258'``llvm.instrprof.increment``' Intrinsic
Justin Bogner61ba2e32014-12-08 18:02:35 +000010259^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10260
10261Syntax:
10262"""""""
10263
10264::
10265
Vedant Kumar51ce6682018-01-26 23:54:25 +000010266 declare void @llvm.instrprof.increment(i8* <name>, i64 <hash>,
Justin Bogner61ba2e32014-12-08 18:02:35 +000010267 i32 <num-counters>, i32 <index>)
10268
10269Overview:
10270"""""""""
10271
Vedant Kumar51ce6682018-01-26 23:54:25 +000010272The '``llvm.instrprof.increment``' intrinsic can be emitted by a
Justin Bogner61ba2e32014-12-08 18:02:35 +000010273frontend for use with instrumentation based profiling. These will be
10274lowered by the ``-instrprof`` pass to generate execution counts of a
10275program at runtime.
10276
10277Arguments:
10278""""""""""
10279
10280The first argument is a pointer to a global variable containing the
10281name of the entity being instrumented. This should generally be the
10282(mangled) function name for a set of counters.
10283
10284The second argument is a hash value that can be used by the consumer
10285of the profile data to detect changes to the instrumented source, and
10286the third is the number of counters associated with ``name``. It is an
10287error if ``hash`` or ``num-counters`` differ between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000010288``instrprof.increment`` that refer to the same name.
Justin Bogner61ba2e32014-12-08 18:02:35 +000010289
10290The last argument refers to which of the counters for ``name`` should
10291be incremented. It should be a value between 0 and ``num-counters``.
10292
10293Semantics:
10294""""""""""
10295
10296This intrinsic represents an increment of a profiling counter. It will
10297cause the ``-instrprof`` pass to generate the appropriate data
10298structures and the code to increment the appropriate value, in a
10299format that can be written out by a compiler runtime and consumed via
10300the ``llvm-profdata`` tool.
10301
Vedant Kumar51ce6682018-01-26 23:54:25 +000010302'``llvm.instrprof.increment.step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +000010303^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +000010304
10305Syntax:
10306"""""""
10307
10308::
10309
Vedant Kumar51ce6682018-01-26 23:54:25 +000010310 declare void @llvm.instrprof.increment.step(i8* <name>, i64 <hash>,
Xinliang David Li4ca17332016-09-18 18:34:07 +000010311 i32 <num-counters>,
10312 i32 <index>, i64 <step>)
10313
10314Overview:
10315"""""""""
10316
Vedant Kumar51ce6682018-01-26 23:54:25 +000010317The '``llvm.instrprof.increment.step``' intrinsic is an extension to
10318the '``llvm.instrprof.increment``' intrinsic with an additional fifth
Xinliang David Li4ca17332016-09-18 18:34:07 +000010319argument to specify the step of the increment.
10320
10321Arguments:
10322""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000010323The first four arguments are the same as '``llvm.instrprof.increment``'
Pete Couperused9569d2017-08-23 20:58:22 +000010324intrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000010325
10326The last argument specifies the value of the increment of the counter variable.
10327
10328Semantics:
10329""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000010330See description of '``llvm.instrprof.increment``' instrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000010331
10332
Vedant Kumar51ce6682018-01-26 23:54:25 +000010333'``llvm.instrprof.value.profile``' Intrinsic
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010334^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10335
10336Syntax:
10337"""""""
10338
10339::
10340
Vedant Kumar51ce6682018-01-26 23:54:25 +000010341 declare void @llvm.instrprof.value.profile(i8* <name>, i64 <hash>,
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010342 i64 <value>, i32 <value_kind>,
10343 i32 <index>)
10344
10345Overview:
10346"""""""""
10347
Vedant Kumar51ce6682018-01-26 23:54:25 +000010348The '``llvm.instrprof.value.profile``' intrinsic can be emitted by a
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010349frontend for use with instrumentation based profiling. This will be
10350lowered by the ``-instrprof`` pass to find out the target values,
10351instrumented expressions take in a program at runtime.
10352
10353Arguments:
10354""""""""""
10355
10356The first argument is a pointer to a global variable containing the
10357name of the entity being instrumented. ``name`` should generally be the
10358(mangled) function name for a set of counters.
10359
10360The second argument is a hash value that can be used by the consumer
10361of the profile data to detect changes to the instrumented source. It
10362is an error if ``hash`` differs between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000010363``llvm.instrprof.*`` that refer to the same name.
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010364
10365The third argument is the value of the expression being profiled. The profiled
10366expression's value should be representable as an unsigned 64-bit value. The
10367fourth argument represents the kind of value profiling that is being done. The
10368supported value profiling kinds are enumerated through the
10369``InstrProfValueKind`` type declared in the
10370``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
10371index of the instrumented expression within ``name``. It should be >= 0.
10372
10373Semantics:
10374""""""""""
10375
10376This intrinsic represents the point where a call to a runtime routine
10377should be inserted for value profiling of target expressions. ``-instrprof``
10378pass will generate the appropriate data structures and replace the
Vedant Kumar51ce6682018-01-26 23:54:25 +000010379``llvm.instrprof.value.profile`` intrinsic with the call to the profile
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010380runtime library with proper arguments.
10381
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000010382'``llvm.thread.pointer``' Intrinsic
10383^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10384
10385Syntax:
10386"""""""
10387
10388::
10389
10390 declare i8* @llvm.thread.pointer()
10391
10392Overview:
10393"""""""""
10394
10395The '``llvm.thread.pointer``' intrinsic returns the value of the thread
10396pointer.
10397
10398Semantics:
10399""""""""""
10400
10401The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
10402for the current thread. The exact semantics of this value are target
10403specific: it may point to the start of TLS area, to the end, or somewhere
10404in the middle. Depending on the target, this intrinsic may read a register,
10405call a helper function, read from an alternate memory space, or perform
10406other operations necessary to locate the TLS area. Not all targets support
10407this intrinsic.
10408
Sean Silvab084af42012-12-07 10:36:55 +000010409Standard C Library Intrinsics
10410-----------------------------
10411
10412LLVM provides intrinsics for a few important standard C library
10413functions. These intrinsics allow source-language front-ends to pass
10414information about the alignment of the pointer arguments to the code
10415generator, providing opportunity for more efficient code generation.
10416
10417.. _int_memcpy:
10418
10419'``llvm.memcpy``' Intrinsic
10420^^^^^^^^^^^^^^^^^^^^^^^^^^^
10421
10422Syntax:
10423"""""""
10424
10425This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
10426integer bit width and for different address spaces. Not all targets
10427support all bit widths however.
10428
10429::
10430
10431 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010432 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010433 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010434 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010435
10436Overview:
10437"""""""""
10438
10439The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10440source location to the destination location.
10441
10442Note that, unlike the standard libc function, the ``llvm.memcpy.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000010443intrinsics do not return a value, takes extra isvolatile
Sean Silvab084af42012-12-07 10:36:55 +000010444arguments and the pointers can be in specified address spaces.
10445
10446Arguments:
10447""""""""""
10448
10449The first argument is a pointer to the destination, the second is a
10450pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000010451specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000010452boolean indicating a volatile access.
10453
Daniel Neilson39eb6a52018-01-19 17:24:21 +000010454The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010455for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010456
10457If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
10458a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10459very cleanly specified and it is unwise to depend on it.
10460
10461Semantics:
10462""""""""""
10463
10464The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10465source location to the destination location, which are not allowed to
10466overlap. It copies "len" bytes of memory over. If the argument is known
10467to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +000010468argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010469
Daniel Neilson57226ef2017-07-12 15:25:26 +000010470.. _int_memmove:
10471
Sean Silvab084af42012-12-07 10:36:55 +000010472'``llvm.memmove``' Intrinsic
10473^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10474
10475Syntax:
10476"""""""
10477
10478This is an overloaded intrinsic. You can use llvm.memmove on any integer
10479bit width and for different address space. Not all targets support all
10480bit widths however.
10481
10482::
10483
10484 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010485 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010486 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010487 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010488
10489Overview:
10490"""""""""
10491
10492The '``llvm.memmove.*``' intrinsics move a block of memory from the
10493source location to the destination location. It is similar to the
10494'``llvm.memcpy``' intrinsic but allows the two memory locations to
10495overlap.
10496
10497Note that, unlike the standard libc function, the ``llvm.memmove.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000010498intrinsics do not return a value, takes an extra isvolatile
10499argument and the pointers can be in specified address spaces.
Sean Silvab084af42012-12-07 10:36:55 +000010500
10501Arguments:
10502""""""""""
10503
10504The first argument is a pointer to the destination, the second is a
10505pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000010506specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000010507boolean indicating a volatile access.
10508
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000010509The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010510for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010511
10512If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
10513is a :ref:`volatile operation <volatile>`. The detailed access behavior is
10514not very cleanly specified and it is unwise to depend on it.
10515
10516Semantics:
10517""""""""""
10518
10519The '``llvm.memmove.*``' intrinsics copy a block of memory from the
10520source location to the destination location, which may overlap. It
10521copies "len" bytes of memory over. If the argument is known to be
10522aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000010523otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010524
Daniel Neilson965613e2017-07-12 21:57:23 +000010525.. _int_memset:
10526
Sean Silvab084af42012-12-07 10:36:55 +000010527'``llvm.memset.*``' Intrinsics
10528^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10529
10530Syntax:
10531"""""""
10532
10533This is an overloaded intrinsic. You can use llvm.memset on any integer
10534bit width and for different address spaces. However, not all targets
10535support all bit widths.
10536
10537::
10538
10539 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010540 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010541 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010542 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010543
10544Overview:
10545"""""""""
10546
10547The '``llvm.memset.*``' intrinsics fill a block of memory with a
10548particular byte value.
10549
10550Note that, unlike the standard libc function, the ``llvm.memset``
Daniel Neilson1e687242018-01-19 17:13:12 +000010551intrinsic does not return a value and takes an extra volatile
10552argument. Also, the destination can be in an arbitrary address space.
Sean Silvab084af42012-12-07 10:36:55 +000010553
10554Arguments:
10555""""""""""
10556
10557The first argument is a pointer to the destination to fill, the second
10558is the byte value with which to fill it, the third argument is an
10559integer argument specifying the number of bytes to fill, and the fourth
Daniel Neilson1e687242018-01-19 17:13:12 +000010560is a boolean indicating a volatile access.
Sean Silvab084af42012-12-07 10:36:55 +000010561
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000010562The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010563for the first arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010564
10565If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10566a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10567very cleanly specified and it is unwise to depend on it.
10568
10569Semantics:
10570""""""""""
10571
10572The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010573at the destination location.
Sean Silvab084af42012-12-07 10:36:55 +000010574
10575'``llvm.sqrt.*``' Intrinsic
10576^^^^^^^^^^^^^^^^^^^^^^^^^^^
10577
10578Syntax:
10579"""""""
10580
10581This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010582floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010583all types however.
10584
10585::
10586
10587 declare float @llvm.sqrt.f32(float %Val)
10588 declare double @llvm.sqrt.f64(double %Val)
10589 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10590 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10591 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10592
10593Overview:
10594"""""""""
10595
Sanjay Patel629c4112017-11-06 16:27:15 +000010596The '``llvm.sqrt``' intrinsics return the square root of the specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010597
10598Arguments:
10599""""""""""
10600
Sanjay Patel629c4112017-11-06 16:27:15 +000010601The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010602
10603Semantics:
10604""""""""""
10605
Sanjay Patel629c4112017-11-06 16:27:15 +000010606Return the same value as a corresponding libm '``sqrt``' function but without
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010607trapping or setting ``errno``. For types specified by IEEE-754, the result
Sanjay Patel629c4112017-11-06 16:27:15 +000010608matches a conforming libm implementation.
10609
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010610When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010611using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010612
10613'``llvm.powi.*``' Intrinsic
10614^^^^^^^^^^^^^^^^^^^^^^^^^^^
10615
10616Syntax:
10617"""""""
10618
10619This is an overloaded intrinsic. You can use ``llvm.powi`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000010620floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010621all types however.
10622
10623::
10624
10625 declare float @llvm.powi.f32(float %Val, i32 %power)
10626 declare double @llvm.powi.f64(double %Val, i32 %power)
10627 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10628 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10629 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10630
10631Overview:
10632"""""""""
10633
10634The '``llvm.powi.*``' intrinsics return the first operand raised to the
10635specified (positive or negative) power. The order of evaluation of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000010636multiplications is not defined. When a vector of floating-point type is
Sean Silvab084af42012-12-07 10:36:55 +000010637used, the second argument remains a scalar integer value.
10638
10639Arguments:
10640""""""""""
10641
10642The second argument is an integer power, and the first is a value to
10643raise to that power.
10644
10645Semantics:
10646""""""""""
10647
10648This function returns the first value raised to the second power with an
10649unspecified sequence of rounding operations.
10650
10651'``llvm.sin.*``' Intrinsic
10652^^^^^^^^^^^^^^^^^^^^^^^^^^
10653
10654Syntax:
10655"""""""
10656
10657This is an overloaded intrinsic. You can use ``llvm.sin`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010658floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010659all types however.
10660
10661::
10662
10663 declare float @llvm.sin.f32(float %Val)
10664 declare double @llvm.sin.f64(double %Val)
10665 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10666 declare fp128 @llvm.sin.f128(fp128 %Val)
10667 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10668
10669Overview:
10670"""""""""
10671
10672The '``llvm.sin.*``' intrinsics return the sine of the operand.
10673
10674Arguments:
10675""""""""""
10676
Sanjay Patel629c4112017-11-06 16:27:15 +000010677The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010678
10679Semantics:
10680""""""""""
10681
Sanjay Patel629c4112017-11-06 16:27:15 +000010682Return the same value as a corresponding libm '``sin``' function but without
10683trapping or setting ``errno``.
10684
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010685When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010686using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010687
10688'``llvm.cos.*``' Intrinsic
10689^^^^^^^^^^^^^^^^^^^^^^^^^^
10690
10691Syntax:
10692"""""""
10693
10694This is an overloaded intrinsic. You can use ``llvm.cos`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010695floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010696all types however.
10697
10698::
10699
10700 declare float @llvm.cos.f32(float %Val)
10701 declare double @llvm.cos.f64(double %Val)
10702 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10703 declare fp128 @llvm.cos.f128(fp128 %Val)
10704 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10705
10706Overview:
10707"""""""""
10708
10709The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10710
10711Arguments:
10712""""""""""
10713
Sanjay Patel629c4112017-11-06 16:27:15 +000010714The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010715
10716Semantics:
10717""""""""""
10718
Sanjay Patel629c4112017-11-06 16:27:15 +000010719Return the same value as a corresponding libm '``cos``' function but without
10720trapping or setting ``errno``.
10721
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010722When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010723using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010724
10725'``llvm.pow.*``' Intrinsic
10726^^^^^^^^^^^^^^^^^^^^^^^^^^
10727
10728Syntax:
10729"""""""
10730
10731This is an overloaded intrinsic. You can use ``llvm.pow`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010732floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010733all types however.
10734
10735::
10736
10737 declare float @llvm.pow.f32(float %Val, float %Power)
10738 declare double @llvm.pow.f64(double %Val, double %Power)
10739 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10740 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10741 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10742
10743Overview:
10744"""""""""
10745
10746The '``llvm.pow.*``' intrinsics return the first operand raised to the
10747specified (positive or negative) power.
10748
10749Arguments:
10750""""""""""
10751
Sanjay Patel629c4112017-11-06 16:27:15 +000010752The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010753
10754Semantics:
10755""""""""""
10756
Sanjay Patel629c4112017-11-06 16:27:15 +000010757Return the same value as a corresponding libm '``pow``' function but without
10758trapping or setting ``errno``.
10759
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010760When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010761using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010762
10763'``llvm.exp.*``' Intrinsic
10764^^^^^^^^^^^^^^^^^^^^^^^^^^
10765
10766Syntax:
10767"""""""
10768
10769This is an overloaded intrinsic. You can use ``llvm.exp`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010770floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010771all types however.
10772
10773::
10774
10775 declare float @llvm.exp.f32(float %Val)
10776 declare double @llvm.exp.f64(double %Val)
10777 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10778 declare fp128 @llvm.exp.f128(fp128 %Val)
10779 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10780
10781Overview:
10782"""""""""
10783
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010784The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
10785value.
Sean Silvab084af42012-12-07 10:36:55 +000010786
10787Arguments:
10788""""""""""
10789
Sanjay Patel629c4112017-11-06 16:27:15 +000010790The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010791
10792Semantics:
10793""""""""""
10794
Sanjay Patel629c4112017-11-06 16:27:15 +000010795Return the same value as a corresponding libm '``exp``' function but without
10796trapping or setting ``errno``.
10797
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010798When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010799using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010800
10801'``llvm.exp2.*``' Intrinsic
10802^^^^^^^^^^^^^^^^^^^^^^^^^^^
10803
10804Syntax:
10805"""""""
10806
10807This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010808floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010809all types however.
10810
10811::
10812
10813 declare float @llvm.exp2.f32(float %Val)
10814 declare double @llvm.exp2.f64(double %Val)
10815 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10816 declare fp128 @llvm.exp2.f128(fp128 %Val)
10817 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10818
10819Overview:
10820"""""""""
10821
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010822The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
10823specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010824
10825Arguments:
10826""""""""""
10827
Sanjay Patel629c4112017-11-06 16:27:15 +000010828The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010829
10830Semantics:
10831""""""""""
10832
Sanjay Patel629c4112017-11-06 16:27:15 +000010833Return the same value as a corresponding libm '``exp2``' function but without
10834trapping or setting ``errno``.
10835
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010836When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010837using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010838
10839'``llvm.log.*``' Intrinsic
10840^^^^^^^^^^^^^^^^^^^^^^^^^^
10841
10842Syntax:
10843"""""""
10844
10845This is an overloaded intrinsic. You can use ``llvm.log`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010846floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010847all types however.
10848
10849::
10850
10851 declare float @llvm.log.f32(float %Val)
10852 declare double @llvm.log.f64(double %Val)
10853 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10854 declare fp128 @llvm.log.f128(fp128 %Val)
10855 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10856
10857Overview:
10858"""""""""
10859
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010860The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
10861value.
Sean Silvab084af42012-12-07 10:36:55 +000010862
10863Arguments:
10864""""""""""
10865
Sanjay Patel629c4112017-11-06 16:27:15 +000010866The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010867
10868Semantics:
10869""""""""""
10870
Sanjay Patel629c4112017-11-06 16:27:15 +000010871Return the same value as a corresponding libm '``log``' function but without
10872trapping or setting ``errno``.
10873
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010874When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010875using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010876
10877'``llvm.log10.*``' Intrinsic
10878^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10879
10880Syntax:
10881"""""""
10882
10883This is an overloaded intrinsic. You can use ``llvm.log10`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010884floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010885all types however.
10886
10887::
10888
10889 declare float @llvm.log10.f32(float %Val)
10890 declare double @llvm.log10.f64(double %Val)
10891 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10892 declare fp128 @llvm.log10.f128(fp128 %Val)
10893 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10894
10895Overview:
10896"""""""""
10897
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010898The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
10899specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010900
10901Arguments:
10902""""""""""
10903
Sanjay Patel629c4112017-11-06 16:27:15 +000010904The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010905
10906Semantics:
10907""""""""""
10908
Sanjay Patel629c4112017-11-06 16:27:15 +000010909Return the same value as a corresponding libm '``log10``' function but without
10910trapping or setting ``errno``.
10911
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010912When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010913using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010914
10915'``llvm.log2.*``' Intrinsic
10916^^^^^^^^^^^^^^^^^^^^^^^^^^^
10917
10918Syntax:
10919"""""""
10920
10921This is an overloaded intrinsic. You can use ``llvm.log2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010922floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010923all types however.
10924
10925::
10926
10927 declare float @llvm.log2.f32(float %Val)
10928 declare double @llvm.log2.f64(double %Val)
10929 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10930 declare fp128 @llvm.log2.f128(fp128 %Val)
10931 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10932
10933Overview:
10934"""""""""
10935
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010936The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
10937value.
Sean Silvab084af42012-12-07 10:36:55 +000010938
10939Arguments:
10940""""""""""
10941
Sanjay Patel629c4112017-11-06 16:27:15 +000010942The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010943
10944Semantics:
10945""""""""""
10946
Sanjay Patel629c4112017-11-06 16:27:15 +000010947Return the same value as a corresponding libm '``log2``' function but without
10948trapping or setting ``errno``.
10949
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010950When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010951using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010952
10953'``llvm.fma.*``' Intrinsic
10954^^^^^^^^^^^^^^^^^^^^^^^^^^
10955
10956Syntax:
10957"""""""
10958
10959This is an overloaded intrinsic. You can use ``llvm.fma`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010960floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010961all types however.
10962
10963::
10964
10965 declare float @llvm.fma.f32(float %a, float %b, float %c)
10966 declare double @llvm.fma.f64(double %a, double %b, double %c)
10967 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10968 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10969 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10970
10971Overview:
10972"""""""""
10973
Sanjay Patel629c4112017-11-06 16:27:15 +000010974The '``llvm.fma.*``' intrinsics perform the fused multiply-add operation.
Sean Silvab084af42012-12-07 10:36:55 +000010975
10976Arguments:
10977""""""""""
10978
Sanjay Patel629c4112017-11-06 16:27:15 +000010979The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010980
10981Semantics:
10982""""""""""
10983
Sanjay Patel629c4112017-11-06 16:27:15 +000010984Return the same value as a corresponding libm '``fma``' function but without
10985trapping or setting ``errno``.
10986
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010987When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010988using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010989
10990'``llvm.fabs.*``' Intrinsic
10991^^^^^^^^^^^^^^^^^^^^^^^^^^^
10992
10993Syntax:
10994"""""""
10995
10996This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000010997floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010998all types however.
10999
11000::
11001
11002 declare float @llvm.fabs.f32(float %Val)
11003 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011004 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000011005 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011006 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000011007
11008Overview:
11009"""""""""
11010
11011The '``llvm.fabs.*``' intrinsics return the absolute value of the
11012operand.
11013
11014Arguments:
11015""""""""""
11016
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011017The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011018type.
11019
11020Semantics:
11021""""""""""
11022
11023This function returns the same values as the libm ``fabs`` functions
11024would, and handles error conditions in the same way.
11025
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011026'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000011027^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011028
11029Syntax:
11030"""""""
11031
11032This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011033floating-point or vector of floating-point type. Not all targets support
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011034all types however.
11035
11036::
11037
Matt Arsenault64313c92014-10-22 18:25:02 +000011038 declare float @llvm.minnum.f32(float %Val0, float %Val1)
11039 declare double @llvm.minnum.f64(double %Val0, double %Val1)
11040 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11041 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
11042 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011043
11044Overview:
11045"""""""""
11046
11047The '``llvm.minnum.*``' intrinsics return the minimum of the two
11048arguments.
11049
11050
11051Arguments:
11052""""""""""
11053
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011054The arguments and return value are floating-point numbers of the same
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011055type.
11056
11057Semantics:
11058""""""""""
11059
11060Follows the IEEE-754 semantics for minNum, which also match for libm's
11061fmin.
11062
11063If either operand is a NaN, returns the other non-NaN operand. Returns
11064NaN only if both operands are NaN. If the operands compare equal,
11065returns a value that compares equal to both operands. This means that
11066fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
11067
11068'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000011069^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011070
11071Syntax:
11072"""""""
11073
11074This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011075floating-point or vector of floating-point type. Not all targets support
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011076all types however.
11077
11078::
11079
Matt Arsenault64313c92014-10-22 18:25:02 +000011080 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
11081 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
11082 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11083 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
11084 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011085
11086Overview:
11087"""""""""
11088
11089The '``llvm.maxnum.*``' intrinsics return the maximum of the two
11090arguments.
11091
11092
11093Arguments:
11094""""""""""
11095
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011096The arguments and return value are floating-point numbers of the same
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011097type.
11098
11099Semantics:
11100""""""""""
11101Follows the IEEE-754 semantics for maxNum, which also match for libm's
11102fmax.
11103
11104If either operand is a NaN, returns the other non-NaN operand. Returns
11105NaN only if both operands are NaN. If the operands compare equal,
11106returns a value that compares equal to both operands. This means that
11107fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
11108
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011109'``llvm.copysign.*``' Intrinsic
11110^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11111
11112Syntax:
11113"""""""
11114
11115This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011116floating-point or vector of floating-point type. Not all targets support
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011117all types however.
11118
11119::
11120
11121 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
11122 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
11123 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
11124 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
11125 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
11126
11127Overview:
11128"""""""""
11129
11130The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
11131first operand and the sign of the second operand.
11132
11133Arguments:
11134""""""""""
11135
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011136The arguments and return value are floating-point numbers of the same
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011137type.
11138
11139Semantics:
11140""""""""""
11141
11142This function returns the same values as the libm ``copysign``
11143functions would, and handles error conditions in the same way.
11144
Sean Silvab084af42012-12-07 10:36:55 +000011145'``llvm.floor.*``' Intrinsic
11146^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11147
11148Syntax:
11149"""""""
11150
11151This is an overloaded intrinsic. You can use ``llvm.floor`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011152floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011153all types however.
11154
11155::
11156
11157 declare float @llvm.floor.f32(float %Val)
11158 declare double @llvm.floor.f64(double %Val)
11159 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
11160 declare fp128 @llvm.floor.f128(fp128 %Val)
11161 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
11162
11163Overview:
11164"""""""""
11165
11166The '``llvm.floor.*``' intrinsics return the floor of the operand.
11167
11168Arguments:
11169""""""""""
11170
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011171The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011172type.
11173
11174Semantics:
11175""""""""""
11176
11177This function returns the same values as the libm ``floor`` functions
11178would, and handles error conditions in the same way.
11179
11180'``llvm.ceil.*``' Intrinsic
11181^^^^^^^^^^^^^^^^^^^^^^^^^^^
11182
11183Syntax:
11184"""""""
11185
11186This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011187floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011188all types however.
11189
11190::
11191
11192 declare float @llvm.ceil.f32(float %Val)
11193 declare double @llvm.ceil.f64(double %Val)
11194 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
11195 declare fp128 @llvm.ceil.f128(fp128 %Val)
11196 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
11197
11198Overview:
11199"""""""""
11200
11201The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
11202
11203Arguments:
11204""""""""""
11205
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011206The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011207type.
11208
11209Semantics:
11210""""""""""
11211
11212This function returns the same values as the libm ``ceil`` functions
11213would, and handles error conditions in the same way.
11214
11215'``llvm.trunc.*``' Intrinsic
11216^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11217
11218Syntax:
11219"""""""
11220
11221This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011222floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011223all types however.
11224
11225::
11226
11227 declare float @llvm.trunc.f32(float %Val)
11228 declare double @llvm.trunc.f64(double %Val)
11229 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
11230 declare fp128 @llvm.trunc.f128(fp128 %Val)
11231 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
11232
11233Overview:
11234"""""""""
11235
11236The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
11237nearest integer not larger in magnitude than the operand.
11238
11239Arguments:
11240""""""""""
11241
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011242The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011243type.
11244
11245Semantics:
11246""""""""""
11247
11248This function returns the same values as the libm ``trunc`` functions
11249would, and handles error conditions in the same way.
11250
11251'``llvm.rint.*``' Intrinsic
11252^^^^^^^^^^^^^^^^^^^^^^^^^^^
11253
11254Syntax:
11255"""""""
11256
11257This is an overloaded intrinsic. You can use ``llvm.rint`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011258floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011259all types however.
11260
11261::
11262
11263 declare float @llvm.rint.f32(float %Val)
11264 declare double @llvm.rint.f64(double %Val)
11265 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
11266 declare fp128 @llvm.rint.f128(fp128 %Val)
11267 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
11268
11269Overview:
11270"""""""""
11271
11272The '``llvm.rint.*``' intrinsics returns the operand rounded to the
11273nearest integer. It may raise an inexact floating-point exception if the
11274operand isn't an integer.
11275
11276Arguments:
11277""""""""""
11278
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011279The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011280type.
11281
11282Semantics:
11283""""""""""
11284
11285This function returns the same values as the libm ``rint`` functions
11286would, and handles error conditions in the same way.
11287
11288'``llvm.nearbyint.*``' Intrinsic
11289^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11290
11291Syntax:
11292"""""""
11293
11294This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011295floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011296all types however.
11297
11298::
11299
11300 declare float @llvm.nearbyint.f32(float %Val)
11301 declare double @llvm.nearbyint.f64(double %Val)
11302 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
11303 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
11304 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
11305
11306Overview:
11307"""""""""
11308
11309The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
11310nearest integer.
11311
11312Arguments:
11313""""""""""
11314
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011315The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011316type.
11317
11318Semantics:
11319""""""""""
11320
11321This function returns the same values as the libm ``nearbyint``
11322functions would, and handles error conditions in the same way.
11323
Hal Finkel171817e2013-08-07 22:49:12 +000011324'``llvm.round.*``' Intrinsic
11325^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11326
11327Syntax:
11328"""""""
11329
11330This is an overloaded intrinsic. You can use ``llvm.round`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011331floating-point or vector of floating-point type. Not all targets support
Hal Finkel171817e2013-08-07 22:49:12 +000011332all types however.
11333
11334::
11335
11336 declare float @llvm.round.f32(float %Val)
11337 declare double @llvm.round.f64(double %Val)
11338 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
11339 declare fp128 @llvm.round.f128(fp128 %Val)
11340 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
11341
11342Overview:
11343"""""""""
11344
11345The '``llvm.round.*``' intrinsics returns the operand rounded to the
11346nearest integer.
11347
11348Arguments:
11349""""""""""
11350
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011351The argument and return value are floating-point numbers of the same
Hal Finkel171817e2013-08-07 22:49:12 +000011352type.
11353
11354Semantics:
11355""""""""""
11356
11357This function returns the same values as the libm ``round``
11358functions would, and handles error conditions in the same way.
11359
Sean Silvab084af42012-12-07 10:36:55 +000011360Bit Manipulation Intrinsics
11361---------------------------
11362
11363LLVM provides intrinsics for a few important bit manipulation
11364operations. These allow efficient code generation for some algorithms.
11365
James Molloy90111f72015-11-12 12:29:09 +000011366'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000011367^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000011368
11369Syntax:
11370"""""""
11371
11372This is an overloaded intrinsic function. You can use bitreverse on any
11373integer type.
11374
11375::
11376
11377 declare i16 @llvm.bitreverse.i16(i16 <id>)
11378 declare i32 @llvm.bitreverse.i32(i32 <id>)
11379 declare i64 @llvm.bitreverse.i64(i64 <id>)
11380
11381Overview:
11382"""""""""
11383
11384The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000011385bitpattern of an integer value; for example ``0b10110110`` becomes
11386``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000011387
11388Semantics:
11389""""""""""
11390
Yichao Yu5abf14b2016-11-23 16:25:31 +000011391The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000011392``M`` in the input moved to bit ``N-M`` in the output.
11393
Sean Silvab084af42012-12-07 10:36:55 +000011394'``llvm.bswap.*``' Intrinsics
11395^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11396
11397Syntax:
11398"""""""
11399
11400This is an overloaded intrinsic function. You can use bswap on any
11401integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
11402
11403::
11404
11405 declare i16 @llvm.bswap.i16(i16 <id>)
11406 declare i32 @llvm.bswap.i32(i32 <id>)
11407 declare i64 @llvm.bswap.i64(i64 <id>)
11408
11409Overview:
11410"""""""""
11411
11412The '``llvm.bswap``' family of intrinsics is used to byte swap integer
11413values with an even number of bytes (positive multiple of 16 bits).
11414These are useful for performing operations on data that is not in the
11415target's native byte order.
11416
11417Semantics:
11418""""""""""
11419
11420The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
11421and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
11422intrinsic returns an i32 value that has the four bytes of the input i32
11423swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
11424returned i32 will have its bytes in 3, 2, 1, 0 order. The
11425``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
11426concept to additional even-byte lengths (6 bytes, 8 bytes and more,
11427respectively).
11428
11429'``llvm.ctpop.*``' Intrinsic
11430^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11431
11432Syntax:
11433"""""""
11434
11435This is an overloaded intrinsic. You can use llvm.ctpop on any integer
11436bit width, or on any vector with integer elements. Not all targets
11437support all bit widths or vector types, however.
11438
11439::
11440
11441 declare i8 @llvm.ctpop.i8(i8 <src>)
11442 declare i16 @llvm.ctpop.i16(i16 <src>)
11443 declare i32 @llvm.ctpop.i32(i32 <src>)
11444 declare i64 @llvm.ctpop.i64(i64 <src>)
11445 declare i256 @llvm.ctpop.i256(i256 <src>)
11446 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
11447
11448Overview:
11449"""""""""
11450
11451The '``llvm.ctpop``' family of intrinsics counts the number of bits set
11452in a value.
11453
11454Arguments:
11455""""""""""
11456
11457The only argument is the value to be counted. The argument may be of any
11458integer type, or a vector with integer elements. The return type must
11459match the argument type.
11460
11461Semantics:
11462""""""""""
11463
11464The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
11465each element of a vector.
11466
11467'``llvm.ctlz.*``' Intrinsic
11468^^^^^^^^^^^^^^^^^^^^^^^^^^^
11469
11470Syntax:
11471"""""""
11472
11473This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
11474integer bit width, or any vector whose elements are integers. Not all
11475targets support all bit widths or vector types, however.
11476
11477::
11478
11479 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
11480 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
11481 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
11482 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
11483 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011484 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011485
11486Overview:
11487"""""""""
11488
11489The '``llvm.ctlz``' family of intrinsic functions counts the number of
11490leading zeros in a variable.
11491
11492Arguments:
11493""""""""""
11494
11495The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011496any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011497type must match the first argument type.
11498
11499The second argument must be a constant and is a flag to indicate whether
11500the intrinsic should ensure that a zero as the first argument produces a
11501defined result. Historically some architectures did not provide a
11502defined result for zero values as efficiently, and many algorithms are
11503now predicated on avoiding zero-value inputs.
11504
11505Semantics:
11506""""""""""
11507
11508The '``llvm.ctlz``' intrinsic counts the leading (most significant)
11509zeros in a variable, or within each element of the vector. If
11510``src == 0`` then the result is the size in bits of the type of ``src``
11511if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11512``llvm.ctlz(i32 2) = 30``.
11513
11514'``llvm.cttz.*``' Intrinsic
11515^^^^^^^^^^^^^^^^^^^^^^^^^^^
11516
11517Syntax:
11518"""""""
11519
11520This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
11521integer bit width, or any vector of integer elements. Not all targets
11522support all bit widths or vector types, however.
11523
11524::
11525
11526 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
11527 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
11528 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
11529 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
11530 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011531 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011532
11533Overview:
11534"""""""""
11535
11536The '``llvm.cttz``' family of intrinsic functions counts the number of
11537trailing zeros.
11538
11539Arguments:
11540""""""""""
11541
11542The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011543any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011544type must match the first argument type.
11545
11546The second argument must be a constant and is a flag to indicate whether
11547the intrinsic should ensure that a zero as the first argument produces a
11548defined result. Historically some architectures did not provide a
11549defined result for zero values as efficiently, and many algorithms are
11550now predicated on avoiding zero-value inputs.
11551
11552Semantics:
11553""""""""""
11554
11555The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11556zeros in a variable, or within each element of a vector. If ``src == 0``
11557then the result is the size in bits of the type of ``src`` if
11558``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11559``llvm.cttz(2) = 1``.
11560
Philip Reames34843ae2015-03-05 05:55:55 +000011561.. _int_overflow:
11562
Sean Silvab084af42012-12-07 10:36:55 +000011563Arithmetic with Overflow Intrinsics
11564-----------------------------------
11565
John Regehr6a493f22016-05-12 20:55:09 +000011566LLVM provides intrinsics for fast arithmetic overflow checking.
11567
11568Each of these intrinsics returns a two-element struct. The first
11569element of this struct contains the result of the corresponding
11570arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
11571the result. Therefore, for example, the first element of the struct
11572returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
11573result of a 32-bit ``add`` instruction with the same operands, where
11574the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
11575
11576The second element of the result is an ``i1`` that is 1 if the
11577arithmetic operation overflowed and 0 otherwise. An operation
11578overflows if, for any values of its operands ``A`` and ``B`` and for
11579any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
11580not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
11581``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11582``op`` is the underlying arithmetic operation.
11583
11584The behavior of these intrinsics is well-defined for all argument
11585values.
Sean Silvab084af42012-12-07 10:36:55 +000011586
11587'``llvm.sadd.with.overflow.*``' Intrinsics
11588^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11589
11590Syntax:
11591"""""""
11592
11593This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11594on any integer bit width.
11595
11596::
11597
11598 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11599 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11600 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11601
11602Overview:
11603"""""""""
11604
11605The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11606a signed addition of the two arguments, and indicate whether an overflow
11607occurred during the signed summation.
11608
11609Arguments:
11610""""""""""
11611
11612The arguments (%a and %b) and the first element of the result structure
11613may be of integer types of any bit width, but they must have the same
11614bit width. The second element of the result structure must be of type
11615``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11616addition.
11617
11618Semantics:
11619""""""""""
11620
11621The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011622a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011623first element of which is the signed summation, and the second element
11624of which is a bit specifying if the signed summation resulted in an
11625overflow.
11626
11627Examples:
11628"""""""""
11629
11630.. code-block:: llvm
11631
11632 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11633 %sum = extractvalue {i32, i1} %res, 0
11634 %obit = extractvalue {i32, i1} %res, 1
11635 br i1 %obit, label %overflow, label %normal
11636
11637'``llvm.uadd.with.overflow.*``' Intrinsics
11638^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11639
11640Syntax:
11641"""""""
11642
11643This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11644on any integer bit width.
11645
11646::
11647
11648 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11649 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11650 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11651
11652Overview:
11653"""""""""
11654
11655The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11656an unsigned addition of the two arguments, and indicate whether a carry
11657occurred during the unsigned summation.
11658
11659Arguments:
11660""""""""""
11661
11662The arguments (%a and %b) and the first element of the result structure
11663may be of integer types of any bit width, but they must have the same
11664bit width. The second element of the result structure must be of type
11665``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11666addition.
11667
11668Semantics:
11669""""""""""
11670
11671The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011672an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011673first element of which is the sum, and the second element of which is a
11674bit specifying if the unsigned summation resulted in a carry.
11675
11676Examples:
11677"""""""""
11678
11679.. code-block:: llvm
11680
11681 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11682 %sum = extractvalue {i32, i1} %res, 0
11683 %obit = extractvalue {i32, i1} %res, 1
11684 br i1 %obit, label %carry, label %normal
11685
11686'``llvm.ssub.with.overflow.*``' Intrinsics
11687^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11688
11689Syntax:
11690"""""""
11691
11692This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11693on any integer bit width.
11694
11695::
11696
11697 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11698 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11699 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11700
11701Overview:
11702"""""""""
11703
11704The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11705a signed subtraction of the two arguments, and indicate whether an
11706overflow occurred during the signed subtraction.
11707
11708Arguments:
11709""""""""""
11710
11711The arguments (%a and %b) and the first element of the result structure
11712may be of integer types of any bit width, but they must have the same
11713bit width. The second element of the result structure must be of type
11714``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11715subtraction.
11716
11717Semantics:
11718""""""""""
11719
11720The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011721a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011722first element of which is the subtraction, and the second element of
11723which is a bit specifying if the signed subtraction resulted in an
11724overflow.
11725
11726Examples:
11727"""""""""
11728
11729.. code-block:: llvm
11730
11731 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11732 %sum = extractvalue {i32, i1} %res, 0
11733 %obit = extractvalue {i32, i1} %res, 1
11734 br i1 %obit, label %overflow, label %normal
11735
11736'``llvm.usub.with.overflow.*``' Intrinsics
11737^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11738
11739Syntax:
11740"""""""
11741
11742This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11743on any integer bit width.
11744
11745::
11746
11747 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11748 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11749 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11750
11751Overview:
11752"""""""""
11753
11754The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11755an unsigned subtraction of the two arguments, and indicate whether an
11756overflow occurred during the unsigned subtraction.
11757
11758Arguments:
11759""""""""""
11760
11761The arguments (%a and %b) and the first element of the result structure
11762may be of integer types of any bit width, but they must have the same
11763bit width. The second element of the result structure must be of type
11764``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11765subtraction.
11766
11767Semantics:
11768""""""""""
11769
11770The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011771an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011772the first element of which is the subtraction, and the second element of
11773which is a bit specifying if the unsigned subtraction resulted in an
11774overflow.
11775
11776Examples:
11777"""""""""
11778
11779.. code-block:: llvm
11780
11781 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11782 %sum = extractvalue {i32, i1} %res, 0
11783 %obit = extractvalue {i32, i1} %res, 1
11784 br i1 %obit, label %overflow, label %normal
11785
11786'``llvm.smul.with.overflow.*``' Intrinsics
11787^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11788
11789Syntax:
11790"""""""
11791
11792This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11793on any integer bit width.
11794
11795::
11796
11797 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11798 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11799 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11800
11801Overview:
11802"""""""""
11803
11804The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11805a signed multiplication of the two arguments, and indicate whether an
11806overflow occurred during the signed multiplication.
11807
11808Arguments:
11809""""""""""
11810
11811The arguments (%a and %b) and the first element of the result structure
11812may be of integer types of any bit width, but they must have the same
11813bit width. The second element of the result structure must be of type
11814``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11815multiplication.
11816
11817Semantics:
11818""""""""""
11819
11820The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011821a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011822the first element of which is the multiplication, and the second element
11823of which is a bit specifying if the signed multiplication resulted in an
11824overflow.
11825
11826Examples:
11827"""""""""
11828
11829.. code-block:: llvm
11830
11831 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11832 %sum = extractvalue {i32, i1} %res, 0
11833 %obit = extractvalue {i32, i1} %res, 1
11834 br i1 %obit, label %overflow, label %normal
11835
11836'``llvm.umul.with.overflow.*``' Intrinsics
11837^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11838
11839Syntax:
11840"""""""
11841
11842This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11843on any integer bit width.
11844
11845::
11846
11847 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11848 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11849 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11850
11851Overview:
11852"""""""""
11853
11854The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11855a unsigned multiplication of the two arguments, and indicate whether an
11856overflow occurred during the unsigned multiplication.
11857
11858Arguments:
11859""""""""""
11860
11861The arguments (%a and %b) and the first element of the result structure
11862may be of integer types of any bit width, but they must have the same
11863bit width. The second element of the result structure must be of type
11864``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11865multiplication.
11866
11867Semantics:
11868""""""""""
11869
11870The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011871an unsigned multiplication of the two arguments. They return a structure ---
11872the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011873element of which is a bit specifying if the unsigned multiplication
11874resulted in an overflow.
11875
11876Examples:
11877"""""""""
11878
11879.. code-block:: llvm
11880
11881 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11882 %sum = extractvalue {i32, i1} %res, 0
11883 %obit = extractvalue {i32, i1} %res, 1
11884 br i1 %obit, label %overflow, label %normal
11885
11886Specialised Arithmetic Intrinsics
11887---------------------------------
11888
Owen Anderson1056a922015-07-11 07:01:27 +000011889'``llvm.canonicalize.*``' Intrinsic
11890^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11891
11892Syntax:
11893"""""""
11894
11895::
11896
11897 declare float @llvm.canonicalize.f32(float %a)
11898 declare double @llvm.canonicalize.f64(double %b)
11899
11900Overview:
11901"""""""""
11902
11903The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011904encoding of a floating-point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011905implementing certain numeric primitives such as frexp. The canonical encoding is
11906defined by IEEE-754-2008 to be:
11907
11908::
11909
11910 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011911 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011912 numbers, infinities, and NaNs, especially in decimal formats.
11913
11914This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011915conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011916according to section 6.2.
11917
11918Examples of non-canonical encodings:
11919
Sean Silvaa1190322015-08-06 22:56:48 +000011920- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011921 converted to a canonical representation per hardware-specific protocol.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011922- Many normal decimal floating-point numbers have non-canonical alternative
Owen Anderson1056a922015-07-11 07:01:27 +000011923 encodings.
11924- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011925 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011926 a zero of the same sign by this operation.
11927
11928Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11929default exception handling must signal an invalid exception, and produce a
11930quiet NaN result.
11931
11932This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011933that the compiler does not constant fold the operation. Likewise, division by
119341.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011935-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11936
Sean Silvaa1190322015-08-06 22:56:48 +000011937``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011938
11939- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11940- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11941 to ``(x == y)``
11942
11943Additionally, the sign of zero must be conserved:
11944``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11945
11946The payload bits of a NaN must be conserved, with two exceptions.
11947First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011948must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011949usual methods.
11950
11951The canonicalization operation may be optimized away if:
11952
Sean Silvaa1190322015-08-06 22:56:48 +000011953- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011954 floating-point operation that is required by the standard to be canonical.
11955- The result is consumed only by (or fused with) other floating-point
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011956 operations. That is, the bits of the floating-point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011957
Sean Silvab084af42012-12-07 10:36:55 +000011958'``llvm.fmuladd.*``' Intrinsic
11959^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11960
11961Syntax:
11962"""""""
11963
11964::
11965
11966 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11967 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11968
11969Overview:
11970"""""""""
11971
11972The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011973expressions that can be fused if the code generator determines that (a) the
11974target instruction set has support for a fused operation, and (b) that the
11975fused operation is more efficient than the equivalent, separate pair of mul
11976and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011977
11978Arguments:
11979""""""""""
11980
11981The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11982multiplicands, a and b, and an addend c.
11983
11984Semantics:
11985""""""""""
11986
11987The expression:
11988
11989::
11990
11991 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11992
11993is equivalent to the expression a \* b + c, except that rounding will
11994not be performed between the multiplication and addition steps if the
11995code generator fuses the operations. Fusion is not guaranteed, even if
11996the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011997corresponding llvm.fma.\* intrinsic function should be used
11998instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011999
12000Examples:
12001"""""""""
12002
12003.. code-block:: llvm
12004
Tim Northover675a0962014-06-13 14:24:23 +000012005 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000012006
Amara Emersoncf9daa32017-05-09 10:43:25 +000012007
12008Experimental Vector Reduction Intrinsics
12009----------------------------------------
12010
12011Horizontal reductions of vectors can be expressed using the following
12012intrinsics. Each one takes a vector operand as an input and applies its
12013respective operation across all elements of the vector, returning a single
12014scalar result of the same element type.
12015
12016
12017'``llvm.experimental.vector.reduce.add.*``' Intrinsic
12018^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12019
12020Syntax:
12021"""""""
12022
12023::
12024
12025 declare i32 @llvm.experimental.vector.reduce.add.i32.v4i32(<4 x i32> %a)
12026 declare i64 @llvm.experimental.vector.reduce.add.i64.v2i64(<2 x i64> %a)
12027
12028Overview:
12029"""""""""
12030
12031The '``llvm.experimental.vector.reduce.add.*``' intrinsics do an integer ``ADD``
12032reduction of a vector, returning the result as a scalar. The return type matches
12033the element-type of the vector input.
12034
12035Arguments:
12036""""""""""
12037The argument to this intrinsic must be a vector of integer values.
12038
12039'``llvm.experimental.vector.reduce.fadd.*``' Intrinsic
12040^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12041
12042Syntax:
12043"""""""
12044
12045::
12046
12047 declare float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %a)
12048 declare double @llvm.experimental.vector.reduce.fadd.f64.v2f64(double %acc, <2 x double> %a)
12049
12050Overview:
12051"""""""""
12052
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012053The '``llvm.experimental.vector.reduce.fadd.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012054``ADD`` reduction of a vector, returning the result as a scalar. The return type
12055matches the element-type of the vector input.
12056
12057If the intrinsic call has fast-math flags, then the reduction will not preserve
12058the associativity of an equivalent scalarized counterpart. If it does not have
12059fast-math flags, then the reduction will be *ordered*, implying that the
12060operation respects the associativity of a scalarized reduction.
12061
12062
12063Arguments:
12064""""""""""
12065The first argument to this intrinsic is a scalar accumulator value, which is
12066only used when there are no fast-math flags attached. This argument may be undef
12067when fast-math flags are used.
12068
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012069The second argument must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012070
12071Examples:
12072"""""""""
12073
12074.. code-block:: llvm
12075
12076 %fast = call fast float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
12077 %ord = call float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
12078
12079
12080'``llvm.experimental.vector.reduce.mul.*``' Intrinsic
12081^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12082
12083Syntax:
12084"""""""
12085
12086::
12087
12088 declare i32 @llvm.experimental.vector.reduce.mul.i32.v4i32(<4 x i32> %a)
12089 declare i64 @llvm.experimental.vector.reduce.mul.i64.v2i64(<2 x i64> %a)
12090
12091Overview:
12092"""""""""
12093
12094The '``llvm.experimental.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
12095reduction of a vector, returning the result as a scalar. The return type matches
12096the element-type of the vector input.
12097
12098Arguments:
12099""""""""""
12100The argument to this intrinsic must be a vector of integer values.
12101
12102'``llvm.experimental.vector.reduce.fmul.*``' Intrinsic
12103^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12104
12105Syntax:
12106"""""""
12107
12108::
12109
12110 declare float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %a)
12111 declare double @llvm.experimental.vector.reduce.fmul.f64.v2f64(double %acc, <2 x double> %a)
12112
12113Overview:
12114"""""""""
12115
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012116The '``llvm.experimental.vector.reduce.fmul.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012117``MUL`` reduction of a vector, returning the result as a scalar. The return type
12118matches the element-type of the vector input.
12119
12120If the intrinsic call has fast-math flags, then the reduction will not preserve
12121the associativity of an equivalent scalarized counterpart. If it does not have
12122fast-math flags, then the reduction will be *ordered*, implying that the
12123operation respects the associativity of a scalarized reduction.
12124
12125
12126Arguments:
12127""""""""""
12128The first argument to this intrinsic is a scalar accumulator value, which is
12129only used when there are no fast-math flags attached. This argument may be undef
12130when fast-math flags are used.
12131
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012132The second argument must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012133
12134Examples:
12135"""""""""
12136
12137.. code-block:: llvm
12138
12139 %fast = call fast float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
12140 %ord = call float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
12141
12142'``llvm.experimental.vector.reduce.and.*``' Intrinsic
12143^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12144
12145Syntax:
12146"""""""
12147
12148::
12149
12150 declare i32 @llvm.experimental.vector.reduce.and.i32.v4i32(<4 x i32> %a)
12151
12152Overview:
12153"""""""""
12154
12155The '``llvm.experimental.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
12156reduction of a vector, returning the result as a scalar. The return type matches
12157the element-type of the vector input.
12158
12159Arguments:
12160""""""""""
12161The argument to this intrinsic must be a vector of integer values.
12162
12163'``llvm.experimental.vector.reduce.or.*``' Intrinsic
12164^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12165
12166Syntax:
12167"""""""
12168
12169::
12170
12171 declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
12172
12173Overview:
12174"""""""""
12175
12176The '``llvm.experimental.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
12177of a vector, returning the result as a scalar. The return type matches the
12178element-type of the vector input.
12179
12180Arguments:
12181""""""""""
12182The argument to this intrinsic must be a vector of integer values.
12183
12184'``llvm.experimental.vector.reduce.xor.*``' Intrinsic
12185^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12186
12187Syntax:
12188"""""""
12189
12190::
12191
12192 declare i32 @llvm.experimental.vector.reduce.xor.i32.v4i32(<4 x i32> %a)
12193
12194Overview:
12195"""""""""
12196
12197The '``llvm.experimental.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
12198reduction of a vector, returning the result as a scalar. The return type matches
12199the element-type of the vector input.
12200
12201Arguments:
12202""""""""""
12203The argument to this intrinsic must be a vector of integer values.
12204
12205'``llvm.experimental.vector.reduce.smax.*``' Intrinsic
12206^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12207
12208Syntax:
12209"""""""
12210
12211::
12212
12213 declare i32 @llvm.experimental.vector.reduce.smax.i32.v4i32(<4 x i32> %a)
12214
12215Overview:
12216"""""""""
12217
12218The '``llvm.experimental.vector.reduce.smax.*``' intrinsics do a signed integer
12219``MAX`` reduction of a vector, returning the result as a scalar. The return type
12220matches the element-type of the vector input.
12221
12222Arguments:
12223""""""""""
12224The argument to this intrinsic must be a vector of integer values.
12225
12226'``llvm.experimental.vector.reduce.smin.*``' Intrinsic
12227^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12228
12229Syntax:
12230"""""""
12231
12232::
12233
12234 declare i32 @llvm.experimental.vector.reduce.smin.i32.v4i32(<4 x i32> %a)
12235
12236Overview:
12237"""""""""
12238
12239The '``llvm.experimental.vector.reduce.smin.*``' intrinsics do a signed integer
12240``MIN`` reduction of a vector, returning the result as a scalar. The return type
12241matches the element-type of the vector input.
12242
12243Arguments:
12244""""""""""
12245The argument to this intrinsic must be a vector of integer values.
12246
12247'``llvm.experimental.vector.reduce.umax.*``' Intrinsic
12248^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12249
12250Syntax:
12251"""""""
12252
12253::
12254
12255 declare i32 @llvm.experimental.vector.reduce.umax.i32.v4i32(<4 x i32> %a)
12256
12257Overview:
12258"""""""""
12259
12260The '``llvm.experimental.vector.reduce.umax.*``' intrinsics do an unsigned
12261integer ``MAX`` reduction of a vector, returning the result as a scalar. The
12262return type matches the element-type of the vector input.
12263
12264Arguments:
12265""""""""""
12266The argument to this intrinsic must be a vector of integer values.
12267
12268'``llvm.experimental.vector.reduce.umin.*``' Intrinsic
12269^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12270
12271Syntax:
12272"""""""
12273
12274::
12275
12276 declare i32 @llvm.experimental.vector.reduce.umin.i32.v4i32(<4 x i32> %a)
12277
12278Overview:
12279"""""""""
12280
12281The '``llvm.experimental.vector.reduce.umin.*``' intrinsics do an unsigned
12282integer ``MIN`` reduction of a vector, returning the result as a scalar. The
12283return type matches the element-type of the vector input.
12284
12285Arguments:
12286""""""""""
12287The argument to this intrinsic must be a vector of integer values.
12288
12289'``llvm.experimental.vector.reduce.fmax.*``' Intrinsic
12290^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12291
12292Syntax:
12293"""""""
12294
12295::
12296
12297 declare float @llvm.experimental.vector.reduce.fmax.f32.v4f32(<4 x float> %a)
12298 declare double @llvm.experimental.vector.reduce.fmax.f64.v2f64(<2 x double> %a)
12299
12300Overview:
12301"""""""""
12302
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012303The '``llvm.experimental.vector.reduce.fmax.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012304``MAX`` reduction of a vector, returning the result as a scalar. The return type
12305matches the element-type of the vector input.
12306
12307If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12308assume that NaNs are not present in the input vector.
12309
12310Arguments:
12311""""""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012312The argument to this intrinsic must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012313
12314'``llvm.experimental.vector.reduce.fmin.*``' Intrinsic
12315^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12316
12317Syntax:
12318"""""""
12319
12320::
12321
12322 declare float @llvm.experimental.vector.reduce.fmin.f32.v4f32(<4 x float> %a)
12323 declare double @llvm.experimental.vector.reduce.fmin.f64.v2f64(<2 x double> %a)
12324
12325Overview:
12326"""""""""
12327
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012328The '``llvm.experimental.vector.reduce.fmin.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012329``MIN`` reduction of a vector, returning the result as a scalar. The return type
12330matches the element-type of the vector input.
12331
12332If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12333assume that NaNs are not present in the input vector.
12334
12335Arguments:
12336""""""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012337The argument to this intrinsic must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012338
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012339Half Precision Floating-Point Intrinsics
Sean Silvab084af42012-12-07 10:36:55 +000012340----------------------------------------
12341
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012342For most target platforms, half precision floating-point is a
Sean Silvab084af42012-12-07 10:36:55 +000012343storage-only format. This means that it is a dense encoding (in memory)
12344but does not support computation in the format.
12345
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012346This means that code must first load the half-precision floating-point
Sean Silvab084af42012-12-07 10:36:55 +000012347value as an i16, then convert it to float with
12348:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
12349then be performed on the float value (including extending to double
12350etc). To store the value back to memory, it is first converted to float
12351if needed, then converted to i16 with
12352:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
12353i16 value.
12354
12355.. _int_convert_to_fp16:
12356
12357'``llvm.convert.to.fp16``' Intrinsic
12358^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12359
12360Syntax:
12361"""""""
12362
12363::
12364
Tim Northoverfd7e4242014-07-17 10:51:23 +000012365 declare i16 @llvm.convert.to.fp16.f32(float %a)
12366 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000012367
12368Overview:
12369"""""""""
12370
Tim Northoverfd7e4242014-07-17 10:51:23 +000012371The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012372conventional floating-point type to half precision floating-point format.
Sean Silvab084af42012-12-07 10:36:55 +000012373
12374Arguments:
12375""""""""""
12376
12377The intrinsic function contains single argument - the value to be
12378converted.
12379
12380Semantics:
12381""""""""""
12382
Tim Northoverfd7e4242014-07-17 10:51:23 +000012383The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012384conventional floating-point format to half precision floating-point format. The
Tim Northoverfd7e4242014-07-17 10:51:23 +000012385return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000012386
12387Examples:
12388"""""""""
12389
12390.. code-block:: llvm
12391
Tim Northoverfd7e4242014-07-17 10:51:23 +000012392 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000012393 store i16 %res, i16* @x, align 2
12394
12395.. _int_convert_from_fp16:
12396
12397'``llvm.convert.from.fp16``' Intrinsic
12398^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12399
12400Syntax:
12401"""""""
12402
12403::
12404
Tim Northoverfd7e4242014-07-17 10:51:23 +000012405 declare float @llvm.convert.from.fp16.f32(i16 %a)
12406 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012407
12408Overview:
12409"""""""""
12410
12411The '``llvm.convert.from.fp16``' intrinsic function performs a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012412conversion from half precision floating-point format to single precision
12413floating-point format.
Sean Silvab084af42012-12-07 10:36:55 +000012414
12415Arguments:
12416""""""""""
12417
12418The intrinsic function contains single argument - the value to be
12419converted.
12420
12421Semantics:
12422""""""""""
12423
12424The '``llvm.convert.from.fp16``' intrinsic function performs a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012425conversion from half single precision floating-point format to single
12426precision floating-point format. The input half-float value is
Sean Silvab084af42012-12-07 10:36:55 +000012427represented by an ``i16`` value.
12428
12429Examples:
12430"""""""""
12431
12432.. code-block:: llvm
12433
David Blaikiec7aabbb2015-03-04 22:06:14 +000012434 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000012435 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012436
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000012437.. _dbg_intrinsics:
12438
Sean Silvab084af42012-12-07 10:36:55 +000012439Debugger Intrinsics
12440-------------------
12441
12442The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
12443prefix), are described in the `LLVM Source Level
Hans Wennborg65195622017-09-28 15:16:37 +000012444Debugging <SourceLevelDebugging.html#format-common-intrinsics>`_
Sean Silvab084af42012-12-07 10:36:55 +000012445document.
12446
12447Exception Handling Intrinsics
12448-----------------------------
12449
12450The LLVM exception handling intrinsics (which all start with
12451``llvm.eh.`` prefix), are described in the `LLVM Exception
Hans Wennborg65195622017-09-28 15:16:37 +000012452Handling <ExceptionHandling.html#format-common-intrinsics>`_ document.
Sean Silvab084af42012-12-07 10:36:55 +000012453
12454.. _int_trampoline:
12455
12456Trampoline Intrinsics
12457---------------------
12458
12459These intrinsics make it possible to excise one parameter, marked with
12460the :ref:`nest <nest>` attribute, from a function. The result is a
12461callable function pointer lacking the nest parameter - the caller does
12462not need to provide a value for it. Instead, the value to use is stored
12463in advance in a "trampoline", a block of memory usually allocated on the
12464stack, which also contains code to splice the nest value into the
12465argument list. This is used to implement the GCC nested function address
12466extension.
12467
12468For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
12469then the resulting function pointer has signature ``i32 (i32, i32)*``.
12470It can be created as follows:
12471
12472.. code-block:: llvm
12473
12474 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000012475 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000012476 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
12477 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
12478 %fp = bitcast i8* %p to i32 (i32, i32)*
12479
12480The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
12481``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
12482
12483.. _int_it:
12484
12485'``llvm.init.trampoline``' Intrinsic
12486^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12487
12488Syntax:
12489"""""""
12490
12491::
12492
12493 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
12494
12495Overview:
12496"""""""""
12497
12498This fills the memory pointed to by ``tramp`` with executable code,
12499turning it into a trampoline.
12500
12501Arguments:
12502""""""""""
12503
12504The ``llvm.init.trampoline`` intrinsic takes three arguments, all
12505pointers. The ``tramp`` argument must point to a sufficiently large and
12506sufficiently aligned block of memory; this memory is written to by the
12507intrinsic. Note that the size and the alignment are target-specific -
12508LLVM currently provides no portable way of determining them, so a
12509front-end that generates this intrinsic needs to have some
12510target-specific knowledge. The ``func`` argument must hold a function
12511bitcast to an ``i8*``.
12512
12513Semantics:
12514""""""""""
12515
12516The block of memory pointed to by ``tramp`` is filled with target
12517dependent code, turning it into a function. Then ``tramp`` needs to be
12518passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
12519be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
12520function's signature is the same as that of ``func`` with any arguments
12521marked with the ``nest`` attribute removed. At most one such ``nest``
12522argument is allowed, and it must be of pointer type. Calling the new
12523function is equivalent to calling ``func`` with the same argument list,
12524but with ``nval`` used for the missing ``nest`` argument. If, after
12525calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
12526modified, then the effect of any later call to the returned function
12527pointer is undefined.
12528
12529.. _int_at:
12530
12531'``llvm.adjust.trampoline``' Intrinsic
12532^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12533
12534Syntax:
12535"""""""
12536
12537::
12538
12539 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
12540
12541Overview:
12542"""""""""
12543
12544This performs any required machine-specific adjustment to the address of
12545a trampoline (passed as ``tramp``).
12546
12547Arguments:
12548""""""""""
12549
12550``tramp`` must point to a block of memory which already has trampoline
12551code filled in by a previous call to
12552:ref:`llvm.init.trampoline <int_it>`.
12553
12554Semantics:
12555""""""""""
12556
12557On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012558different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000012559intrinsic returns the executable address corresponding to ``tramp``
12560after performing the required machine specific adjustments. The pointer
12561returned can then be :ref:`bitcast and executed <int_trampoline>`.
12562
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012563.. _int_mload_mstore:
12564
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012565Masked Vector Load and Store Intrinsics
12566---------------------------------------
12567
12568LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
12569
12570.. _int_mload:
12571
12572'``llvm.masked.load.*``' Intrinsics
12573^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12574
12575Syntax:
12576"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012577This is an overloaded intrinsic. The loaded data is a vector of any integer, floating-point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012578
12579::
12580
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012581 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12582 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012583 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012584 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012585 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012586 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012587
12588Overview:
12589"""""""""
12590
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012591Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012592
12593
12594Arguments:
12595""""""""""
12596
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012597The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012598
12599
12600Semantics:
12601""""""""""
12602
12603The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
12604The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
12605
12606
12607::
12608
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012609 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012610
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012611 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000012612 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012613 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012614
12615.. _int_mstore:
12616
12617'``llvm.masked.store.*``' Intrinsics
12618^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12619
12620Syntax:
12621"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012622This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012623
12624::
12625
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012626 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
12627 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012628 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012629 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012630 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012631 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012632
12633Overview:
12634"""""""""
12635
12636Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12637
12638Arguments:
12639""""""""""
12640
12641The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12642
12643
12644Semantics:
12645""""""""""
12646
12647The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
12648The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
12649
12650::
12651
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012652 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012653
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012654 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000012655 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012656 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
12657 store <16 x float> %res, <16 x float>* %ptr, align 4
12658
12659
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012660Masked Vector Gather and Scatter Intrinsics
12661-------------------------------------------
12662
12663LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
12664
12665.. _int_mgather:
12666
12667'``llvm.masked.gather.*``' Intrinsics
12668^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12669
12670Syntax:
12671"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012672This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating-point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012673
12674::
12675
Elad Cohenef5798a2017-05-03 12:28:54 +000012676 declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12677 declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64 (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
12678 declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012679
12680Overview:
12681"""""""""
12682
12683Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
12684
12685
12686Arguments:
12687""""""""""
12688
12689The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
12690
12691
12692Semantics:
12693""""""""""
12694
12695The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
12696The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
12697
12698
12699::
12700
Elad Cohenef5798a2017-05-03 12:28:54 +000012701 %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012702
12703 ;; The gather with all-true mask is equivalent to the following instruction sequence
12704 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
12705 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
12706 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
12707 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
12708
12709 %val0 = load double, double* %ptr0, align 8
12710 %val1 = load double, double* %ptr1, align 8
12711 %val2 = load double, double* %ptr2, align 8
12712 %val3 = load double, double* %ptr3, align 8
12713
12714 %vec0 = insertelement <4 x double>undef, %val0, 0
12715 %vec01 = insertelement <4 x double>%vec0, %val1, 1
12716 %vec012 = insertelement <4 x double>%vec01, %val2, 2
12717 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
12718
12719.. _int_mscatter:
12720
12721'``llvm.masked.scatter.*``' Intrinsics
12722^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12723
12724Syntax:
12725"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012726This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012727
12728::
12729
Elad Cohenef5798a2017-05-03 12:28:54 +000012730 declare void @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
12731 declare void @llvm.masked.scatter.v16f32.v16p1f32 (<16 x float> <value>, <16 x float addrspace(1)*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
12732 declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012733
12734Overview:
12735"""""""""
12736
12737Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12738
12739Arguments:
12740""""""""""
12741
12742The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12743
12744
12745Semantics:
12746""""""""""
12747
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000012748The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012749
12750::
12751
Sylvestre Ledru84666a12016-02-14 20:16:22 +000012752 ;; This instruction unconditionally stores data vector in multiple addresses
Elad Cohenef5798a2017-05-03 12:28:54 +000012753 call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012754
12755 ;; It is equivalent to a list of scalar stores
12756 %val0 = extractelement <8 x i32> %value, i32 0
12757 %val1 = extractelement <8 x i32> %value, i32 1
12758 ..
12759 %val7 = extractelement <8 x i32> %value, i32 7
12760 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
12761 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
12762 ..
12763 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
12764 ;; Note: the order of the following stores is important when they overlap:
12765 store i32 %val0, i32* %ptr0, align 4
12766 store i32 %val1, i32* %ptr1, align 4
12767 ..
12768 store i32 %val7, i32* %ptr7, align 4
12769
12770
Sean Silvab084af42012-12-07 10:36:55 +000012771Memory Use Markers
12772------------------
12773
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012774This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000012775memory objects and ranges where variables are immutable.
12776
Reid Klecknera534a382013-12-19 02:14:12 +000012777.. _int_lifestart:
12778
Sean Silvab084af42012-12-07 10:36:55 +000012779'``llvm.lifetime.start``' Intrinsic
12780^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12781
12782Syntax:
12783"""""""
12784
12785::
12786
12787 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
12788
12789Overview:
12790"""""""""
12791
12792The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
12793object's lifetime.
12794
12795Arguments:
12796""""""""""
12797
12798The first argument is a constant integer representing the size of the
12799object, or -1 if it is variable sized. The second argument is a pointer
12800to the object.
12801
12802Semantics:
12803""""""""""
12804
12805This intrinsic indicates that before this point in the code, the value
12806of the memory pointed to by ``ptr`` is dead. This means that it is known
12807to never be used and has an undefined value. A load from the pointer
12808that precedes this intrinsic can be replaced with ``'undef'``.
12809
Reid Klecknera534a382013-12-19 02:14:12 +000012810.. _int_lifeend:
12811
Sean Silvab084af42012-12-07 10:36:55 +000012812'``llvm.lifetime.end``' Intrinsic
12813^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12814
12815Syntax:
12816"""""""
12817
12818::
12819
12820 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
12821
12822Overview:
12823"""""""""
12824
12825The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
12826object's lifetime.
12827
12828Arguments:
12829""""""""""
12830
12831The first argument is a constant integer representing the size of the
12832object, or -1 if it is variable sized. The second argument is a pointer
12833to the object.
12834
12835Semantics:
12836""""""""""
12837
12838This intrinsic indicates that after this point in the code, the value of
12839the memory pointed to by ``ptr`` is dead. This means that it is known to
12840never be used and has an undefined value. Any stores into the memory
12841object following this intrinsic may be removed as dead.
12842
12843'``llvm.invariant.start``' Intrinsic
12844^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12845
12846Syntax:
12847"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012848This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012849
12850::
12851
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012852 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012853
12854Overview:
12855"""""""""
12856
12857The '``llvm.invariant.start``' intrinsic specifies that the contents of
12858a memory object will not change.
12859
12860Arguments:
12861""""""""""
12862
12863The first argument is a constant integer representing the size of the
12864object, or -1 if it is variable sized. The second argument is a pointer
12865to the object.
12866
12867Semantics:
12868""""""""""
12869
12870This intrinsic indicates that until an ``llvm.invariant.end`` that uses
12871the return value, the referenced memory location is constant and
12872unchanging.
12873
12874'``llvm.invariant.end``' Intrinsic
12875^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12876
12877Syntax:
12878"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012879This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012880
12881::
12882
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012883 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012884
12885Overview:
12886"""""""""
12887
12888The '``llvm.invariant.end``' intrinsic specifies that the contents of a
12889memory object are mutable.
12890
12891Arguments:
12892""""""""""
12893
12894The first argument is the matching ``llvm.invariant.start`` intrinsic.
12895The second argument is a constant integer representing the size of the
12896object, or -1 if it is variable sized and the third argument is a
12897pointer to the object.
12898
12899Semantics:
12900""""""""""
12901
12902This intrinsic indicates that the memory is mutable again.
12903
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012904'``llvm.invariant.group.barrier``' Intrinsic
12905^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12906
12907Syntax:
12908"""""""
Yaxun Liu407ca362017-11-16 16:32:16 +000012909This is an overloaded intrinsic. The memory object can belong to any address
12910space. The returned pointer must belong to the same address space as the
12911argument.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012912
12913::
12914
Yaxun Liu407ca362017-11-16 16:32:16 +000012915 declare i8* @llvm.invariant.group.barrier.p0i8(i8* <ptr>)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012916
12917Overview:
12918"""""""""
12919
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000012920The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012921established by invariant.group metadata no longer holds, to obtain a new pointer
12922value that does not carry the invariant information.
12923
12924
12925Arguments:
12926""""""""""
12927
12928The ``llvm.invariant.group.barrier`` takes only one argument, which is
12929the pointer to the memory for which the ``invariant.group`` no longer holds.
12930
12931Semantics:
12932""""""""""
12933
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000012934Returns another pointer that aliases its argument but which is considered different
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012935for the purposes of ``load``/``store`` ``invariant.group`` metadata.
12936
Sanjay Patel54b161e2018-03-20 16:38:22 +000012937.. _constrainedfp:
12938
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012939Constrained Floating-Point Intrinsics
Andrew Kaylora0a11642017-01-26 23:27:59 +000012940-------------------------------------
12941
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012942These intrinsics are used to provide special handling of floating-point
12943operations when specific rounding mode or floating-point exception behavior is
Andrew Kaylora0a11642017-01-26 23:27:59 +000012944required. By default, LLVM optimization passes assume that the rounding mode is
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012945round-to-nearest and that floating-point exceptions will not be monitored.
Andrew Kaylora0a11642017-01-26 23:27:59 +000012946Constrained FP intrinsics are used to support non-default rounding modes and
12947accurately preserve exception behavior without compromising LLVM's ability to
12948optimize FP code when the default behavior is used.
12949
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012950Each of these intrinsics corresponds to a normal floating-point operation. The
Andrew Kaylora0a11642017-01-26 23:27:59 +000012951first two arguments and the return value are the same as the corresponding FP
12952operation.
12953
12954The third argument is a metadata argument specifying the rounding mode to be
12955assumed. This argument must be one of the following strings:
12956
12957::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012958
Andrew Kaylora0a11642017-01-26 23:27:59 +000012959 "round.dynamic"
12960 "round.tonearest"
12961 "round.downward"
12962 "round.upward"
12963 "round.towardzero"
12964
12965If this argument is "round.dynamic" optimization passes must assume that the
12966rounding mode is unknown and may change at runtime. No transformations that
12967depend on rounding mode may be performed in this case.
12968
12969The other possible values for the rounding mode argument correspond to the
12970similarly named IEEE rounding modes. If the argument is any of these values
12971optimization passes may perform transformations as long as they are consistent
12972with the specified rounding mode.
12973
12974For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
12975"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
12976'x-0' should evaluate to '-0' when rounding downward. However, this
12977transformation is legal for all other rounding modes.
12978
12979For values other than "round.dynamic" optimization passes may assume that the
12980actual runtime rounding mode (as defined in a target-specific manner) matches
12981the specified rounding mode, but this is not guaranteed. Using a specific
12982non-dynamic rounding mode which does not match the actual rounding mode at
12983runtime results in undefined behavior.
12984
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012985The fourth argument to the constrained floating-point intrinsics specifies the
Andrew Kaylora0a11642017-01-26 23:27:59 +000012986required exception behavior. This argument must be one of the following
12987strings:
12988
12989::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012990
Andrew Kaylora0a11642017-01-26 23:27:59 +000012991 "fpexcept.ignore"
12992 "fpexcept.maytrap"
12993 "fpexcept.strict"
12994
12995If this argument is "fpexcept.ignore" optimization passes may assume that the
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012996exception status flags will not be read and that floating-point exceptions will
Andrew Kaylora0a11642017-01-26 23:27:59 +000012997be masked. This allows transformations to be performed that may change the
12998exception semantics of the original code. For example, FP operations may be
12999speculatively executed in this case whereas they must not be for either of the
13000other possible values of this argument.
13001
13002If the exception behavior argument is "fpexcept.maytrap" optimization passes
13003must avoid transformations that may raise exceptions that would not have been
13004raised by the original code (such as speculatively executing FP operations), but
13005passes are not required to preserve all exceptions that are implied by the
13006original code. For example, exceptions may be potentially hidden by constant
13007folding.
13008
13009If the exception behavior argument is "fpexcept.strict" all transformations must
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013010strictly preserve the floating-point exception semantics of the original code.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013011Any FP exception that would have been raised by the original code must be raised
13012by the transformed code, and the transformed code must not raise any FP
13013exceptions that would not have been raised by the original code. This is the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013014exception behavior argument that will be used if the code being compiled reads
Andrew Kaylora0a11642017-01-26 23:27:59 +000013015the FP exception status flags, but this mode can also be used with code that
13016unmasks FP exceptions.
13017
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013018The number and order of floating-point exceptions is NOT guaranteed. For
Andrew Kaylora0a11642017-01-26 23:27:59 +000013019example, a series of FP operations that each may raise exceptions may be
13020vectorized into a single instruction that raises each unique exception a single
13021time.
13022
13023
13024'``llvm.experimental.constrained.fadd``' Intrinsic
13025^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13026
13027Syntax:
13028"""""""
13029
13030::
13031
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013032 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013033 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
13034 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013035 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013036
13037Overview:
13038"""""""""
13039
13040The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
13041two operands.
13042
13043
13044Arguments:
13045""""""""""
13046
13047The first two arguments to the '``llvm.experimental.constrained.fadd``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013048intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13049of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013050
13051The third and fourth arguments specify the rounding mode and exception
13052behavior as described above.
13053
13054Semantics:
13055""""""""""
13056
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013057The value produced is the floating-point sum of the two value operands and has
Andrew Kaylora0a11642017-01-26 23:27:59 +000013058the same type as the operands.
13059
13060
13061'``llvm.experimental.constrained.fsub``' Intrinsic
13062^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13063
13064Syntax:
13065"""""""
13066
13067::
13068
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013069 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013070 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
13071 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013072 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013073
13074Overview:
13075"""""""""
13076
13077The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
13078of its two operands.
13079
13080
13081Arguments:
13082""""""""""
13083
13084The first two arguments to the '``llvm.experimental.constrained.fsub``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013085intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13086of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013087
13088The third and fourth arguments specify the rounding mode and exception
13089behavior as described above.
13090
13091Semantics:
13092""""""""""
13093
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013094The value produced is the floating-point difference of the two value operands
Andrew Kaylora0a11642017-01-26 23:27:59 +000013095and has the same type as the operands.
13096
13097
13098'``llvm.experimental.constrained.fmul``' Intrinsic
13099^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13100
13101Syntax:
13102"""""""
13103
13104::
13105
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013106 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013107 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
13108 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013109 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013110
13111Overview:
13112"""""""""
13113
13114The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
13115its two operands.
13116
13117
13118Arguments:
13119""""""""""
13120
13121The first two arguments to the '``llvm.experimental.constrained.fmul``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013122intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13123of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013124
13125The third and fourth arguments specify the rounding mode and exception
13126behavior as described above.
13127
13128Semantics:
13129""""""""""
13130
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013131The value produced is the floating-point product of the two value operands and
Andrew Kaylora0a11642017-01-26 23:27:59 +000013132has the same type as the operands.
13133
13134
13135'``llvm.experimental.constrained.fdiv``' Intrinsic
13136^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13137
13138Syntax:
13139"""""""
13140
13141::
13142
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013143 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013144 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
13145 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013146 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013147
13148Overview:
13149"""""""""
13150
13151The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
13152its two operands.
13153
13154
13155Arguments:
13156""""""""""
13157
13158The first two arguments to the '``llvm.experimental.constrained.fdiv``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013159intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13160of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013161
13162The third and fourth arguments specify the rounding mode and exception
13163behavior as described above.
13164
13165Semantics:
13166""""""""""
13167
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013168The value produced is the floating-point quotient of the two value operands and
Andrew Kaylora0a11642017-01-26 23:27:59 +000013169has the same type as the operands.
13170
13171
13172'``llvm.experimental.constrained.frem``' Intrinsic
13173^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13174
13175Syntax:
13176"""""""
13177
13178::
13179
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013180 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013181 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
13182 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013183 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013184
13185Overview:
13186"""""""""
13187
13188The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
13189from the division of its two operands.
13190
13191
13192Arguments:
13193""""""""""
13194
13195The first two arguments to the '``llvm.experimental.constrained.frem``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013196intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13197of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013198
13199The third and fourth arguments specify the rounding mode and exception
13200behavior as described above. The rounding mode argument has no effect, since
13201the result of frem is never rounded, but the argument is included for
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013202consistency with the other constrained floating-point intrinsics.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013203
13204Semantics:
13205""""""""""
13206
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013207The value produced is the floating-point remainder from the division of the two
Andrew Kaylora0a11642017-01-26 23:27:59 +000013208value operands and has the same type as the operands. The remainder has the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013209same sign as the dividend.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013210
Wei Dinga131d3f2017-08-24 04:18:24 +000013211'``llvm.experimental.constrained.fma``' Intrinsic
13212^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13213
13214Syntax:
13215"""""""
13216
13217::
13218
13219 declare <type>
13220 @llvm.experimental.constrained.fma(<type> <op1>, <type> <op2>, <type> <op3>,
13221 metadata <rounding mode>,
13222 metadata <exception behavior>)
13223
13224Overview:
13225"""""""""
13226
13227The '``llvm.experimental.constrained.fma``' intrinsic returns the result of a
13228fused-multiply-add operation on its operands.
13229
13230Arguments:
13231""""""""""
13232
13233The first three arguments to the '``llvm.experimental.constrained.fma``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013234intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector
13235<t_vector>` of floating-point values. All arguments must have identical types.
Wei Dinga131d3f2017-08-24 04:18:24 +000013236
13237The fourth and fifth arguments specify the rounding mode and exception behavior
13238as described above.
13239
13240Semantics:
13241""""""""""
13242
13243The result produced is the product of the first two operands added to the third
13244operand computed with infinite precision, and then rounded to the target
13245precision.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013246
Andrew Kaylorf4660012017-05-25 21:31:00 +000013247Constrained libm-equivalent Intrinsics
13248--------------------------------------
13249
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013250In addition to the basic floating-point operations for which constrained
Andrew Kaylorf4660012017-05-25 21:31:00 +000013251intrinsics are described above, there are constrained versions of various
13252operations which provide equivalent behavior to a corresponding libm function.
13253These intrinsics allow the precise behavior of these operations with respect to
13254rounding mode and exception behavior to be controlled.
13255
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013256As with the basic constrained floating-point intrinsics, the rounding mode
Andrew Kaylorf4660012017-05-25 21:31:00 +000013257and exception behavior arguments only control the behavior of the optimizer.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013258They do not change the runtime floating-point environment.
Andrew Kaylorf4660012017-05-25 21:31:00 +000013259
13260
13261'``llvm.experimental.constrained.sqrt``' Intrinsic
13262^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13263
13264Syntax:
13265"""""""
13266
13267::
13268
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013269 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013270 @llvm.experimental.constrained.sqrt(<type> <op1>,
13271 metadata <rounding mode>,
13272 metadata <exception behavior>)
13273
13274Overview:
13275"""""""""
13276
13277The '``llvm.experimental.constrained.sqrt``' intrinsic returns the square root
13278of the specified value, returning the same value as the libm '``sqrt``'
13279functions would, but without setting ``errno``.
13280
13281Arguments:
13282""""""""""
13283
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013284The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013285type.
13286
13287The second and third arguments specify the rounding mode and exception
13288behavior as described above.
13289
13290Semantics:
13291""""""""""
13292
13293This function returns the nonnegative square root of the specified value.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013294If the value is less than negative zero, a floating-point exception occurs
Hiroshi Inoue760c0c92018-01-16 13:19:48 +000013295and the return value is architecture specific.
Andrew Kaylorf4660012017-05-25 21:31:00 +000013296
13297
13298'``llvm.experimental.constrained.pow``' Intrinsic
13299^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13300
13301Syntax:
13302"""""""
13303
13304::
13305
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013306 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013307 @llvm.experimental.constrained.pow(<type> <op1>, <type> <op2>,
13308 metadata <rounding mode>,
13309 metadata <exception behavior>)
13310
13311Overview:
13312"""""""""
13313
13314The '``llvm.experimental.constrained.pow``' intrinsic returns the first operand
13315raised to the (positive or negative) power specified by the second operand.
13316
13317Arguments:
13318""""""""""
13319
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013320The first two arguments and the return value are floating-point numbers of the
Andrew Kaylorf4660012017-05-25 21:31:00 +000013321same type. The second argument specifies the power to which the first argument
13322should be raised.
13323
13324The third and fourth arguments specify the rounding mode and exception
13325behavior as described above.
13326
13327Semantics:
13328""""""""""
13329
13330This function returns the first value raised to the second power,
13331returning the same values as the libm ``pow`` functions would, and
13332handles error conditions in the same way.
13333
13334
13335'``llvm.experimental.constrained.powi``' Intrinsic
13336^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13337
13338Syntax:
13339"""""""
13340
13341::
13342
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013343 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013344 @llvm.experimental.constrained.powi(<type> <op1>, i32 <op2>,
13345 metadata <rounding mode>,
13346 metadata <exception behavior>)
13347
13348Overview:
13349"""""""""
13350
13351The '``llvm.experimental.constrained.powi``' intrinsic returns the first operand
13352raised to the (positive or negative) power specified by the second operand. The
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013353order of evaluation of multiplications is not defined. When a vector of
13354floating-point type is used, the second argument remains a scalar integer value.
Andrew Kaylorf4660012017-05-25 21:31:00 +000013355
13356
13357Arguments:
13358""""""""""
13359
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013360The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013361type. The second argument is a 32-bit signed integer specifying the power to
13362which the first argument should be raised.
13363
13364The third and fourth arguments specify the rounding mode and exception
13365behavior as described above.
13366
13367Semantics:
13368""""""""""
13369
13370This function returns the first value raised to the second power with an
13371unspecified sequence of rounding operations.
13372
13373
13374'``llvm.experimental.constrained.sin``' Intrinsic
13375^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13376
13377Syntax:
13378"""""""
13379
13380::
13381
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013382 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013383 @llvm.experimental.constrained.sin(<type> <op1>,
13384 metadata <rounding mode>,
13385 metadata <exception behavior>)
13386
13387Overview:
13388"""""""""
13389
13390The '``llvm.experimental.constrained.sin``' intrinsic returns the sine of the
13391first operand.
13392
13393Arguments:
13394""""""""""
13395
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013396The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013397type.
13398
13399The second and third arguments specify the rounding mode and exception
13400behavior as described above.
13401
13402Semantics:
13403""""""""""
13404
13405This function returns the sine of the specified operand, returning the
13406same values as the libm ``sin`` functions would, and handles error
13407conditions in the same way.
13408
13409
13410'``llvm.experimental.constrained.cos``' Intrinsic
13411^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13412
13413Syntax:
13414"""""""
13415
13416::
13417
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013418 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013419 @llvm.experimental.constrained.cos(<type> <op1>,
13420 metadata <rounding mode>,
13421 metadata <exception behavior>)
13422
13423Overview:
13424"""""""""
13425
13426The '``llvm.experimental.constrained.cos``' intrinsic returns the cosine of the
13427first operand.
13428
13429Arguments:
13430""""""""""
13431
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013432The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013433type.
13434
13435The second and third arguments specify the rounding mode and exception
13436behavior as described above.
13437
13438Semantics:
13439""""""""""
13440
13441This function returns the cosine of the specified operand, returning the
13442same values as the libm ``cos`` functions would, and handles error
13443conditions in the same way.
13444
13445
13446'``llvm.experimental.constrained.exp``' Intrinsic
13447^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13448
13449Syntax:
13450"""""""
13451
13452::
13453
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013454 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013455 @llvm.experimental.constrained.exp(<type> <op1>,
13456 metadata <rounding mode>,
13457 metadata <exception behavior>)
13458
13459Overview:
13460"""""""""
13461
13462The '``llvm.experimental.constrained.exp``' intrinsic computes the base-e
13463exponential of the specified value.
13464
13465Arguments:
13466""""""""""
13467
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013468The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013469type.
13470
13471The second and third arguments specify the rounding mode and exception
13472behavior as described above.
13473
13474Semantics:
13475""""""""""
13476
13477This function returns the same values as the libm ``exp`` functions
13478would, and handles error conditions in the same way.
13479
13480
13481'``llvm.experimental.constrained.exp2``' Intrinsic
13482^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13483
13484Syntax:
13485"""""""
13486
13487::
13488
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013489 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013490 @llvm.experimental.constrained.exp2(<type> <op1>,
13491 metadata <rounding mode>,
13492 metadata <exception behavior>)
13493
13494Overview:
13495"""""""""
13496
13497The '``llvm.experimental.constrained.exp2``' intrinsic computes the base-2
13498exponential of the specified value.
13499
13500
13501Arguments:
13502""""""""""
13503
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013504The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013505type.
13506
13507The second and third arguments specify the rounding mode and exception
13508behavior as described above.
13509
13510Semantics:
13511""""""""""
13512
13513This function returns the same values as the libm ``exp2`` functions
13514would, and handles error conditions in the same way.
13515
13516
13517'``llvm.experimental.constrained.log``' Intrinsic
13518^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13519
13520Syntax:
13521"""""""
13522
13523::
13524
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013525 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013526 @llvm.experimental.constrained.log(<type> <op1>,
13527 metadata <rounding mode>,
13528 metadata <exception behavior>)
13529
13530Overview:
13531"""""""""
13532
13533The '``llvm.experimental.constrained.log``' intrinsic computes the base-e
13534logarithm of the specified value.
13535
13536Arguments:
13537""""""""""
13538
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013539The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013540type.
13541
13542The second and third arguments specify the rounding mode and exception
13543behavior as described above.
13544
13545
13546Semantics:
13547""""""""""
13548
13549This function returns the same values as the libm ``log`` functions
13550would, and handles error conditions in the same way.
13551
13552
13553'``llvm.experimental.constrained.log10``' Intrinsic
13554^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13555
13556Syntax:
13557"""""""
13558
13559::
13560
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013561 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013562 @llvm.experimental.constrained.log10(<type> <op1>,
13563 metadata <rounding mode>,
13564 metadata <exception behavior>)
13565
13566Overview:
13567"""""""""
13568
13569The '``llvm.experimental.constrained.log10``' intrinsic computes the base-10
13570logarithm of the specified value.
13571
13572Arguments:
13573""""""""""
13574
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013575The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013576type.
13577
13578The second and third arguments specify the rounding mode and exception
13579behavior as described above.
13580
13581Semantics:
13582""""""""""
13583
13584This function returns the same values as the libm ``log10`` functions
13585would, and handles error conditions in the same way.
13586
13587
13588'``llvm.experimental.constrained.log2``' Intrinsic
13589^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13590
13591Syntax:
13592"""""""
13593
13594::
13595
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013596 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013597 @llvm.experimental.constrained.log2(<type> <op1>,
13598 metadata <rounding mode>,
13599 metadata <exception behavior>)
13600
13601Overview:
13602"""""""""
13603
13604The '``llvm.experimental.constrained.log2``' intrinsic computes the base-2
13605logarithm of the specified value.
13606
13607Arguments:
13608""""""""""
13609
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013610The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013611type.
13612
13613The second and third arguments specify the rounding mode and exception
13614behavior as described above.
13615
13616Semantics:
13617""""""""""
13618
13619This function returns the same values as the libm ``log2`` functions
13620would, and handles error conditions in the same way.
13621
13622
13623'``llvm.experimental.constrained.rint``' Intrinsic
13624^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13625
13626Syntax:
13627"""""""
13628
13629::
13630
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013631 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013632 @llvm.experimental.constrained.rint(<type> <op1>,
13633 metadata <rounding mode>,
13634 metadata <exception behavior>)
13635
13636Overview:
13637"""""""""
13638
13639The '``llvm.experimental.constrained.rint``' intrinsic returns the first
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013640operand rounded to the nearest integer. It may raise an inexact floating-point
Andrew Kaylorf4660012017-05-25 21:31:00 +000013641exception if the operand is not an integer.
13642
13643Arguments:
13644""""""""""
13645
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013646The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013647type.
13648
13649The second and third arguments specify the rounding mode and exception
13650behavior as described above.
13651
13652Semantics:
13653""""""""""
13654
13655This function returns the same values as the libm ``rint`` functions
13656would, and handles error conditions in the same way. The rounding mode is
13657described, not determined, by the rounding mode argument. The actual rounding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013658mode is determined by the runtime floating-point environment. The rounding
Andrew Kaylorf4660012017-05-25 21:31:00 +000013659mode argument is only intended as information to the compiler.
13660
13661
13662'``llvm.experimental.constrained.nearbyint``' Intrinsic
13663^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13664
13665Syntax:
13666"""""""
13667
13668::
13669
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013670 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013671 @llvm.experimental.constrained.nearbyint(<type> <op1>,
13672 metadata <rounding mode>,
13673 metadata <exception behavior>)
13674
13675Overview:
13676"""""""""
13677
13678The '``llvm.experimental.constrained.nearbyint``' intrinsic returns the first
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013679operand rounded to the nearest integer. It will not raise an inexact
13680floating-point exception if the operand is not an integer.
Andrew Kaylorf4660012017-05-25 21:31:00 +000013681
13682
13683Arguments:
13684""""""""""
13685
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013686The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013687type.
13688
13689The second and third arguments specify the rounding mode and exception
13690behavior as described above.
13691
13692Semantics:
13693""""""""""
13694
13695This function returns the same values as the libm ``nearbyint`` functions
13696would, and handles error conditions in the same way. The rounding mode is
13697described, not determined, by the rounding mode argument. The actual rounding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013698mode is determined by the runtime floating-point environment. The rounding
Andrew Kaylorf4660012017-05-25 21:31:00 +000013699mode argument is only intended as information to the compiler.
13700
13701
Sean Silvab084af42012-12-07 10:36:55 +000013702General Intrinsics
13703------------------
13704
13705This class of intrinsics is designed to be generic and has no specific
13706purpose.
13707
13708'``llvm.var.annotation``' Intrinsic
13709^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13710
13711Syntax:
13712"""""""
13713
13714::
13715
13716 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
13717
13718Overview:
13719"""""""""
13720
13721The '``llvm.var.annotation``' intrinsic.
13722
13723Arguments:
13724""""""""""
13725
13726The first argument is a pointer to a value, the second is a pointer to a
13727global string, the third is a pointer to a global string which is the
13728source file name, and the last argument is the line number.
13729
13730Semantics:
13731""""""""""
13732
13733This intrinsic allows annotation of local variables with arbitrary
13734strings. This can be useful for special purpose optimizations that want
13735to look for these annotations. These have no other defined use; they are
13736ignored by code generation and optimization.
13737
Michael Gottesman88d18832013-03-26 00:34:27 +000013738'``llvm.ptr.annotation.*``' Intrinsic
13739^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13740
13741Syntax:
13742"""""""
13743
13744This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
13745pointer to an integer of any width. *NOTE* you must specify an address space for
13746the pointer. The identifier for the default address space is the integer
13747'``0``'.
13748
13749::
13750
13751 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
13752 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
13753 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
13754 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
13755 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
13756
13757Overview:
13758"""""""""
13759
13760The '``llvm.ptr.annotation``' intrinsic.
13761
13762Arguments:
13763""""""""""
13764
13765The first argument is a pointer to an integer value of arbitrary bitwidth
13766(result of some expression), the second is a pointer to a global string, the
13767third is a pointer to a global string which is the source file name, and the
13768last argument is the line number. It returns the value of the first argument.
13769
13770Semantics:
13771""""""""""
13772
13773This intrinsic allows annotation of a pointer to an integer with arbitrary
13774strings. This can be useful for special purpose optimizations that want to look
13775for these annotations. These have no other defined use; they are ignored by code
13776generation and optimization.
13777
Sean Silvab084af42012-12-07 10:36:55 +000013778'``llvm.annotation.*``' Intrinsic
13779^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13780
13781Syntax:
13782"""""""
13783
13784This is an overloaded intrinsic. You can use '``llvm.annotation``' on
13785any integer bit width.
13786
13787::
13788
13789 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
13790 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
13791 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
13792 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
13793 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
13794
13795Overview:
13796"""""""""
13797
13798The '``llvm.annotation``' intrinsic.
13799
13800Arguments:
13801""""""""""
13802
13803The first argument is an integer value (result of some expression), the
13804second is a pointer to a global string, the third is a pointer to a
13805global string which is the source file name, and the last argument is
13806the line number. It returns the value of the first argument.
13807
13808Semantics:
13809""""""""""
13810
13811This intrinsic allows annotations to be put on arbitrary expressions
13812with arbitrary strings. This can be useful for special purpose
13813optimizations that want to look for these annotations. These have no
13814other defined use; they are ignored by code generation and optimization.
13815
Reid Klecknere33c94f2017-09-05 20:14:58 +000013816'``llvm.codeview.annotation``' Intrinsic
Reid Klecknerd4523682017-09-05 20:26:25 +000013817^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Reid Klecknere33c94f2017-09-05 20:14:58 +000013818
13819Syntax:
13820"""""""
13821
13822This annotation emits a label at its program point and an associated
13823``S_ANNOTATION`` codeview record with some additional string metadata. This is
13824used to implement MSVC's ``__annotation`` intrinsic. It is marked
13825``noduplicate``, so calls to this intrinsic prevent inlining and should be
13826considered expensive.
13827
13828::
13829
13830 declare void @llvm.codeview.annotation(metadata)
13831
13832Arguments:
13833""""""""""
13834
13835The argument should be an MDTuple containing any number of MDStrings.
13836
Sean Silvab084af42012-12-07 10:36:55 +000013837'``llvm.trap``' Intrinsic
13838^^^^^^^^^^^^^^^^^^^^^^^^^
13839
13840Syntax:
13841"""""""
13842
13843::
13844
13845 declare void @llvm.trap() noreturn nounwind
13846
13847Overview:
13848"""""""""
13849
13850The '``llvm.trap``' intrinsic.
13851
13852Arguments:
13853""""""""""
13854
13855None.
13856
13857Semantics:
13858""""""""""
13859
13860This intrinsic is lowered to the target dependent trap instruction. If
13861the target does not have a trap instruction, this intrinsic will be
13862lowered to a call of the ``abort()`` function.
13863
13864'``llvm.debugtrap``' Intrinsic
13865^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13866
13867Syntax:
13868"""""""
13869
13870::
13871
13872 declare void @llvm.debugtrap() nounwind
13873
13874Overview:
13875"""""""""
13876
13877The '``llvm.debugtrap``' intrinsic.
13878
13879Arguments:
13880""""""""""
13881
13882None.
13883
13884Semantics:
13885""""""""""
13886
13887This intrinsic is lowered to code which is intended to cause an
13888execution trap with the intention of requesting the attention of a
13889debugger.
13890
13891'``llvm.stackprotector``' Intrinsic
13892^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13893
13894Syntax:
13895"""""""
13896
13897::
13898
13899 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
13900
13901Overview:
13902"""""""""
13903
13904The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
13905onto the stack at ``slot``. The stack slot is adjusted to ensure that it
13906is placed on the stack before local variables.
13907
13908Arguments:
13909""""""""""
13910
13911The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
13912The first argument is the value loaded from the stack guard
13913``@__stack_chk_guard``. The second variable is an ``alloca`` that has
13914enough space to hold the value of the guard.
13915
13916Semantics:
13917""""""""""
13918
Michael Gottesmandafc7d92013-08-12 18:35:32 +000013919This intrinsic causes the prologue/epilogue inserter to force the position of
13920the ``AllocaInst`` stack slot to be before local variables on the stack. This is
13921to ensure that if a local variable on the stack is overwritten, it will destroy
13922the value of the guard. When the function exits, the guard on the stack is
13923checked against the original guard by ``llvm.stackprotectorcheck``. If they are
13924different, then ``llvm.stackprotectorcheck`` causes the program to abort by
13925calling the ``__stack_chk_fail()`` function.
13926
Tim Shene885d5e2016-04-19 19:40:37 +000013927'``llvm.stackguard``' Intrinsic
13928^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13929
13930Syntax:
13931"""""""
13932
13933::
13934
13935 declare i8* @llvm.stackguard()
13936
13937Overview:
13938"""""""""
13939
13940The ``llvm.stackguard`` intrinsic returns the system stack guard value.
13941
13942It should not be generated by frontends, since it is only for internal usage.
13943The reason why we create this intrinsic is that we still support IR form Stack
13944Protector in FastISel.
13945
13946Arguments:
13947""""""""""
13948
13949None.
13950
13951Semantics:
13952""""""""""
13953
13954On some platforms, the value returned by this intrinsic remains unchanged
13955between loads in the same thread. On other platforms, it returns the same
13956global variable value, if any, e.g. ``@__stack_chk_guard``.
13957
13958Currently some platforms have IR-level customized stack guard loading (e.g.
13959X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
13960in the future.
13961
Sean Silvab084af42012-12-07 10:36:55 +000013962'``llvm.objectsize``' Intrinsic
13963^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13964
13965Syntax:
13966"""""""
13967
13968::
13969
George Burgess IV56c7e882017-03-21 20:08:59 +000013970 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>)
13971 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>)
Sean Silvab084af42012-12-07 10:36:55 +000013972
13973Overview:
13974"""""""""
13975
13976The ``llvm.objectsize`` intrinsic is designed to provide information to
13977the optimizers to determine at compile time whether a) an operation
13978(like memcpy) will overflow a buffer that corresponds to an object, or
13979b) that a runtime check for overflow isn't necessary. An object in this
13980context means an allocation of a specific class, structure, array, or
13981other object.
13982
13983Arguments:
13984""""""""""
13985
George Burgess IV56c7e882017-03-21 20:08:59 +000013986The ``llvm.objectsize`` intrinsic takes three arguments. The first argument is
13987a pointer to or into the ``object``. The second argument determines whether
13988``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size
13989is unknown. The third argument controls how ``llvm.objectsize`` acts when
13990``null`` is used as its pointer argument. If it's true and the pointer is in
13991address space 0, ``null`` is treated as an opaque value with an unknown number
13992of bytes. Otherwise, ``llvm.objectsize`` reports 0 bytes available when given
13993``null``.
13994
13995The second and third arguments only accept constants.
Sean Silvab084af42012-12-07 10:36:55 +000013996
13997Semantics:
13998""""""""""
13999
14000The ``llvm.objectsize`` intrinsic is lowered to a constant representing
14001the size of the object concerned. If the size cannot be determined at
14002compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
14003on the ``min`` argument).
14004
14005'``llvm.expect``' Intrinsic
14006^^^^^^^^^^^^^^^^^^^^^^^^^^^
14007
14008Syntax:
14009"""""""
14010
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000014011This is an overloaded intrinsic. You can use ``llvm.expect`` on any
14012integer bit width.
14013
Sean Silvab084af42012-12-07 10:36:55 +000014014::
14015
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000014016 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000014017 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
14018 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
14019
14020Overview:
14021"""""""""
14022
14023The ``llvm.expect`` intrinsic provides information about expected (the
14024most probable) value of ``val``, which can be used by optimizers.
14025
14026Arguments:
14027""""""""""
14028
14029The ``llvm.expect`` intrinsic takes two arguments. The first argument is
14030a value. The second argument is an expected value, this needs to be a
14031constant value, variables are not allowed.
14032
14033Semantics:
14034""""""""""
14035
14036This intrinsic is lowered to the ``val``.
14037
Philip Reamese0e90832015-04-26 22:23:12 +000014038.. _int_assume:
14039
Hal Finkel93046912014-07-25 21:13:35 +000014040'``llvm.assume``' Intrinsic
14041^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14042
14043Syntax:
14044"""""""
14045
14046::
14047
14048 declare void @llvm.assume(i1 %cond)
14049
14050Overview:
14051"""""""""
14052
14053The ``llvm.assume`` allows the optimizer to assume that the provided
14054condition is true. This information can then be used in simplifying other parts
14055of the code.
14056
14057Arguments:
14058""""""""""
14059
14060The condition which the optimizer may assume is always true.
14061
14062Semantics:
14063""""""""""
14064
14065The intrinsic allows the optimizer to assume that the provided condition is
14066always true whenever the control flow reaches the intrinsic call. No code is
14067generated for this intrinsic, and instructions that contribute only to the
14068provided condition are not used for code generation. If the condition is
14069violated during execution, the behavior is undefined.
14070
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000014071Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000014072used by the ``llvm.assume`` intrinsic in order to preserve the instructions
14073only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000014074if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000014075sufficient overall improvement in code quality. For this reason,
14076``llvm.assume`` should not be used to document basic mathematical invariants
14077that the optimizer can otherwise deduce or facts that are of little use to the
14078optimizer.
14079
Daniel Berlin2c438a32017-02-07 19:29:25 +000014080.. _int_ssa_copy:
14081
14082'``llvm.ssa_copy``' Intrinsic
14083^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14084
14085Syntax:
14086"""""""
14087
14088::
14089
14090 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
14091
14092Arguments:
14093""""""""""
14094
14095The first argument is an operand which is used as the returned value.
14096
14097Overview:
14098""""""""""
14099
14100The ``llvm.ssa_copy`` intrinsic can be used to attach information to
14101operations by copying them and giving them new names. For example,
14102the PredicateInfo utility uses it to build Extended SSA form, and
14103attach various forms of information to operands that dominate specific
14104uses. It is not meant for general use, only for building temporary
14105renaming forms that require value splits at certain points.
14106
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014107.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000014108
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014109'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000014110^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14111
14112Syntax:
14113"""""""
14114
14115::
14116
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014117 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000014118
14119
14120Arguments:
14121""""""""""
14122
14123The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014124metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000014125
14126Overview:
14127"""""""""
14128
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014129The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
14130with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000014131
Peter Collingbourne0312f612016-06-25 00:23:04 +000014132'``llvm.type.checked.load``' Intrinsic
14133^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14134
14135Syntax:
14136"""""""
14137
14138::
14139
14140 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
14141
14142
14143Arguments:
14144""""""""""
14145
14146The first argument is a pointer from which to load a function pointer. The
14147second argument is the byte offset from which to load the function pointer. The
14148third argument is a metadata object representing a :doc:`type identifier
14149<TypeMetadata>`.
14150
14151Overview:
14152"""""""""
14153
14154The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
14155virtual table pointer using type metadata. This intrinsic is used to implement
14156control flow integrity in conjunction with virtual call optimization. The
14157virtual call optimization pass will optimize away ``llvm.type.checked.load``
14158intrinsics associated with devirtualized calls, thereby removing the type
14159check in cases where it is not needed to enforce the control flow integrity
14160constraint.
14161
14162If the given pointer is associated with a type metadata identifier, this
14163function returns true as the second element of its return value. (Note that
14164the function may also return true if the given pointer is not associated
14165with a type metadata identifier.) If the function's return value's second
14166element is true, the following rules apply to the first element:
14167
14168- If the given pointer is associated with the given type metadata identifier,
14169 it is the function pointer loaded from the given byte offset from the given
14170 pointer.
14171
14172- If the given pointer is not associated with the given type metadata
14173 identifier, it is one of the following (the choice of which is unspecified):
14174
14175 1. The function pointer that would have been loaded from an arbitrarily chosen
14176 (through an unspecified mechanism) pointer associated with the type
14177 metadata.
14178
14179 2. If the function has a non-void return type, a pointer to a function that
14180 returns an unspecified value without causing side effects.
14181
14182If the function's return value's second element is false, the value of the
14183first element is undefined.
14184
14185
Sean Silvab084af42012-12-07 10:36:55 +000014186'``llvm.donothing``' Intrinsic
14187^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14188
14189Syntax:
14190"""""""
14191
14192::
14193
14194 declare void @llvm.donothing() nounwind readnone
14195
14196Overview:
14197"""""""""
14198
Juergen Ributzkac9161192014-10-23 22:36:13 +000014199The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000014200three intrinsics (besides ``llvm.experimental.patchpoint`` and
14201``llvm.experimental.gc.statepoint``) that can be called with an invoke
14202instruction.
Sean Silvab084af42012-12-07 10:36:55 +000014203
14204Arguments:
14205""""""""""
14206
14207None.
14208
14209Semantics:
14210""""""""""
14211
14212This intrinsic does nothing, and it's removed by optimizers and ignored
14213by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000014214
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014215'``llvm.experimental.deoptimize``' Intrinsic
14216^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14217
14218Syntax:
14219"""""""
14220
14221::
14222
14223 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
14224
14225Overview:
14226"""""""""
14227
14228This intrinsic, together with :ref:`deoptimization operand bundles
14229<deopt_opbundles>`, allow frontends to express transfer of control and
14230frame-local state from the currently executing (typically more specialized,
14231hence faster) version of a function into another (typically more generic, hence
14232slower) version.
14233
14234In languages with a fully integrated managed runtime like Java and JavaScript
14235this intrinsic can be used to implement "uncommon trap" or "side exit" like
14236functionality. In unmanaged languages like C and C++, this intrinsic can be
14237used to represent the slow paths of specialized functions.
14238
14239
14240Arguments:
14241""""""""""
14242
14243The intrinsic takes an arbitrary number of arguments, whose meaning is
14244decided by the :ref:`lowering strategy<deoptimize_lowering>`.
14245
14246Semantics:
14247""""""""""
14248
14249The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
14250deoptimization continuation (denoted using a :ref:`deoptimization
14251operand bundle <deopt_opbundles>`) and returns the value returned by
14252the deoptimization continuation. Defining the semantic properties of
14253the continuation itself is out of scope of the language reference --
14254as far as LLVM is concerned, the deoptimization continuation can
14255invoke arbitrary side effects, including reading from and writing to
14256the entire heap.
14257
14258Deoptimization continuations expressed using ``"deopt"`` operand bundles always
14259continue execution to the end of the physical frame containing them, so all
14260calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
14261
14262 - ``@llvm.experimental.deoptimize`` cannot be invoked.
14263 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
14264 - The ``ret`` instruction must return the value produced by the
14265 ``@llvm.experimental.deoptimize`` call if there is one, or void.
14266
14267Note that the above restrictions imply that the return type for a call to
14268``@llvm.experimental.deoptimize`` will match the return type of its immediate
14269caller.
14270
14271The inliner composes the ``"deopt"`` continuations of the caller into the
14272``"deopt"`` continuations present in the inlinee, and also updates calls to this
14273intrinsic to return directly from the frame of the function it inlined into.
14274
Sanjoy Dase0aa4142016-05-12 01:17:38 +000014275All declarations of ``@llvm.experimental.deoptimize`` must share the
14276same calling convention.
14277
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014278.. _deoptimize_lowering:
14279
14280Lowering:
14281"""""""""
14282
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000014283Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
14284symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
14285ensure that this symbol is defined). The call arguments to
14286``@llvm.experimental.deoptimize`` are lowered as if they were formal
14287arguments of the specified types, and not as varargs.
14288
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014289
Sanjoy Das021de052016-03-31 00:18:46 +000014290'``llvm.experimental.guard``' Intrinsic
14291^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14292
14293Syntax:
14294"""""""
14295
14296::
14297
14298 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
14299
14300Overview:
14301"""""""""
14302
14303This intrinsic, together with :ref:`deoptimization operand bundles
14304<deopt_opbundles>`, allows frontends to express guards or checks on
14305optimistic assumptions made during compilation. The semantics of
14306``@llvm.experimental.guard`` is defined in terms of
14307``@llvm.experimental.deoptimize`` -- its body is defined to be
14308equivalent to:
14309
Renato Golin124f2592016-07-20 12:16:38 +000014310.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000014311
Renato Golin124f2592016-07-20 12:16:38 +000014312 define void @llvm.experimental.guard(i1 %pred, <args...>) {
14313 %realPred = and i1 %pred, undef
14314 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000014315
Renato Golin124f2592016-07-20 12:16:38 +000014316 leave:
14317 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
14318 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000014319
Renato Golin124f2592016-07-20 12:16:38 +000014320 continue:
14321 ret void
14322 }
Sanjoy Das021de052016-03-31 00:18:46 +000014323
Sanjoy Das47cf2af2016-04-30 00:55:59 +000014324
14325with the optional ``[, !make.implicit !{}]`` present if and only if it
14326is present on the call site. For more details on ``!make.implicit``,
14327see :doc:`FaultMaps`.
14328
Sanjoy Das021de052016-03-31 00:18:46 +000014329In words, ``@llvm.experimental.guard`` executes the attached
14330``"deopt"`` continuation if (but **not** only if) its first argument
14331is ``false``. Since the optimizer is allowed to replace the ``undef``
14332with an arbitrary value, it can optimize guard to fail "spuriously",
14333i.e. without the original condition being false (hence the "not only
14334if"); and this allows for "check widening" type optimizations.
14335
14336``@llvm.experimental.guard`` cannot be invoked.
14337
14338
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000014339'``llvm.load.relative``' Intrinsic
14340^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14341
14342Syntax:
14343"""""""
14344
14345::
14346
14347 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
14348
14349Overview:
14350"""""""""
14351
14352This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
14353adds ``%ptr`` to that value and returns it. The constant folder specifically
14354recognizes the form of this intrinsic and the constant initializers it may
14355load from; if a loaded constant initializer is known to have the form
14356``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
14357
14358LLVM provides that the calculation of such a constant initializer will
14359not overflow at link time under the medium code model if ``x`` is an
14360``unnamed_addr`` function. However, it does not provide this guarantee for
14361a constant initializer folded into a function body. This intrinsic can be
14362used to avoid the possibility of overflows when loading from such a constant.
14363
Dan Gohman2c74fe92017-11-08 21:59:51 +000014364'``llvm.sideeffect``' Intrinsic
14365^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14366
14367Syntax:
14368"""""""
14369
14370::
14371
14372 declare void @llvm.sideeffect() inaccessiblememonly nounwind
14373
14374Overview:
14375"""""""""
14376
14377The ``llvm.sideeffect`` intrinsic doesn't perform any operation. Optimizers
14378treat it as having side effects, so it can be inserted into a loop to
14379indicate that the loop shouldn't be assumed to terminate (which could
14380potentially lead to the loop being optimized away entirely), even if it's
14381an infinite loop with no other side effects.
14382
14383Arguments:
14384""""""""""
14385
14386None.
14387
14388Semantics:
14389""""""""""
14390
14391This intrinsic actually does nothing, but optimizers must assume that it
14392has externally observable side effects.
14393
Andrew Trick5e029ce2013-12-24 02:57:25 +000014394Stack Map Intrinsics
14395--------------------
14396
14397LLVM provides experimental intrinsics to support runtime patching
14398mechanisms commonly desired in dynamic language JITs. These intrinsics
14399are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014400
14401Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000014402-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000014403
14404These intrinsics are similar to the standard library memory intrinsics except
14405that they perform memory transfer as a sequence of atomic memory accesses.
14406
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014407.. _int_memcpy_element_unordered_atomic:
Igor Laevsky4f31e522016-12-29 14:31:07 +000014408
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014409'``llvm.memcpy.element.unordered.atomic``' Intrinsic
14410^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000014411
14412Syntax:
14413"""""""
14414
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014415This is an overloaded intrinsic. You can use ``llvm.memcpy.element.unordered.atomic`` on
Igor Laevsky4f31e522016-12-29 14:31:07 +000014416any integer bit width and for different address spaces. Not all targets
14417support all bit widths however.
14418
14419::
14420
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014421 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
14422 i8* <src>,
14423 i32 <len>,
14424 i32 <element_size>)
14425 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
14426 i8* <src>,
14427 i64 <len>,
14428 i32 <element_size>)
Igor Laevsky4f31e522016-12-29 14:31:07 +000014429
14430Overview:
14431"""""""""
14432
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014433The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic is a specialization of the
14434'``llvm.memcpy.*``' intrinsic. It differs in that the ``dest`` and ``src`` are treated
14435as arrays with elements that are exactly ``element_size`` bytes, and the copy between
14436buffers uses a sequence of :ref:`unordered atomic <ordering>` load/store operations
14437that are a positive integer multiple of the ``element_size`` in size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014438
14439Arguments:
14440""""""""""
14441
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014442The first three arguments are the same as they are in the :ref:`@llvm.memcpy <int_memcpy>`
14443intrinsic, with the added constraint that ``len`` is required to be a positive integer
14444multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
14445``element_size``, then the behaviour of the intrinsic is undefined.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014446
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014447``element_size`` must be a compile-time constant positive power of two no greater than
14448target-specific atomic access size limit.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014449
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014450For each of the input pointers ``align`` parameter attribute must be specified. It
14451must be a power of two no less than the ``element_size``. Caller guarantees that
14452both the source and destination pointers are aligned to that boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014453
14454Semantics:
14455""""""""""
14456
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014457The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic copies ``len`` bytes of
14458memory from the source location to the destination location. These locations are not
14459allowed to overlap. The memory copy is performed as a sequence of load/store operations
14460where each access is guaranteed to be a multiple of ``element_size`` bytes wide and
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014461aligned at an ``element_size`` boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014462
14463The order of the copy is unspecified. The same value may be read from the source
14464buffer many times, but only one write is issued to the destination buffer per
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014465element. It is well defined to have concurrent reads and writes to both source and
14466destination provided those reads and writes are unordered atomic when specified.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014467
14468This intrinsic does not provide any additional ordering guarantees over those
14469provided by a set of unordered loads from the source location and stores to the
14470destination.
14471
14472Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000014473"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000014474
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014475In the most general case call to the '``llvm.memcpy.element.unordered.atomic.*``' is
14476lowered to a call to the symbol ``__llvm_memcpy_element_unordered_atomic_*``. Where '*'
14477is replaced with an actual element size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014478
Daniel Neilson57226ef2017-07-12 15:25:26 +000014479Optimizer is allowed to inline memory copy when it's profitable to do so.
14480
14481'``llvm.memmove.element.unordered.atomic``' Intrinsic
14482^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14483
14484Syntax:
14485"""""""
14486
14487This is an overloaded intrinsic. You can use
14488``llvm.memmove.element.unordered.atomic`` on any integer bit width and for
14489different address spaces. Not all targets support all bit widths however.
14490
14491::
14492
14493 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
14494 i8* <src>,
14495 i32 <len>,
14496 i32 <element_size>)
14497 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
14498 i8* <src>,
14499 i64 <len>,
14500 i32 <element_size>)
14501
14502Overview:
14503"""""""""
14504
14505The '``llvm.memmove.element.unordered.atomic.*``' intrinsic is a specialization
14506of the '``llvm.memmove.*``' intrinsic. It differs in that the ``dest`` and
14507``src`` are treated as arrays with elements that are exactly ``element_size``
14508bytes, and the copy between buffers uses a sequence of
14509:ref:`unordered atomic <ordering>` load/store operations that are a positive
14510integer multiple of the ``element_size`` in size.
14511
14512Arguments:
14513""""""""""
14514
14515The first three arguments are the same as they are in the
14516:ref:`@llvm.memmove <int_memmove>` intrinsic, with the added constraint that
14517``len`` is required to be a positive integer multiple of the ``element_size``.
14518If ``len`` is not a positive integer multiple of ``element_size``, then the
14519behaviour of the intrinsic is undefined.
14520
14521``element_size`` must be a compile-time constant positive power of two no
14522greater than a target-specific atomic access size limit.
14523
14524For each of the input pointers the ``align`` parameter attribute must be
14525specified. It must be a power of two no less than the ``element_size``. Caller
14526guarantees that both the source and destination pointers are aligned to that
14527boundary.
14528
14529Semantics:
14530""""""""""
14531
14532The '``llvm.memmove.element.unordered.atomic.*``' intrinsic copies ``len`` bytes
14533of memory from the source location to the destination location. These locations
14534are allowed to overlap. The memory copy is performed as a sequence of load/store
14535operations where each access is guaranteed to be a multiple of ``element_size``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014536bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson57226ef2017-07-12 15:25:26 +000014537
14538The order of the copy is unspecified. The same value may be read from the source
14539buffer many times, but only one write is issued to the destination buffer per
14540element. It is well defined to have concurrent reads and writes to both source
14541and destination provided those reads and writes are unordered atomic when
14542specified.
14543
14544This intrinsic does not provide any additional ordering guarantees over those
14545provided by a set of unordered loads from the source location and stores to the
14546destination.
14547
14548Lowering:
14549"""""""""
14550
14551In the most general case call to the
14552'``llvm.memmove.element.unordered.atomic.*``' is lowered to a call to the symbol
14553``__llvm_memmove_element_unordered_atomic_*``. Where '*' is replaced with an
14554actual element size.
14555
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014556The optimizer is allowed to inline the memory copy when it's profitable to do so.
Daniel Neilson965613e2017-07-12 21:57:23 +000014557
14558.. _int_memset_element_unordered_atomic:
14559
14560'``llvm.memset.element.unordered.atomic``' Intrinsic
14561^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14562
14563Syntax:
14564"""""""
14565
14566This is an overloaded intrinsic. You can use ``llvm.memset.element.unordered.atomic`` on
14567any integer bit width and for different address spaces. Not all targets
14568support all bit widths however.
14569
14570::
14571
14572 declare void @llvm.memset.element.unordered.atomic.p0i8.i32(i8* <dest>,
14573 i8 <value>,
14574 i32 <len>,
14575 i32 <element_size>)
14576 declare void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* <dest>,
14577 i8 <value>,
14578 i64 <len>,
14579 i32 <element_size>)
14580
14581Overview:
14582"""""""""
14583
14584The '``llvm.memset.element.unordered.atomic.*``' intrinsic is a specialization of the
14585'``llvm.memset.*``' intrinsic. It differs in that the ``dest`` is treated as an array
14586with elements that are exactly ``element_size`` bytes, and the assignment to that array
14587uses uses a sequence of :ref:`unordered atomic <ordering>` store operations
14588that are a positive integer multiple of the ``element_size`` in size.
14589
14590Arguments:
14591""""""""""
14592
14593The first three arguments are the same as they are in the :ref:`@llvm.memset <int_memset>`
14594intrinsic, with the added constraint that ``len`` is required to be a positive integer
14595multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
14596``element_size``, then the behaviour of the intrinsic is undefined.
14597
14598``element_size`` must be a compile-time constant positive power of two no greater than
14599target-specific atomic access size limit.
14600
14601The ``dest`` input pointer must have the ``align`` parameter attribute specified. It
14602must be a power of two no less than the ``element_size``. Caller guarantees that
14603the destination pointer is aligned to that boundary.
14604
14605Semantics:
14606""""""""""
14607
14608The '``llvm.memset.element.unordered.atomic.*``' intrinsic sets the ``len`` bytes of
14609memory starting at the destination location to the given ``value``. The memory is
14610set with a sequence of store operations where each access is guaranteed to be a
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014611multiple of ``element_size`` bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson965613e2017-07-12 21:57:23 +000014612
14613The order of the assignment is unspecified. Only one write is issued to the
14614destination buffer per element. It is well defined to have concurrent reads and
14615writes to the destination provided those reads and writes are unordered atomic
14616when specified.
14617
14618This intrinsic does not provide any additional ordering guarantees over those
14619provided by a set of unordered stores to the destination.
14620
14621Lowering:
14622"""""""""
14623
14624In the most general case call to the '``llvm.memset.element.unordered.atomic.*``' is
14625lowered to a call to the symbol ``__llvm_memset_element_unordered_atomic_*``. Where '*'
14626is replaced with an actual element size.
14627
14628The optimizer is allowed to inline the memory assignment when it's profitable to do so.