blob: 9d8242f29d7389d7e2663bffa7fbcd829812ea80 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
George Burgess IVfbc34982017-05-20 04:52:29 +0000164 ; Convert [13 x i8]* to i8*...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledru0604c5c2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvab084af42012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Sean Fertilec70d28b2017-10-26 15:00:26 +0000530.. _runtime_preemption_model:
531
532Runtime Preemption Specifiers
533-----------------------------
534
535Global variables, functions and aliases may have an optional runtime preemption
536specifier. If a preemption specifier isn't given explicitly, then a
537symbol is assumed to be ``dso_preemptable``.
538
539``dso_preemptable``
540 Indicates that the function or variable may be replaced by a symbol from
541 outside the linkage unit at runtime.
542
543``dso_local``
544 The compiler may assume that a function or variable marked as ``dso_local``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000545 will resolve to a symbol within the same linkage unit. Direct access will
Sean Fertilec70d28b2017-10-26 15:00:26 +0000546 be generated even if the definition is not within this compilation unit.
547
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000548.. _namedtypes:
549
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000550Structure Types
551---------------
Sean Silvab084af42012-12-07 10:36:55 +0000552
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000553LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000554types <t_struct>`. Literal types are uniqued structurally, but identified types
555are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000556to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000557
Sean Silva706fba52015-08-06 22:56:24 +0000558An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000559
560.. code-block:: llvm
561
562 %mytype = type { %mytype*, i32 }
563
Sean Silvaa1190322015-08-06 22:56:48 +0000564Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000565literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000566
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000567.. _nointptrtype:
568
569Non-Integral Pointer Type
570-------------------------
571
572Note: non-integral pointer types are a work in progress, and they should be
573considered experimental at this time.
574
575LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000576spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
577Non-integral pointer types represent pointers that have an *unspecified* bitwise
578representation; that is, the integral representation may be target dependent or
579unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000580
581``inttoptr`` instructions converting integers to non-integral pointer types are
582ill-typed, and so are ``ptrtoint`` instructions converting values of
583non-integral pointer types to integers. Vector versions of said instructions
584are ill-typed as well.
585
Sean Silvab084af42012-12-07 10:36:55 +0000586.. _globalvars:
587
588Global Variables
589----------------
590
591Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000592instead of run-time.
593
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000594Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000595
596Global variables in other translation units can also be declared, in which
597case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000598
Bob Wilson85b24f22014-06-12 20:40:33 +0000599Either global variable definitions or declarations may have an explicit section
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000600to be placed in and may have an optional explicit alignment specified. If there
601is a mismatch between the explicit or inferred section information for the
602variable declaration and its definition the resulting behavior is undefined.
Bob Wilson85b24f22014-06-12 20:40:33 +0000603
Michael Gottesman006039c2013-01-31 05:48:48 +0000604A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000605the contents of the variable will **never** be modified (enabling better
606optimization, allowing the global data to be placed in the read-only
607section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000608initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000609variable.
610
611LLVM explicitly allows *declarations* of global variables to be marked
612constant, even if the final definition of the global is not. This
613capability can be used to enable slightly better optimization of the
614program, but requires the language definition to guarantee that
615optimizations based on the 'constantness' are valid for the translation
616units that do not include the definition.
617
618As SSA values, global variables define pointer values that are in scope
619(i.e. they dominate) all basic blocks in the program. Global variables
620always define a pointer to their "content" type because they describe a
621region of memory, and all memory objects in LLVM are accessed through
622pointers.
623
624Global variables can be marked with ``unnamed_addr`` which indicates
625that the address is not significant, only the content. Constants marked
626like this can be merged with other constants if they have the same
627initializer. Note that a constant with significant address *can* be
628merged with a ``unnamed_addr`` constant, the result being a constant
629whose address is significant.
630
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000631If the ``local_unnamed_addr`` attribute is given, the address is known to
632not be significant within the module.
633
Sean Silvab084af42012-12-07 10:36:55 +0000634A global variable may be declared to reside in a target-specific
635numbered address space. For targets that support them, address spaces
636may affect how optimizations are performed and/or what target
637instructions are used to access the variable. The default address space
638is zero. The address space qualifier must precede any other attributes.
639
640LLVM allows an explicit section to be specified for globals. If the
641target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000642Additionally, the global can placed in a comdat if the target has the necessary
643support.
Sean Silvab084af42012-12-07 10:36:55 +0000644
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000645External declarations may have an explicit section specified. Section
646information is retained in LLVM IR for targets that make use of this
647information. Attaching section information to an external declaration is an
648assertion that its definition is located in the specified section. If the
649definition is located in a different section, the behavior is undefined.
Erich Keane0343ef82017-08-22 15:30:43 +0000650
Michael Gottesmane743a302013-02-04 03:22:00 +0000651By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000652variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000653initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000654true even for variables potentially accessible from outside the
655module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000656``@llvm.used`` or dllexported variables. This assumption may be suppressed
657by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659An explicit alignment may be specified for a global, which must be a
660power of 2. If not present, or if the alignment is set to zero, the
661alignment of the global is set by the target to whatever it feels
662convenient. If an explicit alignment is specified, the global is forced
663to have exactly that alignment. Targets and optimizers are not allowed
664to over-align the global if the global has an assigned section. In this
665case, the extra alignment could be observable: for example, code could
666assume that the globals are densely packed in their section and try to
667iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000668iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000669
Javed Absarf3d79042017-05-11 12:28:08 +0000670Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
Sean Fertilec70d28b2017-10-26 15:00:26 +0000671an optional :ref:`runtime preemption specifier <runtime_preemption_model>`,
Javed Absarf3d79042017-05-11 12:28:08 +0000672an optional :ref:`global attributes <glattrs>` and
673an optional list of attached :ref:`metadata <metadata>`.
Nico Rieck7157bb72014-01-14 15:22:47 +0000674
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000675Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000676:ref:`Thread Local Storage Model <tls_model>`.
677
Nico Rieck7157bb72014-01-14 15:22:47 +0000678Syntax::
679
Sean Fertilec70d28b2017-10-26 15:00:26 +0000680 @<GlobalVarName> = [Linkage] [PreemptionSpecifier] [Visibility]
681 [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000682 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
683 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000684 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000685 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000686 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000687
Sean Silvab084af42012-12-07 10:36:55 +0000688For example, the following defines a global in a numbered address space
689with an initializer, section, and alignment:
690
691.. code-block:: llvm
692
693 @G = addrspace(5) constant float 1.0, section "foo", align 4
694
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000695The following example just declares a global variable
696
697.. code-block:: llvm
698
699 @G = external global i32
700
Sean Silvab084af42012-12-07 10:36:55 +0000701The following example defines a thread-local global with the
702``initialexec`` TLS model:
703
704.. code-block:: llvm
705
706 @G = thread_local(initialexec) global i32 0, align 4
707
708.. _functionstructure:
709
710Functions
711---------
712
713LLVM function definitions consist of the "``define``" keyword, an
Sean Fertilec70d28b2017-10-26 15:00:26 +0000714optional :ref:`linkage type <linkage>`, an optional :ref:`runtime preemption
715specifier <runtime_preemption_model>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000716style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
717an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000718an optional ``unnamed_addr`` attribute, a return type, an optional
719:ref:`parameter attribute <paramattrs>` for the return type, a function
720name, a (possibly empty) argument list (each with optional :ref:`parameter
721attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000722an optional section, an optional alignment,
723an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000724an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000725an optional :ref:`prologue <prologuedata>`,
726an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000727an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000728an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000731optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
732<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
733optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
734or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
735attribute <paramattrs>` for the return type, a function name, a possibly
736empty list of arguments, an optional alignment, an optional :ref:`garbage
737collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
738:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000739
Bill Wendling6822ecb2013-10-27 05:09:12 +0000740A function definition contains a list of basic blocks, forming the CFG (Control
741Flow Graph) for the function. Each basic block may optionally start with a label
742(giving the basic block a symbol table entry), contains a list of instructions,
743and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
744function return). If an explicit label is not provided, a block is assigned an
745implicit numbered label, using the next value from the same counter as used for
746unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
747entry block does not have an explicit label, it will be assigned label "%0",
748then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000749
750The first basic block in a function is special in two ways: it is
751immediately executed on entrance to the function, and it is not allowed
752to have predecessor basic blocks (i.e. there can not be any branches to
753the entry block of a function). Because the block can have no
754predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
755
756LLVM allows an explicit section to be specified for functions. If the
757target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000758Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000759
760An explicit alignment may be specified for a function. If not present,
761or if the alignment is set to zero, the alignment of the function is set
762by the target to whatever it feels convenient. If an explicit alignment
763is specified, the function is forced to have at least that much
764alignment. All alignments must be a power of 2.
765
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000766If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000767be significant and two identical functions can be merged.
768
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000769If the ``local_unnamed_addr`` attribute is given, the address is known to
770not be significant within the module.
771
Sean Silvab084af42012-12-07 10:36:55 +0000772Syntax::
773
Sean Fertilec70d28b2017-10-26 15:00:26 +0000774 define [linkage] [PreemptionSpecifier] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000775 [cconv] [ret attrs]
776 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000777 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
778 [comdat [($name)]] [align N] [gc] [prefix Constant]
779 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000780
Sean Silva706fba52015-08-06 22:56:24 +0000781The argument list is a comma separated sequence of arguments where each
782argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000783
784Syntax::
785
786 <type> [parameter Attrs] [name]
787
788
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000789.. _langref_aliases:
790
Sean Silvab084af42012-12-07 10:36:55 +0000791Aliases
792-------
793
Rafael Espindola64c1e182014-06-03 02:41:57 +0000794Aliases, unlike function or variables, don't create any new data. They
795are just a new symbol and metadata for an existing position.
796
797Aliases have a name and an aliasee that is either a global value or a
798constant expression.
799
Nico Rieck7157bb72014-01-14 15:22:47 +0000800Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Sean Fertilec70d28b2017-10-26 15:00:26 +0000801:ref:`runtime preemption specifier <runtime_preemption_model>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000802:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
803<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000804
805Syntax::
806
Sean Fertilec70d28b2017-10-26 15:00:26 +0000807 @<Name> = [Linkage] [PreemptionSpecifier] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000808
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000809The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000810``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000811might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000812
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000813Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000814the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
815to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000816
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000817If the ``local_unnamed_addr`` attribute is given, the address is known to
818not be significant within the module.
819
Rafael Espindola64c1e182014-06-03 02:41:57 +0000820Since aliases are only a second name, some restrictions apply, of which
821some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000822
Rafael Espindola64c1e182014-06-03 02:41:57 +0000823* The expression defining the aliasee must be computable at assembly
824 time. Since it is just a name, no relocations can be used.
825
826* No alias in the expression can be weak as the possibility of the
827 intermediate alias being overridden cannot be represented in an
828 object file.
829
830* No global value in the expression can be a declaration, since that
831 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000832
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000833.. _langref_ifunc:
834
835IFuncs
836-------
837
838IFuncs, like as aliases, don't create any new data or func. They are just a new
839symbol that dynamic linker resolves at runtime by calling a resolver function.
840
841IFuncs have a name and a resolver that is a function called by dynamic linker
842that returns address of another function associated with the name.
843
844IFunc may have an optional :ref:`linkage type <linkage>` and an optional
845:ref:`visibility style <visibility>`.
846
847Syntax::
848
849 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
850
851
David Majnemerdad0a642014-06-27 18:19:56 +0000852.. _langref_comdats:
853
854Comdats
855-------
856
857Comdat IR provides access to COFF and ELF object file COMDAT functionality.
858
Sean Silvaa1190322015-08-06 22:56:48 +0000859Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000860specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000861that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000862aliasee computes to, if any.
863
864Comdats have a selection kind to provide input on how the linker should
865choose between keys in two different object files.
866
867Syntax::
868
869 $<Name> = comdat SelectionKind
870
871The selection kind must be one of the following:
872
873``any``
874 The linker may choose any COMDAT key, the choice is arbitrary.
875``exactmatch``
876 The linker may choose any COMDAT key but the sections must contain the
877 same data.
878``largest``
879 The linker will choose the section containing the largest COMDAT key.
880``noduplicates``
881 The linker requires that only section with this COMDAT key exist.
882``samesize``
883 The linker may choose any COMDAT key but the sections must contain the
884 same amount of data.
885
Sam Cleggea7cace2018-01-09 23:43:14 +0000886Note that the Mach-O platform doesn't support COMDATs, and ELF and WebAssembly
887only support ``any`` as a selection kind.
David Majnemerdad0a642014-06-27 18:19:56 +0000888
889Here is an example of a COMDAT group where a function will only be selected if
890the COMDAT key's section is the largest:
891
Renato Golin124f2592016-07-20 12:16:38 +0000892.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000893
894 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000895 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000896
Rafael Espindola83a362c2015-01-06 22:55:16 +0000897 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000898 ret void
899 }
900
Rafael Espindola83a362c2015-01-06 22:55:16 +0000901As a syntactic sugar the ``$name`` can be omitted if the name is the same as
902the global name:
903
Renato Golin124f2592016-07-20 12:16:38 +0000904.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000905
906 $foo = comdat any
907 @foo = global i32 2, comdat
908
909
David Majnemerdad0a642014-06-27 18:19:56 +0000910In a COFF object file, this will create a COMDAT section with selection kind
911``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
912and another COMDAT section with selection kind
913``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000914section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000915
916There are some restrictions on the properties of the global object.
917It, or an alias to it, must have the same name as the COMDAT group when
918targeting COFF.
919The contents and size of this object may be used during link-time to determine
920which COMDAT groups get selected depending on the selection kind.
921Because the name of the object must match the name of the COMDAT group, the
922linkage of the global object must not be local; local symbols can get renamed
923if a collision occurs in the symbol table.
924
925The combined use of COMDATS and section attributes may yield surprising results.
926For example:
927
Renato Golin124f2592016-07-20 12:16:38 +0000928.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000929
930 $foo = comdat any
931 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000932 @g1 = global i32 42, section "sec", comdat($foo)
933 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000934
935From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000936with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000937COMDAT groups and COMDATs, at the object file level, are represented by
938sections.
939
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000940Note that certain IR constructs like global variables and functions may
941create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000942COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000943in individual sections (e.g. when `-data-sections` or `-function-sections`
944is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000945
Sean Silvab084af42012-12-07 10:36:55 +0000946.. _namedmetadatastructure:
947
948Named Metadata
949--------------
950
951Named metadata is a collection of metadata. :ref:`Metadata
952nodes <metadata>` (but not metadata strings) are the only valid
953operands for a named metadata.
954
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000955#. Named metadata are represented as a string of characters with the
956 metadata prefix. The rules for metadata names are the same as for
957 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
958 are still valid, which allows any character to be part of a name.
959
Sean Silvab084af42012-12-07 10:36:55 +0000960Syntax::
961
962 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000963 !0 = !{!"zero"}
964 !1 = !{!"one"}
965 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000966 ; A named metadata.
967 !name = !{!0, !1, !2}
968
969.. _paramattrs:
970
971Parameter Attributes
972--------------------
973
974The return type and each parameter of a function type may have a set of
975*parameter attributes* associated with them. Parameter attributes are
976used to communicate additional information about the result or
977parameters of a function. Parameter attributes are considered to be part
978of the function, not of the function type, so functions with different
979parameter attributes can have the same function type.
980
981Parameter attributes are simple keywords that follow the type specified.
982If multiple parameter attributes are needed, they are space separated.
983For example:
984
985.. code-block:: llvm
986
987 declare i32 @printf(i8* noalias nocapture, ...)
988 declare i32 @atoi(i8 zeroext)
989 declare signext i8 @returns_signed_char()
990
991Note that any attributes for the function result (``nounwind``,
992``readonly``) come immediately after the argument list.
993
994Currently, only the following parameter attributes are defined:
995
996``zeroext``
997 This indicates to the code generator that the parameter or return
998 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000999 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +00001000``signext``
1001 This indicates to the code generator that the parameter or return
1002 value should be sign-extended to the extent required by the target's
1003 ABI (which is usually 32-bits) by the caller (for a parameter) or
1004 the callee (for a return value).
1005``inreg``
1006 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +00001007 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +00001008 a function call or return (usually, by putting it in a register as
1009 opposed to memory, though some targets use it to distinguish between
1010 two different kinds of registers). Use of this attribute is
1011 target-specific.
1012``byval``
1013 This indicates that the pointer parameter should really be passed by
1014 value to the function. The attribute implies that a hidden copy of
1015 the pointee is made between the caller and the callee, so the callee
1016 is unable to modify the value in the caller. This attribute is only
1017 valid on LLVM pointer arguments. It is generally used to pass
1018 structs and arrays by value, but is also valid on pointers to
1019 scalars. The copy is considered to belong to the caller not the
1020 callee (for example, ``readonly`` functions should not write to
1021 ``byval`` parameters). This is not a valid attribute for return
1022 values.
1023
1024 The byval attribute also supports specifying an alignment with the
1025 align attribute. It indicates the alignment of the stack slot to
1026 form and the known alignment of the pointer specified to the call
1027 site. If the alignment is not specified, then the code generator
1028 makes a target-specific assumption.
1029
Reid Klecknera534a382013-12-19 02:14:12 +00001030.. _attr_inalloca:
1031
1032``inalloca``
1033
Reid Kleckner60d3a832014-01-16 22:59:24 +00001034 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001035 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001036 be a pointer to stack memory produced by an ``alloca`` instruction.
1037 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001038 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001039 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001040
Reid Kleckner436c42e2014-01-17 23:58:17 +00001041 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001042 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001043 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001044 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001045 ``inalloca`` attribute also disables LLVM's implicit lowering of
1046 large aggregate return values, which means that frontend authors
1047 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001048
Reid Kleckner60d3a832014-01-16 22:59:24 +00001049 When the call site is reached, the argument allocation must have
1050 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001051 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001052 space after an argument allocation and before its call site, but it
1053 must be cleared off with :ref:`llvm.stackrestore
1054 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001055
1056 See :doc:`InAlloca` for more information on how to use this
1057 attribute.
1058
Sean Silvab084af42012-12-07 10:36:55 +00001059``sret``
1060 This indicates that the pointer parameter specifies the address of a
1061 structure that is the return value of the function in the source
1062 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001063 loads and stores to the structure may be assumed by the callee not
1064 to trap and to be properly aligned. This is not a valid attribute
1065 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001066
Daniel Neilson1e687242018-01-19 17:13:12 +00001067.. _attr_align:
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001068
Hal Finkelccc70902014-07-22 16:58:55 +00001069``align <n>``
1070 This indicates that the pointer value may be assumed by the optimizer to
1071 have the specified alignment.
1072
1073 Note that this attribute has additional semantics when combined with the
1074 ``byval`` attribute.
1075
Sean Silva1703e702014-04-08 21:06:22 +00001076.. _noalias:
1077
Sean Silvab084af42012-12-07 10:36:55 +00001078``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001079 This indicates that objects accessed via pointer values
1080 :ref:`based <pointeraliasing>` on the argument or return value are not also
1081 accessed, during the execution of the function, via pointer values not
1082 *based* on the argument or return value. The attribute on a return value
1083 also has additional semantics described below. The caller shares the
1084 responsibility with the callee for ensuring that these requirements are met.
1085 For further details, please see the discussion of the NoAlias response in
1086 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001087
1088 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001089 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001090
1091 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001092 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1093 attribute on return values are stronger than the semantics of the attribute
1094 when used on function arguments. On function return values, the ``noalias``
1095 attribute indicates that the function acts like a system memory allocation
1096 function, returning a pointer to allocated storage disjoint from the
1097 storage for any other object accessible to the caller.
1098
Sean Silvab084af42012-12-07 10:36:55 +00001099``nocapture``
1100 This indicates that the callee does not make any copies of the
1101 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001102 attribute for return values. Addresses used in volatile operations
1103 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001104
1105.. _nest:
1106
1107``nest``
1108 This indicates that the pointer parameter can be excised using the
1109 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001110 attribute for return values and can only be applied to one parameter.
1111
1112``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001113 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001114 value. This is a hint to the optimizer and code generator used when
1115 generating the caller, allowing value propagation, tail call optimization,
1116 and omission of register saves and restores in some cases; it is not
1117 checked or enforced when generating the callee. The parameter and the
1118 function return type must be valid operands for the
1119 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1120 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001121
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001122``nonnull``
1123 This indicates that the parameter or return pointer is not null. This
1124 attribute may only be applied to pointer typed parameters. This is not
1125 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001126 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001127 is non-null.
1128
Hal Finkelb0407ba2014-07-18 15:51:28 +00001129``dereferenceable(<n>)``
1130 This indicates that the parameter or return pointer is dereferenceable. This
1131 attribute may only be applied to pointer typed parameters. A pointer that
1132 is dereferenceable can be loaded from speculatively without a risk of
1133 trapping. The number of bytes known to be dereferenceable must be provided
1134 in parentheses. It is legal for the number of bytes to be less than the
1135 size of the pointee type. The ``nonnull`` attribute does not imply
1136 dereferenceability (consider a pointer to one element past the end of an
1137 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1138 ``addrspace(0)`` (which is the default address space).
1139
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001140``dereferenceable_or_null(<n>)``
1141 This indicates that the parameter or return value isn't both
1142 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001143 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001144 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1145 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1146 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1147 and in other address spaces ``dereferenceable_or_null(<n>)``
1148 implies that a pointer is at least one of ``dereferenceable(<n>)``
1149 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001150 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001151 pointer typed parameters.
1152
Manman Renf46262e2016-03-29 17:37:21 +00001153``swiftself``
1154 This indicates that the parameter is the self/context parameter. This is not
1155 a valid attribute for return values and can only be applied to one
1156 parameter.
1157
Manman Ren9bfd0d02016-04-01 21:41:15 +00001158``swifterror``
1159 This attribute is motivated to model and optimize Swift error handling. It
1160 can be applied to a parameter with pointer to pointer type or a
1161 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001162 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1163 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1164 the parameter or the alloca) can only be loaded and stored from, or used as
1165 a ``swifterror`` argument. This is not a valid attribute for return values
1166 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001167
1168 These constraints allow the calling convention to optimize access to
1169 ``swifterror`` variables by associating them with a specific register at
1170 call boundaries rather than placing them in memory. Since this does change
1171 the calling convention, a function which uses the ``swifterror`` attribute
1172 on a parameter is not ABI-compatible with one which does not.
1173
1174 These constraints also allow LLVM to assume that a ``swifterror`` argument
1175 does not alias any other memory visible within a function and that a
1176 ``swifterror`` alloca passed as an argument does not escape.
1177
Sean Silvab084af42012-12-07 10:36:55 +00001178.. _gc:
1179
Philip Reamesf80bbff2015-02-25 23:45:20 +00001180Garbage Collector Strategy Names
1181--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001182
Philip Reamesf80bbff2015-02-25 23:45:20 +00001183Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001184string:
1185
1186.. code-block:: llvm
1187
1188 define void @f() gc "name" { ... }
1189
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001190The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001191<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001192strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001193named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001194garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001195which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001196
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001197.. _prefixdata:
1198
1199Prefix Data
1200-----------
1201
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001202Prefix data is data associated with a function which the code
1203generator will emit immediately before the function's entrypoint.
1204The purpose of this feature is to allow frontends to associate
1205language-specific runtime metadata with specific functions and make it
1206available through the function pointer while still allowing the
1207function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001208
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001209To access the data for a given function, a program may bitcast the
1210function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001211index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001212the prefix data. For instance, take the example of a function annotated
1213with a single ``i32``,
1214
1215.. code-block:: llvm
1216
1217 define void @f() prefix i32 123 { ... }
1218
1219The prefix data can be referenced as,
1220
1221.. code-block:: llvm
1222
David Blaikie16a97eb2015-03-04 22:02:58 +00001223 %0 = bitcast void* () @f to i32*
1224 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001225 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001226
1227Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001228of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001229beginning of the prefix data is aligned. This means that if the size
1230of the prefix data is not a multiple of the alignment size, the
1231function's entrypoint will not be aligned. If alignment of the
1232function's entrypoint is desired, padding must be added to the prefix
1233data.
1234
Sean Silvaa1190322015-08-06 22:56:48 +00001235A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001236to the ``available_externally`` linkage in that the data may be used by the
1237optimizers but will not be emitted in the object file.
1238
1239.. _prologuedata:
1240
1241Prologue Data
1242-------------
1243
1244The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1245be inserted prior to the function body. This can be used for enabling
1246function hot-patching and instrumentation.
1247
1248To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001249have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001250bytes which decode to a sequence of machine instructions, valid for the
1251module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001252the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001253the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001254definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001255makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001256
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001257A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001258which encodes the ``nop`` instruction:
1259
Renato Golin124f2592016-07-20 12:16:38 +00001260.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001261
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001262 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001263
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001264Generally prologue data can be formed by encoding a relative branch instruction
1265which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001266x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1267
Renato Golin124f2592016-07-20 12:16:38 +00001268.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001269
1270 %0 = type <{ i8, i8, i8* }>
1271
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001272 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001273
Sean Silvaa1190322015-08-06 22:56:48 +00001274A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001275to the ``available_externally`` linkage in that the data may be used by the
1276optimizers but will not be emitted in the object file.
1277
David Majnemer7fddecc2015-06-17 20:52:32 +00001278.. _personalityfn:
1279
1280Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001281--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001282
1283The ``personality`` attribute permits functions to specify what function
1284to use for exception handling.
1285
Bill Wendling63b88192013-02-06 06:52:58 +00001286.. _attrgrp:
1287
1288Attribute Groups
1289----------------
1290
1291Attribute groups are groups of attributes that are referenced by objects within
1292the IR. They are important for keeping ``.ll`` files readable, because a lot of
1293functions will use the same set of attributes. In the degenerative case of a
1294``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1295group will capture the important command line flags used to build that file.
1296
1297An attribute group is a module-level object. To use an attribute group, an
1298object references the attribute group's ID (e.g. ``#37``). An object may refer
1299to more than one attribute group. In that situation, the attributes from the
1300different groups are merged.
1301
1302Here is an example of attribute groups for a function that should always be
1303inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1304
1305.. code-block:: llvm
1306
1307 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001308 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001309
1310 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001311 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001312
1313 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1314 define void @f() #0 #1 { ... }
1315
Sean Silvab084af42012-12-07 10:36:55 +00001316.. _fnattrs:
1317
1318Function Attributes
1319-------------------
1320
1321Function attributes are set to communicate additional information about
1322a function. Function attributes are considered to be part of the
1323function, not of the function type, so functions with different function
1324attributes can have the same function type.
1325
1326Function attributes are simple keywords that follow the type specified.
1327If multiple attributes are needed, they are space separated. For
1328example:
1329
1330.. code-block:: llvm
1331
1332 define void @f() noinline { ... }
1333 define void @f() alwaysinline { ... }
1334 define void @f() alwaysinline optsize { ... }
1335 define void @f() optsize { ... }
1336
Sean Silvab084af42012-12-07 10:36:55 +00001337``alignstack(<n>)``
1338 This attribute indicates that, when emitting the prologue and
1339 epilogue, the backend should forcibly align the stack pointer.
1340 Specify the desired alignment, which must be a power of two, in
1341 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001342``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1343 This attribute indicates that the annotated function will always return at
1344 least a given number of bytes (or null). Its arguments are zero-indexed
1345 parameter numbers; if one argument is provided, then it's assumed that at
1346 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1347 returned pointer. If two are provided, then it's assumed that
1348 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1349 available. The referenced parameters must be integer types. No assumptions
1350 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001351``alwaysinline``
1352 This attribute indicates that the inliner should attempt to inline
1353 this function into callers whenever possible, ignoring any active
1354 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001355``builtin``
1356 This indicates that the callee function at a call site should be
1357 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001358 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001359 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001360 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001361``cold``
1362 This attribute indicates that this function is rarely called. When
1363 computing edge weights, basic blocks post-dominated by a cold
1364 function call are also considered to be cold; and, thus, given low
1365 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001366``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001367 In some parallel execution models, there exist operations that cannot be
1368 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001369 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001370
Justin Lebar58535b12016-02-17 17:46:41 +00001371 The ``convergent`` attribute may appear on functions or call/invoke
1372 instructions. When it appears on a function, it indicates that calls to
1373 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001374 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001375 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001376 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001377
Justin Lebar58535b12016-02-17 17:46:41 +00001378 When it appears on a call/invoke, the ``convergent`` attribute indicates
1379 that we should treat the call as though we're calling a convergent
1380 function. This is particularly useful on indirect calls; without this we
1381 may treat such calls as though the target is non-convergent.
1382
1383 The optimizer may remove the ``convergent`` attribute on functions when it
1384 can prove that the function does not execute any convergent operations.
1385 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1386 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001387``inaccessiblememonly``
1388 This attribute indicates that the function may only access memory that
1389 is not accessible by the module being compiled. This is a weaker form
1390 of ``readnone``.
1391``inaccessiblemem_or_argmemonly``
1392 This attribute indicates that the function may only access memory that is
1393 either not accessible by the module being compiled, or is pointed to
1394 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001395``inlinehint``
1396 This attribute indicates that the source code contained a hint that
1397 inlining this function is desirable (such as the "inline" keyword in
1398 C/C++). It is just a hint; it imposes no requirements on the
1399 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001400``jumptable``
1401 This attribute indicates that the function should be added to a
1402 jump-instruction table at code-generation time, and that all address-taken
1403 references to this function should be replaced with a reference to the
1404 appropriate jump-instruction-table function pointer. Note that this creates
1405 a new pointer for the original function, which means that code that depends
1406 on function-pointer identity can break. So, any function annotated with
1407 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001408``minsize``
1409 This attribute suggests that optimization passes and code generator
1410 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001411 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001412 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001413``naked``
1414 This attribute disables prologue / epilogue emission for the
1415 function. This can have very system-specific consequences.
Sumanth Gundapaneni6af104e2017-07-28 22:26:22 +00001416``no-jump-tables``
1417 When this attribute is set to true, the jump tables and lookup tables that
1418 can be generated from a switch case lowering are disabled.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001419``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001420 This indicates that the callee function at a call site is not recognized as
1421 a built-in function. LLVM will retain the original call and not replace it
1422 with equivalent code based on the semantics of the built-in function, unless
1423 the call site uses the ``builtin`` attribute. This is valid at call sites
1424 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001425``noduplicate``
1426 This attribute indicates that calls to the function cannot be
1427 duplicated. A call to a ``noduplicate`` function may be moved
1428 within its parent function, but may not be duplicated within
1429 its parent function.
1430
1431 A function containing a ``noduplicate`` call may still
1432 be an inlining candidate, provided that the call is not
1433 duplicated by inlining. That implies that the function has
1434 internal linkage and only has one call site, so the original
1435 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001436``noimplicitfloat``
1437 This attributes disables implicit floating point instructions.
1438``noinline``
1439 This attribute indicates that the inliner should never inline this
1440 function in any situation. This attribute may not be used together
1441 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001442``nonlazybind``
1443 This attribute suppresses lazy symbol binding for the function. This
1444 may make calls to the function faster, at the cost of extra program
1445 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001446``noredzone``
1447 This attribute indicates that the code generator should not use a
1448 red zone, even if the target-specific ABI normally permits it.
1449``noreturn``
1450 This function attribute indicates that the function never returns
1451 normally. This produces undefined behavior at runtime if the
1452 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001453``norecurse``
1454 This function attribute indicates that the function does not call itself
1455 either directly or indirectly down any possible call path. This produces
1456 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001457``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001458 This function attribute indicates that the function never raises an
1459 exception. If the function does raise an exception, its runtime
1460 behavior is undefined. However, functions marked nounwind may still
1461 trap or generate asynchronous exceptions. Exception handling schemes
1462 that are recognized by LLVM to handle asynchronous exceptions, such
1463 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001464``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001465 This function attribute indicates that most optimization passes will skip
1466 this function, with the exception of interprocedural optimization passes.
1467 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001468 This attribute cannot be used together with the ``alwaysinline``
1469 attribute; this attribute is also incompatible
1470 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001471
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001472 This attribute requires the ``noinline`` attribute to be specified on
1473 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001474 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001475 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001476``optsize``
1477 This attribute suggests that optimization passes and code generator
1478 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001479 and otherwise do optimizations specifically to reduce code size as
1480 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001481``"patchable-function"``
1482 This attribute tells the code generator that the code
1483 generated for this function needs to follow certain conventions that
1484 make it possible for a runtime function to patch over it later.
1485 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001486 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001487
1488 * ``"prologue-short-redirect"`` - This style of patchable
1489 function is intended to support patching a function prologue to
1490 redirect control away from the function in a thread safe
1491 manner. It guarantees that the first instruction of the
1492 function will be large enough to accommodate a short jump
1493 instruction, and will be sufficiently aligned to allow being
1494 fully changed via an atomic compare-and-swap instruction.
1495 While the first requirement can be satisfied by inserting large
1496 enough NOP, LLVM can and will try to re-purpose an existing
1497 instruction (i.e. one that would have to be emitted anyway) as
1498 the patchable instruction larger than a short jump.
1499
1500 ``"prologue-short-redirect"`` is currently only supported on
1501 x86-64.
1502
1503 This attribute by itself does not imply restrictions on
1504 inter-procedural optimizations. All of the semantic effects the
1505 patching may have to be separately conveyed via the linkage type.
whitequarked54b4a2017-06-21 18:46:50 +00001506``"probe-stack"``
1507 This attribute indicates that the function will trigger a guard region
1508 in the end of the stack. It ensures that accesses to the stack must be
1509 no further apart than the size of the guard region to a previous
1510 access of the stack. It takes one required string value, the name of
1511 the stack probing function that will be called.
1512
1513 If a function that has a ``"probe-stack"`` attribute is inlined into
1514 a function with another ``"probe-stack"`` attribute, the resulting
1515 function has the ``"probe-stack"`` attribute of the caller. If a
1516 function that has a ``"probe-stack"`` attribute is inlined into a
1517 function that has no ``"probe-stack"`` attribute at all, the resulting
1518 function has the ``"probe-stack"`` attribute of the callee.
Sean Silvab084af42012-12-07 10:36:55 +00001519``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001520 On a function, this attribute indicates that the function computes its
1521 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001522 without dereferencing any pointer arguments or otherwise accessing
1523 any mutable state (e.g. memory, control registers, etc) visible to
1524 caller functions. It does not write through any pointer arguments
1525 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das5be2e842017-02-13 23:19:07 +00001526 to callers. This means while it cannot unwind exceptions by calling
1527 the ``C++`` exception throwing methods (since they write to memory), there may
1528 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1529 visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001530
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001531 On an argument, this attribute indicates that the function does not
1532 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001533 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001534``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001535 On a function, this attribute indicates that the function does not write
1536 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001537 modify any state (e.g. memory, control registers, etc) visible to
1538 caller functions. It may dereference pointer arguments and read
1539 state that may be set in the caller. A readonly function always
1540 returns the same value (or unwinds an exception identically) when
Sanjoy Das5be2e842017-02-13 23:19:07 +00001541 called with the same set of arguments and global state. This means while it
1542 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1543 (since they write to memory), there may be non-``C++`` mechanisms that throw
1544 exceptions without writing to LLVM visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001545
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001546 On an argument, this attribute indicates that the function does not write
1547 through this pointer argument, even though it may write to the memory that
1548 the pointer points to.
whitequark08b20352017-06-22 23:22:36 +00001549``"stack-probe-size"``
1550 This attribute controls the behavior of stack probes: either
1551 the ``"probe-stack"`` attribute, or ABI-required stack probes, if any.
1552 It defines the size of the guard region. It ensures that if the function
1553 may use more stack space than the size of the guard region, stack probing
1554 sequence will be emitted. It takes one required integer value, which
1555 is 4096 by default.
1556
1557 If a function that has a ``"stack-probe-size"`` attribute is inlined into
1558 a function with another ``"stack-probe-size"`` attribute, the resulting
1559 function has the ``"stack-probe-size"`` attribute that has the lower
1560 numeric value. If a function that has a ``"stack-probe-size"`` attribute is
1561 inlined into a function that has no ``"stack-probe-size"`` attribute
1562 at all, the resulting function has the ``"stack-probe-size"`` attribute
1563 of the callee.
Hans Wennborg89c35fc2018-02-23 13:46:25 +00001564``"no-stack-arg-probe"``
1565 This attribute disables ABI-required stack probes, if any.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001566``writeonly``
1567 On a function, this attribute indicates that the function may write to but
1568 does not read from memory.
1569
1570 On an argument, this attribute indicates that the function may write to but
1571 does not read through this pointer argument (even though it may read from
1572 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001573``argmemonly``
1574 This attribute indicates that the only memory accesses inside function are
1575 loads and stores from objects pointed to by its pointer-typed arguments,
1576 with arbitrary offsets. Or in other words, all memory operations in the
1577 function can refer to memory only using pointers based on its function
1578 arguments.
1579 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1580 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001581``returns_twice``
1582 This attribute indicates that this function can return twice. The C
1583 ``setjmp`` is an example of such a function. The compiler disables
1584 some optimizations (like tail calls) in the caller of these
1585 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001586``safestack``
1587 This attribute indicates that
1588 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1589 protection is enabled for this function.
1590
1591 If a function that has a ``safestack`` attribute is inlined into a
1592 function that doesn't have a ``safestack`` attribute or which has an
1593 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1594 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001595``sanitize_address``
1596 This attribute indicates that AddressSanitizer checks
1597 (dynamic address safety analysis) are enabled for this function.
1598``sanitize_memory``
1599 This attribute indicates that MemorySanitizer checks (dynamic detection
1600 of accesses to uninitialized memory) are enabled for this function.
1601``sanitize_thread``
1602 This attribute indicates that ThreadSanitizer checks
1603 (dynamic thread safety analysis) are enabled for this function.
Evgeniy Stepanovc667c1f2017-12-09 00:21:41 +00001604``sanitize_hwaddress``
1605 This attribute indicates that HWAddressSanitizer checks
1606 (dynamic address safety analysis based on tagged pointers) are enabled for
1607 this function.
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001608``speculatable``
1609 This function attribute indicates that the function does not have any
1610 effects besides calculating its result and does not have undefined behavior.
1611 Note that ``speculatable`` is not enough to conclude that along any
Xin Tongc7180202017-05-02 23:24:12 +00001612 particular execution path the number of calls to this function will not be
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001613 externally observable. This attribute is only valid on functions
1614 and declarations, not on individual call sites. If a function is
1615 incorrectly marked as speculatable and really does exhibit
1616 undefined behavior, the undefined behavior may be observed even
1617 if the call site is dead code.
1618
Sean Silvab084af42012-12-07 10:36:55 +00001619``ssp``
1620 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001621 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001622 placed on the stack before the local variables that's checked upon
1623 return from the function to see if it has been overwritten. A
1624 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001625 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001626
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001627 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1628 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1629 - Calls to alloca() with variable sizes or constant sizes greater than
1630 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001631
Josh Magee24c7f062014-02-01 01:36:16 +00001632 Variables that are identified as requiring a protector will be arranged
1633 on the stack such that they are adjacent to the stack protector guard.
1634
Sean Silvab084af42012-12-07 10:36:55 +00001635 If a function that has an ``ssp`` attribute is inlined into a
1636 function that doesn't have an ``ssp`` attribute, then the resulting
1637 function will have an ``ssp`` attribute.
1638``sspreq``
1639 This attribute indicates that the function should *always* emit a
1640 stack smashing protector. This overrides the ``ssp`` function
1641 attribute.
1642
Josh Magee24c7f062014-02-01 01:36:16 +00001643 Variables that are identified as requiring a protector will be arranged
1644 on the stack such that they are adjacent to the stack protector guard.
1645 The specific layout rules are:
1646
1647 #. Large arrays and structures containing large arrays
1648 (``>= ssp-buffer-size``) are closest to the stack protector.
1649 #. Small arrays and structures containing small arrays
1650 (``< ssp-buffer-size``) are 2nd closest to the protector.
1651 #. Variables that have had their address taken are 3rd closest to the
1652 protector.
1653
Sean Silvab084af42012-12-07 10:36:55 +00001654 If a function that has an ``sspreq`` attribute is inlined into a
1655 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001656 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1657 an ``sspreq`` attribute.
1658``sspstrong``
1659 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001660 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001661 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001662 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001663
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001664 - Arrays of any size and type
1665 - Aggregates containing an array of any size and type.
1666 - Calls to alloca().
1667 - Local variables that have had their address taken.
1668
Josh Magee24c7f062014-02-01 01:36:16 +00001669 Variables that are identified as requiring a protector will be arranged
1670 on the stack such that they are adjacent to the stack protector guard.
1671 The specific layout rules are:
1672
1673 #. Large arrays and structures containing large arrays
1674 (``>= ssp-buffer-size``) are closest to the stack protector.
1675 #. Small arrays and structures containing small arrays
1676 (``< ssp-buffer-size``) are 2nd closest to the protector.
1677 #. Variables that have had their address taken are 3rd closest to the
1678 protector.
1679
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001680 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001681
1682 If a function that has an ``sspstrong`` attribute is inlined into a
1683 function that doesn't have an ``sspstrong`` attribute, then the
1684 resulting function will have an ``sspstrong`` attribute.
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001685``strictfp``
1686 This attribute indicates that the function was called from a scope that
1687 requires strict floating point semantics. LLVM will not attempt any
1688 optimizations that require assumptions about the floating point rounding
1689 mode or that might alter the state of floating point status flags that
1690 might otherwise be set or cleared by calling this function.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001691``"thunk"``
1692 This attribute indicates that the function will delegate to some other
1693 function with a tail call. The prototype of a thunk should not be used for
1694 optimization purposes. The caller is expected to cast the thunk prototype to
1695 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001696``uwtable``
1697 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001698 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001699 show that no exceptions passes by it. This is normally the case for
1700 the ELF x86-64 abi, but it can be disabled for some compilation
1701 units.
Sean Silvab084af42012-12-07 10:36:55 +00001702
Javed Absarf3d79042017-05-11 12:28:08 +00001703.. _glattrs:
1704
1705Global Attributes
1706-----------------
1707
1708Attributes may be set to communicate additional information about a global variable.
1709Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
1710are grouped into a single :ref:`attribute group <attrgrp>`.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001711
1712.. _opbundles:
1713
1714Operand Bundles
1715---------------
1716
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001717Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001718with certain LLVM instructions (currently only ``call`` s and
1719``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001720incorrect and will change program semantics.
1721
1722Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001723
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001724 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001725 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1726 bundle operand ::= SSA value
1727 tag ::= string constant
1728
1729Operand bundles are **not** part of a function's signature, and a
1730given function may be called from multiple places with different kinds
1731of operand bundles. This reflects the fact that the operand bundles
1732are conceptually a part of the ``call`` (or ``invoke``), not the
1733callee being dispatched to.
1734
1735Operand bundles are a generic mechanism intended to support
1736runtime-introspection-like functionality for managed languages. While
1737the exact semantics of an operand bundle depend on the bundle tag,
1738there are certain limitations to how much the presence of an operand
1739bundle can influence the semantics of a program. These restrictions
1740are described as the semantics of an "unknown" operand bundle. As
1741long as the behavior of an operand bundle is describable within these
1742restrictions, LLVM does not need to have special knowledge of the
1743operand bundle to not miscompile programs containing it.
1744
David Majnemer34cacb42015-10-22 01:46:38 +00001745- The bundle operands for an unknown operand bundle escape in unknown
1746 ways before control is transferred to the callee or invokee.
1747- Calls and invokes with operand bundles have unknown read / write
1748 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001749 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001750 callsite specific attributes.
1751- An operand bundle at a call site cannot change the implementation
1752 of the called function. Inter-procedural optimizations work as
1753 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001754
Sanjoy Dascdafd842015-11-11 21:38:02 +00001755More specific types of operand bundles are described below.
1756
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001757.. _deopt_opbundles:
1758
Sanjoy Dascdafd842015-11-11 21:38:02 +00001759Deoptimization Operand Bundles
1760^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1761
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001762Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001763operand bundle tag. These operand bundles represent an alternate
1764"safe" continuation for the call site they're attached to, and can be
1765used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001766specified call site. There can be at most one ``"deopt"`` operand
1767bundle attached to a call site. Exact details of deoptimization is
1768out of scope for the language reference, but it usually involves
1769rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001770
1771From the compiler's perspective, deoptimization operand bundles make
1772the call sites they're attached to at least ``readonly``. They read
1773through all of their pointer typed operands (even if they're not
1774otherwise escaped) and the entire visible heap. Deoptimization
1775operand bundles do not capture their operands except during
1776deoptimization, in which case control will not be returned to the
1777compiled frame.
1778
Sanjoy Das2d161452015-11-18 06:23:38 +00001779The inliner knows how to inline through calls that have deoptimization
1780operand bundles. Just like inlining through a normal call site
1781involves composing the normal and exceptional continuations, inlining
1782through a call site with a deoptimization operand bundle needs to
1783appropriately compose the "safe" deoptimization continuation. The
1784inliner does this by prepending the parent's deoptimization
1785continuation to every deoptimization continuation in the inlined body.
1786E.g. inlining ``@f`` into ``@g`` in the following example
1787
1788.. code-block:: llvm
1789
1790 define void @f() {
1791 call void @x() ;; no deopt state
1792 call void @y() [ "deopt"(i32 10) ]
1793 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1794 ret void
1795 }
1796
1797 define void @g() {
1798 call void @f() [ "deopt"(i32 20) ]
1799 ret void
1800 }
1801
1802will result in
1803
1804.. code-block:: llvm
1805
1806 define void @g() {
1807 call void @x() ;; still no deopt state
1808 call void @y() [ "deopt"(i32 20, i32 10) ]
1809 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1810 ret void
1811 }
1812
1813It is the frontend's responsibility to structure or encode the
1814deoptimization state in a way that syntactically prepending the
1815caller's deoptimization state to the callee's deoptimization state is
1816semantically equivalent to composing the caller's deoptimization
1817continuation after the callee's deoptimization continuation.
1818
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001819.. _ob_funclet:
1820
David Majnemer3bb88c02015-12-15 21:27:27 +00001821Funclet Operand Bundles
1822^^^^^^^^^^^^^^^^^^^^^^^
1823
1824Funclet operand bundles are characterized by the ``"funclet"``
1825operand bundle tag. These operand bundles indicate that a call site
1826is within a particular funclet. There can be at most one
1827``"funclet"`` operand bundle attached to a call site and it must have
1828exactly one bundle operand.
1829
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001830If any funclet EH pads have been "entered" but not "exited" (per the
1831`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1832it is undefined behavior to execute a ``call`` or ``invoke`` which:
1833
1834* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1835 intrinsic, or
1836* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1837 not-yet-exited funclet EH pad.
1838
1839Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1840executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1841
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001842GC Transition Operand Bundles
1843^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1844
1845GC transition operand bundles are characterized by the
1846``"gc-transition"`` operand bundle tag. These operand bundles mark a
1847call as a transition between a function with one GC strategy to a
1848function with a different GC strategy. If coordinating the transition
1849between GC strategies requires additional code generation at the call
1850site, these bundles may contain any values that are needed by the
1851generated code. For more details, see :ref:`GC Transitions
1852<gc_transition_args>`.
1853
Sean Silvab084af42012-12-07 10:36:55 +00001854.. _moduleasm:
1855
1856Module-Level Inline Assembly
1857----------------------------
1858
1859Modules may contain "module-level inline asm" blocks, which corresponds
1860to the GCC "file scope inline asm" blocks. These blocks are internally
1861concatenated by LLVM and treated as a single unit, but may be separated
1862in the ``.ll`` file if desired. The syntax is very simple:
1863
1864.. code-block:: llvm
1865
1866 module asm "inline asm code goes here"
1867 module asm "more can go here"
1868
1869The strings can contain any character by escaping non-printable
1870characters. The escape sequence used is simply "\\xx" where "xx" is the
1871two digit hex code for the number.
1872
James Y Knightbc832ed2015-07-08 18:08:36 +00001873Note that the assembly string *must* be parseable by LLVM's integrated assembler
1874(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001875
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001876.. _langref_datalayout:
1877
Sean Silvab084af42012-12-07 10:36:55 +00001878Data Layout
1879-----------
1880
1881A module may specify a target specific data layout string that specifies
1882how data is to be laid out in memory. The syntax for the data layout is
1883simply:
1884
1885.. code-block:: llvm
1886
1887 target datalayout = "layout specification"
1888
1889The *layout specification* consists of a list of specifications
1890separated by the minus sign character ('-'). Each specification starts
1891with a letter and may include other information after the letter to
1892define some aspect of the data layout. The specifications accepted are
1893as follows:
1894
1895``E``
1896 Specifies that the target lays out data in big-endian form. That is,
1897 the bits with the most significance have the lowest address
1898 location.
1899``e``
1900 Specifies that the target lays out data in little-endian form. That
1901 is, the bits with the least significance have the lowest address
1902 location.
1903``S<size>``
1904 Specifies the natural alignment of the stack in bits. Alignment
1905 promotion of stack variables is limited to the natural stack
1906 alignment to avoid dynamic stack realignment. The stack alignment
1907 must be a multiple of 8-bits. If omitted, the natural stack
1908 alignment defaults to "unspecified", which does not prevent any
1909 alignment promotions.
Dylan McKayced2fe62018-02-19 09:56:22 +00001910``P<address space>``
1911 Specifies the address space that corresponds to program memory.
1912 Harvard architectures can use this to specify what space LLVM
1913 should place things such as functions into. If omitted, the
1914 program memory space defaults to the default address space of 0,
1915 which corresponds to a Von Neumann architecture that has code
1916 and data in the same space.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001917``A<address space>``
Dylan McKayced2fe62018-02-19 09:56:22 +00001918 Specifies the address space of objects created by '``alloca``'.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001919 Defaults to the default address space of 0.
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001920``p[n]:<size>:<abi>:<pref>:<idx>``
Sean Silvab084af42012-12-07 10:36:55 +00001921 This specifies the *size* of a pointer and its ``<abi>`` and
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001922 ``<pref>``\erred alignments for address space ``n``. The fourth parameter
1923 ``<idx>`` is a size of index that used for address calculation. If not
1924 specified, the default index size is equal to the pointer size. All sizes
1925 are in bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001926 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001927 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001928``i<size>:<abi>:<pref>``
1929 This specifies the alignment for an integer type of a given bit
1930 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1931``v<size>:<abi>:<pref>``
1932 This specifies the alignment for a vector type of a given bit
1933 ``<size>``.
1934``f<size>:<abi>:<pref>``
1935 This specifies the alignment for a floating point type of a given bit
1936 ``<size>``. Only values of ``<size>`` that are supported by the target
1937 will work. 32 (float) and 64 (double) are supported on all targets; 80
1938 or 128 (different flavors of long double) are also supported on some
1939 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001940``a:<abi>:<pref>``
1941 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001942``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001943 If present, specifies that llvm names are mangled in the output. The
1944 options are
1945
1946 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1947 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1948 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1949 symbols get a ``_`` prefix.
1950 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1951 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001952 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1953 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001954``n<size1>:<size2>:<size3>...``
1955 This specifies a set of native integer widths for the target CPU in
1956 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1957 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1958 this set are considered to support most general arithmetic operations
1959 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001960``ni:<address space0>:<address space1>:<address space2>...``
1961 This specifies pointer types with the specified address spaces
1962 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1963 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001964
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001965On every specification that takes a ``<abi>:<pref>``, specifying the
1966``<pref>`` alignment is optional. If omitted, the preceding ``:``
1967should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1968
Sean Silvab084af42012-12-07 10:36:55 +00001969When constructing the data layout for a given target, LLVM starts with a
1970default set of specifications which are then (possibly) overridden by
1971the specifications in the ``datalayout`` keyword. The default
1972specifications are given in this list:
1973
1974- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001975- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1976- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1977 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001978- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001979- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1980- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1981- ``i16:16:16`` - i16 is 16-bit aligned
1982- ``i32:32:32`` - i32 is 32-bit aligned
1983- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1984 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001985- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001986- ``f32:32:32`` - float is 32-bit aligned
1987- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001988- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001989- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1990- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001991- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001992
1993When LLVM is determining the alignment for a given type, it uses the
1994following rules:
1995
1996#. If the type sought is an exact match for one of the specifications,
1997 that specification is used.
1998#. If no match is found, and the type sought is an integer type, then
1999 the smallest integer type that is larger than the bitwidth of the
2000 sought type is used. If none of the specifications are larger than
2001 the bitwidth then the largest integer type is used. For example,
2002 given the default specifications above, the i7 type will use the
2003 alignment of i8 (next largest) while both i65 and i256 will use the
2004 alignment of i64 (largest specified).
2005#. If no match is found, and the type sought is a vector type, then the
2006 largest vector type that is smaller than the sought vector type will
2007 be used as a fall back. This happens because <128 x double> can be
2008 implemented in terms of 64 <2 x double>, for example.
2009
2010The function of the data layout string may not be what you expect.
2011Notably, this is not a specification from the frontend of what alignment
2012the code generator should use.
2013
2014Instead, if specified, the target data layout is required to match what
2015the ultimate *code generator* expects. This string is used by the
2016mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00002017what the ultimate code generator uses. There is no way to generate IR
2018that does not embed this target-specific detail into the IR. If you
2019don't specify the string, the default specifications will be used to
2020generate a Data Layout and the optimization phases will operate
2021accordingly and introduce target specificity into the IR with respect to
2022these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00002023
Bill Wendling5cc90842013-10-18 23:41:25 +00002024.. _langref_triple:
2025
2026Target Triple
2027-------------
2028
2029A module may specify a target triple string that describes the target
2030host. The syntax for the target triple is simply:
2031
2032.. code-block:: llvm
2033
2034 target triple = "x86_64-apple-macosx10.7.0"
2035
2036The *target triple* string consists of a series of identifiers delimited
2037by the minus sign character ('-'). The canonical forms are:
2038
2039::
2040
2041 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
2042 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
2043
2044This information is passed along to the backend so that it generates
2045code for the proper architecture. It's possible to override this on the
2046command line with the ``-mtriple`` command line option.
2047
Sean Silvab084af42012-12-07 10:36:55 +00002048.. _pointeraliasing:
2049
2050Pointer Aliasing Rules
2051----------------------
2052
2053Any memory access must be done through a pointer value associated with
2054an address range of the memory access, otherwise the behavior is
2055undefined. Pointer values are associated with address ranges according
2056to the following rules:
2057
2058- A pointer value is associated with the addresses associated with any
2059 value it is *based* on.
2060- An address of a global variable is associated with the address range
2061 of the variable's storage.
2062- The result value of an allocation instruction is associated with the
2063 address range of the allocated storage.
2064- A null pointer in the default address-space is associated with no
2065 address.
2066- An integer constant other than zero or a pointer value returned from
2067 a function not defined within LLVM may be associated with address
2068 ranges allocated through mechanisms other than those provided by
2069 LLVM. Such ranges shall not overlap with any ranges of addresses
2070 allocated by mechanisms provided by LLVM.
2071
2072A pointer value is *based* on another pointer value according to the
2073following rules:
2074
Sanjoy Das6d489492017-09-13 18:49:22 +00002075- A pointer value formed from a scalar ``getelementptr`` operation is *based* on
2076 the pointer-typed operand of the ``getelementptr``.
2077- The pointer in lane *l* of the result of a vector ``getelementptr`` operation
2078 is *based* on the pointer in lane *l* of the vector-of-pointers-typed operand
2079 of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00002080- The result value of a ``bitcast`` is *based* on the operand of the
2081 ``bitcast``.
2082- A pointer value formed by an ``inttoptr`` is *based* on all pointer
2083 values that contribute (directly or indirectly) to the computation of
2084 the pointer's value.
2085- The "*based* on" relationship is transitive.
2086
2087Note that this definition of *"based"* is intentionally similar to the
2088definition of *"based"* in C99, though it is slightly weaker.
2089
2090LLVM IR does not associate types with memory. The result type of a
2091``load`` merely indicates the size and alignment of the memory from
2092which to load, as well as the interpretation of the value. The first
2093operand type of a ``store`` similarly only indicates the size and
2094alignment of the store.
2095
2096Consequently, type-based alias analysis, aka TBAA, aka
2097``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2098:ref:`Metadata <metadata>` may be used to encode additional information
2099which specialized optimization passes may use to implement type-based
2100alias analysis.
2101
2102.. _volatile:
2103
2104Volatile Memory Accesses
2105------------------------
2106
2107Certain memory accesses, such as :ref:`load <i_load>`'s,
2108:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2109marked ``volatile``. The optimizers must not change the number of
2110volatile operations or change their order of execution relative to other
2111volatile operations. The optimizers *may* change the order of volatile
2112operations relative to non-volatile operations. This is not Java's
2113"volatile" and has no cross-thread synchronization behavior.
2114
Andrew Trick89fc5a62013-01-30 21:19:35 +00002115IR-level volatile loads and stores cannot safely be optimized into
2116llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2117flagged volatile. Likewise, the backend should never split or merge
2118target-legal volatile load/store instructions.
2119
Andrew Trick7e6f9282013-01-31 00:49:39 +00002120.. admonition:: Rationale
2121
2122 Platforms may rely on volatile loads and stores of natively supported
2123 data width to be executed as single instruction. For example, in C
2124 this holds for an l-value of volatile primitive type with native
2125 hardware support, but not necessarily for aggregate types. The
2126 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002127 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002128 do not violate the frontend's contract with the language.
2129
Sean Silvab084af42012-12-07 10:36:55 +00002130.. _memmodel:
2131
2132Memory Model for Concurrent Operations
2133--------------------------------------
2134
2135The LLVM IR does not define any way to start parallel threads of
2136execution or to register signal handlers. Nonetheless, there are
2137platform-specific ways to create them, and we define LLVM IR's behavior
2138in their presence. This model is inspired by the C++0x memory model.
2139
2140For a more informal introduction to this model, see the :doc:`Atomics`.
2141
2142We define a *happens-before* partial order as the least partial order
2143that
2144
2145- Is a superset of single-thread program order, and
2146- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2147 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2148 techniques, like pthread locks, thread creation, thread joining,
2149 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2150 Constraints <ordering>`).
2151
2152Note that program order does not introduce *happens-before* edges
2153between a thread and signals executing inside that thread.
2154
2155Every (defined) read operation (load instructions, memcpy, atomic
2156loads/read-modify-writes, etc.) R reads a series of bytes written by
2157(defined) write operations (store instructions, atomic
2158stores/read-modify-writes, memcpy, etc.). For the purposes of this
2159section, initialized globals are considered to have a write of the
2160initializer which is atomic and happens before any other read or write
2161of the memory in question. For each byte of a read R, R\ :sub:`byte`
2162may see any write to the same byte, except:
2163
2164- If write\ :sub:`1` happens before write\ :sub:`2`, and
2165 write\ :sub:`2` happens before R\ :sub:`byte`, then
2166 R\ :sub:`byte` does not see write\ :sub:`1`.
2167- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2168 R\ :sub:`byte` does not see write\ :sub:`3`.
2169
2170Given that definition, R\ :sub:`byte` is defined as follows:
2171
2172- If R is volatile, the result is target-dependent. (Volatile is
2173 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002174 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002175 like normal memory. It does not generally provide cross-thread
2176 synchronization.)
2177- Otherwise, if there is no write to the same byte that happens before
2178 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2179- Otherwise, if R\ :sub:`byte` may see exactly one write,
2180 R\ :sub:`byte` returns the value written by that write.
2181- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2182 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2183 Memory Ordering Constraints <ordering>` section for additional
2184 constraints on how the choice is made.
2185- Otherwise R\ :sub:`byte` returns ``undef``.
2186
2187R returns the value composed of the series of bytes it read. This
2188implies that some bytes within the value may be ``undef`` **without**
2189the entire value being ``undef``. Note that this only defines the
2190semantics of the operation; it doesn't mean that targets will emit more
2191than one instruction to read the series of bytes.
2192
2193Note that in cases where none of the atomic intrinsics are used, this
2194model places only one restriction on IR transformations on top of what
2195is required for single-threaded execution: introducing a store to a byte
2196which might not otherwise be stored is not allowed in general.
2197(Specifically, in the case where another thread might write to and read
2198from an address, introducing a store can change a load that may see
2199exactly one write into a load that may see multiple writes.)
2200
2201.. _ordering:
2202
2203Atomic Memory Ordering Constraints
2204----------------------------------
2205
2206Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2207:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2208:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002209ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002210the same address they *synchronize with*. These semantics are borrowed
2211from Java and C++0x, but are somewhat more colloquial. If these
2212descriptions aren't precise enough, check those specs (see spec
2213references in the :doc:`atomics guide <Atomics>`).
2214:ref:`fence <i_fence>` instructions treat these orderings somewhat
2215differently since they don't take an address. See that instruction's
2216documentation for details.
2217
2218For a simpler introduction to the ordering constraints, see the
2219:doc:`Atomics`.
2220
2221``unordered``
2222 The set of values that can be read is governed by the happens-before
2223 partial order. A value cannot be read unless some operation wrote
2224 it. This is intended to provide a guarantee strong enough to model
2225 Java's non-volatile shared variables. This ordering cannot be
2226 specified for read-modify-write operations; it is not strong enough
2227 to make them atomic in any interesting way.
2228``monotonic``
2229 In addition to the guarantees of ``unordered``, there is a single
2230 total order for modifications by ``monotonic`` operations on each
2231 address. All modification orders must be compatible with the
2232 happens-before order. There is no guarantee that the modification
2233 orders can be combined to a global total order for the whole program
2234 (and this often will not be possible). The read in an atomic
2235 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2236 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2237 order immediately before the value it writes. If one atomic read
2238 happens before another atomic read of the same address, the later
2239 read must see the same value or a later value in the address's
2240 modification order. This disallows reordering of ``monotonic`` (or
2241 stronger) operations on the same address. If an address is written
2242 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2243 read that address repeatedly, the other threads must eventually see
2244 the write. This corresponds to the C++0x/C1x
2245 ``memory_order_relaxed``.
2246``acquire``
2247 In addition to the guarantees of ``monotonic``, a
2248 *synchronizes-with* edge may be formed with a ``release`` operation.
2249 This is intended to model C++'s ``memory_order_acquire``.
2250``release``
2251 In addition to the guarantees of ``monotonic``, if this operation
2252 writes a value which is subsequently read by an ``acquire``
2253 operation, it *synchronizes-with* that operation. (This isn't a
2254 complete description; see the C++0x definition of a release
2255 sequence.) This corresponds to the C++0x/C1x
2256 ``memory_order_release``.
2257``acq_rel`` (acquire+release)
2258 Acts as both an ``acquire`` and ``release`` operation on its
2259 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2260``seq_cst`` (sequentially consistent)
2261 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002262 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002263 writes), there is a global total order on all
2264 sequentially-consistent operations on all addresses, which is
2265 consistent with the *happens-before* partial order and with the
2266 modification orders of all the affected addresses. Each
2267 sequentially-consistent read sees the last preceding write to the
2268 same address in this global order. This corresponds to the C++0x/C1x
2269 ``memory_order_seq_cst`` and Java volatile.
2270
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002271.. _syncscope:
Sean Silvab084af42012-12-07 10:36:55 +00002272
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002273If an atomic operation is marked ``syncscope("singlethread")``, it only
2274*synchronizes with* and only participates in the seq\_cst total orderings of
2275other operations running in the same thread (for example, in signal handlers).
2276
2277If an atomic operation is marked ``syncscope("<target-scope>")``, where
2278``<target-scope>`` is a target specific synchronization scope, then it is target
2279dependent if it *synchronizes with* and participates in the seq\_cst total
2280orderings of other operations.
2281
2282Otherwise, an atomic operation that is not marked ``syncscope("singlethread")``
2283or ``syncscope("<target-scope>")`` *synchronizes with* and participates in the
2284seq\_cst total orderings of other operations that are not marked
2285``syncscope("singlethread")`` or ``syncscope("<target-scope>")``.
Sean Silvab084af42012-12-07 10:36:55 +00002286
2287.. _fastmath:
2288
2289Fast-Math Flags
2290---------------
2291
Sanjay Patel629c4112017-11-06 16:27:15 +00002292LLVM IR floating-point operations (:ref:`fadd <i_fadd>`,
Sean Silvab084af42012-12-07 10:36:55 +00002293:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002294:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002295may use the following flags to enable otherwise unsafe
Sanjay Patel629c4112017-11-06 16:27:15 +00002296floating-point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002297
2298``nnan``
2299 No NaNs - Allow optimizations to assume the arguments and result are not
2300 NaN. Such optimizations are required to retain defined behavior over
2301 NaNs, but the value of the result is undefined.
2302
2303``ninf``
2304 No Infs - Allow optimizations to assume the arguments and result are not
2305 +/-Inf. Such optimizations are required to retain defined behavior over
2306 +/-Inf, but the value of the result is undefined.
2307
2308``nsz``
2309 No Signed Zeros - Allow optimizations to treat the sign of a zero
2310 argument or result as insignificant.
2311
2312``arcp``
2313 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2314 argument rather than perform division.
2315
Adam Nemetcd847a82017-03-28 20:11:52 +00002316``contract``
2317 Allow floating-point contraction (e.g. fusing a multiply followed by an
2318 addition into a fused multiply-and-add).
2319
Sanjay Patel629c4112017-11-06 16:27:15 +00002320``afn``
2321 Approximate functions - Allow substitution of approximate calculations for
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002322 functions (sin, log, sqrt, etc). See floating-point intrinsic definitions
2323 for places where this can apply to LLVM's intrinsic math functions.
Sanjay Patel629c4112017-11-06 16:27:15 +00002324
2325``reassoc``
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002326 Allow reassociation transformations for floating-point instructions.
Sanjay Patel629c4112017-11-06 16:27:15 +00002327 This may dramatically change results in floating point.
2328
Sean Silvab084af42012-12-07 10:36:55 +00002329``fast``
Sanjay Patel629c4112017-11-06 16:27:15 +00002330 This flag implies all of the others.
Sean Silvab084af42012-12-07 10:36:55 +00002331
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002332.. _uselistorder:
2333
2334Use-list Order Directives
2335-------------------------
2336
2337Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002338order to be recreated. ``<order-indexes>`` is a comma-separated list of
2339indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002340value's use-list is immediately sorted by these indexes.
2341
Sean Silvaa1190322015-08-06 22:56:48 +00002342Use-list directives may appear at function scope or global scope. They are not
2343instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002344function scope, they must appear after the terminator of the final basic block.
2345
2346If basic blocks have their address taken via ``blockaddress()`` expressions,
2347``uselistorder_bb`` can be used to reorder their use-lists from outside their
2348function's scope.
2349
2350:Syntax:
2351
2352::
2353
2354 uselistorder <ty> <value>, { <order-indexes> }
2355 uselistorder_bb @function, %block { <order-indexes> }
2356
2357:Examples:
2358
2359::
2360
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002361 define void @foo(i32 %arg1, i32 %arg2) {
2362 entry:
2363 ; ... instructions ...
2364 bb:
2365 ; ... instructions ...
2366
2367 ; At function scope.
2368 uselistorder i32 %arg1, { 1, 0, 2 }
2369 uselistorder label %bb, { 1, 0 }
2370 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002371
2372 ; At global scope.
2373 uselistorder i32* @global, { 1, 2, 0 }
2374 uselistorder i32 7, { 1, 0 }
2375 uselistorder i32 (i32) @bar, { 1, 0 }
2376 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2377
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002378.. _source_filename:
2379
2380Source Filename
2381---------------
2382
2383The *source filename* string is set to the original module identifier,
2384which will be the name of the compiled source file when compiling from
2385source through the clang front end, for example. It is then preserved through
2386the IR and bitcode.
2387
2388This is currently necessary to generate a consistent unique global
2389identifier for local functions used in profile data, which prepends the
2390source file name to the local function name.
2391
2392The syntax for the source file name is simply:
2393
Renato Golin124f2592016-07-20 12:16:38 +00002394.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002395
2396 source_filename = "/path/to/source.c"
2397
Sean Silvab084af42012-12-07 10:36:55 +00002398.. _typesystem:
2399
2400Type System
2401===========
2402
2403The LLVM type system is one of the most important features of the
2404intermediate representation. Being typed enables a number of
2405optimizations to be performed on the intermediate representation
2406directly, without having to do extra analyses on the side before the
2407transformation. A strong type system makes it easier to read the
2408generated code and enables novel analyses and transformations that are
2409not feasible to perform on normal three address code representations.
2410
Rafael Espindola08013342013-12-07 19:34:20 +00002411.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002412
Rafael Espindola08013342013-12-07 19:34:20 +00002413Void Type
2414---------
Sean Silvab084af42012-12-07 10:36:55 +00002415
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002416:Overview:
2417
Rafael Espindola08013342013-12-07 19:34:20 +00002418
2419The void type does not represent any value and has no size.
2420
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002421:Syntax:
2422
Rafael Espindola08013342013-12-07 19:34:20 +00002423
2424::
2425
2426 void
Sean Silvab084af42012-12-07 10:36:55 +00002427
2428
Rafael Espindola08013342013-12-07 19:34:20 +00002429.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002430
Rafael Espindola08013342013-12-07 19:34:20 +00002431Function Type
2432-------------
Sean Silvab084af42012-12-07 10:36:55 +00002433
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002434:Overview:
2435
Sean Silvab084af42012-12-07 10:36:55 +00002436
Rafael Espindola08013342013-12-07 19:34:20 +00002437The function type can be thought of as a function signature. It consists of a
2438return type and a list of formal parameter types. The return type of a function
2439type is a void type or first class type --- except for :ref:`label <t_label>`
2440and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002441
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002442:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002443
Rafael Espindola08013342013-12-07 19:34:20 +00002444::
Sean Silvab084af42012-12-07 10:36:55 +00002445
Rafael Espindola08013342013-12-07 19:34:20 +00002446 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002447
Rafael Espindola08013342013-12-07 19:34:20 +00002448...where '``<parameter list>``' is a comma-separated list of type
2449specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002450indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002451argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002452handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002453except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002454
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002455:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002456
Rafael Espindola08013342013-12-07 19:34:20 +00002457+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2458| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2459+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2460| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2461+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2462| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2463+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2464| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2465+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2466
2467.. _t_firstclass:
2468
2469First Class Types
2470-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002471
2472The :ref:`first class <t_firstclass>` types are perhaps the most important.
2473Values of these types are the only ones which can be produced by
2474instructions.
2475
Rafael Espindola08013342013-12-07 19:34:20 +00002476.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002477
Rafael Espindola08013342013-12-07 19:34:20 +00002478Single Value Types
2479^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002480
Rafael Espindola08013342013-12-07 19:34:20 +00002481These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002482
2483.. _t_integer:
2484
2485Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002486""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002487
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002488:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002489
2490The integer type is a very simple type that simply specifies an
2491arbitrary bit width for the integer type desired. Any bit width from 1
2492bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2493
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002494:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002495
2496::
2497
2498 iN
2499
2500The number of bits the integer will occupy is specified by the ``N``
2501value.
2502
2503Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002504*********
Sean Silvab084af42012-12-07 10:36:55 +00002505
2506+----------------+------------------------------------------------+
2507| ``i1`` | a single-bit integer. |
2508+----------------+------------------------------------------------+
2509| ``i32`` | a 32-bit integer. |
2510+----------------+------------------------------------------------+
2511| ``i1942652`` | a really big integer of over 1 million bits. |
2512+----------------+------------------------------------------------+
2513
2514.. _t_floating:
2515
2516Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002517""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002518
2519.. list-table::
2520 :header-rows: 1
2521
2522 * - Type
2523 - Description
2524
2525 * - ``half``
2526 - 16-bit floating point value
2527
2528 * - ``float``
2529 - 32-bit floating point value
2530
2531 * - ``double``
2532 - 64-bit floating point value
2533
2534 * - ``fp128``
2535 - 128-bit floating point value (112-bit mantissa)
2536
2537 * - ``x86_fp80``
2538 - 80-bit floating point value (X87)
2539
2540 * - ``ppc_fp128``
2541 - 128-bit floating point value (two 64-bits)
2542
Reid Kleckner9a16d082014-03-05 02:41:37 +00002543X86_mmx Type
2544""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002545
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002546:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002547
Reid Kleckner9a16d082014-03-05 02:41:37 +00002548The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002549machine. The operations allowed on it are quite limited: parameters and
2550return values, load and store, and bitcast. User-specified MMX
2551instructions are represented as intrinsic or asm calls with arguments
2552and/or results of this type. There are no arrays, vectors or constants
2553of this type.
2554
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002555:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002556
2557::
2558
Reid Kleckner9a16d082014-03-05 02:41:37 +00002559 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002560
Sean Silvab084af42012-12-07 10:36:55 +00002561
Rafael Espindola08013342013-12-07 19:34:20 +00002562.. _t_pointer:
2563
2564Pointer Type
2565""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002566
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002567:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002568
Rafael Espindola08013342013-12-07 19:34:20 +00002569The pointer type is used to specify memory locations. Pointers are
2570commonly used to reference objects in memory.
2571
2572Pointer types may have an optional address space attribute defining the
2573numbered address space where the pointed-to object resides. The default
2574address space is number zero. The semantics of non-zero address spaces
2575are target-specific.
2576
2577Note that LLVM does not permit pointers to void (``void*``) nor does it
2578permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002579
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002580:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002581
2582::
2583
Rafael Espindola08013342013-12-07 19:34:20 +00002584 <type> *
2585
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002586:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002587
2588+-------------------------+--------------------------------------------------------------------------------------------------------------+
2589| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2590+-------------------------+--------------------------------------------------------------------------------------------------------------+
2591| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2592+-------------------------+--------------------------------------------------------------------------------------------------------------+
2593| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2594+-------------------------+--------------------------------------------------------------------------------------------------------------+
2595
2596.. _t_vector:
2597
2598Vector Type
2599"""""""""""
2600
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002601:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002602
2603A vector type is a simple derived type that represents a vector of
2604elements. Vector types are used when multiple primitive data are
2605operated in parallel using a single instruction (SIMD). A vector type
2606requires a size (number of elements) and an underlying primitive data
2607type. Vector types are considered :ref:`first class <t_firstclass>`.
2608
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002609:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002610
2611::
2612
2613 < <# elements> x <elementtype> >
2614
2615The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002616elementtype may be any integer, floating point or pointer type. Vectors
2617of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002618
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002619:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002620
2621+-------------------+--------------------------------------------------+
2622| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2623+-------------------+--------------------------------------------------+
2624| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2625+-------------------+--------------------------------------------------+
2626| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2627+-------------------+--------------------------------------------------+
2628| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2629+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002630
2631.. _t_label:
2632
2633Label Type
2634^^^^^^^^^^
2635
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002636:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002637
2638The label type represents code labels.
2639
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002640:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002641
2642::
2643
2644 label
2645
David Majnemerb611e3f2015-08-14 05:09:07 +00002646.. _t_token:
2647
2648Token Type
2649^^^^^^^^^^
2650
2651:Overview:
2652
2653The token type is used when a value is associated with an instruction
2654but all uses of the value must not attempt to introspect or obscure it.
2655As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2656:ref:`select <i_select>` of type token.
2657
2658:Syntax:
2659
2660::
2661
2662 token
2663
2664
2665
Sean Silvab084af42012-12-07 10:36:55 +00002666.. _t_metadata:
2667
2668Metadata Type
2669^^^^^^^^^^^^^
2670
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002671:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002672
2673The metadata type represents embedded metadata. No derived types may be
2674created from metadata except for :ref:`function <t_function>` arguments.
2675
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002676:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002677
2678::
2679
2680 metadata
2681
Sean Silvab084af42012-12-07 10:36:55 +00002682.. _t_aggregate:
2683
2684Aggregate Types
2685^^^^^^^^^^^^^^^
2686
2687Aggregate Types are a subset of derived types that can contain multiple
2688member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2689aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2690aggregate types.
2691
2692.. _t_array:
2693
2694Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002695""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002696
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002697:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002698
2699The array type is a very simple derived type that arranges elements
2700sequentially in memory. The array type requires a size (number of
2701elements) and an underlying data type.
2702
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002703:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002704
2705::
2706
2707 [<# elements> x <elementtype>]
2708
2709The number of elements is a constant integer value; ``elementtype`` may
2710be any type with a size.
2711
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002712:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002713
2714+------------------+--------------------------------------+
2715| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2716+------------------+--------------------------------------+
2717| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2718+------------------+--------------------------------------+
2719| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2720+------------------+--------------------------------------+
2721
2722Here are some examples of multidimensional arrays:
2723
2724+-----------------------------+----------------------------------------------------------+
2725| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2726+-----------------------------+----------------------------------------------------------+
2727| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2728+-----------------------------+----------------------------------------------------------+
2729| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2730+-----------------------------+----------------------------------------------------------+
2731
2732There is no restriction on indexing beyond the end of the array implied
2733by a static type (though there are restrictions on indexing beyond the
2734bounds of an allocated object in some cases). This means that
2735single-dimension 'variable sized array' addressing can be implemented in
2736LLVM with a zero length array type. An implementation of 'pascal style
2737arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2738example.
2739
Sean Silvab084af42012-12-07 10:36:55 +00002740.. _t_struct:
2741
2742Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002743""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002744
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002745:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002746
2747The structure type is used to represent a collection of data members
2748together in memory. The elements of a structure may be any type that has
2749a size.
2750
2751Structures in memory are accessed using '``load``' and '``store``' by
2752getting a pointer to a field with the '``getelementptr``' instruction.
2753Structures in registers are accessed using the '``extractvalue``' and
2754'``insertvalue``' instructions.
2755
2756Structures may optionally be "packed" structures, which indicate that
2757the alignment of the struct is one byte, and that there is no padding
2758between the elements. In non-packed structs, padding between field types
2759is inserted as defined by the DataLayout string in the module, which is
2760required to match what the underlying code generator expects.
2761
2762Structures can either be "literal" or "identified". A literal structure
2763is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2764identified types are always defined at the top level with a name.
2765Literal types are uniqued by their contents and can never be recursive
2766or opaque since there is no way to write one. Identified types can be
2767recursive, can be opaqued, and are never uniqued.
2768
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002769:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002770
2771::
2772
2773 %T1 = type { <type list> } ; Identified normal struct type
2774 %T2 = type <{ <type list> }> ; Identified packed struct type
2775
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002776:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002777
2778+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2779| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2780+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002781| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002782+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2783| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2784+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2785
2786.. _t_opaque:
2787
2788Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002789""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002790
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002791:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002792
2793Opaque structure types are used to represent named structure types that
2794do not have a body specified. This corresponds (for example) to the C
2795notion of a forward declared structure.
2796
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002797:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002798
2799::
2800
2801 %X = type opaque
2802 %52 = type opaque
2803
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002804:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002805
2806+--------------+-------------------+
2807| ``opaque`` | An opaque type. |
2808+--------------+-------------------+
2809
Sean Silva1703e702014-04-08 21:06:22 +00002810.. _constants:
2811
Sean Silvab084af42012-12-07 10:36:55 +00002812Constants
2813=========
2814
2815LLVM has several different basic types of constants. This section
2816describes them all and their syntax.
2817
2818Simple Constants
2819----------------
2820
2821**Boolean constants**
2822 The two strings '``true``' and '``false``' are both valid constants
2823 of the ``i1`` type.
2824**Integer constants**
2825 Standard integers (such as '4') are constants of the
2826 :ref:`integer <t_integer>` type. Negative numbers may be used with
2827 integer types.
2828**Floating point constants**
2829 Floating point constants use standard decimal notation (e.g.
2830 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2831 hexadecimal notation (see below). The assembler requires the exact
2832 decimal value of a floating-point constant. For example, the
2833 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2834 decimal in binary. Floating point constants must have a :ref:`floating
2835 point <t_floating>` type.
2836**Null pointer constants**
2837 The identifier '``null``' is recognized as a null pointer constant
2838 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002839**Token constants**
2840 The identifier '``none``' is recognized as an empty token constant
2841 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002842
2843The one non-intuitive notation for constants is the hexadecimal form of
2844floating point constants. For example, the form
2845'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2846than) '``double 4.5e+15``'. The only time hexadecimal floating point
2847constants are required (and the only time that they are generated by the
2848disassembler) is when a floating point constant must be emitted but it
2849cannot be represented as a decimal floating point number in a reasonable
2850number of digits. For example, NaN's, infinities, and other special
2851values are represented in their IEEE hexadecimal format so that assembly
2852and disassembly do not cause any bits to change in the constants.
2853
2854When using the hexadecimal form, constants of types half, float, and
2855double are represented using the 16-digit form shown above (which
2856matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002857must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002858precision, respectively. Hexadecimal format is always used for long
2859double, and there are three forms of long double. The 80-bit format used
2860by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2861128-bit format used by PowerPC (two adjacent doubles) is represented by
2862``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002863represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2864will only work if they match the long double format on your target.
2865The IEEE 16-bit format (half precision) is represented by ``0xH``
2866followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2867(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002868
Reid Kleckner9a16d082014-03-05 02:41:37 +00002869There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002870
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002871.. _complexconstants:
2872
Sean Silvab084af42012-12-07 10:36:55 +00002873Complex Constants
2874-----------------
2875
2876Complex constants are a (potentially recursive) combination of simple
2877constants and smaller complex constants.
2878
2879**Structure constants**
2880 Structure constants are represented with notation similar to
2881 structure type definitions (a comma separated list of elements,
2882 surrounded by braces (``{}``)). For example:
2883 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2884 "``@G = external global i32``". Structure constants must have
2885 :ref:`structure type <t_struct>`, and the number and types of elements
2886 must match those specified by the type.
2887**Array constants**
2888 Array constants are represented with notation similar to array type
2889 definitions (a comma separated list of elements, surrounded by
2890 square brackets (``[]``)). For example:
2891 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2892 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002893 match those specified by the type. As a special case, character array
2894 constants may also be represented as a double-quoted string using the ``c``
2895 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002896**Vector constants**
2897 Vector constants are represented with notation similar to vector
2898 type definitions (a comma separated list of elements, surrounded by
2899 less-than/greater-than's (``<>``)). For example:
2900 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2901 must have :ref:`vector type <t_vector>`, and the number and types of
2902 elements must match those specified by the type.
2903**Zero initialization**
2904 The string '``zeroinitializer``' can be used to zero initialize a
2905 value to zero of *any* type, including scalar and
2906 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2907 having to print large zero initializers (e.g. for large arrays) and
2908 is always exactly equivalent to using explicit zero initializers.
2909**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002910 A metadata node is a constant tuple without types. For example:
2911 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002912 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2913 Unlike other typed constants that are meant to be interpreted as part of
2914 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002915 information such as debug info.
2916
2917Global Variable and Function Addresses
2918--------------------------------------
2919
2920The addresses of :ref:`global variables <globalvars>` and
2921:ref:`functions <functionstructure>` are always implicitly valid
2922(link-time) constants. These constants are explicitly referenced when
2923the :ref:`identifier for the global <identifiers>` is used and always have
2924:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2925file:
2926
2927.. code-block:: llvm
2928
2929 @X = global i32 17
2930 @Y = global i32 42
2931 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2932
2933.. _undefvalues:
2934
2935Undefined Values
2936----------------
2937
2938The string '``undef``' can be used anywhere a constant is expected, and
2939indicates that the user of the value may receive an unspecified
2940bit-pattern. Undefined values may be of any type (other than '``label``'
2941or '``void``') and be used anywhere a constant is permitted.
2942
2943Undefined values are useful because they indicate to the compiler that
2944the program is well defined no matter what value is used. This gives the
2945compiler more freedom to optimize. Here are some examples of
2946(potentially surprising) transformations that are valid (in pseudo IR):
2947
2948.. code-block:: llvm
2949
2950 %A = add %X, undef
2951 %B = sub %X, undef
2952 %C = xor %X, undef
2953 Safe:
2954 %A = undef
2955 %B = undef
2956 %C = undef
2957
2958This is safe because all of the output bits are affected by the undef
2959bits. Any output bit can have a zero or one depending on the input bits.
2960
2961.. code-block:: llvm
2962
2963 %A = or %X, undef
2964 %B = and %X, undef
2965 Safe:
2966 %A = -1
2967 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00002968 Safe:
2969 %A = %X ;; By choosing undef as 0
2970 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00002971 Unsafe:
2972 %A = undef
2973 %B = undef
2974
2975These logical operations have bits that are not always affected by the
2976input. For example, if ``%X`` has a zero bit, then the output of the
2977'``and``' operation will always be a zero for that bit, no matter what
2978the corresponding bit from the '``undef``' is. As such, it is unsafe to
2979optimize or assume that the result of the '``and``' is '``undef``'.
2980However, it is safe to assume that all bits of the '``undef``' could be
29810, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2982all the bits of the '``undef``' operand to the '``or``' could be set,
2983allowing the '``or``' to be folded to -1.
2984
2985.. code-block:: llvm
2986
2987 %A = select undef, %X, %Y
2988 %B = select undef, 42, %Y
2989 %C = select %X, %Y, undef
2990 Safe:
2991 %A = %X (or %Y)
2992 %B = 42 (or %Y)
2993 %C = %Y
2994 Unsafe:
2995 %A = undef
2996 %B = undef
2997 %C = undef
2998
2999This set of examples shows that undefined '``select``' (and conditional
3000branch) conditions can go *either way*, but they have to come from one
3001of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
3002both known to have a clear low bit, then ``%A`` would have to have a
3003cleared low bit. However, in the ``%C`` example, the optimizer is
3004allowed to assume that the '``undef``' operand could be the same as
3005``%Y``, allowing the whole '``select``' to be eliminated.
3006
Renato Golin124f2592016-07-20 12:16:38 +00003007.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003008
3009 %A = xor undef, undef
3010
3011 %B = undef
3012 %C = xor %B, %B
3013
3014 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00003015 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00003016 %F = icmp gte %D, 4
3017
3018 Safe:
3019 %A = undef
3020 %B = undef
3021 %C = undef
3022 %D = undef
3023 %E = undef
3024 %F = undef
3025
3026This example points out that two '``undef``' operands are not
3027necessarily the same. This can be surprising to people (and also matches
3028C semantics) where they assume that "``X^X``" is always zero, even if
3029``X`` is undefined. This isn't true for a number of reasons, but the
3030short answer is that an '``undef``' "variable" can arbitrarily change
3031its value over its "live range". This is true because the variable
3032doesn't actually *have a live range*. Instead, the value is logically
3033read from arbitrary registers that happen to be around when needed, so
3034the value is not necessarily consistent over time. In fact, ``%A`` and
3035``%C`` need to have the same semantics or the core LLVM "replace all
3036uses with" concept would not hold.
3037
3038.. code-block:: llvm
3039
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003040 %A = sdiv undef, %X
3041 %B = sdiv %X, undef
Sean Silvab084af42012-12-07 10:36:55 +00003042 Safe:
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003043 %A = 0
Sean Silvab084af42012-12-07 10:36:55 +00003044 b: unreachable
3045
3046These examples show the crucial difference between an *undefined value*
3047and *undefined behavior*. An undefined value (like '``undef``') is
3048allowed to have an arbitrary bit-pattern. This means that the ``%A``
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003049operation can be constant folded to '``0``', because the '``undef``'
3050could be zero, and zero divided by any value is zero.
Sean Silvab084af42012-12-07 10:36:55 +00003051However, in the second example, we can make a more aggressive
3052assumption: because the ``undef`` is allowed to be an arbitrary value,
3053we are allowed to assume that it could be zero. Since a divide by zero
3054has *undefined behavior*, we are allowed to assume that the operation
3055does not execute at all. This allows us to delete the divide and all
3056code after it. Because the undefined operation "can't happen", the
3057optimizer can assume that it occurs in dead code.
3058
Renato Golin124f2592016-07-20 12:16:38 +00003059.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003060
3061 a: store undef -> %X
3062 b: store %X -> undef
3063 Safe:
3064 a: <deleted>
3065 b: unreachable
3066
Sanjay Patel7b722402018-03-07 17:18:22 +00003067A store *of* an undefined value can be assumed to not have any effect;
3068we can assume that the value is overwritten with bits that happen to
3069match what was already there. However, a store *to* an undefined
3070location could clobber arbitrary memory, therefore, it has undefined
3071behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003072
3073.. _poisonvalues:
3074
3075Poison Values
3076-------------
3077
3078Poison values are similar to :ref:`undef values <undefvalues>`, however
3079they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00003080that cannot evoke side effects has nevertheless detected a condition
3081that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003082
3083There is currently no way of representing a poison value in the IR; they
3084only exist when produced by operations such as :ref:`add <i_add>` with
3085the ``nsw`` flag.
3086
3087Poison value behavior is defined in terms of value *dependence*:
3088
3089- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
3090- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
3091 their dynamic predecessor basic block.
3092- Function arguments depend on the corresponding actual argument values
3093 in the dynamic callers of their functions.
3094- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
3095 instructions that dynamically transfer control back to them.
3096- :ref:`Invoke <i_invoke>` instructions depend on the
3097 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
3098 call instructions that dynamically transfer control back to them.
3099- Non-volatile loads and stores depend on the most recent stores to all
3100 of the referenced memory addresses, following the order in the IR
3101 (including loads and stores implied by intrinsics such as
3102 :ref:`@llvm.memcpy <int_memcpy>`.)
3103- An instruction with externally visible side effects depends on the
3104 most recent preceding instruction with externally visible side
3105 effects, following the order in the IR. (This includes :ref:`volatile
3106 operations <volatile>`.)
3107- An instruction *control-depends* on a :ref:`terminator
3108 instruction <terminators>` if the terminator instruction has
3109 multiple successors and the instruction is always executed when
3110 control transfers to one of the successors, and may not be executed
3111 when control is transferred to another.
3112- Additionally, an instruction also *control-depends* on a terminator
3113 instruction if the set of instructions it otherwise depends on would
3114 be different if the terminator had transferred control to a different
3115 successor.
3116- Dependence is transitive.
3117
Richard Smith32dbdf62014-07-31 04:25:36 +00003118Poison values have the same behavior as :ref:`undef values <undefvalues>`,
3119with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00003120on a poison value has undefined behavior.
3121
3122Here are some examples:
3123
3124.. code-block:: llvm
3125
3126 entry:
3127 %poison = sub nuw i32 0, 1 ; Results in a poison value.
3128 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00003129 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00003130 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3131
3132 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003133 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003134
3135 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3136
3137 %narrowaddr = bitcast i32* @g to i16*
3138 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003139 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3140 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003141
3142 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3143 br i1 %cmp, label %true, label %end ; Branch to either destination.
3144
3145 true:
3146 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3147 ; it has undefined behavior.
3148 br label %end
3149
3150 end:
3151 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3152 ; Both edges into this PHI are
3153 ; control-dependent on %cmp, so this
3154 ; always results in a poison value.
3155
3156 store volatile i32 0, i32* @g ; This would depend on the store in %true
3157 ; if %cmp is true, or the store in %entry
3158 ; otherwise, so this is undefined behavior.
3159
3160 br i1 %cmp, label %second_true, label %second_end
3161 ; The same branch again, but this time the
3162 ; true block doesn't have side effects.
3163
3164 second_true:
3165 ; No side effects!
3166 ret void
3167
3168 second_end:
3169 store volatile i32 0, i32* @g ; This time, the instruction always depends
3170 ; on the store in %end. Also, it is
3171 ; control-equivalent to %end, so this is
3172 ; well-defined (ignoring earlier undefined
3173 ; behavior in this example).
3174
3175.. _blockaddress:
3176
3177Addresses of Basic Blocks
3178-------------------------
3179
3180``blockaddress(@function, %block)``
3181
3182The '``blockaddress``' constant computes the address of the specified
3183basic block in the specified function, and always has an ``i8*`` type.
3184Taking the address of the entry block is illegal.
3185
3186This value only has defined behavior when used as an operand to the
3187':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3188against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003189undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003190no label is equal to the null pointer. This may be passed around as an
3191opaque pointer sized value as long as the bits are not inspected. This
3192allows ``ptrtoint`` and arithmetic to be performed on these values so
3193long as the original value is reconstituted before the ``indirectbr``
3194instruction.
3195
3196Finally, some targets may provide defined semantics when using the value
3197as the operand to an inline assembly, but that is target specific.
3198
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003199.. _constantexprs:
3200
Sean Silvab084af42012-12-07 10:36:55 +00003201Constant Expressions
3202--------------------
3203
3204Constant expressions are used to allow expressions involving other
3205constants to be used as constants. Constant expressions may be of any
3206:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3207that does not have side effects (e.g. load and call are not supported).
3208The following is the syntax for constant expressions:
3209
3210``trunc (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003211 Perform the :ref:`trunc operation <i_trunc>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003212``zext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003213 Perform the :ref:`zext operation <i_zext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003214``sext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003215 Perform the :ref:`sext operation <i_sext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003216``fptrunc (CST to TYPE)``
3217 Truncate a floating point constant to another floating point type.
3218 The size of CST must be larger than the size of TYPE. Both types
3219 must be floating point.
3220``fpext (CST to TYPE)``
3221 Floating point extend a constant to another type. The size of CST
3222 must be smaller or equal to the size of TYPE. Both types must be
3223 floating point.
3224``fptoui (CST to TYPE)``
3225 Convert a floating point constant to the corresponding unsigned
3226 integer constant. TYPE must be a scalar or vector integer type. CST
3227 must be of scalar or vector floating point type. Both CST and TYPE
3228 must be scalars, or vectors of the same number of elements. If the
3229 value won't fit in the integer type, the results are undefined.
3230``fptosi (CST to TYPE)``
3231 Convert a floating point constant to the corresponding signed
3232 integer constant. TYPE must be a scalar or vector integer type. CST
3233 must be of scalar or vector floating point type. Both CST and TYPE
3234 must be scalars, or vectors of the same number of elements. If the
3235 value won't fit in the integer type, the results are undefined.
3236``uitofp (CST to TYPE)``
3237 Convert an unsigned integer constant to the corresponding floating
3238 point constant. TYPE must be a scalar or vector floating point type.
3239 CST must be of scalar or vector integer type. Both CST and TYPE must
3240 be scalars, or vectors of the same number of elements. If the value
3241 won't fit in the floating point type, the results are undefined.
3242``sitofp (CST to TYPE)``
3243 Convert a signed integer constant to the corresponding floating
3244 point constant. TYPE must be a scalar or vector floating point type.
3245 CST must be of scalar or vector integer type. Both CST and TYPE must
3246 be scalars, or vectors of the same number of elements. If the value
3247 won't fit in the floating point type, the results are undefined.
3248``ptrtoint (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003249 Perform the :ref:`ptrtoint operation <i_ptrtoint>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003250``inttoptr (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003251 Perform the :ref:`inttoptr operation <i_inttoptr>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003252 This one is *really* dangerous!
3253``bitcast (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003254 Convert a constant, CST, to another TYPE.
3255 The constraints of the operands are the same as those for the
3256 :ref:`bitcast instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003257``addrspacecast (CST to TYPE)``
3258 Convert a constant pointer or constant vector of pointer, CST, to another
3259 TYPE in a different address space. The constraints of the operands are the
3260 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003261``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003262 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3263 constants. As with the :ref:`getelementptr <i_getelementptr>`
David Blaikief91b0302017-06-19 05:34:21 +00003264 instruction, the index list may have one or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003265 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003266``select (COND, VAL1, VAL2)``
3267 Perform the :ref:`select operation <i_select>` on constants.
3268``icmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003269 Perform the :ref:`icmp operation <i_icmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003270``fcmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003271 Perform the :ref:`fcmp operation <i_fcmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003272``extractelement (VAL, IDX)``
3273 Perform the :ref:`extractelement operation <i_extractelement>` on
3274 constants.
3275``insertelement (VAL, ELT, IDX)``
3276 Perform the :ref:`insertelement operation <i_insertelement>` on
3277 constants.
3278``shufflevector (VEC1, VEC2, IDXMASK)``
3279 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3280 constants.
3281``extractvalue (VAL, IDX0, IDX1, ...)``
3282 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3283 constants. The index list is interpreted in a similar manner as
3284 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3285 least one index value must be specified.
3286``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3287 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3288 The index list is interpreted in a similar manner as indices in a
3289 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3290 value must be specified.
3291``OPCODE (LHS, RHS)``
3292 Perform the specified operation of the LHS and RHS constants. OPCODE
3293 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3294 binary <bitwiseops>` operations. The constraints on operands are
3295 the same as those for the corresponding instruction (e.g. no bitwise
3296 operations on floating point values are allowed).
3297
3298Other Values
3299============
3300
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003301.. _inlineasmexprs:
3302
Sean Silvab084af42012-12-07 10:36:55 +00003303Inline Assembler Expressions
3304----------------------------
3305
3306LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003307Inline Assembly <moduleasm>`) through the use of a special value. This value
3308represents the inline assembler as a template string (containing the
3309instructions to emit), a list of operand constraints (stored as a string), a
3310flag that indicates whether or not the inline asm expression has side effects,
3311and a flag indicating whether the function containing the asm needs to align its
3312stack conservatively.
3313
3314The template string supports argument substitution of the operands using "``$``"
3315followed by a number, to indicate substitution of the given register/memory
3316location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3317be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3318operand (See :ref:`inline-asm-modifiers`).
3319
3320A literal "``$``" may be included by using "``$$``" in the template. To include
3321other special characters into the output, the usual "``\XX``" escapes may be
3322used, just as in other strings. Note that after template substitution, the
3323resulting assembly string is parsed by LLVM's integrated assembler unless it is
3324disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3325syntax known to LLVM.
3326
Reid Kleckner71cb1642017-02-06 18:08:45 +00003327LLVM also supports a few more substitions useful for writing inline assembly:
3328
3329- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3330 This substitution is useful when declaring a local label. Many standard
3331 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3332 Adding a blob-unique identifier ensures that the two labels will not conflict
3333 during assembly. This is used to implement `GCC's %= special format
3334 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3335- ``${:comment}``: Expands to the comment character of the current target's
3336 assembly dialect. This is usually ``#``, but many targets use other strings,
3337 such as ``;``, ``//``, or ``!``.
3338- ``${:private}``: Expands to the assembler private label prefix. Labels with
3339 this prefix will not appear in the symbol table of the assembled object.
3340 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3341 relatively popular.
3342
James Y Knightbc832ed2015-07-08 18:08:36 +00003343LLVM's support for inline asm is modeled closely on the requirements of Clang's
3344GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3345modifier codes listed here are similar or identical to those in GCC's inline asm
3346support. However, to be clear, the syntax of the template and constraint strings
3347described here is *not* the same as the syntax accepted by GCC and Clang, and,
3348while most constraint letters are passed through as-is by Clang, some get
3349translated to other codes when converting from the C source to the LLVM
3350assembly.
3351
3352An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003353
3354.. code-block:: llvm
3355
3356 i32 (i32) asm "bswap $0", "=r,r"
3357
3358Inline assembler expressions may **only** be used as the callee operand
3359of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3360Thus, typically we have:
3361
3362.. code-block:: llvm
3363
3364 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3365
3366Inline asms with side effects not visible in the constraint list must be
3367marked as having side effects. This is done through the use of the
3368'``sideeffect``' keyword, like so:
3369
3370.. code-block:: llvm
3371
3372 call void asm sideeffect "eieio", ""()
3373
3374In some cases inline asms will contain code that will not work unless
3375the stack is aligned in some way, such as calls or SSE instructions on
3376x86, yet will not contain code that does that alignment within the asm.
3377The compiler should make conservative assumptions about what the asm
3378might contain and should generate its usual stack alignment code in the
3379prologue if the '``alignstack``' keyword is present:
3380
3381.. code-block:: llvm
3382
3383 call void asm alignstack "eieio", ""()
3384
3385Inline asms also support using non-standard assembly dialects. The
3386assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3387the inline asm is using the Intel dialect. Currently, ATT and Intel are
3388the only supported dialects. An example is:
3389
3390.. code-block:: llvm
3391
3392 call void asm inteldialect "eieio", ""()
3393
3394If multiple keywords appear the '``sideeffect``' keyword must come
3395first, the '``alignstack``' keyword second and the '``inteldialect``'
3396keyword last.
3397
James Y Knightbc832ed2015-07-08 18:08:36 +00003398Inline Asm Constraint String
3399^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3400
3401The constraint list is a comma-separated string, each element containing one or
3402more constraint codes.
3403
3404For each element in the constraint list an appropriate register or memory
3405operand will be chosen, and it will be made available to assembly template
3406string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3407second, etc.
3408
3409There are three different types of constraints, which are distinguished by a
3410prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3411constraints must always be given in that order: outputs first, then inputs, then
3412clobbers. They cannot be intermingled.
3413
3414There are also three different categories of constraint codes:
3415
3416- Register constraint. This is either a register class, or a fixed physical
3417 register. This kind of constraint will allocate a register, and if necessary,
3418 bitcast the argument or result to the appropriate type.
3419- Memory constraint. This kind of constraint is for use with an instruction
3420 taking a memory operand. Different constraints allow for different addressing
3421 modes used by the target.
3422- Immediate value constraint. This kind of constraint is for an integer or other
3423 immediate value which can be rendered directly into an instruction. The
3424 various target-specific constraints allow the selection of a value in the
3425 proper range for the instruction you wish to use it with.
3426
3427Output constraints
3428""""""""""""""""""
3429
3430Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3431indicates that the assembly will write to this operand, and the operand will
3432then be made available as a return value of the ``asm`` expression. Output
3433constraints do not consume an argument from the call instruction. (Except, see
3434below about indirect outputs).
3435
3436Normally, it is expected that no output locations are written to by the assembly
3437expression until *all* of the inputs have been read. As such, LLVM may assign
3438the same register to an output and an input. If this is not safe (e.g. if the
3439assembly contains two instructions, where the first writes to one output, and
3440the second reads an input and writes to a second output), then the "``&``"
3441modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003442"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003443will not use the same register for any inputs (other than an input tied to this
3444output).
3445
3446Input constraints
3447"""""""""""""""""
3448
3449Input constraints do not have a prefix -- just the constraint codes. Each input
3450constraint will consume one argument from the call instruction. It is not
3451permitted for the asm to write to any input register or memory location (unless
3452that input is tied to an output). Note also that multiple inputs may all be
3453assigned to the same register, if LLVM can determine that they necessarily all
3454contain the same value.
3455
3456Instead of providing a Constraint Code, input constraints may also "tie"
3457themselves to an output constraint, by providing an integer as the constraint
3458string. Tied inputs still consume an argument from the call instruction, and
3459take up a position in the asm template numbering as is usual -- they will simply
3460be constrained to always use the same register as the output they've been tied
3461to. For example, a constraint string of "``=r,0``" says to assign a register for
3462output, and use that register as an input as well (it being the 0'th
3463constraint).
3464
3465It is permitted to tie an input to an "early-clobber" output. In that case, no
3466*other* input may share the same register as the input tied to the early-clobber
3467(even when the other input has the same value).
3468
3469You may only tie an input to an output which has a register constraint, not a
3470memory constraint. Only a single input may be tied to an output.
3471
3472There is also an "interesting" feature which deserves a bit of explanation: if a
3473register class constraint allocates a register which is too small for the value
3474type operand provided as input, the input value will be split into multiple
3475registers, and all of them passed to the inline asm.
3476
3477However, this feature is often not as useful as you might think.
3478
3479Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3480architectures that have instructions which operate on multiple consecutive
3481instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3482SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3483hardware then loads into both the named register, and the next register. This
3484feature of inline asm would not be useful to support that.)
3485
3486A few of the targets provide a template string modifier allowing explicit access
3487to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3488``D``). On such an architecture, you can actually access the second allocated
3489register (yet, still, not any subsequent ones). But, in that case, you're still
3490probably better off simply splitting the value into two separate operands, for
3491clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3492despite existing only for use with this feature, is not really a good idea to
3493use)
3494
3495Indirect inputs and outputs
3496"""""""""""""""""""""""""""
3497
3498Indirect output or input constraints can be specified by the "``*``" modifier
3499(which goes after the "``=``" in case of an output). This indicates that the asm
3500will write to or read from the contents of an *address* provided as an input
3501argument. (Note that in this way, indirect outputs act more like an *input* than
3502an output: just like an input, they consume an argument of the call expression,
3503rather than producing a return value. An indirect output constraint is an
3504"output" only in that the asm is expected to write to the contents of the input
3505memory location, instead of just read from it).
3506
3507This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3508address of a variable as a value.
3509
3510It is also possible to use an indirect *register* constraint, but only on output
3511(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3512value normally, and then, separately emit a store to the address provided as
3513input, after the provided inline asm. (It's not clear what value this
3514functionality provides, compared to writing the store explicitly after the asm
3515statement, and it can only produce worse code, since it bypasses many
3516optimization passes. I would recommend not using it.)
3517
3518
3519Clobber constraints
3520"""""""""""""""""""
3521
3522A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3523consume an input operand, nor generate an output. Clobbers cannot use any of the
3524general constraint code letters -- they may use only explicit register
3525constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3526"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3527memory locations -- not only the memory pointed to by a declared indirect
3528output.
3529
Peter Zotov00257232016-08-30 10:48:31 +00003530Note that clobbering named registers that are also present in output
3531constraints is not legal.
3532
James Y Knightbc832ed2015-07-08 18:08:36 +00003533
3534Constraint Codes
3535""""""""""""""""
3536After a potential prefix comes constraint code, or codes.
3537
3538A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3539followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3540(e.g. "``{eax}``").
3541
3542The one and two letter constraint codes are typically chosen to be the same as
3543GCC's constraint codes.
3544
3545A single constraint may include one or more than constraint code in it, leaving
3546it up to LLVM to choose which one to use. This is included mainly for
3547compatibility with the translation of GCC inline asm coming from clang.
3548
3549There are two ways to specify alternatives, and either or both may be used in an
3550inline asm constraint list:
3551
35521) Append the codes to each other, making a constraint code set. E.g. "``im``"
3553 or "``{eax}m``". This means "choose any of the options in the set". The
3554 choice of constraint is made independently for each constraint in the
3555 constraint list.
3556
35572) Use "``|``" between constraint code sets, creating alternatives. Every
3558 constraint in the constraint list must have the same number of alternative
3559 sets. With this syntax, the same alternative in *all* of the items in the
3560 constraint list will be chosen together.
3561
3562Putting those together, you might have a two operand constraint string like
3563``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3564operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3565may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3566
3567However, the use of either of the alternatives features is *NOT* recommended, as
3568LLVM is not able to make an intelligent choice about which one to use. (At the
3569point it currently needs to choose, not enough information is available to do so
3570in a smart way.) Thus, it simply tries to make a choice that's most likely to
3571compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3572always choose to use memory, not registers). And, if given multiple registers,
3573or multiple register classes, it will simply choose the first one. (In fact, it
3574doesn't currently even ensure explicitly specified physical registers are
3575unique, so specifying multiple physical registers as alternatives, like
3576``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3577intended.)
3578
3579Supported Constraint Code List
3580""""""""""""""""""""""""""""""
3581
3582The constraint codes are, in general, expected to behave the same way they do in
3583GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3584inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3585and GCC likely indicates a bug in LLVM.
3586
3587Some constraint codes are typically supported by all targets:
3588
3589- ``r``: A register in the target's general purpose register class.
3590- ``m``: A memory address operand. It is target-specific what addressing modes
3591 are supported, typical examples are register, or register + register offset,
3592 or register + immediate offset (of some target-specific size).
3593- ``i``: An integer constant (of target-specific width). Allows either a simple
3594 immediate, or a relocatable value.
3595- ``n``: An integer constant -- *not* including relocatable values.
3596- ``s``: An integer constant, but allowing *only* relocatable values.
3597- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3598 useful to pass a label for an asm branch or call.
3599
3600 .. FIXME: but that surely isn't actually okay to jump out of an asm
3601 block without telling llvm about the control transfer???)
3602
3603- ``{register-name}``: Requires exactly the named physical register.
3604
3605Other constraints are target-specific:
3606
3607AArch64:
3608
3609- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3610- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3611 i.e. 0 to 4095 with optional shift by 12.
3612- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3613 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3614- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3615 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3616- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3617 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3618- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3619 32-bit register. This is a superset of ``K``: in addition to the bitmask
3620 immediate, also allows immediate integers which can be loaded with a single
3621 ``MOVZ`` or ``MOVL`` instruction.
3622- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3623 64-bit register. This is a superset of ``L``.
3624- ``Q``: Memory address operand must be in a single register (no
3625 offsets). (However, LLVM currently does this for the ``m`` constraint as
3626 well.)
3627- ``r``: A 32 or 64-bit integer register (W* or X*).
3628- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3629- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3630
3631AMDGPU:
3632
3633- ``r``: A 32 or 64-bit integer register.
3634- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3635- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3636
3637
3638All ARM modes:
3639
3640- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3641 operand. Treated the same as operand ``m``, at the moment.
3642
3643ARM and ARM's Thumb2 mode:
3644
3645- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3646- ``I``: An immediate integer valid for a data-processing instruction.
3647- ``J``: An immediate integer between -4095 and 4095.
3648- ``K``: An immediate integer whose bitwise inverse is valid for a
3649 data-processing instruction. (Can be used with template modifier "``B``" to
3650 print the inverted value).
3651- ``L``: An immediate integer whose negation is valid for a data-processing
3652 instruction. (Can be used with template modifier "``n``" to print the negated
3653 value).
3654- ``M``: A power of two or a integer between 0 and 32.
3655- ``N``: Invalid immediate constraint.
3656- ``O``: Invalid immediate constraint.
3657- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3658- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3659 as ``r``.
3660- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3661 invalid.
3662- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3663 ``d0-d31``, or ``q0-q15``.
3664- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3665 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003666- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3667 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003668
3669ARM's Thumb1 mode:
3670
3671- ``I``: An immediate integer between 0 and 255.
3672- ``J``: An immediate integer between -255 and -1.
3673- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3674 some amount.
3675- ``L``: An immediate integer between -7 and 7.
3676- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3677- ``N``: An immediate integer between 0 and 31.
3678- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3679- ``r``: A low 32-bit GPR register (``r0-r7``).
3680- ``l``: A low 32-bit GPR register (``r0-r7``).
3681- ``h``: A high GPR register (``r0-r7``).
3682- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3683 ``d0-d31``, or ``q0-q15``.
3684- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3685 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003686- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3687 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003688
3689
3690Hexagon:
3691
3692- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3693 at the moment.
3694- ``r``: A 32 or 64-bit register.
3695
3696MSP430:
3697
3698- ``r``: An 8 or 16-bit register.
3699
3700MIPS:
3701
3702- ``I``: An immediate signed 16-bit integer.
3703- ``J``: An immediate integer zero.
3704- ``K``: An immediate unsigned 16-bit integer.
3705- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3706- ``N``: An immediate integer between -65535 and -1.
3707- ``O``: An immediate signed 15-bit integer.
3708- ``P``: An immediate integer between 1 and 65535.
3709- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3710 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3711- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3712 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3713 ``m``.
3714- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3715 ``sc`` instruction on the given subtarget (details vary).
3716- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3717- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003718 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3719 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003720- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3721 ``25``).
3722- ``l``: The ``lo`` register, 32 or 64-bit.
3723- ``x``: Invalid.
3724
3725NVPTX:
3726
3727- ``b``: A 1-bit integer register.
3728- ``c`` or ``h``: A 16-bit integer register.
3729- ``r``: A 32-bit integer register.
3730- ``l`` or ``N``: A 64-bit integer register.
3731- ``f``: A 32-bit float register.
3732- ``d``: A 64-bit float register.
3733
3734
3735PowerPC:
3736
3737- ``I``: An immediate signed 16-bit integer.
3738- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3739- ``K``: An immediate unsigned 16-bit integer.
3740- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3741- ``M``: An immediate integer greater than 31.
3742- ``N``: An immediate integer that is an exact power of 2.
3743- ``O``: The immediate integer constant 0.
3744- ``P``: An immediate integer constant whose negation is a signed 16-bit
3745 constant.
3746- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3747 treated the same as ``m``.
3748- ``r``: A 32 or 64-bit integer register.
3749- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3750 ``R1-R31``).
3751- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3752 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3753- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3754 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3755 altivec vector register (``V0-V31``).
3756
3757 .. FIXME: is this a bug that v accepts QPX registers? I think this
3758 is supposed to only use the altivec vector registers?
3759
3760- ``y``: Condition register (``CR0-CR7``).
3761- ``wc``: An individual CR bit in a CR register.
3762- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3763 register set (overlapping both the floating-point and vector register files).
3764- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3765 set.
3766
3767Sparc:
3768
3769- ``I``: An immediate 13-bit signed integer.
3770- ``r``: A 32-bit integer register.
James Y Knightd4e1b002017-05-12 15:59:10 +00003771- ``f``: Any floating-point register on SparcV8, or a floating point
3772 register in the "low" half of the registers on SparcV9.
3773- ``e``: Any floating point register. (Same as ``f`` on SparcV8.)
James Y Knightbc832ed2015-07-08 18:08:36 +00003774
3775SystemZ:
3776
3777- ``I``: An immediate unsigned 8-bit integer.
3778- ``J``: An immediate unsigned 12-bit integer.
3779- ``K``: An immediate signed 16-bit integer.
3780- ``L``: An immediate signed 20-bit integer.
3781- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003782- ``Q``: A memory address operand with a base address and a 12-bit immediate
3783 unsigned displacement.
3784- ``R``: A memory address operand with a base address, a 12-bit immediate
3785 unsigned displacement, and an index register.
3786- ``S``: A memory address operand with a base address and a 20-bit immediate
3787 signed displacement.
3788- ``T``: A memory address operand with a base address, a 20-bit immediate
3789 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003790- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3791- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3792 address context evaluates as zero).
3793- ``h``: A 32-bit value in the high part of a 64bit data register
3794 (LLVM-specific)
3795- ``f``: A 32, 64, or 128-bit floating point register.
3796
3797X86:
3798
3799- ``I``: An immediate integer between 0 and 31.
3800- ``J``: An immediate integer between 0 and 64.
3801- ``K``: An immediate signed 8-bit integer.
3802- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3803 0xffffffff.
3804- ``M``: An immediate integer between 0 and 3.
3805- ``N``: An immediate unsigned 8-bit integer.
3806- ``O``: An immediate integer between 0 and 127.
3807- ``e``: An immediate 32-bit signed integer.
3808- ``Z``: An immediate 32-bit unsigned integer.
3809- ``o``, ``v``: Treated the same as ``m``, at the moment.
3810- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3811 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3812 registers, and on X86-64, it is all of the integer registers.
3813- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3814 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3815- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3816- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3817 existed since i386, and can be accessed without the REX prefix.
3818- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3819- ``y``: A 64-bit MMX register, if MMX is enabled.
3820- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3821 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3822 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3823 512-bit vector operand in an AVX512 register, Otherwise, an error.
3824- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3825- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3826 32-bit mode, a 64-bit integer operand will get split into two registers). It
3827 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3828 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3829 you're better off splitting it yourself, before passing it to the asm
3830 statement.
3831
3832XCore:
3833
3834- ``r``: A 32-bit integer register.
3835
3836
3837.. _inline-asm-modifiers:
3838
3839Asm template argument modifiers
3840^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3841
3842In the asm template string, modifiers can be used on the operand reference, like
3843"``${0:n}``".
3844
3845The modifiers are, in general, expected to behave the same way they do in
3846GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3847inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3848and GCC likely indicates a bug in LLVM.
3849
3850Target-independent:
3851
Sean Silvaa1190322015-08-06 22:56:48 +00003852- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003853 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3854- ``n``: Negate and print immediate integer constant unadorned, without the
3855 target-specific immediate punctuation (e.g. no ``$`` prefix).
3856- ``l``: Print as an unadorned label, without the target-specific label
3857 punctuation (e.g. no ``$`` prefix).
3858
3859AArch64:
3860
3861- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3862 instead of ``x30``, print ``w30``.
3863- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3864- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3865 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3866 ``v*``.
3867
3868AMDGPU:
3869
3870- ``r``: No effect.
3871
3872ARM:
3873
3874- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3875 register).
3876- ``P``: No effect.
3877- ``q``: No effect.
3878- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3879 as ``d4[1]`` instead of ``s9``)
3880- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3881 prefix.
3882- ``L``: Print the low 16-bits of an immediate integer constant.
3883- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3884 register operands subsequent to the specified one (!), so use carefully.
3885- ``Q``: Print the low-order register of a register-pair, or the low-order
3886 register of a two-register operand.
3887- ``R``: Print the high-order register of a register-pair, or the high-order
3888 register of a two-register operand.
3889- ``H``: Print the second register of a register-pair. (On a big-endian system,
3890 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3891 to ``R``.)
3892
3893 .. FIXME: H doesn't currently support printing the second register
3894 of a two-register operand.
3895
3896- ``e``: Print the low doubleword register of a NEON quad register.
3897- ``f``: Print the high doubleword register of a NEON quad register.
3898- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3899 adornment.
3900
3901Hexagon:
3902
3903- ``L``: Print the second register of a two-register operand. Requires that it
3904 has been allocated consecutively to the first.
3905
3906 .. FIXME: why is it restricted to consecutive ones? And there's
3907 nothing that ensures that happens, is there?
3908
3909- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3910 nothing. Used to print 'addi' vs 'add' instructions.
3911
3912MSP430:
3913
3914No additional modifiers.
3915
3916MIPS:
3917
3918- ``X``: Print an immediate integer as hexadecimal
3919- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3920- ``d``: Print an immediate integer as decimal.
3921- ``m``: Subtract one and print an immediate integer as decimal.
3922- ``z``: Print $0 if an immediate zero, otherwise print normally.
3923- ``L``: Print the low-order register of a two-register operand, or prints the
3924 address of the low-order word of a double-word memory operand.
3925
3926 .. FIXME: L seems to be missing memory operand support.
3927
3928- ``M``: Print the high-order register of a two-register operand, or prints the
3929 address of the high-order word of a double-word memory operand.
3930
3931 .. FIXME: M seems to be missing memory operand support.
3932
3933- ``D``: Print the second register of a two-register operand, or prints the
3934 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3935 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3936 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003937- ``w``: No effect. Provided for compatibility with GCC which requires this
3938 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3939 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003940
3941NVPTX:
3942
3943- ``r``: No effect.
3944
3945PowerPC:
3946
3947- ``L``: Print the second register of a two-register operand. Requires that it
3948 has been allocated consecutively to the first.
3949
3950 .. FIXME: why is it restricted to consecutive ones? And there's
3951 nothing that ensures that happens, is there?
3952
3953- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3954 nothing. Used to print 'addi' vs 'add' instructions.
3955- ``y``: For a memory operand, prints formatter for a two-register X-form
3956 instruction. (Currently always prints ``r0,OPERAND``).
3957- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3958 otherwise. (NOTE: LLVM does not support update form, so this will currently
3959 always print nothing)
3960- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3961 not support indexed form, so this will currently always print nothing)
3962
3963Sparc:
3964
3965- ``r``: No effect.
3966
3967SystemZ:
3968
3969SystemZ implements only ``n``, and does *not* support any of the other
3970target-independent modifiers.
3971
3972X86:
3973
3974- ``c``: Print an unadorned integer or symbol name. (The latter is
3975 target-specific behavior for this typically target-independent modifier).
3976- ``A``: Print a register name with a '``*``' before it.
3977- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3978 operand.
3979- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3980 memory operand.
3981- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3982 operand.
3983- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3984 operand.
3985- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3986 available, otherwise the 32-bit register name; do nothing on a memory operand.
3987- ``n``: Negate and print an unadorned integer, or, for operands other than an
3988 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3989 the operand. (The behavior for relocatable symbol expressions is a
3990 target-specific behavior for this typically target-independent modifier)
3991- ``H``: Print a memory reference with additional offset +8.
3992- ``P``: Print a memory reference or operand for use as the argument of a call
3993 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3994
3995XCore:
3996
3997No additional modifiers.
3998
3999
Sean Silvab084af42012-12-07 10:36:55 +00004000Inline Asm Metadata
4001^^^^^^^^^^^^^^^^^^^
4002
4003The call instructions that wrap inline asm nodes may have a
4004"``!srcloc``" MDNode attached to it that contains a list of constant
4005integers. If present, the code generator will use the integer as the
4006location cookie value when report errors through the ``LLVMContext``
4007error reporting mechanisms. This allows a front-end to correlate backend
4008errors that occur with inline asm back to the source code that produced
4009it. For example:
4010
4011.. code-block:: llvm
4012
4013 call void asm sideeffect "something bad", ""(), !srcloc !42
4014 ...
4015 !42 = !{ i32 1234567 }
4016
4017It is up to the front-end to make sense of the magic numbers it places
4018in the IR. If the MDNode contains multiple constants, the code generator
4019will use the one that corresponds to the line of the asm that the error
4020occurs on.
4021
4022.. _metadata:
4023
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004024Metadata
4025========
Sean Silvab084af42012-12-07 10:36:55 +00004026
4027LLVM IR allows metadata to be attached to instructions in the program
4028that can convey extra information about the code to the optimizers and
4029code generator. One example application of metadata is source-level
4030debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004031
Sean Silvaa1190322015-08-06 22:56:48 +00004032Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004033``call`` instruction, it uses the ``metadata`` type.
4034
4035All metadata are identified in syntax by a exclamation point ('``!``').
4036
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004037.. _metadata-string:
4038
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004039Metadata Nodes and Metadata Strings
4040-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00004041
4042A metadata string is a string surrounded by double quotes. It can
4043contain any character by escaping non-printable characters with
4044"``\xx``" where "``xx``" is the two digit hex code. For example:
4045"``!"test\00"``".
4046
4047Metadata nodes are represented with notation similar to structure
4048constants (a comma separated list of elements, surrounded by braces and
4049preceded by an exclamation point). Metadata nodes can have any values as
4050their operand. For example:
4051
4052.. code-block:: llvm
4053
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004054 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00004055
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004056Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
4057
Renato Golin124f2592016-07-20 12:16:38 +00004058.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004059
4060 !0 = distinct !{!"test\00", i32 10}
4061
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004062``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00004063content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004064when metadata operands change.
4065
Sean Silvab084af42012-12-07 10:36:55 +00004066A :ref:`named metadata <namedmetadatastructure>` is a collection of
4067metadata nodes, which can be looked up in the module symbol table. For
4068example:
4069
4070.. code-block:: llvm
4071
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004072 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00004073
Adrian Prantl1b842da2017-07-28 20:44:29 +00004074Metadata can be used as function arguments. Here the ``llvm.dbg.value``
4075intrinsic is using three metadata arguments:
Sean Silvab084af42012-12-07 10:36:55 +00004076
4077.. code-block:: llvm
4078
Adrian Prantlabe04752017-07-28 20:21:02 +00004079 call void @llvm.dbg.value(metadata !24, metadata !25, metadata !26)
Sean Silvab084af42012-12-07 10:36:55 +00004080
Peter Collingbourne50108682015-11-06 02:41:02 +00004081Metadata can be attached to an instruction. Here metadata ``!21`` is attached
4082to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00004083
4084.. code-block:: llvm
4085
4086 %indvar.next = add i64 %indvar, 1, !dbg !21
4087
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004088Metadata can also be attached to a function or a global variable. Here metadata
4089``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
4090and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00004091
4092.. code-block:: llvm
4093
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004094 declare !dbg !22 void @f1()
4095 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00004096 ret void
4097 }
4098
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004099 @g1 = global i32 0, !dbg !22
4100 @g2 = external global i32, !dbg !22
4101
4102A transformation is required to drop any metadata attachment that it does not
4103know or know it can't preserve. Currently there is an exception for metadata
4104attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
4105unconditionally dropped unless the global is itself deleted.
4106
4107Metadata attached to a module using named metadata may not be dropped, with
4108the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
4109
Sean Silvab084af42012-12-07 10:36:55 +00004110More information about specific metadata nodes recognized by the
4111optimizers and code generator is found below.
4112
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004113.. _specialized-metadata:
4114
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004115Specialized Metadata Nodes
4116^^^^^^^^^^^^^^^^^^^^^^^^^^
4117
4118Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00004119to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004120order.
4121
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004122These aren't inherently debug info centric, but currently all the specialized
4123metadata nodes are related to debug info.
4124
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004125.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004126
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004127DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004128"""""""""""""
4129
Sean Silvaa1190322015-08-06 22:56:48 +00004130``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004131``retainedTypes:``, ``globals:``, ``imports:`` and ``macros:`` fields are tuples
4132containing the debug info to be emitted along with the compile unit, regardless
4133of code optimizations (some nodes are only emitted if there are references to
4134them from instructions). The ``debugInfoForProfiling:`` field is a boolean
4135indicating whether or not line-table discriminators are updated to provide
4136more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004137
Renato Golin124f2592016-07-20 12:16:38 +00004138.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004139
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004140 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004141 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004142 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004143 enums: !2, retainedTypes: !3, globals: !4, imports: !5,
4144 macros: !6, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004145
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004146Compile unit descriptors provide the root scope for objects declared in a
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004147specific compilation unit. File descriptors are defined using this scope. These
4148descriptors are collected by a named metadata node ``!llvm.dbg.cu``. They keep
4149track of global variables, type information, and imported entities (declarations
4150and namespaces).
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004151
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004152.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004153
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004154DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004155""""""
4156
Sean Silvaa1190322015-08-06 22:56:48 +00004157``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004158
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004159.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004160
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004161 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4162 checksumkind: CSK_MD5,
4163 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004164
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004165Files are sometimes used in ``scope:`` fields, and are the only valid target
4166for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004167Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004168
Michael Kuperstein605308a2015-05-14 10:58:59 +00004169.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004170
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004171DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004172"""""""""""
4173
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004174``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004175``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004176
Renato Golin124f2592016-07-20 12:16:38 +00004177.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004178
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004179 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004180 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004181 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004182
Sean Silvaa1190322015-08-06 22:56:48 +00004183The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004184following:
4185
Renato Golin124f2592016-07-20 12:16:38 +00004186.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004187
4188 DW_ATE_address = 1
4189 DW_ATE_boolean = 2
4190 DW_ATE_float = 4
4191 DW_ATE_signed = 5
4192 DW_ATE_signed_char = 6
4193 DW_ATE_unsigned = 7
4194 DW_ATE_unsigned_char = 8
4195
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004196.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004197
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004198DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004199""""""""""""""""
4200
Sean Silvaa1190322015-08-06 22:56:48 +00004201``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004202refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004203types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004204represents a function with no return value (such as ``void foo() {}`` in C++).
4205
Renato Golin124f2592016-07-20 12:16:38 +00004206.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004207
4208 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4209 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004210 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004211
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004212.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004213
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004214DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004215"""""""""""""
4216
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004217``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004218qualified types.
4219
Renato Golin124f2592016-07-20 12:16:38 +00004220.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004221
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004222 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004223 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004224 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004225 align: 32)
4226
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004227The following ``tag:`` values are valid:
4228
Renato Golin124f2592016-07-20 12:16:38 +00004229.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004230
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004231 DW_TAG_member = 13
4232 DW_TAG_pointer_type = 15
4233 DW_TAG_reference_type = 16
4234 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004235 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004236 DW_TAG_ptr_to_member_type = 31
4237 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004238 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004239 DW_TAG_volatile_type = 53
4240 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004241 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004242
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004243.. _DIDerivedTypeMember:
4244
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004245``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004246<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004247``offset:`` is the member's bit offset. If the composite type has an ODR
4248``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4249uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004250
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004251``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4252field of :ref:`composite types <DICompositeType>` to describe parents and
4253friends.
4254
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004255``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4256
4257``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004258``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4259are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004260
4261Note that the ``void *`` type is expressed as a type derived from NULL.
4262
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004263.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004264
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004265DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004266"""""""""""""""
4267
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004268``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004269structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004270
4271If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004272identifier used for type merging between modules. When specified,
4273:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4274derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4275``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004276
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004277For a given ``identifier:``, there should only be a single composite type that
4278does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4279together will unique such definitions at parse time via the ``identifier:``
4280field, even if the nodes are ``distinct``.
4281
Renato Golin124f2592016-07-20 12:16:38 +00004282.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004283
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004284 !0 = !DIEnumerator(name: "SixKind", value: 7)
4285 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4286 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4287 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004288 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4289 elements: !{!0, !1, !2})
4290
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004291The following ``tag:`` values are valid:
4292
Renato Golin124f2592016-07-20 12:16:38 +00004293.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004294
4295 DW_TAG_array_type = 1
4296 DW_TAG_class_type = 2
4297 DW_TAG_enumeration_type = 4
4298 DW_TAG_structure_type = 19
4299 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004300
4301For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004302descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004303level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004304array type is a native packed vector.
4305
4306For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004307descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004308value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004309``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004310
4311For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4312``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004313<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4314``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4315``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004316
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004317.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004318
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004319DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004320""""""""""
4321
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004322``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sander de Smalen1cb94312018-01-24 10:30:23 +00004323:ref:`DICompositeType`.
4324
4325- ``count: -1`` indicates an empty array.
4326- ``count: !9`` describes the count with a :ref:`DILocalVariable`.
4327- ``count: !11`` describes the count with a :ref:`DIGlobalVariable`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004328
4329.. code-block:: llvm
4330
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004331 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4332 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4333 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004334
Sander de Smalenfdf40912018-01-24 09:56:07 +00004335 ; Scopes used in rest of example
4336 !6 = !DIFile(filename: "vla.c", directory: "/path/to/file")
4337 !7 = distinct !DICompileUnit(language: DW_LANG_C99, ...
4338 !8 = distinct !DISubprogram(name: "foo", scope: !7, file: !6, line: 5, ...
4339
4340 ; Use of local variable as count value
4341 !9 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
4342 !10 = !DILocalVariable(name: "count", scope: !8, file: !6, line: 42, type: !9)
4343 !11 = !DISubrange(count !10, lowerBound: 0)
4344
4345 ; Use of global variable as count value
4346 !12 = !DIGlobalVariable(name: "count", scope: !8, file: !6, line: 22, type: !9)
4347 !13 = !DISubrange(count !12, lowerBound: 0)
4348
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004349.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004350
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004351DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004352""""""""""""
4353
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004354``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4355variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004356
4357.. code-block:: llvm
4358
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004359 !0 = !DIEnumerator(name: "SixKind", value: 7)
4360 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4361 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004362
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004363DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004364"""""""""""""""""""""""
4365
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004366``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004367language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004368:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004369
4370.. code-block:: llvm
4371
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004372 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004373
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004374DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004375""""""""""""""""""""""""
4376
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004377``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004378language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004379but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004380``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004381:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004382
4383.. code-block:: llvm
4384
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004385 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004386
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004387DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004388"""""""""""
4389
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004390``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004391
4392.. code-block:: llvm
4393
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004394 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004395
Sander de Smalen1cb94312018-01-24 10:30:23 +00004396.. _DIGlobalVariable:
4397
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004398DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004399""""""""""""""""
4400
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004401``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004402
4403.. code-block:: llvm
4404
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004405 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004406 file: !2, line: 7, type: !3, isLocal: true,
4407 isDefinition: false, variable: i32* @foo,
4408 declaration: !4)
4409
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004410All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004411:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004412
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004413.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004414
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004415DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004416""""""""""""
4417
Peter Collingbourne50108682015-11-06 02:41:02 +00004418``DISubprogram`` nodes represent functions from the source language. A
4419``DISubprogram`` may be attached to a function definition using ``!dbg``
4420metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4421that must be retained, even if their IR counterparts are optimized out of
4422the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004423
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004424.. _DISubprogramDeclaration:
4425
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004426When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004427tree as opposed to a definition of a function. If the scope is a composite
4428type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4429then the subprogram declaration is uniqued based only on its ``linkageName:``
4430and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004431
Renato Golin124f2592016-07-20 12:16:38 +00004432.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004433
Peter Collingbourne50108682015-11-06 02:41:02 +00004434 define void @_Z3foov() !dbg !0 {
4435 ...
4436 }
4437
4438 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4439 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004440 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004441 containingType: !4,
4442 virtuality: DW_VIRTUALITY_pure_virtual,
4443 virtualIndex: 10, flags: DIFlagPrototyped,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004444 isOptimized: true, unit: !5, templateParams: !6,
4445 declaration: !7, variables: !8, thrownTypes: !9)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004446
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004447.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004448
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004449DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004450""""""""""""""
4451
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004452``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004453<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004454two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004455fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004456
Renato Golin124f2592016-07-20 12:16:38 +00004457.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004458
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004459 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004460
4461Usually lexical blocks are ``distinct`` to prevent node merging based on
4462operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004463
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004464.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004465
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004466DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004467""""""""""""""""""
4468
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004469``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004470:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004471indicate textual inclusion, or the ``discriminator:`` field can be used to
4472discriminate between control flow within a single block in the source language.
4473
4474.. code-block:: llvm
4475
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004476 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4477 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4478 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004479
Michael Kuperstein605308a2015-05-14 10:58:59 +00004480.. _DILocation:
4481
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004482DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004483""""""""""
4484
Sean Silvaa1190322015-08-06 22:56:48 +00004485``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004486mandatory, and points at an :ref:`DILexicalBlockFile`, an
4487:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004488
4489.. code-block:: llvm
4490
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004491 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004492
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004493.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004494
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004495DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004496"""""""""""""""
4497
Sean Silvaa1190322015-08-06 22:56:48 +00004498``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004499the ``arg:`` field is set to non-zero, then this variable is a subprogram
4500parameter, and it will be included in the ``variables:`` field of its
4501:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004502
Renato Golin124f2592016-07-20 12:16:38 +00004503.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004504
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004505 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4506 type: !3, flags: DIFlagArtificial)
4507 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4508 type: !3)
4509 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004510
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004511DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004512""""""""""""
4513
Adrian Prantlb44c7762017-03-22 18:01:01 +00004514``DIExpression`` nodes represent expressions that are inspired by the DWARF
4515expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
4516(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
4517referenced LLVM variable relates to the source language variable.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004518
4519The current supported vocabulary is limited:
4520
Adrian Prantl6825fb62017-04-18 01:21:53 +00004521- ``DW_OP_deref`` dereferences the top of the expression stack.
Florian Hahnffc498d2017-06-14 13:14:38 +00004522- ``DW_OP_plus`` pops the last two entries from the expression stack, adds
4523 them together and appends the result to the expression stack.
4524- ``DW_OP_minus`` pops the last two entries from the expression stack, subtracts
4525 the last entry from the second last entry and appends the result to the
4526 expression stack.
Florian Hahnc9c403c2017-06-13 16:54:44 +00004527- ``DW_OP_plus_uconst, 93`` adds ``93`` to the working expression.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004528- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
4529 here, respectively) of the variable fragment from the working expression. Note
Hiroshi Inoue760c0c92018-01-16 13:19:48 +00004530 that contrary to DW_OP_bit_piece, the offset is describing the location
Adrian Prantlb44c7762017-03-22 18:01:01 +00004531 within the described source variable.
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004532- ``DW_OP_swap`` swaps top two stack entries.
4533- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
4534 of the stack is treated as an address. The second stack entry is treated as an
4535 address space identifier.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004536- ``DW_OP_stack_value`` marks a constant value.
4537
Adrian Prantl6825fb62017-04-18 01:21:53 +00004538DWARF specifies three kinds of simple location descriptions: Register, memory,
4539and implicit location descriptions. Register and memory location descriptions
4540describe the *location* of a source variable (in the sense that a debugger might
4541modify its value), whereas implicit locations describe merely the *value* of a
4542source variable. DIExpressions also follow this model: A DIExpression that
4543doesn't have a trailing ``DW_OP_stack_value`` will describe an *address* when
4544combined with a concrete location.
4545
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004546.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004547
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004548 !0 = !DIExpression(DW_OP_deref)
Florian Hahnc9c403c2017-06-13 16:54:44 +00004549 !1 = !DIExpression(DW_OP_plus_uconst, 3)
Florian Hahnffc498d2017-06-14 13:14:38 +00004550 !1 = !DIExpression(DW_OP_constu, 3, DW_OP_plus)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004551 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
Florian Hahnffc498d2017-06-14 13:14:38 +00004552 !3 = !DIExpression(DW_OP_deref, DW_OP_constu, 3, DW_OP_plus, DW_OP_LLVM_fragment, 3, 7)
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004553 !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004554 !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004555
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004556DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004557""""""""""""""
4558
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004559``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004560
4561.. code-block:: llvm
4562
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004563 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004564 getter: "getFoo", attributes: 7, type: !2)
4565
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004566DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004567""""""""""""""""
4568
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004569``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004570compile unit.
4571
Renato Golin124f2592016-07-20 12:16:38 +00004572.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004573
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004574 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004575 entity: !1, line: 7)
4576
Amjad Abouda9bcf162015-12-10 12:56:35 +00004577DIMacro
4578"""""""
4579
4580``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4581The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004582defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004583used to expand the macro identifier.
4584
Renato Golin124f2592016-07-20 12:16:38 +00004585.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004586
4587 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4588 value: "((x) + 1)")
4589 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4590
4591DIMacroFile
4592"""""""""""
4593
4594``DIMacroFile`` nodes represent inclusion of source files.
4595The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4596appear in the included source file.
4597
Renato Golin124f2592016-07-20 12:16:38 +00004598.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004599
4600 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4601 nodes: !3)
4602
Sean Silvab084af42012-12-07 10:36:55 +00004603'``tbaa``' Metadata
4604^^^^^^^^^^^^^^^^^^^
4605
4606In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004607suitable for doing type based alias analysis (TBAA). Instead, metadata is
4608added to the IR to describe a type system of a higher level language. This
4609can be used to implement C/C++ strict type aliasing rules, but it can also
4610be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004611
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004612This description of LLVM's TBAA system is broken into two parts:
4613:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4614:ref:`Representation<tbaa_node_representation>` talks about the metadata
4615encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004616
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004617It is always possible to trace any TBAA node to a "root" TBAA node (details
4618in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4619nodes with different roots have an unknown aliasing relationship, and LLVM
4620conservatively infers ``MayAlias`` between them. The rules mentioned in
4621this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004622
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004623.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004624
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004625Semantics
4626"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004627
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004628The TBAA metadata system, referred to as "struct path TBAA" (not to be
4629confused with ``tbaa.struct``), consists of the following high level
4630concepts: *Type Descriptors*, further subdivided into scalar type
4631descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004632
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004633**Type descriptors** describe the type system of the higher level language
4634being compiled. **Scalar type descriptors** describe types that do not
4635contain other types. Each scalar type has a parent type, which must also
4636be a scalar type or the TBAA root. Via this parent relation, scalar types
4637within a TBAA root form a tree. **Struct type descriptors** denote types
4638that contain a sequence of other type descriptors, at known offsets. These
4639contained type descriptors can either be struct type descriptors themselves
4640or scalar type descriptors.
4641
4642**Access tags** are metadata nodes attached to load and store instructions.
4643Access tags use type descriptors to describe the *location* being accessed
4644in terms of the type system of the higher level language. Access tags are
4645tuples consisting of a base type, an access type and an offset. The base
4646type is a scalar type descriptor or a struct type descriptor, the access
4647type is a scalar type descriptor, and the offset is a constant integer.
4648
4649The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4650things:
4651
4652 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4653 or store) of a value of type ``AccessTy`` contained in the struct type
4654 ``BaseTy`` at offset ``Offset``.
4655
4656 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4657 ``AccessTy`` must be the same; and the access tag describes a scalar
4658 access with scalar type ``AccessTy``.
4659
4660We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4661tuples this way:
4662
4663 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4664 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4665 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4666 undefined if ``Offset`` is non-zero.
4667
4668 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4669 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4670 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4671 to be relative within that inner type.
4672
4673A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4674aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4675Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4676Offset2)`` via the ``Parent`` relation or vice versa.
4677
4678As a concrete example, the type descriptor graph for the following program
4679
4680.. code-block:: c
4681
4682 struct Inner {
4683 int i; // offset 0
4684 float f; // offset 4
4685 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004686
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004687 struct Outer {
4688 float f; // offset 0
4689 double d; // offset 4
4690 struct Inner inner_a; // offset 12
4691 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004692
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004693 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4694 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4695 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
4696 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, IntScalarTy, 16)
4697 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4698 }
4699
4700is (note that in C and C++, ``char`` can be used to access any arbitrary
4701type):
4702
4703.. code-block:: text
4704
4705 Root = "TBAA Root"
4706 CharScalarTy = ("char", Root, 0)
4707 FloatScalarTy = ("float", CharScalarTy, 0)
4708 DoubleScalarTy = ("double", CharScalarTy, 0)
4709 IntScalarTy = ("int", CharScalarTy, 0)
4710 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4711 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4712 (InnerStructTy, 12)}
4713
4714
4715with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
47160)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4717``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4718
4719.. _tbaa_node_representation:
4720
4721Representation
4722""""""""""""""
4723
4724The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4725with exactly one ``MDString`` operand.
4726
4727Scalar type descriptors are represented as an ``MDNode`` s with two
4728operands. The first operand is an ``MDString`` denoting the name of the
4729struct type. LLVM does not assign meaning to the value of this operand, it
4730only cares about it being an ``MDString``. The second operand is an
4731``MDNode`` which points to the parent for said scalar type descriptor,
4732which is either another scalar type descriptor or the TBAA root. Scalar
4733type descriptors can have an optional third argument, but that must be the
4734constant integer zero.
4735
4736Struct type descriptors are represented as ``MDNode`` s with an odd number
4737of operands greater than 1. The first operand is an ``MDString`` denoting
4738the name of the struct type. Like in scalar type descriptors the actual
4739value of this name operand is irrelevant to LLVM. After the name operand,
4740the struct type descriptors have a sequence of alternating ``MDNode`` and
4741``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4742an ``MDNode``, denotes a contained field, and the 2N th operand, a
4743``ConstantInt``, is the offset of the said contained field. The offsets
4744must be in non-decreasing order.
4745
4746Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4747The first operand is an ``MDNode`` pointing to the node representing the
4748base type. The second operand is an ``MDNode`` pointing to the node
4749representing the access type. The third operand is a ``ConstantInt`` that
4750states the offset of the access. If a fourth field is present, it must be
4751a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4752that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004753``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004754AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4755the access type and the base type of an access tag must be the same, and
4756that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004757
4758'``tbaa.struct``' Metadata
4759^^^^^^^^^^^^^^^^^^^^^^^^^^
4760
4761The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4762aggregate assignment operations in C and similar languages, however it
4763is defined to copy a contiguous region of memory, which is more than
4764strictly necessary for aggregate types which contain holes due to
4765padding. Also, it doesn't contain any TBAA information about the fields
4766of the aggregate.
4767
4768``!tbaa.struct`` metadata can describe which memory subregions in a
4769memcpy are padding and what the TBAA tags of the struct are.
4770
4771The current metadata format is very simple. ``!tbaa.struct`` metadata
4772nodes are a list of operands which are in conceptual groups of three.
4773For each group of three, the first operand gives the byte offset of a
4774field in bytes, the second gives its size in bytes, and the third gives
4775its tbaa tag. e.g.:
4776
4777.. code-block:: llvm
4778
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004779 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004780
4781This describes a struct with two fields. The first is at offset 0 bytes
4782with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4783and has size 4 bytes and has tbaa tag !2.
4784
4785Note that the fields need not be contiguous. In this example, there is a
47864 byte gap between the two fields. This gap represents padding which
4787does not carry useful data and need not be preserved.
4788
Hal Finkel94146652014-07-24 14:25:39 +00004789'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004790^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004791
4792``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4793noalias memory-access sets. This means that some collection of memory access
4794instructions (loads, stores, memory-accessing calls, etc.) that carry
4795``noalias`` metadata can specifically be specified not to alias with some other
4796collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004797Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004798a domain.
4799
4800When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004801of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004802subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004803instruction's ``noalias`` list, then the two memory accesses are assumed not to
4804alias.
Hal Finkel94146652014-07-24 14:25:39 +00004805
Adam Nemet569a5b32016-04-27 00:52:48 +00004806Because scopes in one domain don't affect scopes in other domains, separate
4807domains can be used to compose multiple independent noalias sets. This is
4808used for example during inlining. As the noalias function parameters are
4809turned into noalias scope metadata, a new domain is used every time the
4810function is inlined.
4811
Hal Finkel029cde62014-07-25 15:50:02 +00004812The metadata identifying each domain is itself a list containing one or two
4813entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004814string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004815self-reference can be used to create globally unique domain names. A
4816descriptive string may optionally be provided as a second list entry.
4817
4818The metadata identifying each scope is also itself a list containing two or
4819three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004820is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004821self-reference can be used to create globally unique scope names. A metadata
4822reference to the scope's domain is the second entry. A descriptive string may
4823optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004824
4825For example,
4826
4827.. code-block:: llvm
4828
Hal Finkel029cde62014-07-25 15:50:02 +00004829 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004830 !0 = !{!0}
4831 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004832
Hal Finkel029cde62014-07-25 15:50:02 +00004833 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004834 !2 = !{!2, !0}
4835 !3 = !{!3, !0}
4836 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004837
Hal Finkel029cde62014-07-25 15:50:02 +00004838 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004839 !5 = !{!4} ; A list containing only scope !4
4840 !6 = !{!4, !3, !2}
4841 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004842
4843 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004844 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004845 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004846
Hal Finkel029cde62014-07-25 15:50:02 +00004847 ; These two instructions also don't alias (for domain !1, the set of scopes
4848 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004849 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004850 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004851
Adam Nemet0a8416f2015-05-11 08:30:28 +00004852 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004853 ; the !noalias list is not a superset of, or equal to, the scopes in the
4854 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004855 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004856 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004857
Sean Silvab084af42012-12-07 10:36:55 +00004858'``fpmath``' Metadata
4859^^^^^^^^^^^^^^^^^^^^^
4860
4861``fpmath`` metadata may be attached to any instruction of floating point
4862type. It can be used to express the maximum acceptable error in the
4863result of that instruction, in ULPs, thus potentially allowing the
4864compiler to use a more efficient but less accurate method of computing
4865it. ULP is defined as follows:
4866
4867 If ``x`` is a real number that lies between two finite consecutive
4868 floating-point numbers ``a`` and ``b``, without being equal to one
4869 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4870 distance between the two non-equal finite floating-point numbers
4871 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4872
Matt Arsenault82f41512016-06-27 19:43:15 +00004873The metadata node shall consist of a single positive float type number
4874representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004875
4876.. code-block:: llvm
4877
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004878 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004879
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004880.. _range-metadata:
4881
Sean Silvab084af42012-12-07 10:36:55 +00004882'``range``' Metadata
4883^^^^^^^^^^^^^^^^^^^^
4884
Jingyue Wu37fcb592014-06-19 16:50:16 +00004885``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4886integer types. It expresses the possible ranges the loaded value or the value
4887returned by the called function at this call site is in. The ranges are
4888represented with a flattened list of integers. The loaded value or the value
4889returned is known to be in the union of the ranges defined by each consecutive
4890pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004891
4892- The type must match the type loaded by the instruction.
4893- The pair ``a,b`` represents the range ``[a,b)``.
4894- Both ``a`` and ``b`` are constants.
4895- The range is allowed to wrap.
4896- The range should not represent the full or empty set. That is,
4897 ``a!=b``.
4898
4899In addition, the pairs must be in signed order of the lower bound and
4900they must be non-contiguous.
4901
4902Examples:
4903
4904.. code-block:: llvm
4905
David Blaikiec7aabbb2015-03-04 22:06:14 +00004906 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4907 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004908 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4909 %d = invoke i8 @bar() to label %cont
4910 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004911 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004912 !0 = !{ i8 0, i8 2 }
4913 !1 = !{ i8 255, i8 2 }
4914 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4915 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004916
Peter Collingbourne235c2752016-12-08 19:01:00 +00004917'``absolute_symbol``' Metadata
4918^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4919
4920``absolute_symbol`` metadata may be attached to a global variable
4921declaration. It marks the declaration as a reference to an absolute symbol,
4922which causes the backend to use absolute relocations for the symbol even
4923in position independent code, and expresses the possible ranges that the
4924global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00004925``range`` metadata, with the extension that the pair ``all-ones,all-ones``
4926may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00004927
Peter Collingbourned88f9282017-01-20 21:56:37 +00004928Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00004929
4930.. code-block:: llvm
4931
4932 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00004933 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00004934
4935 ...
4936 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00004937 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00004938
Matthew Simpson36bbc8c2017-10-16 22:22:11 +00004939'``callees``' Metadata
4940^^^^^^^^^^^^^^^^^^^^^^
4941
4942``callees`` metadata may be attached to indirect call sites. If ``callees``
4943metadata is attached to a call site, and any callee is not among the set of
4944functions provided by the metadata, the behavior is undefined. The intent of
4945this metadata is to facilitate optimizations such as indirect-call promotion.
4946For example, in the code below, the call instruction may only target the
4947``add`` or ``sub`` functions:
4948
4949.. code-block:: llvm
4950
4951 %result = call i64 %binop(i64 %x, i64 %y), !callees !0
4952
4953 ...
4954 !0 = !{i64 (i64, i64)* @add, i64 (i64, i64)* @sub}
4955
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004956'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004957^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004958
4959``unpredictable`` metadata may be attached to any branch or switch
4960instruction. It can be used to express the unpredictability of control
4961flow. Similar to the llvm.expect intrinsic, it may be used to alter
4962optimizations related to compare and branch instructions. The metadata
4963is treated as a boolean value; if it exists, it signals that the branch
4964or switch that it is attached to is completely unpredictable.
4965
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004966'``llvm.loop``'
4967^^^^^^^^^^^^^^^
4968
4969It is sometimes useful to attach information to loop constructs. Currently,
4970loop metadata is implemented as metadata attached to the branch instruction
4971in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004972guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004973specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004974
4975The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004976itself to avoid merging it with any other identifier metadata, e.g.,
4977during module linkage or function inlining. That is, each loop should refer
4978to their own identification metadata even if they reside in separate functions.
4979The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004980constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004981
4982.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004983
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004984 !0 = !{!0}
4985 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004986
Mark Heffernan893752a2014-07-18 19:24:51 +00004987The loop identifier metadata can be used to specify additional
4988per-loop metadata. Any operands after the first operand can be treated
4989as user-defined metadata. For example the ``llvm.loop.unroll.count``
4990suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004991
Paul Redmond5fdf8362013-05-28 20:00:34 +00004992.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004993
Paul Redmond5fdf8362013-05-28 20:00:34 +00004994 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4995 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004996 !0 = !{!0, !1}
4997 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004998
Mark Heffernan9d20e422014-07-21 23:11:03 +00004999'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
5000^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00005001
Mark Heffernan9d20e422014-07-21 23:11:03 +00005002Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
5003used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00005004vectorization width and interleave count. These metadata should be used in
5005conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00005006``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
5007optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00005008it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00005009which contains information about loop-carried memory dependencies can be helpful
5010in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00005011
Mark Heffernan9d20e422014-07-21 23:11:03 +00005012'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00005013^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5014
Mark Heffernan9d20e422014-07-21 23:11:03 +00005015This metadata suggests an interleave count to the loop interleaver.
5016The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00005017second operand is an integer specifying the interleave count. For
5018example:
5019
5020.. code-block:: llvm
5021
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005022 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005023
Mark Heffernan9d20e422014-07-21 23:11:03 +00005024Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00005025multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00005026then the interleave count will be determined automatically.
5027
5028'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00005029^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00005030
5031This metadata selectively enables or disables vectorization for the loop. The
5032first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00005033is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000050340 disables vectorization:
5035
5036.. code-block:: llvm
5037
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005038 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
5039 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00005040
5041'``llvm.loop.vectorize.width``' Metadata
5042^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5043
5044This metadata sets the target width of the vectorizer. The first
5045operand is the string ``llvm.loop.vectorize.width`` and the second
5046operand is an integer specifying the width. For example:
5047
5048.. code-block:: llvm
5049
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005050 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005051
5052Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00005053vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000050540 or if the loop does not have this metadata the width will be
5055determined automatically.
5056
5057'``llvm.loop.unroll``'
5058^^^^^^^^^^^^^^^^^^^^^^
5059
5060Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
5061optimization hints such as the unroll factor. ``llvm.loop.unroll``
5062metadata should be used in conjunction with ``llvm.loop`` loop
5063identification metadata. The ``llvm.loop.unroll`` metadata are only
5064optimization hints and the unrolling will only be performed if the
5065optimizer believes it is safe to do so.
5066
Mark Heffernan893752a2014-07-18 19:24:51 +00005067'``llvm.loop.unroll.count``' Metadata
5068^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5069
5070This metadata suggests an unroll factor to the loop unroller. The
5071first operand is the string ``llvm.loop.unroll.count`` and the second
5072operand is a positive integer specifying the unroll factor. For
5073example:
5074
5075.. code-block:: llvm
5076
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005077 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005078
5079If the trip count of the loop is less than the unroll count the loop
5080will be partially unrolled.
5081
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005082'``llvm.loop.unroll.disable``' Metadata
5083^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5084
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005085This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00005086which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005087
5088.. code-block:: llvm
5089
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005090 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005091
Kevin Qin715b01e2015-03-09 06:14:18 +00005092'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00005093^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00005094
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005095This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00005096operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00005097
5098.. code-block:: llvm
5099
5100 !0 = !{!"llvm.loop.unroll.runtime.disable"}
5101
Mark Heffernan89391542015-08-10 17:28:08 +00005102'``llvm.loop.unroll.enable``' Metadata
5103^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5104
5105This metadata suggests that the loop should be fully unrolled if the trip count
5106is known at compile time and partially unrolled if the trip count is not known
5107at compile time. The metadata has a single operand which is the string
5108``llvm.loop.unroll.enable``. For example:
5109
5110.. code-block:: llvm
5111
5112 !0 = !{!"llvm.loop.unroll.enable"}
5113
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005114'``llvm.loop.unroll.full``' Metadata
5115^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5116
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005117This metadata suggests that the loop should be unrolled fully. The
5118metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005119For example:
5120
5121.. code-block:: llvm
5122
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005123 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005124
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005125'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00005126^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005127
5128This metadata indicates that the loop should not be versioned for the purpose
5129of enabling loop-invariant code motion (LICM). The metadata has a single operand
5130which is the string ``llvm.loop.licm_versioning.disable``. For example:
5131
5132.. code-block:: llvm
5133
5134 !0 = !{!"llvm.loop.licm_versioning.disable"}
5135
Adam Nemetd2fa4142016-04-27 05:28:18 +00005136'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00005137^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00005138
5139Loop distribution allows splitting a loop into multiple loops. Currently,
5140this is only performed if the entire loop cannot be vectorized due to unsafe
Hiroshi Inoueb93daec2017-07-02 12:44:27 +00005141memory dependencies. The transformation will attempt to isolate the unsafe
Adam Nemetd2fa4142016-04-27 05:28:18 +00005142dependencies into their own loop.
5143
5144This metadata can be used to selectively enable or disable distribution of the
5145loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
5146second operand is a bit. If the bit operand value is 1 distribution is
5147enabled. A value of 0 disables distribution:
5148
5149.. code-block:: llvm
5150
5151 !0 = !{!"llvm.loop.distribute.enable", i1 0}
5152 !1 = !{!"llvm.loop.distribute.enable", i1 1}
5153
5154This metadata should be used in conjunction with ``llvm.loop`` loop
5155identification metadata.
5156
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005157'``llvm.mem``'
5158^^^^^^^^^^^^^^^
5159
5160Metadata types used to annotate memory accesses with information helpful
5161for optimizations are prefixed with ``llvm.mem``.
5162
5163'``llvm.mem.parallel_loop_access``' Metadata
5164^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5165
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005166The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
5167or metadata containing a list of loop identifiers for nested loops.
5168The metadata is attached to memory accessing instructions and denotes that
5169no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00005170with the same loop identifier. The metadata on memory reads also implies that
5171if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005172
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005173Precisely, given two instructions ``m1`` and ``m2`` that both have the
5174``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
5175set of loops associated with that metadata, respectively, then there is no loop
5176carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005177``L2``.
5178
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005179As a special case, if all memory accessing instructions in a loop have
5180``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
5181loop has no loop carried memory dependences and is considered to be a parallel
5182loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005183
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005184Note that if not all memory access instructions have such metadata referring to
5185the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00005186memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005187safe mechanism, this causes loops that were originally parallel to be considered
5188sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005189insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005190
5191Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00005192both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005193metadata types that refer to the same loop identifier metadata.
5194
5195.. code-block:: llvm
5196
5197 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005198 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005199 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005200 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005201 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005202 ...
5203 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005204
5205 for.end:
5206 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005207 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005208
5209It is also possible to have nested parallel loops. In that case the
5210memory accesses refer to a list of loop identifier metadata nodes instead of
5211the loop identifier metadata node directly:
5212
5213.. code-block:: llvm
5214
5215 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005216 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005217 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005218 ...
5219 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005220
5221 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005222 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005223 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005224 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005225 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005226 ...
5227 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005228
5229 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005230 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005231 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00005232 ...
5233 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005234
5235 outer.for.end: ; preds = %for.body
5236 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005237 !0 = !{!1, !2} ; a list of loop identifiers
5238 !1 = !{!1} ; an identifier for the inner loop
5239 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005240
Hiroshi Yamauchidce9def2017-11-02 22:26:51 +00005241'``irr_loop``' Metadata
5242^^^^^^^^^^^^^^^^^^^^^^^
5243
5244``irr_loop`` metadata may be attached to the terminator instruction of a basic
5245block that's an irreducible loop header (note that an irreducible loop has more
5246than once header basic blocks.) If ``irr_loop`` metadata is attached to the
5247terminator instruction of a basic block that is not really an irreducible loop
5248header, the behavior is undefined. The intent of this metadata is to improve the
5249accuracy of the block frequency propagation. For example, in the code below, the
5250block ``header0`` may have a loop header weight (relative to the other headers of
5251the irreducible loop) of 100:
5252
5253.. code-block:: llvm
5254
5255 header0:
5256 ...
5257 br i1 %cmp, label %t1, label %t2, !irr_loop !0
5258
5259 ...
5260 !0 = !{"loop_header_weight", i64 100}
5261
5262Irreducible loop header weights are typically based on profile data.
5263
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005264'``invariant.group``' Metadata
5265^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5266
5267The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005268The existence of the ``invariant.group`` metadata on the instruction tells
5269the optimizer that every ``load`` and ``store`` to the same pointer operand
5270within the same invariant group can be assumed to load or store the same
5271value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005272when two pointers are considered the same). Pointers returned by bitcast or
5273getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005274
5275Examples:
5276
5277.. code-block:: llvm
5278
5279 @unknownPtr = external global i8
5280 ...
5281 %ptr = alloca i8
5282 store i8 42, i8* %ptr, !invariant.group !0
5283 call void @foo(i8* %ptr)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005284
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005285 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5286 call void @foo(i8* %ptr)
5287 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005288
5289 %newPtr = call i8* @getPointer(i8* %ptr)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005290 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005291
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005292 %unknownValue = load i8, i8* @unknownPtr
5293 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005294
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005295 call void @foo(i8* %ptr)
5296 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
5297 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005298
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005299 ...
5300 declare void @foo(i8*)
5301 declare i8* @getPointer(i8*)
5302 declare i8* @llvm.invariant.group.barrier(i8*)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005303
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005304 !0 = !{!"magic ptr"}
5305 !1 = !{!"other ptr"}
5306
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005307The invariant.group metadata must be dropped when replacing one pointer by
5308another based on aliasing information. This is because invariant.group is tied
5309to the SSA value of the pointer operand.
5310
5311.. code-block:: llvm
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005312
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005313 %v = load i8, i8* %x, !invariant.group !0
5314 ; if %x mustalias %y then we can replace the above instruction with
5315 %v = load i8, i8* %y
5316
5317
Peter Collingbournea333db82016-07-26 22:31:30 +00005318'``type``' Metadata
5319^^^^^^^^^^^^^^^^^^^
5320
5321See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005322
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005323'``associated``' Metadata
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005324^^^^^^^^^^^^^^^^^^^^^^^^^
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005325
5326The ``associated`` metadata may be attached to a global object
5327declaration with a single argument that references another global object.
5328
5329This metadata prevents discarding of the global object in linker GC
5330unless the referenced object is also discarded. The linker support for
5331this feature is spotty. For best compatibility, globals carrying this
5332metadata may also:
5333
5334- Be in a comdat with the referenced global.
5335- Be in @llvm.compiler.used.
5336- Have an explicit section with a name which is a valid C identifier.
5337
5338It does not have any effect on non-ELF targets.
5339
5340Example:
5341
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005342.. code-block:: text
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005343
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005344 $a = comdat any
5345 @a = global i32 1, comdat $a
5346 @b = internal global i32 2, comdat $a, section "abc", !associated !0
5347 !0 = !{i32* @a}
5348
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005349
Teresa Johnsond72f51c2017-06-15 15:57:12 +00005350'``prof``' Metadata
5351^^^^^^^^^^^^^^^^^^^
5352
5353The ``prof`` metadata is used to record profile data in the IR.
5354The first operand of the metadata node indicates the profile metadata
5355type. There are currently 3 types:
5356:ref:`branch_weights<prof_node_branch_weights>`,
5357:ref:`function_entry_count<prof_node_function_entry_count>`, and
5358:ref:`VP<prof_node_VP>`.
5359
5360.. _prof_node_branch_weights:
5361
5362branch_weights
5363""""""""""""""
5364
5365Branch weight metadata attached to a branch, select, switch or call instruction
5366represents the likeliness of the associated branch being taken.
5367For more information, see :doc:`BranchWeightMetadata`.
5368
5369.. _prof_node_function_entry_count:
5370
5371function_entry_count
5372""""""""""""""""""""
5373
5374Function entry count metadata can be attached to function definitions
5375to record the number of times the function is called. Used with BFI
5376information, it is also used to derive the basic block profile count.
5377For more information, see :doc:`BranchWeightMetadata`.
5378
5379.. _prof_node_VP:
5380
5381VP
5382""
5383
5384VP (value profile) metadata can be attached to instructions that have
5385value profile information. Currently this is indirect calls (where it
5386records the hottest callees) and calls to memory intrinsics such as memcpy,
5387memmove, and memset (where it records the hottest byte lengths).
5388
5389Each VP metadata node contains "VP" string, then a uint32_t value for the value
5390profiling kind, a uint64_t value for the total number of times the instruction
5391is executed, followed by uint64_t value and execution count pairs.
5392The value profiling kind is 0 for indirect call targets and 1 for memory
5393operations. For indirect call targets, each profile value is a hash
5394of the callee function name, and for memory operations each value is the
5395byte length.
5396
5397Note that the value counts do not need to add up to the total count
5398listed in the third operand (in practice only the top hottest values
5399are tracked and reported).
5400
5401Indirect call example:
5402
5403.. code-block:: llvm
5404
5405 call void %f(), !prof !1
5406 !1 = !{!"VP", i32 0, i64 1600, i64 7651369219802541373, i64 1030, i64 -4377547752858689819, i64 410}
5407
5408Note that the VP type is 0 (the second operand), which indicates this is
5409an indirect call value profile data. The third operand indicates that the
5410indirect call executed 1600 times. The 4th and 6th operands give the
5411hashes of the 2 hottest target functions' names (this is the same hash used
5412to represent function names in the profile database), and the 5th and 7th
5413operands give the execution count that each of the respective prior target
5414functions was called.
5415
Sean Silvab084af42012-12-07 10:36:55 +00005416Module Flags Metadata
5417=====================
5418
5419Information about the module as a whole is difficult to convey to LLVM's
5420subsystems. The LLVM IR isn't sufficient to transmit this information.
5421The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005422this. These flags are in the form of key / value pairs --- much like a
5423dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005424look it up.
5425
5426The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5427Each triplet has the following form:
5428
5429- The first element is a *behavior* flag, which specifies the behavior
5430 when two (or more) modules are merged together, and it encounters two
5431 (or more) metadata with the same ID. The supported behaviors are
5432 described below.
5433- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005434 metadata. Each module may only have one flag entry for each unique ID (not
5435 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005436- The third element is the value of the flag.
5437
5438When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005439``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5440each unique metadata ID string, there will be exactly one entry in the merged
5441modules ``llvm.module.flags`` metadata table, and the value for that entry will
5442be determined by the merge behavior flag, as described below. The only exception
5443is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005444
5445The following behaviors are supported:
5446
5447.. list-table::
5448 :header-rows: 1
5449 :widths: 10 90
5450
5451 * - Value
5452 - Behavior
5453
5454 * - 1
5455 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005456 Emits an error if two values disagree, otherwise the resulting value
5457 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005458
5459 * - 2
5460 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005461 Emits a warning if two values disagree. The result value will be the
5462 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005463
5464 * - 3
5465 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005466 Adds a requirement that another module flag be present and have a
5467 specified value after linking is performed. The value must be a
5468 metadata pair, where the first element of the pair is the ID of the
5469 module flag to be restricted, and the second element of the pair is
5470 the value the module flag should be restricted to. This behavior can
5471 be used to restrict the allowable results (via triggering of an
5472 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005473
5474 * - 4
5475 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005476 Uses the specified value, regardless of the behavior or value of the
5477 other module. If both modules specify **Override**, but the values
5478 differ, an error will be emitted.
5479
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005480 * - 5
5481 - **Append**
5482 Appends the two values, which are required to be metadata nodes.
5483
5484 * - 6
5485 - **AppendUnique**
5486 Appends the two values, which are required to be metadata
5487 nodes. However, duplicate entries in the second list are dropped
5488 during the append operation.
5489
Steven Wu86a511e2017-08-15 16:16:33 +00005490 * - 7
5491 - **Max**
5492 Takes the max of the two values, which are required to be integers.
5493
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005494It is an error for a particular unique flag ID to have multiple behaviors,
5495except in the case of **Require** (which adds restrictions on another metadata
5496value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005497
5498An example of module flags:
5499
5500.. code-block:: llvm
5501
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005502 !0 = !{ i32 1, !"foo", i32 1 }
5503 !1 = !{ i32 4, !"bar", i32 37 }
5504 !2 = !{ i32 2, !"qux", i32 42 }
5505 !3 = !{ i32 3, !"qux",
5506 !{
5507 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005508 }
5509 }
5510 !llvm.module.flags = !{ !0, !1, !2, !3 }
5511
5512- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5513 if two or more ``!"foo"`` flags are seen is to emit an error if their
5514 values are not equal.
5515
5516- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5517 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005518 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005519
5520- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5521 behavior if two or more ``!"qux"`` flags are seen is to emit a
5522 warning if their values are not equal.
5523
5524- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5525
5526 ::
5527
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005528 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005529
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005530 The behavior is to emit an error if the ``llvm.module.flags`` does not
5531 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5532 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005533
5534Objective-C Garbage Collection Module Flags Metadata
5535----------------------------------------------------
5536
5537On the Mach-O platform, Objective-C stores metadata about garbage
5538collection in a special section called "image info". The metadata
5539consists of a version number and a bitmask specifying what types of
5540garbage collection are supported (if any) by the file. If two or more
5541modules are linked together their garbage collection metadata needs to
5542be merged rather than appended together.
5543
5544The Objective-C garbage collection module flags metadata consists of the
5545following key-value pairs:
5546
5547.. list-table::
5548 :header-rows: 1
5549 :widths: 30 70
5550
5551 * - Key
5552 - Value
5553
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005554 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005555 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005556
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005557 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005558 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005559 always 0.
5560
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005561 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005562 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005563 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5564 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5565 Objective-C ABI version 2.
5566
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005567 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005568 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005569 not. Valid values are 0, for no garbage collection, and 2, for garbage
5570 collection supported.
5571
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005572 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005573 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005574 If present, its value must be 6. This flag requires that the
5575 ``Objective-C Garbage Collection`` flag have the value 2.
5576
5577Some important flag interactions:
5578
5579- If a module with ``Objective-C Garbage Collection`` set to 0 is
5580 merged with a module with ``Objective-C Garbage Collection`` set to
5581 2, then the resulting module has the
5582 ``Objective-C Garbage Collection`` flag set to 0.
5583- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5584 merged with a module with ``Objective-C GC Only`` set to 6.
5585
Oliver Stannard5dc29342014-06-20 10:08:11 +00005586C type width Module Flags Metadata
5587----------------------------------
5588
5589The ARM backend emits a section into each generated object file describing the
5590options that it was compiled with (in a compiler-independent way) to prevent
5591linking incompatible objects, and to allow automatic library selection. Some
5592of these options are not visible at the IR level, namely wchar_t width and enum
5593width.
5594
5595To pass this information to the backend, these options are encoded in module
5596flags metadata, using the following key-value pairs:
5597
5598.. list-table::
5599 :header-rows: 1
5600 :widths: 30 70
5601
5602 * - Key
5603 - Value
5604
5605 * - short_wchar
5606 - * 0 --- sizeof(wchar_t) == 4
5607 * 1 --- sizeof(wchar_t) == 2
5608
5609 * - short_enum
5610 - * 0 --- Enums are at least as large as an ``int``.
5611 * 1 --- Enums are stored in the smallest integer type which can
5612 represent all of its values.
5613
5614For example, the following metadata section specifies that the module was
5615compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5616enum is the smallest type which can represent all of its values::
5617
5618 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005619 !0 = !{i32 1, !"short_wchar", i32 1}
5620 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005621
Peter Collingbourne89061b22017-06-12 20:10:48 +00005622Automatic Linker Flags Named Metadata
5623=====================================
5624
5625Some targets support embedding flags to the linker inside individual object
5626files. Typically this is used in conjunction with language extensions which
5627allow source files to explicitly declare the libraries they depend on, and have
5628these automatically be transmitted to the linker via object files.
5629
5630These flags are encoded in the IR using named metadata with the name
5631``!llvm.linker.options``. Each operand is expected to be a metadata node
5632which should be a list of other metadata nodes, each of which should be a
5633list of metadata strings defining linker options.
5634
5635For example, the following metadata section specifies two separate sets of
5636linker options, presumably to link against ``libz`` and the ``Cocoa``
5637framework::
5638
5639 !0 = !{ !"-lz" },
5640 !1 = !{ !"-framework", !"Cocoa" } } }
5641 !llvm.linker.options = !{ !0, !1 }
5642
5643The metadata encoding as lists of lists of options, as opposed to a collapsed
5644list of options, is chosen so that the IR encoding can use multiple option
5645strings to specify e.g., a single library, while still having that specifier be
5646preserved as an atomic element that can be recognized by a target specific
5647assembly writer or object file emitter.
5648
5649Each individual option is required to be either a valid option for the target's
5650linker, or an option that is reserved by the target specific assembly writer or
5651object file emitter. No other aspect of these options is defined by the IR.
5652
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005653.. _intrinsicglobalvariables:
5654
Sean Silvab084af42012-12-07 10:36:55 +00005655Intrinsic Global Variables
5656==========================
5657
5658LLVM has a number of "magic" global variables that contain data that
5659affect code generation or other IR semantics. These are documented here.
5660All globals of this sort should have a section specified as
5661"``llvm.metadata``". This section and all globals that start with
5662"``llvm.``" are reserved for use by LLVM.
5663
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005664.. _gv_llvmused:
5665
Sean Silvab084af42012-12-07 10:36:55 +00005666The '``llvm.used``' Global Variable
5667-----------------------------------
5668
Rafael Espindola74f2e462013-04-22 14:58:02 +00005669The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005670:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005671pointers to named global variables, functions and aliases which may optionally
5672have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005673use of it is:
5674
5675.. code-block:: llvm
5676
5677 @X = global i8 4
5678 @Y = global i32 123
5679
5680 @llvm.used = appending global [2 x i8*] [
5681 i8* @X,
5682 i8* bitcast (i32* @Y to i8*)
5683 ], section "llvm.metadata"
5684
Rafael Espindola74f2e462013-04-22 14:58:02 +00005685If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5686and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005687symbol that it cannot see (which is why they have to be named). For example, if
5688a variable has internal linkage and no references other than that from the
5689``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5690references from inline asms and other things the compiler cannot "see", and
5691corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005692
5693On some targets, the code generator must emit a directive to the
5694assembler or object file to prevent the assembler and linker from
5695molesting the symbol.
5696
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005697.. _gv_llvmcompilerused:
5698
Sean Silvab084af42012-12-07 10:36:55 +00005699The '``llvm.compiler.used``' Global Variable
5700--------------------------------------------
5701
5702The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5703directive, except that it only prevents the compiler from touching the
5704symbol. On targets that support it, this allows an intelligent linker to
5705optimize references to the symbol without being impeded as it would be
5706by ``@llvm.used``.
5707
5708This is a rare construct that should only be used in rare circumstances,
5709and should not be exposed to source languages.
5710
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005711.. _gv_llvmglobalctors:
5712
Sean Silvab084af42012-12-07 10:36:55 +00005713The '``llvm.global_ctors``' Global Variable
5714-------------------------------------------
5715
5716.. code-block:: llvm
5717
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005718 %0 = type { i32, void ()*, i8* }
5719 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005720
5721The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005722functions, priorities, and an optional associated global or function.
5723The functions referenced by this array will be called in ascending order
5724of priority (i.e. lowest first) when the module is loaded. The order of
5725functions with the same priority is not defined.
5726
5727If the third field is present, non-null, and points to a global variable
5728or function, the initializer function will only run if the associated
5729data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005730
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005731.. _llvmglobaldtors:
5732
Sean Silvab084af42012-12-07 10:36:55 +00005733The '``llvm.global_dtors``' Global Variable
5734-------------------------------------------
5735
5736.. code-block:: llvm
5737
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005738 %0 = type { i32, void ()*, i8* }
5739 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005740
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005741The ``@llvm.global_dtors`` array contains a list of destructor
5742functions, priorities, and an optional associated global or function.
5743The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005744order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005745order of functions with the same priority is not defined.
5746
5747If the third field is present, non-null, and points to a global variable
5748or function, the destructor function will only run if the associated
5749data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005750
5751Instruction Reference
5752=====================
5753
5754The LLVM instruction set consists of several different classifications
5755of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5756instructions <binaryops>`, :ref:`bitwise binary
5757instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5758:ref:`other instructions <otherops>`.
5759
5760.. _terminators:
5761
5762Terminator Instructions
5763-----------------------
5764
5765As mentioned :ref:`previously <functionstructure>`, every basic block in a
5766program ends with a "Terminator" instruction, which indicates which
5767block should be executed after the current block is finished. These
5768terminator instructions typically yield a '``void``' value: they produce
5769control flow, not values (the one exception being the
5770':ref:`invoke <i_invoke>`' instruction).
5771
5772The terminator instructions are: ':ref:`ret <i_ret>`',
5773':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5774':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005775':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005776':ref:`catchret <i_catchret>`',
5777':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005778and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005779
5780.. _i_ret:
5781
5782'``ret``' Instruction
5783^^^^^^^^^^^^^^^^^^^^^
5784
5785Syntax:
5786"""""""
5787
5788::
5789
5790 ret <type> <value> ; Return a value from a non-void function
5791 ret void ; Return from void function
5792
5793Overview:
5794"""""""""
5795
5796The '``ret``' instruction is used to return control flow (and optionally
5797a value) from a function back to the caller.
5798
5799There are two forms of the '``ret``' instruction: one that returns a
5800value and then causes control flow, and one that just causes control
5801flow to occur.
5802
5803Arguments:
5804""""""""""
5805
5806The '``ret``' instruction optionally accepts a single argument, the
5807return value. The type of the return value must be a ':ref:`first
5808class <t_firstclass>`' type.
5809
5810A function is not :ref:`well formed <wellformed>` if it it has a non-void
5811return type and contains a '``ret``' instruction with no return value or
5812a return value with a type that does not match its type, or if it has a
5813void return type and contains a '``ret``' instruction with a return
5814value.
5815
5816Semantics:
5817""""""""""
5818
5819When the '``ret``' instruction is executed, control flow returns back to
5820the calling function's context. If the caller is a
5821":ref:`call <i_call>`" instruction, execution continues at the
5822instruction after the call. If the caller was an
5823":ref:`invoke <i_invoke>`" instruction, execution continues at the
5824beginning of the "normal" destination block. If the instruction returns
5825a value, that value shall set the call or invoke instruction's return
5826value.
5827
5828Example:
5829""""""""
5830
5831.. code-block:: llvm
5832
5833 ret i32 5 ; Return an integer value of 5
5834 ret void ; Return from a void function
5835 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5836
5837.. _i_br:
5838
5839'``br``' Instruction
5840^^^^^^^^^^^^^^^^^^^^
5841
5842Syntax:
5843"""""""
5844
5845::
5846
5847 br i1 <cond>, label <iftrue>, label <iffalse>
5848 br label <dest> ; Unconditional branch
5849
5850Overview:
5851"""""""""
5852
5853The '``br``' instruction is used to cause control flow to transfer to a
5854different basic block in the current function. There are two forms of
5855this instruction, corresponding to a conditional branch and an
5856unconditional branch.
5857
5858Arguments:
5859""""""""""
5860
5861The conditional branch form of the '``br``' instruction takes a single
5862'``i1``' value and two '``label``' values. The unconditional form of the
5863'``br``' instruction takes a single '``label``' value as a target.
5864
5865Semantics:
5866""""""""""
5867
5868Upon execution of a conditional '``br``' instruction, the '``i1``'
5869argument is evaluated. If the value is ``true``, control flows to the
5870'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5871to the '``iffalse``' ``label`` argument.
5872
5873Example:
5874""""""""
5875
5876.. code-block:: llvm
5877
5878 Test:
5879 %cond = icmp eq i32 %a, %b
5880 br i1 %cond, label %IfEqual, label %IfUnequal
5881 IfEqual:
5882 ret i32 1
5883 IfUnequal:
5884 ret i32 0
5885
5886.. _i_switch:
5887
5888'``switch``' Instruction
5889^^^^^^^^^^^^^^^^^^^^^^^^
5890
5891Syntax:
5892"""""""
5893
5894::
5895
5896 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5897
5898Overview:
5899"""""""""
5900
5901The '``switch``' instruction is used to transfer control flow to one of
5902several different places. It is a generalization of the '``br``'
5903instruction, allowing a branch to occur to one of many possible
5904destinations.
5905
5906Arguments:
5907""""""""""
5908
5909The '``switch``' instruction uses three parameters: an integer
5910comparison value '``value``', a default '``label``' destination, and an
5911array of pairs of comparison value constants and '``label``'s. The table
5912is not allowed to contain duplicate constant entries.
5913
5914Semantics:
5915""""""""""
5916
5917The ``switch`` instruction specifies a table of values and destinations.
5918When the '``switch``' instruction is executed, this table is searched
5919for the given value. If the value is found, control flow is transferred
5920to the corresponding destination; otherwise, control flow is transferred
5921to the default destination.
5922
5923Implementation:
5924"""""""""""""""
5925
5926Depending on properties of the target machine and the particular
5927``switch`` instruction, this instruction may be code generated in
5928different ways. For example, it could be generated as a series of
5929chained conditional branches or with a lookup table.
5930
5931Example:
5932""""""""
5933
5934.. code-block:: llvm
5935
5936 ; Emulate a conditional br instruction
5937 %Val = zext i1 %value to i32
5938 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5939
5940 ; Emulate an unconditional br instruction
5941 switch i32 0, label %dest [ ]
5942
5943 ; Implement a jump table:
5944 switch i32 %val, label %otherwise [ i32 0, label %onzero
5945 i32 1, label %onone
5946 i32 2, label %ontwo ]
5947
5948.. _i_indirectbr:
5949
5950'``indirectbr``' Instruction
5951^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5952
5953Syntax:
5954"""""""
5955
5956::
5957
5958 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5959
5960Overview:
5961"""""""""
5962
5963The '``indirectbr``' instruction implements an indirect branch to a
5964label within the current function, whose address is specified by
5965"``address``". Address must be derived from a
5966:ref:`blockaddress <blockaddress>` constant.
5967
5968Arguments:
5969""""""""""
5970
5971The '``address``' argument is the address of the label to jump to. The
5972rest of the arguments indicate the full set of possible destinations
5973that the address may point to. Blocks are allowed to occur multiple
5974times in the destination list, though this isn't particularly useful.
5975
5976This destination list is required so that dataflow analysis has an
5977accurate understanding of the CFG.
5978
5979Semantics:
5980""""""""""
5981
5982Control transfers to the block specified in the address argument. All
5983possible destination blocks must be listed in the label list, otherwise
5984this instruction has undefined behavior. This implies that jumps to
5985labels defined in other functions have undefined behavior as well.
5986
5987Implementation:
5988"""""""""""""""
5989
5990This is typically implemented with a jump through a register.
5991
5992Example:
5993""""""""
5994
5995.. code-block:: llvm
5996
5997 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5998
5999.. _i_invoke:
6000
6001'``invoke``' Instruction
6002^^^^^^^^^^^^^^^^^^^^^^^^
6003
6004Syntax:
6005"""""""
6006
6007::
6008
David Blaikieb83cf102016-07-13 17:21:34 +00006009 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006010 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00006011
6012Overview:
6013"""""""""
6014
6015The '``invoke``' instruction causes control to transfer to a specified
6016function, with the possibility of control flow transfer to either the
6017'``normal``' label or the '``exception``' label. If the callee function
6018returns with the "``ret``" instruction, control flow will return to the
6019"normal" label. If the callee (or any indirect callees) returns via the
6020":ref:`resume <i_resume>`" instruction or other exception handling
6021mechanism, control is interrupted and continued at the dynamically
6022nearest "exception" label.
6023
6024The '``exception``' label is a `landing
6025pad <ExceptionHandling.html#overview>`_ for the exception. As such,
6026'``exception``' label is required to have the
6027":ref:`landingpad <i_landingpad>`" instruction, which contains the
6028information about the behavior of the program after unwinding happens,
6029as its first non-PHI instruction. The restrictions on the
6030"``landingpad``" instruction's tightly couples it to the "``invoke``"
6031instruction, so that the important information contained within the
6032"``landingpad``" instruction can't be lost through normal code motion.
6033
6034Arguments:
6035""""""""""
6036
6037This instruction requires several arguments:
6038
6039#. The optional "cconv" marker indicates which :ref:`calling
6040 convention <callingconv>` the call should use. If none is
6041 specified, the call defaults to using C calling conventions.
6042#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6043 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6044 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00006045#. '``ty``': the type of the call instruction itself which is also the
6046 type of the return value. Functions that return no value are marked
6047 ``void``.
6048#. '``fnty``': shall be the signature of the function being invoked. The
6049 argument types must match the types implied by this signature. This
6050 type can be omitted if the function is not varargs.
6051#. '``fnptrval``': An LLVM value containing a pointer to a function to
6052 be invoked. In most cases, this is a direct function invocation, but
6053 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
6054 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00006055#. '``function args``': argument list whose types match the function
6056 signature argument types and parameter attributes. All arguments must
6057 be of :ref:`first class <t_firstclass>` type. If the function signature
6058 indicates the function accepts a variable number of arguments, the
6059 extra arguments can be specified.
6060#. '``normal label``': the label reached when the called function
6061 executes a '``ret``' instruction.
6062#. '``exception label``': the label reached when a callee returns via
6063 the :ref:`resume <i_resume>` instruction or other exception handling
6064 mechanism.
George Burgess IV8a464a72017-04-13 05:00:31 +00006065#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006066#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00006067
6068Semantics:
6069""""""""""
6070
6071This instruction is designed to operate as a standard '``call``'
6072instruction in most regards. The primary difference is that it
6073establishes an association with a label, which is used by the runtime
6074library to unwind the stack.
6075
6076This instruction is used in languages with destructors to ensure that
6077proper cleanup is performed in the case of either a ``longjmp`` or a
6078thrown exception. Additionally, this is important for implementation of
6079'``catch``' clauses in high-level languages that support them.
6080
6081For the purposes of the SSA form, the definition of the value returned
6082by the '``invoke``' instruction is deemed to occur on the edge from the
6083current block to the "normal" label. If the callee unwinds then no
6084return value is available.
6085
6086Example:
6087""""""""
6088
6089.. code-block:: llvm
6090
6091 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006092 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006093 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006094 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006095
6096.. _i_resume:
6097
6098'``resume``' Instruction
6099^^^^^^^^^^^^^^^^^^^^^^^^
6100
6101Syntax:
6102"""""""
6103
6104::
6105
6106 resume <type> <value>
6107
6108Overview:
6109"""""""""
6110
6111The '``resume``' instruction is a terminator instruction that has no
6112successors.
6113
6114Arguments:
6115""""""""""
6116
6117The '``resume``' instruction requires one argument, which must have the
6118same type as the result of any '``landingpad``' instruction in the same
6119function.
6120
6121Semantics:
6122""""""""""
6123
6124The '``resume``' instruction resumes propagation of an existing
6125(in-flight) exception whose unwinding was interrupted with a
6126:ref:`landingpad <i_landingpad>` instruction.
6127
6128Example:
6129""""""""
6130
6131.. code-block:: llvm
6132
6133 resume { i8*, i32 } %exn
6134
David Majnemer8a1c45d2015-12-12 05:38:55 +00006135.. _i_catchswitch:
6136
6137'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00006138^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00006139
6140Syntax:
6141"""""""
6142
6143::
6144
6145 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
6146 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
6147
6148Overview:
6149"""""""""
6150
6151The '``catchswitch``' instruction is used by `LLVM's exception handling system
6152<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
6153that may be executed by the :ref:`EH personality routine <personalityfn>`.
6154
6155Arguments:
6156""""""""""
6157
6158The ``parent`` argument is the token of the funclet that contains the
6159``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
6160this operand may be the token ``none``.
6161
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006162The ``default`` argument is the label of another basic block beginning with
6163either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
6164must be a legal target with respect to the ``parent`` links, as described in
6165the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00006166
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006167The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00006168:ref:`catchpad <i_catchpad>` instruction.
6169
6170Semantics:
6171""""""""""
6172
6173Executing this instruction transfers control to one of the successors in
6174``handlers``, if appropriate, or continues to unwind via the unwind label if
6175present.
6176
6177The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
6178it must be both the first non-phi instruction and last instruction in the basic
6179block. Therefore, it must be the only non-phi instruction in the block.
6180
6181Example:
6182""""""""
6183
Renato Golin124f2592016-07-20 12:16:38 +00006184.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00006185
6186 dispatch1:
6187 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
6188 dispatch2:
6189 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
6190
David Majnemer654e1302015-07-31 17:58:14 +00006191.. _i_catchret:
6192
6193'``catchret``' Instruction
6194^^^^^^^^^^^^^^^^^^^^^^^^^^
6195
6196Syntax:
6197"""""""
6198
6199::
6200
David Majnemer8a1c45d2015-12-12 05:38:55 +00006201 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00006202
6203Overview:
6204"""""""""
6205
6206The '``catchret``' instruction is a terminator instruction that has a
6207single successor.
6208
6209
6210Arguments:
6211""""""""""
6212
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006213The first argument to a '``catchret``' indicates which ``catchpad`` it
6214exits. It must be a :ref:`catchpad <i_catchpad>`.
6215The second argument to a '``catchret``' specifies where control will
6216transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00006217
6218Semantics:
6219""""""""""
6220
David Majnemer8a1c45d2015-12-12 05:38:55 +00006221The '``catchret``' instruction ends an existing (in-flight) exception whose
6222unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
6223:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
6224code to, for example, destroy the active exception. Control then transfers to
6225``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006226
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006227The ``token`` argument must be a token produced by a ``catchpad`` instruction.
6228If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
6229funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6230the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00006231
6232Example:
6233""""""""
6234
Renato Golin124f2592016-07-20 12:16:38 +00006235.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006236
David Majnemer8a1c45d2015-12-12 05:38:55 +00006237 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006238
David Majnemer654e1302015-07-31 17:58:14 +00006239.. _i_cleanupret:
6240
6241'``cleanupret``' Instruction
6242^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6243
6244Syntax:
6245"""""""
6246
6247::
6248
David Majnemer8a1c45d2015-12-12 05:38:55 +00006249 cleanupret from <value> unwind label <continue>
6250 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00006251
6252Overview:
6253"""""""""
6254
6255The '``cleanupret``' instruction is a terminator instruction that has
6256an optional successor.
6257
6258
6259Arguments:
6260""""""""""
6261
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006262The '``cleanupret``' instruction requires one argument, which indicates
6263which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006264If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
6265funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6266the ``cleanupret``'s behavior is undefined.
6267
6268The '``cleanupret``' instruction also has an optional successor, ``continue``,
6269which must be the label of another basic block beginning with either a
6270``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
6271be a legal target with respect to the ``parent`` links, as described in the
6272`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00006273
6274Semantics:
6275""""""""""
6276
6277The '``cleanupret``' instruction indicates to the
6278:ref:`personality function <personalityfn>` that one
6279:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
6280It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006281
David Majnemer654e1302015-07-31 17:58:14 +00006282Example:
6283""""""""
6284
Renato Golin124f2592016-07-20 12:16:38 +00006285.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006286
David Majnemer8a1c45d2015-12-12 05:38:55 +00006287 cleanupret from %cleanup unwind to caller
6288 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00006289
Sean Silvab084af42012-12-07 10:36:55 +00006290.. _i_unreachable:
6291
6292'``unreachable``' Instruction
6293^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6294
6295Syntax:
6296"""""""
6297
6298::
6299
6300 unreachable
6301
6302Overview:
6303"""""""""
6304
6305The '``unreachable``' instruction has no defined semantics. This
6306instruction is used to inform the optimizer that a particular portion of
6307the code is not reachable. This can be used to indicate that the code
6308after a no-return function cannot be reached, and other facts.
6309
6310Semantics:
6311""""""""""
6312
6313The '``unreachable``' instruction has no defined semantics.
6314
6315.. _binaryops:
6316
6317Binary Operations
6318-----------------
6319
6320Binary operators are used to do most of the computation in a program.
6321They require two operands of the same type, execute an operation on
6322them, and produce a single value. The operands might represent multiple
6323data, as is the case with the :ref:`vector <t_vector>` data type. The
6324result value has the same type as its operands.
6325
6326There are several different binary operators:
6327
6328.. _i_add:
6329
6330'``add``' Instruction
6331^^^^^^^^^^^^^^^^^^^^^
6332
6333Syntax:
6334"""""""
6335
6336::
6337
Tim Northover675a0962014-06-13 14:24:23 +00006338 <result> = add <ty> <op1>, <op2> ; yields ty:result
6339 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
6340 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
6341 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006342
6343Overview:
6344"""""""""
6345
6346The '``add``' instruction returns the sum of its two operands.
6347
6348Arguments:
6349""""""""""
6350
6351The two arguments to the '``add``' instruction must be
6352:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6353arguments must have identical types.
6354
6355Semantics:
6356""""""""""
6357
6358The value produced is the integer sum of the two operands.
6359
6360If the sum has unsigned overflow, the result returned is the
6361mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6362the result.
6363
6364Because LLVM integers use a two's complement representation, this
6365instruction is appropriate for both signed and unsigned integers.
6366
6367``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6368respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6369result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
6370unsigned and/or signed overflow, respectively, occurs.
6371
6372Example:
6373""""""""
6374
Renato Golin124f2592016-07-20 12:16:38 +00006375.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006376
Tim Northover675a0962014-06-13 14:24:23 +00006377 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006378
6379.. _i_fadd:
6380
6381'``fadd``' Instruction
6382^^^^^^^^^^^^^^^^^^^^^^
6383
6384Syntax:
6385"""""""
6386
6387::
6388
Tim Northover675a0962014-06-13 14:24:23 +00006389 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006390
6391Overview:
6392"""""""""
6393
6394The '``fadd``' instruction returns the sum of its two operands.
6395
6396Arguments:
6397""""""""""
6398
6399The two arguments to the '``fadd``' instruction must be :ref:`floating
6400point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6401Both arguments must have identical types.
6402
6403Semantics:
6404""""""""""
6405
Sanjay Patel7b722402018-03-07 17:18:22 +00006406The value produced is the floating-point sum of the two operands.
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00006407This instruction is assumed to execute in the default floating-point
6408environment. It has no side effects. Users can not assume that any
6409floating-point exception state is updated by this instruction.
Sanjay Patel7b722402018-03-07 17:18:22 +00006410This instruction can also take any number of :ref:`fast-math
6411flags <fastmath>`, which are optimization hints to enable otherwise
6412unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006413
6414Example:
6415""""""""
6416
Renato Golin124f2592016-07-20 12:16:38 +00006417.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006418
Tim Northover675a0962014-06-13 14:24:23 +00006419 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006420
6421'``sub``' Instruction
6422^^^^^^^^^^^^^^^^^^^^^
6423
6424Syntax:
6425"""""""
6426
6427::
6428
Tim Northover675a0962014-06-13 14:24:23 +00006429 <result> = sub <ty> <op1>, <op2> ; yields ty:result
6430 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
6431 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
6432 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006433
6434Overview:
6435"""""""""
6436
6437The '``sub``' instruction returns the difference of its two operands.
6438
6439Note that the '``sub``' instruction is used to represent the '``neg``'
6440instruction present in most other intermediate representations.
6441
6442Arguments:
6443""""""""""
6444
6445The two arguments to the '``sub``' instruction must be
6446:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6447arguments must have identical types.
6448
6449Semantics:
6450""""""""""
6451
6452The value produced is the integer difference of the two operands.
6453
6454If the difference has unsigned overflow, the result returned is the
6455mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6456the result.
6457
6458Because LLVM integers use a two's complement representation, this
6459instruction is appropriate for both signed and unsigned integers.
6460
6461``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6462respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6463result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
6464unsigned and/or signed overflow, respectively, occurs.
6465
6466Example:
6467""""""""
6468
Renato Golin124f2592016-07-20 12:16:38 +00006469.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006470
Tim Northover675a0962014-06-13 14:24:23 +00006471 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6472 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006473
6474.. _i_fsub:
6475
6476'``fsub``' Instruction
6477^^^^^^^^^^^^^^^^^^^^^^
6478
6479Syntax:
6480"""""""
6481
6482::
6483
Tim Northover675a0962014-06-13 14:24:23 +00006484 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006485
6486Overview:
6487"""""""""
6488
6489The '``fsub``' instruction returns the difference of its two operands.
6490
6491Note that the '``fsub``' instruction is used to represent the '``fneg``'
6492instruction present in most other intermediate representations.
6493
6494Arguments:
6495""""""""""
6496
6497The two arguments to the '``fsub``' instruction must be :ref:`floating
6498point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6499Both arguments must have identical types.
6500
6501Semantics:
6502""""""""""
6503
Sanjay Patel7b722402018-03-07 17:18:22 +00006504The value produced is the floating-point difference of the two operands.
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00006505This instruction is assumed to execute in the default floating-point
6506environment. It has no side effects. Users can not assume that any
6507floating-point exception state is updated by this instruction.
Sean Silvab084af42012-12-07 10:36:55 +00006508This instruction can also take any number of :ref:`fast-math
6509flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00006510unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006511
6512Example:
6513""""""""
6514
Renato Golin124f2592016-07-20 12:16:38 +00006515.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006516
Tim Northover675a0962014-06-13 14:24:23 +00006517 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6518 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006519
6520'``mul``' Instruction
6521^^^^^^^^^^^^^^^^^^^^^
6522
6523Syntax:
6524"""""""
6525
6526::
6527
Tim Northover675a0962014-06-13 14:24:23 +00006528 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6529 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6530 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6531 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006532
6533Overview:
6534"""""""""
6535
6536The '``mul``' instruction returns the product of its two operands.
6537
6538Arguments:
6539""""""""""
6540
6541The two arguments to the '``mul``' instruction must be
6542:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6543arguments must have identical types.
6544
6545Semantics:
6546""""""""""
6547
6548The value produced is the integer product of the two operands.
6549
6550If the result of the multiplication has unsigned overflow, the result
6551returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6552bit width of the result.
6553
6554Because LLVM integers use a two's complement representation, and the
6555result is the same width as the operands, this instruction returns the
6556correct result for both signed and unsigned integers. If a full product
6557(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6558sign-extended or zero-extended as appropriate to the width of the full
6559product.
6560
6561``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6562respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6563result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6564unsigned and/or signed overflow, respectively, occurs.
6565
6566Example:
6567""""""""
6568
Renato Golin124f2592016-07-20 12:16:38 +00006569.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006570
Tim Northover675a0962014-06-13 14:24:23 +00006571 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006572
6573.. _i_fmul:
6574
6575'``fmul``' Instruction
6576^^^^^^^^^^^^^^^^^^^^^^
6577
6578Syntax:
6579"""""""
6580
6581::
6582
Tim Northover675a0962014-06-13 14:24:23 +00006583 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006584
6585Overview:
6586"""""""""
6587
6588The '``fmul``' instruction returns the product of its two operands.
6589
6590Arguments:
6591""""""""""
6592
6593The two arguments to the '``fmul``' instruction must be :ref:`floating
6594point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6595Both arguments must have identical types.
6596
6597Semantics:
6598""""""""""
6599
Sanjay Patel7b722402018-03-07 17:18:22 +00006600The value produced is the floating-point product of the two operands.
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00006601This instruction is assumed to execute in the default floating-point
6602environment. It has no side effects. Users can not assume that any
6603floating-point exception state is updated by this instruction.
Sean Silvab084af42012-12-07 10:36:55 +00006604This instruction can also take any number of :ref:`fast-math
6605flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00006606unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006607
6608Example:
6609""""""""
6610
Renato Golin124f2592016-07-20 12:16:38 +00006611.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006612
Tim Northover675a0962014-06-13 14:24:23 +00006613 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006614
6615'``udiv``' Instruction
6616^^^^^^^^^^^^^^^^^^^^^^
6617
6618Syntax:
6619"""""""
6620
6621::
6622
Tim Northover675a0962014-06-13 14:24:23 +00006623 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6624 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006625
6626Overview:
6627"""""""""
6628
6629The '``udiv``' instruction returns the quotient of its two operands.
6630
6631Arguments:
6632""""""""""
6633
6634The two arguments to the '``udiv``' instruction must be
6635:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6636arguments must have identical types.
6637
6638Semantics:
6639""""""""""
6640
6641The value produced is the unsigned integer quotient of the two operands.
6642
6643Note that unsigned integer division and signed integer division are
6644distinct operations; for signed integer division, use '``sdiv``'.
6645
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006646Division by zero is undefined behavior. For vectors, if any element
6647of the divisor is zero, the operation has undefined behavior.
6648
Sean Silvab084af42012-12-07 10:36:55 +00006649
6650If the ``exact`` keyword is present, the result value of the ``udiv`` is
6651a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6652such, "((a udiv exact b) mul b) == a").
6653
6654Example:
6655""""""""
6656
Renato Golin124f2592016-07-20 12:16:38 +00006657.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006658
Tim Northover675a0962014-06-13 14:24:23 +00006659 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006660
6661'``sdiv``' Instruction
6662^^^^^^^^^^^^^^^^^^^^^^
6663
6664Syntax:
6665"""""""
6666
6667::
6668
Tim Northover675a0962014-06-13 14:24:23 +00006669 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6670 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006671
6672Overview:
6673"""""""""
6674
6675The '``sdiv``' instruction returns the quotient of its two operands.
6676
6677Arguments:
6678""""""""""
6679
6680The two arguments to the '``sdiv``' instruction must be
6681:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6682arguments must have identical types.
6683
6684Semantics:
6685""""""""""
6686
6687The value produced is the signed integer quotient of the two operands
6688rounded towards zero.
6689
6690Note that signed integer division and unsigned integer division are
6691distinct operations; for unsigned integer division, use '``udiv``'.
6692
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006693Division by zero is undefined behavior. For vectors, if any element
6694of the divisor is zero, the operation has undefined behavior.
6695Overflow also leads to undefined behavior; this is a rare case, but can
6696occur, for example, by doing a 32-bit division of -2147483648 by -1.
Sean Silvab084af42012-12-07 10:36:55 +00006697
6698If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6699a :ref:`poison value <poisonvalues>` if the result would be rounded.
6700
6701Example:
6702""""""""
6703
Renato Golin124f2592016-07-20 12:16:38 +00006704.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006705
Tim Northover675a0962014-06-13 14:24:23 +00006706 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006707
6708.. _i_fdiv:
6709
6710'``fdiv``' Instruction
6711^^^^^^^^^^^^^^^^^^^^^^
6712
6713Syntax:
6714"""""""
6715
6716::
6717
Tim Northover675a0962014-06-13 14:24:23 +00006718 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006719
6720Overview:
6721"""""""""
6722
6723The '``fdiv``' instruction returns the quotient of its two operands.
6724
6725Arguments:
6726""""""""""
6727
6728The two arguments to the '``fdiv``' instruction must be :ref:`floating
6729point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6730Both arguments must have identical types.
6731
6732Semantics:
6733""""""""""
6734
Sanjay Patel7b722402018-03-07 17:18:22 +00006735The value produced is the floating-point quotient of the two operands.
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00006736This instruction is assumed to execute in the default floating-point
6737environment. It has no side effects. Users can not assume that any
6738floating-point exception state is updated by this instruction.
Sean Silvab084af42012-12-07 10:36:55 +00006739This instruction can also take any number of :ref:`fast-math
6740flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00006741unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006742
6743Example:
6744""""""""
6745
Renato Golin124f2592016-07-20 12:16:38 +00006746.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006747
Tim Northover675a0962014-06-13 14:24:23 +00006748 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006749
6750'``urem``' Instruction
6751^^^^^^^^^^^^^^^^^^^^^^
6752
6753Syntax:
6754"""""""
6755
6756::
6757
Tim Northover675a0962014-06-13 14:24:23 +00006758 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006759
6760Overview:
6761"""""""""
6762
6763The '``urem``' instruction returns the remainder from the unsigned
6764division of its two arguments.
6765
6766Arguments:
6767""""""""""
6768
6769The two arguments to the '``urem``' instruction must be
6770:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6771arguments must have identical types.
6772
6773Semantics:
6774""""""""""
6775
6776This instruction returns the unsigned integer *remainder* of a division.
6777This instruction always performs an unsigned division to get the
6778remainder.
6779
6780Note that unsigned integer remainder and signed integer remainder are
6781distinct operations; for signed integer remainder, use '``srem``'.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00006782
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006783Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00006784For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006785undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006786
6787Example:
6788""""""""
6789
Renato Golin124f2592016-07-20 12:16:38 +00006790.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006791
Tim Northover675a0962014-06-13 14:24:23 +00006792 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006793
6794'``srem``' Instruction
6795^^^^^^^^^^^^^^^^^^^^^^
6796
6797Syntax:
6798"""""""
6799
6800::
6801
Tim Northover675a0962014-06-13 14:24:23 +00006802 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006803
6804Overview:
6805"""""""""
6806
6807The '``srem``' instruction returns the remainder from the signed
6808division of its two operands. This instruction can also take
6809:ref:`vector <t_vector>` versions of the values in which case the elements
6810must be integers.
6811
6812Arguments:
6813""""""""""
6814
6815The two arguments to the '``srem``' instruction must be
6816:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6817arguments must have identical types.
6818
6819Semantics:
6820""""""""""
6821
6822This instruction returns the *remainder* of a division (where the result
6823is either zero or has the same sign as the dividend, ``op1``), not the
6824*modulo* operator (where the result is either zero or has the same sign
6825as the divisor, ``op2``) of a value. For more information about the
6826difference, see `The Math
6827Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6828table of how this is implemented in various languages, please see
6829`Wikipedia: modulo
6830operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6831
6832Note that signed integer remainder and unsigned integer remainder are
6833distinct operations; for unsigned integer remainder, use '``urem``'.
6834
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006835Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00006836For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006837undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006838Overflow also leads to undefined behavior; this is a rare case, but can
6839occur, for example, by taking the remainder of a 32-bit division of
6840-2147483648 by -1. (The remainder doesn't actually overflow, but this
6841rule lets srem be implemented using instructions that return both the
6842result of the division and the remainder.)
6843
6844Example:
6845""""""""
6846
Renato Golin124f2592016-07-20 12:16:38 +00006847.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006848
Tim Northover675a0962014-06-13 14:24:23 +00006849 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006850
6851.. _i_frem:
6852
6853'``frem``' Instruction
6854^^^^^^^^^^^^^^^^^^^^^^
6855
6856Syntax:
6857"""""""
6858
6859::
6860
Tim Northover675a0962014-06-13 14:24:23 +00006861 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006862
6863Overview:
6864"""""""""
6865
6866The '``frem``' instruction returns the remainder from the division of
6867its two operands.
6868
6869Arguments:
6870""""""""""
6871
6872The two arguments to the '``frem``' instruction must be :ref:`floating
6873point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6874Both arguments must have identical types.
6875
6876Semantics:
6877""""""""""
6878
Sanjay Patel7b722402018-03-07 17:18:22 +00006879The value produced is the floating-point remainder of the two operands.
6880This is the same output as a libm '``fmod``' function, but without any
6881possibility of setting ``errno``. The remainder has the same sign as the
6882dividend.
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00006883This instruction is assumed to execute in the default floating-point
6884environment. It has no side effects. Users can not assume that any
6885floating-point exception state is updated by this instruction.
Sanjay Patel7b722402018-03-07 17:18:22 +00006886This instruction can also take any number of :ref:`fast-math
6887flags <fastmath>`, which are optimization hints to enable otherwise
6888unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006889
6890Example:
6891""""""""
6892
Renato Golin124f2592016-07-20 12:16:38 +00006893.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006894
Tim Northover675a0962014-06-13 14:24:23 +00006895 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006896
6897.. _bitwiseops:
6898
6899Bitwise Binary Operations
6900-------------------------
6901
6902Bitwise binary operators are used to do various forms of bit-twiddling
6903in a program. They are generally very efficient instructions and can
6904commonly be strength reduced from other instructions. They require two
6905operands of the same type, execute an operation on them, and produce a
6906single value. The resulting value is the same type as its operands.
6907
6908'``shl``' Instruction
6909^^^^^^^^^^^^^^^^^^^^^
6910
6911Syntax:
6912"""""""
6913
6914::
6915
Tim Northover675a0962014-06-13 14:24:23 +00006916 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6917 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6918 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6919 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006920
6921Overview:
6922"""""""""
6923
6924The '``shl``' instruction returns the first operand shifted to the left
6925a specified number of bits.
6926
6927Arguments:
6928""""""""""
6929
6930Both arguments to the '``shl``' instruction must be the same
6931:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6932'``op2``' is treated as an unsigned value.
6933
6934Semantics:
6935""""""""""
6936
6937The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6938where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006939dynamically) equal to or larger than the number of bits in
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006940``op1``, this instruction returns a :ref:`poison value <poisonvalues>`.
6941If the arguments are vectors, each vector element of ``op1`` is shifted
6942by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006943
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006944If the ``nuw`` keyword is present, then the shift produces a poison
6945value if it shifts out any non-zero bits.
6946If the ``nsw`` keyword is present, then the shift produces a poison
6947value it shifts out any bits that disagree with the resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00006948
6949Example:
6950""""""""
6951
Renato Golin124f2592016-07-20 12:16:38 +00006952.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006953
Tim Northover675a0962014-06-13 14:24:23 +00006954 <result> = shl i32 4, %var ; yields i32: 4 << %var
6955 <result> = shl i32 4, 2 ; yields i32: 16
6956 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006957 <result> = shl i32 1, 32 ; undefined
6958 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6959
6960'``lshr``' Instruction
6961^^^^^^^^^^^^^^^^^^^^^^
6962
6963Syntax:
6964"""""""
6965
6966::
6967
Tim Northover675a0962014-06-13 14:24:23 +00006968 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6969 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006970
6971Overview:
6972"""""""""
6973
6974The '``lshr``' instruction (logical shift right) returns the first
6975operand shifted to the right a specified number of bits with zero fill.
6976
6977Arguments:
6978""""""""""
6979
6980Both arguments to the '``lshr``' instruction must be the same
6981:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6982'``op2``' is treated as an unsigned value.
6983
6984Semantics:
6985""""""""""
6986
6987This instruction always performs a logical shift right operation. The
6988most significant bits of the result will be filled with zero bits after
6989the shift. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006990than the number of bits in ``op1``, this instruction returns a :ref:`poison
6991value <poisonvalues>`. If the arguments are vectors, each vector element
6992of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006993
6994If the ``exact`` keyword is present, the result value of the ``lshr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006995a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00006996
6997Example:
6998""""""""
6999
Renato Golin124f2592016-07-20 12:16:38 +00007000.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007001
Tim Northover675a0962014-06-13 14:24:23 +00007002 <result> = lshr i32 4, 1 ; yields i32:result = 2
7003 <result> = lshr i32 4, 2 ; yields i32:result = 1
7004 <result> = lshr i8 4, 3 ; yields i8:result = 0
7005 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00007006 <result> = lshr i32 1, 32 ; undefined
7007 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
7008
7009'``ashr``' Instruction
7010^^^^^^^^^^^^^^^^^^^^^^
7011
7012Syntax:
7013"""""""
7014
7015::
7016
Tim Northover675a0962014-06-13 14:24:23 +00007017 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
7018 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007019
7020Overview:
7021"""""""""
7022
7023The '``ashr``' instruction (arithmetic shift right) returns the first
7024operand shifted to the right a specified number of bits with sign
7025extension.
7026
7027Arguments:
7028""""""""""
7029
7030Both arguments to the '``ashr``' instruction must be the same
7031:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7032'``op2``' is treated as an unsigned value.
7033
7034Semantics:
7035""""""""""
7036
7037This instruction always performs an arithmetic shift right operation,
7038The most significant bits of the result will be filled with the sign bit
7039of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007040than the number of bits in ``op1``, this instruction returns a :ref:`poison
7041value <poisonvalues>`. If the arguments are vectors, each vector element
7042of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007043
7044If the ``exact`` keyword is present, the result value of the ``ashr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007045a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007046
7047Example:
7048""""""""
7049
Renato Golin124f2592016-07-20 12:16:38 +00007050.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007051
Tim Northover675a0962014-06-13 14:24:23 +00007052 <result> = ashr i32 4, 1 ; yields i32:result = 2
7053 <result> = ashr i32 4, 2 ; yields i32:result = 1
7054 <result> = ashr i8 4, 3 ; yields i8:result = 0
7055 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00007056 <result> = ashr i32 1, 32 ; undefined
7057 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
7058
7059'``and``' Instruction
7060^^^^^^^^^^^^^^^^^^^^^
7061
7062Syntax:
7063"""""""
7064
7065::
7066
Tim Northover675a0962014-06-13 14:24:23 +00007067 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007068
7069Overview:
7070"""""""""
7071
7072The '``and``' instruction returns the bitwise logical and of its two
7073operands.
7074
7075Arguments:
7076""""""""""
7077
7078The two arguments to the '``and``' instruction must be
7079:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7080arguments must have identical types.
7081
7082Semantics:
7083""""""""""
7084
7085The truth table used for the '``and``' instruction is:
7086
7087+-----+-----+-----+
7088| In0 | In1 | Out |
7089+-----+-----+-----+
7090| 0 | 0 | 0 |
7091+-----+-----+-----+
7092| 0 | 1 | 0 |
7093+-----+-----+-----+
7094| 1 | 0 | 0 |
7095+-----+-----+-----+
7096| 1 | 1 | 1 |
7097+-----+-----+-----+
7098
7099Example:
7100""""""""
7101
Renato Golin124f2592016-07-20 12:16:38 +00007102.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007103
Tim Northover675a0962014-06-13 14:24:23 +00007104 <result> = and i32 4, %var ; yields i32:result = 4 & %var
7105 <result> = and i32 15, 40 ; yields i32:result = 8
7106 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00007107
7108'``or``' Instruction
7109^^^^^^^^^^^^^^^^^^^^
7110
7111Syntax:
7112"""""""
7113
7114::
7115
Tim Northover675a0962014-06-13 14:24:23 +00007116 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007117
7118Overview:
7119"""""""""
7120
7121The '``or``' instruction returns the bitwise logical inclusive or of its
7122two operands.
7123
7124Arguments:
7125""""""""""
7126
7127The two arguments to the '``or``' instruction must be
7128:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7129arguments must have identical types.
7130
7131Semantics:
7132""""""""""
7133
7134The truth table used for the '``or``' instruction is:
7135
7136+-----+-----+-----+
7137| In0 | In1 | Out |
7138+-----+-----+-----+
7139| 0 | 0 | 0 |
7140+-----+-----+-----+
7141| 0 | 1 | 1 |
7142+-----+-----+-----+
7143| 1 | 0 | 1 |
7144+-----+-----+-----+
7145| 1 | 1 | 1 |
7146+-----+-----+-----+
7147
7148Example:
7149""""""""
7150
7151::
7152
Tim Northover675a0962014-06-13 14:24:23 +00007153 <result> = or i32 4, %var ; yields i32:result = 4 | %var
7154 <result> = or i32 15, 40 ; yields i32:result = 47
7155 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00007156
7157'``xor``' Instruction
7158^^^^^^^^^^^^^^^^^^^^^
7159
7160Syntax:
7161"""""""
7162
7163::
7164
Tim Northover675a0962014-06-13 14:24:23 +00007165 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007166
7167Overview:
7168"""""""""
7169
7170The '``xor``' instruction returns the bitwise logical exclusive or of
7171its two operands. The ``xor`` is used to implement the "one's
7172complement" operation, which is the "~" operator in C.
7173
7174Arguments:
7175""""""""""
7176
7177The two arguments to the '``xor``' instruction must be
7178:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7179arguments must have identical types.
7180
7181Semantics:
7182""""""""""
7183
7184The truth table used for the '``xor``' instruction is:
7185
7186+-----+-----+-----+
7187| In0 | In1 | Out |
7188+-----+-----+-----+
7189| 0 | 0 | 0 |
7190+-----+-----+-----+
7191| 0 | 1 | 1 |
7192+-----+-----+-----+
7193| 1 | 0 | 1 |
7194+-----+-----+-----+
7195| 1 | 1 | 0 |
7196+-----+-----+-----+
7197
7198Example:
7199""""""""
7200
Renato Golin124f2592016-07-20 12:16:38 +00007201.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007202
Tim Northover675a0962014-06-13 14:24:23 +00007203 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
7204 <result> = xor i32 15, 40 ; yields i32:result = 39
7205 <result> = xor i32 4, 8 ; yields i32:result = 12
7206 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00007207
7208Vector Operations
7209-----------------
7210
7211LLVM supports several instructions to represent vector operations in a
7212target-independent manner. These instructions cover the element-access
7213and vector-specific operations needed to process vectors effectively.
7214While LLVM does directly support these vector operations, many
7215sophisticated algorithms will want to use target-specific intrinsics to
7216take full advantage of a specific target.
7217
7218.. _i_extractelement:
7219
7220'``extractelement``' Instruction
7221^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7222
7223Syntax:
7224"""""""
7225
7226::
7227
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007228 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00007229
7230Overview:
7231"""""""""
7232
7233The '``extractelement``' instruction extracts a single scalar element
7234from a vector at a specified index.
7235
7236Arguments:
7237""""""""""
7238
7239The first operand of an '``extractelement``' instruction is a value of
7240:ref:`vector <t_vector>` type. The second operand is an index indicating
7241the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007242variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007243
7244Semantics:
7245""""""""""
7246
7247The result is a scalar of the same type as the element type of ``val``.
7248Its value is the value at position ``idx`` of ``val``. If ``idx``
7249exceeds the length of ``val``, the results are undefined.
7250
7251Example:
7252""""""""
7253
Renato Golin124f2592016-07-20 12:16:38 +00007254.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007255
7256 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
7257
7258.. _i_insertelement:
7259
7260'``insertelement``' Instruction
7261^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7262
7263Syntax:
7264"""""""
7265
7266::
7267
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007268 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00007269
7270Overview:
7271"""""""""
7272
7273The '``insertelement``' instruction inserts a scalar element into a
7274vector at a specified index.
7275
7276Arguments:
7277""""""""""
7278
7279The first operand of an '``insertelement``' instruction is a value of
7280:ref:`vector <t_vector>` type. The second operand is a scalar value whose
7281type must equal the element type of the first operand. The third operand
7282is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007283index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007284
7285Semantics:
7286""""""""""
7287
7288The result is a vector of the same type as ``val``. Its element values
7289are those of ``val`` except at position ``idx``, where it gets the value
7290``elt``. If ``idx`` exceeds the length of ``val``, the results are
7291undefined.
7292
7293Example:
7294""""""""
7295
Renato Golin124f2592016-07-20 12:16:38 +00007296.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007297
7298 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
7299
7300.. _i_shufflevector:
7301
7302'``shufflevector``' Instruction
7303^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7304
7305Syntax:
7306"""""""
7307
7308::
7309
7310 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
7311
7312Overview:
7313"""""""""
7314
7315The '``shufflevector``' instruction constructs a permutation of elements
7316from two input vectors, returning a vector with the same element type as
7317the input and length that is the same as the shuffle mask.
7318
7319Arguments:
7320""""""""""
7321
7322The first two operands of a '``shufflevector``' instruction are vectors
7323with the same type. The third argument is a shuffle mask whose element
7324type is always 'i32'. The result of the instruction is a vector whose
7325length is the same as the shuffle mask and whose element type is the
7326same as the element type of the first two operands.
7327
7328The shuffle mask operand is required to be a constant vector with either
7329constant integer or undef values.
7330
7331Semantics:
7332""""""""""
7333
7334The elements of the two input vectors are numbered from left to right
7335across both of the vectors. The shuffle mask operand specifies, for each
7336element of the result vector, which element of the two input vectors the
Sanjay Patel6e410182017-04-12 18:39:53 +00007337result element gets. If the shuffle mask is undef, the result vector is
7338undef. If any element of the mask operand is undef, that element of the
7339result is undef. If the shuffle mask selects an undef element from one
7340of the input vectors, the resulting element is undef.
Sean Silvab084af42012-12-07 10:36:55 +00007341
7342Example:
7343""""""""
7344
Renato Golin124f2592016-07-20 12:16:38 +00007345.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007346
7347 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7348 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
7349 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
7350 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
7351 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
7352 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
7353 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7354 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
7355
7356Aggregate Operations
7357--------------------
7358
7359LLVM supports several instructions for working with
7360:ref:`aggregate <t_aggregate>` values.
7361
7362.. _i_extractvalue:
7363
7364'``extractvalue``' Instruction
7365^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7366
7367Syntax:
7368"""""""
7369
7370::
7371
7372 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
7373
7374Overview:
7375"""""""""
7376
7377The '``extractvalue``' instruction extracts the value of a member field
7378from an :ref:`aggregate <t_aggregate>` value.
7379
7380Arguments:
7381""""""""""
7382
7383The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00007384:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00007385constant indices to specify which value to extract in a similar manner
7386as indices in a '``getelementptr``' instruction.
7387
7388The major differences to ``getelementptr`` indexing are:
7389
7390- Since the value being indexed is not a pointer, the first index is
7391 omitted and assumed to be zero.
7392- At least one index must be specified.
7393- Not only struct indices but also array indices must be in bounds.
7394
7395Semantics:
7396""""""""""
7397
7398The result is the value at the position in the aggregate specified by
7399the index operands.
7400
7401Example:
7402""""""""
7403
Renato Golin124f2592016-07-20 12:16:38 +00007404.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007405
7406 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
7407
7408.. _i_insertvalue:
7409
7410'``insertvalue``' Instruction
7411^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7412
7413Syntax:
7414"""""""
7415
7416::
7417
7418 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
7419
7420Overview:
7421"""""""""
7422
7423The '``insertvalue``' instruction inserts a value into a member field in
7424an :ref:`aggregate <t_aggregate>` value.
7425
7426Arguments:
7427""""""""""
7428
7429The first operand of an '``insertvalue``' instruction is a value of
7430:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
7431a first-class value to insert. The following operands are constant
7432indices indicating the position at which to insert the value in a
7433similar manner as indices in a '``extractvalue``' instruction. The value
7434to insert must have the same type as the value identified by the
7435indices.
7436
7437Semantics:
7438""""""""""
7439
7440The result is an aggregate of the same type as ``val``. Its value is
7441that of ``val`` except that the value at the position specified by the
7442indices is that of ``elt``.
7443
7444Example:
7445""""""""
7446
7447.. code-block:: llvm
7448
7449 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
7450 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00007451 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00007452
7453.. _memoryops:
7454
7455Memory Access and Addressing Operations
7456---------------------------------------
7457
7458A key design point of an SSA-based representation is how it represents
7459memory. In LLVM, no memory locations are in SSA form, which makes things
7460very simple. This section describes how to read, write, and allocate
7461memory in LLVM.
7462
7463.. _i_alloca:
7464
7465'``alloca``' Instruction
7466^^^^^^^^^^^^^^^^^^^^^^^^
7467
7468Syntax:
7469"""""""
7470
7471::
7472
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007473 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result
Sean Silvab084af42012-12-07 10:36:55 +00007474
7475Overview:
7476"""""""""
7477
7478The '``alloca``' instruction allocates memory on the stack frame of the
7479currently executing function, to be automatically released when this
7480function returns to its caller. The object is always allocated in the
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007481address space for allocas indicated in the datalayout.
Sean Silvab084af42012-12-07 10:36:55 +00007482
7483Arguments:
7484""""""""""
7485
7486The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7487bytes of memory on the runtime stack, returning a pointer of the
7488appropriate type to the program. If "NumElements" is specified, it is
7489the number of elements allocated, otherwise "NumElements" is defaulted
7490to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007491allocation is guaranteed to be aligned to at least that boundary. The
7492alignment may not be greater than ``1 << 29``. If not specified, or if
7493zero, the target can choose to align the allocation on any convenient
7494boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007495
7496'``type``' may be any sized type.
7497
7498Semantics:
7499""""""""""
7500
7501Memory is allocated; a pointer is returned. The operation is undefined
7502if there is insufficient stack space for the allocation. '``alloca``'d
7503memory is automatically released when the function returns. The
7504'``alloca``' instruction is commonly used to represent automatic
7505variables that must have an address available. When the function returns
7506(either with the ``ret`` or ``resume`` instructions), the memory is
7507reclaimed. Allocating zero bytes is legal, but the result is undefined.
7508The order in which memory is allocated (ie., which way the stack grows)
7509is not specified.
7510
7511Example:
7512""""""""
7513
7514.. code-block:: llvm
7515
Tim Northover675a0962014-06-13 14:24:23 +00007516 %ptr = alloca i32 ; yields i32*:ptr
7517 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7518 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7519 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007520
7521.. _i_load:
7522
7523'``load``' Instruction
7524^^^^^^^^^^^^^^^^^^^^^^
7525
7526Syntax:
7527"""""""
7528
7529::
7530
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007531 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007532 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007533 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007534 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007535 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007536
7537Overview:
7538"""""""""
7539
7540The '``load``' instruction is used to read from memory.
7541
7542Arguments:
7543""""""""""
7544
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007545The argument to the ``load`` instruction specifies the memory address from which
7546to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7547known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7548the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7549modify the number or order of execution of this ``load`` with other
7550:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007551
JF Bastiend1fb5852015-12-17 22:09:19 +00007552If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007553<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
7554``release`` and ``acq_rel`` orderings are not valid on ``load`` instructions.
7555Atomic loads produce :ref:`defined <memmodel>` results when they may see
7556multiple atomic stores. The type of the pointee must be an integer, pointer, or
7557floating-point type whose bit width is a power of two greater than or equal to
7558eight and less than or equal to a target-specific size limit. ``align`` must be
7559explicitly specified on atomic loads, and the load has undefined behavior if the
7560alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00007561pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007562
7563The optional constant ``align`` argument specifies the alignment of the
7564operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007565or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007566alignment for the target. It is the responsibility of the code emitter
7567to ensure that the alignment information is correct. Overestimating the
7568alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007569may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007570maximum possible alignment is ``1 << 29``. An alignment value higher
7571than the size of the loaded type implies memory up to the alignment
7572value bytes can be safely loaded without trapping in the default
7573address space. Access of the high bytes can interfere with debugging
7574tools, so should not be accessed if the function has the
7575``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007576
7577The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007578metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007579``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007580metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007581that this load is not expected to be reused in the cache. The code
7582generator may select special instructions to save cache bandwidth, such
7583as the ``MOVNT`` instruction on x86.
7584
7585The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007586metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007587entries. If a load instruction tagged with the ``!invariant.load``
7588metadata is executed, the optimizer may assume the memory location
7589referenced by the load contains the same value at all points in the
7590program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007591
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007592The optional ``!invariant.group`` metadata must reference a single metadata name
7593 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7594
Philip Reamescdb72f32014-10-20 22:40:55 +00007595The optional ``!nonnull`` metadata must reference a single
7596metadata name ``<index>`` corresponding to a metadata node with no
7597entries. The existence of the ``!nonnull`` metadata on the
7598instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007599never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007600on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007601to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007602
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007603The optional ``!dereferenceable`` metadata must reference a single metadata
7604name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007605entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007606tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007607The number of bytes known to be dereferenceable is specified by the integer
7608value in the metadata node. This is analogous to the ''dereferenceable''
7609attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007610to loads of a pointer type.
7611
7612The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007613metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7614``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007615instruction tells the optimizer that the value loaded is known to be either
7616dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007617The number of bytes known to be dereferenceable is specified by the integer
7618value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7619attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007620to loads of a pointer type.
7621
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007622The optional ``!align`` metadata must reference a single metadata name
7623``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7624The existence of the ``!align`` metadata on the instruction tells the
7625optimizer that the value loaded is known to be aligned to a boundary specified
7626by the integer value in the metadata node. The alignment must be a power of 2.
7627This is analogous to the ''align'' attribute on parameters and return values.
7628This metadata can only be applied to loads of a pointer type.
7629
Sean Silvab084af42012-12-07 10:36:55 +00007630Semantics:
7631""""""""""
7632
7633The location of memory pointed to is loaded. If the value being loaded
7634is of scalar type then the number of bytes read does not exceed the
7635minimum number of bytes needed to hold all bits of the type. For
7636example, loading an ``i24`` reads at most three bytes. When loading a
7637value of a type like ``i20`` with a size that is not an integral number
7638of bytes, the result is undefined if the value was not originally
7639written using a store of the same type.
7640
7641Examples:
7642"""""""""
7643
7644.. code-block:: llvm
7645
Tim Northover675a0962014-06-13 14:24:23 +00007646 %ptr = alloca i32 ; yields i32*:ptr
7647 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007648 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007649
7650.. _i_store:
7651
7652'``store``' Instruction
7653^^^^^^^^^^^^^^^^^^^^^^^
7654
7655Syntax:
7656"""""""
7657
7658::
7659
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007660 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007661 store atomic [volatile] <ty> <value>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007662
7663Overview:
7664"""""""""
7665
7666The '``store``' instruction is used to write to memory.
7667
7668Arguments:
7669""""""""""
7670
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007671There are two arguments to the ``store`` instruction: a value to store and an
7672address at which to store it. The type of the ``<pointer>`` operand must be a
7673pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7674operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7675allowed to modify the number or order of execution of this ``store`` with other
7676:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7677<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7678structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007679
JF Bastiend1fb5852015-12-17 22:09:19 +00007680If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007681<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
7682``acquire`` and ``acq_rel`` orderings aren't valid on ``store`` instructions.
7683Atomic loads produce :ref:`defined <memmodel>` results when they may see
7684multiple atomic stores. The type of the pointee must be an integer, pointer, or
7685floating-point type whose bit width is a power of two greater than or equal to
7686eight and less than or equal to a target-specific size limit. ``align`` must be
7687explicitly specified on atomic stores, and the store has undefined behavior if
7688the alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00007689pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007690
Eli Benderskyca380842013-04-17 17:17:20 +00007691The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007692operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007693or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007694alignment for the target. It is the responsibility of the code emitter
7695to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007696alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007697alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007698safe. The maximum possible alignment is ``1 << 29``. An alignment
7699value higher than the size of the stored type implies memory up to the
7700alignment value bytes can be stored to without trapping in the default
7701address space. Storing to the higher bytes however may result in data
7702races if another thread can access the same address. Introducing a
7703data race is not allowed. Storing to the extra bytes is not allowed
7704even in situations where a data race is known to not exist if the
7705function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007706
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007707The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007708name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007709value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007710tells the optimizer and code generator that this load is not expected to
7711be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007712instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007713x86.
7714
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007715The optional ``!invariant.group`` metadata must reference a
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007716single metadata name ``<index>``. See ``invariant.group`` metadata.
7717
Sean Silvab084af42012-12-07 10:36:55 +00007718Semantics:
7719""""""""""
7720
Eli Benderskyca380842013-04-17 17:17:20 +00007721The contents of memory are updated to contain ``<value>`` at the
7722location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007723of scalar type then the number of bytes written does not exceed the
7724minimum number of bytes needed to hold all bits of the type. For
7725example, storing an ``i24`` writes at most three bytes. When writing a
7726value of a type like ``i20`` with a size that is not an integral number
7727of bytes, it is unspecified what happens to the extra bits that do not
7728belong to the type, but they will typically be overwritten.
7729
7730Example:
7731""""""""
7732
7733.. code-block:: llvm
7734
Tim Northover675a0962014-06-13 14:24:23 +00007735 %ptr = alloca i32 ; yields i32*:ptr
7736 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007737 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007738
7739.. _i_fence:
7740
7741'``fence``' Instruction
7742^^^^^^^^^^^^^^^^^^^^^^^
7743
7744Syntax:
7745"""""""
7746
7747::
7748
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007749 fence [syncscope("<target-scope>")] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007750
7751Overview:
7752"""""""""
7753
7754The '``fence``' instruction is used to introduce happens-before edges
7755between operations.
7756
7757Arguments:
7758""""""""""
7759
7760'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7761defines what *synchronizes-with* edges they add. They can only be given
7762``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7763
7764Semantics:
7765""""""""""
7766
7767A fence A which has (at least) ``release`` ordering semantics
7768*synchronizes with* a fence B with (at least) ``acquire`` ordering
7769semantics if and only if there exist atomic operations X and Y, both
7770operating on some atomic object M, such that A is sequenced before X, X
7771modifies M (either directly or through some side effect of a sequence
7772headed by X), Y is sequenced before B, and Y observes M. This provides a
7773*happens-before* dependency between A and B. Rather than an explicit
7774``fence``, one (but not both) of the atomic operations X or Y might
7775provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7776still *synchronize-with* the explicit ``fence`` and establish the
7777*happens-before* edge.
7778
7779A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7780``acquire`` and ``release`` semantics specified above, participates in
7781the global program order of other ``seq_cst`` operations and/or fences.
7782
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007783A ``fence`` instruction can also take an optional
7784":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00007785
7786Example:
7787""""""""
7788
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007789.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007790
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007791 fence acquire ; yields void
7792 fence syncscope("singlethread") seq_cst ; yields void
7793 fence syncscope("agent") seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007794
7795.. _i_cmpxchg:
7796
7797'``cmpxchg``' Instruction
7798^^^^^^^^^^^^^^^^^^^^^^^^^
7799
7800Syntax:
7801"""""""
7802
7803::
7804
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007805 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [syncscope("<target-scope>")] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007806
7807Overview:
7808"""""""""
7809
7810The '``cmpxchg``' instruction is used to atomically modify memory. It
7811loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007812equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007813
7814Arguments:
7815""""""""""
7816
7817There are three arguments to the '``cmpxchg``' instruction: an address
7818to operate on, a value to compare to the value currently be at that
7819address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007820are equal. The type of '<cmp>' must be an integer or pointer type whose
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007821bit width is a power of two greater than or equal to eight and less
Philip Reames1960cfd2016-02-19 00:06:41 +00007822than or equal to a target-specific size limit. '<cmp>' and '<new>' must
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007823have the same type, and the type of '<pointer>' must be a pointer to
7824that type. If the ``cmpxchg`` is marked as ``volatile``, then the
Philip Reames1960cfd2016-02-19 00:06:41 +00007825optimizer is not allowed to modify the number or order of execution of
7826this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007827
Tim Northovere94a5182014-03-11 10:48:52 +00007828The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007829``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7830must be at least ``monotonic``, the ordering constraint on failure must be no
7831stronger than that on success, and the failure ordering cannot be either
7832``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007833
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007834A ``cmpxchg`` instruction can also take an optional
7835":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00007836
7837The pointer passed into cmpxchg must have alignment greater than or
7838equal to the size in memory of the operand.
7839
7840Semantics:
7841""""""""""
7842
Tim Northover420a2162014-06-13 14:24:07 +00007843The contents of memory at the location specified by the '``<pointer>``' operand
Matthias Braun93f2b4b2017-08-09 22:22:04 +00007844is read and compared to '``<cmp>``'; if the values are equal, '``<new>``' is
7845written to the location. The original value at the location is returned,
7846together with a flag indicating success (true) or failure (false).
Tim Northover420a2162014-06-13 14:24:07 +00007847
7848If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7849permitted: the operation may not write ``<new>`` even if the comparison
7850matched.
7851
7852If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7853if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007854
Tim Northovere94a5182014-03-11 10:48:52 +00007855A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7856identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7857load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007858
7859Example:
7860""""""""
7861
7862.. code-block:: llvm
7863
7864 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007865 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007866 br label %loop
7867
7868 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007869 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007870 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007871 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007872 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7873 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007874 br i1 %success, label %done, label %loop
7875
7876 done:
7877 ...
7878
7879.. _i_atomicrmw:
7880
7881'``atomicrmw``' Instruction
7882^^^^^^^^^^^^^^^^^^^^^^^^^^^
7883
7884Syntax:
7885"""""""
7886
7887::
7888
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007889 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [syncscope("<target-scope>")] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007890
7891Overview:
7892"""""""""
7893
7894The '``atomicrmw``' instruction is used to atomically modify memory.
7895
7896Arguments:
7897""""""""""
7898
7899There are three arguments to the '``atomicrmw``' instruction: an
7900operation to apply, an address whose value to modify, an argument to the
7901operation. The operation must be one of the following keywords:
7902
7903- xchg
7904- add
7905- sub
7906- and
7907- nand
7908- or
7909- xor
7910- max
7911- min
7912- umax
7913- umin
7914
7915The type of '<value>' must be an integer type whose bit width is a power
7916of two greater than or equal to eight and less than or equal to a
7917target-specific size limit. The type of the '``<pointer>``' operand must
7918be a pointer to that type. If the ``atomicrmw`` is marked as
7919``volatile``, then the optimizer is not allowed to modify the number or
7920order of execution of this ``atomicrmw`` with other :ref:`volatile
7921operations <volatile>`.
7922
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007923A ``atomicrmw`` instruction can also take an optional
7924":ref:`syncscope <syncscope>`" argument.
7925
Sean Silvab084af42012-12-07 10:36:55 +00007926Semantics:
7927""""""""""
7928
7929The contents of memory at the location specified by the '``<pointer>``'
7930operand are atomically read, modified, and written back. The original
7931value at the location is returned. The modification is specified by the
7932operation argument:
7933
7934- xchg: ``*ptr = val``
7935- add: ``*ptr = *ptr + val``
7936- sub: ``*ptr = *ptr - val``
7937- and: ``*ptr = *ptr & val``
7938- nand: ``*ptr = ~(*ptr & val)``
7939- or: ``*ptr = *ptr | val``
7940- xor: ``*ptr = *ptr ^ val``
7941- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7942- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7943- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7944 comparison)
7945- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7946 comparison)
7947
7948Example:
7949""""""""
7950
7951.. code-block:: llvm
7952
Tim Northover675a0962014-06-13 14:24:23 +00007953 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007954
7955.. _i_getelementptr:
7956
7957'``getelementptr``' Instruction
7958^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7959
7960Syntax:
7961"""""""
7962
7963::
7964
Peter Collingbourned93620b2016-11-10 22:34:55 +00007965 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7966 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
7967 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007968
7969Overview:
7970"""""""""
7971
7972The '``getelementptr``' instruction is used to get the address of a
7973subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007974address calculation only and does not access memory. The instruction can also
7975be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007976
7977Arguments:
7978""""""""""
7979
David Blaikie16a97eb2015-03-04 22:02:58 +00007980The first argument is always a type used as the basis for the calculations.
7981The second argument is always a pointer or a vector of pointers, and is the
7982base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007983that indicate which of the elements of the aggregate object are indexed.
7984The interpretation of each index is dependent on the type being indexed
7985into. The first index always indexes the pointer value given as the
David Blaikief91b0302017-06-19 05:34:21 +00007986second argument, the second index indexes a value of the type pointed to
Sean Silvab084af42012-12-07 10:36:55 +00007987(not necessarily the value directly pointed to, since the first index
7988can be non-zero), etc. The first type indexed into must be a pointer
7989value, subsequent types can be arrays, vectors, and structs. Note that
7990subsequent types being indexed into can never be pointers, since that
7991would require loading the pointer before continuing calculation.
7992
7993The type of each index argument depends on the type it is indexing into.
7994When indexing into a (optionally packed) structure, only ``i32`` integer
7995**constants** are allowed (when using a vector of indices they must all
7996be the **same** ``i32`` integer constant). When indexing into an array,
7997pointer or vector, integers of any width are allowed, and they are not
7998required to be constant. These integers are treated as signed values
7999where relevant.
8000
8001For example, let's consider a C code fragment and how it gets compiled
8002to LLVM:
8003
8004.. code-block:: c
8005
8006 struct RT {
8007 char A;
8008 int B[10][20];
8009 char C;
8010 };
8011 struct ST {
8012 int X;
8013 double Y;
8014 struct RT Z;
8015 };
8016
8017 int *foo(struct ST *s) {
8018 return &s[1].Z.B[5][13];
8019 }
8020
8021The LLVM code generated by Clang is:
8022
8023.. code-block:: llvm
8024
8025 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
8026 %struct.ST = type { i32, double, %struct.RT }
8027
8028 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
8029 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00008030 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00008031 ret i32* %arrayidx
8032 }
8033
8034Semantics:
8035""""""""""
8036
8037In the example above, the first index is indexing into the
8038'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
8039= '``{ i32, double, %struct.RT }``' type, a structure. The second index
8040indexes into the third element of the structure, yielding a
8041'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
8042structure. The third index indexes into the second element of the
8043structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
8044dimensions of the array are subscripted into, yielding an '``i32``'
8045type. The '``getelementptr``' instruction returns a pointer to this
8046element, thus computing a value of '``i32*``' type.
8047
8048Note that it is perfectly legal to index partially through a structure,
8049returning a pointer to an inner element. Because of this, the LLVM code
8050for the given testcase is equivalent to:
8051
8052.. code-block:: llvm
8053
8054 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00008055 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
8056 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
8057 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
8058 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
8059 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00008060 ret i32* %t5
8061 }
8062
8063If the ``inbounds`` keyword is present, the result value of the
8064``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
8065pointer is not an *in bounds* address of an allocated object, or if any
8066of the addresses that would be formed by successive addition of the
8067offsets implied by the indices to the base address with infinitely
8068precise signed arithmetic are not an *in bounds* address of that
8069allocated object. The *in bounds* addresses for an allocated object are
8070all the addresses that point into the object, plus the address one byte
Eli Friedman13f2e352017-02-23 00:48:18 +00008071past the end. The only *in bounds* address for a null pointer in the
8072default address-space is the null pointer itself. In cases where the
8073base is a vector of pointers the ``inbounds`` keyword applies to each
8074of the computations element-wise.
Sean Silvab084af42012-12-07 10:36:55 +00008075
8076If the ``inbounds`` keyword is not present, the offsets are added to the
8077base address with silently-wrapping two's complement arithmetic. If the
8078offsets have a different width from the pointer, they are sign-extended
8079or truncated to the width of the pointer. The result value of the
8080``getelementptr`` may be outside the object pointed to by the base
8081pointer. The result value may not necessarily be used to access memory
8082though, even if it happens to point into allocated storage. See the
8083:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
8084information.
8085
Peter Collingbourned93620b2016-11-10 22:34:55 +00008086If the ``inrange`` keyword is present before any index, loading from or
8087storing to any pointer derived from the ``getelementptr`` has undefined
8088behavior if the load or store would access memory outside of the bounds of
8089the element selected by the index marked as ``inrange``. The result of a
8090pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
8091involving memory) involving a pointer derived from a ``getelementptr`` with
8092the ``inrange`` keyword is undefined, with the exception of comparisons
8093in the case where both operands are in the range of the element selected
8094by the ``inrange`` keyword, inclusive of the address one past the end of
8095that element. Note that the ``inrange`` keyword is currently only allowed
8096in constant ``getelementptr`` expressions.
8097
Sean Silvab084af42012-12-07 10:36:55 +00008098The getelementptr instruction is often confusing. For some more insight
8099into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
8100
8101Example:
8102""""""""
8103
8104.. code-block:: llvm
8105
8106 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008107 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008108 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008109 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008110 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008111 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008112 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008113 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00008114
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008115Vector of pointers:
8116"""""""""""""""""""
8117
8118The ``getelementptr`` returns a vector of pointers, instead of a single address,
8119when one or more of its arguments is a vector. In such cases, all vector
8120arguments should have the same number of elements, and every scalar argument
8121will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00008122
8123.. code-block:: llvm
8124
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008125 ; All arguments are vectors:
8126 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
8127 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008128
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008129 ; Add the same scalar offset to each pointer of a vector:
8130 ; A[i] = ptrs[i] + offset*sizeof(i8)
8131 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00008132
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008133 ; Add distinct offsets to the same pointer:
8134 ; A[i] = ptr + offsets[i]*sizeof(i8)
8135 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008136
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008137 ; In all cases described above the type of the result is <4 x i8*>
8138
8139The two following instructions are equivalent:
8140
8141.. code-block:: llvm
8142
8143 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8144 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
8145 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
8146 <4 x i32> %ind4,
8147 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00008148
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008149 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8150 i32 2, i32 1, <4 x i32> %ind4, i64 13
8151
8152Let's look at the C code, where the vector version of ``getelementptr``
8153makes sense:
8154
8155.. code-block:: c
8156
8157 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00008158 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008159 for (int i = 0; i < size; ++i) {
8160 A[i] = B[C[i]];
8161 }
8162
8163.. code-block:: llvm
8164
8165 ; get pointers for 8 elements from array B
8166 %ptrs = getelementptr double, double* %B, <8 x i32> %C
8167 ; load 8 elements from array B into A
Elad Cohenef5798a2017-05-03 12:28:54 +00008168 %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008169 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00008170
8171Conversion Operations
8172---------------------
8173
8174The instructions in this category are the conversion instructions
8175(casting) which all take a single operand and a type. They perform
8176various bit conversions on the operand.
8177
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008178.. _i_trunc:
8179
Sean Silvab084af42012-12-07 10:36:55 +00008180'``trunc .. to``' Instruction
8181^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8182
8183Syntax:
8184"""""""
8185
8186::
8187
8188 <result> = trunc <ty> <value> to <ty2> ; yields ty2
8189
8190Overview:
8191"""""""""
8192
8193The '``trunc``' instruction truncates its operand to the type ``ty2``.
8194
8195Arguments:
8196""""""""""
8197
8198The '``trunc``' instruction takes a value to trunc, and a type to trunc
8199it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
8200of the same number of integers. The bit size of the ``value`` must be
8201larger than the bit size of the destination type, ``ty2``. Equal sized
8202types are not allowed.
8203
8204Semantics:
8205""""""""""
8206
8207The '``trunc``' instruction truncates the high order bits in ``value``
8208and converts the remaining bits to ``ty2``. Since the source size must
8209be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
8210It will always truncate bits.
8211
8212Example:
8213""""""""
8214
8215.. code-block:: llvm
8216
8217 %X = trunc i32 257 to i8 ; yields i8:1
8218 %Y = trunc i32 123 to i1 ; yields i1:true
8219 %Z = trunc i32 122 to i1 ; yields i1:false
8220 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
8221
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008222.. _i_zext:
8223
Sean Silvab084af42012-12-07 10:36:55 +00008224'``zext .. to``' Instruction
8225^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8226
8227Syntax:
8228"""""""
8229
8230::
8231
8232 <result> = zext <ty> <value> to <ty2> ; yields ty2
8233
8234Overview:
8235"""""""""
8236
8237The '``zext``' instruction zero extends its operand to type ``ty2``.
8238
8239Arguments:
8240""""""""""
8241
8242The '``zext``' instruction takes a value to cast, and a type to cast it
8243to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8244the same number of integers. The bit size of the ``value`` must be
8245smaller than the bit size of the destination type, ``ty2``.
8246
8247Semantics:
8248""""""""""
8249
8250The ``zext`` fills the high order bits of the ``value`` with zero bits
8251until it reaches the size of the destination type, ``ty2``.
8252
8253When zero extending from i1, the result will always be either 0 or 1.
8254
8255Example:
8256""""""""
8257
8258.. code-block:: llvm
8259
8260 %X = zext i32 257 to i64 ; yields i64:257
8261 %Y = zext i1 true to i32 ; yields i32:1
8262 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8263
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008264.. _i_sext:
8265
Sean Silvab084af42012-12-07 10:36:55 +00008266'``sext .. to``' Instruction
8267^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8268
8269Syntax:
8270"""""""
8271
8272::
8273
8274 <result> = sext <ty> <value> to <ty2> ; yields ty2
8275
8276Overview:
8277"""""""""
8278
8279The '``sext``' sign extends ``value`` to the type ``ty2``.
8280
8281Arguments:
8282""""""""""
8283
8284The '``sext``' instruction takes a value to cast, and a type to cast it
8285to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8286the same number of integers. The bit size of the ``value`` must be
8287smaller than the bit size of the destination type, ``ty2``.
8288
8289Semantics:
8290""""""""""
8291
8292The '``sext``' instruction performs a sign extension by copying the sign
8293bit (highest order bit) of the ``value`` until it reaches the bit size
8294of the type ``ty2``.
8295
8296When sign extending from i1, the extension always results in -1 or 0.
8297
8298Example:
8299""""""""
8300
8301.. code-block:: llvm
8302
8303 %X = sext i8 -1 to i16 ; yields i16 :65535
8304 %Y = sext i1 true to i32 ; yields i32:-1
8305 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8306
8307'``fptrunc .. to``' Instruction
8308^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8309
8310Syntax:
8311"""""""
8312
8313::
8314
8315 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
8316
8317Overview:
8318"""""""""
8319
8320The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
8321
8322Arguments:
8323""""""""""
8324
8325The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
8326value to cast and a :ref:`floating point <t_floating>` type to cast it to.
8327The size of ``value`` must be larger than the size of ``ty2``. This
8328implies that ``fptrunc`` cannot be used to make a *no-op cast*.
8329
8330Semantics:
8331""""""""""
8332
Dan Liew50456fb2015-09-03 18:43:56 +00008333The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00008334:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00008335point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
8336destination type, ``ty2``, then the results are undefined. If the cast produces
8337an inexact result, how rounding is performed (e.g. truncation, also known as
8338round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00008339
8340Example:
8341""""""""
8342
8343.. code-block:: llvm
8344
8345 %X = fptrunc double 123.0 to float ; yields float:123.0
8346 %Y = fptrunc double 1.0E+300 to float ; yields undefined
8347
8348'``fpext .. to``' Instruction
8349^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8350
8351Syntax:
8352"""""""
8353
8354::
8355
8356 <result> = fpext <ty> <value> to <ty2> ; yields ty2
8357
8358Overview:
8359"""""""""
8360
8361The '``fpext``' extends a floating point ``value`` to a larger floating
8362point value.
8363
8364Arguments:
8365""""""""""
8366
8367The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
8368``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
8369to. The source type must be smaller than the destination type.
8370
8371Semantics:
8372""""""""""
8373
8374The '``fpext``' instruction extends the ``value`` from a smaller
8375:ref:`floating point <t_floating>` type to a larger :ref:`floating
8376point <t_floating>` type. The ``fpext`` cannot be used to make a
8377*no-op cast* because it always changes bits. Use ``bitcast`` to make a
8378*no-op cast* for a floating point cast.
8379
8380Example:
8381""""""""
8382
8383.. code-block:: llvm
8384
8385 %X = fpext float 3.125 to double ; yields double:3.125000e+00
8386 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
8387
8388'``fptoui .. to``' Instruction
8389^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8390
8391Syntax:
8392"""""""
8393
8394::
8395
8396 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
8397
8398Overview:
8399"""""""""
8400
8401The '``fptoui``' converts a floating point ``value`` to its unsigned
8402integer equivalent of type ``ty2``.
8403
8404Arguments:
8405""""""""""
8406
8407The '``fptoui``' instruction takes a value to cast, which must be a
8408scalar or vector :ref:`floating point <t_floating>` value, and a type to
8409cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8410``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8411type with the same number of elements as ``ty``
8412
8413Semantics:
8414""""""""""
8415
8416The '``fptoui``' instruction converts its :ref:`floating
8417point <t_floating>` operand into the nearest (rounding towards zero)
8418unsigned integer value. If the value cannot fit in ``ty2``, the results
8419are undefined.
8420
8421Example:
8422""""""""
8423
8424.. code-block:: llvm
8425
8426 %X = fptoui double 123.0 to i32 ; yields i32:123
8427 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
8428 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
8429
8430'``fptosi .. to``' Instruction
8431^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8432
8433Syntax:
8434"""""""
8435
8436::
8437
8438 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
8439
8440Overview:
8441"""""""""
8442
8443The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
8444``value`` to type ``ty2``.
8445
8446Arguments:
8447""""""""""
8448
8449The '``fptosi``' instruction takes a value to cast, which must be a
8450scalar or vector :ref:`floating point <t_floating>` value, and a type to
8451cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
8452``ty`` is a vector floating point type, ``ty2`` must be a vector integer
8453type with the same number of elements as ``ty``
8454
8455Semantics:
8456""""""""""
8457
8458The '``fptosi``' instruction converts its :ref:`floating
8459point <t_floating>` operand into the nearest (rounding towards zero)
8460signed integer value. If the value cannot fit in ``ty2``, the results
8461are undefined.
8462
8463Example:
8464""""""""
8465
8466.. code-block:: llvm
8467
8468 %X = fptosi double -123.0 to i32 ; yields i32:-123
8469 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
8470 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
8471
8472'``uitofp .. to``' Instruction
8473^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8474
8475Syntax:
8476"""""""
8477
8478::
8479
8480 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
8481
8482Overview:
8483"""""""""
8484
8485The '``uitofp``' instruction regards ``value`` as an unsigned integer
8486and converts that value to the ``ty2`` type.
8487
8488Arguments:
8489""""""""""
8490
8491The '``uitofp``' instruction takes a value to cast, which must be a
8492scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8493``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8494``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8495type with the same number of elements as ``ty``
8496
8497Semantics:
8498""""""""""
8499
8500The '``uitofp``' instruction interprets its operand as an unsigned
8501integer quantity and converts it to the corresponding floating point
8502value. If the value cannot fit in the floating point value, the results
8503are undefined.
8504
8505Example:
8506""""""""
8507
8508.. code-block:: llvm
8509
8510 %X = uitofp i32 257 to float ; yields float:257.0
8511 %Y = uitofp i8 -1 to double ; yields double:255.0
8512
8513'``sitofp .. to``' Instruction
8514^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8515
8516Syntax:
8517"""""""
8518
8519::
8520
8521 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8522
8523Overview:
8524"""""""""
8525
8526The '``sitofp``' instruction regards ``value`` as a signed integer and
8527converts that value to the ``ty2`` type.
8528
8529Arguments:
8530""""""""""
8531
8532The '``sitofp``' instruction takes a value to cast, which must be a
8533scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8534``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8535``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8536type with the same number of elements as ``ty``
8537
8538Semantics:
8539""""""""""
8540
8541The '``sitofp``' instruction interprets its operand as a signed integer
8542quantity and converts it to the corresponding floating point value. If
8543the value cannot fit in the floating point value, the results are
8544undefined.
8545
8546Example:
8547""""""""
8548
8549.. code-block:: llvm
8550
8551 %X = sitofp i32 257 to float ; yields float:257.0
8552 %Y = sitofp i8 -1 to double ; yields double:-1.0
8553
8554.. _i_ptrtoint:
8555
8556'``ptrtoint .. to``' Instruction
8557^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8558
8559Syntax:
8560"""""""
8561
8562::
8563
8564 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8565
8566Overview:
8567"""""""""
8568
8569The '``ptrtoint``' instruction converts the pointer or a vector of
8570pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8571
8572Arguments:
8573""""""""""
8574
8575The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008576a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008577type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8578a vector of integers type.
8579
8580Semantics:
8581""""""""""
8582
8583The '``ptrtoint``' instruction converts ``value`` to integer type
8584``ty2`` by interpreting the pointer value as an integer and either
8585truncating or zero extending that value to the size of the integer type.
8586If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8587``value`` is larger than ``ty2`` then a truncation is done. If they are
8588the same size, then nothing is done (*no-op cast*) other than a type
8589change.
8590
8591Example:
8592""""""""
8593
8594.. code-block:: llvm
8595
8596 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8597 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8598 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8599
8600.. _i_inttoptr:
8601
8602'``inttoptr .. to``' Instruction
8603^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8604
8605Syntax:
8606"""""""
8607
8608::
8609
8610 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8611
8612Overview:
8613"""""""""
8614
8615The '``inttoptr``' instruction converts an integer ``value`` to a
8616pointer type, ``ty2``.
8617
8618Arguments:
8619""""""""""
8620
8621The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8622cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8623type.
8624
8625Semantics:
8626""""""""""
8627
8628The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8629applying either a zero extension or a truncation depending on the size
8630of the integer ``value``. If ``value`` is larger than the size of a
8631pointer then a truncation is done. If ``value`` is smaller than the size
8632of a pointer then a zero extension is done. If they are the same size,
8633nothing is done (*no-op cast*).
8634
8635Example:
8636""""""""
8637
8638.. code-block:: llvm
8639
8640 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8641 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8642 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8643 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8644
8645.. _i_bitcast:
8646
8647'``bitcast .. to``' Instruction
8648^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8649
8650Syntax:
8651"""""""
8652
8653::
8654
8655 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8656
8657Overview:
8658"""""""""
8659
8660The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8661changing any bits.
8662
8663Arguments:
8664""""""""""
8665
8666The '``bitcast``' instruction takes a value to cast, which must be a
8667non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008668also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8669bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008670identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008671also be a pointer of the same size. This instruction supports bitwise
8672conversion of vectors to integers and to vectors of other types (as
8673long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008674
8675Semantics:
8676""""""""""
8677
Matt Arsenault24b49c42013-07-31 17:49:08 +00008678The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8679is always a *no-op cast* because no bits change with this
8680conversion. The conversion is done as if the ``value`` had been stored
8681to memory and read back as type ``ty2``. Pointer (or vector of
8682pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008683pointers) types with the same address space through this instruction.
8684To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8685or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008686
8687Example:
8688""""""""
8689
Renato Golin124f2592016-07-20 12:16:38 +00008690.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008691
8692 %X = bitcast i8 255 to i8 ; yields i8 :-1
8693 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8694 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8695 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8696
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008697.. _i_addrspacecast:
8698
8699'``addrspacecast .. to``' Instruction
8700^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8701
8702Syntax:
8703"""""""
8704
8705::
8706
8707 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8708
8709Overview:
8710"""""""""
8711
8712The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8713address space ``n`` to type ``pty2`` in address space ``m``.
8714
8715Arguments:
8716""""""""""
8717
8718The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8719to cast and a pointer type to cast it to, which must have a different
8720address space.
8721
8722Semantics:
8723""""""""""
8724
8725The '``addrspacecast``' instruction converts the pointer value
8726``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008727value modification, depending on the target and the address space
8728pair. Pointer conversions within the same address space must be
8729performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008730conversion is legal then both result and operand refer to the same memory
8731location.
8732
8733Example:
8734""""""""
8735
8736.. code-block:: llvm
8737
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008738 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8739 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8740 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008741
Sean Silvab084af42012-12-07 10:36:55 +00008742.. _otherops:
8743
8744Other Operations
8745----------------
8746
8747The instructions in this category are the "miscellaneous" instructions,
8748which defy better classification.
8749
8750.. _i_icmp:
8751
8752'``icmp``' Instruction
8753^^^^^^^^^^^^^^^^^^^^^^
8754
8755Syntax:
8756"""""""
8757
8758::
8759
Tim Northover675a0962014-06-13 14:24:23 +00008760 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008761
8762Overview:
8763"""""""""
8764
8765The '``icmp``' instruction returns a boolean value or a vector of
8766boolean values based on comparison of its two integer, integer vector,
8767pointer, or pointer vector operands.
8768
8769Arguments:
8770""""""""""
8771
8772The '``icmp``' instruction takes three operands. The first operand is
8773the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008774not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008775
8776#. ``eq``: equal
8777#. ``ne``: not equal
8778#. ``ugt``: unsigned greater than
8779#. ``uge``: unsigned greater or equal
8780#. ``ult``: unsigned less than
8781#. ``ule``: unsigned less or equal
8782#. ``sgt``: signed greater than
8783#. ``sge``: signed greater or equal
8784#. ``slt``: signed less than
8785#. ``sle``: signed less or equal
8786
8787The remaining two arguments must be :ref:`integer <t_integer>` or
8788:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8789must also be identical types.
8790
8791Semantics:
8792""""""""""
8793
8794The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8795code given as ``cond``. The comparison performed always yields either an
8796:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8797
8798#. ``eq``: yields ``true`` if the operands are equal, ``false``
8799 otherwise. No sign interpretation is necessary or performed.
8800#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8801 otherwise. No sign interpretation is necessary or performed.
8802#. ``ugt``: interprets the operands as unsigned values and yields
8803 ``true`` if ``op1`` is greater than ``op2``.
8804#. ``uge``: interprets the operands as unsigned values and yields
8805 ``true`` if ``op1`` is greater than or equal to ``op2``.
8806#. ``ult``: interprets the operands as unsigned values and yields
8807 ``true`` if ``op1`` is less than ``op2``.
8808#. ``ule``: interprets the operands as unsigned values and yields
8809 ``true`` if ``op1`` is less than or equal to ``op2``.
8810#. ``sgt``: interprets the operands as signed values and yields ``true``
8811 if ``op1`` is greater than ``op2``.
8812#. ``sge``: interprets the operands as signed values and yields ``true``
8813 if ``op1`` is greater than or equal to ``op2``.
8814#. ``slt``: interprets the operands as signed values and yields ``true``
8815 if ``op1`` is less than ``op2``.
8816#. ``sle``: interprets the operands as signed values and yields ``true``
8817 if ``op1`` is less than or equal to ``op2``.
8818
8819If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8820are compared as if they were integers.
8821
8822If the operands are integer vectors, then they are compared element by
8823element. The result is an ``i1`` vector with the same number of elements
8824as the values being compared. Otherwise, the result is an ``i1``.
8825
8826Example:
8827""""""""
8828
Renato Golin124f2592016-07-20 12:16:38 +00008829.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008830
8831 <result> = icmp eq i32 4, 5 ; yields: result=false
8832 <result> = icmp ne float* %X, %X ; yields: result=false
8833 <result> = icmp ult i16 4, 5 ; yields: result=true
8834 <result> = icmp sgt i16 4, 5 ; yields: result=false
8835 <result> = icmp ule i16 -4, 5 ; yields: result=false
8836 <result> = icmp sge i16 4, 5 ; yields: result=false
8837
Sean Silvab084af42012-12-07 10:36:55 +00008838.. _i_fcmp:
8839
8840'``fcmp``' Instruction
8841^^^^^^^^^^^^^^^^^^^^^^
8842
8843Syntax:
8844"""""""
8845
8846::
8847
James Molloy88eb5352015-07-10 12:52:00 +00008848 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008849
8850Overview:
8851"""""""""
8852
8853The '``fcmp``' instruction returns a boolean value or vector of boolean
8854values based on comparison of its operands.
8855
8856If the operands are floating point scalars, then the result type is a
8857boolean (:ref:`i1 <t_integer>`).
8858
8859If the operands are floating point vectors, then the result type is a
8860vector of boolean with the same number of elements as the operands being
8861compared.
8862
8863Arguments:
8864""""""""""
8865
8866The '``fcmp``' instruction takes three operands. The first operand is
8867the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008868not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008869
8870#. ``false``: no comparison, always returns false
8871#. ``oeq``: ordered and equal
8872#. ``ogt``: ordered and greater than
8873#. ``oge``: ordered and greater than or equal
8874#. ``olt``: ordered and less than
8875#. ``ole``: ordered and less than or equal
8876#. ``one``: ordered and not equal
8877#. ``ord``: ordered (no nans)
8878#. ``ueq``: unordered or equal
8879#. ``ugt``: unordered or greater than
8880#. ``uge``: unordered or greater than or equal
8881#. ``ult``: unordered or less than
8882#. ``ule``: unordered or less than or equal
8883#. ``une``: unordered or not equal
8884#. ``uno``: unordered (either nans)
8885#. ``true``: no comparison, always returns true
8886
8887*Ordered* means that neither operand is a QNAN while *unordered* means
8888that either operand may be a QNAN.
8889
8890Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8891point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8892type. They must have identical types.
8893
8894Semantics:
8895""""""""""
8896
8897The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8898condition code given as ``cond``. If the operands are vectors, then the
8899vectors are compared element by element. Each comparison performed
8900always yields an :ref:`i1 <t_integer>` result, as follows:
8901
8902#. ``false``: always yields ``false``, regardless of operands.
8903#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8904 is equal to ``op2``.
8905#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8906 is greater than ``op2``.
8907#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8908 is greater than or equal to ``op2``.
8909#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8910 is less than ``op2``.
8911#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8912 is less than or equal to ``op2``.
8913#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8914 is not equal to ``op2``.
8915#. ``ord``: yields ``true`` if both operands are not a QNAN.
8916#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8917 equal to ``op2``.
8918#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8919 greater than ``op2``.
8920#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8921 greater than or equal to ``op2``.
8922#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8923 less than ``op2``.
8924#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8925 less than or equal to ``op2``.
8926#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8927 not equal to ``op2``.
8928#. ``uno``: yields ``true`` if either operand is a QNAN.
8929#. ``true``: always yields ``true``, regardless of operands.
8930
James Molloy88eb5352015-07-10 12:52:00 +00008931The ``fcmp`` instruction can also optionally take any number of
8932:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8933otherwise unsafe floating point optimizations.
8934
8935Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8936only flags that have any effect on its semantics are those that allow
8937assumptions to be made about the values of input arguments; namely
8938``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8939
Sean Silvab084af42012-12-07 10:36:55 +00008940Example:
8941""""""""
8942
Renato Golin124f2592016-07-20 12:16:38 +00008943.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008944
8945 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8946 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8947 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8948 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8949
Sean Silvab084af42012-12-07 10:36:55 +00008950.. _i_phi:
8951
8952'``phi``' Instruction
8953^^^^^^^^^^^^^^^^^^^^^
8954
8955Syntax:
8956"""""""
8957
8958::
8959
8960 <result> = phi <ty> [ <val0>, <label0>], ...
8961
8962Overview:
8963"""""""""
8964
8965The '``phi``' instruction is used to implement the φ node in the SSA
8966graph representing the function.
8967
8968Arguments:
8969""""""""""
8970
8971The type of the incoming values is specified with the first type field.
8972After this, the '``phi``' instruction takes a list of pairs as
8973arguments, with one pair for each predecessor basic block of the current
8974block. Only values of :ref:`first class <t_firstclass>` type may be used as
8975the value arguments to the PHI node. Only labels may be used as the
8976label arguments.
8977
8978There must be no non-phi instructions between the start of a basic block
8979and the PHI instructions: i.e. PHI instructions must be first in a basic
8980block.
8981
8982For the purposes of the SSA form, the use of each incoming value is
8983deemed to occur on the edge from the corresponding predecessor block to
8984the current block (but after any definition of an '``invoke``'
8985instruction's return value on the same edge).
8986
8987Semantics:
8988""""""""""
8989
8990At runtime, the '``phi``' instruction logically takes on the value
8991specified by the pair corresponding to the predecessor basic block that
8992executed just prior to the current block.
8993
8994Example:
8995""""""""
8996
8997.. code-block:: llvm
8998
8999 Loop: ; Infinite loop that counts from 0 on up...
9000 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
9001 %nextindvar = add i32 %indvar, 1
9002 br label %Loop
9003
9004.. _i_select:
9005
9006'``select``' Instruction
9007^^^^^^^^^^^^^^^^^^^^^^^^
9008
9009Syntax:
9010"""""""
9011
9012::
9013
9014 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
9015
9016 selty is either i1 or {<N x i1>}
9017
9018Overview:
9019"""""""""
9020
9021The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00009022condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00009023
9024Arguments:
9025""""""""""
9026
9027The '``select``' instruction requires an 'i1' value or a vector of 'i1'
9028values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00009029class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00009030
9031Semantics:
9032""""""""""
9033
9034If the condition is an i1 and it evaluates to 1, the instruction returns
9035the first value argument; otherwise, it returns the second value
9036argument.
9037
9038If the condition is a vector of i1, then the value arguments must be
9039vectors of the same size, and the selection is done element by element.
9040
David Majnemer40a0b592015-03-03 22:45:47 +00009041If the condition is an i1 and the value arguments are vectors of the
9042same size, then an entire vector is selected.
9043
Sean Silvab084af42012-12-07 10:36:55 +00009044Example:
9045""""""""
9046
9047.. code-block:: llvm
9048
9049 %X = select i1 true, i8 17, i8 42 ; yields i8:17
9050
9051.. _i_call:
9052
9053'``call``' Instruction
9054^^^^^^^^^^^^^^^^^^^^^^
9055
9056Syntax:
9057"""""""
9058
9059::
9060
David Blaikieb83cf102016-07-13 17:21:34 +00009061 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00009062 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00009063
9064Overview:
9065"""""""""
9066
9067The '``call``' instruction represents a simple function call.
9068
9069Arguments:
9070""""""""""
9071
9072This instruction requires several arguments:
9073
Reid Kleckner5772b772014-04-24 20:14:34 +00009074#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00009075 should perform tail call optimization. The ``tail`` marker is a hint that
9076 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00009077 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00009078 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00009079
9080 #. The call will not cause unbounded stack growth if it is part of a
9081 recursive cycle in the call graph.
9082 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
9083 forwarded in place.
9084
Florian Hahnedae5a62018-01-17 23:29:25 +00009085 Both markers imply that the callee does not access allocas from the caller.
9086 The ``tail`` marker additionally implies that the callee does not access
9087 varargs from the caller, while ``musttail`` implies that varargs from the
9088 caller are passed to the callee. Calls marked ``musttail`` must obey the
9089 following additional rules:
Reid Kleckner5772b772014-04-24 20:14:34 +00009090
9091 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
9092 or a pointer bitcast followed by a ret instruction.
9093 - The ret instruction must return the (possibly bitcasted) value
9094 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00009095 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00009096 parameters or return types may differ in pointee type, but not
9097 in address space.
9098 - The calling conventions of the caller and callee must match.
9099 - All ABI-impacting function attributes, such as sret, byval, inreg,
9100 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00009101 - The callee must be varargs iff the caller is varargs. Bitcasting a
9102 non-varargs function to the appropriate varargs type is legal so
9103 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00009104
9105 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
9106 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00009107
9108 - Caller and callee both have the calling convention ``fastcc``.
9109 - The call is in tail position (ret immediately follows call and ret
9110 uses value of call or is void).
9111 - Option ``-tailcallopt`` is enabled, or
9112 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00009113 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00009114 met. <CodeGenerator.html#tailcallopt>`_
9115
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00009116#. The optional ``notail`` marker indicates that the optimizers should not add
9117 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
9118 call optimization from being performed on the call.
9119
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00009120#. The optional ``fast-math flags`` marker indicates that the call has one or more
Sanjay Patelfa54ace2015-12-14 21:59:03 +00009121 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
9122 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
9123 for calls that return a floating-point scalar or vector type.
9124
Sean Silvab084af42012-12-07 10:36:55 +00009125#. The optional "cconv" marker indicates which :ref:`calling
9126 convention <callingconv>` the call should use. If none is
9127 specified, the call defaults to using C calling conventions. The
9128 calling convention of the call must match the calling convention of
9129 the target function, or else the behavior is undefined.
9130#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
9131 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
9132 are valid here.
9133#. '``ty``': the type of the call instruction itself which is also the
9134 type of the return value. Functions that return no value are marked
9135 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00009136#. '``fnty``': shall be the signature of the function being called. The
9137 argument types must match the types implied by this signature. This
9138 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00009139#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00009140 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00009141 indirect ``call``'s are just as possible, calling an arbitrary pointer
9142 to function value.
9143#. '``function args``': argument list whose types match the function
9144 signature argument types and parameter attributes. All arguments must
9145 be of :ref:`first class <t_firstclass>` type. If the function signature
9146 indicates the function accepts a variable number of arguments, the
9147 extra arguments can be specified.
George Burgess IV39c91052017-04-13 04:01:55 +00009148#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00009149#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00009150
9151Semantics:
9152""""""""""
9153
9154The '``call``' instruction is used to cause control flow to transfer to
9155a specified function, with its incoming arguments bound to the specified
9156values. Upon a '``ret``' instruction in the called function, control
9157flow continues with the instruction after the function call, and the
9158return value of the function is bound to the result argument.
9159
9160Example:
9161""""""""
9162
9163.. code-block:: llvm
9164
9165 %retval = call i32 @test(i32 %argc)
9166 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
9167 %X = tail call i32 @foo() ; yields i32
9168 %Y = tail call fastcc i32 @foo() ; yields i32
9169 call void %foo(i8 97 signext)
9170
9171 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00009172 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00009173 %gr = extractvalue %struct.A %r, 0 ; yields i32
9174 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
9175 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
9176 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
9177
9178llvm treats calls to some functions with names and arguments that match
9179the standard C99 library as being the C99 library functions, and may
9180perform optimizations or generate code for them under that assumption.
9181This is something we'd like to change in the future to provide better
9182support for freestanding environments and non-C-based languages.
9183
9184.. _i_va_arg:
9185
9186'``va_arg``' Instruction
9187^^^^^^^^^^^^^^^^^^^^^^^^
9188
9189Syntax:
9190"""""""
9191
9192::
9193
9194 <resultval> = va_arg <va_list*> <arglist>, <argty>
9195
9196Overview:
9197"""""""""
9198
9199The '``va_arg``' instruction is used to access arguments passed through
9200the "variable argument" area of a function call. It is used to implement
9201the ``va_arg`` macro in C.
9202
9203Arguments:
9204""""""""""
9205
9206This instruction takes a ``va_list*`` value and the type of the
9207argument. It returns a value of the specified argument type and
9208increments the ``va_list`` to point to the next argument. The actual
9209type of ``va_list`` is target specific.
9210
9211Semantics:
9212""""""""""
9213
9214The '``va_arg``' instruction loads an argument of the specified type
9215from the specified ``va_list`` and causes the ``va_list`` to point to
9216the next argument. For more information, see the variable argument
9217handling :ref:`Intrinsic Functions <int_varargs>`.
9218
9219It is legal for this instruction to be called in a function which does
9220not take a variable number of arguments, for example, the ``vfprintf``
9221function.
9222
9223``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
9224function <intrinsics>` because it takes a type as an argument.
9225
9226Example:
9227""""""""
9228
9229See the :ref:`variable argument processing <int_varargs>` section.
9230
9231Note that the code generator does not yet fully support va\_arg on many
9232targets. Also, it does not currently support va\_arg with aggregate
9233types on any target.
9234
9235.. _i_landingpad:
9236
9237'``landingpad``' Instruction
9238^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9239
9240Syntax:
9241"""""""
9242
9243::
9244
David Majnemer7fddecc2015-06-17 20:52:32 +00009245 <resultval> = landingpad <resultty> <clause>+
9246 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00009247
9248 <clause> := catch <type> <value>
9249 <clause> := filter <array constant type> <array constant>
9250
9251Overview:
9252"""""""""
9253
9254The '``landingpad``' instruction is used by `LLVM's exception handling
9255system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009256is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00009257code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00009258defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00009259re-entry to the function. The ``resultval`` has the type ``resultty``.
9260
9261Arguments:
9262""""""""""
9263
David Majnemer7fddecc2015-06-17 20:52:32 +00009264The optional
Sean Silvab084af42012-12-07 10:36:55 +00009265``cleanup`` flag indicates that the landing pad block is a cleanup.
9266
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009267A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00009268contains the global variable representing the "type" that may be caught
9269or filtered respectively. Unlike the ``catch`` clause, the ``filter``
9270clause takes an array constant as its argument. Use
9271"``[0 x i8**] undef``" for a filter which cannot throw. The
9272'``landingpad``' instruction must contain *at least* one ``clause`` or
9273the ``cleanup`` flag.
9274
9275Semantics:
9276""""""""""
9277
9278The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00009279:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00009280therefore the "result type" of the ``landingpad`` instruction. As with
9281calling conventions, how the personality function results are
9282represented in LLVM IR is target specific.
9283
9284The clauses are applied in order from top to bottom. If two
9285``landingpad`` instructions are merged together through inlining, the
9286clauses from the calling function are appended to the list of clauses.
9287When the call stack is being unwound due to an exception being thrown,
9288the exception is compared against each ``clause`` in turn. If it doesn't
9289match any of the clauses, and the ``cleanup`` flag is not set, then
9290unwinding continues further up the call stack.
9291
9292The ``landingpad`` instruction has several restrictions:
9293
9294- A landing pad block is a basic block which is the unwind destination
9295 of an '``invoke``' instruction.
9296- A landing pad block must have a '``landingpad``' instruction as its
9297 first non-PHI instruction.
9298- There can be only one '``landingpad``' instruction within the landing
9299 pad block.
9300- A basic block that is not a landing pad block may not include a
9301 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009302
9303Example:
9304""""""""
9305
9306.. code-block:: llvm
9307
9308 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00009309 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009310 catch i8** @_ZTIi
9311 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00009312 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009313 cleanup
9314 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00009315 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009316 catch i8** @_ZTIi
9317 filter [1 x i8**] [@_ZTId]
9318
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009319.. _i_catchpad:
9320
9321'``catchpad``' Instruction
9322^^^^^^^^^^^^^^^^^^^^^^^^^^
9323
9324Syntax:
9325"""""""
9326
9327::
9328
9329 <resultval> = catchpad within <catchswitch> [<args>*]
9330
9331Overview:
9332"""""""""
9333
9334The '``catchpad``' instruction is used by `LLVM's exception handling
9335system <ExceptionHandling.html#overview>`_ to specify that a basic block
9336begins a catch handler --- one where a personality routine attempts to transfer
9337control to catch an exception.
9338
9339Arguments:
9340""""""""""
9341
9342The ``catchswitch`` operand must always be a token produced by a
9343:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
9344ensures that each ``catchpad`` has exactly one predecessor block, and it always
9345terminates in a ``catchswitch``.
9346
9347The ``args`` correspond to whatever information the personality routine
9348requires to know if this is an appropriate handler for the exception. Control
9349will transfer to the ``catchpad`` if this is the first appropriate handler for
9350the exception.
9351
9352The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
9353``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
9354pads.
9355
9356Semantics:
9357""""""""""
9358
9359When the call stack is being unwound due to an exception being thrown, the
9360exception is compared against the ``args``. If it doesn't match, control will
9361not reach the ``catchpad`` instruction. The representation of ``args`` is
9362entirely target and personality function-specific.
9363
9364Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
9365instruction must be the first non-phi of its parent basic block.
9366
9367The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
9368instructions is described in the
9369`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
9370
9371When a ``catchpad`` has been "entered" but not yet "exited" (as
9372described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9373it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9374that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
9375
9376Example:
9377""""""""
9378
Renato Golin124f2592016-07-20 12:16:38 +00009379.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009380
9381 dispatch:
9382 %cs = catchswitch within none [label %handler0] unwind to caller
9383 ;; A catch block which can catch an integer.
9384 handler0:
9385 %tok = catchpad within %cs [i8** @_ZTIi]
9386
David Majnemer654e1302015-07-31 17:58:14 +00009387.. _i_cleanuppad:
9388
9389'``cleanuppad``' Instruction
9390^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9391
9392Syntax:
9393"""""""
9394
9395::
9396
David Majnemer8a1c45d2015-12-12 05:38:55 +00009397 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00009398
9399Overview:
9400"""""""""
9401
9402The '``cleanuppad``' instruction is used by `LLVM's exception handling
9403system <ExceptionHandling.html#overview>`_ to specify that a basic block
9404is a cleanup block --- one where a personality routine attempts to
9405transfer control to run cleanup actions.
9406The ``args`` correspond to whatever additional
9407information the :ref:`personality function <personalityfn>` requires to
9408execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00009409The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00009410match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
9411The ``parent`` argument is the token of the funclet that contains the
9412``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
9413this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00009414
9415Arguments:
9416""""""""""
9417
9418The instruction takes a list of arbitrary values which are interpreted
9419by the :ref:`personality function <personalityfn>`.
9420
9421Semantics:
9422""""""""""
9423
David Majnemer654e1302015-07-31 17:58:14 +00009424When the call stack is being unwound due to an exception being thrown,
9425the :ref:`personality function <personalityfn>` transfers control to the
9426``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00009427As with calling conventions, how the personality function results are
9428represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00009429
9430The ``cleanuppad`` instruction has several restrictions:
9431
9432- A cleanup block is a basic block which is the unwind destination of
9433 an exceptional instruction.
9434- A cleanup block must have a '``cleanuppad``' instruction as its
9435 first non-PHI instruction.
9436- There can be only one '``cleanuppad``' instruction within the
9437 cleanup block.
9438- A basic block that is not a cleanup block may not include a
9439 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009440
Joseph Tremoulete28885e2016-01-10 04:28:38 +00009441When a ``cleanuppad`` has been "entered" but not yet "exited" (as
9442described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9443it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9444that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009445
David Majnemer654e1302015-07-31 17:58:14 +00009446Example:
9447""""""""
9448
Renato Golin124f2592016-07-20 12:16:38 +00009449.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00009450
David Majnemer8a1c45d2015-12-12 05:38:55 +00009451 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00009452
Sean Silvab084af42012-12-07 10:36:55 +00009453.. _intrinsics:
9454
9455Intrinsic Functions
9456===================
9457
9458LLVM supports the notion of an "intrinsic function". These functions
9459have well known names and semantics and are required to follow certain
9460restrictions. Overall, these intrinsics represent an extension mechanism
9461for the LLVM language that does not require changing all of the
9462transformations in LLVM when adding to the language (or the bitcode
9463reader/writer, the parser, etc...).
9464
9465Intrinsic function names must all start with an "``llvm.``" prefix. This
9466prefix is reserved in LLVM for intrinsic names; thus, function names may
9467not begin with this prefix. Intrinsic functions must always be external
9468functions: you cannot define the body of intrinsic functions. Intrinsic
9469functions may only be used in call or invoke instructions: it is illegal
9470to take the address of an intrinsic function. Additionally, because
9471intrinsic functions are part of the LLVM language, it is required if any
9472are added that they be documented here.
9473
9474Some intrinsic functions can be overloaded, i.e., the intrinsic
9475represents a family of functions that perform the same operation but on
9476different data types. Because LLVM can represent over 8 million
9477different integer types, overloading is used commonly to allow an
9478intrinsic function to operate on any integer type. One or more of the
9479argument types or the result type can be overloaded to accept any
9480integer type. Argument types may also be defined as exactly matching a
9481previous argument's type or the result type. This allows an intrinsic
9482function which accepts multiple arguments, but needs all of them to be
9483of the same type, to only be overloaded with respect to a single
9484argument or the result.
9485
9486Overloaded intrinsics will have the names of its overloaded argument
9487types encoded into its function name, each preceded by a period. Only
9488those types which are overloaded result in a name suffix. Arguments
9489whose type is matched against another type do not. For example, the
9490``llvm.ctpop`` function can take an integer of any width and returns an
9491integer of exactly the same integer width. This leads to a family of
9492functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
9493``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
9494overloaded, and only one type suffix is required. Because the argument's
9495type is matched against the return type, it does not require its own
9496name suffix.
9497
9498To learn how to add an intrinsic function, please see the `Extending
9499LLVM Guide <ExtendingLLVM.html>`_.
9500
9501.. _int_varargs:
9502
9503Variable Argument Handling Intrinsics
9504-------------------------------------
9505
9506Variable argument support is defined in LLVM with the
9507:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9508functions. These functions are related to the similarly named macros
9509defined in the ``<stdarg.h>`` header file.
9510
9511All of these functions operate on arguments that use a target-specific
9512value type "``va_list``". The LLVM assembly language reference manual
9513does not define what this type is, so all transformations should be
9514prepared to handle these functions regardless of the type used.
9515
9516This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9517variable argument handling intrinsic functions are used.
9518
9519.. code-block:: llvm
9520
Tim Northoverab60bb92014-11-02 01:21:51 +00009521 ; This struct is different for every platform. For most platforms,
9522 ; it is merely an i8*.
9523 %struct.va_list = type { i8* }
9524
9525 ; For Unix x86_64 platforms, va_list is the following struct:
9526 ; %struct.va_list = type { i32, i32, i8*, i8* }
9527
Sean Silvab084af42012-12-07 10:36:55 +00009528 define i32 @test(i32 %X, ...) {
9529 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009530 %ap = alloca %struct.va_list
9531 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009532 call void @llvm.va_start(i8* %ap2)
9533
9534 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009535 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009536
9537 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9538 %aq = alloca i8*
9539 %aq2 = bitcast i8** %aq to i8*
9540 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9541 call void @llvm.va_end(i8* %aq2)
9542
9543 ; Stop processing of arguments.
9544 call void @llvm.va_end(i8* %ap2)
9545 ret i32 %tmp
9546 }
9547
9548 declare void @llvm.va_start(i8*)
9549 declare void @llvm.va_copy(i8*, i8*)
9550 declare void @llvm.va_end(i8*)
9551
9552.. _int_va_start:
9553
9554'``llvm.va_start``' Intrinsic
9555^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9556
9557Syntax:
9558"""""""
9559
9560::
9561
Nick Lewycky04f6de02013-09-11 22:04:52 +00009562 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009563
9564Overview:
9565"""""""""
9566
9567The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9568subsequent use by ``va_arg``.
9569
9570Arguments:
9571""""""""""
9572
9573The argument is a pointer to a ``va_list`` element to initialize.
9574
9575Semantics:
9576""""""""""
9577
9578The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9579available in C. In a target-dependent way, it initializes the
9580``va_list`` element to which the argument points, so that the next call
9581to ``va_arg`` will produce the first variable argument passed to the
9582function. Unlike the C ``va_start`` macro, this intrinsic does not need
9583to know the last argument of the function as the compiler can figure
9584that out.
9585
9586'``llvm.va_end``' Intrinsic
9587^^^^^^^^^^^^^^^^^^^^^^^^^^^
9588
9589Syntax:
9590"""""""
9591
9592::
9593
9594 declare void @llvm.va_end(i8* <arglist>)
9595
9596Overview:
9597"""""""""
9598
9599The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9600initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9601
9602Arguments:
9603""""""""""
9604
9605The argument is a pointer to a ``va_list`` to destroy.
9606
9607Semantics:
9608""""""""""
9609
9610The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9611available in C. In a target-dependent way, it destroys the ``va_list``
9612element to which the argument points. Calls to
9613:ref:`llvm.va_start <int_va_start>` and
9614:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9615``llvm.va_end``.
9616
9617.. _int_va_copy:
9618
9619'``llvm.va_copy``' Intrinsic
9620^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9621
9622Syntax:
9623"""""""
9624
9625::
9626
9627 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9628
9629Overview:
9630"""""""""
9631
9632The '``llvm.va_copy``' intrinsic copies the current argument position
9633from the source argument list to the destination argument list.
9634
9635Arguments:
9636""""""""""
9637
9638The first argument is a pointer to a ``va_list`` element to initialize.
9639The second argument is a pointer to a ``va_list`` element to copy from.
9640
9641Semantics:
9642""""""""""
9643
9644The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9645available in C. In a target-dependent way, it copies the source
9646``va_list`` element into the destination ``va_list`` element. This
9647intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9648arbitrarily complex and require, for example, memory allocation.
9649
9650Accurate Garbage Collection Intrinsics
9651--------------------------------------
9652
Philip Reamesc5b0f562015-02-25 23:52:06 +00009653LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009654(GC) requires the frontend to generate code containing appropriate intrinsic
9655calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009656intrinsics in a manner which is appropriate for the target collector.
9657
Sean Silvab084af42012-12-07 10:36:55 +00009658These intrinsics allow identification of :ref:`GC roots on the
9659stack <int_gcroot>`, as well as garbage collector implementations that
9660require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009661Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009662these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009663details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009664
Philip Reamesf80bbff2015-02-25 23:45:20 +00009665Experimental Statepoint Intrinsics
9666^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9667
9668LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009669collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009670to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009671:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009672differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009673<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009674described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009675
9676.. _int_gcroot:
9677
9678'``llvm.gcroot``' Intrinsic
9679^^^^^^^^^^^^^^^^^^^^^^^^^^^
9680
9681Syntax:
9682"""""""
9683
9684::
9685
9686 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9687
9688Overview:
9689"""""""""
9690
9691The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9692the code generator, and allows some metadata to be associated with it.
9693
9694Arguments:
9695""""""""""
9696
9697The first argument specifies the address of a stack object that contains
9698the root pointer. The second pointer (which must be either a constant or
9699a global value address) contains the meta-data to be associated with the
9700root.
9701
9702Semantics:
9703""""""""""
9704
9705At runtime, a call to this intrinsic stores a null pointer into the
9706"ptrloc" location. At compile-time, the code generator generates
9707information to allow the runtime to find the pointer at GC safe points.
9708The '``llvm.gcroot``' intrinsic may only be used in a function which
9709:ref:`specifies a GC algorithm <gc>`.
9710
9711.. _int_gcread:
9712
9713'``llvm.gcread``' Intrinsic
9714^^^^^^^^^^^^^^^^^^^^^^^^^^^
9715
9716Syntax:
9717"""""""
9718
9719::
9720
9721 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9722
9723Overview:
9724"""""""""
9725
9726The '``llvm.gcread``' intrinsic identifies reads of references from heap
9727locations, allowing garbage collector implementations that require read
9728barriers.
9729
9730Arguments:
9731""""""""""
9732
9733The second argument is the address to read from, which should be an
9734address allocated from the garbage collector. The first object is a
9735pointer to the start of the referenced object, if needed by the language
9736runtime (otherwise null).
9737
9738Semantics:
9739""""""""""
9740
9741The '``llvm.gcread``' intrinsic has the same semantics as a load
9742instruction, but may be replaced with substantially more complex code by
9743the garbage collector runtime, as needed. The '``llvm.gcread``'
9744intrinsic may only be used in a function which :ref:`specifies a GC
9745algorithm <gc>`.
9746
9747.. _int_gcwrite:
9748
9749'``llvm.gcwrite``' Intrinsic
9750^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9751
9752Syntax:
9753"""""""
9754
9755::
9756
9757 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9758
9759Overview:
9760"""""""""
9761
9762The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9763locations, allowing garbage collector implementations that require write
9764barriers (such as generational or reference counting collectors).
9765
9766Arguments:
9767""""""""""
9768
9769The first argument is the reference to store, the second is the start of
9770the object to store it to, and the third is the address of the field of
9771Obj to store to. If the runtime does not require a pointer to the
9772object, Obj may be null.
9773
9774Semantics:
9775""""""""""
9776
9777The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9778instruction, but may be replaced with substantially more complex code by
9779the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9780intrinsic may only be used in a function which :ref:`specifies a GC
9781algorithm <gc>`.
9782
9783Code Generator Intrinsics
9784-------------------------
9785
9786These intrinsics are provided by LLVM to expose special features that
9787may only be implemented with code generator support.
9788
9789'``llvm.returnaddress``' Intrinsic
9790^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9791
9792Syntax:
9793"""""""
9794
9795::
9796
George Burgess IVfbc34982017-05-20 04:52:29 +00009797 declare i8* @llvm.returnaddress(i32 <level>)
Sean Silvab084af42012-12-07 10:36:55 +00009798
9799Overview:
9800"""""""""
9801
9802The '``llvm.returnaddress``' intrinsic attempts to compute a
9803target-specific value indicating the return address of the current
9804function or one of its callers.
9805
9806Arguments:
9807""""""""""
9808
9809The argument to this intrinsic indicates which function to return the
9810address for. Zero indicates the calling function, one indicates its
9811caller, etc. The argument is **required** to be a constant integer
9812value.
9813
9814Semantics:
9815""""""""""
9816
9817The '``llvm.returnaddress``' intrinsic either returns a pointer
9818indicating the return address of the specified call frame, or zero if it
9819cannot be identified. The value returned by this intrinsic is likely to
9820be incorrect or 0 for arguments other than zero, so it should only be
9821used for debugging purposes.
9822
9823Note that calling this intrinsic does not prevent function inlining or
9824other aggressive transformations, so the value returned may not be that
9825of the obvious source-language caller.
9826
Albert Gutowski795d7d62016-10-12 22:13:19 +00009827'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +00009828^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +00009829
9830Syntax:
9831"""""""
9832
9833::
9834
George Burgess IVfbc34982017-05-20 04:52:29 +00009835 declare i8* @llvm.addressofreturnaddress()
Albert Gutowski795d7d62016-10-12 22:13:19 +00009836
9837Overview:
9838"""""""""
9839
9840The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
9841pointer to the place in the stack frame where the return address of the
9842current function is stored.
9843
9844Semantics:
9845""""""""""
9846
9847Note that calling this intrinsic does not prevent function inlining or
9848other aggressive transformations, so the value returned may not be that
9849of the obvious source-language caller.
9850
9851This intrinsic is only implemented for x86.
9852
Sean Silvab084af42012-12-07 10:36:55 +00009853'``llvm.frameaddress``' Intrinsic
9854^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9855
9856Syntax:
9857"""""""
9858
9859::
9860
9861 declare i8* @llvm.frameaddress(i32 <level>)
9862
9863Overview:
9864"""""""""
9865
9866The '``llvm.frameaddress``' intrinsic attempts to return the
9867target-specific frame pointer value for the specified stack frame.
9868
9869Arguments:
9870""""""""""
9871
9872The argument to this intrinsic indicates which function to return the
9873frame pointer for. Zero indicates the calling function, one indicates
9874its caller, etc. The argument is **required** to be a constant integer
9875value.
9876
9877Semantics:
9878""""""""""
9879
9880The '``llvm.frameaddress``' intrinsic either returns a pointer
9881indicating the frame address of the specified call frame, or zero if it
9882cannot be identified. The value returned by this intrinsic is likely to
9883be incorrect or 0 for arguments other than zero, so it should only be
9884used for debugging purposes.
9885
9886Note that calling this intrinsic does not prevent function inlining or
9887other aggressive transformations, so the value returned may not be that
9888of the obvious source-language caller.
9889
Reid Kleckner60381792015-07-07 22:25:32 +00009890'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009891^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9892
9893Syntax:
9894"""""""
9895
9896::
9897
Reid Kleckner60381792015-07-07 22:25:32 +00009898 declare void @llvm.localescape(...)
9899 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009900
9901Overview:
9902"""""""""
9903
Reid Kleckner60381792015-07-07 22:25:32 +00009904The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9905allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009906live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009907computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009908
9909Arguments:
9910""""""""""
9911
Reid Kleckner60381792015-07-07 22:25:32 +00009912All arguments to '``llvm.localescape``' must be pointers to static allocas or
9913casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009914once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009915
Reid Kleckner60381792015-07-07 22:25:32 +00009916The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009917bitcasted pointer to a function defined in the current module. The code
9918generator cannot determine the frame allocation offset of functions defined in
9919other modules.
9920
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009921The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9922call frame that is currently live. The return value of '``llvm.localaddress``'
9923is one way to produce such a value, but various runtimes also expose a suitable
9924pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009925
Reid Kleckner60381792015-07-07 22:25:32 +00009926The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9927'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009928
Reid Klecknere9b89312015-01-13 00:48:10 +00009929Semantics:
9930""""""""""
9931
Reid Kleckner60381792015-07-07 22:25:32 +00009932These intrinsics allow a group of functions to share access to a set of local
9933stack allocations of a one parent function. The parent function may call the
9934'``llvm.localescape``' intrinsic once from the function entry block, and the
9935child functions can use '``llvm.localrecover``' to access the escaped allocas.
9936The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9937the escaped allocas are allocated, which would break attempts to use
9938'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009939
Renato Golinc7aea402014-05-06 16:51:25 +00009940.. _int_read_register:
9941.. _int_write_register:
9942
9943'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9944^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9945
9946Syntax:
9947"""""""
9948
9949::
9950
9951 declare i32 @llvm.read_register.i32(metadata)
9952 declare i64 @llvm.read_register.i64(metadata)
9953 declare void @llvm.write_register.i32(metadata, i32 @value)
9954 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009955 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009956
9957Overview:
9958"""""""""
9959
9960The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9961provides access to the named register. The register must be valid on
9962the architecture being compiled to. The type needs to be compatible
9963with the register being read.
9964
9965Semantics:
9966""""""""""
9967
9968The '``llvm.read_register``' intrinsic returns the current value of the
9969register, where possible. The '``llvm.write_register``' intrinsic sets
9970the current value of the register, where possible.
9971
9972This is useful to implement named register global variables that need
9973to always be mapped to a specific register, as is common practice on
9974bare-metal programs including OS kernels.
9975
9976The compiler doesn't check for register availability or use of the used
9977register in surrounding code, including inline assembly. Because of that,
9978allocatable registers are not supported.
9979
9980Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009981architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009982work is needed to support other registers and even more so, allocatable
9983registers.
9984
Sean Silvab084af42012-12-07 10:36:55 +00009985.. _int_stacksave:
9986
9987'``llvm.stacksave``' Intrinsic
9988^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9989
9990Syntax:
9991"""""""
9992
9993::
9994
9995 declare i8* @llvm.stacksave()
9996
9997Overview:
9998"""""""""
9999
10000The '``llvm.stacksave``' intrinsic is used to remember the current state
10001of the function stack, for use with
10002:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
10003implementing language features like scoped automatic variable sized
10004arrays in C99.
10005
10006Semantics:
10007""""""""""
10008
10009This intrinsic returns a opaque pointer value that can be passed to
10010:ref:`llvm.stackrestore <int_stackrestore>`. When an
10011``llvm.stackrestore`` intrinsic is executed with a value saved from
10012``llvm.stacksave``, it effectively restores the state of the stack to
10013the state it was in when the ``llvm.stacksave`` intrinsic executed. In
10014practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
10015were allocated after the ``llvm.stacksave`` was executed.
10016
10017.. _int_stackrestore:
10018
10019'``llvm.stackrestore``' Intrinsic
10020^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10021
10022Syntax:
10023"""""""
10024
10025::
10026
10027 declare void @llvm.stackrestore(i8* %ptr)
10028
10029Overview:
10030"""""""""
10031
10032The '``llvm.stackrestore``' intrinsic is used to restore the state of
10033the function stack to the state it was in when the corresponding
10034:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
10035useful for implementing language features like scoped automatic variable
10036sized arrays in C99.
10037
10038Semantics:
10039""""""""""
10040
10041See the description for :ref:`llvm.stacksave <int_stacksave>`.
10042
Yury Gribovd7dbb662015-12-01 11:40:55 +000010043.. _int_get_dynamic_area_offset:
10044
10045'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +000010046^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +000010047
10048Syntax:
10049"""""""
10050
10051::
10052
10053 declare i32 @llvm.get.dynamic.area.offset.i32()
10054 declare i64 @llvm.get.dynamic.area.offset.i64()
10055
Lang Hames10239932016-10-08 00:20:42 +000010056Overview:
10057"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +000010058
10059 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
10060 get the offset from native stack pointer to the address of the most
10061 recent dynamic alloca on the caller's stack. These intrinsics are
10062 intendend for use in combination with
10063 :ref:`llvm.stacksave <int_stacksave>` to get a
10064 pointer to the most recent dynamic alloca. This is useful, for example,
10065 for AddressSanitizer's stack unpoisoning routines.
10066
10067Semantics:
10068""""""""""
10069
10070 These intrinsics return a non-negative integer value that can be used to
10071 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
10072 on the caller's stack. In particular, for targets where stack grows downwards,
10073 adding this offset to the native stack pointer would get the address of the most
10074 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +000010075 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +000010076 one past the end of the most recent dynamic alloca.
10077
10078 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
10079 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
10080 compile-time-known constant value.
10081
10082 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
Matt Arsenaultc749bdc2017-03-30 23:36:47 +000010083 must match the target's default address space's (address space 0) pointer type.
Yury Gribovd7dbb662015-12-01 11:40:55 +000010084
Sean Silvab084af42012-12-07 10:36:55 +000010085'``llvm.prefetch``' Intrinsic
10086^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10087
10088Syntax:
10089"""""""
10090
10091::
10092
10093 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
10094
10095Overview:
10096"""""""""
10097
10098The '``llvm.prefetch``' intrinsic is a hint to the code generator to
10099insert a prefetch instruction if supported; otherwise, it is a noop.
10100Prefetches have no effect on the behavior of the program but can change
10101its performance characteristics.
10102
10103Arguments:
10104""""""""""
10105
10106``address`` is the address to be prefetched, ``rw`` is the specifier
10107determining if the fetch should be for a read (0) or write (1), and
10108``locality`` is a temporal locality specifier ranging from (0) - no
10109locality, to (3) - extremely local keep in cache. The ``cache type``
10110specifies whether the prefetch is performed on the data (1) or
10111instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
10112arguments must be constant integers.
10113
10114Semantics:
10115""""""""""
10116
10117This intrinsic does not modify the behavior of the program. In
10118particular, prefetches cannot trap and do not produce a value. On
10119targets that support this intrinsic, the prefetch can provide hints to
10120the processor cache for better performance.
10121
10122'``llvm.pcmarker``' Intrinsic
10123^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10124
10125Syntax:
10126"""""""
10127
10128::
10129
10130 declare void @llvm.pcmarker(i32 <id>)
10131
10132Overview:
10133"""""""""
10134
10135The '``llvm.pcmarker``' intrinsic is a method to export a Program
10136Counter (PC) in a region of code to simulators and other tools. The
10137method is target specific, but it is expected that the marker will use
10138exported symbols to transmit the PC of the marker. The marker makes no
10139guarantees that it will remain with any specific instruction after
10140optimizations. It is possible that the presence of a marker will inhibit
10141optimizations. The intended use is to be inserted after optimizations to
10142allow correlations of simulation runs.
10143
10144Arguments:
10145""""""""""
10146
10147``id`` is a numerical id identifying the marker.
10148
10149Semantics:
10150""""""""""
10151
10152This intrinsic does not modify the behavior of the program. Backends
10153that do not support this intrinsic may ignore it.
10154
10155'``llvm.readcyclecounter``' Intrinsic
10156^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10157
10158Syntax:
10159"""""""
10160
10161::
10162
10163 declare i64 @llvm.readcyclecounter()
10164
10165Overview:
10166"""""""""
10167
10168The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
10169counter register (or similar low latency, high accuracy clocks) on those
10170targets that support it. On X86, it should map to RDTSC. On Alpha, it
10171should map to RPCC. As the backing counters overflow quickly (on the
10172order of 9 seconds on alpha), this should only be used for small
10173timings.
10174
10175Semantics:
10176""""""""""
10177
10178When directly supported, reading the cycle counter should not modify any
10179memory. Implementations are allowed to either return a application
10180specific value or a system wide value. On backends without support, this
10181is lowered to a constant 0.
10182
Tim Northoverbc933082013-05-23 19:11:20 +000010183Note that runtime support may be conditional on the privilege-level code is
10184running at and the host platform.
10185
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010186'``llvm.clear_cache``' Intrinsic
10187^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10188
10189Syntax:
10190"""""""
10191
10192::
10193
10194 declare void @llvm.clear_cache(i8*, i8*)
10195
10196Overview:
10197"""""""""
10198
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010199The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
10200in the specified range to the execution unit of the processor. On
10201targets with non-unified instruction and data cache, the implementation
10202flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010203
10204Semantics:
10205""""""""""
10206
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010207On platforms with coherent instruction and data caches (e.g. x86), this
10208intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +000010209cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010210instructions or a system call, if cache flushing requires special
10211privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010212
Sean Silvad02bf3e2014-04-07 22:29:53 +000010213The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010214time library.
Renato Golin93010e62014-03-26 14:01:32 +000010215
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010216This instrinsic does *not* empty the instruction pipeline. Modifications
10217of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010218
Vedant Kumar51ce6682018-01-26 23:54:25 +000010219'``llvm.instrprof.increment``' Intrinsic
Justin Bogner61ba2e32014-12-08 18:02:35 +000010220^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10221
10222Syntax:
10223"""""""
10224
10225::
10226
Vedant Kumar51ce6682018-01-26 23:54:25 +000010227 declare void @llvm.instrprof.increment(i8* <name>, i64 <hash>,
Justin Bogner61ba2e32014-12-08 18:02:35 +000010228 i32 <num-counters>, i32 <index>)
10229
10230Overview:
10231"""""""""
10232
Vedant Kumar51ce6682018-01-26 23:54:25 +000010233The '``llvm.instrprof.increment``' intrinsic can be emitted by a
Justin Bogner61ba2e32014-12-08 18:02:35 +000010234frontend for use with instrumentation based profiling. These will be
10235lowered by the ``-instrprof`` pass to generate execution counts of a
10236program at runtime.
10237
10238Arguments:
10239""""""""""
10240
10241The first argument is a pointer to a global variable containing the
10242name of the entity being instrumented. This should generally be the
10243(mangled) function name for a set of counters.
10244
10245The second argument is a hash value that can be used by the consumer
10246of the profile data to detect changes to the instrumented source, and
10247the third is the number of counters associated with ``name``. It is an
10248error if ``hash`` or ``num-counters`` differ between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000010249``instrprof.increment`` that refer to the same name.
Justin Bogner61ba2e32014-12-08 18:02:35 +000010250
10251The last argument refers to which of the counters for ``name`` should
10252be incremented. It should be a value between 0 and ``num-counters``.
10253
10254Semantics:
10255""""""""""
10256
10257This intrinsic represents an increment of a profiling counter. It will
10258cause the ``-instrprof`` pass to generate the appropriate data
10259structures and the code to increment the appropriate value, in a
10260format that can be written out by a compiler runtime and consumed via
10261the ``llvm-profdata`` tool.
10262
Vedant Kumar51ce6682018-01-26 23:54:25 +000010263'``llvm.instrprof.increment.step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +000010264^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +000010265
10266Syntax:
10267"""""""
10268
10269::
10270
Vedant Kumar51ce6682018-01-26 23:54:25 +000010271 declare void @llvm.instrprof.increment.step(i8* <name>, i64 <hash>,
Xinliang David Li4ca17332016-09-18 18:34:07 +000010272 i32 <num-counters>,
10273 i32 <index>, i64 <step>)
10274
10275Overview:
10276"""""""""
10277
Vedant Kumar51ce6682018-01-26 23:54:25 +000010278The '``llvm.instrprof.increment.step``' intrinsic is an extension to
10279the '``llvm.instrprof.increment``' intrinsic with an additional fifth
Xinliang David Li4ca17332016-09-18 18:34:07 +000010280argument to specify the step of the increment.
10281
10282Arguments:
10283""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000010284The first four arguments are the same as '``llvm.instrprof.increment``'
Pete Couperused9569d2017-08-23 20:58:22 +000010285intrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000010286
10287The last argument specifies the value of the increment of the counter variable.
10288
10289Semantics:
10290""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000010291See description of '``llvm.instrprof.increment``' instrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000010292
10293
Vedant Kumar51ce6682018-01-26 23:54:25 +000010294'``llvm.instrprof.value.profile``' Intrinsic
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010295^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10296
10297Syntax:
10298"""""""
10299
10300::
10301
Vedant Kumar51ce6682018-01-26 23:54:25 +000010302 declare void @llvm.instrprof.value.profile(i8* <name>, i64 <hash>,
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010303 i64 <value>, i32 <value_kind>,
10304 i32 <index>)
10305
10306Overview:
10307"""""""""
10308
Vedant Kumar51ce6682018-01-26 23:54:25 +000010309The '``llvm.instrprof.value.profile``' intrinsic can be emitted by a
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010310frontend for use with instrumentation based profiling. This will be
10311lowered by the ``-instrprof`` pass to find out the target values,
10312instrumented expressions take in a program at runtime.
10313
10314Arguments:
10315""""""""""
10316
10317The first argument is a pointer to a global variable containing the
10318name of the entity being instrumented. ``name`` should generally be the
10319(mangled) function name for a set of counters.
10320
10321The second argument is a hash value that can be used by the consumer
10322of the profile data to detect changes to the instrumented source. It
10323is an error if ``hash`` differs between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000010324``llvm.instrprof.*`` that refer to the same name.
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010325
10326The third argument is the value of the expression being profiled. The profiled
10327expression's value should be representable as an unsigned 64-bit value. The
10328fourth argument represents the kind of value profiling that is being done. The
10329supported value profiling kinds are enumerated through the
10330``InstrProfValueKind`` type declared in the
10331``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
10332index of the instrumented expression within ``name``. It should be >= 0.
10333
10334Semantics:
10335""""""""""
10336
10337This intrinsic represents the point where a call to a runtime routine
10338should be inserted for value profiling of target expressions. ``-instrprof``
10339pass will generate the appropriate data structures and replace the
Vedant Kumar51ce6682018-01-26 23:54:25 +000010340``llvm.instrprof.value.profile`` intrinsic with the call to the profile
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010341runtime library with proper arguments.
10342
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000010343'``llvm.thread.pointer``' Intrinsic
10344^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10345
10346Syntax:
10347"""""""
10348
10349::
10350
10351 declare i8* @llvm.thread.pointer()
10352
10353Overview:
10354"""""""""
10355
10356The '``llvm.thread.pointer``' intrinsic returns the value of the thread
10357pointer.
10358
10359Semantics:
10360""""""""""
10361
10362The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
10363for the current thread. The exact semantics of this value are target
10364specific: it may point to the start of TLS area, to the end, or somewhere
10365in the middle. Depending on the target, this intrinsic may read a register,
10366call a helper function, read from an alternate memory space, or perform
10367other operations necessary to locate the TLS area. Not all targets support
10368this intrinsic.
10369
Sean Silvab084af42012-12-07 10:36:55 +000010370Standard C Library Intrinsics
10371-----------------------------
10372
10373LLVM provides intrinsics for a few important standard C library
10374functions. These intrinsics allow source-language front-ends to pass
10375information about the alignment of the pointer arguments to the code
10376generator, providing opportunity for more efficient code generation.
10377
10378.. _int_memcpy:
10379
10380'``llvm.memcpy``' Intrinsic
10381^^^^^^^^^^^^^^^^^^^^^^^^^^^
10382
10383Syntax:
10384"""""""
10385
10386This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
10387integer bit width and for different address spaces. Not all targets
10388support all bit widths however.
10389
10390::
10391
10392 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010393 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010394 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010395 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010396
10397Overview:
10398"""""""""
10399
10400The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10401source location to the destination location.
10402
10403Note that, unlike the standard libc function, the ``llvm.memcpy.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000010404intrinsics do not return a value, takes extra isvolatile
Sean Silvab084af42012-12-07 10:36:55 +000010405arguments and the pointers can be in specified address spaces.
10406
10407Arguments:
10408""""""""""
10409
10410The first argument is a pointer to the destination, the second is a
10411pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000010412specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000010413boolean indicating a volatile access.
10414
Daniel Neilson39eb6a52018-01-19 17:24:21 +000010415The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010416for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010417
10418If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
10419a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10420very cleanly specified and it is unwise to depend on it.
10421
10422Semantics:
10423""""""""""
10424
10425The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10426source location to the destination location, which are not allowed to
10427overlap. It copies "len" bytes of memory over. If the argument is known
10428to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +000010429argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010430
Daniel Neilson57226ef2017-07-12 15:25:26 +000010431.. _int_memmove:
10432
Sean Silvab084af42012-12-07 10:36:55 +000010433'``llvm.memmove``' Intrinsic
10434^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10435
10436Syntax:
10437"""""""
10438
10439This is an overloaded intrinsic. You can use llvm.memmove on any integer
10440bit width and for different address space. Not all targets support all
10441bit widths however.
10442
10443::
10444
10445 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010446 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010447 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010448 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010449
10450Overview:
10451"""""""""
10452
10453The '``llvm.memmove.*``' intrinsics move a block of memory from the
10454source location to the destination location. It is similar to the
10455'``llvm.memcpy``' intrinsic but allows the two memory locations to
10456overlap.
10457
10458Note that, unlike the standard libc function, the ``llvm.memmove.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000010459intrinsics do not return a value, takes an extra isvolatile
10460argument and the pointers can be in specified address spaces.
Sean Silvab084af42012-12-07 10:36:55 +000010461
10462Arguments:
10463""""""""""
10464
10465The first argument is a pointer to the destination, the second is a
10466pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000010467specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000010468boolean indicating a volatile access.
10469
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000010470The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010471for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010472
10473If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
10474is a :ref:`volatile operation <volatile>`. The detailed access behavior is
10475not very cleanly specified and it is unwise to depend on it.
10476
10477Semantics:
10478""""""""""
10479
10480The '``llvm.memmove.*``' intrinsics copy a block of memory from the
10481source location to the destination location, which may overlap. It
10482copies "len" bytes of memory over. If the argument is known to be
10483aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000010484otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010485
Daniel Neilson965613e2017-07-12 21:57:23 +000010486.. _int_memset:
10487
Sean Silvab084af42012-12-07 10:36:55 +000010488'``llvm.memset.*``' Intrinsics
10489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10490
10491Syntax:
10492"""""""
10493
10494This is an overloaded intrinsic. You can use llvm.memset on any integer
10495bit width and for different address spaces. However, not all targets
10496support all bit widths.
10497
10498::
10499
10500 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010501 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010502 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010503 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010504
10505Overview:
10506"""""""""
10507
10508The '``llvm.memset.*``' intrinsics fill a block of memory with a
10509particular byte value.
10510
10511Note that, unlike the standard libc function, the ``llvm.memset``
Daniel Neilson1e687242018-01-19 17:13:12 +000010512intrinsic does not return a value and takes an extra volatile
10513argument. Also, the destination can be in an arbitrary address space.
Sean Silvab084af42012-12-07 10:36:55 +000010514
10515Arguments:
10516""""""""""
10517
10518The first argument is a pointer to the destination to fill, the second
10519is the byte value with which to fill it, the third argument is an
10520integer argument specifying the number of bytes to fill, and the fourth
Daniel Neilson1e687242018-01-19 17:13:12 +000010521is a boolean indicating a volatile access.
Sean Silvab084af42012-12-07 10:36:55 +000010522
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000010523The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010524for the first arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010525
10526If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10527a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10528very cleanly specified and it is unwise to depend on it.
10529
10530Semantics:
10531""""""""""
10532
10533The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010534at the destination location.
Sean Silvab084af42012-12-07 10:36:55 +000010535
10536'``llvm.sqrt.*``' Intrinsic
10537^^^^^^^^^^^^^^^^^^^^^^^^^^^
10538
10539Syntax:
10540"""""""
10541
10542This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010543floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010544all types however.
10545
10546::
10547
10548 declare float @llvm.sqrt.f32(float %Val)
10549 declare double @llvm.sqrt.f64(double %Val)
10550 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10551 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10552 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10553
10554Overview:
10555"""""""""
10556
Sanjay Patel629c4112017-11-06 16:27:15 +000010557The '``llvm.sqrt``' intrinsics return the square root of the specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010558
10559Arguments:
10560""""""""""
10561
Sanjay Patel629c4112017-11-06 16:27:15 +000010562The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010563
10564Semantics:
10565""""""""""
10566
Sanjay Patel629c4112017-11-06 16:27:15 +000010567Return the same value as a corresponding libm '``sqrt``' function but without
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010568trapping or setting ``errno``. For types specified by IEEE-754, the result
Sanjay Patel629c4112017-11-06 16:27:15 +000010569matches a conforming libm implementation.
10570
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010571When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010572using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010573
10574'``llvm.powi.*``' Intrinsic
10575^^^^^^^^^^^^^^^^^^^^^^^^^^^
10576
10577Syntax:
10578"""""""
10579
10580This is an overloaded intrinsic. You can use ``llvm.powi`` on any
10581floating point or vector of floating point type. Not all targets support
10582all types however.
10583
10584::
10585
10586 declare float @llvm.powi.f32(float %Val, i32 %power)
10587 declare double @llvm.powi.f64(double %Val, i32 %power)
10588 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10589 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10590 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10591
10592Overview:
10593"""""""""
10594
10595The '``llvm.powi.*``' intrinsics return the first operand raised to the
10596specified (positive or negative) power. The order of evaluation of
10597multiplications is not defined. When a vector of floating point type is
10598used, the second argument remains a scalar integer value.
10599
10600Arguments:
10601""""""""""
10602
10603The second argument is an integer power, and the first is a value to
10604raise to that power.
10605
10606Semantics:
10607""""""""""
10608
10609This function returns the first value raised to the second power with an
10610unspecified sequence of rounding operations.
10611
10612'``llvm.sin.*``' Intrinsic
10613^^^^^^^^^^^^^^^^^^^^^^^^^^
10614
10615Syntax:
10616"""""""
10617
10618This is an overloaded intrinsic. You can use ``llvm.sin`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010619floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010620all types however.
10621
10622::
10623
10624 declare float @llvm.sin.f32(float %Val)
10625 declare double @llvm.sin.f64(double %Val)
10626 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10627 declare fp128 @llvm.sin.f128(fp128 %Val)
10628 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10629
10630Overview:
10631"""""""""
10632
10633The '``llvm.sin.*``' intrinsics return the sine of the operand.
10634
10635Arguments:
10636""""""""""
10637
Sanjay Patel629c4112017-11-06 16:27:15 +000010638The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010639
10640Semantics:
10641""""""""""
10642
Sanjay Patel629c4112017-11-06 16:27:15 +000010643Return the same value as a corresponding libm '``sin``' function but without
10644trapping or setting ``errno``.
10645
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010646When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010647using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010648
10649'``llvm.cos.*``' Intrinsic
10650^^^^^^^^^^^^^^^^^^^^^^^^^^
10651
10652Syntax:
10653"""""""
10654
10655This is an overloaded intrinsic. You can use ``llvm.cos`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010656floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010657all types however.
10658
10659::
10660
10661 declare float @llvm.cos.f32(float %Val)
10662 declare double @llvm.cos.f64(double %Val)
10663 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10664 declare fp128 @llvm.cos.f128(fp128 %Val)
10665 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10666
10667Overview:
10668"""""""""
10669
10670The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10671
10672Arguments:
10673""""""""""
10674
Sanjay Patel629c4112017-11-06 16:27:15 +000010675The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010676
10677Semantics:
10678""""""""""
10679
Sanjay Patel629c4112017-11-06 16:27:15 +000010680Return the same value as a corresponding libm '``cos``' function but without
10681trapping or setting ``errno``.
10682
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010683When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010684using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010685
10686'``llvm.pow.*``' Intrinsic
10687^^^^^^^^^^^^^^^^^^^^^^^^^^
10688
10689Syntax:
10690"""""""
10691
10692This is an overloaded intrinsic. You can use ``llvm.pow`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010693floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010694all types however.
10695
10696::
10697
10698 declare float @llvm.pow.f32(float %Val, float %Power)
10699 declare double @llvm.pow.f64(double %Val, double %Power)
10700 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10701 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10702 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10703
10704Overview:
10705"""""""""
10706
10707The '``llvm.pow.*``' intrinsics return the first operand raised to the
10708specified (positive or negative) power.
10709
10710Arguments:
10711""""""""""
10712
Sanjay Patel629c4112017-11-06 16:27:15 +000010713The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010714
10715Semantics:
10716""""""""""
10717
Sanjay Patel629c4112017-11-06 16:27:15 +000010718Return the same value as a corresponding libm '``pow``' function but without
10719trapping or setting ``errno``.
10720
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010721When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010722using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010723
10724'``llvm.exp.*``' Intrinsic
10725^^^^^^^^^^^^^^^^^^^^^^^^^^
10726
10727Syntax:
10728"""""""
10729
10730This is an overloaded intrinsic. You can use ``llvm.exp`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010731floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010732all types however.
10733
10734::
10735
10736 declare float @llvm.exp.f32(float %Val)
10737 declare double @llvm.exp.f64(double %Val)
10738 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10739 declare fp128 @llvm.exp.f128(fp128 %Val)
10740 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10741
10742Overview:
10743"""""""""
10744
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010745The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
10746value.
Sean Silvab084af42012-12-07 10:36:55 +000010747
10748Arguments:
10749""""""""""
10750
Sanjay Patel629c4112017-11-06 16:27:15 +000010751The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010752
10753Semantics:
10754""""""""""
10755
Sanjay Patel629c4112017-11-06 16:27:15 +000010756Return the same value as a corresponding libm '``exp``' function but without
10757trapping or setting ``errno``.
10758
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010759When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010760using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010761
10762'``llvm.exp2.*``' Intrinsic
10763^^^^^^^^^^^^^^^^^^^^^^^^^^^
10764
10765Syntax:
10766"""""""
10767
10768This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010769floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010770all types however.
10771
10772::
10773
10774 declare float @llvm.exp2.f32(float %Val)
10775 declare double @llvm.exp2.f64(double %Val)
10776 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10777 declare fp128 @llvm.exp2.f128(fp128 %Val)
10778 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10779
10780Overview:
10781"""""""""
10782
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010783The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
10784specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010785
10786Arguments:
10787""""""""""
10788
Sanjay Patel629c4112017-11-06 16:27:15 +000010789The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010790
10791Semantics:
10792""""""""""
10793
Sanjay Patel629c4112017-11-06 16:27:15 +000010794Return the same value as a corresponding libm '``exp2``' function but without
10795trapping or setting ``errno``.
10796
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010797When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010798using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010799
10800'``llvm.log.*``' Intrinsic
10801^^^^^^^^^^^^^^^^^^^^^^^^^^
10802
10803Syntax:
10804"""""""
10805
10806This is an overloaded intrinsic. You can use ``llvm.log`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010807floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010808all types however.
10809
10810::
10811
10812 declare float @llvm.log.f32(float %Val)
10813 declare double @llvm.log.f64(double %Val)
10814 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10815 declare fp128 @llvm.log.f128(fp128 %Val)
10816 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10817
10818Overview:
10819"""""""""
10820
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010821The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
10822value.
Sean Silvab084af42012-12-07 10:36:55 +000010823
10824Arguments:
10825""""""""""
10826
Sanjay Patel629c4112017-11-06 16:27:15 +000010827The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010828
10829Semantics:
10830""""""""""
10831
Sanjay Patel629c4112017-11-06 16:27:15 +000010832Return the same value as a corresponding libm '``log``' function but without
10833trapping or setting ``errno``.
10834
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010835When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010836using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010837
10838'``llvm.log10.*``' Intrinsic
10839^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10840
10841Syntax:
10842"""""""
10843
10844This is an overloaded intrinsic. You can use ``llvm.log10`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010845floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010846all types however.
10847
10848::
10849
10850 declare float @llvm.log10.f32(float %Val)
10851 declare double @llvm.log10.f64(double %Val)
10852 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10853 declare fp128 @llvm.log10.f128(fp128 %Val)
10854 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10855
10856Overview:
10857"""""""""
10858
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010859The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
10860specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010861
10862Arguments:
10863""""""""""
10864
Sanjay Patel629c4112017-11-06 16:27:15 +000010865The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010866
10867Semantics:
10868""""""""""
10869
Sanjay Patel629c4112017-11-06 16:27:15 +000010870Return the same value as a corresponding libm '``log10``' function but without
10871trapping or setting ``errno``.
10872
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010873When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010874using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010875
10876'``llvm.log2.*``' Intrinsic
10877^^^^^^^^^^^^^^^^^^^^^^^^^^^
10878
10879Syntax:
10880"""""""
10881
10882This is an overloaded intrinsic. You can use ``llvm.log2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010883floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010884all types however.
10885
10886::
10887
10888 declare float @llvm.log2.f32(float %Val)
10889 declare double @llvm.log2.f64(double %Val)
10890 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10891 declare fp128 @llvm.log2.f128(fp128 %Val)
10892 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10893
10894Overview:
10895"""""""""
10896
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010897The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
10898value.
Sean Silvab084af42012-12-07 10:36:55 +000010899
10900Arguments:
10901""""""""""
10902
Sanjay Patel629c4112017-11-06 16:27:15 +000010903The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010904
10905Semantics:
10906""""""""""
10907
Sanjay Patel629c4112017-11-06 16:27:15 +000010908Return the same value as a corresponding libm '``log2``' function but without
10909trapping or setting ``errno``.
10910
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010911When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010912using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010913
10914'``llvm.fma.*``' Intrinsic
10915^^^^^^^^^^^^^^^^^^^^^^^^^^
10916
10917Syntax:
10918"""""""
10919
10920This is an overloaded intrinsic. You can use ``llvm.fma`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010921floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010922all types however.
10923
10924::
10925
10926 declare float @llvm.fma.f32(float %a, float %b, float %c)
10927 declare double @llvm.fma.f64(double %a, double %b, double %c)
10928 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10929 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10930 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10931
10932Overview:
10933"""""""""
10934
Sanjay Patel629c4112017-11-06 16:27:15 +000010935The '``llvm.fma.*``' intrinsics perform the fused multiply-add operation.
Sean Silvab084af42012-12-07 10:36:55 +000010936
10937Arguments:
10938""""""""""
10939
Sanjay Patel629c4112017-11-06 16:27:15 +000010940The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010941
10942Semantics:
10943""""""""""
10944
Sanjay Patel629c4112017-11-06 16:27:15 +000010945Return the same value as a corresponding libm '``fma``' function but without
10946trapping or setting ``errno``.
10947
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010948When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010949using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010950
10951'``llvm.fabs.*``' Intrinsic
10952^^^^^^^^^^^^^^^^^^^^^^^^^^^
10953
10954Syntax:
10955"""""""
10956
10957This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10958floating point or vector of floating point type. Not all targets support
10959all types however.
10960
10961::
10962
10963 declare float @llvm.fabs.f32(float %Val)
10964 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010965 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010966 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010967 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010968
10969Overview:
10970"""""""""
10971
10972The '``llvm.fabs.*``' intrinsics return the absolute value of the
10973operand.
10974
10975Arguments:
10976""""""""""
10977
10978The argument and return value are floating point numbers of the same
10979type.
10980
10981Semantics:
10982""""""""""
10983
10984This function returns the same values as the libm ``fabs`` functions
10985would, and handles error conditions in the same way.
10986
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010987'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010988^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010989
10990Syntax:
10991"""""""
10992
10993This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10994floating point or vector of floating point type. Not all targets support
10995all types however.
10996
10997::
10998
Matt Arsenault64313c92014-10-22 18:25:02 +000010999 declare float @llvm.minnum.f32(float %Val0, float %Val1)
11000 declare double @llvm.minnum.f64(double %Val0, double %Val1)
11001 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11002 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
11003 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011004
11005Overview:
11006"""""""""
11007
11008The '``llvm.minnum.*``' intrinsics return the minimum of the two
11009arguments.
11010
11011
11012Arguments:
11013""""""""""
11014
11015The arguments and return value are floating point numbers of the same
11016type.
11017
11018Semantics:
11019""""""""""
11020
11021Follows the IEEE-754 semantics for minNum, which also match for libm's
11022fmin.
11023
11024If either operand is a NaN, returns the other non-NaN operand. Returns
11025NaN only if both operands are NaN. If the operands compare equal,
11026returns a value that compares equal to both operands. This means that
11027fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
11028
11029'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000011030^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011031
11032Syntax:
11033"""""""
11034
11035This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
11036floating point or vector of floating point type. Not all targets support
11037all types however.
11038
11039::
11040
Matt Arsenault64313c92014-10-22 18:25:02 +000011041 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
11042 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
11043 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11044 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
11045 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011046
11047Overview:
11048"""""""""
11049
11050The '``llvm.maxnum.*``' intrinsics return the maximum of the two
11051arguments.
11052
11053
11054Arguments:
11055""""""""""
11056
11057The arguments and return value are floating point numbers of the same
11058type.
11059
11060Semantics:
11061""""""""""
11062Follows the IEEE-754 semantics for maxNum, which also match for libm's
11063fmax.
11064
11065If either operand is a NaN, returns the other non-NaN operand. Returns
11066NaN only if both operands are NaN. If the operands compare equal,
11067returns a value that compares equal to both operands. This means that
11068fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
11069
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011070'``llvm.copysign.*``' Intrinsic
11071^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11072
11073Syntax:
11074"""""""
11075
11076This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
11077floating point or vector of floating point type. Not all targets support
11078all types however.
11079
11080::
11081
11082 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
11083 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
11084 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
11085 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
11086 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
11087
11088Overview:
11089"""""""""
11090
11091The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
11092first operand and the sign of the second operand.
11093
11094Arguments:
11095""""""""""
11096
11097The arguments and return value are floating point numbers of the same
11098type.
11099
11100Semantics:
11101""""""""""
11102
11103This function returns the same values as the libm ``copysign``
11104functions would, and handles error conditions in the same way.
11105
Sean Silvab084af42012-12-07 10:36:55 +000011106'``llvm.floor.*``' Intrinsic
11107^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11108
11109Syntax:
11110"""""""
11111
11112This is an overloaded intrinsic. You can use ``llvm.floor`` on any
11113floating point or vector of floating point type. Not all targets support
11114all types however.
11115
11116::
11117
11118 declare float @llvm.floor.f32(float %Val)
11119 declare double @llvm.floor.f64(double %Val)
11120 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
11121 declare fp128 @llvm.floor.f128(fp128 %Val)
11122 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
11123
11124Overview:
11125"""""""""
11126
11127The '``llvm.floor.*``' intrinsics return the floor of the operand.
11128
11129Arguments:
11130""""""""""
11131
11132The argument and return value are floating point numbers of the same
11133type.
11134
11135Semantics:
11136""""""""""
11137
11138This function returns the same values as the libm ``floor`` functions
11139would, and handles error conditions in the same way.
11140
11141'``llvm.ceil.*``' Intrinsic
11142^^^^^^^^^^^^^^^^^^^^^^^^^^^
11143
11144Syntax:
11145"""""""
11146
11147This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
11148floating point or vector of floating point type. Not all targets support
11149all types however.
11150
11151::
11152
11153 declare float @llvm.ceil.f32(float %Val)
11154 declare double @llvm.ceil.f64(double %Val)
11155 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
11156 declare fp128 @llvm.ceil.f128(fp128 %Val)
11157 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
11158
11159Overview:
11160"""""""""
11161
11162The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
11163
11164Arguments:
11165""""""""""
11166
11167The argument and return value are floating point numbers of the same
11168type.
11169
11170Semantics:
11171""""""""""
11172
11173This function returns the same values as the libm ``ceil`` functions
11174would, and handles error conditions in the same way.
11175
11176'``llvm.trunc.*``' Intrinsic
11177^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11178
11179Syntax:
11180"""""""
11181
11182This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
11183floating point or vector of floating point type. Not all targets support
11184all types however.
11185
11186::
11187
11188 declare float @llvm.trunc.f32(float %Val)
11189 declare double @llvm.trunc.f64(double %Val)
11190 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
11191 declare fp128 @llvm.trunc.f128(fp128 %Val)
11192 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
11193
11194Overview:
11195"""""""""
11196
11197The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
11198nearest integer not larger in magnitude than the operand.
11199
11200Arguments:
11201""""""""""
11202
11203The argument and return value are floating point numbers of the same
11204type.
11205
11206Semantics:
11207""""""""""
11208
11209This function returns the same values as the libm ``trunc`` functions
11210would, and handles error conditions in the same way.
11211
11212'``llvm.rint.*``' Intrinsic
11213^^^^^^^^^^^^^^^^^^^^^^^^^^^
11214
11215Syntax:
11216"""""""
11217
11218This is an overloaded intrinsic. You can use ``llvm.rint`` on any
11219floating point or vector of floating point type. Not all targets support
11220all types however.
11221
11222::
11223
11224 declare float @llvm.rint.f32(float %Val)
11225 declare double @llvm.rint.f64(double %Val)
11226 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
11227 declare fp128 @llvm.rint.f128(fp128 %Val)
11228 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
11229
11230Overview:
11231"""""""""
11232
11233The '``llvm.rint.*``' intrinsics returns the operand rounded to the
11234nearest integer. It may raise an inexact floating-point exception if the
11235operand isn't an integer.
11236
11237Arguments:
11238""""""""""
11239
11240The argument and return value are floating point numbers of the same
11241type.
11242
11243Semantics:
11244""""""""""
11245
11246This function returns the same values as the libm ``rint`` functions
11247would, and handles error conditions in the same way.
11248
11249'``llvm.nearbyint.*``' Intrinsic
11250^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11251
11252Syntax:
11253"""""""
11254
11255This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
11256floating point or vector of floating point type. Not all targets support
11257all types however.
11258
11259::
11260
11261 declare float @llvm.nearbyint.f32(float %Val)
11262 declare double @llvm.nearbyint.f64(double %Val)
11263 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
11264 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
11265 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
11266
11267Overview:
11268"""""""""
11269
11270The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
11271nearest integer.
11272
11273Arguments:
11274""""""""""
11275
11276The argument and return value are floating point numbers of the same
11277type.
11278
11279Semantics:
11280""""""""""
11281
11282This function returns the same values as the libm ``nearbyint``
11283functions would, and handles error conditions in the same way.
11284
Hal Finkel171817e2013-08-07 22:49:12 +000011285'``llvm.round.*``' Intrinsic
11286^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11287
11288Syntax:
11289"""""""
11290
11291This is an overloaded intrinsic. You can use ``llvm.round`` on any
11292floating point or vector of floating point type. Not all targets support
11293all types however.
11294
11295::
11296
11297 declare float @llvm.round.f32(float %Val)
11298 declare double @llvm.round.f64(double %Val)
11299 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
11300 declare fp128 @llvm.round.f128(fp128 %Val)
11301 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
11302
11303Overview:
11304"""""""""
11305
11306The '``llvm.round.*``' intrinsics returns the operand rounded to the
11307nearest integer.
11308
11309Arguments:
11310""""""""""
11311
11312The argument and return value are floating point numbers of the same
11313type.
11314
11315Semantics:
11316""""""""""
11317
11318This function returns the same values as the libm ``round``
11319functions would, and handles error conditions in the same way.
11320
Sean Silvab084af42012-12-07 10:36:55 +000011321Bit Manipulation Intrinsics
11322---------------------------
11323
11324LLVM provides intrinsics for a few important bit manipulation
11325operations. These allow efficient code generation for some algorithms.
11326
James Molloy90111f72015-11-12 12:29:09 +000011327'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000011328^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000011329
11330Syntax:
11331"""""""
11332
11333This is an overloaded intrinsic function. You can use bitreverse on any
11334integer type.
11335
11336::
11337
11338 declare i16 @llvm.bitreverse.i16(i16 <id>)
11339 declare i32 @llvm.bitreverse.i32(i32 <id>)
11340 declare i64 @llvm.bitreverse.i64(i64 <id>)
11341
11342Overview:
11343"""""""""
11344
11345The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000011346bitpattern of an integer value; for example ``0b10110110`` becomes
11347``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000011348
11349Semantics:
11350""""""""""
11351
Yichao Yu5abf14b2016-11-23 16:25:31 +000011352The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000011353``M`` in the input moved to bit ``N-M`` in the output.
11354
Sean Silvab084af42012-12-07 10:36:55 +000011355'``llvm.bswap.*``' Intrinsics
11356^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11357
11358Syntax:
11359"""""""
11360
11361This is an overloaded intrinsic function. You can use bswap on any
11362integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
11363
11364::
11365
11366 declare i16 @llvm.bswap.i16(i16 <id>)
11367 declare i32 @llvm.bswap.i32(i32 <id>)
11368 declare i64 @llvm.bswap.i64(i64 <id>)
11369
11370Overview:
11371"""""""""
11372
11373The '``llvm.bswap``' family of intrinsics is used to byte swap integer
11374values with an even number of bytes (positive multiple of 16 bits).
11375These are useful for performing operations on data that is not in the
11376target's native byte order.
11377
11378Semantics:
11379""""""""""
11380
11381The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
11382and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
11383intrinsic returns an i32 value that has the four bytes of the input i32
11384swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
11385returned i32 will have its bytes in 3, 2, 1, 0 order. The
11386``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
11387concept to additional even-byte lengths (6 bytes, 8 bytes and more,
11388respectively).
11389
11390'``llvm.ctpop.*``' Intrinsic
11391^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11392
11393Syntax:
11394"""""""
11395
11396This is an overloaded intrinsic. You can use llvm.ctpop on any integer
11397bit width, or on any vector with integer elements. Not all targets
11398support all bit widths or vector types, however.
11399
11400::
11401
11402 declare i8 @llvm.ctpop.i8(i8 <src>)
11403 declare i16 @llvm.ctpop.i16(i16 <src>)
11404 declare i32 @llvm.ctpop.i32(i32 <src>)
11405 declare i64 @llvm.ctpop.i64(i64 <src>)
11406 declare i256 @llvm.ctpop.i256(i256 <src>)
11407 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
11408
11409Overview:
11410"""""""""
11411
11412The '``llvm.ctpop``' family of intrinsics counts the number of bits set
11413in a value.
11414
11415Arguments:
11416""""""""""
11417
11418The only argument is the value to be counted. The argument may be of any
11419integer type, or a vector with integer elements. The return type must
11420match the argument type.
11421
11422Semantics:
11423""""""""""
11424
11425The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
11426each element of a vector.
11427
11428'``llvm.ctlz.*``' Intrinsic
11429^^^^^^^^^^^^^^^^^^^^^^^^^^^
11430
11431Syntax:
11432"""""""
11433
11434This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
11435integer bit width, or any vector whose elements are integers. Not all
11436targets support all bit widths or vector types, however.
11437
11438::
11439
11440 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
11441 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
11442 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
11443 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
11444 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011445 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011446
11447Overview:
11448"""""""""
11449
11450The '``llvm.ctlz``' family of intrinsic functions counts the number of
11451leading zeros in a variable.
11452
11453Arguments:
11454""""""""""
11455
11456The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011457any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011458type must match the first argument type.
11459
11460The second argument must be a constant and is a flag to indicate whether
11461the intrinsic should ensure that a zero as the first argument produces a
11462defined result. Historically some architectures did not provide a
11463defined result for zero values as efficiently, and many algorithms are
11464now predicated on avoiding zero-value inputs.
11465
11466Semantics:
11467""""""""""
11468
11469The '``llvm.ctlz``' intrinsic counts the leading (most significant)
11470zeros in a variable, or within each element of the vector. If
11471``src == 0`` then the result is the size in bits of the type of ``src``
11472if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11473``llvm.ctlz(i32 2) = 30``.
11474
11475'``llvm.cttz.*``' Intrinsic
11476^^^^^^^^^^^^^^^^^^^^^^^^^^^
11477
11478Syntax:
11479"""""""
11480
11481This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
11482integer bit width, or any vector of integer elements. Not all targets
11483support all bit widths or vector types, however.
11484
11485::
11486
11487 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
11488 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
11489 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
11490 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
11491 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011492 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011493
11494Overview:
11495"""""""""
11496
11497The '``llvm.cttz``' family of intrinsic functions counts the number of
11498trailing zeros.
11499
11500Arguments:
11501""""""""""
11502
11503The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011504any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011505type must match the first argument type.
11506
11507The second argument must be a constant and is a flag to indicate whether
11508the intrinsic should ensure that a zero as the first argument produces a
11509defined result. Historically some architectures did not provide a
11510defined result for zero values as efficiently, and many algorithms are
11511now predicated on avoiding zero-value inputs.
11512
11513Semantics:
11514""""""""""
11515
11516The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11517zeros in a variable, or within each element of a vector. If ``src == 0``
11518then the result is the size in bits of the type of ``src`` if
11519``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11520``llvm.cttz(2) = 1``.
11521
Philip Reames34843ae2015-03-05 05:55:55 +000011522.. _int_overflow:
11523
Sean Silvab084af42012-12-07 10:36:55 +000011524Arithmetic with Overflow Intrinsics
11525-----------------------------------
11526
John Regehr6a493f22016-05-12 20:55:09 +000011527LLVM provides intrinsics for fast arithmetic overflow checking.
11528
11529Each of these intrinsics returns a two-element struct. The first
11530element of this struct contains the result of the corresponding
11531arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
11532the result. Therefore, for example, the first element of the struct
11533returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
11534result of a 32-bit ``add`` instruction with the same operands, where
11535the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
11536
11537The second element of the result is an ``i1`` that is 1 if the
11538arithmetic operation overflowed and 0 otherwise. An operation
11539overflows if, for any values of its operands ``A`` and ``B`` and for
11540any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
11541not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
11542``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11543``op`` is the underlying arithmetic operation.
11544
11545The behavior of these intrinsics is well-defined for all argument
11546values.
Sean Silvab084af42012-12-07 10:36:55 +000011547
11548'``llvm.sadd.with.overflow.*``' Intrinsics
11549^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11550
11551Syntax:
11552"""""""
11553
11554This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11555on any integer bit width.
11556
11557::
11558
11559 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11560 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11561 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11562
11563Overview:
11564"""""""""
11565
11566The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11567a signed addition of the two arguments, and indicate whether an overflow
11568occurred during the signed summation.
11569
11570Arguments:
11571""""""""""
11572
11573The arguments (%a and %b) and the first element of the result structure
11574may be of integer types of any bit width, but they must have the same
11575bit width. The second element of the result structure must be of type
11576``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11577addition.
11578
11579Semantics:
11580""""""""""
11581
11582The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011583a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011584first element of which is the signed summation, and the second element
11585of which is a bit specifying if the signed summation resulted in an
11586overflow.
11587
11588Examples:
11589"""""""""
11590
11591.. code-block:: llvm
11592
11593 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11594 %sum = extractvalue {i32, i1} %res, 0
11595 %obit = extractvalue {i32, i1} %res, 1
11596 br i1 %obit, label %overflow, label %normal
11597
11598'``llvm.uadd.with.overflow.*``' Intrinsics
11599^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11600
11601Syntax:
11602"""""""
11603
11604This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11605on any integer bit width.
11606
11607::
11608
11609 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11610 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11611 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11612
11613Overview:
11614"""""""""
11615
11616The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11617an unsigned addition of the two arguments, and indicate whether a carry
11618occurred during the unsigned summation.
11619
11620Arguments:
11621""""""""""
11622
11623The arguments (%a and %b) and the first element of the result structure
11624may be of integer types of any bit width, but they must have the same
11625bit width. The second element of the result structure must be of type
11626``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11627addition.
11628
11629Semantics:
11630""""""""""
11631
11632The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011633an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011634first element of which is the sum, and the second element of which is a
11635bit specifying if the unsigned summation resulted in a carry.
11636
11637Examples:
11638"""""""""
11639
11640.. code-block:: llvm
11641
11642 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11643 %sum = extractvalue {i32, i1} %res, 0
11644 %obit = extractvalue {i32, i1} %res, 1
11645 br i1 %obit, label %carry, label %normal
11646
11647'``llvm.ssub.with.overflow.*``' Intrinsics
11648^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11649
11650Syntax:
11651"""""""
11652
11653This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11654on any integer bit width.
11655
11656::
11657
11658 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11659 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11660 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11661
11662Overview:
11663"""""""""
11664
11665The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11666a signed subtraction of the two arguments, and indicate whether an
11667overflow occurred during the signed subtraction.
11668
11669Arguments:
11670""""""""""
11671
11672The arguments (%a and %b) and the first element of the result structure
11673may be of integer types of any bit width, but they must have the same
11674bit width. The second element of the result structure must be of type
11675``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11676subtraction.
11677
11678Semantics:
11679""""""""""
11680
11681The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011682a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011683first element of which is the subtraction, and the second element of
11684which is a bit specifying if the signed subtraction resulted in an
11685overflow.
11686
11687Examples:
11688"""""""""
11689
11690.. code-block:: llvm
11691
11692 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11693 %sum = extractvalue {i32, i1} %res, 0
11694 %obit = extractvalue {i32, i1} %res, 1
11695 br i1 %obit, label %overflow, label %normal
11696
11697'``llvm.usub.with.overflow.*``' Intrinsics
11698^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11699
11700Syntax:
11701"""""""
11702
11703This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11704on any integer bit width.
11705
11706::
11707
11708 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11709 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11710 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11711
11712Overview:
11713"""""""""
11714
11715The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11716an unsigned subtraction of the two arguments, and indicate whether an
11717overflow occurred during the unsigned subtraction.
11718
11719Arguments:
11720""""""""""
11721
11722The arguments (%a and %b) and the first element of the result structure
11723may be of integer types of any bit width, but they must have the same
11724bit width. The second element of the result structure must be of type
11725``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11726subtraction.
11727
11728Semantics:
11729""""""""""
11730
11731The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011732an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011733the first element of which is the subtraction, and the second element of
11734which is a bit specifying if the unsigned subtraction resulted in an
11735overflow.
11736
11737Examples:
11738"""""""""
11739
11740.. code-block:: llvm
11741
11742 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11743 %sum = extractvalue {i32, i1} %res, 0
11744 %obit = extractvalue {i32, i1} %res, 1
11745 br i1 %obit, label %overflow, label %normal
11746
11747'``llvm.smul.with.overflow.*``' Intrinsics
11748^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11749
11750Syntax:
11751"""""""
11752
11753This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11754on any integer bit width.
11755
11756::
11757
11758 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11759 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11760 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11761
11762Overview:
11763"""""""""
11764
11765The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11766a signed multiplication of the two arguments, and indicate whether an
11767overflow occurred during the signed multiplication.
11768
11769Arguments:
11770""""""""""
11771
11772The arguments (%a and %b) and the first element of the result structure
11773may be of integer types of any bit width, but they must have the same
11774bit width. The second element of the result structure must be of type
11775``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11776multiplication.
11777
11778Semantics:
11779""""""""""
11780
11781The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011782a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011783the first element of which is the multiplication, and the second element
11784of which is a bit specifying if the signed multiplication resulted in an
11785overflow.
11786
11787Examples:
11788"""""""""
11789
11790.. code-block:: llvm
11791
11792 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11793 %sum = extractvalue {i32, i1} %res, 0
11794 %obit = extractvalue {i32, i1} %res, 1
11795 br i1 %obit, label %overflow, label %normal
11796
11797'``llvm.umul.with.overflow.*``' Intrinsics
11798^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11799
11800Syntax:
11801"""""""
11802
11803This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11804on any integer bit width.
11805
11806::
11807
11808 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11809 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11810 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11811
11812Overview:
11813"""""""""
11814
11815The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11816a unsigned multiplication of the two arguments, and indicate whether an
11817overflow occurred during the unsigned multiplication.
11818
11819Arguments:
11820""""""""""
11821
11822The arguments (%a and %b) and the first element of the result structure
11823may be of integer types of any bit width, but they must have the same
11824bit width. The second element of the result structure must be of type
11825``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11826multiplication.
11827
11828Semantics:
11829""""""""""
11830
11831The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011832an unsigned multiplication of the two arguments. They return a structure ---
11833the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011834element of which is a bit specifying if the unsigned multiplication
11835resulted in an overflow.
11836
11837Examples:
11838"""""""""
11839
11840.. code-block:: llvm
11841
11842 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11843 %sum = extractvalue {i32, i1} %res, 0
11844 %obit = extractvalue {i32, i1} %res, 1
11845 br i1 %obit, label %overflow, label %normal
11846
11847Specialised Arithmetic Intrinsics
11848---------------------------------
11849
Owen Anderson1056a922015-07-11 07:01:27 +000011850'``llvm.canonicalize.*``' Intrinsic
11851^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11852
11853Syntax:
11854"""""""
11855
11856::
11857
11858 declare float @llvm.canonicalize.f32(float %a)
11859 declare double @llvm.canonicalize.f64(double %b)
11860
11861Overview:
11862"""""""""
11863
11864The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011865encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011866implementing certain numeric primitives such as frexp. The canonical encoding is
11867defined by IEEE-754-2008 to be:
11868
11869::
11870
11871 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011872 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011873 numbers, infinities, and NaNs, especially in decimal formats.
11874
11875This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011876conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011877according to section 6.2.
11878
11879Examples of non-canonical encodings:
11880
Sean Silvaa1190322015-08-06 22:56:48 +000011881- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011882 converted to a canonical representation per hardware-specific protocol.
11883- Many normal decimal floating point numbers have non-canonical alternative
11884 encodings.
11885- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011886 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011887 a zero of the same sign by this operation.
11888
11889Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11890default exception handling must signal an invalid exception, and produce a
11891quiet NaN result.
11892
11893This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011894that the compiler does not constant fold the operation. Likewise, division by
118951.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011896-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11897
Sean Silvaa1190322015-08-06 22:56:48 +000011898``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011899
11900- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11901- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11902 to ``(x == y)``
11903
11904Additionally, the sign of zero must be conserved:
11905``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11906
11907The payload bits of a NaN must be conserved, with two exceptions.
11908First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011909must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011910usual methods.
11911
11912The canonicalization operation may be optimized away if:
11913
Sean Silvaa1190322015-08-06 22:56:48 +000011914- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011915 floating-point operation that is required by the standard to be canonical.
11916- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011917 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011918
Sean Silvab084af42012-12-07 10:36:55 +000011919'``llvm.fmuladd.*``' Intrinsic
11920^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11921
11922Syntax:
11923"""""""
11924
11925::
11926
11927 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11928 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11929
11930Overview:
11931"""""""""
11932
11933The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011934expressions that can be fused if the code generator determines that (a) the
11935target instruction set has support for a fused operation, and (b) that the
11936fused operation is more efficient than the equivalent, separate pair of mul
11937and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011938
11939Arguments:
11940""""""""""
11941
11942The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11943multiplicands, a and b, and an addend c.
11944
11945Semantics:
11946""""""""""
11947
11948The expression:
11949
11950::
11951
11952 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11953
11954is equivalent to the expression a \* b + c, except that rounding will
11955not be performed between the multiplication and addition steps if the
11956code generator fuses the operations. Fusion is not guaranteed, even if
11957the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011958corresponding llvm.fma.\* intrinsic function should be used
11959instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011960
11961Examples:
11962"""""""""
11963
11964.. code-block:: llvm
11965
Tim Northover675a0962014-06-13 14:24:23 +000011966 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011967
Amara Emersoncf9daa32017-05-09 10:43:25 +000011968
11969Experimental Vector Reduction Intrinsics
11970----------------------------------------
11971
11972Horizontal reductions of vectors can be expressed using the following
11973intrinsics. Each one takes a vector operand as an input and applies its
11974respective operation across all elements of the vector, returning a single
11975scalar result of the same element type.
11976
11977
11978'``llvm.experimental.vector.reduce.add.*``' Intrinsic
11979^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11980
11981Syntax:
11982"""""""
11983
11984::
11985
11986 declare i32 @llvm.experimental.vector.reduce.add.i32.v4i32(<4 x i32> %a)
11987 declare i64 @llvm.experimental.vector.reduce.add.i64.v2i64(<2 x i64> %a)
11988
11989Overview:
11990"""""""""
11991
11992The '``llvm.experimental.vector.reduce.add.*``' intrinsics do an integer ``ADD``
11993reduction of a vector, returning the result as a scalar. The return type matches
11994the element-type of the vector input.
11995
11996Arguments:
11997""""""""""
11998The argument to this intrinsic must be a vector of integer values.
11999
12000'``llvm.experimental.vector.reduce.fadd.*``' Intrinsic
12001^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12002
12003Syntax:
12004"""""""
12005
12006::
12007
12008 declare float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %a)
12009 declare double @llvm.experimental.vector.reduce.fadd.f64.v2f64(double %acc, <2 x double> %a)
12010
12011Overview:
12012"""""""""
12013
12014The '``llvm.experimental.vector.reduce.fadd.*``' intrinsics do a floating point
12015``ADD`` reduction of a vector, returning the result as a scalar. The return type
12016matches the element-type of the vector input.
12017
12018If the intrinsic call has fast-math flags, then the reduction will not preserve
12019the associativity of an equivalent scalarized counterpart. If it does not have
12020fast-math flags, then the reduction will be *ordered*, implying that the
12021operation respects the associativity of a scalarized reduction.
12022
12023
12024Arguments:
12025""""""""""
12026The first argument to this intrinsic is a scalar accumulator value, which is
12027only used when there are no fast-math flags attached. This argument may be undef
12028when fast-math flags are used.
12029
12030The second argument must be a vector of floating point values.
12031
12032Examples:
12033"""""""""
12034
12035.. code-block:: llvm
12036
12037 %fast = call fast float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
12038 %ord = call float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
12039
12040
12041'``llvm.experimental.vector.reduce.mul.*``' Intrinsic
12042^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12043
12044Syntax:
12045"""""""
12046
12047::
12048
12049 declare i32 @llvm.experimental.vector.reduce.mul.i32.v4i32(<4 x i32> %a)
12050 declare i64 @llvm.experimental.vector.reduce.mul.i64.v2i64(<2 x i64> %a)
12051
12052Overview:
12053"""""""""
12054
12055The '``llvm.experimental.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
12056reduction of a vector, returning the result as a scalar. The return type matches
12057the element-type of the vector input.
12058
12059Arguments:
12060""""""""""
12061The argument to this intrinsic must be a vector of integer values.
12062
12063'``llvm.experimental.vector.reduce.fmul.*``' Intrinsic
12064^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12065
12066Syntax:
12067"""""""
12068
12069::
12070
12071 declare float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %a)
12072 declare double @llvm.experimental.vector.reduce.fmul.f64.v2f64(double %acc, <2 x double> %a)
12073
12074Overview:
12075"""""""""
12076
12077The '``llvm.experimental.vector.reduce.fmul.*``' intrinsics do a floating point
12078``MUL`` reduction of a vector, returning the result as a scalar. The return type
12079matches the element-type of the vector input.
12080
12081If the intrinsic call has fast-math flags, then the reduction will not preserve
12082the associativity of an equivalent scalarized counterpart. If it does not have
12083fast-math flags, then the reduction will be *ordered*, implying that the
12084operation respects the associativity of a scalarized reduction.
12085
12086
12087Arguments:
12088""""""""""
12089The first argument to this intrinsic is a scalar accumulator value, which is
12090only used when there are no fast-math flags attached. This argument may be undef
12091when fast-math flags are used.
12092
12093The second argument must be a vector of floating point values.
12094
12095Examples:
12096"""""""""
12097
12098.. code-block:: llvm
12099
12100 %fast = call fast float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
12101 %ord = call float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
12102
12103'``llvm.experimental.vector.reduce.and.*``' Intrinsic
12104^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12105
12106Syntax:
12107"""""""
12108
12109::
12110
12111 declare i32 @llvm.experimental.vector.reduce.and.i32.v4i32(<4 x i32> %a)
12112
12113Overview:
12114"""""""""
12115
12116The '``llvm.experimental.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
12117reduction of a vector, returning the result as a scalar. The return type matches
12118the element-type of the vector input.
12119
12120Arguments:
12121""""""""""
12122The argument to this intrinsic must be a vector of integer values.
12123
12124'``llvm.experimental.vector.reduce.or.*``' Intrinsic
12125^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12126
12127Syntax:
12128"""""""
12129
12130::
12131
12132 declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
12133
12134Overview:
12135"""""""""
12136
12137The '``llvm.experimental.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
12138of a vector, returning the result as a scalar. The return type matches the
12139element-type of the vector input.
12140
12141Arguments:
12142""""""""""
12143The argument to this intrinsic must be a vector of integer values.
12144
12145'``llvm.experimental.vector.reduce.xor.*``' Intrinsic
12146^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12147
12148Syntax:
12149"""""""
12150
12151::
12152
12153 declare i32 @llvm.experimental.vector.reduce.xor.i32.v4i32(<4 x i32> %a)
12154
12155Overview:
12156"""""""""
12157
12158The '``llvm.experimental.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
12159reduction of a vector, returning the result as a scalar. The return type matches
12160the element-type of the vector input.
12161
12162Arguments:
12163""""""""""
12164The argument to this intrinsic must be a vector of integer values.
12165
12166'``llvm.experimental.vector.reduce.smax.*``' Intrinsic
12167^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12168
12169Syntax:
12170"""""""
12171
12172::
12173
12174 declare i32 @llvm.experimental.vector.reduce.smax.i32.v4i32(<4 x i32> %a)
12175
12176Overview:
12177"""""""""
12178
12179The '``llvm.experimental.vector.reduce.smax.*``' intrinsics do a signed integer
12180``MAX`` reduction of a vector, returning the result as a scalar. The return type
12181matches the element-type of the vector input.
12182
12183Arguments:
12184""""""""""
12185The argument to this intrinsic must be a vector of integer values.
12186
12187'``llvm.experimental.vector.reduce.smin.*``' Intrinsic
12188^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12189
12190Syntax:
12191"""""""
12192
12193::
12194
12195 declare i32 @llvm.experimental.vector.reduce.smin.i32.v4i32(<4 x i32> %a)
12196
12197Overview:
12198"""""""""
12199
12200The '``llvm.experimental.vector.reduce.smin.*``' intrinsics do a signed integer
12201``MIN`` reduction of a vector, returning the result as a scalar. The return type
12202matches the element-type of the vector input.
12203
12204Arguments:
12205""""""""""
12206The argument to this intrinsic must be a vector of integer values.
12207
12208'``llvm.experimental.vector.reduce.umax.*``' Intrinsic
12209^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12210
12211Syntax:
12212"""""""
12213
12214::
12215
12216 declare i32 @llvm.experimental.vector.reduce.umax.i32.v4i32(<4 x i32> %a)
12217
12218Overview:
12219"""""""""
12220
12221The '``llvm.experimental.vector.reduce.umax.*``' intrinsics do an unsigned
12222integer ``MAX`` reduction of a vector, returning the result as a scalar. The
12223return type matches the element-type of the vector input.
12224
12225Arguments:
12226""""""""""
12227The argument to this intrinsic must be a vector of integer values.
12228
12229'``llvm.experimental.vector.reduce.umin.*``' Intrinsic
12230^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12231
12232Syntax:
12233"""""""
12234
12235::
12236
12237 declare i32 @llvm.experimental.vector.reduce.umin.i32.v4i32(<4 x i32> %a)
12238
12239Overview:
12240"""""""""
12241
12242The '``llvm.experimental.vector.reduce.umin.*``' intrinsics do an unsigned
12243integer ``MIN`` reduction of a vector, returning the result as a scalar. The
12244return type matches the element-type of the vector input.
12245
12246Arguments:
12247""""""""""
12248The argument to this intrinsic must be a vector of integer values.
12249
12250'``llvm.experimental.vector.reduce.fmax.*``' Intrinsic
12251^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12252
12253Syntax:
12254"""""""
12255
12256::
12257
12258 declare float @llvm.experimental.vector.reduce.fmax.f32.v4f32(<4 x float> %a)
12259 declare double @llvm.experimental.vector.reduce.fmax.f64.v2f64(<2 x double> %a)
12260
12261Overview:
12262"""""""""
12263
12264The '``llvm.experimental.vector.reduce.fmax.*``' intrinsics do a floating point
12265``MAX`` reduction of a vector, returning the result as a scalar. The return type
12266matches the element-type of the vector input.
12267
12268If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12269assume that NaNs are not present in the input vector.
12270
12271Arguments:
12272""""""""""
12273The argument to this intrinsic must be a vector of floating point values.
12274
12275'``llvm.experimental.vector.reduce.fmin.*``' Intrinsic
12276^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12277
12278Syntax:
12279"""""""
12280
12281::
12282
12283 declare float @llvm.experimental.vector.reduce.fmin.f32.v4f32(<4 x float> %a)
12284 declare double @llvm.experimental.vector.reduce.fmin.f64.v2f64(<2 x double> %a)
12285
12286Overview:
12287"""""""""
12288
12289The '``llvm.experimental.vector.reduce.fmin.*``' intrinsics do a floating point
12290``MIN`` reduction of a vector, returning the result as a scalar. The return type
12291matches the element-type of the vector input.
12292
12293If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12294assume that NaNs are not present in the input vector.
12295
12296Arguments:
12297""""""""""
12298The argument to this intrinsic must be a vector of floating point values.
12299
Sean Silvab084af42012-12-07 10:36:55 +000012300Half Precision Floating Point Intrinsics
12301----------------------------------------
12302
12303For most target platforms, half precision floating point is a
12304storage-only format. This means that it is a dense encoding (in memory)
12305but does not support computation in the format.
12306
12307This means that code must first load the half-precision floating point
12308value as an i16, then convert it to float with
12309:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
12310then be performed on the float value (including extending to double
12311etc). To store the value back to memory, it is first converted to float
12312if needed, then converted to i16 with
12313:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
12314i16 value.
12315
12316.. _int_convert_to_fp16:
12317
12318'``llvm.convert.to.fp16``' Intrinsic
12319^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12320
12321Syntax:
12322"""""""
12323
12324::
12325
Tim Northoverfd7e4242014-07-17 10:51:23 +000012326 declare i16 @llvm.convert.to.fp16.f32(float %a)
12327 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000012328
12329Overview:
12330"""""""""
12331
Tim Northoverfd7e4242014-07-17 10:51:23 +000012332The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
12333conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000012334
12335Arguments:
12336""""""""""
12337
12338The intrinsic function contains single argument - the value to be
12339converted.
12340
12341Semantics:
12342""""""""""
12343
Tim Northoverfd7e4242014-07-17 10:51:23 +000012344The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
12345conventional floating point format to half precision floating point format. The
12346return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000012347
12348Examples:
12349"""""""""
12350
12351.. code-block:: llvm
12352
Tim Northoverfd7e4242014-07-17 10:51:23 +000012353 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000012354 store i16 %res, i16* @x, align 2
12355
12356.. _int_convert_from_fp16:
12357
12358'``llvm.convert.from.fp16``' Intrinsic
12359^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12360
12361Syntax:
12362"""""""
12363
12364::
12365
Tim Northoverfd7e4242014-07-17 10:51:23 +000012366 declare float @llvm.convert.from.fp16.f32(i16 %a)
12367 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012368
12369Overview:
12370"""""""""
12371
12372The '``llvm.convert.from.fp16``' intrinsic function performs a
12373conversion from half precision floating point format to single precision
12374floating point format.
12375
12376Arguments:
12377""""""""""
12378
12379The intrinsic function contains single argument - the value to be
12380converted.
12381
12382Semantics:
12383""""""""""
12384
12385The '``llvm.convert.from.fp16``' intrinsic function performs a
12386conversion from half single precision floating point format to single
12387precision floating point format. The input half-float value is
12388represented by an ``i16`` value.
12389
12390Examples:
12391"""""""""
12392
12393.. code-block:: llvm
12394
David Blaikiec7aabbb2015-03-04 22:06:14 +000012395 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000012396 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012397
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000012398.. _dbg_intrinsics:
12399
Sean Silvab084af42012-12-07 10:36:55 +000012400Debugger Intrinsics
12401-------------------
12402
12403The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
12404prefix), are described in the `LLVM Source Level
Hans Wennborg65195622017-09-28 15:16:37 +000012405Debugging <SourceLevelDebugging.html#format-common-intrinsics>`_
Sean Silvab084af42012-12-07 10:36:55 +000012406document.
12407
12408Exception Handling Intrinsics
12409-----------------------------
12410
12411The LLVM exception handling intrinsics (which all start with
12412``llvm.eh.`` prefix), are described in the `LLVM Exception
Hans Wennborg65195622017-09-28 15:16:37 +000012413Handling <ExceptionHandling.html#format-common-intrinsics>`_ document.
Sean Silvab084af42012-12-07 10:36:55 +000012414
12415.. _int_trampoline:
12416
12417Trampoline Intrinsics
12418---------------------
12419
12420These intrinsics make it possible to excise one parameter, marked with
12421the :ref:`nest <nest>` attribute, from a function. The result is a
12422callable function pointer lacking the nest parameter - the caller does
12423not need to provide a value for it. Instead, the value to use is stored
12424in advance in a "trampoline", a block of memory usually allocated on the
12425stack, which also contains code to splice the nest value into the
12426argument list. This is used to implement the GCC nested function address
12427extension.
12428
12429For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
12430then the resulting function pointer has signature ``i32 (i32, i32)*``.
12431It can be created as follows:
12432
12433.. code-block:: llvm
12434
12435 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000012436 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000012437 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
12438 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
12439 %fp = bitcast i8* %p to i32 (i32, i32)*
12440
12441The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
12442``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
12443
12444.. _int_it:
12445
12446'``llvm.init.trampoline``' Intrinsic
12447^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12448
12449Syntax:
12450"""""""
12451
12452::
12453
12454 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
12455
12456Overview:
12457"""""""""
12458
12459This fills the memory pointed to by ``tramp`` with executable code,
12460turning it into a trampoline.
12461
12462Arguments:
12463""""""""""
12464
12465The ``llvm.init.trampoline`` intrinsic takes three arguments, all
12466pointers. The ``tramp`` argument must point to a sufficiently large and
12467sufficiently aligned block of memory; this memory is written to by the
12468intrinsic. Note that the size and the alignment are target-specific -
12469LLVM currently provides no portable way of determining them, so a
12470front-end that generates this intrinsic needs to have some
12471target-specific knowledge. The ``func`` argument must hold a function
12472bitcast to an ``i8*``.
12473
12474Semantics:
12475""""""""""
12476
12477The block of memory pointed to by ``tramp`` is filled with target
12478dependent code, turning it into a function. Then ``tramp`` needs to be
12479passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
12480be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
12481function's signature is the same as that of ``func`` with any arguments
12482marked with the ``nest`` attribute removed. At most one such ``nest``
12483argument is allowed, and it must be of pointer type. Calling the new
12484function is equivalent to calling ``func`` with the same argument list,
12485but with ``nval`` used for the missing ``nest`` argument. If, after
12486calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
12487modified, then the effect of any later call to the returned function
12488pointer is undefined.
12489
12490.. _int_at:
12491
12492'``llvm.adjust.trampoline``' Intrinsic
12493^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12494
12495Syntax:
12496"""""""
12497
12498::
12499
12500 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
12501
12502Overview:
12503"""""""""
12504
12505This performs any required machine-specific adjustment to the address of
12506a trampoline (passed as ``tramp``).
12507
12508Arguments:
12509""""""""""
12510
12511``tramp`` must point to a block of memory which already has trampoline
12512code filled in by a previous call to
12513:ref:`llvm.init.trampoline <int_it>`.
12514
12515Semantics:
12516""""""""""
12517
12518On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012519different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000012520intrinsic returns the executable address corresponding to ``tramp``
12521after performing the required machine specific adjustments. The pointer
12522returned can then be :ref:`bitcast and executed <int_trampoline>`.
12523
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012524.. _int_mload_mstore:
12525
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012526Masked Vector Load and Store Intrinsics
12527---------------------------------------
12528
12529LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
12530
12531.. _int_mload:
12532
12533'``llvm.masked.load.*``' Intrinsics
12534^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12535
12536Syntax:
12537"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012538This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012539
12540::
12541
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012542 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12543 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012544 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012545 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012546 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012547 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012548
12549Overview:
12550"""""""""
12551
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012552Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012553
12554
12555Arguments:
12556""""""""""
12557
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012558The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012559
12560
12561Semantics:
12562""""""""""
12563
12564The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
12565The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
12566
12567
12568::
12569
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012570 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012571
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012572 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000012573 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012574 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012575
12576.. _int_mstore:
12577
12578'``llvm.masked.store.*``' Intrinsics
12579^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12580
12581Syntax:
12582"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012583This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012584
12585::
12586
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012587 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
12588 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012589 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012590 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012591 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012592 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012593
12594Overview:
12595"""""""""
12596
12597Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12598
12599Arguments:
12600""""""""""
12601
12602The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12603
12604
12605Semantics:
12606""""""""""
12607
12608The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
12609The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
12610
12611::
12612
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012613 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012614
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012615 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000012616 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012617 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
12618 store <16 x float> %res, <16 x float>* %ptr, align 4
12619
12620
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012621Masked Vector Gather and Scatter Intrinsics
12622-------------------------------------------
12623
12624LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
12625
12626.. _int_mgather:
12627
12628'``llvm.masked.gather.*``' Intrinsics
12629^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12630
12631Syntax:
12632"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012633This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012634
12635::
12636
Elad Cohenef5798a2017-05-03 12:28:54 +000012637 declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12638 declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64 (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
12639 declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012640
12641Overview:
12642"""""""""
12643
12644Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
12645
12646
12647Arguments:
12648""""""""""
12649
12650The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
12651
12652
12653Semantics:
12654""""""""""
12655
12656The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
12657The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
12658
12659
12660::
12661
Elad Cohenef5798a2017-05-03 12:28:54 +000012662 %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012663
12664 ;; The gather with all-true mask is equivalent to the following instruction sequence
12665 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
12666 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
12667 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
12668 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
12669
12670 %val0 = load double, double* %ptr0, align 8
12671 %val1 = load double, double* %ptr1, align 8
12672 %val2 = load double, double* %ptr2, align 8
12673 %val3 = load double, double* %ptr3, align 8
12674
12675 %vec0 = insertelement <4 x double>undef, %val0, 0
12676 %vec01 = insertelement <4 x double>%vec0, %val1, 1
12677 %vec012 = insertelement <4 x double>%vec01, %val2, 2
12678 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
12679
12680.. _int_mscatter:
12681
12682'``llvm.masked.scatter.*``' Intrinsics
12683^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12684
12685Syntax:
12686"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012687This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012688
12689::
12690
Elad Cohenef5798a2017-05-03 12:28:54 +000012691 declare void @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
12692 declare void @llvm.masked.scatter.v16f32.v16p1f32 (<16 x float> <value>, <16 x float addrspace(1)*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
12693 declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012694
12695Overview:
12696"""""""""
12697
12698Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12699
12700Arguments:
12701""""""""""
12702
12703The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12704
12705
12706Semantics:
12707""""""""""
12708
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000012709The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012710
12711::
12712
Sylvestre Ledru84666a12016-02-14 20:16:22 +000012713 ;; This instruction unconditionally stores data vector in multiple addresses
Elad Cohenef5798a2017-05-03 12:28:54 +000012714 call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012715
12716 ;; It is equivalent to a list of scalar stores
12717 %val0 = extractelement <8 x i32> %value, i32 0
12718 %val1 = extractelement <8 x i32> %value, i32 1
12719 ..
12720 %val7 = extractelement <8 x i32> %value, i32 7
12721 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
12722 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
12723 ..
12724 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
12725 ;; Note: the order of the following stores is important when they overlap:
12726 store i32 %val0, i32* %ptr0, align 4
12727 store i32 %val1, i32* %ptr1, align 4
12728 ..
12729 store i32 %val7, i32* %ptr7, align 4
12730
12731
Sean Silvab084af42012-12-07 10:36:55 +000012732Memory Use Markers
12733------------------
12734
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012735This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000012736memory objects and ranges where variables are immutable.
12737
Reid Klecknera534a382013-12-19 02:14:12 +000012738.. _int_lifestart:
12739
Sean Silvab084af42012-12-07 10:36:55 +000012740'``llvm.lifetime.start``' Intrinsic
12741^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12742
12743Syntax:
12744"""""""
12745
12746::
12747
12748 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
12749
12750Overview:
12751"""""""""
12752
12753The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
12754object's lifetime.
12755
12756Arguments:
12757""""""""""
12758
12759The first argument is a constant integer representing the size of the
12760object, or -1 if it is variable sized. The second argument is a pointer
12761to the object.
12762
12763Semantics:
12764""""""""""
12765
12766This intrinsic indicates that before this point in the code, the value
12767of the memory pointed to by ``ptr`` is dead. This means that it is known
12768to never be used and has an undefined value. A load from the pointer
12769that precedes this intrinsic can be replaced with ``'undef'``.
12770
Reid Klecknera534a382013-12-19 02:14:12 +000012771.. _int_lifeend:
12772
Sean Silvab084af42012-12-07 10:36:55 +000012773'``llvm.lifetime.end``' Intrinsic
12774^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12775
12776Syntax:
12777"""""""
12778
12779::
12780
12781 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
12782
12783Overview:
12784"""""""""
12785
12786The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
12787object's lifetime.
12788
12789Arguments:
12790""""""""""
12791
12792The first argument is a constant integer representing the size of the
12793object, or -1 if it is variable sized. The second argument is a pointer
12794to the object.
12795
12796Semantics:
12797""""""""""
12798
12799This intrinsic indicates that after this point in the code, the value of
12800the memory pointed to by ``ptr`` is dead. This means that it is known to
12801never be used and has an undefined value. Any stores into the memory
12802object following this intrinsic may be removed as dead.
12803
12804'``llvm.invariant.start``' Intrinsic
12805^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12806
12807Syntax:
12808"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012809This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012810
12811::
12812
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012813 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012814
12815Overview:
12816"""""""""
12817
12818The '``llvm.invariant.start``' intrinsic specifies that the contents of
12819a memory object will not change.
12820
12821Arguments:
12822""""""""""
12823
12824The first argument is a constant integer representing the size of the
12825object, or -1 if it is variable sized. The second argument is a pointer
12826to the object.
12827
12828Semantics:
12829""""""""""
12830
12831This intrinsic indicates that until an ``llvm.invariant.end`` that uses
12832the return value, the referenced memory location is constant and
12833unchanging.
12834
12835'``llvm.invariant.end``' Intrinsic
12836^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12837
12838Syntax:
12839"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012840This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012841
12842::
12843
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012844 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012845
12846Overview:
12847"""""""""
12848
12849The '``llvm.invariant.end``' intrinsic specifies that the contents of a
12850memory object are mutable.
12851
12852Arguments:
12853""""""""""
12854
12855The first argument is the matching ``llvm.invariant.start`` intrinsic.
12856The second argument is a constant integer representing the size of the
12857object, or -1 if it is variable sized and the third argument is a
12858pointer to the object.
12859
12860Semantics:
12861""""""""""
12862
12863This intrinsic indicates that the memory is mutable again.
12864
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012865'``llvm.invariant.group.barrier``' Intrinsic
12866^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12867
12868Syntax:
12869"""""""
Yaxun Liu407ca362017-11-16 16:32:16 +000012870This is an overloaded intrinsic. The memory object can belong to any address
12871space. The returned pointer must belong to the same address space as the
12872argument.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012873
12874::
12875
Yaxun Liu407ca362017-11-16 16:32:16 +000012876 declare i8* @llvm.invariant.group.barrier.p0i8(i8* <ptr>)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012877
12878Overview:
12879"""""""""
12880
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000012881The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012882established by invariant.group metadata no longer holds, to obtain a new pointer
12883value that does not carry the invariant information.
12884
12885
12886Arguments:
12887""""""""""
12888
12889The ``llvm.invariant.group.barrier`` takes only one argument, which is
12890the pointer to the memory for which the ``invariant.group`` no longer holds.
12891
12892Semantics:
12893""""""""""
12894
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000012895Returns another pointer that aliases its argument but which is considered different
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012896for the purposes of ``load``/``store`` ``invariant.group`` metadata.
12897
Andrew Kaylora0a11642017-01-26 23:27:59 +000012898Constrained Floating Point Intrinsics
12899-------------------------------------
12900
12901These intrinsics are used to provide special handling of floating point
12902operations when specific rounding mode or floating point exception behavior is
12903required. By default, LLVM optimization passes assume that the rounding mode is
12904round-to-nearest and that floating point exceptions will not be monitored.
12905Constrained FP intrinsics are used to support non-default rounding modes and
12906accurately preserve exception behavior without compromising LLVM's ability to
12907optimize FP code when the default behavior is used.
12908
12909Each of these intrinsics corresponds to a normal floating point operation. The
12910first two arguments and the return value are the same as the corresponding FP
12911operation.
12912
12913The third argument is a metadata argument specifying the rounding mode to be
12914assumed. This argument must be one of the following strings:
12915
12916::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012917
Andrew Kaylora0a11642017-01-26 23:27:59 +000012918 "round.dynamic"
12919 "round.tonearest"
12920 "round.downward"
12921 "round.upward"
12922 "round.towardzero"
12923
12924If this argument is "round.dynamic" optimization passes must assume that the
12925rounding mode is unknown and may change at runtime. No transformations that
12926depend on rounding mode may be performed in this case.
12927
12928The other possible values for the rounding mode argument correspond to the
12929similarly named IEEE rounding modes. If the argument is any of these values
12930optimization passes may perform transformations as long as they are consistent
12931with the specified rounding mode.
12932
12933For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
12934"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
12935'x-0' should evaluate to '-0' when rounding downward. However, this
12936transformation is legal for all other rounding modes.
12937
12938For values other than "round.dynamic" optimization passes may assume that the
12939actual runtime rounding mode (as defined in a target-specific manner) matches
12940the specified rounding mode, but this is not guaranteed. Using a specific
12941non-dynamic rounding mode which does not match the actual rounding mode at
12942runtime results in undefined behavior.
12943
12944The fourth argument to the constrained floating point intrinsics specifies the
12945required exception behavior. This argument must be one of the following
12946strings:
12947
12948::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012949
Andrew Kaylora0a11642017-01-26 23:27:59 +000012950 "fpexcept.ignore"
12951 "fpexcept.maytrap"
12952 "fpexcept.strict"
12953
12954If this argument is "fpexcept.ignore" optimization passes may assume that the
12955exception status flags will not be read and that floating point exceptions will
12956be masked. This allows transformations to be performed that may change the
12957exception semantics of the original code. For example, FP operations may be
12958speculatively executed in this case whereas they must not be for either of the
12959other possible values of this argument.
12960
12961If the exception behavior argument is "fpexcept.maytrap" optimization passes
12962must avoid transformations that may raise exceptions that would not have been
12963raised by the original code (such as speculatively executing FP operations), but
12964passes are not required to preserve all exceptions that are implied by the
12965original code. For example, exceptions may be potentially hidden by constant
12966folding.
12967
12968If the exception behavior argument is "fpexcept.strict" all transformations must
12969strictly preserve the floating point exception semantics of the original code.
12970Any FP exception that would have been raised by the original code must be raised
12971by the transformed code, and the transformed code must not raise any FP
12972exceptions that would not have been raised by the original code. This is the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000012973exception behavior argument that will be used if the code being compiled reads
Andrew Kaylora0a11642017-01-26 23:27:59 +000012974the FP exception status flags, but this mode can also be used with code that
12975unmasks FP exceptions.
12976
12977The number and order of floating point exceptions is NOT guaranteed. For
12978example, a series of FP operations that each may raise exceptions may be
12979vectorized into a single instruction that raises each unique exception a single
12980time.
12981
12982
12983'``llvm.experimental.constrained.fadd``' Intrinsic
12984^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12985
12986Syntax:
12987"""""""
12988
12989::
12990
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000012991 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000012992 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
12993 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000012994 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000012995
12996Overview:
12997"""""""""
12998
12999The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
13000two operands.
13001
13002
13003Arguments:
13004""""""""""
13005
13006The first two arguments to the '``llvm.experimental.constrained.fadd``'
13007intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
13008of floating point values. Both arguments must have identical types.
13009
13010The third and fourth arguments specify the rounding mode and exception
13011behavior as described above.
13012
13013Semantics:
13014""""""""""
13015
13016The value produced is the floating point sum of the two value operands and has
13017the same type as the operands.
13018
13019
13020'``llvm.experimental.constrained.fsub``' Intrinsic
13021^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13022
13023Syntax:
13024"""""""
13025
13026::
13027
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013028 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013029 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
13030 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013031 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013032
13033Overview:
13034"""""""""
13035
13036The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
13037of its two operands.
13038
13039
13040Arguments:
13041""""""""""
13042
13043The first two arguments to the '``llvm.experimental.constrained.fsub``'
13044intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
13045of floating point values. Both arguments must have identical types.
13046
13047The third and fourth arguments specify the rounding mode and exception
13048behavior as described above.
13049
13050Semantics:
13051""""""""""
13052
13053The value produced is the floating point difference of the two value operands
13054and has the same type as the operands.
13055
13056
13057'``llvm.experimental.constrained.fmul``' Intrinsic
13058^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13059
13060Syntax:
13061"""""""
13062
13063::
13064
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013065 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013066 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
13067 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013068 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013069
13070Overview:
13071"""""""""
13072
13073The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
13074its two operands.
13075
13076
13077Arguments:
13078""""""""""
13079
13080The first two arguments to the '``llvm.experimental.constrained.fmul``'
13081intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
13082of floating point values. Both arguments must have identical types.
13083
13084The third and fourth arguments specify the rounding mode and exception
13085behavior as described above.
13086
13087Semantics:
13088""""""""""
13089
13090The value produced is the floating point product of the two value operands and
13091has the same type as the operands.
13092
13093
13094'``llvm.experimental.constrained.fdiv``' Intrinsic
13095^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13096
13097Syntax:
13098"""""""
13099
13100::
13101
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013102 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013103 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
13104 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013105 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013106
13107Overview:
13108"""""""""
13109
13110The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
13111its two operands.
13112
13113
13114Arguments:
13115""""""""""
13116
13117The first two arguments to the '``llvm.experimental.constrained.fdiv``'
13118intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
13119of floating point values. Both arguments must have identical types.
13120
13121The third and fourth arguments specify the rounding mode and exception
13122behavior as described above.
13123
13124Semantics:
13125""""""""""
13126
13127The value produced is the floating point quotient of the two value operands and
13128has the same type as the operands.
13129
13130
13131'``llvm.experimental.constrained.frem``' Intrinsic
13132^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13133
13134Syntax:
13135"""""""
13136
13137::
13138
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013139 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013140 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
13141 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013142 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013143
13144Overview:
13145"""""""""
13146
13147The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
13148from the division of its two operands.
13149
13150
13151Arguments:
13152""""""""""
13153
13154The first two arguments to the '``llvm.experimental.constrained.frem``'
13155intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector <t_vector>`
13156of floating point values. Both arguments must have identical types.
13157
13158The third and fourth arguments specify the rounding mode and exception
13159behavior as described above. The rounding mode argument has no effect, since
13160the result of frem is never rounded, but the argument is included for
13161consistency with the other constrained floating point intrinsics.
13162
13163Semantics:
13164""""""""""
13165
13166The value produced is the floating point remainder from the division of the two
13167value operands and has the same type as the operands. The remainder has the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013168same sign as the dividend.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013169
Wei Dinga131d3f2017-08-24 04:18:24 +000013170'``llvm.experimental.constrained.fma``' Intrinsic
13171^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13172
13173Syntax:
13174"""""""
13175
13176::
13177
13178 declare <type>
13179 @llvm.experimental.constrained.fma(<type> <op1>, <type> <op2>, <type> <op3>,
13180 metadata <rounding mode>,
13181 metadata <exception behavior>)
13182
13183Overview:
13184"""""""""
13185
13186The '``llvm.experimental.constrained.fma``' intrinsic returns the result of a
13187fused-multiply-add operation on its operands.
13188
13189Arguments:
13190""""""""""
13191
13192The first three arguments to the '``llvm.experimental.constrained.fma``'
13193intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector
13194<t_vector>` of floating point values. All arguments must have identical types.
13195
13196The fourth and fifth arguments specify the rounding mode and exception behavior
13197as described above.
13198
13199Semantics:
13200""""""""""
13201
13202The result produced is the product of the first two operands added to the third
13203operand computed with infinite precision, and then rounded to the target
13204precision.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013205
Andrew Kaylorf4660012017-05-25 21:31:00 +000013206Constrained libm-equivalent Intrinsics
13207--------------------------------------
13208
13209In addition to the basic floating point operations for which constrained
13210intrinsics are described above, there are constrained versions of various
13211operations which provide equivalent behavior to a corresponding libm function.
13212These intrinsics allow the precise behavior of these operations with respect to
13213rounding mode and exception behavior to be controlled.
13214
13215As with the basic constrained floating point intrinsics, the rounding mode
13216and exception behavior arguments only control the behavior of the optimizer.
13217They do not change the runtime floating point environment.
13218
13219
13220'``llvm.experimental.constrained.sqrt``' Intrinsic
13221^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13222
13223Syntax:
13224"""""""
13225
13226::
13227
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013228 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013229 @llvm.experimental.constrained.sqrt(<type> <op1>,
13230 metadata <rounding mode>,
13231 metadata <exception behavior>)
13232
13233Overview:
13234"""""""""
13235
13236The '``llvm.experimental.constrained.sqrt``' intrinsic returns the square root
13237of the specified value, returning the same value as the libm '``sqrt``'
13238functions would, but without setting ``errno``.
13239
13240Arguments:
13241""""""""""
13242
13243The first argument and the return type are floating point numbers of the same
13244type.
13245
13246The second and third arguments specify the rounding mode and exception
13247behavior as described above.
13248
13249Semantics:
13250""""""""""
13251
13252This function returns the nonnegative square root of the specified value.
13253If the value is less than negative zero, a floating point exception occurs
Hiroshi Inoue760c0c92018-01-16 13:19:48 +000013254and the return value is architecture specific.
Andrew Kaylorf4660012017-05-25 21:31:00 +000013255
13256
13257'``llvm.experimental.constrained.pow``' Intrinsic
13258^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13259
13260Syntax:
13261"""""""
13262
13263::
13264
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013265 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013266 @llvm.experimental.constrained.pow(<type> <op1>, <type> <op2>,
13267 metadata <rounding mode>,
13268 metadata <exception behavior>)
13269
13270Overview:
13271"""""""""
13272
13273The '``llvm.experimental.constrained.pow``' intrinsic returns the first operand
13274raised to the (positive or negative) power specified by the second operand.
13275
13276Arguments:
13277""""""""""
13278
13279The first two arguments and the return value are floating point numbers of the
13280same type. The second argument specifies the power to which the first argument
13281should be raised.
13282
13283The third and fourth arguments specify the rounding mode and exception
13284behavior as described above.
13285
13286Semantics:
13287""""""""""
13288
13289This function returns the first value raised to the second power,
13290returning the same values as the libm ``pow`` functions would, and
13291handles error conditions in the same way.
13292
13293
13294'``llvm.experimental.constrained.powi``' Intrinsic
13295^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13296
13297Syntax:
13298"""""""
13299
13300::
13301
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013302 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013303 @llvm.experimental.constrained.powi(<type> <op1>, i32 <op2>,
13304 metadata <rounding mode>,
13305 metadata <exception behavior>)
13306
13307Overview:
13308"""""""""
13309
13310The '``llvm.experimental.constrained.powi``' intrinsic returns the first operand
13311raised to the (positive or negative) power specified by the second operand. The
13312order of evaluation of multiplications is not defined. When a vector of floating
13313point type is used, the second argument remains a scalar integer value.
13314
13315
13316Arguments:
13317""""""""""
13318
13319The first argument and the return value are floating point numbers of the same
13320type. The second argument is a 32-bit signed integer specifying the power to
13321which the first argument should be raised.
13322
13323The third and fourth arguments specify the rounding mode and exception
13324behavior as described above.
13325
13326Semantics:
13327""""""""""
13328
13329This function returns the first value raised to the second power with an
13330unspecified sequence of rounding operations.
13331
13332
13333'``llvm.experimental.constrained.sin``' Intrinsic
13334^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13335
13336Syntax:
13337"""""""
13338
13339::
13340
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013341 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013342 @llvm.experimental.constrained.sin(<type> <op1>,
13343 metadata <rounding mode>,
13344 metadata <exception behavior>)
13345
13346Overview:
13347"""""""""
13348
13349The '``llvm.experimental.constrained.sin``' intrinsic returns the sine of the
13350first operand.
13351
13352Arguments:
13353""""""""""
13354
13355The first argument and the return type are floating point numbers of the same
13356type.
13357
13358The second and third arguments specify the rounding mode and exception
13359behavior as described above.
13360
13361Semantics:
13362""""""""""
13363
13364This function returns the sine of the specified operand, returning the
13365same values as the libm ``sin`` functions would, and handles error
13366conditions in the same way.
13367
13368
13369'``llvm.experimental.constrained.cos``' Intrinsic
13370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13371
13372Syntax:
13373"""""""
13374
13375::
13376
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013377 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013378 @llvm.experimental.constrained.cos(<type> <op1>,
13379 metadata <rounding mode>,
13380 metadata <exception behavior>)
13381
13382Overview:
13383"""""""""
13384
13385The '``llvm.experimental.constrained.cos``' intrinsic returns the cosine of the
13386first operand.
13387
13388Arguments:
13389""""""""""
13390
13391The first argument and the return type are floating point numbers of the same
13392type.
13393
13394The second and third arguments specify the rounding mode and exception
13395behavior as described above.
13396
13397Semantics:
13398""""""""""
13399
13400This function returns the cosine of the specified operand, returning the
13401same values as the libm ``cos`` functions would, and handles error
13402conditions in the same way.
13403
13404
13405'``llvm.experimental.constrained.exp``' Intrinsic
13406^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13407
13408Syntax:
13409"""""""
13410
13411::
13412
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013413 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013414 @llvm.experimental.constrained.exp(<type> <op1>,
13415 metadata <rounding mode>,
13416 metadata <exception behavior>)
13417
13418Overview:
13419"""""""""
13420
13421The '``llvm.experimental.constrained.exp``' intrinsic computes the base-e
13422exponential of the specified value.
13423
13424Arguments:
13425""""""""""
13426
13427The first argument and the return value are floating point numbers of the same
13428type.
13429
13430The second and third arguments specify the rounding mode and exception
13431behavior as described above.
13432
13433Semantics:
13434""""""""""
13435
13436This function returns the same values as the libm ``exp`` functions
13437would, and handles error conditions in the same way.
13438
13439
13440'``llvm.experimental.constrained.exp2``' Intrinsic
13441^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13442
13443Syntax:
13444"""""""
13445
13446::
13447
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013448 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013449 @llvm.experimental.constrained.exp2(<type> <op1>,
13450 metadata <rounding mode>,
13451 metadata <exception behavior>)
13452
13453Overview:
13454"""""""""
13455
13456The '``llvm.experimental.constrained.exp2``' intrinsic computes the base-2
13457exponential of the specified value.
13458
13459
13460Arguments:
13461""""""""""
13462
13463The first argument and the return value are floating point numbers of the same
13464type.
13465
13466The second and third arguments specify the rounding mode and exception
13467behavior as described above.
13468
13469Semantics:
13470""""""""""
13471
13472This function returns the same values as the libm ``exp2`` functions
13473would, and handles error conditions in the same way.
13474
13475
13476'``llvm.experimental.constrained.log``' Intrinsic
13477^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13478
13479Syntax:
13480"""""""
13481
13482::
13483
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013484 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013485 @llvm.experimental.constrained.log(<type> <op1>,
13486 metadata <rounding mode>,
13487 metadata <exception behavior>)
13488
13489Overview:
13490"""""""""
13491
13492The '``llvm.experimental.constrained.log``' intrinsic computes the base-e
13493logarithm of the specified value.
13494
13495Arguments:
13496""""""""""
13497
13498The first argument and the return value are floating point numbers of the same
13499type.
13500
13501The second and third arguments specify the rounding mode and exception
13502behavior as described above.
13503
13504
13505Semantics:
13506""""""""""
13507
13508This function returns the same values as the libm ``log`` functions
13509would, and handles error conditions in the same way.
13510
13511
13512'``llvm.experimental.constrained.log10``' Intrinsic
13513^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13514
13515Syntax:
13516"""""""
13517
13518::
13519
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013520 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013521 @llvm.experimental.constrained.log10(<type> <op1>,
13522 metadata <rounding mode>,
13523 metadata <exception behavior>)
13524
13525Overview:
13526"""""""""
13527
13528The '``llvm.experimental.constrained.log10``' intrinsic computes the base-10
13529logarithm of the specified value.
13530
13531Arguments:
13532""""""""""
13533
13534The first argument and the return value are floating point numbers of the same
13535type.
13536
13537The second and third arguments specify the rounding mode and exception
13538behavior as described above.
13539
13540Semantics:
13541""""""""""
13542
13543This function returns the same values as the libm ``log10`` functions
13544would, and handles error conditions in the same way.
13545
13546
13547'``llvm.experimental.constrained.log2``' Intrinsic
13548^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13549
13550Syntax:
13551"""""""
13552
13553::
13554
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013555 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013556 @llvm.experimental.constrained.log2(<type> <op1>,
13557 metadata <rounding mode>,
13558 metadata <exception behavior>)
13559
13560Overview:
13561"""""""""
13562
13563The '``llvm.experimental.constrained.log2``' intrinsic computes the base-2
13564logarithm of the specified value.
13565
13566Arguments:
13567""""""""""
13568
13569The first argument and the return value are floating point numbers of the same
13570type.
13571
13572The second and third arguments specify the rounding mode and exception
13573behavior as described above.
13574
13575Semantics:
13576""""""""""
13577
13578This function returns the same values as the libm ``log2`` functions
13579would, and handles error conditions in the same way.
13580
13581
13582'``llvm.experimental.constrained.rint``' Intrinsic
13583^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13584
13585Syntax:
13586"""""""
13587
13588::
13589
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013590 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013591 @llvm.experimental.constrained.rint(<type> <op1>,
13592 metadata <rounding mode>,
13593 metadata <exception behavior>)
13594
13595Overview:
13596"""""""""
13597
13598The '``llvm.experimental.constrained.rint``' intrinsic returns the first
13599operand rounded to the nearest integer. It may raise an inexact floating point
13600exception if the operand is not an integer.
13601
13602Arguments:
13603""""""""""
13604
13605The first argument and the return value are floating point numbers of the same
13606type.
13607
13608The second and third arguments specify the rounding mode and exception
13609behavior as described above.
13610
13611Semantics:
13612""""""""""
13613
13614This function returns the same values as the libm ``rint`` functions
13615would, and handles error conditions in the same way. The rounding mode is
13616described, not determined, by the rounding mode argument. The actual rounding
13617mode is determined by the runtime floating point environment. The rounding
13618mode argument is only intended as information to the compiler.
13619
13620
13621'``llvm.experimental.constrained.nearbyint``' Intrinsic
13622^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13623
13624Syntax:
13625"""""""
13626
13627::
13628
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013629 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013630 @llvm.experimental.constrained.nearbyint(<type> <op1>,
13631 metadata <rounding mode>,
13632 metadata <exception behavior>)
13633
13634Overview:
13635"""""""""
13636
13637The '``llvm.experimental.constrained.nearbyint``' intrinsic returns the first
13638operand rounded to the nearest integer. It will not raise an inexact floating
13639point exception if the operand is not an integer.
13640
13641
13642Arguments:
13643""""""""""
13644
13645The first argument and the return value are floating point numbers of the same
13646type.
13647
13648The second and third arguments specify the rounding mode and exception
13649behavior as described above.
13650
13651Semantics:
13652""""""""""
13653
13654This function returns the same values as the libm ``nearbyint`` functions
13655would, and handles error conditions in the same way. The rounding mode is
13656described, not determined, by the rounding mode argument. The actual rounding
13657mode is determined by the runtime floating point environment. The rounding
13658mode argument is only intended as information to the compiler.
13659
13660
Sean Silvab084af42012-12-07 10:36:55 +000013661General Intrinsics
13662------------------
13663
13664This class of intrinsics is designed to be generic and has no specific
13665purpose.
13666
13667'``llvm.var.annotation``' Intrinsic
13668^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13669
13670Syntax:
13671"""""""
13672
13673::
13674
13675 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
13676
13677Overview:
13678"""""""""
13679
13680The '``llvm.var.annotation``' intrinsic.
13681
13682Arguments:
13683""""""""""
13684
13685The first argument is a pointer to a value, the second is a pointer to a
13686global string, the third is a pointer to a global string which is the
13687source file name, and the last argument is the line number.
13688
13689Semantics:
13690""""""""""
13691
13692This intrinsic allows annotation of local variables with arbitrary
13693strings. This can be useful for special purpose optimizations that want
13694to look for these annotations. These have no other defined use; they are
13695ignored by code generation and optimization.
13696
Michael Gottesman88d18832013-03-26 00:34:27 +000013697'``llvm.ptr.annotation.*``' Intrinsic
13698^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13699
13700Syntax:
13701"""""""
13702
13703This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
13704pointer to an integer of any width. *NOTE* you must specify an address space for
13705the pointer. The identifier for the default address space is the integer
13706'``0``'.
13707
13708::
13709
13710 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
13711 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
13712 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
13713 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
13714 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
13715
13716Overview:
13717"""""""""
13718
13719The '``llvm.ptr.annotation``' intrinsic.
13720
13721Arguments:
13722""""""""""
13723
13724The first argument is a pointer to an integer value of arbitrary bitwidth
13725(result of some expression), the second is a pointer to a global string, the
13726third is a pointer to a global string which is the source file name, and the
13727last argument is the line number. It returns the value of the first argument.
13728
13729Semantics:
13730""""""""""
13731
13732This intrinsic allows annotation of a pointer to an integer with arbitrary
13733strings. This can be useful for special purpose optimizations that want to look
13734for these annotations. These have no other defined use; they are ignored by code
13735generation and optimization.
13736
Sean Silvab084af42012-12-07 10:36:55 +000013737'``llvm.annotation.*``' Intrinsic
13738^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13739
13740Syntax:
13741"""""""
13742
13743This is an overloaded intrinsic. You can use '``llvm.annotation``' on
13744any integer bit width.
13745
13746::
13747
13748 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
13749 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
13750 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
13751 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
13752 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
13753
13754Overview:
13755"""""""""
13756
13757The '``llvm.annotation``' intrinsic.
13758
13759Arguments:
13760""""""""""
13761
13762The first argument is an integer value (result of some expression), the
13763second is a pointer to a global string, the third is a pointer to a
13764global string which is the source file name, and the last argument is
13765the line number. It returns the value of the first argument.
13766
13767Semantics:
13768""""""""""
13769
13770This intrinsic allows annotations to be put on arbitrary expressions
13771with arbitrary strings. This can be useful for special purpose
13772optimizations that want to look for these annotations. These have no
13773other defined use; they are ignored by code generation and optimization.
13774
Reid Klecknere33c94f2017-09-05 20:14:58 +000013775'``llvm.codeview.annotation``' Intrinsic
Reid Klecknerd4523682017-09-05 20:26:25 +000013776^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Reid Klecknere33c94f2017-09-05 20:14:58 +000013777
13778Syntax:
13779"""""""
13780
13781This annotation emits a label at its program point and an associated
13782``S_ANNOTATION`` codeview record with some additional string metadata. This is
13783used to implement MSVC's ``__annotation`` intrinsic. It is marked
13784``noduplicate``, so calls to this intrinsic prevent inlining and should be
13785considered expensive.
13786
13787::
13788
13789 declare void @llvm.codeview.annotation(metadata)
13790
13791Arguments:
13792""""""""""
13793
13794The argument should be an MDTuple containing any number of MDStrings.
13795
Sean Silvab084af42012-12-07 10:36:55 +000013796'``llvm.trap``' Intrinsic
13797^^^^^^^^^^^^^^^^^^^^^^^^^
13798
13799Syntax:
13800"""""""
13801
13802::
13803
13804 declare void @llvm.trap() noreturn nounwind
13805
13806Overview:
13807"""""""""
13808
13809The '``llvm.trap``' intrinsic.
13810
13811Arguments:
13812""""""""""
13813
13814None.
13815
13816Semantics:
13817""""""""""
13818
13819This intrinsic is lowered to the target dependent trap instruction. If
13820the target does not have a trap instruction, this intrinsic will be
13821lowered to a call of the ``abort()`` function.
13822
13823'``llvm.debugtrap``' Intrinsic
13824^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13825
13826Syntax:
13827"""""""
13828
13829::
13830
13831 declare void @llvm.debugtrap() nounwind
13832
13833Overview:
13834"""""""""
13835
13836The '``llvm.debugtrap``' intrinsic.
13837
13838Arguments:
13839""""""""""
13840
13841None.
13842
13843Semantics:
13844""""""""""
13845
13846This intrinsic is lowered to code which is intended to cause an
13847execution trap with the intention of requesting the attention of a
13848debugger.
13849
13850'``llvm.stackprotector``' Intrinsic
13851^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13852
13853Syntax:
13854"""""""
13855
13856::
13857
13858 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
13859
13860Overview:
13861"""""""""
13862
13863The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
13864onto the stack at ``slot``. The stack slot is adjusted to ensure that it
13865is placed on the stack before local variables.
13866
13867Arguments:
13868""""""""""
13869
13870The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
13871The first argument is the value loaded from the stack guard
13872``@__stack_chk_guard``. The second variable is an ``alloca`` that has
13873enough space to hold the value of the guard.
13874
13875Semantics:
13876""""""""""
13877
Michael Gottesmandafc7d92013-08-12 18:35:32 +000013878This intrinsic causes the prologue/epilogue inserter to force the position of
13879the ``AllocaInst`` stack slot to be before local variables on the stack. This is
13880to ensure that if a local variable on the stack is overwritten, it will destroy
13881the value of the guard. When the function exits, the guard on the stack is
13882checked against the original guard by ``llvm.stackprotectorcheck``. If they are
13883different, then ``llvm.stackprotectorcheck`` causes the program to abort by
13884calling the ``__stack_chk_fail()`` function.
13885
Tim Shene885d5e2016-04-19 19:40:37 +000013886'``llvm.stackguard``' Intrinsic
13887^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13888
13889Syntax:
13890"""""""
13891
13892::
13893
13894 declare i8* @llvm.stackguard()
13895
13896Overview:
13897"""""""""
13898
13899The ``llvm.stackguard`` intrinsic returns the system stack guard value.
13900
13901It should not be generated by frontends, since it is only for internal usage.
13902The reason why we create this intrinsic is that we still support IR form Stack
13903Protector in FastISel.
13904
13905Arguments:
13906""""""""""
13907
13908None.
13909
13910Semantics:
13911""""""""""
13912
13913On some platforms, the value returned by this intrinsic remains unchanged
13914between loads in the same thread. On other platforms, it returns the same
13915global variable value, if any, e.g. ``@__stack_chk_guard``.
13916
13917Currently some platforms have IR-level customized stack guard loading (e.g.
13918X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
13919in the future.
13920
Sean Silvab084af42012-12-07 10:36:55 +000013921'``llvm.objectsize``' Intrinsic
13922^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13923
13924Syntax:
13925"""""""
13926
13927::
13928
George Burgess IV56c7e882017-03-21 20:08:59 +000013929 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>)
13930 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>)
Sean Silvab084af42012-12-07 10:36:55 +000013931
13932Overview:
13933"""""""""
13934
13935The ``llvm.objectsize`` intrinsic is designed to provide information to
13936the optimizers to determine at compile time whether a) an operation
13937(like memcpy) will overflow a buffer that corresponds to an object, or
13938b) that a runtime check for overflow isn't necessary. An object in this
13939context means an allocation of a specific class, structure, array, or
13940other object.
13941
13942Arguments:
13943""""""""""
13944
George Burgess IV56c7e882017-03-21 20:08:59 +000013945The ``llvm.objectsize`` intrinsic takes three arguments. The first argument is
13946a pointer to or into the ``object``. The second argument determines whether
13947``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size
13948is unknown. The third argument controls how ``llvm.objectsize`` acts when
13949``null`` is used as its pointer argument. If it's true and the pointer is in
13950address space 0, ``null`` is treated as an opaque value with an unknown number
13951of bytes. Otherwise, ``llvm.objectsize`` reports 0 bytes available when given
13952``null``.
13953
13954The second and third arguments only accept constants.
Sean Silvab084af42012-12-07 10:36:55 +000013955
13956Semantics:
13957""""""""""
13958
13959The ``llvm.objectsize`` intrinsic is lowered to a constant representing
13960the size of the object concerned. If the size cannot be determined at
13961compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
13962on the ``min`` argument).
13963
13964'``llvm.expect``' Intrinsic
13965^^^^^^^^^^^^^^^^^^^^^^^^^^^
13966
13967Syntax:
13968"""""""
13969
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000013970This is an overloaded intrinsic. You can use ``llvm.expect`` on any
13971integer bit width.
13972
Sean Silvab084af42012-12-07 10:36:55 +000013973::
13974
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000013975 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000013976 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
13977 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
13978
13979Overview:
13980"""""""""
13981
13982The ``llvm.expect`` intrinsic provides information about expected (the
13983most probable) value of ``val``, which can be used by optimizers.
13984
13985Arguments:
13986""""""""""
13987
13988The ``llvm.expect`` intrinsic takes two arguments. The first argument is
13989a value. The second argument is an expected value, this needs to be a
13990constant value, variables are not allowed.
13991
13992Semantics:
13993""""""""""
13994
13995This intrinsic is lowered to the ``val``.
13996
Philip Reamese0e90832015-04-26 22:23:12 +000013997.. _int_assume:
13998
Hal Finkel93046912014-07-25 21:13:35 +000013999'``llvm.assume``' Intrinsic
14000^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14001
14002Syntax:
14003"""""""
14004
14005::
14006
14007 declare void @llvm.assume(i1 %cond)
14008
14009Overview:
14010"""""""""
14011
14012The ``llvm.assume`` allows the optimizer to assume that the provided
14013condition is true. This information can then be used in simplifying other parts
14014of the code.
14015
14016Arguments:
14017""""""""""
14018
14019The condition which the optimizer may assume is always true.
14020
14021Semantics:
14022""""""""""
14023
14024The intrinsic allows the optimizer to assume that the provided condition is
14025always true whenever the control flow reaches the intrinsic call. No code is
14026generated for this intrinsic, and instructions that contribute only to the
14027provided condition are not used for code generation. If the condition is
14028violated during execution, the behavior is undefined.
14029
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000014030Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000014031used by the ``llvm.assume`` intrinsic in order to preserve the instructions
14032only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000014033if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000014034sufficient overall improvement in code quality. For this reason,
14035``llvm.assume`` should not be used to document basic mathematical invariants
14036that the optimizer can otherwise deduce or facts that are of little use to the
14037optimizer.
14038
Daniel Berlin2c438a32017-02-07 19:29:25 +000014039.. _int_ssa_copy:
14040
14041'``llvm.ssa_copy``' Intrinsic
14042^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14043
14044Syntax:
14045"""""""
14046
14047::
14048
14049 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
14050
14051Arguments:
14052""""""""""
14053
14054The first argument is an operand which is used as the returned value.
14055
14056Overview:
14057""""""""""
14058
14059The ``llvm.ssa_copy`` intrinsic can be used to attach information to
14060operations by copying them and giving them new names. For example,
14061the PredicateInfo utility uses it to build Extended SSA form, and
14062attach various forms of information to operands that dominate specific
14063uses. It is not meant for general use, only for building temporary
14064renaming forms that require value splits at certain points.
14065
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014066.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000014067
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014068'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000014069^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14070
14071Syntax:
14072"""""""
14073
14074::
14075
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014076 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000014077
14078
14079Arguments:
14080""""""""""
14081
14082The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014083metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000014084
14085Overview:
14086"""""""""
14087
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014088The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
14089with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000014090
Peter Collingbourne0312f612016-06-25 00:23:04 +000014091'``llvm.type.checked.load``' Intrinsic
14092^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14093
14094Syntax:
14095"""""""
14096
14097::
14098
14099 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
14100
14101
14102Arguments:
14103""""""""""
14104
14105The first argument is a pointer from which to load a function pointer. The
14106second argument is the byte offset from which to load the function pointer. The
14107third argument is a metadata object representing a :doc:`type identifier
14108<TypeMetadata>`.
14109
14110Overview:
14111"""""""""
14112
14113The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
14114virtual table pointer using type metadata. This intrinsic is used to implement
14115control flow integrity in conjunction with virtual call optimization. The
14116virtual call optimization pass will optimize away ``llvm.type.checked.load``
14117intrinsics associated with devirtualized calls, thereby removing the type
14118check in cases where it is not needed to enforce the control flow integrity
14119constraint.
14120
14121If the given pointer is associated with a type metadata identifier, this
14122function returns true as the second element of its return value. (Note that
14123the function may also return true if the given pointer is not associated
14124with a type metadata identifier.) If the function's return value's second
14125element is true, the following rules apply to the first element:
14126
14127- If the given pointer is associated with the given type metadata identifier,
14128 it is the function pointer loaded from the given byte offset from the given
14129 pointer.
14130
14131- If the given pointer is not associated with the given type metadata
14132 identifier, it is one of the following (the choice of which is unspecified):
14133
14134 1. The function pointer that would have been loaded from an arbitrarily chosen
14135 (through an unspecified mechanism) pointer associated with the type
14136 metadata.
14137
14138 2. If the function has a non-void return type, a pointer to a function that
14139 returns an unspecified value without causing side effects.
14140
14141If the function's return value's second element is false, the value of the
14142first element is undefined.
14143
14144
Sean Silvab084af42012-12-07 10:36:55 +000014145'``llvm.donothing``' Intrinsic
14146^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14147
14148Syntax:
14149"""""""
14150
14151::
14152
14153 declare void @llvm.donothing() nounwind readnone
14154
14155Overview:
14156"""""""""
14157
Juergen Ributzkac9161192014-10-23 22:36:13 +000014158The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000014159three intrinsics (besides ``llvm.experimental.patchpoint`` and
14160``llvm.experimental.gc.statepoint``) that can be called with an invoke
14161instruction.
Sean Silvab084af42012-12-07 10:36:55 +000014162
14163Arguments:
14164""""""""""
14165
14166None.
14167
14168Semantics:
14169""""""""""
14170
14171This intrinsic does nothing, and it's removed by optimizers and ignored
14172by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000014173
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014174'``llvm.experimental.deoptimize``' Intrinsic
14175^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14176
14177Syntax:
14178"""""""
14179
14180::
14181
14182 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
14183
14184Overview:
14185"""""""""
14186
14187This intrinsic, together with :ref:`deoptimization operand bundles
14188<deopt_opbundles>`, allow frontends to express transfer of control and
14189frame-local state from the currently executing (typically more specialized,
14190hence faster) version of a function into another (typically more generic, hence
14191slower) version.
14192
14193In languages with a fully integrated managed runtime like Java and JavaScript
14194this intrinsic can be used to implement "uncommon trap" or "side exit" like
14195functionality. In unmanaged languages like C and C++, this intrinsic can be
14196used to represent the slow paths of specialized functions.
14197
14198
14199Arguments:
14200""""""""""
14201
14202The intrinsic takes an arbitrary number of arguments, whose meaning is
14203decided by the :ref:`lowering strategy<deoptimize_lowering>`.
14204
14205Semantics:
14206""""""""""
14207
14208The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
14209deoptimization continuation (denoted using a :ref:`deoptimization
14210operand bundle <deopt_opbundles>`) and returns the value returned by
14211the deoptimization continuation. Defining the semantic properties of
14212the continuation itself is out of scope of the language reference --
14213as far as LLVM is concerned, the deoptimization continuation can
14214invoke arbitrary side effects, including reading from and writing to
14215the entire heap.
14216
14217Deoptimization continuations expressed using ``"deopt"`` operand bundles always
14218continue execution to the end of the physical frame containing them, so all
14219calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
14220
14221 - ``@llvm.experimental.deoptimize`` cannot be invoked.
14222 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
14223 - The ``ret`` instruction must return the value produced by the
14224 ``@llvm.experimental.deoptimize`` call if there is one, or void.
14225
14226Note that the above restrictions imply that the return type for a call to
14227``@llvm.experimental.deoptimize`` will match the return type of its immediate
14228caller.
14229
14230The inliner composes the ``"deopt"`` continuations of the caller into the
14231``"deopt"`` continuations present in the inlinee, and also updates calls to this
14232intrinsic to return directly from the frame of the function it inlined into.
14233
Sanjoy Dase0aa4142016-05-12 01:17:38 +000014234All declarations of ``@llvm.experimental.deoptimize`` must share the
14235same calling convention.
14236
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014237.. _deoptimize_lowering:
14238
14239Lowering:
14240"""""""""
14241
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000014242Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
14243symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
14244ensure that this symbol is defined). The call arguments to
14245``@llvm.experimental.deoptimize`` are lowered as if they were formal
14246arguments of the specified types, and not as varargs.
14247
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014248
Sanjoy Das021de052016-03-31 00:18:46 +000014249'``llvm.experimental.guard``' Intrinsic
14250^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14251
14252Syntax:
14253"""""""
14254
14255::
14256
14257 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
14258
14259Overview:
14260"""""""""
14261
14262This intrinsic, together with :ref:`deoptimization operand bundles
14263<deopt_opbundles>`, allows frontends to express guards or checks on
14264optimistic assumptions made during compilation. The semantics of
14265``@llvm.experimental.guard`` is defined in terms of
14266``@llvm.experimental.deoptimize`` -- its body is defined to be
14267equivalent to:
14268
Renato Golin124f2592016-07-20 12:16:38 +000014269.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000014270
Renato Golin124f2592016-07-20 12:16:38 +000014271 define void @llvm.experimental.guard(i1 %pred, <args...>) {
14272 %realPred = and i1 %pred, undef
14273 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000014274
Renato Golin124f2592016-07-20 12:16:38 +000014275 leave:
14276 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
14277 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000014278
Renato Golin124f2592016-07-20 12:16:38 +000014279 continue:
14280 ret void
14281 }
Sanjoy Das021de052016-03-31 00:18:46 +000014282
Sanjoy Das47cf2af2016-04-30 00:55:59 +000014283
14284with the optional ``[, !make.implicit !{}]`` present if and only if it
14285is present on the call site. For more details on ``!make.implicit``,
14286see :doc:`FaultMaps`.
14287
Sanjoy Das021de052016-03-31 00:18:46 +000014288In words, ``@llvm.experimental.guard`` executes the attached
14289``"deopt"`` continuation if (but **not** only if) its first argument
14290is ``false``. Since the optimizer is allowed to replace the ``undef``
14291with an arbitrary value, it can optimize guard to fail "spuriously",
14292i.e. without the original condition being false (hence the "not only
14293if"); and this allows for "check widening" type optimizations.
14294
14295``@llvm.experimental.guard`` cannot be invoked.
14296
14297
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000014298'``llvm.load.relative``' Intrinsic
14299^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14300
14301Syntax:
14302"""""""
14303
14304::
14305
14306 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
14307
14308Overview:
14309"""""""""
14310
14311This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
14312adds ``%ptr`` to that value and returns it. The constant folder specifically
14313recognizes the form of this intrinsic and the constant initializers it may
14314load from; if a loaded constant initializer is known to have the form
14315``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
14316
14317LLVM provides that the calculation of such a constant initializer will
14318not overflow at link time under the medium code model if ``x`` is an
14319``unnamed_addr`` function. However, it does not provide this guarantee for
14320a constant initializer folded into a function body. This intrinsic can be
14321used to avoid the possibility of overflows when loading from such a constant.
14322
Dan Gohman2c74fe92017-11-08 21:59:51 +000014323'``llvm.sideeffect``' Intrinsic
14324^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14325
14326Syntax:
14327"""""""
14328
14329::
14330
14331 declare void @llvm.sideeffect() inaccessiblememonly nounwind
14332
14333Overview:
14334"""""""""
14335
14336The ``llvm.sideeffect`` intrinsic doesn't perform any operation. Optimizers
14337treat it as having side effects, so it can be inserted into a loop to
14338indicate that the loop shouldn't be assumed to terminate (which could
14339potentially lead to the loop being optimized away entirely), even if it's
14340an infinite loop with no other side effects.
14341
14342Arguments:
14343""""""""""
14344
14345None.
14346
14347Semantics:
14348""""""""""
14349
14350This intrinsic actually does nothing, but optimizers must assume that it
14351has externally observable side effects.
14352
Andrew Trick5e029ce2013-12-24 02:57:25 +000014353Stack Map Intrinsics
14354--------------------
14355
14356LLVM provides experimental intrinsics to support runtime patching
14357mechanisms commonly desired in dynamic language JITs. These intrinsics
14358are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014359
14360Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000014361-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000014362
14363These intrinsics are similar to the standard library memory intrinsics except
14364that they perform memory transfer as a sequence of atomic memory accesses.
14365
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014366.. _int_memcpy_element_unordered_atomic:
Igor Laevsky4f31e522016-12-29 14:31:07 +000014367
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014368'``llvm.memcpy.element.unordered.atomic``' Intrinsic
14369^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000014370
14371Syntax:
14372"""""""
14373
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014374This is an overloaded intrinsic. You can use ``llvm.memcpy.element.unordered.atomic`` on
Igor Laevsky4f31e522016-12-29 14:31:07 +000014375any integer bit width and for different address spaces. Not all targets
14376support all bit widths however.
14377
14378::
14379
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014380 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
14381 i8* <src>,
14382 i32 <len>,
14383 i32 <element_size>)
14384 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
14385 i8* <src>,
14386 i64 <len>,
14387 i32 <element_size>)
Igor Laevsky4f31e522016-12-29 14:31:07 +000014388
14389Overview:
14390"""""""""
14391
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014392The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic is a specialization of the
14393'``llvm.memcpy.*``' intrinsic. It differs in that the ``dest`` and ``src`` are treated
14394as arrays with elements that are exactly ``element_size`` bytes, and the copy between
14395buffers uses a sequence of :ref:`unordered atomic <ordering>` load/store operations
14396that are a positive integer multiple of the ``element_size`` in size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014397
14398Arguments:
14399""""""""""
14400
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014401The first three arguments are the same as they are in the :ref:`@llvm.memcpy <int_memcpy>`
14402intrinsic, with the added constraint that ``len`` is required to be a positive integer
14403multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
14404``element_size``, then the behaviour of the intrinsic is undefined.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014405
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014406``element_size`` must be a compile-time constant positive power of two no greater than
14407target-specific atomic access size limit.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014408
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014409For each of the input pointers ``align`` parameter attribute must be specified. It
14410must be a power of two no less than the ``element_size``. Caller guarantees that
14411both the source and destination pointers are aligned to that boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014412
14413Semantics:
14414""""""""""
14415
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014416The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic copies ``len`` bytes of
14417memory from the source location to the destination location. These locations are not
14418allowed to overlap. The memory copy is performed as a sequence of load/store operations
14419where each access is guaranteed to be a multiple of ``element_size`` bytes wide and
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014420aligned at an ``element_size`` boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014421
14422The order of the copy is unspecified. The same value may be read from the source
14423buffer many times, but only one write is issued to the destination buffer per
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014424element. It is well defined to have concurrent reads and writes to both source and
14425destination provided those reads and writes are unordered atomic when specified.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014426
14427This intrinsic does not provide any additional ordering guarantees over those
14428provided by a set of unordered loads from the source location and stores to the
14429destination.
14430
14431Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000014432"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000014433
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014434In the most general case call to the '``llvm.memcpy.element.unordered.atomic.*``' is
14435lowered to a call to the symbol ``__llvm_memcpy_element_unordered_atomic_*``. Where '*'
14436is replaced with an actual element size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014437
Daniel Neilson57226ef2017-07-12 15:25:26 +000014438Optimizer is allowed to inline memory copy when it's profitable to do so.
14439
14440'``llvm.memmove.element.unordered.atomic``' Intrinsic
14441^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14442
14443Syntax:
14444"""""""
14445
14446This is an overloaded intrinsic. You can use
14447``llvm.memmove.element.unordered.atomic`` on any integer bit width and for
14448different address spaces. Not all targets support all bit widths however.
14449
14450::
14451
14452 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
14453 i8* <src>,
14454 i32 <len>,
14455 i32 <element_size>)
14456 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
14457 i8* <src>,
14458 i64 <len>,
14459 i32 <element_size>)
14460
14461Overview:
14462"""""""""
14463
14464The '``llvm.memmove.element.unordered.atomic.*``' intrinsic is a specialization
14465of the '``llvm.memmove.*``' intrinsic. It differs in that the ``dest`` and
14466``src`` are treated as arrays with elements that are exactly ``element_size``
14467bytes, and the copy between buffers uses a sequence of
14468:ref:`unordered atomic <ordering>` load/store operations that are a positive
14469integer multiple of the ``element_size`` in size.
14470
14471Arguments:
14472""""""""""
14473
14474The first three arguments are the same as they are in the
14475:ref:`@llvm.memmove <int_memmove>` intrinsic, with the added constraint that
14476``len`` is required to be a positive integer multiple of the ``element_size``.
14477If ``len`` is not a positive integer multiple of ``element_size``, then the
14478behaviour of the intrinsic is undefined.
14479
14480``element_size`` must be a compile-time constant positive power of two no
14481greater than a target-specific atomic access size limit.
14482
14483For each of the input pointers the ``align`` parameter attribute must be
14484specified. It must be a power of two no less than the ``element_size``. Caller
14485guarantees that both the source and destination pointers are aligned to that
14486boundary.
14487
14488Semantics:
14489""""""""""
14490
14491The '``llvm.memmove.element.unordered.atomic.*``' intrinsic copies ``len`` bytes
14492of memory from the source location to the destination location. These locations
14493are allowed to overlap. The memory copy is performed as a sequence of load/store
14494operations where each access is guaranteed to be a multiple of ``element_size``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014495bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson57226ef2017-07-12 15:25:26 +000014496
14497The order of the copy is unspecified. The same value may be read from the source
14498buffer many times, but only one write is issued to the destination buffer per
14499element. It is well defined to have concurrent reads and writes to both source
14500and destination provided those reads and writes are unordered atomic when
14501specified.
14502
14503This intrinsic does not provide any additional ordering guarantees over those
14504provided by a set of unordered loads from the source location and stores to the
14505destination.
14506
14507Lowering:
14508"""""""""
14509
14510In the most general case call to the
14511'``llvm.memmove.element.unordered.atomic.*``' is lowered to a call to the symbol
14512``__llvm_memmove_element_unordered_atomic_*``. Where '*' is replaced with an
14513actual element size.
14514
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014515The optimizer is allowed to inline the memory copy when it's profitable to do so.
Daniel Neilson965613e2017-07-12 21:57:23 +000014516
14517.. _int_memset_element_unordered_atomic:
14518
14519'``llvm.memset.element.unordered.atomic``' Intrinsic
14520^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14521
14522Syntax:
14523"""""""
14524
14525This is an overloaded intrinsic. You can use ``llvm.memset.element.unordered.atomic`` on
14526any integer bit width and for different address spaces. Not all targets
14527support all bit widths however.
14528
14529::
14530
14531 declare void @llvm.memset.element.unordered.atomic.p0i8.i32(i8* <dest>,
14532 i8 <value>,
14533 i32 <len>,
14534 i32 <element_size>)
14535 declare void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* <dest>,
14536 i8 <value>,
14537 i64 <len>,
14538 i32 <element_size>)
14539
14540Overview:
14541"""""""""
14542
14543The '``llvm.memset.element.unordered.atomic.*``' intrinsic is a specialization of the
14544'``llvm.memset.*``' intrinsic. It differs in that the ``dest`` is treated as an array
14545with elements that are exactly ``element_size`` bytes, and the assignment to that array
14546uses uses a sequence of :ref:`unordered atomic <ordering>` store operations
14547that are a positive integer multiple of the ``element_size`` in size.
14548
14549Arguments:
14550""""""""""
14551
14552The first three arguments are the same as they are in the :ref:`@llvm.memset <int_memset>`
14553intrinsic, with the added constraint that ``len`` is required to be a positive integer
14554multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
14555``element_size``, then the behaviour of the intrinsic is undefined.
14556
14557``element_size`` must be a compile-time constant positive power of two no greater than
14558target-specific atomic access size limit.
14559
14560The ``dest`` input pointer must have the ``align`` parameter attribute specified. It
14561must be a power of two no less than the ``element_size``. Caller guarantees that
14562the destination pointer is aligned to that boundary.
14563
14564Semantics:
14565""""""""""
14566
14567The '``llvm.memset.element.unordered.atomic.*``' intrinsic sets the ``len`` bytes of
14568memory starting at the destination location to the given ``value``. The memory is
14569set with a sequence of store operations where each access is guaranteed to be a
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014570multiple of ``element_size`` bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson965613e2017-07-12 21:57:23 +000014571
14572The order of the assignment is unspecified. Only one write is issued to the
14573destination buffer per element. It is well defined to have concurrent reads and
14574writes to the destination provided those reads and writes are unordered atomic
14575when specified.
14576
14577This intrinsic does not provide any additional ordering guarantees over those
14578provided by a set of unordered stores to the destination.
14579
14580Lowering:
14581"""""""""
14582
14583In the most general case call to the '``llvm.memset.element.unordered.atomic.*``' is
14584lowered to a call to the symbol ``__llvm_memset_element_unordered_atomic_*``. Where '*'
14585is replaced with an actual element size.
14586
14587The optimizer is allowed to inline the memory assignment when it's profitable to do so.