blob: 963a66f0015312a4b8a6ce404f2c5f3fc6d8f78b [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
George Burgess IVfbc34982017-05-20 04:52:29 +0000164 ; Convert [13 x i8]* to i8*...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledru0604c5c2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvab084af42012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
Sanjay Patel85fa9ef2018-03-21 14:15:33 +0000327 floating-point types are supported.
Sean Silvab084af42012-12-07 10:36:55 +0000328 - On *X86-64* only supports up to 10 bit type parameters and 6
Sanjay Patel85fa9ef2018-03-21 14:15:33 +0000329 floating-point parameters.
Sean Silvab084af42012-12-07 10:36:55 +0000330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Sean Fertilec70d28b2017-10-26 15:00:26 +0000530.. _runtime_preemption_model:
531
532Runtime Preemption Specifiers
533-----------------------------
534
535Global variables, functions and aliases may have an optional runtime preemption
536specifier. If a preemption specifier isn't given explicitly, then a
537symbol is assumed to be ``dso_preemptable``.
538
539``dso_preemptable``
540 Indicates that the function or variable may be replaced by a symbol from
541 outside the linkage unit at runtime.
542
543``dso_local``
544 The compiler may assume that a function or variable marked as ``dso_local``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000545 will resolve to a symbol within the same linkage unit. Direct access will
Sean Fertilec70d28b2017-10-26 15:00:26 +0000546 be generated even if the definition is not within this compilation unit.
547
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000548.. _namedtypes:
549
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000550Structure Types
551---------------
Sean Silvab084af42012-12-07 10:36:55 +0000552
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000553LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000554types <t_struct>`. Literal types are uniqued structurally, but identified types
555are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000556to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000557
Sean Silva706fba52015-08-06 22:56:24 +0000558An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000559
560.. code-block:: llvm
561
562 %mytype = type { %mytype*, i32 }
563
Sean Silvaa1190322015-08-06 22:56:48 +0000564Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000565literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000566
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000567.. _nointptrtype:
568
569Non-Integral Pointer Type
570-------------------------
571
572Note: non-integral pointer types are a work in progress, and they should be
573considered experimental at this time.
574
575LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000576spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
577Non-integral pointer types represent pointers that have an *unspecified* bitwise
578representation; that is, the integral representation may be target dependent or
579unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000580
581``inttoptr`` instructions converting integers to non-integral pointer types are
582ill-typed, and so are ``ptrtoint`` instructions converting values of
583non-integral pointer types to integers. Vector versions of said instructions
584are ill-typed as well.
585
Sean Silvab084af42012-12-07 10:36:55 +0000586.. _globalvars:
587
588Global Variables
589----------------
590
591Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000592instead of run-time.
593
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000594Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000595
596Global variables in other translation units can also be declared, in which
597case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000598
Bob Wilson85b24f22014-06-12 20:40:33 +0000599Either global variable definitions or declarations may have an explicit section
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000600to be placed in and may have an optional explicit alignment specified. If there
601is a mismatch between the explicit or inferred section information for the
602variable declaration and its definition the resulting behavior is undefined.
Bob Wilson85b24f22014-06-12 20:40:33 +0000603
Michael Gottesman006039c2013-01-31 05:48:48 +0000604A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000605the contents of the variable will **never** be modified (enabling better
606optimization, allowing the global data to be placed in the read-only
607section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000608initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000609variable.
610
611LLVM explicitly allows *declarations* of global variables to be marked
612constant, even if the final definition of the global is not. This
613capability can be used to enable slightly better optimization of the
614program, but requires the language definition to guarantee that
615optimizations based on the 'constantness' are valid for the translation
616units that do not include the definition.
617
618As SSA values, global variables define pointer values that are in scope
619(i.e. they dominate) all basic blocks in the program. Global variables
620always define a pointer to their "content" type because they describe a
621region of memory, and all memory objects in LLVM are accessed through
622pointers.
623
624Global variables can be marked with ``unnamed_addr`` which indicates
625that the address is not significant, only the content. Constants marked
626like this can be merged with other constants if they have the same
627initializer. Note that a constant with significant address *can* be
628merged with a ``unnamed_addr`` constant, the result being a constant
629whose address is significant.
630
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000631If the ``local_unnamed_addr`` attribute is given, the address is known to
632not be significant within the module.
633
Sean Silvab084af42012-12-07 10:36:55 +0000634A global variable may be declared to reside in a target-specific
635numbered address space. For targets that support them, address spaces
636may affect how optimizations are performed and/or what target
637instructions are used to access the variable. The default address space
638is zero. The address space qualifier must precede any other attributes.
639
640LLVM allows an explicit section to be specified for globals. If the
641target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000642Additionally, the global can placed in a comdat if the target has the necessary
643support.
Sean Silvab084af42012-12-07 10:36:55 +0000644
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000645External declarations may have an explicit section specified. Section
646information is retained in LLVM IR for targets that make use of this
647information. Attaching section information to an external declaration is an
648assertion that its definition is located in the specified section. If the
649definition is located in a different section, the behavior is undefined.
Erich Keane0343ef82017-08-22 15:30:43 +0000650
Michael Gottesmane743a302013-02-04 03:22:00 +0000651By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000652variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000653initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000654true even for variables potentially accessible from outside the
655module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000656``@llvm.used`` or dllexported variables. This assumption may be suppressed
657by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659An explicit alignment may be specified for a global, which must be a
660power of 2. If not present, or if the alignment is set to zero, the
661alignment of the global is set by the target to whatever it feels
662convenient. If an explicit alignment is specified, the global is forced
663to have exactly that alignment. Targets and optimizers are not allowed
664to over-align the global if the global has an assigned section. In this
665case, the extra alignment could be observable: for example, code could
666assume that the globals are densely packed in their section and try to
667iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000668iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000669
Javed Absarf3d79042017-05-11 12:28:08 +0000670Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
Sean Fertilec70d28b2017-10-26 15:00:26 +0000671an optional :ref:`runtime preemption specifier <runtime_preemption_model>`,
Javed Absarf3d79042017-05-11 12:28:08 +0000672an optional :ref:`global attributes <glattrs>` and
673an optional list of attached :ref:`metadata <metadata>`.
Nico Rieck7157bb72014-01-14 15:22:47 +0000674
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000675Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000676:ref:`Thread Local Storage Model <tls_model>`.
677
Nico Rieck7157bb72014-01-14 15:22:47 +0000678Syntax::
679
Sean Fertilec70d28b2017-10-26 15:00:26 +0000680 @<GlobalVarName> = [Linkage] [PreemptionSpecifier] [Visibility]
681 [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000682 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
683 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000684 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000685 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000686 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000687
Sean Silvab084af42012-12-07 10:36:55 +0000688For example, the following defines a global in a numbered address space
689with an initializer, section, and alignment:
690
691.. code-block:: llvm
692
693 @G = addrspace(5) constant float 1.0, section "foo", align 4
694
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000695The following example just declares a global variable
696
697.. code-block:: llvm
698
699 @G = external global i32
700
Sean Silvab084af42012-12-07 10:36:55 +0000701The following example defines a thread-local global with the
702``initialexec`` TLS model:
703
704.. code-block:: llvm
705
706 @G = thread_local(initialexec) global i32 0, align 4
707
708.. _functionstructure:
709
710Functions
711---------
712
713LLVM function definitions consist of the "``define``" keyword, an
Sean Fertilec70d28b2017-10-26 15:00:26 +0000714optional :ref:`linkage type <linkage>`, an optional :ref:`runtime preemption
715specifier <runtime_preemption_model>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000716style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
717an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000718an optional ``unnamed_addr`` attribute, a return type, an optional
719:ref:`parameter attribute <paramattrs>` for the return type, a function
720name, a (possibly empty) argument list (each with optional :ref:`parameter
721attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000722an optional section, an optional alignment,
723an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000724an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000725an optional :ref:`prologue <prologuedata>`,
726an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000727an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000728an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000731optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
732<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
733optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
734or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
735attribute <paramattrs>` for the return type, a function name, a possibly
736empty list of arguments, an optional alignment, an optional :ref:`garbage
737collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
738:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000739
Bill Wendling6822ecb2013-10-27 05:09:12 +0000740A function definition contains a list of basic blocks, forming the CFG (Control
741Flow Graph) for the function. Each basic block may optionally start with a label
742(giving the basic block a symbol table entry), contains a list of instructions,
743and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
744function return). If an explicit label is not provided, a block is assigned an
745implicit numbered label, using the next value from the same counter as used for
746unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
747entry block does not have an explicit label, it will be assigned label "%0",
748then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000749
750The first basic block in a function is special in two ways: it is
751immediately executed on entrance to the function, and it is not allowed
752to have predecessor basic blocks (i.e. there can not be any branches to
753the entry block of a function). Because the block can have no
754predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
755
756LLVM allows an explicit section to be specified for functions. If the
757target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000758Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000759
760An explicit alignment may be specified for a function. If not present,
761or if the alignment is set to zero, the alignment of the function is set
762by the target to whatever it feels convenient. If an explicit alignment
763is specified, the function is forced to have at least that much
764alignment. All alignments must be a power of 2.
765
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000766If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000767be significant and two identical functions can be merged.
768
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000769If the ``local_unnamed_addr`` attribute is given, the address is known to
770not be significant within the module.
771
Sean Silvab084af42012-12-07 10:36:55 +0000772Syntax::
773
Sean Fertilec70d28b2017-10-26 15:00:26 +0000774 define [linkage] [PreemptionSpecifier] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000775 [cconv] [ret attrs]
776 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000777 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
778 [comdat [($name)]] [align N] [gc] [prefix Constant]
779 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000780
Sean Silva706fba52015-08-06 22:56:24 +0000781The argument list is a comma separated sequence of arguments where each
782argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000783
784Syntax::
785
786 <type> [parameter Attrs] [name]
787
788
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000789.. _langref_aliases:
790
Sean Silvab084af42012-12-07 10:36:55 +0000791Aliases
792-------
793
Rafael Espindola64c1e182014-06-03 02:41:57 +0000794Aliases, unlike function or variables, don't create any new data. They
795are just a new symbol and metadata for an existing position.
796
797Aliases have a name and an aliasee that is either a global value or a
798constant expression.
799
Nico Rieck7157bb72014-01-14 15:22:47 +0000800Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Sean Fertilec70d28b2017-10-26 15:00:26 +0000801:ref:`runtime preemption specifier <runtime_preemption_model>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000802:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
803<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000804
805Syntax::
806
Sean Fertilec70d28b2017-10-26 15:00:26 +0000807 @<Name> = [Linkage] [PreemptionSpecifier] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000808
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000809The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000810``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000811might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000812
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000813Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000814the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
815to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000816
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000817If the ``local_unnamed_addr`` attribute is given, the address is known to
818not be significant within the module.
819
Rafael Espindola64c1e182014-06-03 02:41:57 +0000820Since aliases are only a second name, some restrictions apply, of which
821some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000822
Rafael Espindola64c1e182014-06-03 02:41:57 +0000823* The expression defining the aliasee must be computable at assembly
824 time. Since it is just a name, no relocations can be used.
825
826* No alias in the expression can be weak as the possibility of the
827 intermediate alias being overridden cannot be represented in an
828 object file.
829
830* No global value in the expression can be a declaration, since that
831 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000832
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000833.. _langref_ifunc:
834
835IFuncs
836-------
837
838IFuncs, like as aliases, don't create any new data or func. They are just a new
839symbol that dynamic linker resolves at runtime by calling a resolver function.
840
841IFuncs have a name and a resolver that is a function called by dynamic linker
842that returns address of another function associated with the name.
843
844IFunc may have an optional :ref:`linkage type <linkage>` and an optional
845:ref:`visibility style <visibility>`.
846
847Syntax::
848
849 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
850
851
David Majnemerdad0a642014-06-27 18:19:56 +0000852.. _langref_comdats:
853
854Comdats
855-------
856
857Comdat IR provides access to COFF and ELF object file COMDAT functionality.
858
Sean Silvaa1190322015-08-06 22:56:48 +0000859Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000860specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000861that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000862aliasee computes to, if any.
863
864Comdats have a selection kind to provide input on how the linker should
865choose between keys in two different object files.
866
867Syntax::
868
869 $<Name> = comdat SelectionKind
870
871The selection kind must be one of the following:
872
873``any``
874 The linker may choose any COMDAT key, the choice is arbitrary.
875``exactmatch``
876 The linker may choose any COMDAT key but the sections must contain the
877 same data.
878``largest``
879 The linker will choose the section containing the largest COMDAT key.
880``noduplicates``
881 The linker requires that only section with this COMDAT key exist.
882``samesize``
883 The linker may choose any COMDAT key but the sections must contain the
884 same amount of data.
885
Sam Cleggea7cace2018-01-09 23:43:14 +0000886Note that the Mach-O platform doesn't support COMDATs, and ELF and WebAssembly
887only support ``any`` as a selection kind.
David Majnemerdad0a642014-06-27 18:19:56 +0000888
889Here is an example of a COMDAT group where a function will only be selected if
890the COMDAT key's section is the largest:
891
Renato Golin124f2592016-07-20 12:16:38 +0000892.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000893
894 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000895 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000896
Rafael Espindola83a362c2015-01-06 22:55:16 +0000897 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000898 ret void
899 }
900
Rafael Espindola83a362c2015-01-06 22:55:16 +0000901As a syntactic sugar the ``$name`` can be omitted if the name is the same as
902the global name:
903
Renato Golin124f2592016-07-20 12:16:38 +0000904.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000905
906 $foo = comdat any
907 @foo = global i32 2, comdat
908
909
David Majnemerdad0a642014-06-27 18:19:56 +0000910In a COFF object file, this will create a COMDAT section with selection kind
911``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
912and another COMDAT section with selection kind
913``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000914section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000915
916There are some restrictions on the properties of the global object.
917It, or an alias to it, must have the same name as the COMDAT group when
918targeting COFF.
919The contents and size of this object may be used during link-time to determine
920which COMDAT groups get selected depending on the selection kind.
921Because the name of the object must match the name of the COMDAT group, the
922linkage of the global object must not be local; local symbols can get renamed
923if a collision occurs in the symbol table.
924
925The combined use of COMDATS and section attributes may yield surprising results.
926For example:
927
Renato Golin124f2592016-07-20 12:16:38 +0000928.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000929
930 $foo = comdat any
931 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000932 @g1 = global i32 42, section "sec", comdat($foo)
933 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000934
935From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000936with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000937COMDAT groups and COMDATs, at the object file level, are represented by
938sections.
939
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000940Note that certain IR constructs like global variables and functions may
941create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000942COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000943in individual sections (e.g. when `-data-sections` or `-function-sections`
944is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000945
Sean Silvab084af42012-12-07 10:36:55 +0000946.. _namedmetadatastructure:
947
948Named Metadata
949--------------
950
951Named metadata is a collection of metadata. :ref:`Metadata
952nodes <metadata>` (but not metadata strings) are the only valid
953operands for a named metadata.
954
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000955#. Named metadata are represented as a string of characters with the
956 metadata prefix. The rules for metadata names are the same as for
957 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
958 are still valid, which allows any character to be part of a name.
959
Sean Silvab084af42012-12-07 10:36:55 +0000960Syntax::
961
962 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000963 !0 = !{!"zero"}
964 !1 = !{!"one"}
965 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000966 ; A named metadata.
967 !name = !{!0, !1, !2}
968
969.. _paramattrs:
970
971Parameter Attributes
972--------------------
973
974The return type and each parameter of a function type may have a set of
975*parameter attributes* associated with them. Parameter attributes are
976used to communicate additional information about the result or
977parameters of a function. Parameter attributes are considered to be part
978of the function, not of the function type, so functions with different
979parameter attributes can have the same function type.
980
981Parameter attributes are simple keywords that follow the type specified.
982If multiple parameter attributes are needed, they are space separated.
983For example:
984
985.. code-block:: llvm
986
987 declare i32 @printf(i8* noalias nocapture, ...)
988 declare i32 @atoi(i8 zeroext)
989 declare signext i8 @returns_signed_char()
990
991Note that any attributes for the function result (``nounwind``,
992``readonly``) come immediately after the argument list.
993
994Currently, only the following parameter attributes are defined:
995
996``zeroext``
997 This indicates to the code generator that the parameter or return
998 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000999 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +00001000``signext``
1001 This indicates to the code generator that the parameter or return
1002 value should be sign-extended to the extent required by the target's
1003 ABI (which is usually 32-bits) by the caller (for a parameter) or
1004 the callee (for a return value).
1005``inreg``
1006 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +00001007 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +00001008 a function call or return (usually, by putting it in a register as
1009 opposed to memory, though some targets use it to distinguish between
1010 two different kinds of registers). Use of this attribute is
1011 target-specific.
1012``byval``
1013 This indicates that the pointer parameter should really be passed by
1014 value to the function. The attribute implies that a hidden copy of
1015 the pointee is made between the caller and the callee, so the callee
1016 is unable to modify the value in the caller. This attribute is only
1017 valid on LLVM pointer arguments. It is generally used to pass
1018 structs and arrays by value, but is also valid on pointers to
1019 scalars. The copy is considered to belong to the caller not the
1020 callee (for example, ``readonly`` functions should not write to
1021 ``byval`` parameters). This is not a valid attribute for return
1022 values.
1023
1024 The byval attribute also supports specifying an alignment with the
1025 align attribute. It indicates the alignment of the stack slot to
1026 form and the known alignment of the pointer specified to the call
1027 site. If the alignment is not specified, then the code generator
1028 makes a target-specific assumption.
1029
Reid Klecknera534a382013-12-19 02:14:12 +00001030.. _attr_inalloca:
1031
1032``inalloca``
1033
Reid Kleckner60d3a832014-01-16 22:59:24 +00001034 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001035 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001036 be a pointer to stack memory produced by an ``alloca`` instruction.
1037 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001038 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001039 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001040
Reid Kleckner436c42e2014-01-17 23:58:17 +00001041 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001042 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001043 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001044 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001045 ``inalloca`` attribute also disables LLVM's implicit lowering of
1046 large aggregate return values, which means that frontend authors
1047 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001048
Reid Kleckner60d3a832014-01-16 22:59:24 +00001049 When the call site is reached, the argument allocation must have
1050 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001051 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001052 space after an argument allocation and before its call site, but it
1053 must be cleared off with :ref:`llvm.stackrestore
1054 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001055
1056 See :doc:`InAlloca` for more information on how to use this
1057 attribute.
1058
Sean Silvab084af42012-12-07 10:36:55 +00001059``sret``
1060 This indicates that the pointer parameter specifies the address of a
1061 structure that is the return value of the function in the source
1062 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001063 loads and stores to the structure may be assumed by the callee not
1064 to trap and to be properly aligned. This is not a valid attribute
1065 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001066
Daniel Neilson1e687242018-01-19 17:13:12 +00001067.. _attr_align:
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001068
Hal Finkelccc70902014-07-22 16:58:55 +00001069``align <n>``
1070 This indicates that the pointer value may be assumed by the optimizer to
1071 have the specified alignment.
1072
1073 Note that this attribute has additional semantics when combined with the
1074 ``byval`` attribute.
1075
Sean Silva1703e702014-04-08 21:06:22 +00001076.. _noalias:
1077
Sean Silvab084af42012-12-07 10:36:55 +00001078``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001079 This indicates that objects accessed via pointer values
1080 :ref:`based <pointeraliasing>` on the argument or return value are not also
1081 accessed, during the execution of the function, via pointer values not
1082 *based* on the argument or return value. The attribute on a return value
1083 also has additional semantics described below. The caller shares the
1084 responsibility with the callee for ensuring that these requirements are met.
1085 For further details, please see the discussion of the NoAlias response in
1086 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001087
1088 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001089 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001090
1091 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001092 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1093 attribute on return values are stronger than the semantics of the attribute
1094 when used on function arguments. On function return values, the ``noalias``
1095 attribute indicates that the function acts like a system memory allocation
1096 function, returning a pointer to allocated storage disjoint from the
1097 storage for any other object accessible to the caller.
1098
Sean Silvab084af42012-12-07 10:36:55 +00001099``nocapture``
1100 This indicates that the callee does not make any copies of the
1101 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001102 attribute for return values. Addresses used in volatile operations
1103 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001104
1105.. _nest:
1106
1107``nest``
1108 This indicates that the pointer parameter can be excised using the
1109 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001110 attribute for return values and can only be applied to one parameter.
1111
1112``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001113 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001114 value. This is a hint to the optimizer and code generator used when
1115 generating the caller, allowing value propagation, tail call optimization,
1116 and omission of register saves and restores in some cases; it is not
1117 checked or enforced when generating the callee. The parameter and the
1118 function return type must be valid operands for the
1119 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1120 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001121
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001122``nonnull``
1123 This indicates that the parameter or return pointer is not null. This
1124 attribute may only be applied to pointer typed parameters. This is not
1125 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001126 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001127 is non-null.
1128
Hal Finkelb0407ba2014-07-18 15:51:28 +00001129``dereferenceable(<n>)``
1130 This indicates that the parameter or return pointer is dereferenceable. This
1131 attribute may only be applied to pointer typed parameters. A pointer that
1132 is dereferenceable can be loaded from speculatively without a risk of
1133 trapping. The number of bytes known to be dereferenceable must be provided
1134 in parentheses. It is legal for the number of bytes to be less than the
1135 size of the pointee type. The ``nonnull`` attribute does not imply
1136 dereferenceability (consider a pointer to one element past the end of an
1137 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1138 ``addrspace(0)`` (which is the default address space).
1139
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001140``dereferenceable_or_null(<n>)``
1141 This indicates that the parameter or return value isn't both
1142 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001143 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001144 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1145 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1146 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1147 and in other address spaces ``dereferenceable_or_null(<n>)``
1148 implies that a pointer is at least one of ``dereferenceable(<n>)``
1149 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001150 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001151 pointer typed parameters.
1152
Manman Renf46262e2016-03-29 17:37:21 +00001153``swiftself``
1154 This indicates that the parameter is the self/context parameter. This is not
1155 a valid attribute for return values and can only be applied to one
1156 parameter.
1157
Manman Ren9bfd0d02016-04-01 21:41:15 +00001158``swifterror``
1159 This attribute is motivated to model and optimize Swift error handling. It
1160 can be applied to a parameter with pointer to pointer type or a
1161 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001162 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1163 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1164 the parameter or the alloca) can only be loaded and stored from, or used as
1165 a ``swifterror`` argument. This is not a valid attribute for return values
1166 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001167
1168 These constraints allow the calling convention to optimize access to
1169 ``swifterror`` variables by associating them with a specific register at
1170 call boundaries rather than placing them in memory. Since this does change
1171 the calling convention, a function which uses the ``swifterror`` attribute
1172 on a parameter is not ABI-compatible with one which does not.
1173
1174 These constraints also allow LLVM to assume that a ``swifterror`` argument
1175 does not alias any other memory visible within a function and that a
1176 ``swifterror`` alloca passed as an argument does not escape.
1177
Sean Silvab084af42012-12-07 10:36:55 +00001178.. _gc:
1179
Philip Reamesf80bbff2015-02-25 23:45:20 +00001180Garbage Collector Strategy Names
1181--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001182
Philip Reamesf80bbff2015-02-25 23:45:20 +00001183Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001184string:
1185
1186.. code-block:: llvm
1187
1188 define void @f() gc "name" { ... }
1189
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001190The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001191<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001192strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001193named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001194garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001195which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001196
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001197.. _prefixdata:
1198
1199Prefix Data
1200-----------
1201
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001202Prefix data is data associated with a function which the code
1203generator will emit immediately before the function's entrypoint.
1204The purpose of this feature is to allow frontends to associate
1205language-specific runtime metadata with specific functions and make it
1206available through the function pointer while still allowing the
1207function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001208
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001209To access the data for a given function, a program may bitcast the
1210function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001211index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001212the prefix data. For instance, take the example of a function annotated
1213with a single ``i32``,
1214
1215.. code-block:: llvm
1216
1217 define void @f() prefix i32 123 { ... }
1218
1219The prefix data can be referenced as,
1220
1221.. code-block:: llvm
1222
David Blaikie16a97eb2015-03-04 22:02:58 +00001223 %0 = bitcast void* () @f to i32*
1224 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001225 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001226
1227Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001228of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001229beginning of the prefix data is aligned. This means that if the size
1230of the prefix data is not a multiple of the alignment size, the
1231function's entrypoint will not be aligned. If alignment of the
1232function's entrypoint is desired, padding must be added to the prefix
1233data.
1234
Sean Silvaa1190322015-08-06 22:56:48 +00001235A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001236to the ``available_externally`` linkage in that the data may be used by the
1237optimizers but will not be emitted in the object file.
1238
1239.. _prologuedata:
1240
1241Prologue Data
1242-------------
1243
1244The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1245be inserted prior to the function body. This can be used for enabling
1246function hot-patching and instrumentation.
1247
1248To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001249have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001250bytes which decode to a sequence of machine instructions, valid for the
1251module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001252the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001253the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001254definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001255makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001256
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001257A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001258which encodes the ``nop`` instruction:
1259
Renato Golin124f2592016-07-20 12:16:38 +00001260.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001261
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001262 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001263
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001264Generally prologue data can be formed by encoding a relative branch instruction
1265which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001266x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1267
Renato Golin124f2592016-07-20 12:16:38 +00001268.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001269
1270 %0 = type <{ i8, i8, i8* }>
1271
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001272 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001273
Sean Silvaa1190322015-08-06 22:56:48 +00001274A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001275to the ``available_externally`` linkage in that the data may be used by the
1276optimizers but will not be emitted in the object file.
1277
David Majnemer7fddecc2015-06-17 20:52:32 +00001278.. _personalityfn:
1279
1280Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001281--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001282
1283The ``personality`` attribute permits functions to specify what function
1284to use for exception handling.
1285
Bill Wendling63b88192013-02-06 06:52:58 +00001286.. _attrgrp:
1287
1288Attribute Groups
1289----------------
1290
1291Attribute groups are groups of attributes that are referenced by objects within
1292the IR. They are important for keeping ``.ll`` files readable, because a lot of
1293functions will use the same set of attributes. In the degenerative case of a
1294``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1295group will capture the important command line flags used to build that file.
1296
1297An attribute group is a module-level object. To use an attribute group, an
1298object references the attribute group's ID (e.g. ``#37``). An object may refer
1299to more than one attribute group. In that situation, the attributes from the
1300different groups are merged.
1301
1302Here is an example of attribute groups for a function that should always be
1303inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1304
1305.. code-block:: llvm
1306
1307 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001308 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001309
1310 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001311 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001312
1313 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1314 define void @f() #0 #1 { ... }
1315
Sean Silvab084af42012-12-07 10:36:55 +00001316.. _fnattrs:
1317
1318Function Attributes
1319-------------------
1320
1321Function attributes are set to communicate additional information about
1322a function. Function attributes are considered to be part of the
1323function, not of the function type, so functions with different function
1324attributes can have the same function type.
1325
1326Function attributes are simple keywords that follow the type specified.
1327If multiple attributes are needed, they are space separated. For
1328example:
1329
1330.. code-block:: llvm
1331
1332 define void @f() noinline { ... }
1333 define void @f() alwaysinline { ... }
1334 define void @f() alwaysinline optsize { ... }
1335 define void @f() optsize { ... }
1336
Sean Silvab084af42012-12-07 10:36:55 +00001337``alignstack(<n>)``
1338 This attribute indicates that, when emitting the prologue and
1339 epilogue, the backend should forcibly align the stack pointer.
1340 Specify the desired alignment, which must be a power of two, in
1341 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001342``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1343 This attribute indicates that the annotated function will always return at
1344 least a given number of bytes (or null). Its arguments are zero-indexed
1345 parameter numbers; if one argument is provided, then it's assumed that at
1346 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1347 returned pointer. If two are provided, then it's assumed that
1348 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1349 available. The referenced parameters must be integer types. No assumptions
1350 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001351``alwaysinline``
1352 This attribute indicates that the inliner should attempt to inline
1353 this function into callers whenever possible, ignoring any active
1354 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001355``builtin``
1356 This indicates that the callee function at a call site should be
1357 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001358 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001359 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001360 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001361``cold``
1362 This attribute indicates that this function is rarely called. When
1363 computing edge weights, basic blocks post-dominated by a cold
1364 function call are also considered to be cold; and, thus, given low
1365 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001366``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001367 In some parallel execution models, there exist operations that cannot be
1368 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001369 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001370
Justin Lebar58535b12016-02-17 17:46:41 +00001371 The ``convergent`` attribute may appear on functions or call/invoke
1372 instructions. When it appears on a function, it indicates that calls to
1373 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001374 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001375 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001376 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001377
Justin Lebar58535b12016-02-17 17:46:41 +00001378 When it appears on a call/invoke, the ``convergent`` attribute indicates
1379 that we should treat the call as though we're calling a convergent
1380 function. This is particularly useful on indirect calls; without this we
1381 may treat such calls as though the target is non-convergent.
1382
1383 The optimizer may remove the ``convergent`` attribute on functions when it
1384 can prove that the function does not execute any convergent operations.
1385 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1386 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001387``inaccessiblememonly``
1388 This attribute indicates that the function may only access memory that
1389 is not accessible by the module being compiled. This is a weaker form
1390 of ``readnone``.
1391``inaccessiblemem_or_argmemonly``
1392 This attribute indicates that the function may only access memory that is
1393 either not accessible by the module being compiled, or is pointed to
1394 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001395``inlinehint``
1396 This attribute indicates that the source code contained a hint that
1397 inlining this function is desirable (such as the "inline" keyword in
1398 C/C++). It is just a hint; it imposes no requirements on the
1399 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001400``jumptable``
1401 This attribute indicates that the function should be added to a
1402 jump-instruction table at code-generation time, and that all address-taken
1403 references to this function should be replaced with a reference to the
1404 appropriate jump-instruction-table function pointer. Note that this creates
1405 a new pointer for the original function, which means that code that depends
1406 on function-pointer identity can break. So, any function annotated with
1407 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001408``minsize``
1409 This attribute suggests that optimization passes and code generator
1410 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001411 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001412 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001413``naked``
1414 This attribute disables prologue / epilogue emission for the
1415 function. This can have very system-specific consequences.
Sumanth Gundapaneni6af104e2017-07-28 22:26:22 +00001416``no-jump-tables``
1417 When this attribute is set to true, the jump tables and lookup tables that
1418 can be generated from a switch case lowering are disabled.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001419``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001420 This indicates that the callee function at a call site is not recognized as
1421 a built-in function. LLVM will retain the original call and not replace it
1422 with equivalent code based on the semantics of the built-in function, unless
1423 the call site uses the ``builtin`` attribute. This is valid at call sites
1424 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001425``noduplicate``
1426 This attribute indicates that calls to the function cannot be
1427 duplicated. A call to a ``noduplicate`` function may be moved
1428 within its parent function, but may not be duplicated within
1429 its parent function.
1430
1431 A function containing a ``noduplicate`` call may still
1432 be an inlining candidate, provided that the call is not
1433 duplicated by inlining. That implies that the function has
1434 internal linkage and only has one call site, so the original
1435 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001436``noimplicitfloat``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001437 This attributes disables implicit floating-point instructions.
Sean Silvab084af42012-12-07 10:36:55 +00001438``noinline``
1439 This attribute indicates that the inliner should never inline this
1440 function in any situation. This attribute may not be used together
1441 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001442``nonlazybind``
1443 This attribute suppresses lazy symbol binding for the function. This
1444 may make calls to the function faster, at the cost of extra program
1445 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001446``noredzone``
1447 This attribute indicates that the code generator should not use a
1448 red zone, even if the target-specific ABI normally permits it.
1449``noreturn``
1450 This function attribute indicates that the function never returns
1451 normally. This produces undefined behavior at runtime if the
1452 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001453``norecurse``
1454 This function attribute indicates that the function does not call itself
1455 either directly or indirectly down any possible call path. This produces
1456 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001457``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001458 This function attribute indicates that the function never raises an
1459 exception. If the function does raise an exception, its runtime
1460 behavior is undefined. However, functions marked nounwind may still
1461 trap or generate asynchronous exceptions. Exception handling schemes
1462 that are recognized by LLVM to handle asynchronous exceptions, such
1463 as SEH, will still provide their implementation defined semantics.
Matt Morehouse31819412018-03-22 19:50:10 +00001464``optforfuzzing``
1465 This attribute indicates that this function should be optimized
1466 for maximum fuzzing signal.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001467``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001468 This function attribute indicates that most optimization passes will skip
1469 this function, with the exception of interprocedural optimization passes.
1470 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001471 This attribute cannot be used together with the ``alwaysinline``
1472 attribute; this attribute is also incompatible
1473 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001474
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001475 This attribute requires the ``noinline`` attribute to be specified on
1476 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001477 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001478 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001479``optsize``
1480 This attribute suggests that optimization passes and code generator
1481 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001482 and otherwise do optimizations specifically to reduce code size as
1483 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001484``"patchable-function"``
1485 This attribute tells the code generator that the code
1486 generated for this function needs to follow certain conventions that
1487 make it possible for a runtime function to patch over it later.
1488 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001489 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001490
1491 * ``"prologue-short-redirect"`` - This style of patchable
1492 function is intended to support patching a function prologue to
1493 redirect control away from the function in a thread safe
1494 manner. It guarantees that the first instruction of the
1495 function will be large enough to accommodate a short jump
1496 instruction, and will be sufficiently aligned to allow being
1497 fully changed via an atomic compare-and-swap instruction.
1498 While the first requirement can be satisfied by inserting large
1499 enough NOP, LLVM can and will try to re-purpose an existing
1500 instruction (i.e. one that would have to be emitted anyway) as
1501 the patchable instruction larger than a short jump.
1502
1503 ``"prologue-short-redirect"`` is currently only supported on
1504 x86-64.
1505
1506 This attribute by itself does not imply restrictions on
1507 inter-procedural optimizations. All of the semantic effects the
1508 patching may have to be separately conveyed via the linkage type.
whitequarked54b4a2017-06-21 18:46:50 +00001509``"probe-stack"``
1510 This attribute indicates that the function will trigger a guard region
1511 in the end of the stack. It ensures that accesses to the stack must be
1512 no further apart than the size of the guard region to a previous
1513 access of the stack. It takes one required string value, the name of
1514 the stack probing function that will be called.
1515
1516 If a function that has a ``"probe-stack"`` attribute is inlined into
1517 a function with another ``"probe-stack"`` attribute, the resulting
1518 function has the ``"probe-stack"`` attribute of the caller. If a
1519 function that has a ``"probe-stack"`` attribute is inlined into a
1520 function that has no ``"probe-stack"`` attribute at all, the resulting
1521 function has the ``"probe-stack"`` attribute of the callee.
Sean Silvab084af42012-12-07 10:36:55 +00001522``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001523 On a function, this attribute indicates that the function computes its
1524 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001525 without dereferencing any pointer arguments or otherwise accessing
1526 any mutable state (e.g. memory, control registers, etc) visible to
1527 caller functions. It does not write through any pointer arguments
1528 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das5be2e842017-02-13 23:19:07 +00001529 to callers. This means while it cannot unwind exceptions by calling
1530 the ``C++`` exception throwing methods (since they write to memory), there may
1531 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1532 visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001533
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001534 On an argument, this attribute indicates that the function does not
1535 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001536 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001537``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001538 On a function, this attribute indicates that the function does not write
1539 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001540 modify any state (e.g. memory, control registers, etc) visible to
1541 caller functions. It may dereference pointer arguments and read
1542 state that may be set in the caller. A readonly function always
1543 returns the same value (or unwinds an exception identically) when
Sanjoy Das5be2e842017-02-13 23:19:07 +00001544 called with the same set of arguments and global state. This means while it
1545 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1546 (since they write to memory), there may be non-``C++`` mechanisms that throw
1547 exceptions without writing to LLVM visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001548
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001549 On an argument, this attribute indicates that the function does not write
1550 through this pointer argument, even though it may write to the memory that
1551 the pointer points to.
whitequark08b20352017-06-22 23:22:36 +00001552``"stack-probe-size"``
1553 This attribute controls the behavior of stack probes: either
1554 the ``"probe-stack"`` attribute, or ABI-required stack probes, if any.
1555 It defines the size of the guard region. It ensures that if the function
1556 may use more stack space than the size of the guard region, stack probing
1557 sequence will be emitted. It takes one required integer value, which
1558 is 4096 by default.
1559
1560 If a function that has a ``"stack-probe-size"`` attribute is inlined into
1561 a function with another ``"stack-probe-size"`` attribute, the resulting
1562 function has the ``"stack-probe-size"`` attribute that has the lower
1563 numeric value. If a function that has a ``"stack-probe-size"`` attribute is
1564 inlined into a function that has no ``"stack-probe-size"`` attribute
1565 at all, the resulting function has the ``"stack-probe-size"`` attribute
1566 of the callee.
Hans Wennborg89c35fc2018-02-23 13:46:25 +00001567``"no-stack-arg-probe"``
1568 This attribute disables ABI-required stack probes, if any.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001569``writeonly``
1570 On a function, this attribute indicates that the function may write to but
1571 does not read from memory.
1572
1573 On an argument, this attribute indicates that the function may write to but
1574 does not read through this pointer argument (even though it may read from
1575 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001576``argmemonly``
1577 This attribute indicates that the only memory accesses inside function are
1578 loads and stores from objects pointed to by its pointer-typed arguments,
1579 with arbitrary offsets. Or in other words, all memory operations in the
1580 function can refer to memory only using pointers based on its function
1581 arguments.
1582 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1583 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001584``returns_twice``
1585 This attribute indicates that this function can return twice. The C
1586 ``setjmp`` is an example of such a function. The compiler disables
1587 some optimizations (like tail calls) in the caller of these
1588 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001589``safestack``
1590 This attribute indicates that
1591 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1592 protection is enabled for this function.
1593
1594 If a function that has a ``safestack`` attribute is inlined into a
1595 function that doesn't have a ``safestack`` attribute or which has an
1596 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1597 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001598``sanitize_address``
1599 This attribute indicates that AddressSanitizer checks
1600 (dynamic address safety analysis) are enabled for this function.
1601``sanitize_memory``
1602 This attribute indicates that MemorySanitizer checks (dynamic detection
1603 of accesses to uninitialized memory) are enabled for this function.
1604``sanitize_thread``
1605 This attribute indicates that ThreadSanitizer checks
1606 (dynamic thread safety analysis) are enabled for this function.
Evgeniy Stepanovc667c1f2017-12-09 00:21:41 +00001607``sanitize_hwaddress``
1608 This attribute indicates that HWAddressSanitizer checks
1609 (dynamic address safety analysis based on tagged pointers) are enabled for
1610 this function.
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001611``speculatable``
1612 This function attribute indicates that the function does not have any
1613 effects besides calculating its result and does not have undefined behavior.
1614 Note that ``speculatable`` is not enough to conclude that along any
Xin Tongc7180202017-05-02 23:24:12 +00001615 particular execution path the number of calls to this function will not be
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001616 externally observable. This attribute is only valid on functions
1617 and declarations, not on individual call sites. If a function is
1618 incorrectly marked as speculatable and really does exhibit
1619 undefined behavior, the undefined behavior may be observed even
1620 if the call site is dead code.
1621
Sean Silvab084af42012-12-07 10:36:55 +00001622``ssp``
1623 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001624 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001625 placed on the stack before the local variables that's checked upon
1626 return from the function to see if it has been overwritten. A
1627 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001628 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001629
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001630 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1631 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1632 - Calls to alloca() with variable sizes or constant sizes greater than
1633 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001634
Josh Magee24c7f062014-02-01 01:36:16 +00001635 Variables that are identified as requiring a protector will be arranged
1636 on the stack such that they are adjacent to the stack protector guard.
1637
Sean Silvab084af42012-12-07 10:36:55 +00001638 If a function that has an ``ssp`` attribute is inlined into a
1639 function that doesn't have an ``ssp`` attribute, then the resulting
1640 function will have an ``ssp`` attribute.
1641``sspreq``
1642 This attribute indicates that the function should *always* emit a
1643 stack smashing protector. This overrides the ``ssp`` function
1644 attribute.
1645
Josh Magee24c7f062014-02-01 01:36:16 +00001646 Variables that are identified as requiring a protector will be arranged
1647 on the stack such that they are adjacent to the stack protector guard.
1648 The specific layout rules are:
1649
1650 #. Large arrays and structures containing large arrays
1651 (``>= ssp-buffer-size``) are closest to the stack protector.
1652 #. Small arrays and structures containing small arrays
1653 (``< ssp-buffer-size``) are 2nd closest to the protector.
1654 #. Variables that have had their address taken are 3rd closest to the
1655 protector.
1656
Sean Silvab084af42012-12-07 10:36:55 +00001657 If a function that has an ``sspreq`` attribute is inlined into a
1658 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001659 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1660 an ``sspreq`` attribute.
1661``sspstrong``
1662 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001663 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001664 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001665 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001666
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001667 - Arrays of any size and type
1668 - Aggregates containing an array of any size and type.
1669 - Calls to alloca().
1670 - Local variables that have had their address taken.
1671
Josh Magee24c7f062014-02-01 01:36:16 +00001672 Variables that are identified as requiring a protector will be arranged
1673 on the stack such that they are adjacent to the stack protector guard.
1674 The specific layout rules are:
1675
1676 #. Large arrays and structures containing large arrays
1677 (``>= ssp-buffer-size``) are closest to the stack protector.
1678 #. Small arrays and structures containing small arrays
1679 (``< ssp-buffer-size``) are 2nd closest to the protector.
1680 #. Variables that have had their address taken are 3rd closest to the
1681 protector.
1682
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001683 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001684
1685 If a function that has an ``sspstrong`` attribute is inlined into a
1686 function that doesn't have an ``sspstrong`` attribute, then the
1687 resulting function will have an ``sspstrong`` attribute.
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001688``strictfp``
1689 This attribute indicates that the function was called from a scope that
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001690 requires strict floating-point semantics. LLVM will not attempt any
1691 optimizations that require assumptions about the floating-point rounding
1692 mode or that might alter the state of floating-point status flags that
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001693 might otherwise be set or cleared by calling this function.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001694``"thunk"``
1695 This attribute indicates that the function will delegate to some other
1696 function with a tail call. The prototype of a thunk should not be used for
1697 optimization purposes. The caller is expected to cast the thunk prototype to
1698 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001699``uwtable``
1700 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001701 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001702 show that no exceptions passes by it. This is normally the case for
1703 the ELF x86-64 abi, but it can be disabled for some compilation
1704 units.
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001705``nocf_check``
1706 This attribute indicates that no control-flow check will be perfomed on
1707 the attributed entity. It disables -fcf-protection=<> for a specific
1708 entity to fine grain the HW control flow protection mechanism. The flag
1709 is target independant and currently appertains to a function or function
1710 pointer.
Vlad Tsyrklevichd17f61e2018-04-03 20:10:40 +00001711``shadowcallstack``
1712 This attribute indicates that the ShadowCallStack checks are enabled for
1713 the function. The instrumentation checks that the return address for the
1714 function has not changed between the function prolog and eiplog. It is
1715 currently x86_64-specific.
Sean Silvab084af42012-12-07 10:36:55 +00001716
Javed Absarf3d79042017-05-11 12:28:08 +00001717.. _glattrs:
1718
1719Global Attributes
1720-----------------
1721
1722Attributes may be set to communicate additional information about a global variable.
1723Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
1724are grouped into a single :ref:`attribute group <attrgrp>`.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001725
1726.. _opbundles:
1727
1728Operand Bundles
1729---------------
1730
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001731Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001732with certain LLVM instructions (currently only ``call`` s and
1733``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001734incorrect and will change program semantics.
1735
1736Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001737
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001738 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001739 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1740 bundle operand ::= SSA value
1741 tag ::= string constant
1742
1743Operand bundles are **not** part of a function's signature, and a
1744given function may be called from multiple places with different kinds
1745of operand bundles. This reflects the fact that the operand bundles
1746are conceptually a part of the ``call`` (or ``invoke``), not the
1747callee being dispatched to.
1748
1749Operand bundles are a generic mechanism intended to support
1750runtime-introspection-like functionality for managed languages. While
1751the exact semantics of an operand bundle depend on the bundle tag,
1752there are certain limitations to how much the presence of an operand
1753bundle can influence the semantics of a program. These restrictions
1754are described as the semantics of an "unknown" operand bundle. As
1755long as the behavior of an operand bundle is describable within these
1756restrictions, LLVM does not need to have special knowledge of the
1757operand bundle to not miscompile programs containing it.
1758
David Majnemer34cacb42015-10-22 01:46:38 +00001759- The bundle operands for an unknown operand bundle escape in unknown
1760 ways before control is transferred to the callee or invokee.
1761- Calls and invokes with operand bundles have unknown read / write
1762 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001763 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001764 callsite specific attributes.
1765- An operand bundle at a call site cannot change the implementation
1766 of the called function. Inter-procedural optimizations work as
1767 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001768
Sanjoy Dascdafd842015-11-11 21:38:02 +00001769More specific types of operand bundles are described below.
1770
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001771.. _deopt_opbundles:
1772
Sanjoy Dascdafd842015-11-11 21:38:02 +00001773Deoptimization Operand Bundles
1774^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1775
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001776Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001777operand bundle tag. These operand bundles represent an alternate
1778"safe" continuation for the call site they're attached to, and can be
1779used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001780specified call site. There can be at most one ``"deopt"`` operand
1781bundle attached to a call site. Exact details of deoptimization is
1782out of scope for the language reference, but it usually involves
1783rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001784
1785From the compiler's perspective, deoptimization operand bundles make
1786the call sites they're attached to at least ``readonly``. They read
1787through all of their pointer typed operands (even if they're not
1788otherwise escaped) and the entire visible heap. Deoptimization
1789operand bundles do not capture their operands except during
1790deoptimization, in which case control will not be returned to the
1791compiled frame.
1792
Sanjoy Das2d161452015-11-18 06:23:38 +00001793The inliner knows how to inline through calls that have deoptimization
1794operand bundles. Just like inlining through a normal call site
1795involves composing the normal and exceptional continuations, inlining
1796through a call site with a deoptimization operand bundle needs to
1797appropriately compose the "safe" deoptimization continuation. The
1798inliner does this by prepending the parent's deoptimization
1799continuation to every deoptimization continuation in the inlined body.
1800E.g. inlining ``@f`` into ``@g`` in the following example
1801
1802.. code-block:: llvm
1803
1804 define void @f() {
1805 call void @x() ;; no deopt state
1806 call void @y() [ "deopt"(i32 10) ]
1807 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1808 ret void
1809 }
1810
1811 define void @g() {
1812 call void @f() [ "deopt"(i32 20) ]
1813 ret void
1814 }
1815
1816will result in
1817
1818.. code-block:: llvm
1819
1820 define void @g() {
1821 call void @x() ;; still no deopt state
1822 call void @y() [ "deopt"(i32 20, i32 10) ]
1823 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1824 ret void
1825 }
1826
1827It is the frontend's responsibility to structure or encode the
1828deoptimization state in a way that syntactically prepending the
1829caller's deoptimization state to the callee's deoptimization state is
1830semantically equivalent to composing the caller's deoptimization
1831continuation after the callee's deoptimization continuation.
1832
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001833.. _ob_funclet:
1834
David Majnemer3bb88c02015-12-15 21:27:27 +00001835Funclet Operand Bundles
1836^^^^^^^^^^^^^^^^^^^^^^^
1837
1838Funclet operand bundles are characterized by the ``"funclet"``
1839operand bundle tag. These operand bundles indicate that a call site
1840is within a particular funclet. There can be at most one
1841``"funclet"`` operand bundle attached to a call site and it must have
1842exactly one bundle operand.
1843
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001844If any funclet EH pads have been "entered" but not "exited" (per the
1845`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1846it is undefined behavior to execute a ``call`` or ``invoke`` which:
1847
1848* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1849 intrinsic, or
1850* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1851 not-yet-exited funclet EH pad.
1852
1853Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1854executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1855
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001856GC Transition Operand Bundles
1857^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1858
1859GC transition operand bundles are characterized by the
1860``"gc-transition"`` operand bundle tag. These operand bundles mark a
1861call as a transition between a function with one GC strategy to a
1862function with a different GC strategy. If coordinating the transition
1863between GC strategies requires additional code generation at the call
1864site, these bundles may contain any values that are needed by the
1865generated code. For more details, see :ref:`GC Transitions
1866<gc_transition_args>`.
1867
Sean Silvab084af42012-12-07 10:36:55 +00001868.. _moduleasm:
1869
1870Module-Level Inline Assembly
1871----------------------------
1872
1873Modules may contain "module-level inline asm" blocks, which corresponds
1874to the GCC "file scope inline asm" blocks. These blocks are internally
1875concatenated by LLVM and treated as a single unit, but may be separated
1876in the ``.ll`` file if desired. The syntax is very simple:
1877
1878.. code-block:: llvm
1879
1880 module asm "inline asm code goes here"
1881 module asm "more can go here"
1882
1883The strings can contain any character by escaping non-printable
1884characters. The escape sequence used is simply "\\xx" where "xx" is the
1885two digit hex code for the number.
1886
James Y Knightbc832ed2015-07-08 18:08:36 +00001887Note that the assembly string *must* be parseable by LLVM's integrated assembler
1888(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001889
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001890.. _langref_datalayout:
1891
Sean Silvab084af42012-12-07 10:36:55 +00001892Data Layout
1893-----------
1894
1895A module may specify a target specific data layout string that specifies
1896how data is to be laid out in memory. The syntax for the data layout is
1897simply:
1898
1899.. code-block:: llvm
1900
1901 target datalayout = "layout specification"
1902
1903The *layout specification* consists of a list of specifications
1904separated by the minus sign character ('-'). Each specification starts
1905with a letter and may include other information after the letter to
1906define some aspect of the data layout. The specifications accepted are
1907as follows:
1908
1909``E``
1910 Specifies that the target lays out data in big-endian form. That is,
1911 the bits with the most significance have the lowest address
1912 location.
1913``e``
1914 Specifies that the target lays out data in little-endian form. That
1915 is, the bits with the least significance have the lowest address
1916 location.
1917``S<size>``
1918 Specifies the natural alignment of the stack in bits. Alignment
1919 promotion of stack variables is limited to the natural stack
1920 alignment to avoid dynamic stack realignment. The stack alignment
1921 must be a multiple of 8-bits. If omitted, the natural stack
1922 alignment defaults to "unspecified", which does not prevent any
1923 alignment promotions.
Dylan McKayced2fe62018-02-19 09:56:22 +00001924``P<address space>``
1925 Specifies the address space that corresponds to program memory.
1926 Harvard architectures can use this to specify what space LLVM
1927 should place things such as functions into. If omitted, the
1928 program memory space defaults to the default address space of 0,
1929 which corresponds to a Von Neumann architecture that has code
1930 and data in the same space.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001931``A<address space>``
Dylan McKayced2fe62018-02-19 09:56:22 +00001932 Specifies the address space of objects created by '``alloca``'.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001933 Defaults to the default address space of 0.
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001934``p[n]:<size>:<abi>:<pref>:<idx>``
Sean Silvab084af42012-12-07 10:36:55 +00001935 This specifies the *size* of a pointer and its ``<abi>`` and
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001936 ``<pref>``\erred alignments for address space ``n``. The fourth parameter
1937 ``<idx>`` is a size of index that used for address calculation. If not
1938 specified, the default index size is equal to the pointer size. All sizes
1939 are in bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001940 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001941 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001942``i<size>:<abi>:<pref>``
1943 This specifies the alignment for an integer type of a given bit
1944 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1945``v<size>:<abi>:<pref>``
1946 This specifies the alignment for a vector type of a given bit
1947 ``<size>``.
1948``f<size>:<abi>:<pref>``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001949 This specifies the alignment for a floating-point type of a given bit
Sean Silvab084af42012-12-07 10:36:55 +00001950 ``<size>``. Only values of ``<size>`` that are supported by the target
1951 will work. 32 (float) and 64 (double) are supported on all targets; 80
1952 or 128 (different flavors of long double) are also supported on some
1953 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001954``a:<abi>:<pref>``
1955 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001956``m:<mangling>``
Reid Klecknerf8b51c52018-03-16 20:13:32 +00001957 If present, specifies that llvm names are mangled in the output. Symbols
1958 prefixed with the mangling escape character ``\01`` are passed through
1959 directly to the assembler without the escape character. The mangling style
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001960 options are
1961
1962 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1963 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1964 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1965 symbols get a ``_`` prefix.
Reid Klecknerf8b51c52018-03-16 20:13:32 +00001966 * ``x``: Windows x86 COFF mangling: Private symbols get the usual prefix.
1967 Regular C symbols get a ``_`` prefix. Functions with ``__stdcall``,
1968 ``__fastcall``, and ``__vectorcall`` have custom mangling that appends
1969 ``@N`` where N is the number of bytes used to pass parameters. C++ symbols
1970 starting with ``?`` are not mangled in any way.
1971 * ``w``: Windows COFF mangling: Similar to ``x``, except that normal C
1972 symbols do not receive a ``_`` prefix.
Sean Silvab084af42012-12-07 10:36:55 +00001973``n<size1>:<size2>:<size3>...``
1974 This specifies a set of native integer widths for the target CPU in
1975 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1976 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1977 this set are considered to support most general arithmetic operations
1978 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001979``ni:<address space0>:<address space1>:<address space2>...``
1980 This specifies pointer types with the specified address spaces
1981 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1982 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001983
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001984On every specification that takes a ``<abi>:<pref>``, specifying the
1985``<pref>`` alignment is optional. If omitted, the preceding ``:``
1986should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1987
Sean Silvab084af42012-12-07 10:36:55 +00001988When constructing the data layout for a given target, LLVM starts with a
1989default set of specifications which are then (possibly) overridden by
1990the specifications in the ``datalayout`` keyword. The default
1991specifications are given in this list:
1992
1993- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001994- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1995- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1996 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001997- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001998- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1999- ``i8:8:8`` - i8 is 8-bit (byte) aligned
2000- ``i16:16:16`` - i16 is 16-bit aligned
2001- ``i32:32:32`` - i32 is 32-bit aligned
2002- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
2003 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002004- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002005- ``f32:32:32`` - float is 32-bit aligned
2006- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002007- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002008- ``v64:64:64`` - 64-bit vector is 64-bit aligned
2009- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00002010- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002011
2012When LLVM is determining the alignment for a given type, it uses the
2013following rules:
2014
2015#. If the type sought is an exact match for one of the specifications,
2016 that specification is used.
2017#. If no match is found, and the type sought is an integer type, then
2018 the smallest integer type that is larger than the bitwidth of the
2019 sought type is used. If none of the specifications are larger than
2020 the bitwidth then the largest integer type is used. For example,
2021 given the default specifications above, the i7 type will use the
2022 alignment of i8 (next largest) while both i65 and i256 will use the
2023 alignment of i64 (largest specified).
2024#. If no match is found, and the type sought is a vector type, then the
2025 largest vector type that is smaller than the sought vector type will
2026 be used as a fall back. This happens because <128 x double> can be
2027 implemented in terms of 64 <2 x double>, for example.
2028
2029The function of the data layout string may not be what you expect.
2030Notably, this is not a specification from the frontend of what alignment
2031the code generator should use.
2032
2033Instead, if specified, the target data layout is required to match what
2034the ultimate *code generator* expects. This string is used by the
2035mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00002036what the ultimate code generator uses. There is no way to generate IR
2037that does not embed this target-specific detail into the IR. If you
2038don't specify the string, the default specifications will be used to
2039generate a Data Layout and the optimization phases will operate
2040accordingly and introduce target specificity into the IR with respect to
2041these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00002042
Bill Wendling5cc90842013-10-18 23:41:25 +00002043.. _langref_triple:
2044
2045Target Triple
2046-------------
2047
2048A module may specify a target triple string that describes the target
2049host. The syntax for the target triple is simply:
2050
2051.. code-block:: llvm
2052
2053 target triple = "x86_64-apple-macosx10.7.0"
2054
2055The *target triple* string consists of a series of identifiers delimited
2056by the minus sign character ('-'). The canonical forms are:
2057
2058::
2059
2060 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
2061 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
2062
2063This information is passed along to the backend so that it generates
2064code for the proper architecture. It's possible to override this on the
2065command line with the ``-mtriple`` command line option.
2066
Sean Silvab084af42012-12-07 10:36:55 +00002067.. _pointeraliasing:
2068
2069Pointer Aliasing Rules
2070----------------------
2071
2072Any memory access must be done through a pointer value associated with
2073an address range of the memory access, otherwise the behavior is
2074undefined. Pointer values are associated with address ranges according
2075to the following rules:
2076
2077- A pointer value is associated with the addresses associated with any
2078 value it is *based* on.
2079- An address of a global variable is associated with the address range
2080 of the variable's storage.
2081- The result value of an allocation instruction is associated with the
2082 address range of the allocated storage.
2083- A null pointer in the default address-space is associated with no
2084 address.
2085- An integer constant other than zero or a pointer value returned from
2086 a function not defined within LLVM may be associated with address
2087 ranges allocated through mechanisms other than those provided by
2088 LLVM. Such ranges shall not overlap with any ranges of addresses
2089 allocated by mechanisms provided by LLVM.
2090
2091A pointer value is *based* on another pointer value according to the
2092following rules:
2093
Sanjoy Das6d489492017-09-13 18:49:22 +00002094- A pointer value formed from a scalar ``getelementptr`` operation is *based* on
2095 the pointer-typed operand of the ``getelementptr``.
2096- The pointer in lane *l* of the result of a vector ``getelementptr`` operation
2097 is *based* on the pointer in lane *l* of the vector-of-pointers-typed operand
2098 of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00002099- The result value of a ``bitcast`` is *based* on the operand of the
2100 ``bitcast``.
2101- A pointer value formed by an ``inttoptr`` is *based* on all pointer
2102 values that contribute (directly or indirectly) to the computation of
2103 the pointer's value.
2104- The "*based* on" relationship is transitive.
2105
2106Note that this definition of *"based"* is intentionally similar to the
2107definition of *"based"* in C99, though it is slightly weaker.
2108
2109LLVM IR does not associate types with memory. The result type of a
2110``load`` merely indicates the size and alignment of the memory from
2111which to load, as well as the interpretation of the value. The first
2112operand type of a ``store`` similarly only indicates the size and
2113alignment of the store.
2114
2115Consequently, type-based alias analysis, aka TBAA, aka
2116``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2117:ref:`Metadata <metadata>` may be used to encode additional information
2118which specialized optimization passes may use to implement type-based
2119alias analysis.
2120
2121.. _volatile:
2122
2123Volatile Memory Accesses
2124------------------------
2125
2126Certain memory accesses, such as :ref:`load <i_load>`'s,
2127:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2128marked ``volatile``. The optimizers must not change the number of
2129volatile operations or change their order of execution relative to other
2130volatile operations. The optimizers *may* change the order of volatile
2131operations relative to non-volatile operations. This is not Java's
2132"volatile" and has no cross-thread synchronization behavior.
2133
Andrew Trick89fc5a62013-01-30 21:19:35 +00002134IR-level volatile loads and stores cannot safely be optimized into
2135llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2136flagged volatile. Likewise, the backend should never split or merge
2137target-legal volatile load/store instructions.
2138
Andrew Trick7e6f9282013-01-31 00:49:39 +00002139.. admonition:: Rationale
2140
2141 Platforms may rely on volatile loads and stores of natively supported
2142 data width to be executed as single instruction. For example, in C
2143 this holds for an l-value of volatile primitive type with native
2144 hardware support, but not necessarily for aggregate types. The
2145 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002146 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002147 do not violate the frontend's contract with the language.
2148
Sean Silvab084af42012-12-07 10:36:55 +00002149.. _memmodel:
2150
2151Memory Model for Concurrent Operations
2152--------------------------------------
2153
2154The LLVM IR does not define any way to start parallel threads of
2155execution or to register signal handlers. Nonetheless, there are
2156platform-specific ways to create them, and we define LLVM IR's behavior
2157in their presence. This model is inspired by the C++0x memory model.
2158
2159For a more informal introduction to this model, see the :doc:`Atomics`.
2160
2161We define a *happens-before* partial order as the least partial order
2162that
2163
2164- Is a superset of single-thread program order, and
2165- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2166 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2167 techniques, like pthread locks, thread creation, thread joining,
2168 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2169 Constraints <ordering>`).
2170
2171Note that program order does not introduce *happens-before* edges
2172between a thread and signals executing inside that thread.
2173
2174Every (defined) read operation (load instructions, memcpy, atomic
2175loads/read-modify-writes, etc.) R reads a series of bytes written by
2176(defined) write operations (store instructions, atomic
2177stores/read-modify-writes, memcpy, etc.). For the purposes of this
2178section, initialized globals are considered to have a write of the
2179initializer which is atomic and happens before any other read or write
2180of the memory in question. For each byte of a read R, R\ :sub:`byte`
2181may see any write to the same byte, except:
2182
2183- If write\ :sub:`1` happens before write\ :sub:`2`, and
2184 write\ :sub:`2` happens before R\ :sub:`byte`, then
2185 R\ :sub:`byte` does not see write\ :sub:`1`.
2186- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2187 R\ :sub:`byte` does not see write\ :sub:`3`.
2188
2189Given that definition, R\ :sub:`byte` is defined as follows:
2190
2191- If R is volatile, the result is target-dependent. (Volatile is
2192 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002193 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002194 like normal memory. It does not generally provide cross-thread
2195 synchronization.)
2196- Otherwise, if there is no write to the same byte that happens before
2197 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2198- Otherwise, if R\ :sub:`byte` may see exactly one write,
2199 R\ :sub:`byte` returns the value written by that write.
2200- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2201 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2202 Memory Ordering Constraints <ordering>` section for additional
2203 constraints on how the choice is made.
2204- Otherwise R\ :sub:`byte` returns ``undef``.
2205
2206R returns the value composed of the series of bytes it read. This
2207implies that some bytes within the value may be ``undef`` **without**
2208the entire value being ``undef``. Note that this only defines the
2209semantics of the operation; it doesn't mean that targets will emit more
2210than one instruction to read the series of bytes.
2211
2212Note that in cases where none of the atomic intrinsics are used, this
2213model places only one restriction on IR transformations on top of what
2214is required for single-threaded execution: introducing a store to a byte
2215which might not otherwise be stored is not allowed in general.
2216(Specifically, in the case where another thread might write to and read
2217from an address, introducing a store can change a load that may see
2218exactly one write into a load that may see multiple writes.)
2219
2220.. _ordering:
2221
2222Atomic Memory Ordering Constraints
2223----------------------------------
2224
2225Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2226:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2227:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002228ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002229the same address they *synchronize with*. These semantics are borrowed
2230from Java and C++0x, but are somewhat more colloquial. If these
2231descriptions aren't precise enough, check those specs (see spec
2232references in the :doc:`atomics guide <Atomics>`).
2233:ref:`fence <i_fence>` instructions treat these orderings somewhat
2234differently since they don't take an address. See that instruction's
2235documentation for details.
2236
2237For a simpler introduction to the ordering constraints, see the
2238:doc:`Atomics`.
2239
2240``unordered``
2241 The set of values that can be read is governed by the happens-before
2242 partial order. A value cannot be read unless some operation wrote
2243 it. This is intended to provide a guarantee strong enough to model
2244 Java's non-volatile shared variables. This ordering cannot be
2245 specified for read-modify-write operations; it is not strong enough
2246 to make them atomic in any interesting way.
2247``monotonic``
2248 In addition to the guarantees of ``unordered``, there is a single
2249 total order for modifications by ``monotonic`` operations on each
2250 address. All modification orders must be compatible with the
2251 happens-before order. There is no guarantee that the modification
2252 orders can be combined to a global total order for the whole program
2253 (and this often will not be possible). The read in an atomic
2254 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2255 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2256 order immediately before the value it writes. If one atomic read
2257 happens before another atomic read of the same address, the later
2258 read must see the same value or a later value in the address's
2259 modification order. This disallows reordering of ``monotonic`` (or
2260 stronger) operations on the same address. If an address is written
2261 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2262 read that address repeatedly, the other threads must eventually see
2263 the write. This corresponds to the C++0x/C1x
2264 ``memory_order_relaxed``.
2265``acquire``
2266 In addition to the guarantees of ``monotonic``, a
2267 *synchronizes-with* edge may be formed with a ``release`` operation.
2268 This is intended to model C++'s ``memory_order_acquire``.
2269``release``
2270 In addition to the guarantees of ``monotonic``, if this operation
2271 writes a value which is subsequently read by an ``acquire``
2272 operation, it *synchronizes-with* that operation. (This isn't a
2273 complete description; see the C++0x definition of a release
2274 sequence.) This corresponds to the C++0x/C1x
2275 ``memory_order_release``.
2276``acq_rel`` (acquire+release)
2277 Acts as both an ``acquire`` and ``release`` operation on its
2278 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2279``seq_cst`` (sequentially consistent)
2280 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002281 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002282 writes), there is a global total order on all
2283 sequentially-consistent operations on all addresses, which is
2284 consistent with the *happens-before* partial order and with the
2285 modification orders of all the affected addresses. Each
2286 sequentially-consistent read sees the last preceding write to the
2287 same address in this global order. This corresponds to the C++0x/C1x
2288 ``memory_order_seq_cst`` and Java volatile.
2289
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002290.. _syncscope:
Sean Silvab084af42012-12-07 10:36:55 +00002291
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002292If an atomic operation is marked ``syncscope("singlethread")``, it only
2293*synchronizes with* and only participates in the seq\_cst total orderings of
2294other operations running in the same thread (for example, in signal handlers).
2295
2296If an atomic operation is marked ``syncscope("<target-scope>")``, where
2297``<target-scope>`` is a target specific synchronization scope, then it is target
2298dependent if it *synchronizes with* and participates in the seq\_cst total
2299orderings of other operations.
2300
2301Otherwise, an atomic operation that is not marked ``syncscope("singlethread")``
2302or ``syncscope("<target-scope>")`` *synchronizes with* and participates in the
2303seq\_cst total orderings of other operations that are not marked
2304``syncscope("singlethread")`` or ``syncscope("<target-scope>")``.
Sean Silvab084af42012-12-07 10:36:55 +00002305
Sanjay Patel54b161e2018-03-20 16:38:22 +00002306.. _floatenv:
2307
2308Floating-Point Environment
2309--------------------------
2310
2311The default LLVM floating-point environment assumes that floating-point
2312instructions do not have side effects. Results assume the round-to-nearest
2313rounding mode. No floating-point exception state is maintained in this
2314environment. Therefore, there is no attempt to create or preserve invalid
2315operation (SNaN) or division-by-zero exceptions in these examples:
2316
2317.. code-block:: llvm
2318
2319 %A = fdiv 0x7ff0000000000001, %X ; 64-bit SNaN hex value
2320 %B = fdiv %X, 0.0
2321 Safe:
2322 %A = NaN
2323 %B = NaN
2324
2325The benefit of this exception-free assumption is that floating-point
2326operations may be speculated freely without any other fast-math relaxations
2327to the floating-point model.
2328
2329Code that requires different behavior than this should use the
Sanjay Patelec95e0e2018-03-20 17:05:19 +00002330:ref:`Constrained Floating-Point Intrinsics <constrainedfp>`.
Sanjay Patel54b161e2018-03-20 16:38:22 +00002331
Sean Silvab084af42012-12-07 10:36:55 +00002332.. _fastmath:
2333
2334Fast-Math Flags
2335---------------
2336
Sanjay Patel629c4112017-11-06 16:27:15 +00002337LLVM IR floating-point operations (:ref:`fadd <i_fadd>`,
Sean Silvab084af42012-12-07 10:36:55 +00002338:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002339:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002340may use the following flags to enable otherwise unsafe
Sanjay Patel629c4112017-11-06 16:27:15 +00002341floating-point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002342
2343``nnan``
2344 No NaNs - Allow optimizations to assume the arguments and result are not
2345 NaN. Such optimizations are required to retain defined behavior over
2346 NaNs, but the value of the result is undefined.
2347
2348``ninf``
2349 No Infs - Allow optimizations to assume the arguments and result are not
2350 +/-Inf. Such optimizations are required to retain defined behavior over
2351 +/-Inf, but the value of the result is undefined.
2352
2353``nsz``
2354 No Signed Zeros - Allow optimizations to treat the sign of a zero
2355 argument or result as insignificant.
2356
2357``arcp``
2358 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2359 argument rather than perform division.
2360
Adam Nemetcd847a82017-03-28 20:11:52 +00002361``contract``
2362 Allow floating-point contraction (e.g. fusing a multiply followed by an
2363 addition into a fused multiply-and-add).
2364
Sanjay Patel629c4112017-11-06 16:27:15 +00002365``afn``
2366 Approximate functions - Allow substitution of approximate calculations for
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002367 functions (sin, log, sqrt, etc). See floating-point intrinsic definitions
2368 for places where this can apply to LLVM's intrinsic math functions.
Sanjay Patel629c4112017-11-06 16:27:15 +00002369
2370``reassoc``
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002371 Allow reassociation transformations for floating-point instructions.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002372 This may dramatically change results in floating-point.
Sanjay Patel629c4112017-11-06 16:27:15 +00002373
Sean Silvab084af42012-12-07 10:36:55 +00002374``fast``
Sanjay Patel629c4112017-11-06 16:27:15 +00002375 This flag implies all of the others.
Sean Silvab084af42012-12-07 10:36:55 +00002376
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002377.. _uselistorder:
2378
2379Use-list Order Directives
2380-------------------------
2381
2382Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002383order to be recreated. ``<order-indexes>`` is a comma-separated list of
2384indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002385value's use-list is immediately sorted by these indexes.
2386
Sean Silvaa1190322015-08-06 22:56:48 +00002387Use-list directives may appear at function scope or global scope. They are not
2388instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002389function scope, they must appear after the terminator of the final basic block.
2390
2391If basic blocks have their address taken via ``blockaddress()`` expressions,
2392``uselistorder_bb`` can be used to reorder their use-lists from outside their
2393function's scope.
2394
2395:Syntax:
2396
2397::
2398
2399 uselistorder <ty> <value>, { <order-indexes> }
2400 uselistorder_bb @function, %block { <order-indexes> }
2401
2402:Examples:
2403
2404::
2405
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002406 define void @foo(i32 %arg1, i32 %arg2) {
2407 entry:
2408 ; ... instructions ...
2409 bb:
2410 ; ... instructions ...
2411
2412 ; At function scope.
2413 uselistorder i32 %arg1, { 1, 0, 2 }
2414 uselistorder label %bb, { 1, 0 }
2415 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002416
2417 ; At global scope.
2418 uselistorder i32* @global, { 1, 2, 0 }
2419 uselistorder i32 7, { 1, 0 }
2420 uselistorder i32 (i32) @bar, { 1, 0 }
2421 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2422
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002423.. _source_filename:
2424
2425Source Filename
2426---------------
2427
2428The *source filename* string is set to the original module identifier,
2429which will be the name of the compiled source file when compiling from
2430source through the clang front end, for example. It is then preserved through
2431the IR and bitcode.
2432
2433This is currently necessary to generate a consistent unique global
2434identifier for local functions used in profile data, which prepends the
2435source file name to the local function name.
2436
2437The syntax for the source file name is simply:
2438
Renato Golin124f2592016-07-20 12:16:38 +00002439.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002440
2441 source_filename = "/path/to/source.c"
2442
Sean Silvab084af42012-12-07 10:36:55 +00002443.. _typesystem:
2444
2445Type System
2446===========
2447
2448The LLVM type system is one of the most important features of the
2449intermediate representation. Being typed enables a number of
2450optimizations to be performed on the intermediate representation
2451directly, without having to do extra analyses on the side before the
2452transformation. A strong type system makes it easier to read the
2453generated code and enables novel analyses and transformations that are
2454not feasible to perform on normal three address code representations.
2455
Rafael Espindola08013342013-12-07 19:34:20 +00002456.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002457
Rafael Espindola08013342013-12-07 19:34:20 +00002458Void Type
2459---------
Sean Silvab084af42012-12-07 10:36:55 +00002460
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002461:Overview:
2462
Rafael Espindola08013342013-12-07 19:34:20 +00002463
2464The void type does not represent any value and has no size.
2465
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002466:Syntax:
2467
Rafael Espindola08013342013-12-07 19:34:20 +00002468
2469::
2470
2471 void
Sean Silvab084af42012-12-07 10:36:55 +00002472
2473
Rafael Espindola08013342013-12-07 19:34:20 +00002474.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002475
Rafael Espindola08013342013-12-07 19:34:20 +00002476Function Type
2477-------------
Sean Silvab084af42012-12-07 10:36:55 +00002478
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002479:Overview:
2480
Sean Silvab084af42012-12-07 10:36:55 +00002481
Rafael Espindola08013342013-12-07 19:34:20 +00002482The function type can be thought of as a function signature. It consists of a
2483return type and a list of formal parameter types. The return type of a function
2484type is a void type or first class type --- except for :ref:`label <t_label>`
2485and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002486
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002487:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002488
Rafael Espindola08013342013-12-07 19:34:20 +00002489::
Sean Silvab084af42012-12-07 10:36:55 +00002490
Rafael Espindola08013342013-12-07 19:34:20 +00002491 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002492
Rafael Espindola08013342013-12-07 19:34:20 +00002493...where '``<parameter list>``' is a comma-separated list of type
2494specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002495indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002496argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002497handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002498except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002499
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002500:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002501
Rafael Espindola08013342013-12-07 19:34:20 +00002502+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2503| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2504+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2505| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2506+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2507| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2508+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2509| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2510+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2511
2512.. _t_firstclass:
2513
2514First Class Types
2515-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002516
2517The :ref:`first class <t_firstclass>` types are perhaps the most important.
2518Values of these types are the only ones which can be produced by
2519instructions.
2520
Rafael Espindola08013342013-12-07 19:34:20 +00002521.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002522
Rafael Espindola08013342013-12-07 19:34:20 +00002523Single Value Types
2524^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002525
Rafael Espindola08013342013-12-07 19:34:20 +00002526These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002527
2528.. _t_integer:
2529
2530Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002531""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002532
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002533:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002534
2535The integer type is a very simple type that simply specifies an
2536arbitrary bit width for the integer type desired. Any bit width from 1
2537bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2538
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002539:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002540
2541::
2542
2543 iN
2544
2545The number of bits the integer will occupy is specified by the ``N``
2546value.
2547
2548Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002549*********
Sean Silvab084af42012-12-07 10:36:55 +00002550
2551+----------------+------------------------------------------------+
2552| ``i1`` | a single-bit integer. |
2553+----------------+------------------------------------------------+
2554| ``i32`` | a 32-bit integer. |
2555+----------------+------------------------------------------------+
2556| ``i1942652`` | a really big integer of over 1 million bits. |
2557+----------------+------------------------------------------------+
2558
2559.. _t_floating:
2560
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002561Floating-Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002562""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002563
2564.. list-table::
2565 :header-rows: 1
2566
2567 * - Type
2568 - Description
2569
2570 * - ``half``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002571 - 16-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002572
2573 * - ``float``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002574 - 32-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002575
2576 * - ``double``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002577 - 64-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002578
2579 * - ``fp128``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002580 - 128-bit floating-point value (112-bit mantissa)
Sean Silvab084af42012-12-07 10:36:55 +00002581
2582 * - ``x86_fp80``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002583 - 80-bit floating-point value (X87)
Sean Silvab084af42012-12-07 10:36:55 +00002584
2585 * - ``ppc_fp128``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002586 - 128-bit floating-point value (two 64-bits)
Sean Silvab084af42012-12-07 10:36:55 +00002587
Sanjay Patelbab6ce02018-03-21 15:22:09 +00002588The binary format of half, float, double, and fp128 correspond to the
2589IEEE-754-2008 specifications for binary16, binary32, binary64, and binary128
2590respectively.
2591
Reid Kleckner9a16d082014-03-05 02:41:37 +00002592X86_mmx Type
2593""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002594
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002595:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002596
Reid Kleckner9a16d082014-03-05 02:41:37 +00002597The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002598machine. The operations allowed on it are quite limited: parameters and
2599return values, load and store, and bitcast. User-specified MMX
2600instructions are represented as intrinsic or asm calls with arguments
2601and/or results of this type. There are no arrays, vectors or constants
2602of this type.
2603
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002604:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002605
2606::
2607
Reid Kleckner9a16d082014-03-05 02:41:37 +00002608 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002609
Sean Silvab084af42012-12-07 10:36:55 +00002610
Rafael Espindola08013342013-12-07 19:34:20 +00002611.. _t_pointer:
2612
2613Pointer Type
2614""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002615
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002616:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002617
Rafael Espindola08013342013-12-07 19:34:20 +00002618The pointer type is used to specify memory locations. Pointers are
2619commonly used to reference objects in memory.
2620
2621Pointer types may have an optional address space attribute defining the
2622numbered address space where the pointed-to object resides. The default
2623address space is number zero. The semantics of non-zero address spaces
2624are target-specific.
2625
2626Note that LLVM does not permit pointers to void (``void*``) nor does it
2627permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002628
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002629:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002630
2631::
2632
Rafael Espindola08013342013-12-07 19:34:20 +00002633 <type> *
2634
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002635:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002636
2637+-------------------------+--------------------------------------------------------------------------------------------------------------+
2638| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2639+-------------------------+--------------------------------------------------------------------------------------------------------------+
2640| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2641+-------------------------+--------------------------------------------------------------------------------------------------------------+
2642| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2643+-------------------------+--------------------------------------------------------------------------------------------------------------+
2644
2645.. _t_vector:
2646
2647Vector Type
2648"""""""""""
2649
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002650:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002651
2652A vector type is a simple derived type that represents a vector of
2653elements. Vector types are used when multiple primitive data are
2654operated in parallel using a single instruction (SIMD). A vector type
2655requires a size (number of elements) and an underlying primitive data
2656type. Vector types are considered :ref:`first class <t_firstclass>`.
2657
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002658:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002659
2660::
2661
2662 < <# elements> x <elementtype> >
2663
2664The number of elements is a constant integer value larger than 0;
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002665elementtype may be any integer, floating-point or pointer type. Vectors
Manuel Jacob961f7872014-07-30 12:30:06 +00002666of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002667
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002668:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002669
2670+-------------------+--------------------------------------------------+
2671| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2672+-------------------+--------------------------------------------------+
2673| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2674+-------------------+--------------------------------------------------+
2675| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2676+-------------------+--------------------------------------------------+
2677| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2678+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002679
2680.. _t_label:
2681
2682Label Type
2683^^^^^^^^^^
2684
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002685:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002686
2687The label type represents code labels.
2688
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002689:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002690
2691::
2692
2693 label
2694
David Majnemerb611e3f2015-08-14 05:09:07 +00002695.. _t_token:
2696
2697Token Type
2698^^^^^^^^^^
2699
2700:Overview:
2701
2702The token type is used when a value is associated with an instruction
2703but all uses of the value must not attempt to introspect or obscure it.
2704As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2705:ref:`select <i_select>` of type token.
2706
2707:Syntax:
2708
2709::
2710
2711 token
2712
2713
2714
Sean Silvab084af42012-12-07 10:36:55 +00002715.. _t_metadata:
2716
2717Metadata Type
2718^^^^^^^^^^^^^
2719
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002720:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002721
2722The metadata type represents embedded metadata. No derived types may be
2723created from metadata except for :ref:`function <t_function>` arguments.
2724
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002725:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002726
2727::
2728
2729 metadata
2730
Sean Silvab084af42012-12-07 10:36:55 +00002731.. _t_aggregate:
2732
2733Aggregate Types
2734^^^^^^^^^^^^^^^
2735
2736Aggregate Types are a subset of derived types that can contain multiple
2737member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2738aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2739aggregate types.
2740
2741.. _t_array:
2742
2743Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002744""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002745
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002746:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002747
2748The array type is a very simple derived type that arranges elements
2749sequentially in memory. The array type requires a size (number of
2750elements) and an underlying data type.
2751
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002752:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002753
2754::
2755
2756 [<# elements> x <elementtype>]
2757
2758The number of elements is a constant integer value; ``elementtype`` may
2759be any type with a size.
2760
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002761:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002762
2763+------------------+--------------------------------------+
2764| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2765+------------------+--------------------------------------+
2766| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2767+------------------+--------------------------------------+
2768| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2769+------------------+--------------------------------------+
2770
2771Here are some examples of multidimensional arrays:
2772
2773+-----------------------------+----------------------------------------------------------+
2774| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2775+-----------------------------+----------------------------------------------------------+
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002776| ``[12 x [10 x float]]`` | 12x10 array of single precision floating-point values. |
Sean Silvab084af42012-12-07 10:36:55 +00002777+-----------------------------+----------------------------------------------------------+
2778| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2779+-----------------------------+----------------------------------------------------------+
2780
2781There is no restriction on indexing beyond the end of the array implied
2782by a static type (though there are restrictions on indexing beyond the
2783bounds of an allocated object in some cases). This means that
2784single-dimension 'variable sized array' addressing can be implemented in
2785LLVM with a zero length array type. An implementation of 'pascal style
2786arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2787example.
2788
Sean Silvab084af42012-12-07 10:36:55 +00002789.. _t_struct:
2790
2791Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002792""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002793
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002794:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002795
2796The structure type is used to represent a collection of data members
2797together in memory. The elements of a structure may be any type that has
2798a size.
2799
2800Structures in memory are accessed using '``load``' and '``store``' by
2801getting a pointer to a field with the '``getelementptr``' instruction.
2802Structures in registers are accessed using the '``extractvalue``' and
2803'``insertvalue``' instructions.
2804
2805Structures may optionally be "packed" structures, which indicate that
2806the alignment of the struct is one byte, and that there is no padding
2807between the elements. In non-packed structs, padding between field types
2808is inserted as defined by the DataLayout string in the module, which is
2809required to match what the underlying code generator expects.
2810
2811Structures can either be "literal" or "identified". A literal structure
2812is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2813identified types are always defined at the top level with a name.
2814Literal types are uniqued by their contents and can never be recursive
2815or opaque since there is no way to write one. Identified types can be
2816recursive, can be opaqued, and are never uniqued.
2817
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002818:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002819
2820::
2821
2822 %T1 = type { <type list> } ; Identified normal struct type
2823 %T2 = type <{ <type list> }> ; Identified packed struct type
2824
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002825:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002826
2827+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2828| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2829+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002830| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002831+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2832| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2833+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2834
2835.. _t_opaque:
2836
2837Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002838""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002839
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002840:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002841
2842Opaque structure types are used to represent named structure types that
2843do not have a body specified. This corresponds (for example) to the C
2844notion of a forward declared structure.
2845
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002846:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002847
2848::
2849
2850 %X = type opaque
2851 %52 = type opaque
2852
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002853:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002854
2855+--------------+-------------------+
2856| ``opaque`` | An opaque type. |
2857+--------------+-------------------+
2858
Sean Silva1703e702014-04-08 21:06:22 +00002859.. _constants:
2860
Sean Silvab084af42012-12-07 10:36:55 +00002861Constants
2862=========
2863
2864LLVM has several different basic types of constants. This section
2865describes them all and their syntax.
2866
2867Simple Constants
2868----------------
2869
2870**Boolean constants**
2871 The two strings '``true``' and '``false``' are both valid constants
2872 of the ``i1`` type.
2873**Integer constants**
2874 Standard integers (such as '4') are constants of the
2875 :ref:`integer <t_integer>` type. Negative numbers may be used with
2876 integer types.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002877**Floating-point constants**
2878 Floating-point constants use standard decimal notation (e.g.
Sean Silvab084af42012-12-07 10:36:55 +00002879 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2880 hexadecimal notation (see below). The assembler requires the exact
2881 decimal value of a floating-point constant. For example, the
2882 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002883 decimal in binary. Floating-point constants must have a
2884 :ref:`floating-point <t_floating>` type.
Sean Silvab084af42012-12-07 10:36:55 +00002885**Null pointer constants**
2886 The identifier '``null``' is recognized as a null pointer constant
2887 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002888**Token constants**
2889 The identifier '``none``' is recognized as an empty token constant
2890 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002891
2892The one non-intuitive notation for constants is the hexadecimal form of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002893floating-point constants. For example, the form
Sean Silvab084af42012-12-07 10:36:55 +00002894'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002895than) '``double 4.5e+15``'. The only time hexadecimal floating-point
Sean Silvab084af42012-12-07 10:36:55 +00002896constants are required (and the only time that they are generated by the
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002897disassembler) is when a floating-point constant must be emitted but it
2898cannot be represented as a decimal floating-point number in a reasonable
Sean Silvab084af42012-12-07 10:36:55 +00002899number of digits. For example, NaN's, infinities, and other special
2900values are represented in their IEEE hexadecimal format so that assembly
2901and disassembly do not cause any bits to change in the constants.
2902
2903When using the hexadecimal form, constants of types half, float, and
2904double are represented using the 16-digit form shown above (which
2905matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002906must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002907precision, respectively. Hexadecimal format is always used for long
2908double, and there are three forms of long double. The 80-bit format used
2909by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2910128-bit format used by PowerPC (two adjacent doubles) is represented by
2911``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002912represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2913will only work if they match the long double format on your target.
2914The IEEE 16-bit format (half precision) is represented by ``0xH``
2915followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2916(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002917
Reid Kleckner9a16d082014-03-05 02:41:37 +00002918There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002919
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002920.. _complexconstants:
2921
Sean Silvab084af42012-12-07 10:36:55 +00002922Complex Constants
2923-----------------
2924
2925Complex constants are a (potentially recursive) combination of simple
2926constants and smaller complex constants.
2927
2928**Structure constants**
2929 Structure constants are represented with notation similar to
2930 structure type definitions (a comma separated list of elements,
2931 surrounded by braces (``{}``)). For example:
2932 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2933 "``@G = external global i32``". Structure constants must have
2934 :ref:`structure type <t_struct>`, and the number and types of elements
2935 must match those specified by the type.
2936**Array constants**
2937 Array constants are represented with notation similar to array type
2938 definitions (a comma separated list of elements, surrounded by
2939 square brackets (``[]``)). For example:
2940 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2941 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002942 match those specified by the type. As a special case, character array
2943 constants may also be represented as a double-quoted string using the ``c``
2944 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002945**Vector constants**
2946 Vector constants are represented with notation similar to vector
2947 type definitions (a comma separated list of elements, surrounded by
2948 less-than/greater-than's (``<>``)). For example:
2949 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2950 must have :ref:`vector type <t_vector>`, and the number and types of
2951 elements must match those specified by the type.
2952**Zero initialization**
2953 The string '``zeroinitializer``' can be used to zero initialize a
2954 value to zero of *any* type, including scalar and
2955 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2956 having to print large zero initializers (e.g. for large arrays) and
2957 is always exactly equivalent to using explicit zero initializers.
2958**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002959 A metadata node is a constant tuple without types. For example:
2960 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002961 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2962 Unlike other typed constants that are meant to be interpreted as part of
2963 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002964 information such as debug info.
2965
2966Global Variable and Function Addresses
2967--------------------------------------
2968
2969The addresses of :ref:`global variables <globalvars>` and
2970:ref:`functions <functionstructure>` are always implicitly valid
2971(link-time) constants. These constants are explicitly referenced when
2972the :ref:`identifier for the global <identifiers>` is used and always have
2973:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2974file:
2975
2976.. code-block:: llvm
2977
2978 @X = global i32 17
2979 @Y = global i32 42
2980 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2981
2982.. _undefvalues:
2983
2984Undefined Values
2985----------------
2986
2987The string '``undef``' can be used anywhere a constant is expected, and
2988indicates that the user of the value may receive an unspecified
2989bit-pattern. Undefined values may be of any type (other than '``label``'
2990or '``void``') and be used anywhere a constant is permitted.
2991
2992Undefined values are useful because they indicate to the compiler that
2993the program is well defined no matter what value is used. This gives the
2994compiler more freedom to optimize. Here are some examples of
2995(potentially surprising) transformations that are valid (in pseudo IR):
2996
2997.. code-block:: llvm
2998
2999 %A = add %X, undef
3000 %B = sub %X, undef
3001 %C = xor %X, undef
3002 Safe:
3003 %A = undef
3004 %B = undef
3005 %C = undef
3006
3007This is safe because all of the output bits are affected by the undef
3008bits. Any output bit can have a zero or one depending on the input bits.
3009
3010.. code-block:: llvm
3011
3012 %A = or %X, undef
3013 %B = and %X, undef
3014 Safe:
3015 %A = -1
3016 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00003017 Safe:
3018 %A = %X ;; By choosing undef as 0
3019 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00003020 Unsafe:
3021 %A = undef
3022 %B = undef
3023
3024These logical operations have bits that are not always affected by the
3025input. For example, if ``%X`` has a zero bit, then the output of the
3026'``and``' operation will always be a zero for that bit, no matter what
3027the corresponding bit from the '``undef``' is. As such, it is unsafe to
3028optimize or assume that the result of the '``and``' is '``undef``'.
3029However, it is safe to assume that all bits of the '``undef``' could be
30300, and optimize the '``and``' to 0. Likewise, it is safe to assume that
3031all the bits of the '``undef``' operand to the '``or``' could be set,
3032allowing the '``or``' to be folded to -1.
3033
3034.. code-block:: llvm
3035
3036 %A = select undef, %X, %Y
3037 %B = select undef, 42, %Y
3038 %C = select %X, %Y, undef
3039 Safe:
3040 %A = %X (or %Y)
3041 %B = 42 (or %Y)
3042 %C = %Y
3043 Unsafe:
3044 %A = undef
3045 %B = undef
3046 %C = undef
3047
3048This set of examples shows that undefined '``select``' (and conditional
3049branch) conditions can go *either way*, but they have to come from one
3050of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
3051both known to have a clear low bit, then ``%A`` would have to have a
3052cleared low bit. However, in the ``%C`` example, the optimizer is
3053allowed to assume that the '``undef``' operand could be the same as
3054``%Y``, allowing the whole '``select``' to be eliminated.
3055
Renato Golin124f2592016-07-20 12:16:38 +00003056.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003057
3058 %A = xor undef, undef
3059
3060 %B = undef
3061 %C = xor %B, %B
3062
3063 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00003064 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00003065 %F = icmp gte %D, 4
3066
3067 Safe:
3068 %A = undef
3069 %B = undef
3070 %C = undef
3071 %D = undef
3072 %E = undef
3073 %F = undef
3074
3075This example points out that two '``undef``' operands are not
3076necessarily the same. This can be surprising to people (and also matches
3077C semantics) where they assume that "``X^X``" is always zero, even if
3078``X`` is undefined. This isn't true for a number of reasons, but the
3079short answer is that an '``undef``' "variable" can arbitrarily change
3080its value over its "live range". This is true because the variable
3081doesn't actually *have a live range*. Instead, the value is logically
3082read from arbitrary registers that happen to be around when needed, so
3083the value is not necessarily consistent over time. In fact, ``%A`` and
3084``%C`` need to have the same semantics or the core LLVM "replace all
3085uses with" concept would not hold.
3086
3087.. code-block:: llvm
3088
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003089 %A = sdiv undef, %X
3090 %B = sdiv %X, undef
Sean Silvab084af42012-12-07 10:36:55 +00003091 Safe:
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003092 %A = 0
Sean Silvab084af42012-12-07 10:36:55 +00003093 b: unreachable
3094
3095These examples show the crucial difference between an *undefined value*
3096and *undefined behavior*. An undefined value (like '``undef``') is
3097allowed to have an arbitrary bit-pattern. This means that the ``%A``
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003098operation can be constant folded to '``0``', because the '``undef``'
3099could be zero, and zero divided by any value is zero.
Sean Silvab084af42012-12-07 10:36:55 +00003100However, in the second example, we can make a more aggressive
3101assumption: because the ``undef`` is allowed to be an arbitrary value,
3102we are allowed to assume that it could be zero. Since a divide by zero
3103has *undefined behavior*, we are allowed to assume that the operation
3104does not execute at all. This allows us to delete the divide and all
3105code after it. Because the undefined operation "can't happen", the
3106optimizer can assume that it occurs in dead code.
3107
Renato Golin124f2592016-07-20 12:16:38 +00003108.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003109
3110 a: store undef -> %X
3111 b: store %X -> undef
3112 Safe:
3113 a: <deleted>
3114 b: unreachable
3115
Sanjay Patel7b722402018-03-07 17:18:22 +00003116A store *of* an undefined value can be assumed to not have any effect;
3117we can assume that the value is overwritten with bits that happen to
3118match what was already there. However, a store *to* an undefined
3119location could clobber arbitrary memory, therefore, it has undefined
3120behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003121
3122.. _poisonvalues:
3123
3124Poison Values
3125-------------
3126
3127Poison values are similar to :ref:`undef values <undefvalues>`, however
3128they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00003129that cannot evoke side effects has nevertheless detected a condition
3130that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003131
3132There is currently no way of representing a poison value in the IR; they
3133only exist when produced by operations such as :ref:`add <i_add>` with
3134the ``nsw`` flag.
3135
3136Poison value behavior is defined in terms of value *dependence*:
3137
3138- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
3139- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
3140 their dynamic predecessor basic block.
3141- Function arguments depend on the corresponding actual argument values
3142 in the dynamic callers of their functions.
3143- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
3144 instructions that dynamically transfer control back to them.
3145- :ref:`Invoke <i_invoke>` instructions depend on the
3146 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
3147 call instructions that dynamically transfer control back to them.
3148- Non-volatile loads and stores depend on the most recent stores to all
3149 of the referenced memory addresses, following the order in the IR
3150 (including loads and stores implied by intrinsics such as
3151 :ref:`@llvm.memcpy <int_memcpy>`.)
3152- An instruction with externally visible side effects depends on the
3153 most recent preceding instruction with externally visible side
3154 effects, following the order in the IR. (This includes :ref:`volatile
3155 operations <volatile>`.)
3156- An instruction *control-depends* on a :ref:`terminator
3157 instruction <terminators>` if the terminator instruction has
3158 multiple successors and the instruction is always executed when
3159 control transfers to one of the successors, and may not be executed
3160 when control is transferred to another.
3161- Additionally, an instruction also *control-depends* on a terminator
3162 instruction if the set of instructions it otherwise depends on would
3163 be different if the terminator had transferred control to a different
3164 successor.
3165- Dependence is transitive.
3166
Richard Smith32dbdf62014-07-31 04:25:36 +00003167Poison values have the same behavior as :ref:`undef values <undefvalues>`,
3168with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00003169on a poison value has undefined behavior.
3170
3171Here are some examples:
3172
3173.. code-block:: llvm
3174
3175 entry:
3176 %poison = sub nuw i32 0, 1 ; Results in a poison value.
3177 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00003178 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00003179 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3180
3181 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003182 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003183
3184 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3185
3186 %narrowaddr = bitcast i32* @g to i16*
3187 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003188 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3189 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003190
3191 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3192 br i1 %cmp, label %true, label %end ; Branch to either destination.
3193
3194 true:
3195 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3196 ; it has undefined behavior.
3197 br label %end
3198
3199 end:
3200 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3201 ; Both edges into this PHI are
3202 ; control-dependent on %cmp, so this
3203 ; always results in a poison value.
3204
3205 store volatile i32 0, i32* @g ; This would depend on the store in %true
3206 ; if %cmp is true, or the store in %entry
3207 ; otherwise, so this is undefined behavior.
3208
3209 br i1 %cmp, label %second_true, label %second_end
3210 ; The same branch again, but this time the
3211 ; true block doesn't have side effects.
3212
3213 second_true:
3214 ; No side effects!
3215 ret void
3216
3217 second_end:
3218 store volatile i32 0, i32* @g ; This time, the instruction always depends
3219 ; on the store in %end. Also, it is
3220 ; control-equivalent to %end, so this is
3221 ; well-defined (ignoring earlier undefined
3222 ; behavior in this example).
3223
3224.. _blockaddress:
3225
3226Addresses of Basic Blocks
3227-------------------------
3228
3229``blockaddress(@function, %block)``
3230
3231The '``blockaddress``' constant computes the address of the specified
3232basic block in the specified function, and always has an ``i8*`` type.
3233Taking the address of the entry block is illegal.
3234
3235This value only has defined behavior when used as an operand to the
3236':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3237against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003238undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003239no label is equal to the null pointer. This may be passed around as an
3240opaque pointer sized value as long as the bits are not inspected. This
3241allows ``ptrtoint`` and arithmetic to be performed on these values so
3242long as the original value is reconstituted before the ``indirectbr``
3243instruction.
3244
3245Finally, some targets may provide defined semantics when using the value
3246as the operand to an inline assembly, but that is target specific.
3247
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003248.. _constantexprs:
3249
Sean Silvab084af42012-12-07 10:36:55 +00003250Constant Expressions
3251--------------------
3252
3253Constant expressions are used to allow expressions involving other
3254constants to be used as constants. Constant expressions may be of any
3255:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3256that does not have side effects (e.g. load and call are not supported).
3257The following is the syntax for constant expressions:
3258
3259``trunc (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003260 Perform the :ref:`trunc operation <i_trunc>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003261``zext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003262 Perform the :ref:`zext operation <i_zext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003263``sext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003264 Perform the :ref:`sext operation <i_sext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003265``fptrunc (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003266 Truncate a floating-point constant to another floating-point type.
Sean Silvab084af42012-12-07 10:36:55 +00003267 The size of CST must be larger than the size of TYPE. Both types
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003268 must be floating-point.
Sean Silvab084af42012-12-07 10:36:55 +00003269``fpext (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003270 Floating-point extend a constant to another type. The size of CST
Sean Silvab084af42012-12-07 10:36:55 +00003271 must be smaller or equal to the size of TYPE. Both types must be
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003272 floating-point.
Sean Silvab084af42012-12-07 10:36:55 +00003273``fptoui (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003274 Convert a floating-point constant to the corresponding unsigned
Sean Silvab084af42012-12-07 10:36:55 +00003275 integer constant. TYPE must be a scalar or vector integer type. CST
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003276 must be of scalar or vector floating-point type. Both CST and TYPE
Sean Silvab084af42012-12-07 10:36:55 +00003277 must be scalars, or vectors of the same number of elements. If the
3278 value won't fit in the integer type, the results are undefined.
3279``fptosi (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003280 Convert a floating-point constant to the corresponding signed
Sean Silvab084af42012-12-07 10:36:55 +00003281 integer constant. TYPE must be a scalar or vector integer type. CST
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003282 must be of scalar or vector floating-point type. Both CST and TYPE
Sean Silvab084af42012-12-07 10:36:55 +00003283 must be scalars, or vectors of the same number of elements. If the
3284 value won't fit in the integer type, the results are undefined.
3285``uitofp (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003286 Convert an unsigned integer constant to the corresponding
3287 floating-point constant. TYPE must be a scalar or vector floating-point
3288 type. CST must be of scalar or vector integer type. Both CST and TYPE must
Sean Silvab084af42012-12-07 10:36:55 +00003289 be scalars, or vectors of the same number of elements. If the value
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003290 won't fit in the floating-point type, the results are undefined.
Sean Silvab084af42012-12-07 10:36:55 +00003291``sitofp (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003292 Convert a signed integer constant to the corresponding floating-point
3293 constant. TYPE must be a scalar or vector floating-point type.
Sean Silvab084af42012-12-07 10:36:55 +00003294 CST must be of scalar or vector integer type. Both CST and TYPE must
3295 be scalars, or vectors of the same number of elements. If the value
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003296 won't fit in the floating-point type, the results are undefined.
Sean Silvab084af42012-12-07 10:36:55 +00003297``ptrtoint (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003298 Perform the :ref:`ptrtoint operation <i_ptrtoint>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003299``inttoptr (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003300 Perform the :ref:`inttoptr operation <i_inttoptr>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003301 This one is *really* dangerous!
3302``bitcast (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003303 Convert a constant, CST, to another TYPE.
3304 The constraints of the operands are the same as those for the
3305 :ref:`bitcast instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003306``addrspacecast (CST to TYPE)``
3307 Convert a constant pointer or constant vector of pointer, CST, to another
3308 TYPE in a different address space. The constraints of the operands are the
3309 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003310``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003311 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3312 constants. As with the :ref:`getelementptr <i_getelementptr>`
David Blaikief91b0302017-06-19 05:34:21 +00003313 instruction, the index list may have one or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003314 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003315``select (COND, VAL1, VAL2)``
3316 Perform the :ref:`select operation <i_select>` on constants.
3317``icmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003318 Perform the :ref:`icmp operation <i_icmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003319``fcmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003320 Perform the :ref:`fcmp operation <i_fcmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003321``extractelement (VAL, IDX)``
3322 Perform the :ref:`extractelement operation <i_extractelement>` on
3323 constants.
3324``insertelement (VAL, ELT, IDX)``
3325 Perform the :ref:`insertelement operation <i_insertelement>` on
3326 constants.
3327``shufflevector (VEC1, VEC2, IDXMASK)``
3328 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3329 constants.
3330``extractvalue (VAL, IDX0, IDX1, ...)``
3331 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3332 constants. The index list is interpreted in a similar manner as
3333 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3334 least one index value must be specified.
3335``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3336 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3337 The index list is interpreted in a similar manner as indices in a
3338 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3339 value must be specified.
3340``OPCODE (LHS, RHS)``
3341 Perform the specified operation of the LHS and RHS constants. OPCODE
3342 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3343 binary <bitwiseops>` operations. The constraints on operands are
3344 the same as those for the corresponding instruction (e.g. no bitwise
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003345 operations on floating-point values are allowed).
Sean Silvab084af42012-12-07 10:36:55 +00003346
3347Other Values
3348============
3349
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003350.. _inlineasmexprs:
3351
Sean Silvab084af42012-12-07 10:36:55 +00003352Inline Assembler Expressions
3353----------------------------
3354
3355LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003356Inline Assembly <moduleasm>`) through the use of a special value. This value
3357represents the inline assembler as a template string (containing the
3358instructions to emit), a list of operand constraints (stored as a string), a
3359flag that indicates whether or not the inline asm expression has side effects,
3360and a flag indicating whether the function containing the asm needs to align its
3361stack conservatively.
3362
3363The template string supports argument substitution of the operands using "``$``"
3364followed by a number, to indicate substitution of the given register/memory
3365location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3366be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3367operand (See :ref:`inline-asm-modifiers`).
3368
3369A literal "``$``" may be included by using "``$$``" in the template. To include
3370other special characters into the output, the usual "``\XX``" escapes may be
3371used, just as in other strings. Note that after template substitution, the
3372resulting assembly string is parsed by LLVM's integrated assembler unless it is
3373disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3374syntax known to LLVM.
3375
Reid Kleckner71cb1642017-02-06 18:08:45 +00003376LLVM also supports a few more substitions useful for writing inline assembly:
3377
3378- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3379 This substitution is useful when declaring a local label. Many standard
3380 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3381 Adding a blob-unique identifier ensures that the two labels will not conflict
3382 during assembly. This is used to implement `GCC's %= special format
3383 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3384- ``${:comment}``: Expands to the comment character of the current target's
3385 assembly dialect. This is usually ``#``, but many targets use other strings,
3386 such as ``;``, ``//``, or ``!``.
3387- ``${:private}``: Expands to the assembler private label prefix. Labels with
3388 this prefix will not appear in the symbol table of the assembled object.
3389 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3390 relatively popular.
3391
James Y Knightbc832ed2015-07-08 18:08:36 +00003392LLVM's support for inline asm is modeled closely on the requirements of Clang's
3393GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3394modifier codes listed here are similar or identical to those in GCC's inline asm
3395support. However, to be clear, the syntax of the template and constraint strings
3396described here is *not* the same as the syntax accepted by GCC and Clang, and,
3397while most constraint letters are passed through as-is by Clang, some get
3398translated to other codes when converting from the C source to the LLVM
3399assembly.
3400
3401An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003402
3403.. code-block:: llvm
3404
3405 i32 (i32) asm "bswap $0", "=r,r"
3406
3407Inline assembler expressions may **only** be used as the callee operand
3408of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3409Thus, typically we have:
3410
3411.. code-block:: llvm
3412
3413 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3414
3415Inline asms with side effects not visible in the constraint list must be
3416marked as having side effects. This is done through the use of the
3417'``sideeffect``' keyword, like so:
3418
3419.. code-block:: llvm
3420
3421 call void asm sideeffect "eieio", ""()
3422
3423In some cases inline asms will contain code that will not work unless
3424the stack is aligned in some way, such as calls or SSE instructions on
3425x86, yet will not contain code that does that alignment within the asm.
3426The compiler should make conservative assumptions about what the asm
3427might contain and should generate its usual stack alignment code in the
3428prologue if the '``alignstack``' keyword is present:
3429
3430.. code-block:: llvm
3431
3432 call void asm alignstack "eieio", ""()
3433
3434Inline asms also support using non-standard assembly dialects. The
3435assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3436the inline asm is using the Intel dialect. Currently, ATT and Intel are
3437the only supported dialects. An example is:
3438
3439.. code-block:: llvm
3440
3441 call void asm inteldialect "eieio", ""()
3442
3443If multiple keywords appear the '``sideeffect``' keyword must come
3444first, the '``alignstack``' keyword second and the '``inteldialect``'
3445keyword last.
3446
James Y Knightbc832ed2015-07-08 18:08:36 +00003447Inline Asm Constraint String
3448^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3449
3450The constraint list is a comma-separated string, each element containing one or
3451more constraint codes.
3452
3453For each element in the constraint list an appropriate register or memory
3454operand will be chosen, and it will be made available to assembly template
3455string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3456second, etc.
3457
3458There are three different types of constraints, which are distinguished by a
3459prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3460constraints must always be given in that order: outputs first, then inputs, then
3461clobbers. They cannot be intermingled.
3462
3463There are also three different categories of constraint codes:
3464
3465- Register constraint. This is either a register class, or a fixed physical
3466 register. This kind of constraint will allocate a register, and if necessary,
3467 bitcast the argument or result to the appropriate type.
3468- Memory constraint. This kind of constraint is for use with an instruction
3469 taking a memory operand. Different constraints allow for different addressing
3470 modes used by the target.
3471- Immediate value constraint. This kind of constraint is for an integer or other
3472 immediate value which can be rendered directly into an instruction. The
3473 various target-specific constraints allow the selection of a value in the
3474 proper range for the instruction you wish to use it with.
3475
3476Output constraints
3477""""""""""""""""""
3478
3479Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3480indicates that the assembly will write to this operand, and the operand will
3481then be made available as a return value of the ``asm`` expression. Output
3482constraints do not consume an argument from the call instruction. (Except, see
3483below about indirect outputs).
3484
3485Normally, it is expected that no output locations are written to by the assembly
3486expression until *all* of the inputs have been read. As such, LLVM may assign
3487the same register to an output and an input. If this is not safe (e.g. if the
3488assembly contains two instructions, where the first writes to one output, and
3489the second reads an input and writes to a second output), then the "``&``"
3490modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003491"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003492will not use the same register for any inputs (other than an input tied to this
3493output).
3494
3495Input constraints
3496"""""""""""""""""
3497
3498Input constraints do not have a prefix -- just the constraint codes. Each input
3499constraint will consume one argument from the call instruction. It is not
3500permitted for the asm to write to any input register or memory location (unless
3501that input is tied to an output). Note also that multiple inputs may all be
3502assigned to the same register, if LLVM can determine that they necessarily all
3503contain the same value.
3504
3505Instead of providing a Constraint Code, input constraints may also "tie"
3506themselves to an output constraint, by providing an integer as the constraint
3507string. Tied inputs still consume an argument from the call instruction, and
3508take up a position in the asm template numbering as is usual -- they will simply
3509be constrained to always use the same register as the output they've been tied
3510to. For example, a constraint string of "``=r,0``" says to assign a register for
3511output, and use that register as an input as well (it being the 0'th
3512constraint).
3513
3514It is permitted to tie an input to an "early-clobber" output. In that case, no
3515*other* input may share the same register as the input tied to the early-clobber
3516(even when the other input has the same value).
3517
3518You may only tie an input to an output which has a register constraint, not a
3519memory constraint. Only a single input may be tied to an output.
3520
3521There is also an "interesting" feature which deserves a bit of explanation: if a
3522register class constraint allocates a register which is too small for the value
3523type operand provided as input, the input value will be split into multiple
3524registers, and all of them passed to the inline asm.
3525
3526However, this feature is often not as useful as you might think.
3527
3528Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3529architectures that have instructions which operate on multiple consecutive
3530instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3531SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3532hardware then loads into both the named register, and the next register. This
3533feature of inline asm would not be useful to support that.)
3534
3535A few of the targets provide a template string modifier allowing explicit access
3536to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3537``D``). On such an architecture, you can actually access the second allocated
3538register (yet, still, not any subsequent ones). But, in that case, you're still
3539probably better off simply splitting the value into two separate operands, for
3540clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3541despite existing only for use with this feature, is not really a good idea to
3542use)
3543
3544Indirect inputs and outputs
3545"""""""""""""""""""""""""""
3546
3547Indirect output or input constraints can be specified by the "``*``" modifier
3548(which goes after the "``=``" in case of an output). This indicates that the asm
3549will write to or read from the contents of an *address* provided as an input
3550argument. (Note that in this way, indirect outputs act more like an *input* than
3551an output: just like an input, they consume an argument of the call expression,
3552rather than producing a return value. An indirect output constraint is an
3553"output" only in that the asm is expected to write to the contents of the input
3554memory location, instead of just read from it).
3555
3556This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3557address of a variable as a value.
3558
3559It is also possible to use an indirect *register* constraint, but only on output
3560(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3561value normally, and then, separately emit a store to the address provided as
3562input, after the provided inline asm. (It's not clear what value this
3563functionality provides, compared to writing the store explicitly after the asm
3564statement, and it can only produce worse code, since it bypasses many
3565optimization passes. I would recommend not using it.)
3566
3567
3568Clobber constraints
3569"""""""""""""""""""
3570
3571A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3572consume an input operand, nor generate an output. Clobbers cannot use any of the
3573general constraint code letters -- they may use only explicit register
3574constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3575"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3576memory locations -- not only the memory pointed to by a declared indirect
3577output.
3578
Peter Zotov00257232016-08-30 10:48:31 +00003579Note that clobbering named registers that are also present in output
3580constraints is not legal.
3581
James Y Knightbc832ed2015-07-08 18:08:36 +00003582
3583Constraint Codes
3584""""""""""""""""
3585After a potential prefix comes constraint code, or codes.
3586
3587A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3588followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3589(e.g. "``{eax}``").
3590
3591The one and two letter constraint codes are typically chosen to be the same as
3592GCC's constraint codes.
3593
3594A single constraint may include one or more than constraint code in it, leaving
3595it up to LLVM to choose which one to use. This is included mainly for
3596compatibility with the translation of GCC inline asm coming from clang.
3597
3598There are two ways to specify alternatives, and either or both may be used in an
3599inline asm constraint list:
3600
36011) Append the codes to each other, making a constraint code set. E.g. "``im``"
3602 or "``{eax}m``". This means "choose any of the options in the set". The
3603 choice of constraint is made independently for each constraint in the
3604 constraint list.
3605
36062) Use "``|``" between constraint code sets, creating alternatives. Every
3607 constraint in the constraint list must have the same number of alternative
3608 sets. With this syntax, the same alternative in *all* of the items in the
3609 constraint list will be chosen together.
3610
3611Putting those together, you might have a two operand constraint string like
3612``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3613operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3614may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3615
3616However, the use of either of the alternatives features is *NOT* recommended, as
3617LLVM is not able to make an intelligent choice about which one to use. (At the
3618point it currently needs to choose, not enough information is available to do so
3619in a smart way.) Thus, it simply tries to make a choice that's most likely to
3620compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3621always choose to use memory, not registers). And, if given multiple registers,
3622or multiple register classes, it will simply choose the first one. (In fact, it
3623doesn't currently even ensure explicitly specified physical registers are
3624unique, so specifying multiple physical registers as alternatives, like
3625``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3626intended.)
3627
3628Supported Constraint Code List
3629""""""""""""""""""""""""""""""
3630
3631The constraint codes are, in general, expected to behave the same way they do in
3632GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3633inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3634and GCC likely indicates a bug in LLVM.
3635
3636Some constraint codes are typically supported by all targets:
3637
3638- ``r``: A register in the target's general purpose register class.
3639- ``m``: A memory address operand. It is target-specific what addressing modes
3640 are supported, typical examples are register, or register + register offset,
3641 or register + immediate offset (of some target-specific size).
3642- ``i``: An integer constant (of target-specific width). Allows either a simple
3643 immediate, or a relocatable value.
3644- ``n``: An integer constant -- *not* including relocatable values.
3645- ``s``: An integer constant, but allowing *only* relocatable values.
3646- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3647 useful to pass a label for an asm branch or call.
3648
3649 .. FIXME: but that surely isn't actually okay to jump out of an asm
3650 block without telling llvm about the control transfer???)
3651
3652- ``{register-name}``: Requires exactly the named physical register.
3653
3654Other constraints are target-specific:
3655
3656AArch64:
3657
3658- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3659- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3660 i.e. 0 to 4095 with optional shift by 12.
3661- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3662 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3663- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3664 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3665- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3666 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3667- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3668 32-bit register. This is a superset of ``K``: in addition to the bitmask
3669 immediate, also allows immediate integers which can be loaded with a single
3670 ``MOVZ`` or ``MOVL`` instruction.
3671- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3672 64-bit register. This is a superset of ``L``.
3673- ``Q``: Memory address operand must be in a single register (no
3674 offsets). (However, LLVM currently does this for the ``m`` constraint as
3675 well.)
3676- ``r``: A 32 or 64-bit integer register (W* or X*).
3677- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3678- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3679
3680AMDGPU:
3681
3682- ``r``: A 32 or 64-bit integer register.
3683- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3684- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3685
3686
3687All ARM modes:
3688
3689- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3690 operand. Treated the same as operand ``m``, at the moment.
3691
3692ARM and ARM's Thumb2 mode:
3693
3694- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3695- ``I``: An immediate integer valid for a data-processing instruction.
3696- ``J``: An immediate integer between -4095 and 4095.
3697- ``K``: An immediate integer whose bitwise inverse is valid for a
3698 data-processing instruction. (Can be used with template modifier "``B``" to
3699 print the inverted value).
3700- ``L``: An immediate integer whose negation is valid for a data-processing
3701 instruction. (Can be used with template modifier "``n``" to print the negated
3702 value).
3703- ``M``: A power of two or a integer between 0 and 32.
3704- ``N``: Invalid immediate constraint.
3705- ``O``: Invalid immediate constraint.
3706- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3707- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3708 as ``r``.
3709- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3710 invalid.
3711- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3712 ``d0-d31``, or ``q0-q15``.
3713- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3714 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003715- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3716 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003717
3718ARM's Thumb1 mode:
3719
3720- ``I``: An immediate integer between 0 and 255.
3721- ``J``: An immediate integer between -255 and -1.
3722- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3723 some amount.
3724- ``L``: An immediate integer between -7 and 7.
3725- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3726- ``N``: An immediate integer between 0 and 31.
3727- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3728- ``r``: A low 32-bit GPR register (``r0-r7``).
3729- ``l``: A low 32-bit GPR register (``r0-r7``).
3730- ``h``: A high GPR register (``r0-r7``).
3731- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3732 ``d0-d31``, or ``q0-q15``.
3733- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3734 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003735- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3736 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003737
3738
3739Hexagon:
3740
3741- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3742 at the moment.
3743- ``r``: A 32 or 64-bit register.
3744
3745MSP430:
3746
3747- ``r``: An 8 or 16-bit register.
3748
3749MIPS:
3750
3751- ``I``: An immediate signed 16-bit integer.
3752- ``J``: An immediate integer zero.
3753- ``K``: An immediate unsigned 16-bit integer.
3754- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3755- ``N``: An immediate integer between -65535 and -1.
3756- ``O``: An immediate signed 15-bit integer.
3757- ``P``: An immediate integer between 1 and 65535.
3758- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3759 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3760- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3761 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3762 ``m``.
3763- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3764 ``sc`` instruction on the given subtarget (details vary).
3765- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3766- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003767 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3768 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003769- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3770 ``25``).
3771- ``l``: The ``lo`` register, 32 or 64-bit.
3772- ``x``: Invalid.
3773
3774NVPTX:
3775
3776- ``b``: A 1-bit integer register.
3777- ``c`` or ``h``: A 16-bit integer register.
3778- ``r``: A 32-bit integer register.
3779- ``l`` or ``N``: A 64-bit integer register.
3780- ``f``: A 32-bit float register.
3781- ``d``: A 64-bit float register.
3782
3783
3784PowerPC:
3785
3786- ``I``: An immediate signed 16-bit integer.
3787- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3788- ``K``: An immediate unsigned 16-bit integer.
3789- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3790- ``M``: An immediate integer greater than 31.
3791- ``N``: An immediate integer that is an exact power of 2.
3792- ``O``: The immediate integer constant 0.
3793- ``P``: An immediate integer constant whose negation is a signed 16-bit
3794 constant.
3795- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3796 treated the same as ``m``.
3797- ``r``: A 32 or 64-bit integer register.
3798- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3799 ``R1-R31``).
3800- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3801 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3802- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3803 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3804 altivec vector register (``V0-V31``).
3805
3806 .. FIXME: is this a bug that v accepts QPX registers? I think this
3807 is supposed to only use the altivec vector registers?
3808
3809- ``y``: Condition register (``CR0-CR7``).
3810- ``wc``: An individual CR bit in a CR register.
3811- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3812 register set (overlapping both the floating-point and vector register files).
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003813- ``ws``: A 32 or 64-bit floating-point register, from the full VSX register
James Y Knightbc832ed2015-07-08 18:08:36 +00003814 set.
3815
3816Sparc:
3817
3818- ``I``: An immediate 13-bit signed integer.
3819- ``r``: A 32-bit integer register.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003820- ``f``: Any floating-point register on SparcV8, or a floating-point
James Y Knightd4e1b002017-05-12 15:59:10 +00003821 register in the "low" half of the registers on SparcV9.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003822- ``e``: Any floating-point register. (Same as ``f`` on SparcV8.)
James Y Knightbc832ed2015-07-08 18:08:36 +00003823
3824SystemZ:
3825
3826- ``I``: An immediate unsigned 8-bit integer.
3827- ``J``: An immediate unsigned 12-bit integer.
3828- ``K``: An immediate signed 16-bit integer.
3829- ``L``: An immediate signed 20-bit integer.
3830- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003831- ``Q``: A memory address operand with a base address and a 12-bit immediate
3832 unsigned displacement.
3833- ``R``: A memory address operand with a base address, a 12-bit immediate
3834 unsigned displacement, and an index register.
3835- ``S``: A memory address operand with a base address and a 20-bit immediate
3836 signed displacement.
3837- ``T``: A memory address operand with a base address, a 20-bit immediate
3838 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003839- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3840- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3841 address context evaluates as zero).
3842- ``h``: A 32-bit value in the high part of a 64bit data register
3843 (LLVM-specific)
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003844- ``f``: A 32, 64, or 128-bit floating-point register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003845
3846X86:
3847
3848- ``I``: An immediate integer between 0 and 31.
3849- ``J``: An immediate integer between 0 and 64.
3850- ``K``: An immediate signed 8-bit integer.
3851- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3852 0xffffffff.
3853- ``M``: An immediate integer between 0 and 3.
3854- ``N``: An immediate unsigned 8-bit integer.
3855- ``O``: An immediate integer between 0 and 127.
3856- ``e``: An immediate 32-bit signed integer.
3857- ``Z``: An immediate 32-bit unsigned integer.
3858- ``o``, ``v``: Treated the same as ``m``, at the moment.
3859- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3860 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3861 registers, and on X86-64, it is all of the integer registers.
3862- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3863 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3864- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3865- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3866 existed since i386, and can be accessed without the REX prefix.
3867- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3868- ``y``: A 64-bit MMX register, if MMX is enabled.
3869- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3870 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3871 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3872 512-bit vector operand in an AVX512 register, Otherwise, an error.
3873- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3874- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3875 32-bit mode, a 64-bit integer operand will get split into two registers). It
3876 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3877 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3878 you're better off splitting it yourself, before passing it to the asm
3879 statement.
3880
3881XCore:
3882
3883- ``r``: A 32-bit integer register.
3884
3885
3886.. _inline-asm-modifiers:
3887
3888Asm template argument modifiers
3889^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3890
3891In the asm template string, modifiers can be used on the operand reference, like
3892"``${0:n}``".
3893
3894The modifiers are, in general, expected to behave the same way they do in
3895GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3896inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3897and GCC likely indicates a bug in LLVM.
3898
3899Target-independent:
3900
Sean Silvaa1190322015-08-06 22:56:48 +00003901- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003902 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3903- ``n``: Negate and print immediate integer constant unadorned, without the
3904 target-specific immediate punctuation (e.g. no ``$`` prefix).
3905- ``l``: Print as an unadorned label, without the target-specific label
3906 punctuation (e.g. no ``$`` prefix).
3907
3908AArch64:
3909
3910- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3911 instead of ``x30``, print ``w30``.
3912- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3913- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3914 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3915 ``v*``.
3916
3917AMDGPU:
3918
3919- ``r``: No effect.
3920
3921ARM:
3922
3923- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3924 register).
3925- ``P``: No effect.
3926- ``q``: No effect.
3927- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3928 as ``d4[1]`` instead of ``s9``)
3929- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3930 prefix.
3931- ``L``: Print the low 16-bits of an immediate integer constant.
3932- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3933 register operands subsequent to the specified one (!), so use carefully.
3934- ``Q``: Print the low-order register of a register-pair, or the low-order
3935 register of a two-register operand.
3936- ``R``: Print the high-order register of a register-pair, or the high-order
3937 register of a two-register operand.
3938- ``H``: Print the second register of a register-pair. (On a big-endian system,
3939 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3940 to ``R``.)
3941
3942 .. FIXME: H doesn't currently support printing the second register
3943 of a two-register operand.
3944
3945- ``e``: Print the low doubleword register of a NEON quad register.
3946- ``f``: Print the high doubleword register of a NEON quad register.
3947- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3948 adornment.
3949
3950Hexagon:
3951
3952- ``L``: Print the second register of a two-register operand. Requires that it
3953 has been allocated consecutively to the first.
3954
3955 .. FIXME: why is it restricted to consecutive ones? And there's
3956 nothing that ensures that happens, is there?
3957
3958- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3959 nothing. Used to print 'addi' vs 'add' instructions.
3960
3961MSP430:
3962
3963No additional modifiers.
3964
3965MIPS:
3966
3967- ``X``: Print an immediate integer as hexadecimal
3968- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3969- ``d``: Print an immediate integer as decimal.
3970- ``m``: Subtract one and print an immediate integer as decimal.
3971- ``z``: Print $0 if an immediate zero, otherwise print normally.
3972- ``L``: Print the low-order register of a two-register operand, or prints the
3973 address of the low-order word of a double-word memory operand.
3974
3975 .. FIXME: L seems to be missing memory operand support.
3976
3977- ``M``: Print the high-order register of a two-register operand, or prints the
3978 address of the high-order word of a double-word memory operand.
3979
3980 .. FIXME: M seems to be missing memory operand support.
3981
3982- ``D``: Print the second register of a two-register operand, or prints the
3983 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3984 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3985 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003986- ``w``: No effect. Provided for compatibility with GCC which requires this
3987 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3988 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003989
3990NVPTX:
3991
3992- ``r``: No effect.
3993
3994PowerPC:
3995
3996- ``L``: Print the second register of a two-register operand. Requires that it
3997 has been allocated consecutively to the first.
3998
3999 .. FIXME: why is it restricted to consecutive ones? And there's
4000 nothing that ensures that happens, is there?
4001
4002- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
4003 nothing. Used to print 'addi' vs 'add' instructions.
4004- ``y``: For a memory operand, prints formatter for a two-register X-form
4005 instruction. (Currently always prints ``r0,OPERAND``).
4006- ``U``: Prints 'u' if the memory operand is an update form, and nothing
4007 otherwise. (NOTE: LLVM does not support update form, so this will currently
4008 always print nothing)
4009- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
4010 not support indexed form, so this will currently always print nothing)
4011
4012Sparc:
4013
4014- ``r``: No effect.
4015
4016SystemZ:
4017
4018SystemZ implements only ``n``, and does *not* support any of the other
4019target-independent modifiers.
4020
4021X86:
4022
4023- ``c``: Print an unadorned integer or symbol name. (The latter is
4024 target-specific behavior for this typically target-independent modifier).
4025- ``A``: Print a register name with a '``*``' before it.
4026- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
4027 operand.
4028- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
4029 memory operand.
4030- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
4031 operand.
4032- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
4033 operand.
4034- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
4035 available, otherwise the 32-bit register name; do nothing on a memory operand.
4036- ``n``: Negate and print an unadorned integer, or, for operands other than an
4037 immediate integer (e.g. a relocatable symbol expression), print a '-' before
4038 the operand. (The behavior for relocatable symbol expressions is a
4039 target-specific behavior for this typically target-independent modifier)
4040- ``H``: Print a memory reference with additional offset +8.
4041- ``P``: Print a memory reference or operand for use as the argument of a call
4042 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
4043
4044XCore:
4045
4046No additional modifiers.
4047
4048
Sean Silvab084af42012-12-07 10:36:55 +00004049Inline Asm Metadata
4050^^^^^^^^^^^^^^^^^^^
4051
4052The call instructions that wrap inline asm nodes may have a
4053"``!srcloc``" MDNode attached to it that contains a list of constant
4054integers. If present, the code generator will use the integer as the
4055location cookie value when report errors through the ``LLVMContext``
4056error reporting mechanisms. This allows a front-end to correlate backend
4057errors that occur with inline asm back to the source code that produced
4058it. For example:
4059
4060.. code-block:: llvm
4061
4062 call void asm sideeffect "something bad", ""(), !srcloc !42
4063 ...
4064 !42 = !{ i32 1234567 }
4065
4066It is up to the front-end to make sense of the magic numbers it places
4067in the IR. If the MDNode contains multiple constants, the code generator
4068will use the one that corresponds to the line of the asm that the error
4069occurs on.
4070
4071.. _metadata:
4072
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004073Metadata
4074========
Sean Silvab084af42012-12-07 10:36:55 +00004075
4076LLVM IR allows metadata to be attached to instructions in the program
4077that can convey extra information about the code to the optimizers and
4078code generator. One example application of metadata is source-level
4079debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004080
Sean Silvaa1190322015-08-06 22:56:48 +00004081Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004082``call`` instruction, it uses the ``metadata`` type.
4083
4084All metadata are identified in syntax by a exclamation point ('``!``').
4085
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004086.. _metadata-string:
4087
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004088Metadata Nodes and Metadata Strings
4089-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00004090
4091A metadata string is a string surrounded by double quotes. It can
4092contain any character by escaping non-printable characters with
4093"``\xx``" where "``xx``" is the two digit hex code. For example:
4094"``!"test\00"``".
4095
4096Metadata nodes are represented with notation similar to structure
4097constants (a comma separated list of elements, surrounded by braces and
4098preceded by an exclamation point). Metadata nodes can have any values as
4099their operand. For example:
4100
4101.. code-block:: llvm
4102
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004103 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00004104
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004105Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
4106
Renato Golin124f2592016-07-20 12:16:38 +00004107.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004108
4109 !0 = distinct !{!"test\00", i32 10}
4110
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004111``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00004112content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004113when metadata operands change.
4114
Sean Silvab084af42012-12-07 10:36:55 +00004115A :ref:`named metadata <namedmetadatastructure>` is a collection of
4116metadata nodes, which can be looked up in the module symbol table. For
4117example:
4118
4119.. code-block:: llvm
4120
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004121 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00004122
Adrian Prantl1b842da2017-07-28 20:44:29 +00004123Metadata can be used as function arguments. Here the ``llvm.dbg.value``
4124intrinsic is using three metadata arguments:
Sean Silvab084af42012-12-07 10:36:55 +00004125
4126.. code-block:: llvm
4127
Adrian Prantlabe04752017-07-28 20:21:02 +00004128 call void @llvm.dbg.value(metadata !24, metadata !25, metadata !26)
Sean Silvab084af42012-12-07 10:36:55 +00004129
Peter Collingbourne50108682015-11-06 02:41:02 +00004130Metadata can be attached to an instruction. Here metadata ``!21`` is attached
4131to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00004132
4133.. code-block:: llvm
4134
4135 %indvar.next = add i64 %indvar, 1, !dbg !21
4136
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004137Metadata can also be attached to a function or a global variable. Here metadata
4138``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
4139and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00004140
4141.. code-block:: llvm
4142
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004143 declare !dbg !22 void @f1()
4144 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00004145 ret void
4146 }
4147
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004148 @g1 = global i32 0, !dbg !22
4149 @g2 = external global i32, !dbg !22
4150
4151A transformation is required to drop any metadata attachment that it does not
4152know or know it can't preserve. Currently there is an exception for metadata
4153attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
4154unconditionally dropped unless the global is itself deleted.
4155
4156Metadata attached to a module using named metadata may not be dropped, with
4157the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
4158
Sean Silvab084af42012-12-07 10:36:55 +00004159More information about specific metadata nodes recognized by the
4160optimizers and code generator is found below.
4161
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004162.. _specialized-metadata:
4163
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004164Specialized Metadata Nodes
4165^^^^^^^^^^^^^^^^^^^^^^^^^^
4166
4167Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00004168to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004169order.
4170
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004171These aren't inherently debug info centric, but currently all the specialized
4172metadata nodes are related to debug info.
4173
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004174.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004175
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004176DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004177"""""""""""""
4178
Sean Silvaa1190322015-08-06 22:56:48 +00004179``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004180``retainedTypes:``, ``globals:``, ``imports:`` and ``macros:`` fields are tuples
4181containing the debug info to be emitted along with the compile unit, regardless
4182of code optimizations (some nodes are only emitted if there are references to
4183them from instructions). The ``debugInfoForProfiling:`` field is a boolean
4184indicating whether or not line-table discriminators are updated to provide
4185more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004186
Renato Golin124f2592016-07-20 12:16:38 +00004187.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004188
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004189 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004190 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004191 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004192 enums: !2, retainedTypes: !3, globals: !4, imports: !5,
4193 macros: !6, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004194
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004195Compile unit descriptors provide the root scope for objects declared in a
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004196specific compilation unit. File descriptors are defined using this scope. These
4197descriptors are collected by a named metadata node ``!llvm.dbg.cu``. They keep
4198track of global variables, type information, and imported entities (declarations
4199and namespaces).
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004200
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004201.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004202
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004203DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004204""""""
4205
Sean Silvaa1190322015-08-06 22:56:48 +00004206``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004207
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004208.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004209
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004210 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4211 checksumkind: CSK_MD5,
4212 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004213
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004214Files are sometimes used in ``scope:`` fields, and are the only valid target
4215for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004216Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004217
Michael Kuperstein605308a2015-05-14 10:58:59 +00004218.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004219
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004220DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004221"""""""""""
4222
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004223``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004224``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004225
Renato Golin124f2592016-07-20 12:16:38 +00004226.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004227
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004228 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004229 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004230 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004231
Sean Silvaa1190322015-08-06 22:56:48 +00004232The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004233following:
4234
Renato Golin124f2592016-07-20 12:16:38 +00004235.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004236
4237 DW_ATE_address = 1
4238 DW_ATE_boolean = 2
4239 DW_ATE_float = 4
4240 DW_ATE_signed = 5
4241 DW_ATE_signed_char = 6
4242 DW_ATE_unsigned = 7
4243 DW_ATE_unsigned_char = 8
4244
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004245.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004246
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004247DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004248""""""""""""""""
4249
Sean Silvaa1190322015-08-06 22:56:48 +00004250``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004251refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004252types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004253represents a function with no return value (such as ``void foo() {}`` in C++).
4254
Renato Golin124f2592016-07-20 12:16:38 +00004255.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004256
4257 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4258 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004259 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004260
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004261.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004262
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004263DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004264"""""""""""""
4265
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004266``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004267qualified types.
4268
Renato Golin124f2592016-07-20 12:16:38 +00004269.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004270
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004271 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004272 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004273 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004274 align: 32)
4275
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004276The following ``tag:`` values are valid:
4277
Renato Golin124f2592016-07-20 12:16:38 +00004278.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004279
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004280 DW_TAG_member = 13
4281 DW_TAG_pointer_type = 15
4282 DW_TAG_reference_type = 16
4283 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004284 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004285 DW_TAG_ptr_to_member_type = 31
4286 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004287 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004288 DW_TAG_volatile_type = 53
4289 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004290 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004291
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004292.. _DIDerivedTypeMember:
4293
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004294``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004295<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004296``offset:`` is the member's bit offset. If the composite type has an ODR
4297``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4298uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004299
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004300``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4301field of :ref:`composite types <DICompositeType>` to describe parents and
4302friends.
4303
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004304``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4305
4306``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004307``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4308are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004309
4310Note that the ``void *`` type is expressed as a type derived from NULL.
4311
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004312.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004313
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004314DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004315"""""""""""""""
4316
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004317``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004318structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004319
4320If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004321identifier used for type merging between modules. When specified,
4322:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4323derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4324``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004325
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004326For a given ``identifier:``, there should only be a single composite type that
4327does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4328together will unique such definitions at parse time via the ``identifier:``
4329field, even if the nodes are ``distinct``.
4330
Renato Golin124f2592016-07-20 12:16:38 +00004331.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004332
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004333 !0 = !DIEnumerator(name: "SixKind", value: 7)
4334 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4335 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4336 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004337 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4338 elements: !{!0, !1, !2})
4339
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004340The following ``tag:`` values are valid:
4341
Renato Golin124f2592016-07-20 12:16:38 +00004342.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004343
4344 DW_TAG_array_type = 1
4345 DW_TAG_class_type = 2
4346 DW_TAG_enumeration_type = 4
4347 DW_TAG_structure_type = 19
4348 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004349
4350For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004351descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004352level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004353array type is a native packed vector.
4354
4355For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004356descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004357value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004358``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004359
4360For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4361``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004362<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4363``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4364``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004365
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004366.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004367
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004368DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004369""""""""""
4370
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004371``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sander de Smalen1cb94312018-01-24 10:30:23 +00004372:ref:`DICompositeType`.
4373
4374- ``count: -1`` indicates an empty array.
4375- ``count: !9`` describes the count with a :ref:`DILocalVariable`.
4376- ``count: !11`` describes the count with a :ref:`DIGlobalVariable`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004377
4378.. code-block:: llvm
4379
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004380 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4381 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4382 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004383
Sander de Smalenfdf40912018-01-24 09:56:07 +00004384 ; Scopes used in rest of example
4385 !6 = !DIFile(filename: "vla.c", directory: "/path/to/file")
4386 !7 = distinct !DICompileUnit(language: DW_LANG_C99, ...
4387 !8 = distinct !DISubprogram(name: "foo", scope: !7, file: !6, line: 5, ...
4388
4389 ; Use of local variable as count value
4390 !9 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
4391 !10 = !DILocalVariable(name: "count", scope: !8, file: !6, line: 42, type: !9)
4392 !11 = !DISubrange(count !10, lowerBound: 0)
4393
4394 ; Use of global variable as count value
4395 !12 = !DIGlobalVariable(name: "count", scope: !8, file: !6, line: 22, type: !9)
4396 !13 = !DISubrange(count !12, lowerBound: 0)
4397
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004398.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004399
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004400DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004401""""""""""""
4402
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004403``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4404variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004405
4406.. code-block:: llvm
4407
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004408 !0 = !DIEnumerator(name: "SixKind", value: 7)
4409 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4410 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004411
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004412DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004413"""""""""""""""""""""""
4414
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004415``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004416language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004417:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004418
4419.. code-block:: llvm
4420
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004421 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004422
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004423DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004424""""""""""""""""""""""""
4425
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004426``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004427language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004428but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004429``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004430:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004431
4432.. code-block:: llvm
4433
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004434 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004435
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004436DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004437"""""""""""
4438
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004439``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004440
4441.. code-block:: llvm
4442
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004443 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004444
Sander de Smalen1cb94312018-01-24 10:30:23 +00004445.. _DIGlobalVariable:
4446
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004447DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004448""""""""""""""""
4449
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004450``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004451
4452.. code-block:: llvm
4453
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004454 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004455 file: !2, line: 7, type: !3, isLocal: true,
4456 isDefinition: false, variable: i32* @foo,
4457 declaration: !4)
4458
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004459All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004460:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004461
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004462.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004463
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004464DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004465""""""""""""
4466
Peter Collingbourne50108682015-11-06 02:41:02 +00004467``DISubprogram`` nodes represent functions from the source language. A
4468``DISubprogram`` may be attached to a function definition using ``!dbg``
4469metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4470that must be retained, even if their IR counterparts are optimized out of
4471the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004472
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004473.. _DISubprogramDeclaration:
4474
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004475When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004476tree as opposed to a definition of a function. If the scope is a composite
4477type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4478then the subprogram declaration is uniqued based only on its ``linkageName:``
4479and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004480
Renato Golin124f2592016-07-20 12:16:38 +00004481.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004482
Peter Collingbourne50108682015-11-06 02:41:02 +00004483 define void @_Z3foov() !dbg !0 {
4484 ...
4485 }
4486
4487 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4488 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004489 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004490 containingType: !4,
4491 virtuality: DW_VIRTUALITY_pure_virtual,
4492 virtualIndex: 10, flags: DIFlagPrototyped,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004493 isOptimized: true, unit: !5, templateParams: !6,
4494 declaration: !7, variables: !8, thrownTypes: !9)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004495
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004496.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004497
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004498DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004499""""""""""""""
4500
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004501``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004502<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004503two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004504fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004505
Renato Golin124f2592016-07-20 12:16:38 +00004506.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004507
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004508 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004509
4510Usually lexical blocks are ``distinct`` to prevent node merging based on
4511operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004512
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004513.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004514
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004515DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004516""""""""""""""""""
4517
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004518``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004519:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004520indicate textual inclusion, or the ``discriminator:`` field can be used to
4521discriminate between control flow within a single block in the source language.
4522
4523.. code-block:: llvm
4524
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004525 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4526 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4527 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004528
Michael Kuperstein605308a2015-05-14 10:58:59 +00004529.. _DILocation:
4530
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004531DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004532""""""""""
4533
Sean Silvaa1190322015-08-06 22:56:48 +00004534``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004535mandatory, and points at an :ref:`DILexicalBlockFile`, an
4536:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004537
4538.. code-block:: llvm
4539
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004540 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004541
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004542.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004543
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004544DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004545"""""""""""""""
4546
Sean Silvaa1190322015-08-06 22:56:48 +00004547``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004548the ``arg:`` field is set to non-zero, then this variable is a subprogram
4549parameter, and it will be included in the ``variables:`` field of its
4550:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004551
Renato Golin124f2592016-07-20 12:16:38 +00004552.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004553
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004554 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4555 type: !3, flags: DIFlagArtificial)
4556 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4557 type: !3)
4558 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004559
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004560DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004561""""""""""""
4562
Adrian Prantlb44c7762017-03-22 18:01:01 +00004563``DIExpression`` nodes represent expressions that are inspired by the DWARF
4564expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
4565(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
4566referenced LLVM variable relates to the source language variable.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004567
4568The current supported vocabulary is limited:
4569
Adrian Prantl6825fb62017-04-18 01:21:53 +00004570- ``DW_OP_deref`` dereferences the top of the expression stack.
Florian Hahnffc498d2017-06-14 13:14:38 +00004571- ``DW_OP_plus`` pops the last two entries from the expression stack, adds
4572 them together and appends the result to the expression stack.
4573- ``DW_OP_minus`` pops the last two entries from the expression stack, subtracts
4574 the last entry from the second last entry and appends the result to the
4575 expression stack.
Florian Hahnc9c403c2017-06-13 16:54:44 +00004576- ``DW_OP_plus_uconst, 93`` adds ``93`` to the working expression.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004577- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
4578 here, respectively) of the variable fragment from the working expression. Note
Hiroshi Inoue760c0c92018-01-16 13:19:48 +00004579 that contrary to DW_OP_bit_piece, the offset is describing the location
Adrian Prantlb44c7762017-03-22 18:01:01 +00004580 within the described source variable.
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004581- ``DW_OP_swap`` swaps top two stack entries.
4582- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
4583 of the stack is treated as an address. The second stack entry is treated as an
4584 address space identifier.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004585- ``DW_OP_stack_value`` marks a constant value.
4586
Adrian Prantl6825fb62017-04-18 01:21:53 +00004587DWARF specifies three kinds of simple location descriptions: Register, memory,
4588and implicit location descriptions. Register and memory location descriptions
4589describe the *location* of a source variable (in the sense that a debugger might
4590modify its value), whereas implicit locations describe merely the *value* of a
4591source variable. DIExpressions also follow this model: A DIExpression that
4592doesn't have a trailing ``DW_OP_stack_value`` will describe an *address* when
4593combined with a concrete location.
4594
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004595.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004596
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004597 !0 = !DIExpression(DW_OP_deref)
Florian Hahnc9c403c2017-06-13 16:54:44 +00004598 !1 = !DIExpression(DW_OP_plus_uconst, 3)
Florian Hahnffc498d2017-06-14 13:14:38 +00004599 !1 = !DIExpression(DW_OP_constu, 3, DW_OP_plus)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004600 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
Florian Hahnffc498d2017-06-14 13:14:38 +00004601 !3 = !DIExpression(DW_OP_deref, DW_OP_constu, 3, DW_OP_plus, DW_OP_LLVM_fragment, 3, 7)
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004602 !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004603 !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004604
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004605DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004606""""""""""""""
4607
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004608``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004609
4610.. code-block:: llvm
4611
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004612 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004613 getter: "getFoo", attributes: 7, type: !2)
4614
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004615DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004616""""""""""""""""
4617
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004618``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004619compile unit.
4620
Renato Golin124f2592016-07-20 12:16:38 +00004621.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004622
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004623 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004624 entity: !1, line: 7)
4625
Amjad Abouda9bcf162015-12-10 12:56:35 +00004626DIMacro
4627"""""""
4628
4629``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4630The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004631defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004632used to expand the macro identifier.
4633
Renato Golin124f2592016-07-20 12:16:38 +00004634.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004635
4636 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4637 value: "((x) + 1)")
4638 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4639
4640DIMacroFile
4641"""""""""""
4642
4643``DIMacroFile`` nodes represent inclusion of source files.
4644The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4645appear in the included source file.
4646
Renato Golin124f2592016-07-20 12:16:38 +00004647.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004648
4649 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4650 nodes: !3)
4651
Sean Silvab084af42012-12-07 10:36:55 +00004652'``tbaa``' Metadata
4653^^^^^^^^^^^^^^^^^^^
4654
4655In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004656suitable for doing type based alias analysis (TBAA). Instead, metadata is
4657added to the IR to describe a type system of a higher level language. This
4658can be used to implement C/C++ strict type aliasing rules, but it can also
4659be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004660
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004661This description of LLVM's TBAA system is broken into two parts:
4662:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4663:ref:`Representation<tbaa_node_representation>` talks about the metadata
4664encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004665
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004666It is always possible to trace any TBAA node to a "root" TBAA node (details
4667in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4668nodes with different roots have an unknown aliasing relationship, and LLVM
4669conservatively infers ``MayAlias`` between them. The rules mentioned in
4670this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004671
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004672.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004673
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004674Semantics
4675"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004676
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004677The TBAA metadata system, referred to as "struct path TBAA" (not to be
4678confused with ``tbaa.struct``), consists of the following high level
4679concepts: *Type Descriptors*, further subdivided into scalar type
4680descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004681
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004682**Type descriptors** describe the type system of the higher level language
4683being compiled. **Scalar type descriptors** describe types that do not
4684contain other types. Each scalar type has a parent type, which must also
4685be a scalar type or the TBAA root. Via this parent relation, scalar types
4686within a TBAA root form a tree. **Struct type descriptors** denote types
4687that contain a sequence of other type descriptors, at known offsets. These
4688contained type descriptors can either be struct type descriptors themselves
4689or scalar type descriptors.
4690
4691**Access tags** are metadata nodes attached to load and store instructions.
4692Access tags use type descriptors to describe the *location* being accessed
4693in terms of the type system of the higher level language. Access tags are
4694tuples consisting of a base type, an access type and an offset. The base
4695type is a scalar type descriptor or a struct type descriptor, the access
4696type is a scalar type descriptor, and the offset is a constant integer.
4697
4698The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4699things:
4700
4701 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4702 or store) of a value of type ``AccessTy`` contained in the struct type
4703 ``BaseTy`` at offset ``Offset``.
4704
4705 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4706 ``AccessTy`` must be the same; and the access tag describes a scalar
4707 access with scalar type ``AccessTy``.
4708
4709We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4710tuples this way:
4711
4712 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4713 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4714 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4715 undefined if ``Offset`` is non-zero.
4716
4717 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4718 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4719 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4720 to be relative within that inner type.
4721
4722A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4723aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4724Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4725Offset2)`` via the ``Parent`` relation or vice versa.
4726
4727As a concrete example, the type descriptor graph for the following program
4728
4729.. code-block:: c
4730
4731 struct Inner {
4732 int i; // offset 0
4733 float f; // offset 4
4734 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004735
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004736 struct Outer {
4737 float f; // offset 0
4738 double d; // offset 4
4739 struct Inner inner_a; // offset 12
4740 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004741
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004742 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4743 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4744 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
4745 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, IntScalarTy, 16)
4746 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4747 }
4748
4749is (note that in C and C++, ``char`` can be used to access any arbitrary
4750type):
4751
4752.. code-block:: text
4753
4754 Root = "TBAA Root"
4755 CharScalarTy = ("char", Root, 0)
4756 FloatScalarTy = ("float", CharScalarTy, 0)
4757 DoubleScalarTy = ("double", CharScalarTy, 0)
4758 IntScalarTy = ("int", CharScalarTy, 0)
4759 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4760 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4761 (InnerStructTy, 12)}
4762
4763
4764with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
47650)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4766``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4767
4768.. _tbaa_node_representation:
4769
4770Representation
4771""""""""""""""
4772
4773The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4774with exactly one ``MDString`` operand.
4775
4776Scalar type descriptors are represented as an ``MDNode`` s with two
4777operands. The first operand is an ``MDString`` denoting the name of the
4778struct type. LLVM does not assign meaning to the value of this operand, it
4779only cares about it being an ``MDString``. The second operand is an
4780``MDNode`` which points to the parent for said scalar type descriptor,
4781which is either another scalar type descriptor or the TBAA root. Scalar
4782type descriptors can have an optional third argument, but that must be the
4783constant integer zero.
4784
4785Struct type descriptors are represented as ``MDNode`` s with an odd number
4786of operands greater than 1. The first operand is an ``MDString`` denoting
4787the name of the struct type. Like in scalar type descriptors the actual
4788value of this name operand is irrelevant to LLVM. After the name operand,
4789the struct type descriptors have a sequence of alternating ``MDNode`` and
4790``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4791an ``MDNode``, denotes a contained field, and the 2N th operand, a
4792``ConstantInt``, is the offset of the said contained field. The offsets
4793must be in non-decreasing order.
4794
4795Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4796The first operand is an ``MDNode`` pointing to the node representing the
4797base type. The second operand is an ``MDNode`` pointing to the node
4798representing the access type. The third operand is a ``ConstantInt`` that
4799states the offset of the access. If a fourth field is present, it must be
4800a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4801that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004802``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004803AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4804the access type and the base type of an access tag must be the same, and
4805that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004806
4807'``tbaa.struct``' Metadata
4808^^^^^^^^^^^^^^^^^^^^^^^^^^
4809
4810The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4811aggregate assignment operations in C and similar languages, however it
4812is defined to copy a contiguous region of memory, which is more than
4813strictly necessary for aggregate types which contain holes due to
4814padding. Also, it doesn't contain any TBAA information about the fields
4815of the aggregate.
4816
4817``!tbaa.struct`` metadata can describe which memory subregions in a
4818memcpy are padding and what the TBAA tags of the struct are.
4819
4820The current metadata format is very simple. ``!tbaa.struct`` metadata
4821nodes are a list of operands which are in conceptual groups of three.
4822For each group of three, the first operand gives the byte offset of a
4823field in bytes, the second gives its size in bytes, and the third gives
4824its tbaa tag. e.g.:
4825
4826.. code-block:: llvm
4827
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004828 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004829
4830This describes a struct with two fields. The first is at offset 0 bytes
4831with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4832and has size 4 bytes and has tbaa tag !2.
4833
4834Note that the fields need not be contiguous. In this example, there is a
48354 byte gap between the two fields. This gap represents padding which
4836does not carry useful data and need not be preserved.
4837
Hal Finkel94146652014-07-24 14:25:39 +00004838'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004839^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004840
4841``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4842noalias memory-access sets. This means that some collection of memory access
4843instructions (loads, stores, memory-accessing calls, etc.) that carry
4844``noalias`` metadata can specifically be specified not to alias with some other
4845collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004846Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004847a domain.
4848
4849When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004850of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004851subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004852instruction's ``noalias`` list, then the two memory accesses are assumed not to
4853alias.
Hal Finkel94146652014-07-24 14:25:39 +00004854
Adam Nemet569a5b32016-04-27 00:52:48 +00004855Because scopes in one domain don't affect scopes in other domains, separate
4856domains can be used to compose multiple independent noalias sets. This is
4857used for example during inlining. As the noalias function parameters are
4858turned into noalias scope metadata, a new domain is used every time the
4859function is inlined.
4860
Hal Finkel029cde62014-07-25 15:50:02 +00004861The metadata identifying each domain is itself a list containing one or two
4862entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004863string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004864self-reference can be used to create globally unique domain names. A
4865descriptive string may optionally be provided as a second list entry.
4866
4867The metadata identifying each scope is also itself a list containing two or
4868three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004869is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004870self-reference can be used to create globally unique scope names. A metadata
4871reference to the scope's domain is the second entry. A descriptive string may
4872optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004873
4874For example,
4875
4876.. code-block:: llvm
4877
Hal Finkel029cde62014-07-25 15:50:02 +00004878 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004879 !0 = !{!0}
4880 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004881
Hal Finkel029cde62014-07-25 15:50:02 +00004882 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004883 !2 = !{!2, !0}
4884 !3 = !{!3, !0}
4885 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004886
Hal Finkel029cde62014-07-25 15:50:02 +00004887 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004888 !5 = !{!4} ; A list containing only scope !4
4889 !6 = !{!4, !3, !2}
4890 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004891
4892 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004893 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004894 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004895
Hal Finkel029cde62014-07-25 15:50:02 +00004896 ; These two instructions also don't alias (for domain !1, the set of scopes
4897 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004898 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004899 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004900
Adam Nemet0a8416f2015-05-11 08:30:28 +00004901 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004902 ; the !noalias list is not a superset of, or equal to, the scopes in the
4903 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004904 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004905 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004906
Sean Silvab084af42012-12-07 10:36:55 +00004907'``fpmath``' Metadata
4908^^^^^^^^^^^^^^^^^^^^^
4909
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00004910``fpmath`` metadata may be attached to any instruction of floating-point
Sean Silvab084af42012-12-07 10:36:55 +00004911type. It can be used to express the maximum acceptable error in the
4912result of that instruction, in ULPs, thus potentially allowing the
4913compiler to use a more efficient but less accurate method of computing
4914it. ULP is defined as follows:
4915
4916 If ``x`` is a real number that lies between two finite consecutive
4917 floating-point numbers ``a`` and ``b``, without being equal to one
4918 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4919 distance between the two non-equal finite floating-point numbers
4920 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4921
Matt Arsenault82f41512016-06-27 19:43:15 +00004922The metadata node shall consist of a single positive float type number
4923representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004924
4925.. code-block:: llvm
4926
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004927 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004928
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004929.. _range-metadata:
4930
Sean Silvab084af42012-12-07 10:36:55 +00004931'``range``' Metadata
4932^^^^^^^^^^^^^^^^^^^^
4933
Jingyue Wu37fcb592014-06-19 16:50:16 +00004934``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4935integer types. It expresses the possible ranges the loaded value or the value
4936returned by the called function at this call site is in. The ranges are
4937represented with a flattened list of integers. The loaded value or the value
4938returned is known to be in the union of the ranges defined by each consecutive
4939pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004940
4941- The type must match the type loaded by the instruction.
4942- The pair ``a,b`` represents the range ``[a,b)``.
4943- Both ``a`` and ``b`` are constants.
4944- The range is allowed to wrap.
4945- The range should not represent the full or empty set. That is,
4946 ``a!=b``.
4947
4948In addition, the pairs must be in signed order of the lower bound and
4949they must be non-contiguous.
4950
4951Examples:
4952
4953.. code-block:: llvm
4954
David Blaikiec7aabbb2015-03-04 22:06:14 +00004955 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4956 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004957 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4958 %d = invoke i8 @bar() to label %cont
4959 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004960 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004961 !0 = !{ i8 0, i8 2 }
4962 !1 = !{ i8 255, i8 2 }
4963 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4964 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004965
Peter Collingbourne235c2752016-12-08 19:01:00 +00004966'``absolute_symbol``' Metadata
4967^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4968
4969``absolute_symbol`` metadata may be attached to a global variable
4970declaration. It marks the declaration as a reference to an absolute symbol,
4971which causes the backend to use absolute relocations for the symbol even
4972in position independent code, and expresses the possible ranges that the
4973global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00004974``range`` metadata, with the extension that the pair ``all-ones,all-ones``
4975may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00004976
Peter Collingbourned88f9282017-01-20 21:56:37 +00004977Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00004978
4979.. code-block:: llvm
4980
4981 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00004982 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00004983
4984 ...
4985 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00004986 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00004987
Matthew Simpson36bbc8c2017-10-16 22:22:11 +00004988'``callees``' Metadata
4989^^^^^^^^^^^^^^^^^^^^^^
4990
4991``callees`` metadata may be attached to indirect call sites. If ``callees``
4992metadata is attached to a call site, and any callee is not among the set of
4993functions provided by the metadata, the behavior is undefined. The intent of
4994this metadata is to facilitate optimizations such as indirect-call promotion.
4995For example, in the code below, the call instruction may only target the
4996``add`` or ``sub`` functions:
4997
4998.. code-block:: llvm
4999
5000 %result = call i64 %binop(i64 %x, i64 %y), !callees !0
5001
5002 ...
5003 !0 = !{i64 (i64, i64)* @add, i64 (i64, i64)* @sub}
5004
Sanjay Patela99ab1f2015-09-02 19:06:43 +00005005'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00005006^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00005007
5008``unpredictable`` metadata may be attached to any branch or switch
5009instruction. It can be used to express the unpredictability of control
5010flow. Similar to the llvm.expect intrinsic, it may be used to alter
5011optimizations related to compare and branch instructions. The metadata
5012is treated as a boolean value; if it exists, it signals that the branch
5013or switch that it is attached to is completely unpredictable.
5014
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005015'``llvm.loop``'
5016^^^^^^^^^^^^^^^
5017
5018It is sometimes useful to attach information to loop constructs. Currently,
5019loop metadata is implemented as metadata attached to the branch instruction
5020in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00005021guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00005022specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005023
5024The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00005025itself to avoid merging it with any other identifier metadata, e.g.,
5026during module linkage or function inlining. That is, each loop should refer
5027to their own identification metadata even if they reside in separate functions.
5028The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00005029constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005030
5031.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00005032
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005033 !0 = !{!0}
5034 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00005035
Mark Heffernan893752a2014-07-18 19:24:51 +00005036The loop identifier metadata can be used to specify additional
5037per-loop metadata. Any operands after the first operand can be treated
5038as user-defined metadata. For example the ``llvm.loop.unroll.count``
5039suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005040
Paul Redmond5fdf8362013-05-28 20:00:34 +00005041.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005042
Paul Redmond5fdf8362013-05-28 20:00:34 +00005043 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
5044 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005045 !0 = !{!0, !1}
5046 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005047
Mark Heffernan9d20e422014-07-21 23:11:03 +00005048'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
5049^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00005050
Mark Heffernan9d20e422014-07-21 23:11:03 +00005051Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
5052used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00005053vectorization width and interleave count. These metadata should be used in
5054conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00005055``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
5056optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00005057it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00005058which contains information about loop-carried memory dependencies can be helpful
5059in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00005060
Mark Heffernan9d20e422014-07-21 23:11:03 +00005061'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00005062^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5063
Mark Heffernan9d20e422014-07-21 23:11:03 +00005064This metadata suggests an interleave count to the loop interleaver.
5065The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00005066second operand is an integer specifying the interleave count. For
5067example:
5068
5069.. code-block:: llvm
5070
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005071 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005072
Mark Heffernan9d20e422014-07-21 23:11:03 +00005073Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00005074multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00005075then the interleave count will be determined automatically.
5076
5077'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00005078^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00005079
5080This metadata selectively enables or disables vectorization for the loop. The
5081first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00005082is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000050830 disables vectorization:
5084
5085.. code-block:: llvm
5086
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005087 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
5088 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00005089
5090'``llvm.loop.vectorize.width``' Metadata
5091^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5092
5093This metadata sets the target width of the vectorizer. The first
5094operand is the string ``llvm.loop.vectorize.width`` and the second
5095operand is an integer specifying the width. For example:
5096
5097.. code-block:: llvm
5098
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005099 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005100
5101Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00005102vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000051030 or if the loop does not have this metadata the width will be
5104determined automatically.
5105
5106'``llvm.loop.unroll``'
5107^^^^^^^^^^^^^^^^^^^^^^
5108
5109Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
5110optimization hints such as the unroll factor. ``llvm.loop.unroll``
5111metadata should be used in conjunction with ``llvm.loop`` loop
5112identification metadata. The ``llvm.loop.unroll`` metadata are only
5113optimization hints and the unrolling will only be performed if the
5114optimizer believes it is safe to do so.
5115
Mark Heffernan893752a2014-07-18 19:24:51 +00005116'``llvm.loop.unroll.count``' Metadata
5117^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5118
5119This metadata suggests an unroll factor to the loop unroller. The
5120first operand is the string ``llvm.loop.unroll.count`` and the second
5121operand is a positive integer specifying the unroll factor. For
5122example:
5123
5124.. code-block:: llvm
5125
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005126 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005127
5128If the trip count of the loop is less than the unroll count the loop
5129will be partially unrolled.
5130
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005131'``llvm.loop.unroll.disable``' Metadata
5132^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5133
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005134This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00005135which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005136
5137.. code-block:: llvm
5138
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005139 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005140
Kevin Qin715b01e2015-03-09 06:14:18 +00005141'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00005142^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00005143
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005144This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00005145operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00005146
5147.. code-block:: llvm
5148
5149 !0 = !{!"llvm.loop.unroll.runtime.disable"}
5150
Mark Heffernan89391542015-08-10 17:28:08 +00005151'``llvm.loop.unroll.enable``' Metadata
5152^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5153
5154This metadata suggests that the loop should be fully unrolled if the trip count
5155is known at compile time and partially unrolled if the trip count is not known
5156at compile time. The metadata has a single operand which is the string
5157``llvm.loop.unroll.enable``. For example:
5158
5159.. code-block:: llvm
5160
5161 !0 = !{!"llvm.loop.unroll.enable"}
5162
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005163'``llvm.loop.unroll.full``' Metadata
5164^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5165
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005166This metadata suggests that the loop should be unrolled fully. The
5167metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005168For example:
5169
5170.. code-block:: llvm
5171
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005172 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005173
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005174'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00005175^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005176
5177This metadata indicates that the loop should not be versioned for the purpose
5178of enabling loop-invariant code motion (LICM). The metadata has a single operand
5179which is the string ``llvm.loop.licm_versioning.disable``. For example:
5180
5181.. code-block:: llvm
5182
5183 !0 = !{!"llvm.loop.licm_versioning.disable"}
5184
Adam Nemetd2fa4142016-04-27 05:28:18 +00005185'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00005186^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00005187
5188Loop distribution allows splitting a loop into multiple loops. Currently,
5189this is only performed if the entire loop cannot be vectorized due to unsafe
Hiroshi Inoueb93daec2017-07-02 12:44:27 +00005190memory dependencies. The transformation will attempt to isolate the unsafe
Adam Nemetd2fa4142016-04-27 05:28:18 +00005191dependencies into their own loop.
5192
5193This metadata can be used to selectively enable or disable distribution of the
5194loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
5195second operand is a bit. If the bit operand value is 1 distribution is
5196enabled. A value of 0 disables distribution:
5197
5198.. code-block:: llvm
5199
5200 !0 = !{!"llvm.loop.distribute.enable", i1 0}
5201 !1 = !{!"llvm.loop.distribute.enable", i1 1}
5202
5203This metadata should be used in conjunction with ``llvm.loop`` loop
5204identification metadata.
5205
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005206'``llvm.mem``'
5207^^^^^^^^^^^^^^^
5208
5209Metadata types used to annotate memory accesses with information helpful
5210for optimizations are prefixed with ``llvm.mem``.
5211
5212'``llvm.mem.parallel_loop_access``' Metadata
5213^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5214
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005215The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
5216or metadata containing a list of loop identifiers for nested loops.
5217The metadata is attached to memory accessing instructions and denotes that
5218no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00005219with the same loop identifier. The metadata on memory reads also implies that
5220if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005221
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005222Precisely, given two instructions ``m1`` and ``m2`` that both have the
5223``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
5224set of loops associated with that metadata, respectively, then there is no loop
5225carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005226``L2``.
5227
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005228As a special case, if all memory accessing instructions in a loop have
5229``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
5230loop has no loop carried memory dependences and is considered to be a parallel
5231loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005232
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005233Note that if not all memory access instructions have such metadata referring to
5234the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00005235memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005236safe mechanism, this causes loops that were originally parallel to be considered
5237sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005238insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005239
5240Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00005241both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005242metadata types that refer to the same loop identifier metadata.
5243
5244.. code-block:: llvm
5245
5246 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005247 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005248 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005249 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005250 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005251 ...
5252 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005253
5254 for.end:
5255 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005256 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005257
5258It is also possible to have nested parallel loops. In that case the
5259memory accesses refer to a list of loop identifier metadata nodes instead of
5260the loop identifier metadata node directly:
5261
5262.. code-block:: llvm
5263
5264 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005265 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005266 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005267 ...
5268 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005269
5270 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005271 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005272 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005273 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005274 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005275 ...
5276 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005277
5278 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005279 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005280 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00005281 ...
5282 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005283
5284 outer.for.end: ; preds = %for.body
5285 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005286 !0 = !{!1, !2} ; a list of loop identifiers
5287 !1 = !{!1} ; an identifier for the inner loop
5288 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005289
Hiroshi Yamauchidce9def2017-11-02 22:26:51 +00005290'``irr_loop``' Metadata
5291^^^^^^^^^^^^^^^^^^^^^^^
5292
5293``irr_loop`` metadata may be attached to the terminator instruction of a basic
5294block that's an irreducible loop header (note that an irreducible loop has more
5295than once header basic blocks.) If ``irr_loop`` metadata is attached to the
5296terminator instruction of a basic block that is not really an irreducible loop
5297header, the behavior is undefined. The intent of this metadata is to improve the
5298accuracy of the block frequency propagation. For example, in the code below, the
5299block ``header0`` may have a loop header weight (relative to the other headers of
5300the irreducible loop) of 100:
5301
5302.. code-block:: llvm
5303
5304 header0:
5305 ...
5306 br i1 %cmp, label %t1, label %t2, !irr_loop !0
5307
5308 ...
5309 !0 = !{"loop_header_weight", i64 100}
5310
5311Irreducible loop header weights are typically based on profile data.
5312
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005313'``invariant.group``' Metadata
5314^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5315
Piotr Padlewski74b155f2018-04-08 13:53:04 +00005316The experimental ``invariant.group`` metadata may be attached to
5317``load``/``store`` instructions.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005318The existence of the ``invariant.group`` metadata on the instruction tells
5319the optimizer that every ``load`` and ``store`` to the same pointer operand
5320within the same invariant group can be assumed to load or store the same
5321value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005322when two pointers are considered the same). Pointers returned by bitcast or
5323getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005324
5325Examples:
5326
5327.. code-block:: llvm
5328
5329 @unknownPtr = external global i8
5330 ...
5331 %ptr = alloca i8
5332 store i8 42, i8* %ptr, !invariant.group !0
5333 call void @foo(i8* %ptr)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005334
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005335 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5336 call void @foo(i8* %ptr)
5337 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005338
5339 %newPtr = call i8* @getPointer(i8* %ptr)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005340 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005341
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005342 %unknownValue = load i8, i8* @unknownPtr
5343 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005344
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005345 call void @foo(i8* %ptr)
5346 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
5347 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005348
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005349 ...
5350 declare void @foo(i8*)
5351 declare i8* @getPointer(i8*)
5352 declare i8* @llvm.invariant.group.barrier(i8*)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005353
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005354 !0 = !{!"magic ptr"}
5355 !1 = !{!"other ptr"}
5356
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005357The invariant.group metadata must be dropped when replacing one pointer by
5358another based on aliasing information. This is because invariant.group is tied
5359to the SSA value of the pointer operand.
5360
5361.. code-block:: llvm
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005362
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005363 %v = load i8, i8* %x, !invariant.group !0
5364 ; if %x mustalias %y then we can replace the above instruction with
5365 %v = load i8, i8* %y
5366
Piotr Padlewski74b155f2018-04-08 13:53:04 +00005367Note that this is an experimental feature, which means that its semantics might
5368change in the future.
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005369
Peter Collingbournea333db82016-07-26 22:31:30 +00005370'``type``' Metadata
5371^^^^^^^^^^^^^^^^^^^
5372
5373See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005374
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005375'``associated``' Metadata
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005376^^^^^^^^^^^^^^^^^^^^^^^^^
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005377
5378The ``associated`` metadata may be attached to a global object
5379declaration with a single argument that references another global object.
5380
5381This metadata prevents discarding of the global object in linker GC
5382unless the referenced object is also discarded. The linker support for
5383this feature is spotty. For best compatibility, globals carrying this
5384metadata may also:
5385
5386- Be in a comdat with the referenced global.
5387- Be in @llvm.compiler.used.
5388- Have an explicit section with a name which is a valid C identifier.
5389
5390It does not have any effect on non-ELF targets.
5391
5392Example:
5393
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005394.. code-block:: text
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005395
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005396 $a = comdat any
5397 @a = global i32 1, comdat $a
5398 @b = internal global i32 2, comdat $a, section "abc", !associated !0
5399 !0 = !{i32* @a}
5400
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005401
Teresa Johnsond72f51c2017-06-15 15:57:12 +00005402'``prof``' Metadata
5403^^^^^^^^^^^^^^^^^^^
5404
5405The ``prof`` metadata is used to record profile data in the IR.
5406The first operand of the metadata node indicates the profile metadata
5407type. There are currently 3 types:
5408:ref:`branch_weights<prof_node_branch_weights>`,
5409:ref:`function_entry_count<prof_node_function_entry_count>`, and
5410:ref:`VP<prof_node_VP>`.
5411
5412.. _prof_node_branch_weights:
5413
5414branch_weights
5415""""""""""""""
5416
5417Branch weight metadata attached to a branch, select, switch or call instruction
5418represents the likeliness of the associated branch being taken.
5419For more information, see :doc:`BranchWeightMetadata`.
5420
5421.. _prof_node_function_entry_count:
5422
5423function_entry_count
5424""""""""""""""""""""
5425
5426Function entry count metadata can be attached to function definitions
5427to record the number of times the function is called. Used with BFI
5428information, it is also used to derive the basic block profile count.
5429For more information, see :doc:`BranchWeightMetadata`.
5430
5431.. _prof_node_VP:
5432
5433VP
5434""
5435
5436VP (value profile) metadata can be attached to instructions that have
5437value profile information. Currently this is indirect calls (where it
5438records the hottest callees) and calls to memory intrinsics such as memcpy,
5439memmove, and memset (where it records the hottest byte lengths).
5440
5441Each VP metadata node contains "VP" string, then a uint32_t value for the value
5442profiling kind, a uint64_t value for the total number of times the instruction
5443is executed, followed by uint64_t value and execution count pairs.
5444The value profiling kind is 0 for indirect call targets and 1 for memory
5445operations. For indirect call targets, each profile value is a hash
5446of the callee function name, and for memory operations each value is the
5447byte length.
5448
5449Note that the value counts do not need to add up to the total count
5450listed in the third operand (in practice only the top hottest values
5451are tracked and reported).
5452
5453Indirect call example:
5454
5455.. code-block:: llvm
5456
5457 call void %f(), !prof !1
5458 !1 = !{!"VP", i32 0, i64 1600, i64 7651369219802541373, i64 1030, i64 -4377547752858689819, i64 410}
5459
5460Note that the VP type is 0 (the second operand), which indicates this is
5461an indirect call value profile data. The third operand indicates that the
5462indirect call executed 1600 times. The 4th and 6th operands give the
5463hashes of the 2 hottest target functions' names (this is the same hash used
5464to represent function names in the profile database), and the 5th and 7th
5465operands give the execution count that each of the respective prior target
5466functions was called.
5467
Sean Silvab084af42012-12-07 10:36:55 +00005468Module Flags Metadata
5469=====================
5470
5471Information about the module as a whole is difficult to convey to LLVM's
5472subsystems. The LLVM IR isn't sufficient to transmit this information.
5473The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005474this. These flags are in the form of key / value pairs --- much like a
5475dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005476look it up.
5477
5478The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5479Each triplet has the following form:
5480
5481- The first element is a *behavior* flag, which specifies the behavior
5482 when two (or more) modules are merged together, and it encounters two
5483 (or more) metadata with the same ID. The supported behaviors are
5484 described below.
5485- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005486 metadata. Each module may only have one flag entry for each unique ID (not
5487 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005488- The third element is the value of the flag.
5489
5490When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005491``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5492each unique metadata ID string, there will be exactly one entry in the merged
5493modules ``llvm.module.flags`` metadata table, and the value for that entry will
5494be determined by the merge behavior flag, as described below. The only exception
5495is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005496
5497The following behaviors are supported:
5498
5499.. list-table::
5500 :header-rows: 1
5501 :widths: 10 90
5502
5503 * - Value
5504 - Behavior
5505
5506 * - 1
5507 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005508 Emits an error if two values disagree, otherwise the resulting value
5509 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005510
5511 * - 2
5512 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005513 Emits a warning if two values disagree. The result value will be the
5514 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005515
5516 * - 3
5517 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005518 Adds a requirement that another module flag be present and have a
5519 specified value after linking is performed. The value must be a
5520 metadata pair, where the first element of the pair is the ID of the
5521 module flag to be restricted, and the second element of the pair is
5522 the value the module flag should be restricted to. This behavior can
5523 be used to restrict the allowable results (via triggering of an
5524 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005525
5526 * - 4
5527 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005528 Uses the specified value, regardless of the behavior or value of the
5529 other module. If both modules specify **Override**, but the values
5530 differ, an error will be emitted.
5531
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005532 * - 5
5533 - **Append**
5534 Appends the two values, which are required to be metadata nodes.
5535
5536 * - 6
5537 - **AppendUnique**
5538 Appends the two values, which are required to be metadata
5539 nodes. However, duplicate entries in the second list are dropped
5540 during the append operation.
5541
Steven Wu86a511e2017-08-15 16:16:33 +00005542 * - 7
5543 - **Max**
5544 Takes the max of the two values, which are required to be integers.
5545
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005546It is an error for a particular unique flag ID to have multiple behaviors,
5547except in the case of **Require** (which adds restrictions on another metadata
5548value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005549
5550An example of module flags:
5551
5552.. code-block:: llvm
5553
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005554 !0 = !{ i32 1, !"foo", i32 1 }
5555 !1 = !{ i32 4, !"bar", i32 37 }
5556 !2 = !{ i32 2, !"qux", i32 42 }
5557 !3 = !{ i32 3, !"qux",
5558 !{
5559 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005560 }
5561 }
5562 !llvm.module.flags = !{ !0, !1, !2, !3 }
5563
5564- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5565 if two or more ``!"foo"`` flags are seen is to emit an error if their
5566 values are not equal.
5567
5568- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5569 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005570 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005571
5572- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5573 behavior if two or more ``!"qux"`` flags are seen is to emit a
5574 warning if their values are not equal.
5575
5576- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5577
5578 ::
5579
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005580 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005581
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005582 The behavior is to emit an error if the ``llvm.module.flags`` does not
5583 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5584 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005585
5586Objective-C Garbage Collection Module Flags Metadata
5587----------------------------------------------------
5588
5589On the Mach-O platform, Objective-C stores metadata about garbage
5590collection in a special section called "image info". The metadata
5591consists of a version number and a bitmask specifying what types of
5592garbage collection are supported (if any) by the file. If two or more
5593modules are linked together their garbage collection metadata needs to
5594be merged rather than appended together.
5595
5596The Objective-C garbage collection module flags metadata consists of the
5597following key-value pairs:
5598
5599.. list-table::
5600 :header-rows: 1
5601 :widths: 30 70
5602
5603 * - Key
5604 - Value
5605
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005606 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005607 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005608
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005609 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005610 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005611 always 0.
5612
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005613 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005614 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005615 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5616 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5617 Objective-C ABI version 2.
5618
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005619 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005620 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005621 not. Valid values are 0, for no garbage collection, and 2, for garbage
5622 collection supported.
5623
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005624 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005625 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005626 If present, its value must be 6. This flag requires that the
5627 ``Objective-C Garbage Collection`` flag have the value 2.
5628
5629Some important flag interactions:
5630
5631- If a module with ``Objective-C Garbage Collection`` set to 0 is
5632 merged with a module with ``Objective-C Garbage Collection`` set to
5633 2, then the resulting module has the
5634 ``Objective-C Garbage Collection`` flag set to 0.
5635- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5636 merged with a module with ``Objective-C GC Only`` set to 6.
5637
Oliver Stannard5dc29342014-06-20 10:08:11 +00005638C type width Module Flags Metadata
5639----------------------------------
5640
5641The ARM backend emits a section into each generated object file describing the
5642options that it was compiled with (in a compiler-independent way) to prevent
5643linking incompatible objects, and to allow automatic library selection. Some
5644of these options are not visible at the IR level, namely wchar_t width and enum
5645width.
5646
5647To pass this information to the backend, these options are encoded in module
5648flags metadata, using the following key-value pairs:
5649
5650.. list-table::
5651 :header-rows: 1
5652 :widths: 30 70
5653
5654 * - Key
5655 - Value
5656
5657 * - short_wchar
5658 - * 0 --- sizeof(wchar_t) == 4
5659 * 1 --- sizeof(wchar_t) == 2
5660
5661 * - short_enum
5662 - * 0 --- Enums are at least as large as an ``int``.
5663 * 1 --- Enums are stored in the smallest integer type which can
5664 represent all of its values.
5665
5666For example, the following metadata section specifies that the module was
5667compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5668enum is the smallest type which can represent all of its values::
5669
5670 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005671 !0 = !{i32 1, !"short_wchar", i32 1}
5672 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005673
Peter Collingbourne89061b22017-06-12 20:10:48 +00005674Automatic Linker Flags Named Metadata
5675=====================================
5676
5677Some targets support embedding flags to the linker inside individual object
5678files. Typically this is used in conjunction with language extensions which
5679allow source files to explicitly declare the libraries they depend on, and have
5680these automatically be transmitted to the linker via object files.
5681
5682These flags are encoded in the IR using named metadata with the name
5683``!llvm.linker.options``. Each operand is expected to be a metadata node
5684which should be a list of other metadata nodes, each of which should be a
5685list of metadata strings defining linker options.
5686
5687For example, the following metadata section specifies two separate sets of
5688linker options, presumably to link against ``libz`` and the ``Cocoa``
5689framework::
5690
5691 !0 = !{ !"-lz" },
5692 !1 = !{ !"-framework", !"Cocoa" } } }
5693 !llvm.linker.options = !{ !0, !1 }
5694
5695The metadata encoding as lists of lists of options, as opposed to a collapsed
5696list of options, is chosen so that the IR encoding can use multiple option
5697strings to specify e.g., a single library, while still having that specifier be
5698preserved as an atomic element that can be recognized by a target specific
5699assembly writer or object file emitter.
5700
5701Each individual option is required to be either a valid option for the target's
5702linker, or an option that is reserved by the target specific assembly writer or
5703object file emitter. No other aspect of these options is defined by the IR.
5704
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005705.. _intrinsicglobalvariables:
5706
Sean Silvab084af42012-12-07 10:36:55 +00005707Intrinsic Global Variables
5708==========================
5709
5710LLVM has a number of "magic" global variables that contain data that
5711affect code generation or other IR semantics. These are documented here.
5712All globals of this sort should have a section specified as
5713"``llvm.metadata``". This section and all globals that start with
5714"``llvm.``" are reserved for use by LLVM.
5715
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005716.. _gv_llvmused:
5717
Sean Silvab084af42012-12-07 10:36:55 +00005718The '``llvm.used``' Global Variable
5719-----------------------------------
5720
Rafael Espindola74f2e462013-04-22 14:58:02 +00005721The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005722:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005723pointers to named global variables, functions and aliases which may optionally
5724have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005725use of it is:
5726
5727.. code-block:: llvm
5728
5729 @X = global i8 4
5730 @Y = global i32 123
5731
5732 @llvm.used = appending global [2 x i8*] [
5733 i8* @X,
5734 i8* bitcast (i32* @Y to i8*)
5735 ], section "llvm.metadata"
5736
Rafael Espindola74f2e462013-04-22 14:58:02 +00005737If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5738and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005739symbol that it cannot see (which is why they have to be named). For example, if
5740a variable has internal linkage and no references other than that from the
5741``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5742references from inline asms and other things the compiler cannot "see", and
5743corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005744
5745On some targets, the code generator must emit a directive to the
5746assembler or object file to prevent the assembler and linker from
5747molesting the symbol.
5748
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005749.. _gv_llvmcompilerused:
5750
Sean Silvab084af42012-12-07 10:36:55 +00005751The '``llvm.compiler.used``' Global Variable
5752--------------------------------------------
5753
5754The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5755directive, except that it only prevents the compiler from touching the
5756symbol. On targets that support it, this allows an intelligent linker to
5757optimize references to the symbol without being impeded as it would be
5758by ``@llvm.used``.
5759
5760This is a rare construct that should only be used in rare circumstances,
5761and should not be exposed to source languages.
5762
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005763.. _gv_llvmglobalctors:
5764
Sean Silvab084af42012-12-07 10:36:55 +00005765The '``llvm.global_ctors``' Global Variable
5766-------------------------------------------
5767
5768.. code-block:: llvm
5769
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005770 %0 = type { i32, void ()*, i8* }
5771 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005772
5773The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005774functions, priorities, and an optional associated global or function.
5775The functions referenced by this array will be called in ascending order
5776of priority (i.e. lowest first) when the module is loaded. The order of
5777functions with the same priority is not defined.
5778
5779If the third field is present, non-null, and points to a global variable
5780or function, the initializer function will only run if the associated
5781data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005782
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005783.. _llvmglobaldtors:
5784
Sean Silvab084af42012-12-07 10:36:55 +00005785The '``llvm.global_dtors``' Global Variable
5786-------------------------------------------
5787
5788.. code-block:: llvm
5789
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005790 %0 = type { i32, void ()*, i8* }
5791 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005792
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005793The ``@llvm.global_dtors`` array contains a list of destructor
5794functions, priorities, and an optional associated global or function.
5795The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005796order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005797order of functions with the same priority is not defined.
5798
5799If the third field is present, non-null, and points to a global variable
5800or function, the destructor function will only run if the associated
5801data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005802
5803Instruction Reference
5804=====================
5805
5806The LLVM instruction set consists of several different classifications
5807of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5808instructions <binaryops>`, :ref:`bitwise binary
5809instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5810:ref:`other instructions <otherops>`.
5811
5812.. _terminators:
5813
5814Terminator Instructions
5815-----------------------
5816
5817As mentioned :ref:`previously <functionstructure>`, every basic block in a
5818program ends with a "Terminator" instruction, which indicates which
5819block should be executed after the current block is finished. These
5820terminator instructions typically yield a '``void``' value: they produce
5821control flow, not values (the one exception being the
5822':ref:`invoke <i_invoke>`' instruction).
5823
5824The terminator instructions are: ':ref:`ret <i_ret>`',
5825':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5826':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005827':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005828':ref:`catchret <i_catchret>`',
5829':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005830and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005831
5832.. _i_ret:
5833
5834'``ret``' Instruction
5835^^^^^^^^^^^^^^^^^^^^^
5836
5837Syntax:
5838"""""""
5839
5840::
5841
5842 ret <type> <value> ; Return a value from a non-void function
5843 ret void ; Return from void function
5844
5845Overview:
5846"""""""""
5847
5848The '``ret``' instruction is used to return control flow (and optionally
5849a value) from a function back to the caller.
5850
5851There are two forms of the '``ret``' instruction: one that returns a
5852value and then causes control flow, and one that just causes control
5853flow to occur.
5854
5855Arguments:
5856""""""""""
5857
5858The '``ret``' instruction optionally accepts a single argument, the
5859return value. The type of the return value must be a ':ref:`first
5860class <t_firstclass>`' type.
5861
5862A function is not :ref:`well formed <wellformed>` if it it has a non-void
5863return type and contains a '``ret``' instruction with no return value or
5864a return value with a type that does not match its type, or if it has a
5865void return type and contains a '``ret``' instruction with a return
5866value.
5867
5868Semantics:
5869""""""""""
5870
5871When the '``ret``' instruction is executed, control flow returns back to
5872the calling function's context. If the caller is a
5873":ref:`call <i_call>`" instruction, execution continues at the
5874instruction after the call. If the caller was an
5875":ref:`invoke <i_invoke>`" instruction, execution continues at the
5876beginning of the "normal" destination block. If the instruction returns
5877a value, that value shall set the call or invoke instruction's return
5878value.
5879
5880Example:
5881""""""""
5882
5883.. code-block:: llvm
5884
5885 ret i32 5 ; Return an integer value of 5
5886 ret void ; Return from a void function
5887 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5888
5889.. _i_br:
5890
5891'``br``' Instruction
5892^^^^^^^^^^^^^^^^^^^^
5893
5894Syntax:
5895"""""""
5896
5897::
5898
5899 br i1 <cond>, label <iftrue>, label <iffalse>
5900 br label <dest> ; Unconditional branch
5901
5902Overview:
5903"""""""""
5904
5905The '``br``' instruction is used to cause control flow to transfer to a
5906different basic block in the current function. There are two forms of
5907this instruction, corresponding to a conditional branch and an
5908unconditional branch.
5909
5910Arguments:
5911""""""""""
5912
5913The conditional branch form of the '``br``' instruction takes a single
5914'``i1``' value and two '``label``' values. The unconditional form of the
5915'``br``' instruction takes a single '``label``' value as a target.
5916
5917Semantics:
5918""""""""""
5919
5920Upon execution of a conditional '``br``' instruction, the '``i1``'
5921argument is evaluated. If the value is ``true``, control flows to the
5922'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5923to the '``iffalse``' ``label`` argument.
5924
5925Example:
5926""""""""
5927
5928.. code-block:: llvm
5929
5930 Test:
5931 %cond = icmp eq i32 %a, %b
5932 br i1 %cond, label %IfEqual, label %IfUnequal
5933 IfEqual:
5934 ret i32 1
5935 IfUnequal:
5936 ret i32 0
5937
5938.. _i_switch:
5939
5940'``switch``' Instruction
5941^^^^^^^^^^^^^^^^^^^^^^^^
5942
5943Syntax:
5944"""""""
5945
5946::
5947
5948 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5949
5950Overview:
5951"""""""""
5952
5953The '``switch``' instruction is used to transfer control flow to one of
5954several different places. It is a generalization of the '``br``'
5955instruction, allowing a branch to occur to one of many possible
5956destinations.
5957
5958Arguments:
5959""""""""""
5960
5961The '``switch``' instruction uses three parameters: an integer
5962comparison value '``value``', a default '``label``' destination, and an
5963array of pairs of comparison value constants and '``label``'s. The table
5964is not allowed to contain duplicate constant entries.
5965
5966Semantics:
5967""""""""""
5968
5969The ``switch`` instruction specifies a table of values and destinations.
5970When the '``switch``' instruction is executed, this table is searched
5971for the given value. If the value is found, control flow is transferred
5972to the corresponding destination; otherwise, control flow is transferred
5973to the default destination.
5974
5975Implementation:
5976"""""""""""""""
5977
5978Depending on properties of the target machine and the particular
5979``switch`` instruction, this instruction may be code generated in
5980different ways. For example, it could be generated as a series of
5981chained conditional branches or with a lookup table.
5982
5983Example:
5984""""""""
5985
5986.. code-block:: llvm
5987
5988 ; Emulate a conditional br instruction
5989 %Val = zext i1 %value to i32
5990 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5991
5992 ; Emulate an unconditional br instruction
5993 switch i32 0, label %dest [ ]
5994
5995 ; Implement a jump table:
5996 switch i32 %val, label %otherwise [ i32 0, label %onzero
5997 i32 1, label %onone
5998 i32 2, label %ontwo ]
5999
6000.. _i_indirectbr:
6001
6002'``indirectbr``' Instruction
6003^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6004
6005Syntax:
6006"""""""
6007
6008::
6009
6010 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
6011
6012Overview:
6013"""""""""
6014
6015The '``indirectbr``' instruction implements an indirect branch to a
6016label within the current function, whose address is specified by
6017"``address``". Address must be derived from a
6018:ref:`blockaddress <blockaddress>` constant.
6019
6020Arguments:
6021""""""""""
6022
6023The '``address``' argument is the address of the label to jump to. The
6024rest of the arguments indicate the full set of possible destinations
6025that the address may point to. Blocks are allowed to occur multiple
6026times in the destination list, though this isn't particularly useful.
6027
6028This destination list is required so that dataflow analysis has an
6029accurate understanding of the CFG.
6030
6031Semantics:
6032""""""""""
6033
6034Control transfers to the block specified in the address argument. All
6035possible destination blocks must be listed in the label list, otherwise
6036this instruction has undefined behavior. This implies that jumps to
6037labels defined in other functions have undefined behavior as well.
6038
6039Implementation:
6040"""""""""""""""
6041
6042This is typically implemented with a jump through a register.
6043
6044Example:
6045""""""""
6046
6047.. code-block:: llvm
6048
6049 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
6050
6051.. _i_invoke:
6052
6053'``invoke``' Instruction
6054^^^^^^^^^^^^^^^^^^^^^^^^
6055
6056Syntax:
6057"""""""
6058
6059::
6060
David Blaikieb83cf102016-07-13 17:21:34 +00006061 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006062 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00006063
6064Overview:
6065"""""""""
6066
6067The '``invoke``' instruction causes control to transfer to a specified
6068function, with the possibility of control flow transfer to either the
6069'``normal``' label or the '``exception``' label. If the callee function
6070returns with the "``ret``" instruction, control flow will return to the
6071"normal" label. If the callee (or any indirect callees) returns via the
6072":ref:`resume <i_resume>`" instruction or other exception handling
6073mechanism, control is interrupted and continued at the dynamically
6074nearest "exception" label.
6075
6076The '``exception``' label is a `landing
6077pad <ExceptionHandling.html#overview>`_ for the exception. As such,
6078'``exception``' label is required to have the
6079":ref:`landingpad <i_landingpad>`" instruction, which contains the
6080information about the behavior of the program after unwinding happens,
6081as its first non-PHI instruction. The restrictions on the
6082"``landingpad``" instruction's tightly couples it to the "``invoke``"
6083instruction, so that the important information contained within the
6084"``landingpad``" instruction can't be lost through normal code motion.
6085
6086Arguments:
6087""""""""""
6088
6089This instruction requires several arguments:
6090
6091#. The optional "cconv" marker indicates which :ref:`calling
6092 convention <callingconv>` the call should use. If none is
6093 specified, the call defaults to using C calling conventions.
6094#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6095 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6096 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00006097#. '``ty``': the type of the call instruction itself which is also the
6098 type of the return value. Functions that return no value are marked
6099 ``void``.
6100#. '``fnty``': shall be the signature of the function being invoked. The
6101 argument types must match the types implied by this signature. This
6102 type can be omitted if the function is not varargs.
6103#. '``fnptrval``': An LLVM value containing a pointer to a function to
6104 be invoked. In most cases, this is a direct function invocation, but
6105 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
6106 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00006107#. '``function args``': argument list whose types match the function
6108 signature argument types and parameter attributes. All arguments must
6109 be of :ref:`first class <t_firstclass>` type. If the function signature
6110 indicates the function accepts a variable number of arguments, the
6111 extra arguments can be specified.
6112#. '``normal label``': the label reached when the called function
6113 executes a '``ret``' instruction.
6114#. '``exception label``': the label reached when a callee returns via
6115 the :ref:`resume <i_resume>` instruction or other exception handling
6116 mechanism.
George Burgess IV8a464a72017-04-13 05:00:31 +00006117#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006118#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00006119
6120Semantics:
6121""""""""""
6122
6123This instruction is designed to operate as a standard '``call``'
6124instruction in most regards. The primary difference is that it
6125establishes an association with a label, which is used by the runtime
6126library to unwind the stack.
6127
6128This instruction is used in languages with destructors to ensure that
6129proper cleanup is performed in the case of either a ``longjmp`` or a
6130thrown exception. Additionally, this is important for implementation of
6131'``catch``' clauses in high-level languages that support them.
6132
6133For the purposes of the SSA form, the definition of the value returned
6134by the '``invoke``' instruction is deemed to occur on the edge from the
6135current block to the "normal" label. If the callee unwinds then no
6136return value is available.
6137
6138Example:
6139""""""""
6140
6141.. code-block:: llvm
6142
6143 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006144 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006145 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006146 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006147
6148.. _i_resume:
6149
6150'``resume``' Instruction
6151^^^^^^^^^^^^^^^^^^^^^^^^
6152
6153Syntax:
6154"""""""
6155
6156::
6157
6158 resume <type> <value>
6159
6160Overview:
6161"""""""""
6162
6163The '``resume``' instruction is a terminator instruction that has no
6164successors.
6165
6166Arguments:
6167""""""""""
6168
6169The '``resume``' instruction requires one argument, which must have the
6170same type as the result of any '``landingpad``' instruction in the same
6171function.
6172
6173Semantics:
6174""""""""""
6175
6176The '``resume``' instruction resumes propagation of an existing
6177(in-flight) exception whose unwinding was interrupted with a
6178:ref:`landingpad <i_landingpad>` instruction.
6179
6180Example:
6181""""""""
6182
6183.. code-block:: llvm
6184
6185 resume { i8*, i32 } %exn
6186
David Majnemer8a1c45d2015-12-12 05:38:55 +00006187.. _i_catchswitch:
6188
6189'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00006190^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00006191
6192Syntax:
6193"""""""
6194
6195::
6196
6197 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
6198 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
6199
6200Overview:
6201"""""""""
6202
6203The '``catchswitch``' instruction is used by `LLVM's exception handling system
6204<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
6205that may be executed by the :ref:`EH personality routine <personalityfn>`.
6206
6207Arguments:
6208""""""""""
6209
6210The ``parent`` argument is the token of the funclet that contains the
6211``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
6212this operand may be the token ``none``.
6213
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006214The ``default`` argument is the label of another basic block beginning with
6215either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
6216must be a legal target with respect to the ``parent`` links, as described in
6217the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00006218
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006219The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00006220:ref:`catchpad <i_catchpad>` instruction.
6221
6222Semantics:
6223""""""""""
6224
6225Executing this instruction transfers control to one of the successors in
6226``handlers``, if appropriate, or continues to unwind via the unwind label if
6227present.
6228
6229The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
6230it must be both the first non-phi instruction and last instruction in the basic
6231block. Therefore, it must be the only non-phi instruction in the block.
6232
6233Example:
6234""""""""
6235
Renato Golin124f2592016-07-20 12:16:38 +00006236.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00006237
6238 dispatch1:
6239 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
6240 dispatch2:
6241 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
6242
David Majnemer654e1302015-07-31 17:58:14 +00006243.. _i_catchret:
6244
6245'``catchret``' Instruction
6246^^^^^^^^^^^^^^^^^^^^^^^^^^
6247
6248Syntax:
6249"""""""
6250
6251::
6252
David Majnemer8a1c45d2015-12-12 05:38:55 +00006253 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00006254
6255Overview:
6256"""""""""
6257
6258The '``catchret``' instruction is a terminator instruction that has a
6259single successor.
6260
6261
6262Arguments:
6263""""""""""
6264
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006265The first argument to a '``catchret``' indicates which ``catchpad`` it
6266exits. It must be a :ref:`catchpad <i_catchpad>`.
6267The second argument to a '``catchret``' specifies where control will
6268transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00006269
6270Semantics:
6271""""""""""
6272
David Majnemer8a1c45d2015-12-12 05:38:55 +00006273The '``catchret``' instruction ends an existing (in-flight) exception whose
6274unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
6275:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
6276code to, for example, destroy the active exception. Control then transfers to
6277``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006278
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006279The ``token`` argument must be a token produced by a ``catchpad`` instruction.
6280If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
6281funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6282the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00006283
6284Example:
6285""""""""
6286
Renato Golin124f2592016-07-20 12:16:38 +00006287.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006288
David Majnemer8a1c45d2015-12-12 05:38:55 +00006289 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006290
David Majnemer654e1302015-07-31 17:58:14 +00006291.. _i_cleanupret:
6292
6293'``cleanupret``' Instruction
6294^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6295
6296Syntax:
6297"""""""
6298
6299::
6300
David Majnemer8a1c45d2015-12-12 05:38:55 +00006301 cleanupret from <value> unwind label <continue>
6302 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00006303
6304Overview:
6305"""""""""
6306
6307The '``cleanupret``' instruction is a terminator instruction that has
6308an optional successor.
6309
6310
6311Arguments:
6312""""""""""
6313
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006314The '``cleanupret``' instruction requires one argument, which indicates
6315which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006316If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
6317funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6318the ``cleanupret``'s behavior is undefined.
6319
6320The '``cleanupret``' instruction also has an optional successor, ``continue``,
6321which must be the label of another basic block beginning with either a
6322``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
6323be a legal target with respect to the ``parent`` links, as described in the
6324`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00006325
6326Semantics:
6327""""""""""
6328
6329The '``cleanupret``' instruction indicates to the
6330:ref:`personality function <personalityfn>` that one
6331:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
6332It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006333
David Majnemer654e1302015-07-31 17:58:14 +00006334Example:
6335""""""""
6336
Renato Golin124f2592016-07-20 12:16:38 +00006337.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006338
David Majnemer8a1c45d2015-12-12 05:38:55 +00006339 cleanupret from %cleanup unwind to caller
6340 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00006341
Sean Silvab084af42012-12-07 10:36:55 +00006342.. _i_unreachable:
6343
6344'``unreachable``' Instruction
6345^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6346
6347Syntax:
6348"""""""
6349
6350::
6351
6352 unreachable
6353
6354Overview:
6355"""""""""
6356
6357The '``unreachable``' instruction has no defined semantics. This
6358instruction is used to inform the optimizer that a particular portion of
6359the code is not reachable. This can be used to indicate that the code
6360after a no-return function cannot be reached, and other facts.
6361
6362Semantics:
6363""""""""""
6364
6365The '``unreachable``' instruction has no defined semantics.
6366
6367.. _binaryops:
6368
6369Binary Operations
6370-----------------
6371
6372Binary operators are used to do most of the computation in a program.
6373They require two operands of the same type, execute an operation on
6374them, and produce a single value. The operands might represent multiple
6375data, as is the case with the :ref:`vector <t_vector>` data type. The
6376result value has the same type as its operands.
6377
6378There are several different binary operators:
6379
6380.. _i_add:
6381
6382'``add``' Instruction
6383^^^^^^^^^^^^^^^^^^^^^
6384
6385Syntax:
6386"""""""
6387
6388::
6389
Tim Northover675a0962014-06-13 14:24:23 +00006390 <result> = add <ty> <op1>, <op2> ; yields ty:result
6391 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
6392 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
6393 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006394
6395Overview:
6396"""""""""
6397
6398The '``add``' instruction returns the sum of its two operands.
6399
6400Arguments:
6401""""""""""
6402
6403The two arguments to the '``add``' instruction must be
6404:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6405arguments must have identical types.
6406
6407Semantics:
6408""""""""""
6409
6410The value produced is the integer sum of the two operands.
6411
6412If the sum has unsigned overflow, the result returned is the
6413mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6414the result.
6415
6416Because LLVM integers use a two's complement representation, this
6417instruction is appropriate for both signed and unsigned integers.
6418
6419``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6420respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6421result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
6422unsigned and/or signed overflow, respectively, occurs.
6423
6424Example:
6425""""""""
6426
Renato Golin124f2592016-07-20 12:16:38 +00006427.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006428
Tim Northover675a0962014-06-13 14:24:23 +00006429 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006430
6431.. _i_fadd:
6432
6433'``fadd``' Instruction
6434^^^^^^^^^^^^^^^^^^^^^^
6435
6436Syntax:
6437"""""""
6438
6439::
6440
Tim Northover675a0962014-06-13 14:24:23 +00006441 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006442
6443Overview:
6444"""""""""
6445
6446The '``fadd``' instruction returns the sum of its two operands.
6447
6448Arguments:
6449""""""""""
6450
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00006451The two arguments to the '``fadd``' instruction must be
6452:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
6453floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00006454
6455Semantics:
6456""""""""""
6457
Sanjay Patel7b722402018-03-07 17:18:22 +00006458The value produced is the floating-point sum of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00006459This instruction is assumed to execute in the default :ref:`floating-point
6460environment <floatenv>`.
Sanjay Patel7b722402018-03-07 17:18:22 +00006461This instruction can also take any number of :ref:`fast-math
6462flags <fastmath>`, which are optimization hints to enable otherwise
6463unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006464
6465Example:
6466""""""""
6467
Renato Golin124f2592016-07-20 12:16:38 +00006468.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006469
Tim Northover675a0962014-06-13 14:24:23 +00006470 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006471
6472'``sub``' Instruction
6473^^^^^^^^^^^^^^^^^^^^^
6474
6475Syntax:
6476"""""""
6477
6478::
6479
Tim Northover675a0962014-06-13 14:24:23 +00006480 <result> = sub <ty> <op1>, <op2> ; yields ty:result
6481 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
6482 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
6483 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006484
6485Overview:
6486"""""""""
6487
6488The '``sub``' instruction returns the difference of its two operands.
6489
6490Note that the '``sub``' instruction is used to represent the '``neg``'
6491instruction present in most other intermediate representations.
6492
6493Arguments:
6494""""""""""
6495
6496The two arguments to the '``sub``' instruction must be
6497:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6498arguments must have identical types.
6499
6500Semantics:
6501""""""""""
6502
6503The value produced is the integer difference of the two operands.
6504
6505If the difference has unsigned overflow, the result returned is the
6506mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6507the result.
6508
6509Because LLVM integers use a two's complement representation, this
6510instruction is appropriate for both signed and unsigned integers.
6511
6512``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6513respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6514result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
6515unsigned and/or signed overflow, respectively, occurs.
6516
6517Example:
6518""""""""
6519
Renato Golin124f2592016-07-20 12:16:38 +00006520.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006521
Tim Northover675a0962014-06-13 14:24:23 +00006522 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6523 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006524
6525.. _i_fsub:
6526
6527'``fsub``' Instruction
6528^^^^^^^^^^^^^^^^^^^^^^
6529
6530Syntax:
6531"""""""
6532
6533::
6534
Tim Northover675a0962014-06-13 14:24:23 +00006535 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006536
6537Overview:
6538"""""""""
6539
6540The '``fsub``' instruction returns the difference of its two operands.
6541
6542Note that the '``fsub``' instruction is used to represent the '``fneg``'
6543instruction present in most other intermediate representations.
6544
6545Arguments:
6546""""""""""
6547
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00006548The two arguments to the '``fsub``' instruction must be
6549:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
6550floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00006551
6552Semantics:
6553""""""""""
6554
Sanjay Patel7b722402018-03-07 17:18:22 +00006555The value produced is the floating-point difference of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00006556This instruction is assumed to execute in the default :ref:`floating-point
6557environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00006558This instruction can also take any number of :ref:`fast-math
6559flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00006560unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006561
6562Example:
6563""""""""
6564
Renato Golin124f2592016-07-20 12:16:38 +00006565.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006566
Tim Northover675a0962014-06-13 14:24:23 +00006567 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6568 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006569
6570'``mul``' Instruction
6571^^^^^^^^^^^^^^^^^^^^^
6572
6573Syntax:
6574"""""""
6575
6576::
6577
Tim Northover675a0962014-06-13 14:24:23 +00006578 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6579 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6580 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6581 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006582
6583Overview:
6584"""""""""
6585
6586The '``mul``' instruction returns the product of its two operands.
6587
6588Arguments:
6589""""""""""
6590
6591The two arguments to the '``mul``' instruction must be
6592:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6593arguments must have identical types.
6594
6595Semantics:
6596""""""""""
6597
6598The value produced is the integer product of the two operands.
6599
6600If the result of the multiplication has unsigned overflow, the result
6601returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6602bit width of the result.
6603
6604Because LLVM integers use a two's complement representation, and the
6605result is the same width as the operands, this instruction returns the
6606correct result for both signed and unsigned integers. If a full product
6607(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6608sign-extended or zero-extended as appropriate to the width of the full
6609product.
6610
6611``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6612respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6613result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6614unsigned and/or signed overflow, respectively, occurs.
6615
6616Example:
6617""""""""
6618
Renato Golin124f2592016-07-20 12:16:38 +00006619.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006620
Tim Northover675a0962014-06-13 14:24:23 +00006621 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006622
6623.. _i_fmul:
6624
6625'``fmul``' Instruction
6626^^^^^^^^^^^^^^^^^^^^^^
6627
6628Syntax:
6629"""""""
6630
6631::
6632
Tim Northover675a0962014-06-13 14:24:23 +00006633 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006634
6635Overview:
6636"""""""""
6637
6638The '``fmul``' instruction returns the product of its two operands.
6639
6640Arguments:
6641""""""""""
6642
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00006643The two arguments to the '``fmul``' instruction must be
6644:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
6645floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00006646
6647Semantics:
6648""""""""""
6649
Sanjay Patel7b722402018-03-07 17:18:22 +00006650The value produced is the floating-point product of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00006651This instruction is assumed to execute in the default :ref:`floating-point
6652environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00006653This instruction can also take any number of :ref:`fast-math
6654flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00006655unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006656
6657Example:
6658""""""""
6659
Renato Golin124f2592016-07-20 12:16:38 +00006660.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006661
Tim Northover675a0962014-06-13 14:24:23 +00006662 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006663
6664'``udiv``' Instruction
6665^^^^^^^^^^^^^^^^^^^^^^
6666
6667Syntax:
6668"""""""
6669
6670::
6671
Tim Northover675a0962014-06-13 14:24:23 +00006672 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6673 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006674
6675Overview:
6676"""""""""
6677
6678The '``udiv``' instruction returns the quotient of its two operands.
6679
6680Arguments:
6681""""""""""
6682
6683The two arguments to the '``udiv``' instruction must be
6684:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6685arguments must have identical types.
6686
6687Semantics:
6688""""""""""
6689
6690The value produced is the unsigned integer quotient of the two operands.
6691
6692Note that unsigned integer division and signed integer division are
6693distinct operations; for signed integer division, use '``sdiv``'.
6694
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006695Division by zero is undefined behavior. For vectors, if any element
6696of the divisor is zero, the operation has undefined behavior.
6697
Sean Silvab084af42012-12-07 10:36:55 +00006698
6699If the ``exact`` keyword is present, the result value of the ``udiv`` is
6700a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6701such, "((a udiv exact b) mul b) == a").
6702
6703Example:
6704""""""""
6705
Renato Golin124f2592016-07-20 12:16:38 +00006706.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006707
Tim Northover675a0962014-06-13 14:24:23 +00006708 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006709
6710'``sdiv``' Instruction
6711^^^^^^^^^^^^^^^^^^^^^^
6712
6713Syntax:
6714"""""""
6715
6716::
6717
Tim Northover675a0962014-06-13 14:24:23 +00006718 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6719 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006720
6721Overview:
6722"""""""""
6723
6724The '``sdiv``' instruction returns the quotient of its two operands.
6725
6726Arguments:
6727""""""""""
6728
6729The two arguments to the '``sdiv``' instruction must be
6730:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6731arguments must have identical types.
6732
6733Semantics:
6734""""""""""
6735
6736The value produced is the signed integer quotient of the two operands
6737rounded towards zero.
6738
6739Note that signed integer division and unsigned integer division are
6740distinct operations; for unsigned integer division, use '``udiv``'.
6741
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006742Division by zero is undefined behavior. For vectors, if any element
6743of the divisor is zero, the operation has undefined behavior.
6744Overflow also leads to undefined behavior; this is a rare case, but can
6745occur, for example, by doing a 32-bit division of -2147483648 by -1.
Sean Silvab084af42012-12-07 10:36:55 +00006746
6747If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6748a :ref:`poison value <poisonvalues>` if the result would be rounded.
6749
6750Example:
6751""""""""
6752
Renato Golin124f2592016-07-20 12:16:38 +00006753.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006754
Tim Northover675a0962014-06-13 14:24:23 +00006755 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006756
6757.. _i_fdiv:
6758
6759'``fdiv``' Instruction
6760^^^^^^^^^^^^^^^^^^^^^^
6761
6762Syntax:
6763"""""""
6764
6765::
6766
Tim Northover675a0962014-06-13 14:24:23 +00006767 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006768
6769Overview:
6770"""""""""
6771
6772The '``fdiv``' instruction returns the quotient of its two operands.
6773
6774Arguments:
6775""""""""""
6776
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00006777The two arguments to the '``fdiv``' instruction must be
6778:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
6779floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00006780
6781Semantics:
6782""""""""""
6783
Sanjay Patel7b722402018-03-07 17:18:22 +00006784The value produced is the floating-point quotient of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00006785This instruction is assumed to execute in the default :ref:`floating-point
6786environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00006787This instruction can also take any number of :ref:`fast-math
6788flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00006789unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006790
6791Example:
6792""""""""
6793
Renato Golin124f2592016-07-20 12:16:38 +00006794.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006795
Tim Northover675a0962014-06-13 14:24:23 +00006796 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006797
6798'``urem``' Instruction
6799^^^^^^^^^^^^^^^^^^^^^^
6800
6801Syntax:
6802"""""""
6803
6804::
6805
Tim Northover675a0962014-06-13 14:24:23 +00006806 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006807
6808Overview:
6809"""""""""
6810
6811The '``urem``' instruction returns the remainder from the unsigned
6812division of its two arguments.
6813
6814Arguments:
6815""""""""""
6816
6817The two arguments to the '``urem``' instruction must be
6818:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6819arguments must have identical types.
6820
6821Semantics:
6822""""""""""
6823
6824This instruction returns the unsigned integer *remainder* of a division.
6825This instruction always performs an unsigned division to get the
6826remainder.
6827
6828Note that unsigned integer remainder and signed integer remainder are
6829distinct operations; for signed integer remainder, use '``srem``'.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00006830
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006831Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00006832For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006833undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006834
6835Example:
6836""""""""
6837
Renato Golin124f2592016-07-20 12:16:38 +00006838.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006839
Tim Northover675a0962014-06-13 14:24:23 +00006840 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006841
6842'``srem``' Instruction
6843^^^^^^^^^^^^^^^^^^^^^^
6844
6845Syntax:
6846"""""""
6847
6848::
6849
Tim Northover675a0962014-06-13 14:24:23 +00006850 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006851
6852Overview:
6853"""""""""
6854
6855The '``srem``' instruction returns the remainder from the signed
6856division of its two operands. This instruction can also take
6857:ref:`vector <t_vector>` versions of the values in which case the elements
6858must be integers.
6859
6860Arguments:
6861""""""""""
6862
6863The two arguments to the '``srem``' instruction must be
6864:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6865arguments must have identical types.
6866
6867Semantics:
6868""""""""""
6869
6870This instruction returns the *remainder* of a division (where the result
6871is either zero or has the same sign as the dividend, ``op1``), not the
6872*modulo* operator (where the result is either zero or has the same sign
6873as the divisor, ``op2``) of a value. For more information about the
6874difference, see `The Math
6875Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6876table of how this is implemented in various languages, please see
6877`Wikipedia: modulo
6878operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6879
6880Note that signed integer remainder and unsigned integer remainder are
6881distinct operations; for unsigned integer remainder, use '``urem``'.
6882
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006883Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00006884For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006885undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00006886Overflow also leads to undefined behavior; this is a rare case, but can
6887occur, for example, by taking the remainder of a 32-bit division of
6888-2147483648 by -1. (The remainder doesn't actually overflow, but this
6889rule lets srem be implemented using instructions that return both the
6890result of the division and the remainder.)
6891
6892Example:
6893""""""""
6894
Renato Golin124f2592016-07-20 12:16:38 +00006895.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006896
Tim Northover675a0962014-06-13 14:24:23 +00006897 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006898
6899.. _i_frem:
6900
6901'``frem``' Instruction
6902^^^^^^^^^^^^^^^^^^^^^^
6903
6904Syntax:
6905"""""""
6906
6907::
6908
Tim Northover675a0962014-06-13 14:24:23 +00006909 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006910
6911Overview:
6912"""""""""
6913
6914The '``frem``' instruction returns the remainder from the division of
6915its two operands.
6916
6917Arguments:
6918""""""""""
6919
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00006920The two arguments to the '``frem``' instruction must be
6921:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
6922floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00006923
6924Semantics:
6925""""""""""
6926
Sanjay Patel7b722402018-03-07 17:18:22 +00006927The value produced is the floating-point remainder of the two operands.
6928This is the same output as a libm '``fmod``' function, but without any
6929possibility of setting ``errno``. The remainder has the same sign as the
6930dividend.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00006931This instruction is assumed to execute in the default :ref:`floating-point
6932environment <floatenv>`.
Sanjay Patel7b722402018-03-07 17:18:22 +00006933This instruction can also take any number of :ref:`fast-math
6934flags <fastmath>`, which are optimization hints to enable otherwise
6935unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006936
6937Example:
6938""""""""
6939
Renato Golin124f2592016-07-20 12:16:38 +00006940.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006941
Tim Northover675a0962014-06-13 14:24:23 +00006942 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006943
6944.. _bitwiseops:
6945
6946Bitwise Binary Operations
6947-------------------------
6948
6949Bitwise binary operators are used to do various forms of bit-twiddling
6950in a program. They are generally very efficient instructions and can
6951commonly be strength reduced from other instructions. They require two
6952operands of the same type, execute an operation on them, and produce a
6953single value. The resulting value is the same type as its operands.
6954
6955'``shl``' Instruction
6956^^^^^^^^^^^^^^^^^^^^^
6957
6958Syntax:
6959"""""""
6960
6961::
6962
Tim Northover675a0962014-06-13 14:24:23 +00006963 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6964 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6965 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6966 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006967
6968Overview:
6969"""""""""
6970
6971The '``shl``' instruction returns the first operand shifted to the left
6972a specified number of bits.
6973
6974Arguments:
6975""""""""""
6976
6977Both arguments to the '``shl``' instruction must be the same
6978:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6979'``op2``' is treated as an unsigned value.
6980
6981Semantics:
6982""""""""""
6983
6984The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6985where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006986dynamically) equal to or larger than the number of bits in
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006987``op1``, this instruction returns a :ref:`poison value <poisonvalues>`.
6988If the arguments are vectors, each vector element of ``op1`` is shifted
6989by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00006990
Nuno Lopesb2781fb2017-06-06 08:28:17 +00006991If the ``nuw`` keyword is present, then the shift produces a poison
6992value if it shifts out any non-zero bits.
6993If the ``nsw`` keyword is present, then the shift produces a poison
6994value it shifts out any bits that disagree with the resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00006995
6996Example:
6997""""""""
6998
Renato Golin124f2592016-07-20 12:16:38 +00006999.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007000
Tim Northover675a0962014-06-13 14:24:23 +00007001 <result> = shl i32 4, %var ; yields i32: 4 << %var
7002 <result> = shl i32 4, 2 ; yields i32: 16
7003 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00007004 <result> = shl i32 1, 32 ; undefined
7005 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
7006
7007'``lshr``' Instruction
7008^^^^^^^^^^^^^^^^^^^^^^
7009
7010Syntax:
7011"""""""
7012
7013::
7014
Tim Northover675a0962014-06-13 14:24:23 +00007015 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
7016 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007017
7018Overview:
7019"""""""""
7020
7021The '``lshr``' instruction (logical shift right) returns the first
7022operand shifted to the right a specified number of bits with zero fill.
7023
7024Arguments:
7025""""""""""
7026
7027Both arguments to the '``lshr``' instruction must be the same
7028:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7029'``op2``' is treated as an unsigned value.
7030
7031Semantics:
7032""""""""""
7033
7034This instruction always performs a logical shift right operation. The
7035most significant bits of the result will be filled with zero bits after
7036the shift. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007037than the number of bits in ``op1``, this instruction returns a :ref:`poison
7038value <poisonvalues>`. If the arguments are vectors, each vector element
7039of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007040
7041If the ``exact`` keyword is present, the result value of the ``lshr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007042a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007043
7044Example:
7045""""""""
7046
Renato Golin124f2592016-07-20 12:16:38 +00007047.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007048
Tim Northover675a0962014-06-13 14:24:23 +00007049 <result> = lshr i32 4, 1 ; yields i32:result = 2
7050 <result> = lshr i32 4, 2 ; yields i32:result = 1
7051 <result> = lshr i8 4, 3 ; yields i8:result = 0
7052 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00007053 <result> = lshr i32 1, 32 ; undefined
7054 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
7055
7056'``ashr``' Instruction
7057^^^^^^^^^^^^^^^^^^^^^^
7058
7059Syntax:
7060"""""""
7061
7062::
7063
Tim Northover675a0962014-06-13 14:24:23 +00007064 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
7065 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007066
7067Overview:
7068"""""""""
7069
7070The '``ashr``' instruction (arithmetic shift right) returns the first
7071operand shifted to the right a specified number of bits with sign
7072extension.
7073
7074Arguments:
7075""""""""""
7076
7077Both arguments to the '``ashr``' instruction must be the same
7078:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7079'``op2``' is treated as an unsigned value.
7080
7081Semantics:
7082""""""""""
7083
7084This instruction always performs an arithmetic shift right operation,
7085The most significant bits of the result will be filled with the sign bit
7086of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007087than the number of bits in ``op1``, this instruction returns a :ref:`poison
7088value <poisonvalues>`. If the arguments are vectors, each vector element
7089of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007090
7091If the ``exact`` keyword is present, the result value of the ``ashr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007092a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007093
7094Example:
7095""""""""
7096
Renato Golin124f2592016-07-20 12:16:38 +00007097.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007098
Tim Northover675a0962014-06-13 14:24:23 +00007099 <result> = ashr i32 4, 1 ; yields i32:result = 2
7100 <result> = ashr i32 4, 2 ; yields i32:result = 1
7101 <result> = ashr i8 4, 3 ; yields i8:result = 0
7102 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00007103 <result> = ashr i32 1, 32 ; undefined
7104 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
7105
7106'``and``' Instruction
7107^^^^^^^^^^^^^^^^^^^^^
7108
7109Syntax:
7110"""""""
7111
7112::
7113
Tim Northover675a0962014-06-13 14:24:23 +00007114 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007115
7116Overview:
7117"""""""""
7118
7119The '``and``' instruction returns the bitwise logical and of its two
7120operands.
7121
7122Arguments:
7123""""""""""
7124
7125The two arguments to the '``and``' instruction must be
7126:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7127arguments must have identical types.
7128
7129Semantics:
7130""""""""""
7131
7132The truth table used for the '``and``' instruction is:
7133
7134+-----+-----+-----+
7135| In0 | In1 | Out |
7136+-----+-----+-----+
7137| 0 | 0 | 0 |
7138+-----+-----+-----+
7139| 0 | 1 | 0 |
7140+-----+-----+-----+
7141| 1 | 0 | 0 |
7142+-----+-----+-----+
7143| 1 | 1 | 1 |
7144+-----+-----+-----+
7145
7146Example:
7147""""""""
7148
Renato Golin124f2592016-07-20 12:16:38 +00007149.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007150
Tim Northover675a0962014-06-13 14:24:23 +00007151 <result> = and i32 4, %var ; yields i32:result = 4 & %var
7152 <result> = and i32 15, 40 ; yields i32:result = 8
7153 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00007154
7155'``or``' Instruction
7156^^^^^^^^^^^^^^^^^^^^
7157
7158Syntax:
7159"""""""
7160
7161::
7162
Tim Northover675a0962014-06-13 14:24:23 +00007163 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007164
7165Overview:
7166"""""""""
7167
7168The '``or``' instruction returns the bitwise logical inclusive or of its
7169two operands.
7170
7171Arguments:
7172""""""""""
7173
7174The two arguments to the '``or``' instruction must be
7175:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7176arguments must have identical types.
7177
7178Semantics:
7179""""""""""
7180
7181The truth table used for the '``or``' instruction is:
7182
7183+-----+-----+-----+
7184| In0 | In1 | Out |
7185+-----+-----+-----+
7186| 0 | 0 | 0 |
7187+-----+-----+-----+
7188| 0 | 1 | 1 |
7189+-----+-----+-----+
7190| 1 | 0 | 1 |
7191+-----+-----+-----+
7192| 1 | 1 | 1 |
7193+-----+-----+-----+
7194
7195Example:
7196""""""""
7197
7198::
7199
Tim Northover675a0962014-06-13 14:24:23 +00007200 <result> = or i32 4, %var ; yields i32:result = 4 | %var
7201 <result> = or i32 15, 40 ; yields i32:result = 47
7202 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00007203
7204'``xor``' Instruction
7205^^^^^^^^^^^^^^^^^^^^^
7206
7207Syntax:
7208"""""""
7209
7210::
7211
Tim Northover675a0962014-06-13 14:24:23 +00007212 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007213
7214Overview:
7215"""""""""
7216
7217The '``xor``' instruction returns the bitwise logical exclusive or of
7218its two operands. The ``xor`` is used to implement the "one's
7219complement" operation, which is the "~" operator in C.
7220
7221Arguments:
7222""""""""""
7223
7224The two arguments to the '``xor``' instruction must be
7225:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7226arguments must have identical types.
7227
7228Semantics:
7229""""""""""
7230
7231The truth table used for the '``xor``' instruction is:
7232
7233+-----+-----+-----+
7234| In0 | In1 | Out |
7235+-----+-----+-----+
7236| 0 | 0 | 0 |
7237+-----+-----+-----+
7238| 0 | 1 | 1 |
7239+-----+-----+-----+
7240| 1 | 0 | 1 |
7241+-----+-----+-----+
7242| 1 | 1 | 0 |
7243+-----+-----+-----+
7244
7245Example:
7246""""""""
7247
Renato Golin124f2592016-07-20 12:16:38 +00007248.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007249
Tim Northover675a0962014-06-13 14:24:23 +00007250 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
7251 <result> = xor i32 15, 40 ; yields i32:result = 39
7252 <result> = xor i32 4, 8 ; yields i32:result = 12
7253 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00007254
7255Vector Operations
7256-----------------
7257
7258LLVM supports several instructions to represent vector operations in a
7259target-independent manner. These instructions cover the element-access
7260and vector-specific operations needed to process vectors effectively.
7261While LLVM does directly support these vector operations, many
7262sophisticated algorithms will want to use target-specific intrinsics to
7263take full advantage of a specific target.
7264
7265.. _i_extractelement:
7266
7267'``extractelement``' Instruction
7268^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7269
7270Syntax:
7271"""""""
7272
7273::
7274
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007275 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00007276
7277Overview:
7278"""""""""
7279
7280The '``extractelement``' instruction extracts a single scalar element
7281from a vector at a specified index.
7282
7283Arguments:
7284""""""""""
7285
7286The first operand of an '``extractelement``' instruction is a value of
7287:ref:`vector <t_vector>` type. The second operand is an index indicating
7288the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007289variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007290
7291Semantics:
7292""""""""""
7293
7294The result is a scalar of the same type as the element type of ``val``.
7295Its value is the value at position ``idx`` of ``val``. If ``idx``
7296exceeds the length of ``val``, the results are undefined.
7297
7298Example:
7299""""""""
7300
Renato Golin124f2592016-07-20 12:16:38 +00007301.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007302
7303 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
7304
7305.. _i_insertelement:
7306
7307'``insertelement``' Instruction
7308^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7309
7310Syntax:
7311"""""""
7312
7313::
7314
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007315 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00007316
7317Overview:
7318"""""""""
7319
7320The '``insertelement``' instruction inserts a scalar element into a
7321vector at a specified index.
7322
7323Arguments:
7324""""""""""
7325
7326The first operand of an '``insertelement``' instruction is a value of
7327:ref:`vector <t_vector>` type. The second operand is a scalar value whose
7328type must equal the element type of the first operand. The third operand
7329is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007330index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007331
7332Semantics:
7333""""""""""
7334
7335The result is a vector of the same type as ``val``. Its element values
7336are those of ``val`` except at position ``idx``, where it gets the value
7337``elt``. If ``idx`` exceeds the length of ``val``, the results are
7338undefined.
7339
7340Example:
7341""""""""
7342
Renato Golin124f2592016-07-20 12:16:38 +00007343.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007344
7345 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
7346
7347.. _i_shufflevector:
7348
7349'``shufflevector``' Instruction
7350^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7351
7352Syntax:
7353"""""""
7354
7355::
7356
7357 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
7358
7359Overview:
7360"""""""""
7361
7362The '``shufflevector``' instruction constructs a permutation of elements
7363from two input vectors, returning a vector with the same element type as
7364the input and length that is the same as the shuffle mask.
7365
7366Arguments:
7367""""""""""
7368
7369The first two operands of a '``shufflevector``' instruction are vectors
7370with the same type. The third argument is a shuffle mask whose element
7371type is always 'i32'. The result of the instruction is a vector whose
7372length is the same as the shuffle mask and whose element type is the
7373same as the element type of the first two operands.
7374
7375The shuffle mask operand is required to be a constant vector with either
7376constant integer or undef values.
7377
7378Semantics:
7379""""""""""
7380
7381The elements of the two input vectors are numbered from left to right
7382across both of the vectors. The shuffle mask operand specifies, for each
7383element of the result vector, which element of the two input vectors the
Sanjay Patel6e410182017-04-12 18:39:53 +00007384result element gets. If the shuffle mask is undef, the result vector is
7385undef. If any element of the mask operand is undef, that element of the
7386result is undef. If the shuffle mask selects an undef element from one
7387of the input vectors, the resulting element is undef.
Sean Silvab084af42012-12-07 10:36:55 +00007388
7389Example:
7390""""""""
7391
Renato Golin124f2592016-07-20 12:16:38 +00007392.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007393
7394 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7395 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
7396 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
7397 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
7398 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
7399 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
7400 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7401 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
7402
7403Aggregate Operations
7404--------------------
7405
7406LLVM supports several instructions for working with
7407:ref:`aggregate <t_aggregate>` values.
7408
7409.. _i_extractvalue:
7410
7411'``extractvalue``' Instruction
7412^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7413
7414Syntax:
7415"""""""
7416
7417::
7418
7419 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
7420
7421Overview:
7422"""""""""
7423
7424The '``extractvalue``' instruction extracts the value of a member field
7425from an :ref:`aggregate <t_aggregate>` value.
7426
7427Arguments:
7428""""""""""
7429
7430The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00007431:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00007432constant indices to specify which value to extract in a similar manner
7433as indices in a '``getelementptr``' instruction.
7434
7435The major differences to ``getelementptr`` indexing are:
7436
7437- Since the value being indexed is not a pointer, the first index is
7438 omitted and assumed to be zero.
7439- At least one index must be specified.
7440- Not only struct indices but also array indices must be in bounds.
7441
7442Semantics:
7443""""""""""
7444
7445The result is the value at the position in the aggregate specified by
7446the index operands.
7447
7448Example:
7449""""""""
7450
Renato Golin124f2592016-07-20 12:16:38 +00007451.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007452
7453 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
7454
7455.. _i_insertvalue:
7456
7457'``insertvalue``' Instruction
7458^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7459
7460Syntax:
7461"""""""
7462
7463::
7464
7465 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
7466
7467Overview:
7468"""""""""
7469
7470The '``insertvalue``' instruction inserts a value into a member field in
7471an :ref:`aggregate <t_aggregate>` value.
7472
7473Arguments:
7474""""""""""
7475
7476The first operand of an '``insertvalue``' instruction is a value of
7477:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
7478a first-class value to insert. The following operands are constant
7479indices indicating the position at which to insert the value in a
7480similar manner as indices in a '``extractvalue``' instruction. The value
7481to insert must have the same type as the value identified by the
7482indices.
7483
7484Semantics:
7485""""""""""
7486
7487The result is an aggregate of the same type as ``val``. Its value is
7488that of ``val`` except that the value at the position specified by the
7489indices is that of ``elt``.
7490
7491Example:
7492""""""""
7493
7494.. code-block:: llvm
7495
7496 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
7497 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00007498 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00007499
7500.. _memoryops:
7501
7502Memory Access and Addressing Operations
7503---------------------------------------
7504
7505A key design point of an SSA-based representation is how it represents
7506memory. In LLVM, no memory locations are in SSA form, which makes things
7507very simple. This section describes how to read, write, and allocate
7508memory in LLVM.
7509
7510.. _i_alloca:
7511
7512'``alloca``' Instruction
7513^^^^^^^^^^^^^^^^^^^^^^^^
7514
7515Syntax:
7516"""""""
7517
7518::
7519
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007520 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result
Sean Silvab084af42012-12-07 10:36:55 +00007521
7522Overview:
7523"""""""""
7524
7525The '``alloca``' instruction allocates memory on the stack frame of the
7526currently executing function, to be automatically released when this
7527function returns to its caller. The object is always allocated in the
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007528address space for allocas indicated in the datalayout.
Sean Silvab084af42012-12-07 10:36:55 +00007529
7530Arguments:
7531""""""""""
7532
7533The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7534bytes of memory on the runtime stack, returning a pointer of the
7535appropriate type to the program. If "NumElements" is specified, it is
7536the number of elements allocated, otherwise "NumElements" is defaulted
7537to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007538allocation is guaranteed to be aligned to at least that boundary. The
7539alignment may not be greater than ``1 << 29``. If not specified, or if
7540zero, the target can choose to align the allocation on any convenient
7541boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007542
7543'``type``' may be any sized type.
7544
7545Semantics:
7546""""""""""
7547
7548Memory is allocated; a pointer is returned. The operation is undefined
7549if there is insufficient stack space for the allocation. '``alloca``'d
7550memory is automatically released when the function returns. The
7551'``alloca``' instruction is commonly used to represent automatic
7552variables that must have an address available. When the function returns
7553(either with the ``ret`` or ``resume`` instructions), the memory is
7554reclaimed. Allocating zero bytes is legal, but the result is undefined.
7555The order in which memory is allocated (ie., which way the stack grows)
7556is not specified.
7557
7558Example:
7559""""""""
7560
7561.. code-block:: llvm
7562
Tim Northover675a0962014-06-13 14:24:23 +00007563 %ptr = alloca i32 ; yields i32*:ptr
7564 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7565 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7566 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007567
7568.. _i_load:
7569
7570'``load``' Instruction
7571^^^^^^^^^^^^^^^^^^^^^^
7572
7573Syntax:
7574"""""""
7575
7576::
7577
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007578 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007579 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007580 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007581 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007582 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007583
7584Overview:
7585"""""""""
7586
7587The '``load``' instruction is used to read from memory.
7588
7589Arguments:
7590""""""""""
7591
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007592The argument to the ``load`` instruction specifies the memory address from which
7593to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7594known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7595the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7596modify the number or order of execution of this ``load`` with other
7597:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007598
JF Bastiend1fb5852015-12-17 22:09:19 +00007599If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007600<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
7601``release`` and ``acq_rel`` orderings are not valid on ``load`` instructions.
7602Atomic loads produce :ref:`defined <memmodel>` results when they may see
7603multiple atomic stores. The type of the pointee must be an integer, pointer, or
7604floating-point type whose bit width is a power of two greater than or equal to
7605eight and less than or equal to a target-specific size limit. ``align`` must be
7606explicitly specified on atomic loads, and the load has undefined behavior if the
7607alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00007608pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007609
7610The optional constant ``align`` argument specifies the alignment of the
7611operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007612or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007613alignment for the target. It is the responsibility of the code emitter
7614to ensure that the alignment information is correct. Overestimating the
7615alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007616may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007617maximum possible alignment is ``1 << 29``. An alignment value higher
7618than the size of the loaded type implies memory up to the alignment
7619value bytes can be safely loaded without trapping in the default
7620address space. Access of the high bytes can interfere with debugging
7621tools, so should not be accessed if the function has the
7622``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007623
7624The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007625metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007626``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007627metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007628that this load is not expected to be reused in the cache. The code
7629generator may select special instructions to save cache bandwidth, such
7630as the ``MOVNT`` instruction on x86.
7631
7632The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007633metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007634entries. If a load instruction tagged with the ``!invariant.load``
7635metadata is executed, the optimizer may assume the memory location
7636referenced by the load contains the same value at all points in the
7637program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007638
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007639The optional ``!invariant.group`` metadata must reference a single metadata name
7640 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7641
Philip Reamescdb72f32014-10-20 22:40:55 +00007642The optional ``!nonnull`` metadata must reference a single
7643metadata name ``<index>`` corresponding to a metadata node with no
7644entries. The existence of the ``!nonnull`` metadata on the
7645instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007646never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007647on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007648to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007649
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007650The optional ``!dereferenceable`` metadata must reference a single metadata
7651name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007652entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007653tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007654The number of bytes known to be dereferenceable is specified by the integer
7655value in the metadata node. This is analogous to the ''dereferenceable''
7656attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007657to loads of a pointer type.
7658
7659The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007660metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7661``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007662instruction tells the optimizer that the value loaded is known to be either
7663dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007664The number of bytes known to be dereferenceable is specified by the integer
7665value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7666attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007667to loads of a pointer type.
7668
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007669The optional ``!align`` metadata must reference a single metadata name
7670``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7671The existence of the ``!align`` metadata on the instruction tells the
7672optimizer that the value loaded is known to be aligned to a boundary specified
7673by the integer value in the metadata node. The alignment must be a power of 2.
7674This is analogous to the ''align'' attribute on parameters and return values.
7675This metadata can only be applied to loads of a pointer type.
7676
Sean Silvab084af42012-12-07 10:36:55 +00007677Semantics:
7678""""""""""
7679
7680The location of memory pointed to is loaded. If the value being loaded
7681is of scalar type then the number of bytes read does not exceed the
7682minimum number of bytes needed to hold all bits of the type. For
7683example, loading an ``i24`` reads at most three bytes. When loading a
7684value of a type like ``i20`` with a size that is not an integral number
7685of bytes, the result is undefined if the value was not originally
7686written using a store of the same type.
7687
7688Examples:
7689"""""""""
7690
7691.. code-block:: llvm
7692
Tim Northover675a0962014-06-13 14:24:23 +00007693 %ptr = alloca i32 ; yields i32*:ptr
7694 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007695 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007696
7697.. _i_store:
7698
7699'``store``' Instruction
7700^^^^^^^^^^^^^^^^^^^^^^^
7701
7702Syntax:
7703"""""""
7704
7705::
7706
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007707 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007708 store atomic [volatile] <ty> <value>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007709
7710Overview:
7711"""""""""
7712
7713The '``store``' instruction is used to write to memory.
7714
7715Arguments:
7716""""""""""
7717
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007718There are two arguments to the ``store`` instruction: a value to store and an
7719address at which to store it. The type of the ``<pointer>`` operand must be a
7720pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7721operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7722allowed to modify the number or order of execution of this ``store`` with other
7723:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7724<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7725structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007726
JF Bastiend1fb5852015-12-17 22:09:19 +00007727If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007728<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
7729``acquire`` and ``acq_rel`` orderings aren't valid on ``store`` instructions.
7730Atomic loads produce :ref:`defined <memmodel>` results when they may see
7731multiple atomic stores. The type of the pointee must be an integer, pointer, or
7732floating-point type whose bit width is a power of two greater than or equal to
7733eight and less than or equal to a target-specific size limit. ``align`` must be
7734explicitly specified on atomic stores, and the store has undefined behavior if
7735the alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00007736pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007737
Eli Benderskyca380842013-04-17 17:17:20 +00007738The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007739operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007740or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007741alignment for the target. It is the responsibility of the code emitter
7742to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007743alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007744alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007745safe. The maximum possible alignment is ``1 << 29``. An alignment
7746value higher than the size of the stored type implies memory up to the
7747alignment value bytes can be stored to without trapping in the default
7748address space. Storing to the higher bytes however may result in data
7749races if another thread can access the same address. Introducing a
7750data race is not allowed. Storing to the extra bytes is not allowed
7751even in situations where a data race is known to not exist if the
7752function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007753
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007754The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007755name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007756value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007757tells the optimizer and code generator that this load is not expected to
7758be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007759instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007760x86.
7761
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007762The optional ``!invariant.group`` metadata must reference a
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007763single metadata name ``<index>``. See ``invariant.group`` metadata.
7764
Sean Silvab084af42012-12-07 10:36:55 +00007765Semantics:
7766""""""""""
7767
Eli Benderskyca380842013-04-17 17:17:20 +00007768The contents of memory are updated to contain ``<value>`` at the
7769location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007770of scalar type then the number of bytes written does not exceed the
7771minimum number of bytes needed to hold all bits of the type. For
7772example, storing an ``i24`` writes at most three bytes. When writing a
7773value of a type like ``i20`` with a size that is not an integral number
7774of bytes, it is unspecified what happens to the extra bits that do not
7775belong to the type, but they will typically be overwritten.
7776
7777Example:
7778""""""""
7779
7780.. code-block:: llvm
7781
Tim Northover675a0962014-06-13 14:24:23 +00007782 %ptr = alloca i32 ; yields i32*:ptr
7783 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007784 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007785
7786.. _i_fence:
7787
7788'``fence``' Instruction
7789^^^^^^^^^^^^^^^^^^^^^^^
7790
7791Syntax:
7792"""""""
7793
7794::
7795
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007796 fence [syncscope("<target-scope>")] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007797
7798Overview:
7799"""""""""
7800
7801The '``fence``' instruction is used to introduce happens-before edges
7802between operations.
7803
7804Arguments:
7805""""""""""
7806
7807'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7808defines what *synchronizes-with* edges they add. They can only be given
7809``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7810
7811Semantics:
7812""""""""""
7813
7814A fence A which has (at least) ``release`` ordering semantics
7815*synchronizes with* a fence B with (at least) ``acquire`` ordering
7816semantics if and only if there exist atomic operations X and Y, both
7817operating on some atomic object M, such that A is sequenced before X, X
7818modifies M (either directly or through some side effect of a sequence
7819headed by X), Y is sequenced before B, and Y observes M. This provides a
7820*happens-before* dependency between A and B. Rather than an explicit
7821``fence``, one (but not both) of the atomic operations X or Y might
7822provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7823still *synchronize-with* the explicit ``fence`` and establish the
7824*happens-before* edge.
7825
7826A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7827``acquire`` and ``release`` semantics specified above, participates in
7828the global program order of other ``seq_cst`` operations and/or fences.
7829
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007830A ``fence`` instruction can also take an optional
7831":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00007832
7833Example:
7834""""""""
7835
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007836.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007837
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007838 fence acquire ; yields void
7839 fence syncscope("singlethread") seq_cst ; yields void
7840 fence syncscope("agent") seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007841
7842.. _i_cmpxchg:
7843
7844'``cmpxchg``' Instruction
7845^^^^^^^^^^^^^^^^^^^^^^^^^
7846
7847Syntax:
7848"""""""
7849
7850::
7851
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007852 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [syncscope("<target-scope>")] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007853
7854Overview:
7855"""""""""
7856
7857The '``cmpxchg``' instruction is used to atomically modify memory. It
7858loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007859equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007860
7861Arguments:
7862""""""""""
7863
7864There are three arguments to the '``cmpxchg``' instruction: an address
7865to operate on, a value to compare to the value currently be at that
7866address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007867are equal. The type of '<cmp>' must be an integer or pointer type whose
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007868bit width is a power of two greater than or equal to eight and less
Philip Reames1960cfd2016-02-19 00:06:41 +00007869than or equal to a target-specific size limit. '<cmp>' and '<new>' must
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007870have the same type, and the type of '<pointer>' must be a pointer to
7871that type. If the ``cmpxchg`` is marked as ``volatile``, then the
Philip Reames1960cfd2016-02-19 00:06:41 +00007872optimizer is not allowed to modify the number or order of execution of
7873this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007874
Tim Northovere94a5182014-03-11 10:48:52 +00007875The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007876``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7877must be at least ``monotonic``, the ordering constraint on failure must be no
7878stronger than that on success, and the failure ordering cannot be either
7879``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007880
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007881A ``cmpxchg`` instruction can also take an optional
7882":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00007883
7884The pointer passed into cmpxchg must have alignment greater than or
7885equal to the size in memory of the operand.
7886
7887Semantics:
7888""""""""""
7889
Tim Northover420a2162014-06-13 14:24:07 +00007890The contents of memory at the location specified by the '``<pointer>``' operand
Matthias Braun93f2b4b2017-08-09 22:22:04 +00007891is read and compared to '``<cmp>``'; if the values are equal, '``<new>``' is
7892written to the location. The original value at the location is returned,
7893together with a flag indicating success (true) or failure (false).
Tim Northover420a2162014-06-13 14:24:07 +00007894
7895If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7896permitted: the operation may not write ``<new>`` even if the comparison
7897matched.
7898
7899If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7900if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007901
Tim Northovere94a5182014-03-11 10:48:52 +00007902A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7903identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7904load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007905
7906Example:
7907""""""""
7908
7909.. code-block:: llvm
7910
7911 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007912 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007913 br label %loop
7914
7915 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007916 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007917 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007918 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007919 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7920 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007921 br i1 %success, label %done, label %loop
7922
7923 done:
7924 ...
7925
7926.. _i_atomicrmw:
7927
7928'``atomicrmw``' Instruction
7929^^^^^^^^^^^^^^^^^^^^^^^^^^^
7930
7931Syntax:
7932"""""""
7933
7934::
7935
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007936 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [syncscope("<target-scope>")] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007937
7938Overview:
7939"""""""""
7940
7941The '``atomicrmw``' instruction is used to atomically modify memory.
7942
7943Arguments:
7944""""""""""
7945
7946There are three arguments to the '``atomicrmw``' instruction: an
7947operation to apply, an address whose value to modify, an argument to the
7948operation. The operation must be one of the following keywords:
7949
7950- xchg
7951- add
7952- sub
7953- and
7954- nand
7955- or
7956- xor
7957- max
7958- min
7959- umax
7960- umin
7961
7962The type of '<value>' must be an integer type whose bit width is a power
7963of two greater than or equal to eight and less than or equal to a
7964target-specific size limit. The type of the '``<pointer>``' operand must
7965be a pointer to that type. If the ``atomicrmw`` is marked as
7966``volatile``, then the optimizer is not allowed to modify the number or
7967order of execution of this ``atomicrmw`` with other :ref:`volatile
7968operations <volatile>`.
7969
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007970A ``atomicrmw`` instruction can also take an optional
7971":ref:`syncscope <syncscope>`" argument.
7972
Sean Silvab084af42012-12-07 10:36:55 +00007973Semantics:
7974""""""""""
7975
7976The contents of memory at the location specified by the '``<pointer>``'
7977operand are atomically read, modified, and written back. The original
7978value at the location is returned. The modification is specified by the
7979operation argument:
7980
7981- xchg: ``*ptr = val``
7982- add: ``*ptr = *ptr + val``
7983- sub: ``*ptr = *ptr - val``
7984- and: ``*ptr = *ptr & val``
7985- nand: ``*ptr = ~(*ptr & val)``
7986- or: ``*ptr = *ptr | val``
7987- xor: ``*ptr = *ptr ^ val``
7988- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7989- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7990- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7991 comparison)
7992- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7993 comparison)
7994
7995Example:
7996""""""""
7997
7998.. code-block:: llvm
7999
Tim Northover675a0962014-06-13 14:24:23 +00008000 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00008001
8002.. _i_getelementptr:
8003
8004'``getelementptr``' Instruction
8005^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8006
8007Syntax:
8008"""""""
8009
8010::
8011
Peter Collingbourned93620b2016-11-10 22:34:55 +00008012 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
8013 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
8014 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00008015
8016Overview:
8017"""""""""
8018
8019The '``getelementptr``' instruction is used to get the address of a
8020subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008021address calculation only and does not access memory. The instruction can also
8022be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00008023
8024Arguments:
8025""""""""""
8026
David Blaikie16a97eb2015-03-04 22:02:58 +00008027The first argument is always a type used as the basis for the calculations.
8028The second argument is always a pointer or a vector of pointers, and is the
8029base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00008030that indicate which of the elements of the aggregate object are indexed.
8031The interpretation of each index is dependent on the type being indexed
8032into. The first index always indexes the pointer value given as the
David Blaikief91b0302017-06-19 05:34:21 +00008033second argument, the second index indexes a value of the type pointed to
Sean Silvab084af42012-12-07 10:36:55 +00008034(not necessarily the value directly pointed to, since the first index
8035can be non-zero), etc. The first type indexed into must be a pointer
8036value, subsequent types can be arrays, vectors, and structs. Note that
8037subsequent types being indexed into can never be pointers, since that
8038would require loading the pointer before continuing calculation.
8039
8040The type of each index argument depends on the type it is indexing into.
8041When indexing into a (optionally packed) structure, only ``i32`` integer
8042**constants** are allowed (when using a vector of indices they must all
8043be the **same** ``i32`` integer constant). When indexing into an array,
8044pointer or vector, integers of any width are allowed, and they are not
8045required to be constant. These integers are treated as signed values
8046where relevant.
8047
8048For example, let's consider a C code fragment and how it gets compiled
8049to LLVM:
8050
8051.. code-block:: c
8052
8053 struct RT {
8054 char A;
8055 int B[10][20];
8056 char C;
8057 };
8058 struct ST {
8059 int X;
8060 double Y;
8061 struct RT Z;
8062 };
8063
8064 int *foo(struct ST *s) {
8065 return &s[1].Z.B[5][13];
8066 }
8067
8068The LLVM code generated by Clang is:
8069
8070.. code-block:: llvm
8071
8072 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
8073 %struct.ST = type { i32, double, %struct.RT }
8074
8075 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
8076 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00008077 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00008078 ret i32* %arrayidx
8079 }
8080
8081Semantics:
8082""""""""""
8083
8084In the example above, the first index is indexing into the
8085'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
8086= '``{ i32, double, %struct.RT }``' type, a structure. The second index
8087indexes into the third element of the structure, yielding a
8088'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
8089structure. The third index indexes into the second element of the
8090structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
8091dimensions of the array are subscripted into, yielding an '``i32``'
8092type. The '``getelementptr``' instruction returns a pointer to this
8093element, thus computing a value of '``i32*``' type.
8094
8095Note that it is perfectly legal to index partially through a structure,
8096returning a pointer to an inner element. Because of this, the LLVM code
8097for the given testcase is equivalent to:
8098
8099.. code-block:: llvm
8100
8101 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00008102 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
8103 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
8104 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
8105 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
8106 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00008107 ret i32* %t5
8108 }
8109
8110If the ``inbounds`` keyword is present, the result value of the
8111``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
8112pointer is not an *in bounds* address of an allocated object, or if any
8113of the addresses that would be formed by successive addition of the
8114offsets implied by the indices to the base address with infinitely
8115precise signed arithmetic are not an *in bounds* address of that
8116allocated object. The *in bounds* addresses for an allocated object are
8117all the addresses that point into the object, plus the address one byte
Eli Friedman13f2e352017-02-23 00:48:18 +00008118past the end. The only *in bounds* address for a null pointer in the
8119default address-space is the null pointer itself. In cases where the
8120base is a vector of pointers the ``inbounds`` keyword applies to each
8121of the computations element-wise.
Sean Silvab084af42012-12-07 10:36:55 +00008122
8123If the ``inbounds`` keyword is not present, the offsets are added to the
8124base address with silently-wrapping two's complement arithmetic. If the
8125offsets have a different width from the pointer, they are sign-extended
8126or truncated to the width of the pointer. The result value of the
8127``getelementptr`` may be outside the object pointed to by the base
8128pointer. The result value may not necessarily be used to access memory
8129though, even if it happens to point into allocated storage. See the
8130:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
8131information.
8132
Peter Collingbourned93620b2016-11-10 22:34:55 +00008133If the ``inrange`` keyword is present before any index, loading from or
8134storing to any pointer derived from the ``getelementptr`` has undefined
8135behavior if the load or store would access memory outside of the bounds of
8136the element selected by the index marked as ``inrange``. The result of a
8137pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
8138involving memory) involving a pointer derived from a ``getelementptr`` with
8139the ``inrange`` keyword is undefined, with the exception of comparisons
8140in the case where both operands are in the range of the element selected
8141by the ``inrange`` keyword, inclusive of the address one past the end of
8142that element. Note that the ``inrange`` keyword is currently only allowed
8143in constant ``getelementptr`` expressions.
8144
Sean Silvab084af42012-12-07 10:36:55 +00008145The getelementptr instruction is often confusing. For some more insight
8146into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
8147
8148Example:
8149""""""""
8150
8151.. code-block:: llvm
8152
8153 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008154 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008155 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008156 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008157 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008158 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008159 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008160 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00008161
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008162Vector of pointers:
8163"""""""""""""""""""
8164
8165The ``getelementptr`` returns a vector of pointers, instead of a single address,
8166when one or more of its arguments is a vector. In such cases, all vector
8167arguments should have the same number of elements, and every scalar argument
8168will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00008169
8170.. code-block:: llvm
8171
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008172 ; All arguments are vectors:
8173 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
8174 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008175
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008176 ; Add the same scalar offset to each pointer of a vector:
8177 ; A[i] = ptrs[i] + offset*sizeof(i8)
8178 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00008179
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008180 ; Add distinct offsets to the same pointer:
8181 ; A[i] = ptr + offsets[i]*sizeof(i8)
8182 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008183
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008184 ; In all cases described above the type of the result is <4 x i8*>
8185
8186The two following instructions are equivalent:
8187
8188.. code-block:: llvm
8189
8190 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8191 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
8192 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
8193 <4 x i32> %ind4,
8194 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00008195
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008196 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8197 i32 2, i32 1, <4 x i32> %ind4, i64 13
8198
8199Let's look at the C code, where the vector version of ``getelementptr``
8200makes sense:
8201
8202.. code-block:: c
8203
8204 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00008205 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008206 for (int i = 0; i < size; ++i) {
8207 A[i] = B[C[i]];
8208 }
8209
8210.. code-block:: llvm
8211
8212 ; get pointers for 8 elements from array B
8213 %ptrs = getelementptr double, double* %B, <8 x i32> %C
8214 ; load 8 elements from array B into A
Elad Cohenef5798a2017-05-03 12:28:54 +00008215 %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008216 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00008217
8218Conversion Operations
8219---------------------
8220
8221The instructions in this category are the conversion instructions
8222(casting) which all take a single operand and a type. They perform
8223various bit conversions on the operand.
8224
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008225.. _i_trunc:
8226
Sean Silvab084af42012-12-07 10:36:55 +00008227'``trunc .. to``' Instruction
8228^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8229
8230Syntax:
8231"""""""
8232
8233::
8234
8235 <result> = trunc <ty> <value> to <ty2> ; yields ty2
8236
8237Overview:
8238"""""""""
8239
8240The '``trunc``' instruction truncates its operand to the type ``ty2``.
8241
8242Arguments:
8243""""""""""
8244
8245The '``trunc``' instruction takes a value to trunc, and a type to trunc
8246it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
8247of the same number of integers. The bit size of the ``value`` must be
8248larger than the bit size of the destination type, ``ty2``. Equal sized
8249types are not allowed.
8250
8251Semantics:
8252""""""""""
8253
8254The '``trunc``' instruction truncates the high order bits in ``value``
8255and converts the remaining bits to ``ty2``. Since the source size must
8256be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
8257It will always truncate bits.
8258
8259Example:
8260""""""""
8261
8262.. code-block:: llvm
8263
8264 %X = trunc i32 257 to i8 ; yields i8:1
8265 %Y = trunc i32 123 to i1 ; yields i1:true
8266 %Z = trunc i32 122 to i1 ; yields i1:false
8267 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
8268
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008269.. _i_zext:
8270
Sean Silvab084af42012-12-07 10:36:55 +00008271'``zext .. to``' Instruction
8272^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8273
8274Syntax:
8275"""""""
8276
8277::
8278
8279 <result> = zext <ty> <value> to <ty2> ; yields ty2
8280
8281Overview:
8282"""""""""
8283
8284The '``zext``' instruction zero extends its operand to type ``ty2``.
8285
8286Arguments:
8287""""""""""
8288
8289The '``zext``' instruction takes a value to cast, and a type to cast it
8290to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8291the same number of integers. The bit size of the ``value`` must be
8292smaller than the bit size of the destination type, ``ty2``.
8293
8294Semantics:
8295""""""""""
8296
8297The ``zext`` fills the high order bits of the ``value`` with zero bits
8298until it reaches the size of the destination type, ``ty2``.
8299
8300When zero extending from i1, the result will always be either 0 or 1.
8301
8302Example:
8303""""""""
8304
8305.. code-block:: llvm
8306
8307 %X = zext i32 257 to i64 ; yields i64:257
8308 %Y = zext i1 true to i32 ; yields i32:1
8309 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8310
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008311.. _i_sext:
8312
Sean Silvab084af42012-12-07 10:36:55 +00008313'``sext .. to``' Instruction
8314^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8315
8316Syntax:
8317"""""""
8318
8319::
8320
8321 <result> = sext <ty> <value> to <ty2> ; yields ty2
8322
8323Overview:
8324"""""""""
8325
8326The '``sext``' sign extends ``value`` to the type ``ty2``.
8327
8328Arguments:
8329""""""""""
8330
8331The '``sext``' instruction takes a value to cast, and a type to cast it
8332to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8333the same number of integers. The bit size of the ``value`` must be
8334smaller than the bit size of the destination type, ``ty2``.
8335
8336Semantics:
8337""""""""""
8338
8339The '``sext``' instruction performs a sign extension by copying the sign
8340bit (highest order bit) of the ``value`` until it reaches the bit size
8341of the type ``ty2``.
8342
8343When sign extending from i1, the extension always results in -1 or 0.
8344
8345Example:
8346""""""""
8347
8348.. code-block:: llvm
8349
8350 %X = sext i8 -1 to i16 ; yields i16 :65535
8351 %Y = sext i1 true to i32 ; yields i32:-1
8352 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8353
8354'``fptrunc .. to``' Instruction
8355^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8356
8357Syntax:
8358"""""""
8359
8360::
8361
8362 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
8363
8364Overview:
8365"""""""""
8366
8367The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
8368
8369Arguments:
8370""""""""""
8371
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008372The '``fptrunc``' instruction takes a :ref:`floating-point <t_floating>`
8373value to cast and a :ref:`floating-point <t_floating>` type to cast it to.
Sean Silvab084af42012-12-07 10:36:55 +00008374The size of ``value`` must be larger than the size of ``ty2``. This
8375implies that ``fptrunc`` cannot be used to make a *no-op cast*.
8376
8377Semantics:
8378""""""""""
8379
Dan Liew50456fb2015-09-03 18:43:56 +00008380The '``fptrunc``' instruction casts a ``value`` from a larger
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008381:ref:`floating-point <t_floating>` type to a smaller :ref:`floating-point
Sanjay Pateld96a3632018-04-03 13:05:20 +00008382<t_floating>` type.
8383This instruction is assumed to execute in the default :ref:`floating-point
8384environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00008385
8386Example:
8387""""""""
8388
8389.. code-block:: llvm
8390
Sanjay Pateld96a3632018-04-03 13:05:20 +00008391 %X = fptrunc double 16777217.0 to float ; yields float:16777216.0
8392 %Y = fptrunc double 1.0E+300 to half ; yields half:+infinity
Sean Silvab084af42012-12-07 10:36:55 +00008393
8394'``fpext .. to``' Instruction
8395^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8396
8397Syntax:
8398"""""""
8399
8400::
8401
8402 <result> = fpext <ty> <value> to <ty2> ; yields ty2
8403
8404Overview:
8405"""""""""
8406
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008407The '``fpext``' extends a floating-point ``value`` to a larger floating-point
8408value.
Sean Silvab084af42012-12-07 10:36:55 +00008409
8410Arguments:
8411""""""""""
8412
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008413The '``fpext``' instruction takes a :ref:`floating-point <t_floating>`
8414``value`` to cast, and a :ref:`floating-point <t_floating>` type to cast it
Sean Silvab084af42012-12-07 10:36:55 +00008415to. The source type must be smaller than the destination type.
8416
8417Semantics:
8418""""""""""
8419
8420The '``fpext``' instruction extends the ``value`` from a smaller
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008421:ref:`floating-point <t_floating>` type to a larger :ref:`floating-point
8422<t_floating>` type. The ``fpext`` cannot be used to make a
Sean Silvab084af42012-12-07 10:36:55 +00008423*no-op cast* because it always changes bits. Use ``bitcast`` to make a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008424*no-op cast* for a floating-point cast.
Sean Silvab084af42012-12-07 10:36:55 +00008425
8426Example:
8427""""""""
8428
8429.. code-block:: llvm
8430
8431 %X = fpext float 3.125 to double ; yields double:3.125000e+00
8432 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
8433
8434'``fptoui .. to``' Instruction
8435^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8436
8437Syntax:
8438"""""""
8439
8440::
8441
8442 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
8443
8444Overview:
8445"""""""""
8446
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008447The '``fptoui``' converts a floating-point ``value`` to its unsigned
Sean Silvab084af42012-12-07 10:36:55 +00008448integer equivalent of type ``ty2``.
8449
8450Arguments:
8451""""""""""
8452
8453The '``fptoui``' instruction takes a value to cast, which must be a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008454scalar or vector :ref:`floating-point <t_floating>` value, and a type to
Sean Silvab084af42012-12-07 10:36:55 +00008455cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008456``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
Sean Silvab084af42012-12-07 10:36:55 +00008457type with the same number of elements as ``ty``
8458
8459Semantics:
8460""""""""""
8461
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008462The '``fptoui``' instruction converts its :ref:`floating-point
8463<t_floating>` operand into the nearest (rounding towards zero)
Sean Silvab084af42012-12-07 10:36:55 +00008464unsigned integer value. If the value cannot fit in ``ty2``, the results
8465are undefined.
8466
8467Example:
8468""""""""
8469
8470.. code-block:: llvm
8471
8472 %X = fptoui double 123.0 to i32 ; yields i32:123
8473 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
8474 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
8475
8476'``fptosi .. to``' Instruction
8477^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8478
8479Syntax:
8480"""""""
8481
8482::
8483
8484 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
8485
8486Overview:
8487"""""""""
8488
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008489The '``fptosi``' instruction converts :ref:`floating-point <t_floating>`
Sean Silvab084af42012-12-07 10:36:55 +00008490``value`` to type ``ty2``.
8491
8492Arguments:
8493""""""""""
8494
8495The '``fptosi``' instruction takes a value to cast, which must be a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008496scalar or vector :ref:`floating-point <t_floating>` value, and a type to
Sean Silvab084af42012-12-07 10:36:55 +00008497cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008498``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
Sean Silvab084af42012-12-07 10:36:55 +00008499type with the same number of elements as ``ty``
8500
8501Semantics:
8502""""""""""
8503
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008504The '``fptosi``' instruction converts its :ref:`floating-point
8505<t_floating>` operand into the nearest (rounding towards zero)
Sean Silvab084af42012-12-07 10:36:55 +00008506signed integer value. If the value cannot fit in ``ty2``, the results
8507are undefined.
8508
8509Example:
8510""""""""
8511
8512.. code-block:: llvm
8513
8514 %X = fptosi double -123.0 to i32 ; yields i32:-123
8515 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
8516 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
8517
8518'``uitofp .. to``' Instruction
8519^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8520
8521Syntax:
8522"""""""
8523
8524::
8525
8526 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
8527
8528Overview:
8529"""""""""
8530
8531The '``uitofp``' instruction regards ``value`` as an unsigned integer
8532and converts that value to the ``ty2`` type.
8533
8534Arguments:
8535""""""""""
8536
8537The '``uitofp``' instruction takes a value to cast, which must be a
8538scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008539``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
8540``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
Sean Silvab084af42012-12-07 10:36:55 +00008541type with the same number of elements as ``ty``
8542
8543Semantics:
8544""""""""""
8545
8546The '``uitofp``' instruction interprets its operand as an unsigned
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008547integer quantity and converts it to the corresponding floating-point
8548value. If the value cannot fit in the floating-point value, the results
Sean Silvab084af42012-12-07 10:36:55 +00008549are undefined.
8550
8551Example:
8552""""""""
8553
8554.. code-block:: llvm
8555
8556 %X = uitofp i32 257 to float ; yields float:257.0
8557 %Y = uitofp i8 -1 to double ; yields double:255.0
8558
8559'``sitofp .. to``' Instruction
8560^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8561
8562Syntax:
8563"""""""
8564
8565::
8566
8567 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8568
8569Overview:
8570"""""""""
8571
8572The '``sitofp``' instruction regards ``value`` as a signed integer and
8573converts that value to the ``ty2`` type.
8574
8575Arguments:
8576""""""""""
8577
8578The '``sitofp``' instruction takes a value to cast, which must be a
8579scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008580``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
8581``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
Sean Silvab084af42012-12-07 10:36:55 +00008582type with the same number of elements as ``ty``
8583
8584Semantics:
8585""""""""""
8586
8587The '``sitofp``' instruction interprets its operand as a signed integer
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008588quantity and converts it to the corresponding floating-point value. If
8589the value cannot fit in the floating-point value, the results are
Sean Silvab084af42012-12-07 10:36:55 +00008590undefined.
8591
8592Example:
8593""""""""
8594
8595.. code-block:: llvm
8596
8597 %X = sitofp i32 257 to float ; yields float:257.0
8598 %Y = sitofp i8 -1 to double ; yields double:-1.0
8599
8600.. _i_ptrtoint:
8601
8602'``ptrtoint .. to``' Instruction
8603^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8604
8605Syntax:
8606"""""""
8607
8608::
8609
8610 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8611
8612Overview:
8613"""""""""
8614
8615The '``ptrtoint``' instruction converts the pointer or a vector of
8616pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8617
8618Arguments:
8619""""""""""
8620
8621The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008622a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008623type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8624a vector of integers type.
8625
8626Semantics:
8627""""""""""
8628
8629The '``ptrtoint``' instruction converts ``value`` to integer type
8630``ty2`` by interpreting the pointer value as an integer and either
8631truncating or zero extending that value to the size of the integer type.
8632If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8633``value`` is larger than ``ty2`` then a truncation is done. If they are
8634the same size, then nothing is done (*no-op cast*) other than a type
8635change.
8636
8637Example:
8638""""""""
8639
8640.. code-block:: llvm
8641
8642 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8643 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8644 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8645
8646.. _i_inttoptr:
8647
8648'``inttoptr .. to``' Instruction
8649^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8650
8651Syntax:
8652"""""""
8653
8654::
8655
8656 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8657
8658Overview:
8659"""""""""
8660
8661The '``inttoptr``' instruction converts an integer ``value`` to a
8662pointer type, ``ty2``.
8663
8664Arguments:
8665""""""""""
8666
8667The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8668cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8669type.
8670
8671Semantics:
8672""""""""""
8673
8674The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8675applying either a zero extension or a truncation depending on the size
8676of the integer ``value``. If ``value`` is larger than the size of a
8677pointer then a truncation is done. If ``value`` is smaller than the size
8678of a pointer then a zero extension is done. If they are the same size,
8679nothing is done (*no-op cast*).
8680
8681Example:
8682""""""""
8683
8684.. code-block:: llvm
8685
8686 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8687 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8688 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8689 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8690
8691.. _i_bitcast:
8692
8693'``bitcast .. to``' Instruction
8694^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8695
8696Syntax:
8697"""""""
8698
8699::
8700
8701 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8702
8703Overview:
8704"""""""""
8705
8706The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8707changing any bits.
8708
8709Arguments:
8710""""""""""
8711
8712The '``bitcast``' instruction takes a value to cast, which must be a
8713non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008714also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8715bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008716identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008717also be a pointer of the same size. This instruction supports bitwise
8718conversion of vectors to integers and to vectors of other types (as
8719long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008720
8721Semantics:
8722""""""""""
8723
Matt Arsenault24b49c42013-07-31 17:49:08 +00008724The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8725is always a *no-op cast* because no bits change with this
8726conversion. The conversion is done as if the ``value`` had been stored
8727to memory and read back as type ``ty2``. Pointer (or vector of
8728pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008729pointers) types with the same address space through this instruction.
8730To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8731or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008732
8733Example:
8734""""""""
8735
Renato Golin124f2592016-07-20 12:16:38 +00008736.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008737
8738 %X = bitcast i8 255 to i8 ; yields i8 :-1
8739 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8740 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8741 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8742
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008743.. _i_addrspacecast:
8744
8745'``addrspacecast .. to``' Instruction
8746^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8747
8748Syntax:
8749"""""""
8750
8751::
8752
8753 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8754
8755Overview:
8756"""""""""
8757
8758The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8759address space ``n`` to type ``pty2`` in address space ``m``.
8760
8761Arguments:
8762""""""""""
8763
8764The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8765to cast and a pointer type to cast it to, which must have a different
8766address space.
8767
8768Semantics:
8769""""""""""
8770
8771The '``addrspacecast``' instruction converts the pointer value
8772``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008773value modification, depending on the target and the address space
8774pair. Pointer conversions within the same address space must be
8775performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008776conversion is legal then both result and operand refer to the same memory
8777location.
8778
8779Example:
8780""""""""
8781
8782.. code-block:: llvm
8783
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008784 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8785 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8786 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008787
Sean Silvab084af42012-12-07 10:36:55 +00008788.. _otherops:
8789
8790Other Operations
8791----------------
8792
8793The instructions in this category are the "miscellaneous" instructions,
8794which defy better classification.
8795
8796.. _i_icmp:
8797
8798'``icmp``' Instruction
8799^^^^^^^^^^^^^^^^^^^^^^
8800
8801Syntax:
8802"""""""
8803
8804::
8805
Tim Northover675a0962014-06-13 14:24:23 +00008806 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008807
8808Overview:
8809"""""""""
8810
8811The '``icmp``' instruction returns a boolean value or a vector of
8812boolean values based on comparison of its two integer, integer vector,
8813pointer, or pointer vector operands.
8814
8815Arguments:
8816""""""""""
8817
8818The '``icmp``' instruction takes three operands. The first operand is
8819the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008820not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008821
8822#. ``eq``: equal
8823#. ``ne``: not equal
8824#. ``ugt``: unsigned greater than
8825#. ``uge``: unsigned greater or equal
8826#. ``ult``: unsigned less than
8827#. ``ule``: unsigned less or equal
8828#. ``sgt``: signed greater than
8829#. ``sge``: signed greater or equal
8830#. ``slt``: signed less than
8831#. ``sle``: signed less or equal
8832
8833The remaining two arguments must be :ref:`integer <t_integer>` or
8834:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8835must also be identical types.
8836
8837Semantics:
8838""""""""""
8839
8840The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8841code given as ``cond``. The comparison performed always yields either an
8842:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8843
8844#. ``eq``: yields ``true`` if the operands are equal, ``false``
8845 otherwise. No sign interpretation is necessary or performed.
8846#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8847 otherwise. No sign interpretation is necessary or performed.
8848#. ``ugt``: interprets the operands as unsigned values and yields
8849 ``true`` if ``op1`` is greater than ``op2``.
8850#. ``uge``: interprets the operands as unsigned values and yields
8851 ``true`` if ``op1`` is greater than or equal to ``op2``.
8852#. ``ult``: interprets the operands as unsigned values and yields
8853 ``true`` if ``op1`` is less than ``op2``.
8854#. ``ule``: interprets the operands as unsigned values and yields
8855 ``true`` if ``op1`` is less than or equal to ``op2``.
8856#. ``sgt``: interprets the operands as signed values and yields ``true``
8857 if ``op1`` is greater than ``op2``.
8858#. ``sge``: interprets the operands as signed values and yields ``true``
8859 if ``op1`` is greater than or equal to ``op2``.
8860#. ``slt``: interprets the operands as signed values and yields ``true``
8861 if ``op1`` is less than ``op2``.
8862#. ``sle``: interprets the operands as signed values and yields ``true``
8863 if ``op1`` is less than or equal to ``op2``.
8864
8865If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8866are compared as if they were integers.
8867
8868If the operands are integer vectors, then they are compared element by
8869element. The result is an ``i1`` vector with the same number of elements
8870as the values being compared. Otherwise, the result is an ``i1``.
8871
8872Example:
8873""""""""
8874
Renato Golin124f2592016-07-20 12:16:38 +00008875.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008876
8877 <result> = icmp eq i32 4, 5 ; yields: result=false
8878 <result> = icmp ne float* %X, %X ; yields: result=false
8879 <result> = icmp ult i16 4, 5 ; yields: result=true
8880 <result> = icmp sgt i16 4, 5 ; yields: result=false
8881 <result> = icmp ule i16 -4, 5 ; yields: result=false
8882 <result> = icmp sge i16 4, 5 ; yields: result=false
8883
Sean Silvab084af42012-12-07 10:36:55 +00008884.. _i_fcmp:
8885
8886'``fcmp``' Instruction
8887^^^^^^^^^^^^^^^^^^^^^^
8888
8889Syntax:
8890"""""""
8891
8892::
8893
James Molloy88eb5352015-07-10 12:52:00 +00008894 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008895
8896Overview:
8897"""""""""
8898
8899The '``fcmp``' instruction returns a boolean value or vector of boolean
8900values based on comparison of its operands.
8901
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008902If the operands are floating-point scalars, then the result type is a
Sean Silvab084af42012-12-07 10:36:55 +00008903boolean (:ref:`i1 <t_integer>`).
8904
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008905If the operands are floating-point vectors, then the result type is a
Sean Silvab084af42012-12-07 10:36:55 +00008906vector of boolean with the same number of elements as the operands being
8907compared.
8908
8909Arguments:
8910""""""""""
8911
8912The '``fcmp``' instruction takes three operands. The first operand is
8913the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008914not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008915
8916#. ``false``: no comparison, always returns false
8917#. ``oeq``: ordered and equal
8918#. ``ogt``: ordered and greater than
8919#. ``oge``: ordered and greater than or equal
8920#. ``olt``: ordered and less than
8921#. ``ole``: ordered and less than or equal
8922#. ``one``: ordered and not equal
8923#. ``ord``: ordered (no nans)
8924#. ``ueq``: unordered or equal
8925#. ``ugt``: unordered or greater than
8926#. ``uge``: unordered or greater than or equal
8927#. ``ult``: unordered or less than
8928#. ``ule``: unordered or less than or equal
8929#. ``une``: unordered or not equal
8930#. ``uno``: unordered (either nans)
8931#. ``true``: no comparison, always returns true
8932
8933*Ordered* means that neither operand is a QNAN while *unordered* means
8934that either operand may be a QNAN.
8935
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008936Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating-point
8937<t_floating>` type or a :ref:`vector <t_vector>` of floating-point type.
8938They must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00008939
8940Semantics:
8941""""""""""
8942
8943The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8944condition code given as ``cond``. If the operands are vectors, then the
8945vectors are compared element by element. Each comparison performed
8946always yields an :ref:`i1 <t_integer>` result, as follows:
8947
8948#. ``false``: always yields ``false``, regardless of operands.
8949#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8950 is equal to ``op2``.
8951#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8952 is greater than ``op2``.
8953#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8954 is greater than or equal to ``op2``.
8955#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8956 is less than ``op2``.
8957#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8958 is less than or equal to ``op2``.
8959#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8960 is not equal to ``op2``.
8961#. ``ord``: yields ``true`` if both operands are not a QNAN.
8962#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8963 equal to ``op2``.
8964#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8965 greater than ``op2``.
8966#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8967 greater than or equal to ``op2``.
8968#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8969 less than ``op2``.
8970#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8971 less than or equal to ``op2``.
8972#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8973 not equal to ``op2``.
8974#. ``uno``: yields ``true`` if either operand is a QNAN.
8975#. ``true``: always yields ``true``, regardless of operands.
8976
James Molloy88eb5352015-07-10 12:52:00 +00008977The ``fcmp`` instruction can also optionally take any number of
8978:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008979otherwise unsafe floating-point optimizations.
James Molloy88eb5352015-07-10 12:52:00 +00008980
8981Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8982only flags that have any effect on its semantics are those that allow
8983assumptions to be made about the values of input arguments; namely
8984``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8985
Sean Silvab084af42012-12-07 10:36:55 +00008986Example:
8987""""""""
8988
Renato Golin124f2592016-07-20 12:16:38 +00008989.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008990
8991 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8992 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8993 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8994 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8995
Sean Silvab084af42012-12-07 10:36:55 +00008996.. _i_phi:
8997
8998'``phi``' Instruction
8999^^^^^^^^^^^^^^^^^^^^^
9000
9001Syntax:
9002"""""""
9003
9004::
9005
9006 <result> = phi <ty> [ <val0>, <label0>], ...
9007
9008Overview:
9009"""""""""
9010
9011The '``phi``' instruction is used to implement the φ node in the SSA
9012graph representing the function.
9013
9014Arguments:
9015""""""""""
9016
9017The type of the incoming values is specified with the first type field.
9018After this, the '``phi``' instruction takes a list of pairs as
9019arguments, with one pair for each predecessor basic block of the current
9020block. Only values of :ref:`first class <t_firstclass>` type may be used as
9021the value arguments to the PHI node. Only labels may be used as the
9022label arguments.
9023
9024There must be no non-phi instructions between the start of a basic block
9025and the PHI instructions: i.e. PHI instructions must be first in a basic
9026block.
9027
9028For the purposes of the SSA form, the use of each incoming value is
9029deemed to occur on the edge from the corresponding predecessor block to
9030the current block (but after any definition of an '``invoke``'
9031instruction's return value on the same edge).
9032
9033Semantics:
9034""""""""""
9035
9036At runtime, the '``phi``' instruction logically takes on the value
9037specified by the pair corresponding to the predecessor basic block that
9038executed just prior to the current block.
9039
9040Example:
9041""""""""
9042
9043.. code-block:: llvm
9044
9045 Loop: ; Infinite loop that counts from 0 on up...
9046 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
9047 %nextindvar = add i32 %indvar, 1
9048 br label %Loop
9049
9050.. _i_select:
9051
9052'``select``' Instruction
9053^^^^^^^^^^^^^^^^^^^^^^^^
9054
9055Syntax:
9056"""""""
9057
9058::
9059
9060 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
9061
9062 selty is either i1 or {<N x i1>}
9063
9064Overview:
9065"""""""""
9066
9067The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00009068condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00009069
9070Arguments:
9071""""""""""
9072
9073The '``select``' instruction requires an 'i1' value or a vector of 'i1'
9074values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00009075class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00009076
9077Semantics:
9078""""""""""
9079
9080If the condition is an i1 and it evaluates to 1, the instruction returns
9081the first value argument; otherwise, it returns the second value
9082argument.
9083
9084If the condition is a vector of i1, then the value arguments must be
9085vectors of the same size, and the selection is done element by element.
9086
David Majnemer40a0b592015-03-03 22:45:47 +00009087If the condition is an i1 and the value arguments are vectors of the
9088same size, then an entire vector is selected.
9089
Sean Silvab084af42012-12-07 10:36:55 +00009090Example:
9091""""""""
9092
9093.. code-block:: llvm
9094
9095 %X = select i1 true, i8 17, i8 42 ; yields i8:17
9096
9097.. _i_call:
9098
9099'``call``' Instruction
9100^^^^^^^^^^^^^^^^^^^^^^
9101
9102Syntax:
9103"""""""
9104
9105::
9106
David Blaikieb83cf102016-07-13 17:21:34 +00009107 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00009108 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00009109
9110Overview:
9111"""""""""
9112
9113The '``call``' instruction represents a simple function call.
9114
9115Arguments:
9116""""""""""
9117
9118This instruction requires several arguments:
9119
Reid Kleckner5772b772014-04-24 20:14:34 +00009120#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00009121 should perform tail call optimization. The ``tail`` marker is a hint that
9122 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00009123 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00009124 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00009125
9126 #. The call will not cause unbounded stack growth if it is part of a
9127 recursive cycle in the call graph.
9128 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
9129 forwarded in place.
9130
Florian Hahnedae5a62018-01-17 23:29:25 +00009131 Both markers imply that the callee does not access allocas from the caller.
9132 The ``tail`` marker additionally implies that the callee does not access
9133 varargs from the caller, while ``musttail`` implies that varargs from the
9134 caller are passed to the callee. Calls marked ``musttail`` must obey the
9135 following additional rules:
Reid Kleckner5772b772014-04-24 20:14:34 +00009136
9137 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
9138 or a pointer bitcast followed by a ret instruction.
9139 - The ret instruction must return the (possibly bitcasted) value
9140 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00009141 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00009142 parameters or return types may differ in pointee type, but not
9143 in address space.
9144 - The calling conventions of the caller and callee must match.
9145 - All ABI-impacting function attributes, such as sret, byval, inreg,
9146 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00009147 - The callee must be varargs iff the caller is varargs. Bitcasting a
9148 non-varargs function to the appropriate varargs type is legal so
9149 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00009150
9151 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
9152 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00009153
9154 - Caller and callee both have the calling convention ``fastcc``.
9155 - The call is in tail position (ret immediately follows call and ret
9156 uses value of call or is void).
9157 - Option ``-tailcallopt`` is enabled, or
9158 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00009159 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00009160 met. <CodeGenerator.html#tailcallopt>`_
9161
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00009162#. The optional ``notail`` marker indicates that the optimizers should not add
9163 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
9164 call optimization from being performed on the call.
9165
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00009166#. The optional ``fast-math flags`` marker indicates that the call has one or more
Sanjay Patelfa54ace2015-12-14 21:59:03 +00009167 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
9168 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
9169 for calls that return a floating-point scalar or vector type.
9170
Sean Silvab084af42012-12-07 10:36:55 +00009171#. The optional "cconv" marker indicates which :ref:`calling
9172 convention <callingconv>` the call should use. If none is
9173 specified, the call defaults to using C calling conventions. The
9174 calling convention of the call must match the calling convention of
9175 the target function, or else the behavior is undefined.
9176#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
9177 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
9178 are valid here.
9179#. '``ty``': the type of the call instruction itself which is also the
9180 type of the return value. Functions that return no value are marked
9181 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00009182#. '``fnty``': shall be the signature of the function being called. The
9183 argument types must match the types implied by this signature. This
9184 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00009185#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00009186 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00009187 indirect ``call``'s are just as possible, calling an arbitrary pointer
9188 to function value.
9189#. '``function args``': argument list whose types match the function
9190 signature argument types and parameter attributes. All arguments must
9191 be of :ref:`first class <t_firstclass>` type. If the function signature
9192 indicates the function accepts a variable number of arguments, the
9193 extra arguments can be specified.
George Burgess IV39c91052017-04-13 04:01:55 +00009194#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00009195#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00009196
9197Semantics:
9198""""""""""
9199
9200The '``call``' instruction is used to cause control flow to transfer to
9201a specified function, with its incoming arguments bound to the specified
9202values. Upon a '``ret``' instruction in the called function, control
9203flow continues with the instruction after the function call, and the
9204return value of the function is bound to the result argument.
9205
9206Example:
9207""""""""
9208
9209.. code-block:: llvm
9210
9211 %retval = call i32 @test(i32 %argc)
9212 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
9213 %X = tail call i32 @foo() ; yields i32
9214 %Y = tail call fastcc i32 @foo() ; yields i32
9215 call void %foo(i8 97 signext)
9216
9217 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00009218 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00009219 %gr = extractvalue %struct.A %r, 0 ; yields i32
9220 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
9221 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
9222 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
9223
9224llvm treats calls to some functions with names and arguments that match
9225the standard C99 library as being the C99 library functions, and may
9226perform optimizations or generate code for them under that assumption.
9227This is something we'd like to change in the future to provide better
9228support for freestanding environments and non-C-based languages.
9229
9230.. _i_va_arg:
9231
9232'``va_arg``' Instruction
9233^^^^^^^^^^^^^^^^^^^^^^^^
9234
9235Syntax:
9236"""""""
9237
9238::
9239
9240 <resultval> = va_arg <va_list*> <arglist>, <argty>
9241
9242Overview:
9243"""""""""
9244
9245The '``va_arg``' instruction is used to access arguments passed through
9246the "variable argument" area of a function call. It is used to implement
9247the ``va_arg`` macro in C.
9248
9249Arguments:
9250""""""""""
9251
9252This instruction takes a ``va_list*`` value and the type of the
9253argument. It returns a value of the specified argument type and
9254increments the ``va_list`` to point to the next argument. The actual
9255type of ``va_list`` is target specific.
9256
9257Semantics:
9258""""""""""
9259
9260The '``va_arg``' instruction loads an argument of the specified type
9261from the specified ``va_list`` and causes the ``va_list`` to point to
9262the next argument. For more information, see the variable argument
9263handling :ref:`Intrinsic Functions <int_varargs>`.
9264
9265It is legal for this instruction to be called in a function which does
9266not take a variable number of arguments, for example, the ``vfprintf``
9267function.
9268
9269``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
9270function <intrinsics>` because it takes a type as an argument.
9271
9272Example:
9273""""""""
9274
9275See the :ref:`variable argument processing <int_varargs>` section.
9276
9277Note that the code generator does not yet fully support va\_arg on many
9278targets. Also, it does not currently support va\_arg with aggregate
9279types on any target.
9280
9281.. _i_landingpad:
9282
9283'``landingpad``' Instruction
9284^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9285
9286Syntax:
9287"""""""
9288
9289::
9290
David Majnemer7fddecc2015-06-17 20:52:32 +00009291 <resultval> = landingpad <resultty> <clause>+
9292 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00009293
9294 <clause> := catch <type> <value>
9295 <clause> := filter <array constant type> <array constant>
9296
9297Overview:
9298"""""""""
9299
9300The '``landingpad``' instruction is used by `LLVM's exception handling
9301system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009302is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00009303code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00009304defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00009305re-entry to the function. The ``resultval`` has the type ``resultty``.
9306
9307Arguments:
9308""""""""""
9309
David Majnemer7fddecc2015-06-17 20:52:32 +00009310The optional
Sean Silvab084af42012-12-07 10:36:55 +00009311``cleanup`` flag indicates that the landing pad block is a cleanup.
9312
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009313A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00009314contains the global variable representing the "type" that may be caught
9315or filtered respectively. Unlike the ``catch`` clause, the ``filter``
9316clause takes an array constant as its argument. Use
9317"``[0 x i8**] undef``" for a filter which cannot throw. The
9318'``landingpad``' instruction must contain *at least* one ``clause`` or
9319the ``cleanup`` flag.
9320
9321Semantics:
9322""""""""""
9323
9324The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00009325:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00009326therefore the "result type" of the ``landingpad`` instruction. As with
9327calling conventions, how the personality function results are
9328represented in LLVM IR is target specific.
9329
9330The clauses are applied in order from top to bottom. If two
9331``landingpad`` instructions are merged together through inlining, the
9332clauses from the calling function are appended to the list of clauses.
9333When the call stack is being unwound due to an exception being thrown,
9334the exception is compared against each ``clause`` in turn. If it doesn't
9335match any of the clauses, and the ``cleanup`` flag is not set, then
9336unwinding continues further up the call stack.
9337
9338The ``landingpad`` instruction has several restrictions:
9339
9340- A landing pad block is a basic block which is the unwind destination
9341 of an '``invoke``' instruction.
9342- A landing pad block must have a '``landingpad``' instruction as its
9343 first non-PHI instruction.
9344- There can be only one '``landingpad``' instruction within the landing
9345 pad block.
9346- A basic block that is not a landing pad block may not include a
9347 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009348
9349Example:
9350""""""""
9351
9352.. code-block:: llvm
9353
9354 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00009355 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009356 catch i8** @_ZTIi
9357 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00009358 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009359 cleanup
9360 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00009361 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009362 catch i8** @_ZTIi
9363 filter [1 x i8**] [@_ZTId]
9364
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009365.. _i_catchpad:
9366
9367'``catchpad``' Instruction
9368^^^^^^^^^^^^^^^^^^^^^^^^^^
9369
9370Syntax:
9371"""""""
9372
9373::
9374
9375 <resultval> = catchpad within <catchswitch> [<args>*]
9376
9377Overview:
9378"""""""""
9379
9380The '``catchpad``' instruction is used by `LLVM's exception handling
9381system <ExceptionHandling.html#overview>`_ to specify that a basic block
9382begins a catch handler --- one where a personality routine attempts to transfer
9383control to catch an exception.
9384
9385Arguments:
9386""""""""""
9387
9388The ``catchswitch`` operand must always be a token produced by a
9389:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
9390ensures that each ``catchpad`` has exactly one predecessor block, and it always
9391terminates in a ``catchswitch``.
9392
9393The ``args`` correspond to whatever information the personality routine
9394requires to know if this is an appropriate handler for the exception. Control
9395will transfer to the ``catchpad`` if this is the first appropriate handler for
9396the exception.
9397
9398The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
9399``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
9400pads.
9401
9402Semantics:
9403""""""""""
9404
9405When the call stack is being unwound due to an exception being thrown, the
9406exception is compared against the ``args``. If it doesn't match, control will
9407not reach the ``catchpad`` instruction. The representation of ``args`` is
9408entirely target and personality function-specific.
9409
9410Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
9411instruction must be the first non-phi of its parent basic block.
9412
9413The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
9414instructions is described in the
9415`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
9416
9417When a ``catchpad`` has been "entered" but not yet "exited" (as
9418described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9419it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9420that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
9421
9422Example:
9423""""""""
9424
Renato Golin124f2592016-07-20 12:16:38 +00009425.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009426
9427 dispatch:
9428 %cs = catchswitch within none [label %handler0] unwind to caller
9429 ;; A catch block which can catch an integer.
9430 handler0:
9431 %tok = catchpad within %cs [i8** @_ZTIi]
9432
David Majnemer654e1302015-07-31 17:58:14 +00009433.. _i_cleanuppad:
9434
9435'``cleanuppad``' Instruction
9436^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9437
9438Syntax:
9439"""""""
9440
9441::
9442
David Majnemer8a1c45d2015-12-12 05:38:55 +00009443 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00009444
9445Overview:
9446"""""""""
9447
9448The '``cleanuppad``' instruction is used by `LLVM's exception handling
9449system <ExceptionHandling.html#overview>`_ to specify that a basic block
9450is a cleanup block --- one where a personality routine attempts to
9451transfer control to run cleanup actions.
9452The ``args`` correspond to whatever additional
9453information the :ref:`personality function <personalityfn>` requires to
9454execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00009455The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00009456match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
9457The ``parent`` argument is the token of the funclet that contains the
9458``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
9459this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00009460
9461Arguments:
9462""""""""""
9463
9464The instruction takes a list of arbitrary values which are interpreted
9465by the :ref:`personality function <personalityfn>`.
9466
9467Semantics:
9468""""""""""
9469
David Majnemer654e1302015-07-31 17:58:14 +00009470When the call stack is being unwound due to an exception being thrown,
9471the :ref:`personality function <personalityfn>` transfers control to the
9472``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00009473As with calling conventions, how the personality function results are
9474represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00009475
9476The ``cleanuppad`` instruction has several restrictions:
9477
9478- A cleanup block is a basic block which is the unwind destination of
9479 an exceptional instruction.
9480- A cleanup block must have a '``cleanuppad``' instruction as its
9481 first non-PHI instruction.
9482- There can be only one '``cleanuppad``' instruction within the
9483 cleanup block.
9484- A basic block that is not a cleanup block may not include a
9485 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009486
Joseph Tremoulete28885e2016-01-10 04:28:38 +00009487When a ``cleanuppad`` has been "entered" but not yet "exited" (as
9488described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9489it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9490that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009491
David Majnemer654e1302015-07-31 17:58:14 +00009492Example:
9493""""""""
9494
Renato Golin124f2592016-07-20 12:16:38 +00009495.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00009496
David Majnemer8a1c45d2015-12-12 05:38:55 +00009497 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00009498
Sean Silvab084af42012-12-07 10:36:55 +00009499.. _intrinsics:
9500
9501Intrinsic Functions
9502===================
9503
9504LLVM supports the notion of an "intrinsic function". These functions
9505have well known names and semantics and are required to follow certain
9506restrictions. Overall, these intrinsics represent an extension mechanism
9507for the LLVM language that does not require changing all of the
9508transformations in LLVM when adding to the language (or the bitcode
9509reader/writer, the parser, etc...).
9510
9511Intrinsic function names must all start with an "``llvm.``" prefix. This
9512prefix is reserved in LLVM for intrinsic names; thus, function names may
9513not begin with this prefix. Intrinsic functions must always be external
9514functions: you cannot define the body of intrinsic functions. Intrinsic
9515functions may only be used in call or invoke instructions: it is illegal
9516to take the address of an intrinsic function. Additionally, because
9517intrinsic functions are part of the LLVM language, it is required if any
9518are added that they be documented here.
9519
9520Some intrinsic functions can be overloaded, i.e., the intrinsic
9521represents a family of functions that perform the same operation but on
9522different data types. Because LLVM can represent over 8 million
9523different integer types, overloading is used commonly to allow an
9524intrinsic function to operate on any integer type. One or more of the
9525argument types or the result type can be overloaded to accept any
9526integer type. Argument types may also be defined as exactly matching a
9527previous argument's type or the result type. This allows an intrinsic
9528function which accepts multiple arguments, but needs all of them to be
9529of the same type, to only be overloaded with respect to a single
9530argument or the result.
9531
9532Overloaded intrinsics will have the names of its overloaded argument
9533types encoded into its function name, each preceded by a period. Only
9534those types which are overloaded result in a name suffix. Arguments
9535whose type is matched against another type do not. For example, the
9536``llvm.ctpop`` function can take an integer of any width and returns an
9537integer of exactly the same integer width. This leads to a family of
9538functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
9539``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
9540overloaded, and only one type suffix is required. Because the argument's
9541type is matched against the return type, it does not require its own
9542name suffix.
9543
9544To learn how to add an intrinsic function, please see the `Extending
9545LLVM Guide <ExtendingLLVM.html>`_.
9546
9547.. _int_varargs:
9548
9549Variable Argument Handling Intrinsics
9550-------------------------------------
9551
9552Variable argument support is defined in LLVM with the
9553:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9554functions. These functions are related to the similarly named macros
9555defined in the ``<stdarg.h>`` header file.
9556
9557All of these functions operate on arguments that use a target-specific
9558value type "``va_list``". The LLVM assembly language reference manual
9559does not define what this type is, so all transformations should be
9560prepared to handle these functions regardless of the type used.
9561
9562This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9563variable argument handling intrinsic functions are used.
9564
9565.. code-block:: llvm
9566
Tim Northoverab60bb92014-11-02 01:21:51 +00009567 ; This struct is different for every platform. For most platforms,
9568 ; it is merely an i8*.
9569 %struct.va_list = type { i8* }
9570
9571 ; For Unix x86_64 platforms, va_list is the following struct:
9572 ; %struct.va_list = type { i32, i32, i8*, i8* }
9573
Sean Silvab084af42012-12-07 10:36:55 +00009574 define i32 @test(i32 %X, ...) {
9575 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009576 %ap = alloca %struct.va_list
9577 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009578 call void @llvm.va_start(i8* %ap2)
9579
9580 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009581 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009582
9583 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9584 %aq = alloca i8*
9585 %aq2 = bitcast i8** %aq to i8*
9586 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9587 call void @llvm.va_end(i8* %aq2)
9588
9589 ; Stop processing of arguments.
9590 call void @llvm.va_end(i8* %ap2)
9591 ret i32 %tmp
9592 }
9593
9594 declare void @llvm.va_start(i8*)
9595 declare void @llvm.va_copy(i8*, i8*)
9596 declare void @llvm.va_end(i8*)
9597
9598.. _int_va_start:
9599
9600'``llvm.va_start``' Intrinsic
9601^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9602
9603Syntax:
9604"""""""
9605
9606::
9607
Nick Lewycky04f6de02013-09-11 22:04:52 +00009608 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009609
9610Overview:
9611"""""""""
9612
9613The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9614subsequent use by ``va_arg``.
9615
9616Arguments:
9617""""""""""
9618
9619The argument is a pointer to a ``va_list`` element to initialize.
9620
9621Semantics:
9622""""""""""
9623
9624The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9625available in C. In a target-dependent way, it initializes the
9626``va_list`` element to which the argument points, so that the next call
9627to ``va_arg`` will produce the first variable argument passed to the
9628function. Unlike the C ``va_start`` macro, this intrinsic does not need
9629to know the last argument of the function as the compiler can figure
9630that out.
9631
9632'``llvm.va_end``' Intrinsic
9633^^^^^^^^^^^^^^^^^^^^^^^^^^^
9634
9635Syntax:
9636"""""""
9637
9638::
9639
9640 declare void @llvm.va_end(i8* <arglist>)
9641
9642Overview:
9643"""""""""
9644
9645The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9646initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9647
9648Arguments:
9649""""""""""
9650
9651The argument is a pointer to a ``va_list`` to destroy.
9652
9653Semantics:
9654""""""""""
9655
9656The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9657available in C. In a target-dependent way, it destroys the ``va_list``
9658element to which the argument points. Calls to
9659:ref:`llvm.va_start <int_va_start>` and
9660:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9661``llvm.va_end``.
9662
9663.. _int_va_copy:
9664
9665'``llvm.va_copy``' Intrinsic
9666^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9667
9668Syntax:
9669"""""""
9670
9671::
9672
9673 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9674
9675Overview:
9676"""""""""
9677
9678The '``llvm.va_copy``' intrinsic copies the current argument position
9679from the source argument list to the destination argument list.
9680
9681Arguments:
9682""""""""""
9683
9684The first argument is a pointer to a ``va_list`` element to initialize.
9685The second argument is a pointer to a ``va_list`` element to copy from.
9686
9687Semantics:
9688""""""""""
9689
9690The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9691available in C. In a target-dependent way, it copies the source
9692``va_list`` element into the destination ``va_list`` element. This
9693intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9694arbitrarily complex and require, for example, memory allocation.
9695
9696Accurate Garbage Collection Intrinsics
9697--------------------------------------
9698
Philip Reamesc5b0f562015-02-25 23:52:06 +00009699LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009700(GC) requires the frontend to generate code containing appropriate intrinsic
9701calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009702intrinsics in a manner which is appropriate for the target collector.
9703
Sean Silvab084af42012-12-07 10:36:55 +00009704These intrinsics allow identification of :ref:`GC roots on the
9705stack <int_gcroot>`, as well as garbage collector implementations that
9706require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009707Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009708these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009709details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009710
Philip Reamesf80bbff2015-02-25 23:45:20 +00009711Experimental Statepoint Intrinsics
9712^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9713
9714LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009715collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009716to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009717:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009718differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009719<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009720described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009721
9722.. _int_gcroot:
9723
9724'``llvm.gcroot``' Intrinsic
9725^^^^^^^^^^^^^^^^^^^^^^^^^^^
9726
9727Syntax:
9728"""""""
9729
9730::
9731
9732 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9733
9734Overview:
9735"""""""""
9736
9737The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9738the code generator, and allows some metadata to be associated with it.
9739
9740Arguments:
9741""""""""""
9742
9743The first argument specifies the address of a stack object that contains
9744the root pointer. The second pointer (which must be either a constant or
9745a global value address) contains the meta-data to be associated with the
9746root.
9747
9748Semantics:
9749""""""""""
9750
9751At runtime, a call to this intrinsic stores a null pointer into the
9752"ptrloc" location. At compile-time, the code generator generates
9753information to allow the runtime to find the pointer at GC safe points.
9754The '``llvm.gcroot``' intrinsic may only be used in a function which
9755:ref:`specifies a GC algorithm <gc>`.
9756
9757.. _int_gcread:
9758
9759'``llvm.gcread``' Intrinsic
9760^^^^^^^^^^^^^^^^^^^^^^^^^^^
9761
9762Syntax:
9763"""""""
9764
9765::
9766
9767 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9768
9769Overview:
9770"""""""""
9771
9772The '``llvm.gcread``' intrinsic identifies reads of references from heap
9773locations, allowing garbage collector implementations that require read
9774barriers.
9775
9776Arguments:
9777""""""""""
9778
9779The second argument is the address to read from, which should be an
9780address allocated from the garbage collector. The first object is a
9781pointer to the start of the referenced object, if needed by the language
9782runtime (otherwise null).
9783
9784Semantics:
9785""""""""""
9786
9787The '``llvm.gcread``' intrinsic has the same semantics as a load
9788instruction, but may be replaced with substantially more complex code by
9789the garbage collector runtime, as needed. The '``llvm.gcread``'
9790intrinsic may only be used in a function which :ref:`specifies a GC
9791algorithm <gc>`.
9792
9793.. _int_gcwrite:
9794
9795'``llvm.gcwrite``' Intrinsic
9796^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9797
9798Syntax:
9799"""""""
9800
9801::
9802
9803 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9804
9805Overview:
9806"""""""""
9807
9808The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9809locations, allowing garbage collector implementations that require write
9810barriers (such as generational or reference counting collectors).
9811
9812Arguments:
9813""""""""""
9814
9815The first argument is the reference to store, the second is the start of
9816the object to store it to, and the third is the address of the field of
9817Obj to store to. If the runtime does not require a pointer to the
9818object, Obj may be null.
9819
9820Semantics:
9821""""""""""
9822
9823The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9824instruction, but may be replaced with substantially more complex code by
9825the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9826intrinsic may only be used in a function which :ref:`specifies a GC
9827algorithm <gc>`.
9828
9829Code Generator Intrinsics
9830-------------------------
9831
9832These intrinsics are provided by LLVM to expose special features that
9833may only be implemented with code generator support.
9834
9835'``llvm.returnaddress``' Intrinsic
9836^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9837
9838Syntax:
9839"""""""
9840
9841::
9842
George Burgess IVfbc34982017-05-20 04:52:29 +00009843 declare i8* @llvm.returnaddress(i32 <level>)
Sean Silvab084af42012-12-07 10:36:55 +00009844
9845Overview:
9846"""""""""
9847
9848The '``llvm.returnaddress``' intrinsic attempts to compute a
9849target-specific value indicating the return address of the current
9850function or one of its callers.
9851
9852Arguments:
9853""""""""""
9854
9855The argument to this intrinsic indicates which function to return the
9856address for. Zero indicates the calling function, one indicates its
9857caller, etc. The argument is **required** to be a constant integer
9858value.
9859
9860Semantics:
9861""""""""""
9862
9863The '``llvm.returnaddress``' intrinsic either returns a pointer
9864indicating the return address of the specified call frame, or zero if it
9865cannot be identified. The value returned by this intrinsic is likely to
9866be incorrect or 0 for arguments other than zero, so it should only be
9867used for debugging purposes.
9868
9869Note that calling this intrinsic does not prevent function inlining or
9870other aggressive transformations, so the value returned may not be that
9871of the obvious source-language caller.
9872
Albert Gutowski795d7d62016-10-12 22:13:19 +00009873'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +00009874^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +00009875
9876Syntax:
9877"""""""
9878
9879::
9880
George Burgess IVfbc34982017-05-20 04:52:29 +00009881 declare i8* @llvm.addressofreturnaddress()
Albert Gutowski795d7d62016-10-12 22:13:19 +00009882
9883Overview:
9884"""""""""
9885
9886The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
9887pointer to the place in the stack frame where the return address of the
9888current function is stored.
9889
9890Semantics:
9891""""""""""
9892
9893Note that calling this intrinsic does not prevent function inlining or
9894other aggressive transformations, so the value returned may not be that
9895of the obvious source-language caller.
9896
9897This intrinsic is only implemented for x86.
9898
Sean Silvab084af42012-12-07 10:36:55 +00009899'``llvm.frameaddress``' Intrinsic
9900^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9901
9902Syntax:
9903"""""""
9904
9905::
9906
9907 declare i8* @llvm.frameaddress(i32 <level>)
9908
9909Overview:
9910"""""""""
9911
9912The '``llvm.frameaddress``' intrinsic attempts to return the
9913target-specific frame pointer value for the specified stack frame.
9914
9915Arguments:
9916""""""""""
9917
9918The argument to this intrinsic indicates which function to return the
9919frame pointer for. Zero indicates the calling function, one indicates
9920its caller, etc. The argument is **required** to be a constant integer
9921value.
9922
9923Semantics:
9924""""""""""
9925
9926The '``llvm.frameaddress``' intrinsic either returns a pointer
9927indicating the frame address of the specified call frame, or zero if it
9928cannot be identified. The value returned by this intrinsic is likely to
9929be incorrect or 0 for arguments other than zero, so it should only be
9930used for debugging purposes.
9931
9932Note that calling this intrinsic does not prevent function inlining or
9933other aggressive transformations, so the value returned may not be that
9934of the obvious source-language caller.
9935
Reid Kleckner60381792015-07-07 22:25:32 +00009936'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009937^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9938
9939Syntax:
9940"""""""
9941
9942::
9943
Reid Kleckner60381792015-07-07 22:25:32 +00009944 declare void @llvm.localescape(...)
9945 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009946
9947Overview:
9948"""""""""
9949
Reid Kleckner60381792015-07-07 22:25:32 +00009950The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9951allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009952live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009953computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009954
9955Arguments:
9956""""""""""
9957
Reid Kleckner60381792015-07-07 22:25:32 +00009958All arguments to '``llvm.localescape``' must be pointers to static allocas or
9959casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009960once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009961
Reid Kleckner60381792015-07-07 22:25:32 +00009962The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009963bitcasted pointer to a function defined in the current module. The code
9964generator cannot determine the frame allocation offset of functions defined in
9965other modules.
9966
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009967The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9968call frame that is currently live. The return value of '``llvm.localaddress``'
9969is one way to produce such a value, but various runtimes also expose a suitable
9970pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009971
Reid Kleckner60381792015-07-07 22:25:32 +00009972The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9973'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009974
Reid Klecknere9b89312015-01-13 00:48:10 +00009975Semantics:
9976""""""""""
9977
Reid Kleckner60381792015-07-07 22:25:32 +00009978These intrinsics allow a group of functions to share access to a set of local
9979stack allocations of a one parent function. The parent function may call the
9980'``llvm.localescape``' intrinsic once from the function entry block, and the
9981child functions can use '``llvm.localrecover``' to access the escaped allocas.
9982The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9983the escaped allocas are allocated, which would break attempts to use
9984'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009985
Renato Golinc7aea402014-05-06 16:51:25 +00009986.. _int_read_register:
9987.. _int_write_register:
9988
9989'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9990^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9991
9992Syntax:
9993"""""""
9994
9995::
9996
9997 declare i32 @llvm.read_register.i32(metadata)
9998 declare i64 @llvm.read_register.i64(metadata)
9999 declare void @llvm.write_register.i32(metadata, i32 @value)
10000 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +000010001 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +000010002
10003Overview:
10004"""""""""
10005
10006The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
10007provides access to the named register. The register must be valid on
10008the architecture being compiled to. The type needs to be compatible
10009with the register being read.
10010
10011Semantics:
10012""""""""""
10013
10014The '``llvm.read_register``' intrinsic returns the current value of the
10015register, where possible. The '``llvm.write_register``' intrinsic sets
10016the current value of the register, where possible.
10017
10018This is useful to implement named register global variables that need
10019to always be mapped to a specific register, as is common practice on
10020bare-metal programs including OS kernels.
10021
10022The compiler doesn't check for register availability or use of the used
10023register in surrounding code, including inline assembly. Because of that,
10024allocatable registers are not supported.
10025
10026Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +000010027architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +000010028work is needed to support other registers and even more so, allocatable
10029registers.
10030
Sean Silvab084af42012-12-07 10:36:55 +000010031.. _int_stacksave:
10032
10033'``llvm.stacksave``' Intrinsic
10034^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10035
10036Syntax:
10037"""""""
10038
10039::
10040
10041 declare i8* @llvm.stacksave()
10042
10043Overview:
10044"""""""""
10045
10046The '``llvm.stacksave``' intrinsic is used to remember the current state
10047of the function stack, for use with
10048:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
10049implementing language features like scoped automatic variable sized
10050arrays in C99.
10051
10052Semantics:
10053""""""""""
10054
10055This intrinsic returns a opaque pointer value that can be passed to
10056:ref:`llvm.stackrestore <int_stackrestore>`. When an
10057``llvm.stackrestore`` intrinsic is executed with a value saved from
10058``llvm.stacksave``, it effectively restores the state of the stack to
10059the state it was in when the ``llvm.stacksave`` intrinsic executed. In
10060practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
10061were allocated after the ``llvm.stacksave`` was executed.
10062
10063.. _int_stackrestore:
10064
10065'``llvm.stackrestore``' Intrinsic
10066^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10067
10068Syntax:
10069"""""""
10070
10071::
10072
10073 declare void @llvm.stackrestore(i8* %ptr)
10074
10075Overview:
10076"""""""""
10077
10078The '``llvm.stackrestore``' intrinsic is used to restore the state of
10079the function stack to the state it was in when the corresponding
10080:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
10081useful for implementing language features like scoped automatic variable
10082sized arrays in C99.
10083
10084Semantics:
10085""""""""""
10086
10087See the description for :ref:`llvm.stacksave <int_stacksave>`.
10088
Yury Gribovd7dbb662015-12-01 11:40:55 +000010089.. _int_get_dynamic_area_offset:
10090
10091'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +000010092^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +000010093
10094Syntax:
10095"""""""
10096
10097::
10098
10099 declare i32 @llvm.get.dynamic.area.offset.i32()
10100 declare i64 @llvm.get.dynamic.area.offset.i64()
10101
Lang Hames10239932016-10-08 00:20:42 +000010102Overview:
10103"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +000010104
10105 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
10106 get the offset from native stack pointer to the address of the most
10107 recent dynamic alloca on the caller's stack. These intrinsics are
10108 intendend for use in combination with
10109 :ref:`llvm.stacksave <int_stacksave>` to get a
10110 pointer to the most recent dynamic alloca. This is useful, for example,
10111 for AddressSanitizer's stack unpoisoning routines.
10112
10113Semantics:
10114""""""""""
10115
10116 These intrinsics return a non-negative integer value that can be used to
10117 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
10118 on the caller's stack. In particular, for targets where stack grows downwards,
10119 adding this offset to the native stack pointer would get the address of the most
10120 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +000010121 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +000010122 one past the end of the most recent dynamic alloca.
10123
10124 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
10125 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
10126 compile-time-known constant value.
10127
10128 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
Matt Arsenaultc749bdc2017-03-30 23:36:47 +000010129 must match the target's default address space's (address space 0) pointer type.
Yury Gribovd7dbb662015-12-01 11:40:55 +000010130
Sean Silvab084af42012-12-07 10:36:55 +000010131'``llvm.prefetch``' Intrinsic
10132^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10133
10134Syntax:
10135"""""""
10136
10137::
10138
10139 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
10140
10141Overview:
10142"""""""""
10143
10144The '``llvm.prefetch``' intrinsic is a hint to the code generator to
10145insert a prefetch instruction if supported; otherwise, it is a noop.
10146Prefetches have no effect on the behavior of the program but can change
10147its performance characteristics.
10148
10149Arguments:
10150""""""""""
10151
10152``address`` is the address to be prefetched, ``rw`` is the specifier
10153determining if the fetch should be for a read (0) or write (1), and
10154``locality`` is a temporal locality specifier ranging from (0) - no
10155locality, to (3) - extremely local keep in cache. The ``cache type``
10156specifies whether the prefetch is performed on the data (1) or
10157instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
10158arguments must be constant integers.
10159
10160Semantics:
10161""""""""""
10162
10163This intrinsic does not modify the behavior of the program. In
10164particular, prefetches cannot trap and do not produce a value. On
10165targets that support this intrinsic, the prefetch can provide hints to
10166the processor cache for better performance.
10167
10168'``llvm.pcmarker``' Intrinsic
10169^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10170
10171Syntax:
10172"""""""
10173
10174::
10175
10176 declare void @llvm.pcmarker(i32 <id>)
10177
10178Overview:
10179"""""""""
10180
10181The '``llvm.pcmarker``' intrinsic is a method to export a Program
10182Counter (PC) in a region of code to simulators and other tools. The
10183method is target specific, but it is expected that the marker will use
10184exported symbols to transmit the PC of the marker. The marker makes no
10185guarantees that it will remain with any specific instruction after
10186optimizations. It is possible that the presence of a marker will inhibit
10187optimizations. The intended use is to be inserted after optimizations to
10188allow correlations of simulation runs.
10189
10190Arguments:
10191""""""""""
10192
10193``id`` is a numerical id identifying the marker.
10194
10195Semantics:
10196""""""""""
10197
10198This intrinsic does not modify the behavior of the program. Backends
10199that do not support this intrinsic may ignore it.
10200
10201'``llvm.readcyclecounter``' Intrinsic
10202^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10203
10204Syntax:
10205"""""""
10206
10207::
10208
10209 declare i64 @llvm.readcyclecounter()
10210
10211Overview:
10212"""""""""
10213
10214The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
10215counter register (or similar low latency, high accuracy clocks) on those
10216targets that support it. On X86, it should map to RDTSC. On Alpha, it
10217should map to RPCC. As the backing counters overflow quickly (on the
10218order of 9 seconds on alpha), this should only be used for small
10219timings.
10220
10221Semantics:
10222""""""""""
10223
10224When directly supported, reading the cycle counter should not modify any
10225memory. Implementations are allowed to either return a application
10226specific value or a system wide value. On backends without support, this
10227is lowered to a constant 0.
10228
Tim Northoverbc933082013-05-23 19:11:20 +000010229Note that runtime support may be conditional on the privilege-level code is
10230running at and the host platform.
10231
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010232'``llvm.clear_cache``' Intrinsic
10233^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10234
10235Syntax:
10236"""""""
10237
10238::
10239
10240 declare void @llvm.clear_cache(i8*, i8*)
10241
10242Overview:
10243"""""""""
10244
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010245The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
10246in the specified range to the execution unit of the processor. On
10247targets with non-unified instruction and data cache, the implementation
10248flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010249
10250Semantics:
10251""""""""""
10252
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010253On platforms with coherent instruction and data caches (e.g. x86), this
10254intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +000010255cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010256instructions or a system call, if cache flushing requires special
10257privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010258
Sean Silvad02bf3e2014-04-07 22:29:53 +000010259The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010260time library.
Renato Golin93010e62014-03-26 14:01:32 +000010261
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010262This instrinsic does *not* empty the instruction pipeline. Modifications
10263of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010264
Vedant Kumar51ce6682018-01-26 23:54:25 +000010265'``llvm.instrprof.increment``' Intrinsic
Justin Bogner61ba2e32014-12-08 18:02:35 +000010266^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10267
10268Syntax:
10269"""""""
10270
10271::
10272
Vedant Kumar51ce6682018-01-26 23:54:25 +000010273 declare void @llvm.instrprof.increment(i8* <name>, i64 <hash>,
Justin Bogner61ba2e32014-12-08 18:02:35 +000010274 i32 <num-counters>, i32 <index>)
10275
10276Overview:
10277"""""""""
10278
Vedant Kumar51ce6682018-01-26 23:54:25 +000010279The '``llvm.instrprof.increment``' intrinsic can be emitted by a
Justin Bogner61ba2e32014-12-08 18:02:35 +000010280frontend for use with instrumentation based profiling. These will be
10281lowered by the ``-instrprof`` pass to generate execution counts of a
10282program at runtime.
10283
10284Arguments:
10285""""""""""
10286
10287The first argument is a pointer to a global variable containing the
10288name of the entity being instrumented. This should generally be the
10289(mangled) function name for a set of counters.
10290
10291The second argument is a hash value that can be used by the consumer
10292of the profile data to detect changes to the instrumented source, and
10293the third is the number of counters associated with ``name``. It is an
10294error if ``hash`` or ``num-counters`` differ between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000010295``instrprof.increment`` that refer to the same name.
Justin Bogner61ba2e32014-12-08 18:02:35 +000010296
10297The last argument refers to which of the counters for ``name`` should
10298be incremented. It should be a value between 0 and ``num-counters``.
10299
10300Semantics:
10301""""""""""
10302
10303This intrinsic represents an increment of a profiling counter. It will
10304cause the ``-instrprof`` pass to generate the appropriate data
10305structures and the code to increment the appropriate value, in a
10306format that can be written out by a compiler runtime and consumed via
10307the ``llvm-profdata`` tool.
10308
Vedant Kumar51ce6682018-01-26 23:54:25 +000010309'``llvm.instrprof.increment.step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +000010310^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +000010311
10312Syntax:
10313"""""""
10314
10315::
10316
Vedant Kumar51ce6682018-01-26 23:54:25 +000010317 declare void @llvm.instrprof.increment.step(i8* <name>, i64 <hash>,
Xinliang David Li4ca17332016-09-18 18:34:07 +000010318 i32 <num-counters>,
10319 i32 <index>, i64 <step>)
10320
10321Overview:
10322"""""""""
10323
Vedant Kumar51ce6682018-01-26 23:54:25 +000010324The '``llvm.instrprof.increment.step``' intrinsic is an extension to
10325the '``llvm.instrprof.increment``' intrinsic with an additional fifth
Xinliang David Li4ca17332016-09-18 18:34:07 +000010326argument to specify the step of the increment.
10327
10328Arguments:
10329""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000010330The first four arguments are the same as '``llvm.instrprof.increment``'
Pete Couperused9569d2017-08-23 20:58:22 +000010331intrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000010332
10333The last argument specifies the value of the increment of the counter variable.
10334
10335Semantics:
10336""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000010337See description of '``llvm.instrprof.increment``' instrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000010338
10339
Vedant Kumar51ce6682018-01-26 23:54:25 +000010340'``llvm.instrprof.value.profile``' Intrinsic
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010341^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10342
10343Syntax:
10344"""""""
10345
10346::
10347
Vedant Kumar51ce6682018-01-26 23:54:25 +000010348 declare void @llvm.instrprof.value.profile(i8* <name>, i64 <hash>,
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010349 i64 <value>, i32 <value_kind>,
10350 i32 <index>)
10351
10352Overview:
10353"""""""""
10354
Vedant Kumar51ce6682018-01-26 23:54:25 +000010355The '``llvm.instrprof.value.profile``' intrinsic can be emitted by a
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010356frontend for use with instrumentation based profiling. This will be
10357lowered by the ``-instrprof`` pass to find out the target values,
10358instrumented expressions take in a program at runtime.
10359
10360Arguments:
10361""""""""""
10362
10363The first argument is a pointer to a global variable containing the
10364name of the entity being instrumented. ``name`` should generally be the
10365(mangled) function name for a set of counters.
10366
10367The second argument is a hash value that can be used by the consumer
10368of the profile data to detect changes to the instrumented source. It
10369is an error if ``hash`` differs between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000010370``llvm.instrprof.*`` that refer to the same name.
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010371
10372The third argument is the value of the expression being profiled. The profiled
10373expression's value should be representable as an unsigned 64-bit value. The
10374fourth argument represents the kind of value profiling that is being done. The
10375supported value profiling kinds are enumerated through the
10376``InstrProfValueKind`` type declared in the
10377``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
10378index of the instrumented expression within ``name``. It should be >= 0.
10379
10380Semantics:
10381""""""""""
10382
10383This intrinsic represents the point where a call to a runtime routine
10384should be inserted for value profiling of target expressions. ``-instrprof``
10385pass will generate the appropriate data structures and replace the
Vedant Kumar51ce6682018-01-26 23:54:25 +000010386``llvm.instrprof.value.profile`` intrinsic with the call to the profile
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010387runtime library with proper arguments.
10388
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000010389'``llvm.thread.pointer``' Intrinsic
10390^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10391
10392Syntax:
10393"""""""
10394
10395::
10396
10397 declare i8* @llvm.thread.pointer()
10398
10399Overview:
10400"""""""""
10401
10402The '``llvm.thread.pointer``' intrinsic returns the value of the thread
10403pointer.
10404
10405Semantics:
10406""""""""""
10407
10408The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
10409for the current thread. The exact semantics of this value are target
10410specific: it may point to the start of TLS area, to the end, or somewhere
10411in the middle. Depending on the target, this intrinsic may read a register,
10412call a helper function, read from an alternate memory space, or perform
10413other operations necessary to locate the TLS area. Not all targets support
10414this intrinsic.
10415
Sean Silvab084af42012-12-07 10:36:55 +000010416Standard C Library Intrinsics
10417-----------------------------
10418
10419LLVM provides intrinsics for a few important standard C library
10420functions. These intrinsics allow source-language front-ends to pass
10421information about the alignment of the pointer arguments to the code
10422generator, providing opportunity for more efficient code generation.
10423
10424.. _int_memcpy:
10425
10426'``llvm.memcpy``' Intrinsic
10427^^^^^^^^^^^^^^^^^^^^^^^^^^^
10428
10429Syntax:
10430"""""""
10431
10432This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
10433integer bit width and for different address spaces. Not all targets
10434support all bit widths however.
10435
10436::
10437
10438 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010439 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010440 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010441 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010442
10443Overview:
10444"""""""""
10445
10446The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10447source location to the destination location.
10448
10449Note that, unlike the standard libc function, the ``llvm.memcpy.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000010450intrinsics do not return a value, takes extra isvolatile
Sean Silvab084af42012-12-07 10:36:55 +000010451arguments and the pointers can be in specified address spaces.
10452
10453Arguments:
10454""""""""""
10455
10456The first argument is a pointer to the destination, the second is a
10457pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000010458specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000010459boolean indicating a volatile access.
10460
Daniel Neilson39eb6a52018-01-19 17:24:21 +000010461The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010462for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010463
10464If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
10465a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10466very cleanly specified and it is unwise to depend on it.
10467
10468Semantics:
10469""""""""""
10470
10471The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10472source location to the destination location, which are not allowed to
10473overlap. It copies "len" bytes of memory over. If the argument is known
10474to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +000010475argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010476
Daniel Neilson57226ef2017-07-12 15:25:26 +000010477.. _int_memmove:
10478
Sean Silvab084af42012-12-07 10:36:55 +000010479'``llvm.memmove``' Intrinsic
10480^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10481
10482Syntax:
10483"""""""
10484
10485This is an overloaded intrinsic. You can use llvm.memmove on any integer
10486bit width and for different address space. Not all targets support all
10487bit widths however.
10488
10489::
10490
10491 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010492 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010493 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010494 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010495
10496Overview:
10497"""""""""
10498
10499The '``llvm.memmove.*``' intrinsics move a block of memory from the
10500source location to the destination location. It is similar to the
10501'``llvm.memcpy``' intrinsic but allows the two memory locations to
10502overlap.
10503
10504Note that, unlike the standard libc function, the ``llvm.memmove.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000010505intrinsics do not return a value, takes an extra isvolatile
10506argument and the pointers can be in specified address spaces.
Sean Silvab084af42012-12-07 10:36:55 +000010507
10508Arguments:
10509""""""""""
10510
10511The first argument is a pointer to the destination, the second is a
10512pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000010513specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000010514boolean indicating a volatile access.
10515
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000010516The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010517for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010518
10519If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
10520is a :ref:`volatile operation <volatile>`. The detailed access behavior is
10521not very cleanly specified and it is unwise to depend on it.
10522
10523Semantics:
10524""""""""""
10525
10526The '``llvm.memmove.*``' intrinsics copy a block of memory from the
10527source location to the destination location, which may overlap. It
10528copies "len" bytes of memory over. If the argument is known to be
10529aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000010530otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010531
Daniel Neilson965613e2017-07-12 21:57:23 +000010532.. _int_memset:
10533
Sean Silvab084af42012-12-07 10:36:55 +000010534'``llvm.memset.*``' Intrinsics
10535^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10536
10537Syntax:
10538"""""""
10539
10540This is an overloaded intrinsic. You can use llvm.memset on any integer
10541bit width and for different address spaces. However, not all targets
10542support all bit widths.
10543
10544::
10545
10546 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010547 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010548 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010549 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010550
10551Overview:
10552"""""""""
10553
10554The '``llvm.memset.*``' intrinsics fill a block of memory with a
10555particular byte value.
10556
10557Note that, unlike the standard libc function, the ``llvm.memset``
Daniel Neilson1e687242018-01-19 17:13:12 +000010558intrinsic does not return a value and takes an extra volatile
10559argument. Also, the destination can be in an arbitrary address space.
Sean Silvab084af42012-12-07 10:36:55 +000010560
10561Arguments:
10562""""""""""
10563
10564The first argument is a pointer to the destination to fill, the second
10565is the byte value with which to fill it, the third argument is an
10566integer argument specifying the number of bytes to fill, and the fourth
Daniel Neilson1e687242018-01-19 17:13:12 +000010567is a boolean indicating a volatile access.
Sean Silvab084af42012-12-07 10:36:55 +000010568
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000010569The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010570for the first arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010571
10572If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10573a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10574very cleanly specified and it is unwise to depend on it.
10575
10576Semantics:
10577""""""""""
10578
10579The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010580at the destination location.
Sean Silvab084af42012-12-07 10:36:55 +000010581
10582'``llvm.sqrt.*``' Intrinsic
10583^^^^^^^^^^^^^^^^^^^^^^^^^^^
10584
10585Syntax:
10586"""""""
10587
10588This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010589floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010590all types however.
10591
10592::
10593
10594 declare float @llvm.sqrt.f32(float %Val)
10595 declare double @llvm.sqrt.f64(double %Val)
10596 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10597 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10598 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10599
10600Overview:
10601"""""""""
10602
Sanjay Patel629c4112017-11-06 16:27:15 +000010603The '``llvm.sqrt``' intrinsics return the square root of the specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010604
10605Arguments:
10606""""""""""
10607
Sanjay Patel629c4112017-11-06 16:27:15 +000010608The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010609
10610Semantics:
10611""""""""""
10612
Sanjay Patel629c4112017-11-06 16:27:15 +000010613Return the same value as a corresponding libm '``sqrt``' function but without
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010614trapping or setting ``errno``. For types specified by IEEE-754, the result
Sanjay Patel629c4112017-11-06 16:27:15 +000010615matches a conforming libm implementation.
10616
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010617When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010618using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010619
10620'``llvm.powi.*``' Intrinsic
10621^^^^^^^^^^^^^^^^^^^^^^^^^^^
10622
10623Syntax:
10624"""""""
10625
10626This is an overloaded intrinsic. You can use ``llvm.powi`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000010627floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010628all types however.
10629
10630::
10631
10632 declare float @llvm.powi.f32(float %Val, i32 %power)
10633 declare double @llvm.powi.f64(double %Val, i32 %power)
10634 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10635 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10636 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10637
10638Overview:
10639"""""""""
10640
10641The '``llvm.powi.*``' intrinsics return the first operand raised to the
10642specified (positive or negative) power. The order of evaluation of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000010643multiplications is not defined. When a vector of floating-point type is
Sean Silvab084af42012-12-07 10:36:55 +000010644used, the second argument remains a scalar integer value.
10645
10646Arguments:
10647""""""""""
10648
10649The second argument is an integer power, and the first is a value to
10650raise to that power.
10651
10652Semantics:
10653""""""""""
10654
10655This function returns the first value raised to the second power with an
10656unspecified sequence of rounding operations.
10657
10658'``llvm.sin.*``' Intrinsic
10659^^^^^^^^^^^^^^^^^^^^^^^^^^
10660
10661Syntax:
10662"""""""
10663
10664This is an overloaded intrinsic. You can use ``llvm.sin`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010665floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010666all types however.
10667
10668::
10669
10670 declare float @llvm.sin.f32(float %Val)
10671 declare double @llvm.sin.f64(double %Val)
10672 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10673 declare fp128 @llvm.sin.f128(fp128 %Val)
10674 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10675
10676Overview:
10677"""""""""
10678
10679The '``llvm.sin.*``' intrinsics return the sine of the operand.
10680
10681Arguments:
10682""""""""""
10683
Sanjay Patel629c4112017-11-06 16:27:15 +000010684The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010685
10686Semantics:
10687""""""""""
10688
Sanjay Patel629c4112017-11-06 16:27:15 +000010689Return the same value as a corresponding libm '``sin``' function but without
10690trapping or setting ``errno``.
10691
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010692When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010693using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010694
10695'``llvm.cos.*``' Intrinsic
10696^^^^^^^^^^^^^^^^^^^^^^^^^^
10697
10698Syntax:
10699"""""""
10700
10701This is an overloaded intrinsic. You can use ``llvm.cos`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010702floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010703all types however.
10704
10705::
10706
10707 declare float @llvm.cos.f32(float %Val)
10708 declare double @llvm.cos.f64(double %Val)
10709 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10710 declare fp128 @llvm.cos.f128(fp128 %Val)
10711 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10712
10713Overview:
10714"""""""""
10715
10716The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10717
10718Arguments:
10719""""""""""
10720
Sanjay Patel629c4112017-11-06 16:27:15 +000010721The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010722
10723Semantics:
10724""""""""""
10725
Sanjay Patel629c4112017-11-06 16:27:15 +000010726Return the same value as a corresponding libm '``cos``' function but without
10727trapping or setting ``errno``.
10728
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010729When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010730using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010731
10732'``llvm.pow.*``' Intrinsic
10733^^^^^^^^^^^^^^^^^^^^^^^^^^
10734
10735Syntax:
10736"""""""
10737
10738This is an overloaded intrinsic. You can use ``llvm.pow`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010739floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010740all types however.
10741
10742::
10743
10744 declare float @llvm.pow.f32(float %Val, float %Power)
10745 declare double @llvm.pow.f64(double %Val, double %Power)
10746 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10747 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10748 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10749
10750Overview:
10751"""""""""
10752
10753The '``llvm.pow.*``' intrinsics return the first operand raised to the
10754specified (positive or negative) power.
10755
10756Arguments:
10757""""""""""
10758
Sanjay Patel629c4112017-11-06 16:27:15 +000010759The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010760
10761Semantics:
10762""""""""""
10763
Sanjay Patel629c4112017-11-06 16:27:15 +000010764Return the same value as a corresponding libm '``pow``' function but without
10765trapping or setting ``errno``.
10766
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010767When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010768using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010769
10770'``llvm.exp.*``' Intrinsic
10771^^^^^^^^^^^^^^^^^^^^^^^^^^
10772
10773Syntax:
10774"""""""
10775
10776This is an overloaded intrinsic. You can use ``llvm.exp`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010777floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010778all types however.
10779
10780::
10781
10782 declare float @llvm.exp.f32(float %Val)
10783 declare double @llvm.exp.f64(double %Val)
10784 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10785 declare fp128 @llvm.exp.f128(fp128 %Val)
10786 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10787
10788Overview:
10789"""""""""
10790
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010791The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
10792value.
Sean Silvab084af42012-12-07 10:36:55 +000010793
10794Arguments:
10795""""""""""
10796
Sanjay Patel629c4112017-11-06 16:27:15 +000010797The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010798
10799Semantics:
10800""""""""""
10801
Sanjay Patel629c4112017-11-06 16:27:15 +000010802Return the same value as a corresponding libm '``exp``' function but without
10803trapping or setting ``errno``.
10804
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010805When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010806using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010807
10808'``llvm.exp2.*``' Intrinsic
10809^^^^^^^^^^^^^^^^^^^^^^^^^^^
10810
10811Syntax:
10812"""""""
10813
10814This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010815floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010816all types however.
10817
10818::
10819
10820 declare float @llvm.exp2.f32(float %Val)
10821 declare double @llvm.exp2.f64(double %Val)
10822 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10823 declare fp128 @llvm.exp2.f128(fp128 %Val)
10824 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10825
10826Overview:
10827"""""""""
10828
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010829The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
10830specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010831
10832Arguments:
10833""""""""""
10834
Sanjay Patel629c4112017-11-06 16:27:15 +000010835The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010836
10837Semantics:
10838""""""""""
10839
Sanjay Patel629c4112017-11-06 16:27:15 +000010840Return the same value as a corresponding libm '``exp2``' function but without
10841trapping or setting ``errno``.
10842
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010843When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010844using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010845
10846'``llvm.log.*``' Intrinsic
10847^^^^^^^^^^^^^^^^^^^^^^^^^^
10848
10849Syntax:
10850"""""""
10851
10852This is an overloaded intrinsic. You can use ``llvm.log`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010853floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010854all types however.
10855
10856::
10857
10858 declare float @llvm.log.f32(float %Val)
10859 declare double @llvm.log.f64(double %Val)
10860 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10861 declare fp128 @llvm.log.f128(fp128 %Val)
10862 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10863
10864Overview:
10865"""""""""
10866
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010867The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
10868value.
Sean Silvab084af42012-12-07 10:36:55 +000010869
10870Arguments:
10871""""""""""
10872
Sanjay Patel629c4112017-11-06 16:27:15 +000010873The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010874
10875Semantics:
10876""""""""""
10877
Sanjay Patel629c4112017-11-06 16:27:15 +000010878Return the same value as a corresponding libm '``log``' function but without
10879trapping or setting ``errno``.
10880
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010881When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010882using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010883
10884'``llvm.log10.*``' Intrinsic
10885^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10886
10887Syntax:
10888"""""""
10889
10890This is an overloaded intrinsic. You can use ``llvm.log10`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010891floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010892all types however.
10893
10894::
10895
10896 declare float @llvm.log10.f32(float %Val)
10897 declare double @llvm.log10.f64(double %Val)
10898 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10899 declare fp128 @llvm.log10.f128(fp128 %Val)
10900 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10901
10902Overview:
10903"""""""""
10904
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010905The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
10906specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010907
10908Arguments:
10909""""""""""
10910
Sanjay Patel629c4112017-11-06 16:27:15 +000010911The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010912
10913Semantics:
10914""""""""""
10915
Sanjay Patel629c4112017-11-06 16:27:15 +000010916Return the same value as a corresponding libm '``log10``' function but without
10917trapping or setting ``errno``.
10918
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010919When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010920using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010921
10922'``llvm.log2.*``' Intrinsic
10923^^^^^^^^^^^^^^^^^^^^^^^^^^^
10924
10925Syntax:
10926"""""""
10927
10928This is an overloaded intrinsic. You can use ``llvm.log2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010929floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010930all types however.
10931
10932::
10933
10934 declare float @llvm.log2.f32(float %Val)
10935 declare double @llvm.log2.f64(double %Val)
10936 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10937 declare fp128 @llvm.log2.f128(fp128 %Val)
10938 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10939
10940Overview:
10941"""""""""
10942
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000010943The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
10944value.
Sean Silvab084af42012-12-07 10:36:55 +000010945
10946Arguments:
10947""""""""""
10948
Sanjay Patel629c4112017-11-06 16:27:15 +000010949The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010950
10951Semantics:
10952""""""""""
10953
Sanjay Patel629c4112017-11-06 16:27:15 +000010954Return the same value as a corresponding libm '``log2``' function but without
10955trapping or setting ``errno``.
10956
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010957When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010958using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010959
10960'``llvm.fma.*``' Intrinsic
10961^^^^^^^^^^^^^^^^^^^^^^^^^^
10962
10963Syntax:
10964"""""""
10965
10966This is an overloaded intrinsic. You can use ``llvm.fma`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010967floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010968all types however.
10969
10970::
10971
10972 declare float @llvm.fma.f32(float %a, float %b, float %c)
10973 declare double @llvm.fma.f64(double %a, double %b, double %c)
10974 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10975 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10976 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10977
10978Overview:
10979"""""""""
10980
Sanjay Patel629c4112017-11-06 16:27:15 +000010981The '``llvm.fma.*``' intrinsics perform the fused multiply-add operation.
Sean Silvab084af42012-12-07 10:36:55 +000010982
10983Arguments:
10984""""""""""
10985
Sanjay Patel629c4112017-11-06 16:27:15 +000010986The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010987
10988Semantics:
10989""""""""""
10990
Sanjay Patel629c4112017-11-06 16:27:15 +000010991Return the same value as a corresponding libm '``fma``' function but without
10992trapping or setting ``errno``.
10993
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010994When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010995using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010996
10997'``llvm.fabs.*``' Intrinsic
10998^^^^^^^^^^^^^^^^^^^^^^^^^^^
10999
11000Syntax:
11001"""""""
11002
11003This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011004floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011005all types however.
11006
11007::
11008
11009 declare float @llvm.fabs.f32(float %Val)
11010 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011011 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000011012 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011013 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000011014
11015Overview:
11016"""""""""
11017
11018The '``llvm.fabs.*``' intrinsics return the absolute value of the
11019operand.
11020
11021Arguments:
11022""""""""""
11023
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011024The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011025type.
11026
11027Semantics:
11028""""""""""
11029
11030This function returns the same values as the libm ``fabs`` functions
11031would, and handles error conditions in the same way.
11032
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011033'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000011034^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011035
11036Syntax:
11037"""""""
11038
11039This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011040floating-point or vector of floating-point type. Not all targets support
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011041all types however.
11042
11043::
11044
Matt Arsenault64313c92014-10-22 18:25:02 +000011045 declare float @llvm.minnum.f32(float %Val0, float %Val1)
11046 declare double @llvm.minnum.f64(double %Val0, double %Val1)
11047 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11048 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
11049 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011050
11051Overview:
11052"""""""""
11053
11054The '``llvm.minnum.*``' intrinsics return the minimum of the two
11055arguments.
11056
11057
11058Arguments:
11059""""""""""
11060
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011061The arguments and return value are floating-point numbers of the same
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011062type.
11063
11064Semantics:
11065""""""""""
11066
11067Follows the IEEE-754 semantics for minNum, which also match for libm's
11068fmin.
11069
11070If either operand is a NaN, returns the other non-NaN operand. Returns
11071NaN only if both operands are NaN. If the operands compare equal,
11072returns a value that compares equal to both operands. This means that
11073fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
11074
11075'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000011076^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011077
11078Syntax:
11079"""""""
11080
11081This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011082floating-point or vector of floating-point type. Not all targets support
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011083all types however.
11084
11085::
11086
Matt Arsenault64313c92014-10-22 18:25:02 +000011087 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
11088 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
11089 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11090 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
11091 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011092
11093Overview:
11094"""""""""
11095
11096The '``llvm.maxnum.*``' intrinsics return the maximum of the two
11097arguments.
11098
11099
11100Arguments:
11101""""""""""
11102
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011103The arguments and return value are floating-point numbers of the same
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011104type.
11105
11106Semantics:
11107""""""""""
11108Follows the IEEE-754 semantics for maxNum, which also match for libm's
11109fmax.
11110
11111If either operand is a NaN, returns the other non-NaN operand. Returns
11112NaN only if both operands are NaN. If the operands compare equal,
11113returns a value that compares equal to both operands. This means that
11114fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
11115
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011116'``llvm.copysign.*``' Intrinsic
11117^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11118
11119Syntax:
11120"""""""
11121
11122This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011123floating-point or vector of floating-point type. Not all targets support
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011124all types however.
11125
11126::
11127
11128 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
11129 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
11130 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
11131 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
11132 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
11133
11134Overview:
11135"""""""""
11136
11137The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
11138first operand and the sign of the second operand.
11139
11140Arguments:
11141""""""""""
11142
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011143The arguments and return value are floating-point numbers of the same
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011144type.
11145
11146Semantics:
11147""""""""""
11148
11149This function returns the same values as the libm ``copysign``
11150functions would, and handles error conditions in the same way.
11151
Sean Silvab084af42012-12-07 10:36:55 +000011152'``llvm.floor.*``' Intrinsic
11153^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11154
11155Syntax:
11156"""""""
11157
11158This is an overloaded intrinsic. You can use ``llvm.floor`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011159floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011160all types however.
11161
11162::
11163
11164 declare float @llvm.floor.f32(float %Val)
11165 declare double @llvm.floor.f64(double %Val)
11166 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
11167 declare fp128 @llvm.floor.f128(fp128 %Val)
11168 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
11169
11170Overview:
11171"""""""""
11172
11173The '``llvm.floor.*``' intrinsics return the floor of the operand.
11174
11175Arguments:
11176""""""""""
11177
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011178The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011179type.
11180
11181Semantics:
11182""""""""""
11183
11184This function returns the same values as the libm ``floor`` functions
11185would, and handles error conditions in the same way.
11186
11187'``llvm.ceil.*``' Intrinsic
11188^^^^^^^^^^^^^^^^^^^^^^^^^^^
11189
11190Syntax:
11191"""""""
11192
11193This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011194floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011195all types however.
11196
11197::
11198
11199 declare float @llvm.ceil.f32(float %Val)
11200 declare double @llvm.ceil.f64(double %Val)
11201 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
11202 declare fp128 @llvm.ceil.f128(fp128 %Val)
11203 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
11204
11205Overview:
11206"""""""""
11207
11208The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
11209
11210Arguments:
11211""""""""""
11212
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011213The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011214type.
11215
11216Semantics:
11217""""""""""
11218
11219This function returns the same values as the libm ``ceil`` functions
11220would, and handles error conditions in the same way.
11221
11222'``llvm.trunc.*``' Intrinsic
11223^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11224
11225Syntax:
11226"""""""
11227
11228This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011229floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011230all types however.
11231
11232::
11233
11234 declare float @llvm.trunc.f32(float %Val)
11235 declare double @llvm.trunc.f64(double %Val)
11236 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
11237 declare fp128 @llvm.trunc.f128(fp128 %Val)
11238 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
11239
11240Overview:
11241"""""""""
11242
11243The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
11244nearest integer not larger in magnitude than the operand.
11245
11246Arguments:
11247""""""""""
11248
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011249The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011250type.
11251
11252Semantics:
11253""""""""""
11254
11255This function returns the same values as the libm ``trunc`` functions
11256would, and handles error conditions in the same way.
11257
11258'``llvm.rint.*``' Intrinsic
11259^^^^^^^^^^^^^^^^^^^^^^^^^^^
11260
11261Syntax:
11262"""""""
11263
11264This is an overloaded intrinsic. You can use ``llvm.rint`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011265floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011266all types however.
11267
11268::
11269
11270 declare float @llvm.rint.f32(float %Val)
11271 declare double @llvm.rint.f64(double %Val)
11272 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
11273 declare fp128 @llvm.rint.f128(fp128 %Val)
11274 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
11275
11276Overview:
11277"""""""""
11278
11279The '``llvm.rint.*``' intrinsics returns the operand rounded to the
11280nearest integer. It may raise an inexact floating-point exception if the
11281operand isn't an integer.
11282
11283Arguments:
11284""""""""""
11285
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011286The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011287type.
11288
11289Semantics:
11290""""""""""
11291
11292This function returns the same values as the libm ``rint`` functions
11293would, and handles error conditions in the same way.
11294
11295'``llvm.nearbyint.*``' Intrinsic
11296^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11297
11298Syntax:
11299"""""""
11300
11301This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011302floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011303all types however.
11304
11305::
11306
11307 declare float @llvm.nearbyint.f32(float %Val)
11308 declare double @llvm.nearbyint.f64(double %Val)
11309 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
11310 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
11311 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
11312
11313Overview:
11314"""""""""
11315
11316The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
11317nearest integer.
11318
11319Arguments:
11320""""""""""
11321
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011322The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011323type.
11324
11325Semantics:
11326""""""""""
11327
11328This function returns the same values as the libm ``nearbyint``
11329functions would, and handles error conditions in the same way.
11330
Hal Finkel171817e2013-08-07 22:49:12 +000011331'``llvm.round.*``' Intrinsic
11332^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11333
11334Syntax:
11335"""""""
11336
11337This is an overloaded intrinsic. You can use ``llvm.round`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011338floating-point or vector of floating-point type. Not all targets support
Hal Finkel171817e2013-08-07 22:49:12 +000011339all types however.
11340
11341::
11342
11343 declare float @llvm.round.f32(float %Val)
11344 declare double @llvm.round.f64(double %Val)
11345 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
11346 declare fp128 @llvm.round.f128(fp128 %Val)
11347 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
11348
11349Overview:
11350"""""""""
11351
11352The '``llvm.round.*``' intrinsics returns the operand rounded to the
11353nearest integer.
11354
11355Arguments:
11356""""""""""
11357
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011358The argument and return value are floating-point numbers of the same
Hal Finkel171817e2013-08-07 22:49:12 +000011359type.
11360
11361Semantics:
11362""""""""""
11363
11364This function returns the same values as the libm ``round``
11365functions would, and handles error conditions in the same way.
11366
Sean Silvab084af42012-12-07 10:36:55 +000011367Bit Manipulation Intrinsics
11368---------------------------
11369
11370LLVM provides intrinsics for a few important bit manipulation
11371operations. These allow efficient code generation for some algorithms.
11372
James Molloy90111f72015-11-12 12:29:09 +000011373'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000011374^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000011375
11376Syntax:
11377"""""""
11378
11379This is an overloaded intrinsic function. You can use bitreverse on any
11380integer type.
11381
11382::
11383
11384 declare i16 @llvm.bitreverse.i16(i16 <id>)
11385 declare i32 @llvm.bitreverse.i32(i32 <id>)
11386 declare i64 @llvm.bitreverse.i64(i64 <id>)
11387
11388Overview:
11389"""""""""
11390
11391The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000011392bitpattern of an integer value; for example ``0b10110110`` becomes
11393``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000011394
11395Semantics:
11396""""""""""
11397
Yichao Yu5abf14b2016-11-23 16:25:31 +000011398The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000011399``M`` in the input moved to bit ``N-M`` in the output.
11400
Sean Silvab084af42012-12-07 10:36:55 +000011401'``llvm.bswap.*``' Intrinsics
11402^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11403
11404Syntax:
11405"""""""
11406
11407This is an overloaded intrinsic function. You can use bswap on any
11408integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
11409
11410::
11411
11412 declare i16 @llvm.bswap.i16(i16 <id>)
11413 declare i32 @llvm.bswap.i32(i32 <id>)
11414 declare i64 @llvm.bswap.i64(i64 <id>)
11415
11416Overview:
11417"""""""""
11418
11419The '``llvm.bswap``' family of intrinsics is used to byte swap integer
11420values with an even number of bytes (positive multiple of 16 bits).
11421These are useful for performing operations on data that is not in the
11422target's native byte order.
11423
11424Semantics:
11425""""""""""
11426
11427The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
11428and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
11429intrinsic returns an i32 value that has the four bytes of the input i32
11430swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
11431returned i32 will have its bytes in 3, 2, 1, 0 order. The
11432``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
11433concept to additional even-byte lengths (6 bytes, 8 bytes and more,
11434respectively).
11435
11436'``llvm.ctpop.*``' Intrinsic
11437^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11438
11439Syntax:
11440"""""""
11441
11442This is an overloaded intrinsic. You can use llvm.ctpop on any integer
11443bit width, or on any vector with integer elements. Not all targets
11444support all bit widths or vector types, however.
11445
11446::
11447
11448 declare i8 @llvm.ctpop.i8(i8 <src>)
11449 declare i16 @llvm.ctpop.i16(i16 <src>)
11450 declare i32 @llvm.ctpop.i32(i32 <src>)
11451 declare i64 @llvm.ctpop.i64(i64 <src>)
11452 declare i256 @llvm.ctpop.i256(i256 <src>)
11453 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
11454
11455Overview:
11456"""""""""
11457
11458The '``llvm.ctpop``' family of intrinsics counts the number of bits set
11459in a value.
11460
11461Arguments:
11462""""""""""
11463
11464The only argument is the value to be counted. The argument may be of any
11465integer type, or a vector with integer elements. The return type must
11466match the argument type.
11467
11468Semantics:
11469""""""""""
11470
11471The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
11472each element of a vector.
11473
11474'``llvm.ctlz.*``' Intrinsic
11475^^^^^^^^^^^^^^^^^^^^^^^^^^^
11476
11477Syntax:
11478"""""""
11479
11480This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
11481integer bit width, or any vector whose elements are integers. Not all
11482targets support all bit widths or vector types, however.
11483
11484::
11485
11486 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
11487 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
11488 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
11489 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
11490 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011491 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011492
11493Overview:
11494"""""""""
11495
11496The '``llvm.ctlz``' family of intrinsic functions counts the number of
11497leading zeros in a variable.
11498
11499Arguments:
11500""""""""""
11501
11502The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011503any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011504type must match the first argument type.
11505
11506The second argument must be a constant and is a flag to indicate whether
11507the intrinsic should ensure that a zero as the first argument produces a
11508defined result. Historically some architectures did not provide a
11509defined result for zero values as efficiently, and many algorithms are
11510now predicated on avoiding zero-value inputs.
11511
11512Semantics:
11513""""""""""
11514
11515The '``llvm.ctlz``' intrinsic counts the leading (most significant)
11516zeros in a variable, or within each element of the vector. If
11517``src == 0`` then the result is the size in bits of the type of ``src``
11518if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11519``llvm.ctlz(i32 2) = 30``.
11520
11521'``llvm.cttz.*``' Intrinsic
11522^^^^^^^^^^^^^^^^^^^^^^^^^^^
11523
11524Syntax:
11525"""""""
11526
11527This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
11528integer bit width, or any vector of integer elements. Not all targets
11529support all bit widths or vector types, however.
11530
11531::
11532
11533 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
11534 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
11535 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
11536 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
11537 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011538 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011539
11540Overview:
11541"""""""""
11542
11543The '``llvm.cttz``' family of intrinsic functions counts the number of
11544trailing zeros.
11545
11546Arguments:
11547""""""""""
11548
11549The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011550any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011551type must match the first argument type.
11552
11553The second argument must be a constant and is a flag to indicate whether
11554the intrinsic should ensure that a zero as the first argument produces a
11555defined result. Historically some architectures did not provide a
11556defined result for zero values as efficiently, and many algorithms are
11557now predicated on avoiding zero-value inputs.
11558
11559Semantics:
11560""""""""""
11561
11562The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11563zeros in a variable, or within each element of a vector. If ``src == 0``
11564then the result is the size in bits of the type of ``src`` if
11565``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11566``llvm.cttz(2) = 1``.
11567
Philip Reames34843ae2015-03-05 05:55:55 +000011568.. _int_overflow:
11569
Sean Silvab084af42012-12-07 10:36:55 +000011570Arithmetic with Overflow Intrinsics
11571-----------------------------------
11572
John Regehr6a493f22016-05-12 20:55:09 +000011573LLVM provides intrinsics for fast arithmetic overflow checking.
11574
11575Each of these intrinsics returns a two-element struct. The first
11576element of this struct contains the result of the corresponding
11577arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
11578the result. Therefore, for example, the first element of the struct
11579returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
11580result of a 32-bit ``add`` instruction with the same operands, where
11581the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
11582
11583The second element of the result is an ``i1`` that is 1 if the
11584arithmetic operation overflowed and 0 otherwise. An operation
11585overflows if, for any values of its operands ``A`` and ``B`` and for
11586any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
11587not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
11588``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11589``op`` is the underlying arithmetic operation.
11590
11591The behavior of these intrinsics is well-defined for all argument
11592values.
Sean Silvab084af42012-12-07 10:36:55 +000011593
11594'``llvm.sadd.with.overflow.*``' Intrinsics
11595^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11596
11597Syntax:
11598"""""""
11599
11600This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11601on any integer bit width.
11602
11603::
11604
11605 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11606 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11607 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11608
11609Overview:
11610"""""""""
11611
11612The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11613a signed addition of the two arguments, and indicate whether an overflow
11614occurred during the signed summation.
11615
11616Arguments:
11617""""""""""
11618
11619The arguments (%a and %b) and the first element of the result structure
11620may be of integer types of any bit width, but they must have the same
11621bit width. The second element of the result structure must be of type
11622``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11623addition.
11624
11625Semantics:
11626""""""""""
11627
11628The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011629a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011630first element of which is the signed summation, and the second element
11631of which is a bit specifying if the signed summation resulted in an
11632overflow.
11633
11634Examples:
11635"""""""""
11636
11637.. code-block:: llvm
11638
11639 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11640 %sum = extractvalue {i32, i1} %res, 0
11641 %obit = extractvalue {i32, i1} %res, 1
11642 br i1 %obit, label %overflow, label %normal
11643
11644'``llvm.uadd.with.overflow.*``' Intrinsics
11645^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11646
11647Syntax:
11648"""""""
11649
11650This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11651on any integer bit width.
11652
11653::
11654
11655 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11656 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11657 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11658
11659Overview:
11660"""""""""
11661
11662The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11663an unsigned addition of the two arguments, and indicate whether a carry
11664occurred during the unsigned summation.
11665
11666Arguments:
11667""""""""""
11668
11669The arguments (%a and %b) and the first element of the result structure
11670may be of integer types of any bit width, but they must have the same
11671bit width. The second element of the result structure must be of type
11672``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11673addition.
11674
11675Semantics:
11676""""""""""
11677
11678The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011679an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011680first element of which is the sum, and the second element of which is a
11681bit specifying if the unsigned summation resulted in a carry.
11682
11683Examples:
11684"""""""""
11685
11686.. code-block:: llvm
11687
11688 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11689 %sum = extractvalue {i32, i1} %res, 0
11690 %obit = extractvalue {i32, i1} %res, 1
11691 br i1 %obit, label %carry, label %normal
11692
11693'``llvm.ssub.with.overflow.*``' Intrinsics
11694^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11695
11696Syntax:
11697"""""""
11698
11699This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11700on any integer bit width.
11701
11702::
11703
11704 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11705 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11706 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11707
11708Overview:
11709"""""""""
11710
11711The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11712a signed subtraction of the two arguments, and indicate whether an
11713overflow occurred during the signed subtraction.
11714
11715Arguments:
11716""""""""""
11717
11718The arguments (%a and %b) and the first element of the result structure
11719may be of integer types of any bit width, but they must have the same
11720bit width. The second element of the result structure must be of type
11721``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11722subtraction.
11723
11724Semantics:
11725""""""""""
11726
11727The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011728a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011729first element of which is the subtraction, and the second element of
11730which is a bit specifying if the signed subtraction resulted in an
11731overflow.
11732
11733Examples:
11734"""""""""
11735
11736.. code-block:: llvm
11737
11738 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11739 %sum = extractvalue {i32, i1} %res, 0
11740 %obit = extractvalue {i32, i1} %res, 1
11741 br i1 %obit, label %overflow, label %normal
11742
11743'``llvm.usub.with.overflow.*``' Intrinsics
11744^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11745
11746Syntax:
11747"""""""
11748
11749This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11750on any integer bit width.
11751
11752::
11753
11754 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11755 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11756 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11757
11758Overview:
11759"""""""""
11760
11761The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11762an unsigned subtraction of the two arguments, and indicate whether an
11763overflow occurred during the unsigned subtraction.
11764
11765Arguments:
11766""""""""""
11767
11768The arguments (%a and %b) and the first element of the result structure
11769may be of integer types of any bit width, but they must have the same
11770bit width. The second element of the result structure must be of type
11771``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11772subtraction.
11773
11774Semantics:
11775""""""""""
11776
11777The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011778an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011779the first element of which is the subtraction, and the second element of
11780which is a bit specifying if the unsigned subtraction resulted in an
11781overflow.
11782
11783Examples:
11784"""""""""
11785
11786.. code-block:: llvm
11787
11788 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11789 %sum = extractvalue {i32, i1} %res, 0
11790 %obit = extractvalue {i32, i1} %res, 1
11791 br i1 %obit, label %overflow, label %normal
11792
11793'``llvm.smul.with.overflow.*``' Intrinsics
11794^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11795
11796Syntax:
11797"""""""
11798
11799This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11800on any integer bit width.
11801
11802::
11803
11804 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11805 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11806 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11807
11808Overview:
11809"""""""""
11810
11811The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11812a signed multiplication of the two arguments, and indicate whether an
11813overflow occurred during the signed multiplication.
11814
11815Arguments:
11816""""""""""
11817
11818The arguments (%a and %b) and the first element of the result structure
11819may be of integer types of any bit width, but they must have the same
11820bit width. The second element of the result structure must be of type
11821``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11822multiplication.
11823
11824Semantics:
11825""""""""""
11826
11827The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011828a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011829the first element of which is the multiplication, and the second element
11830of which is a bit specifying if the signed multiplication resulted in an
11831overflow.
11832
11833Examples:
11834"""""""""
11835
11836.. code-block:: llvm
11837
11838 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11839 %sum = extractvalue {i32, i1} %res, 0
11840 %obit = extractvalue {i32, i1} %res, 1
11841 br i1 %obit, label %overflow, label %normal
11842
11843'``llvm.umul.with.overflow.*``' Intrinsics
11844^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11845
11846Syntax:
11847"""""""
11848
11849This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11850on any integer bit width.
11851
11852::
11853
11854 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11855 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11856 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11857
11858Overview:
11859"""""""""
11860
11861The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11862a unsigned multiplication of the two arguments, and indicate whether an
11863overflow occurred during the unsigned multiplication.
11864
11865Arguments:
11866""""""""""
11867
11868The arguments (%a and %b) and the first element of the result structure
11869may be of integer types of any bit width, but they must have the same
11870bit width. The second element of the result structure must be of type
11871``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11872multiplication.
11873
11874Semantics:
11875""""""""""
11876
11877The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011878an unsigned multiplication of the two arguments. They return a structure ---
11879the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011880element of which is a bit specifying if the unsigned multiplication
11881resulted in an overflow.
11882
11883Examples:
11884"""""""""
11885
11886.. code-block:: llvm
11887
11888 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11889 %sum = extractvalue {i32, i1} %res, 0
11890 %obit = extractvalue {i32, i1} %res, 1
11891 br i1 %obit, label %overflow, label %normal
11892
11893Specialised Arithmetic Intrinsics
11894---------------------------------
11895
Owen Anderson1056a922015-07-11 07:01:27 +000011896'``llvm.canonicalize.*``' Intrinsic
11897^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11898
11899Syntax:
11900"""""""
11901
11902::
11903
11904 declare float @llvm.canonicalize.f32(float %a)
11905 declare double @llvm.canonicalize.f64(double %b)
11906
11907Overview:
11908"""""""""
11909
11910The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011911encoding of a floating-point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011912implementing certain numeric primitives such as frexp. The canonical encoding is
11913defined by IEEE-754-2008 to be:
11914
11915::
11916
11917 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011918 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011919 numbers, infinities, and NaNs, especially in decimal formats.
11920
11921This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011922conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011923according to section 6.2.
11924
11925Examples of non-canonical encodings:
11926
Sean Silvaa1190322015-08-06 22:56:48 +000011927- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011928 converted to a canonical representation per hardware-specific protocol.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011929- Many normal decimal floating-point numbers have non-canonical alternative
Owen Anderson1056a922015-07-11 07:01:27 +000011930 encodings.
11931- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011932 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011933 a zero of the same sign by this operation.
11934
11935Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11936default exception handling must signal an invalid exception, and produce a
11937quiet NaN result.
11938
11939This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011940that the compiler does not constant fold the operation. Likewise, division by
119411.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011942-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11943
Sean Silvaa1190322015-08-06 22:56:48 +000011944``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011945
11946- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11947- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11948 to ``(x == y)``
11949
11950Additionally, the sign of zero must be conserved:
11951``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11952
11953The payload bits of a NaN must be conserved, with two exceptions.
11954First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011955must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011956usual methods.
11957
11958The canonicalization operation may be optimized away if:
11959
Sean Silvaa1190322015-08-06 22:56:48 +000011960- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011961 floating-point operation that is required by the standard to be canonical.
11962- The result is consumed only by (or fused with) other floating-point
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011963 operations. That is, the bits of the floating-point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011964
Sean Silvab084af42012-12-07 10:36:55 +000011965'``llvm.fmuladd.*``' Intrinsic
11966^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11967
11968Syntax:
11969"""""""
11970
11971::
11972
11973 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11974 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11975
11976Overview:
11977"""""""""
11978
11979The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011980expressions that can be fused if the code generator determines that (a) the
11981target instruction set has support for a fused operation, and (b) that the
11982fused operation is more efficient than the equivalent, separate pair of mul
11983and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011984
11985Arguments:
11986""""""""""
11987
11988The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11989multiplicands, a and b, and an addend c.
11990
11991Semantics:
11992""""""""""
11993
11994The expression:
11995
11996::
11997
11998 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11999
12000is equivalent to the expression a \* b + c, except that rounding will
12001not be performed between the multiplication and addition steps if the
12002code generator fuses the operations. Fusion is not guaranteed, even if
12003the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000012004corresponding llvm.fma.\* intrinsic function should be used
12005instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000012006
12007Examples:
12008"""""""""
12009
12010.. code-block:: llvm
12011
Tim Northover675a0962014-06-13 14:24:23 +000012012 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000012013
Amara Emersoncf9daa32017-05-09 10:43:25 +000012014
12015Experimental Vector Reduction Intrinsics
12016----------------------------------------
12017
12018Horizontal reductions of vectors can be expressed using the following
12019intrinsics. Each one takes a vector operand as an input and applies its
12020respective operation across all elements of the vector, returning a single
12021scalar result of the same element type.
12022
12023
12024'``llvm.experimental.vector.reduce.add.*``' Intrinsic
12025^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12026
12027Syntax:
12028"""""""
12029
12030::
12031
12032 declare i32 @llvm.experimental.vector.reduce.add.i32.v4i32(<4 x i32> %a)
12033 declare i64 @llvm.experimental.vector.reduce.add.i64.v2i64(<2 x i64> %a)
12034
12035Overview:
12036"""""""""
12037
12038The '``llvm.experimental.vector.reduce.add.*``' intrinsics do an integer ``ADD``
12039reduction of a vector, returning the result as a scalar. The return type matches
12040the element-type of the vector input.
12041
12042Arguments:
12043""""""""""
12044The argument to this intrinsic must be a vector of integer values.
12045
12046'``llvm.experimental.vector.reduce.fadd.*``' Intrinsic
12047^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12048
12049Syntax:
12050"""""""
12051
12052::
12053
12054 declare float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %a)
12055 declare double @llvm.experimental.vector.reduce.fadd.f64.v2f64(double %acc, <2 x double> %a)
12056
12057Overview:
12058"""""""""
12059
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012060The '``llvm.experimental.vector.reduce.fadd.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012061``ADD`` reduction of a vector, returning the result as a scalar. The return type
12062matches the element-type of the vector input.
12063
12064If the intrinsic call has fast-math flags, then the reduction will not preserve
12065the associativity of an equivalent scalarized counterpart. If it does not have
12066fast-math flags, then the reduction will be *ordered*, implying that the
12067operation respects the associativity of a scalarized reduction.
12068
12069
12070Arguments:
12071""""""""""
12072The first argument to this intrinsic is a scalar accumulator value, which is
12073only used when there are no fast-math flags attached. This argument may be undef
12074when fast-math flags are used.
12075
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012076The second argument must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012077
12078Examples:
12079"""""""""
12080
12081.. code-block:: llvm
12082
12083 %fast = call fast float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
12084 %ord = call float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
12085
12086
12087'``llvm.experimental.vector.reduce.mul.*``' Intrinsic
12088^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12089
12090Syntax:
12091"""""""
12092
12093::
12094
12095 declare i32 @llvm.experimental.vector.reduce.mul.i32.v4i32(<4 x i32> %a)
12096 declare i64 @llvm.experimental.vector.reduce.mul.i64.v2i64(<2 x i64> %a)
12097
12098Overview:
12099"""""""""
12100
12101The '``llvm.experimental.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
12102reduction of a vector, returning the result as a scalar. The return type matches
12103the element-type of the vector input.
12104
12105Arguments:
12106""""""""""
12107The argument to this intrinsic must be a vector of integer values.
12108
12109'``llvm.experimental.vector.reduce.fmul.*``' Intrinsic
12110^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12111
12112Syntax:
12113"""""""
12114
12115::
12116
12117 declare float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %a)
12118 declare double @llvm.experimental.vector.reduce.fmul.f64.v2f64(double %acc, <2 x double> %a)
12119
12120Overview:
12121"""""""""
12122
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012123The '``llvm.experimental.vector.reduce.fmul.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012124``MUL`` reduction of a vector, returning the result as a scalar. The return type
12125matches the element-type of the vector input.
12126
12127If the intrinsic call has fast-math flags, then the reduction will not preserve
12128the associativity of an equivalent scalarized counterpart. If it does not have
12129fast-math flags, then the reduction will be *ordered*, implying that the
12130operation respects the associativity of a scalarized reduction.
12131
12132
12133Arguments:
12134""""""""""
12135The first argument to this intrinsic is a scalar accumulator value, which is
12136only used when there are no fast-math flags attached. This argument may be undef
12137when fast-math flags are used.
12138
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012139The second argument must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012140
12141Examples:
12142"""""""""
12143
12144.. code-block:: llvm
12145
12146 %fast = call fast float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
12147 %ord = call float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
12148
12149'``llvm.experimental.vector.reduce.and.*``' Intrinsic
12150^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12151
12152Syntax:
12153"""""""
12154
12155::
12156
12157 declare i32 @llvm.experimental.vector.reduce.and.i32.v4i32(<4 x i32> %a)
12158
12159Overview:
12160"""""""""
12161
12162The '``llvm.experimental.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
12163reduction of a vector, returning the result as a scalar. The return type matches
12164the element-type of the vector input.
12165
12166Arguments:
12167""""""""""
12168The argument to this intrinsic must be a vector of integer values.
12169
12170'``llvm.experimental.vector.reduce.or.*``' Intrinsic
12171^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12172
12173Syntax:
12174"""""""
12175
12176::
12177
12178 declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
12179
12180Overview:
12181"""""""""
12182
12183The '``llvm.experimental.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
12184of a vector, returning the result as a scalar. The return type matches the
12185element-type of the vector input.
12186
12187Arguments:
12188""""""""""
12189The argument to this intrinsic must be a vector of integer values.
12190
12191'``llvm.experimental.vector.reduce.xor.*``' Intrinsic
12192^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12193
12194Syntax:
12195"""""""
12196
12197::
12198
12199 declare i32 @llvm.experimental.vector.reduce.xor.i32.v4i32(<4 x i32> %a)
12200
12201Overview:
12202"""""""""
12203
12204The '``llvm.experimental.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
12205reduction of a vector, returning the result as a scalar. The return type matches
12206the element-type of the vector input.
12207
12208Arguments:
12209""""""""""
12210The argument to this intrinsic must be a vector of integer values.
12211
12212'``llvm.experimental.vector.reduce.smax.*``' Intrinsic
12213^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12214
12215Syntax:
12216"""""""
12217
12218::
12219
12220 declare i32 @llvm.experimental.vector.reduce.smax.i32.v4i32(<4 x i32> %a)
12221
12222Overview:
12223"""""""""
12224
12225The '``llvm.experimental.vector.reduce.smax.*``' intrinsics do a signed integer
12226``MAX`` reduction of a vector, returning the result as a scalar. The return type
12227matches the element-type of the vector input.
12228
12229Arguments:
12230""""""""""
12231The argument to this intrinsic must be a vector of integer values.
12232
12233'``llvm.experimental.vector.reduce.smin.*``' Intrinsic
12234^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12235
12236Syntax:
12237"""""""
12238
12239::
12240
12241 declare i32 @llvm.experimental.vector.reduce.smin.i32.v4i32(<4 x i32> %a)
12242
12243Overview:
12244"""""""""
12245
12246The '``llvm.experimental.vector.reduce.smin.*``' intrinsics do a signed integer
12247``MIN`` reduction of a vector, returning the result as a scalar. The return type
12248matches the element-type of the vector input.
12249
12250Arguments:
12251""""""""""
12252The argument to this intrinsic must be a vector of integer values.
12253
12254'``llvm.experimental.vector.reduce.umax.*``' Intrinsic
12255^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12256
12257Syntax:
12258"""""""
12259
12260::
12261
12262 declare i32 @llvm.experimental.vector.reduce.umax.i32.v4i32(<4 x i32> %a)
12263
12264Overview:
12265"""""""""
12266
12267The '``llvm.experimental.vector.reduce.umax.*``' intrinsics do an unsigned
12268integer ``MAX`` reduction of a vector, returning the result as a scalar. The
12269return type matches the element-type of the vector input.
12270
12271Arguments:
12272""""""""""
12273The argument to this intrinsic must be a vector of integer values.
12274
12275'``llvm.experimental.vector.reduce.umin.*``' Intrinsic
12276^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12277
12278Syntax:
12279"""""""
12280
12281::
12282
12283 declare i32 @llvm.experimental.vector.reduce.umin.i32.v4i32(<4 x i32> %a)
12284
12285Overview:
12286"""""""""
12287
12288The '``llvm.experimental.vector.reduce.umin.*``' intrinsics do an unsigned
12289integer ``MIN`` reduction of a vector, returning the result as a scalar. The
12290return type matches the element-type of the vector input.
12291
12292Arguments:
12293""""""""""
12294The argument to this intrinsic must be a vector of integer values.
12295
12296'``llvm.experimental.vector.reduce.fmax.*``' Intrinsic
12297^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12298
12299Syntax:
12300"""""""
12301
12302::
12303
12304 declare float @llvm.experimental.vector.reduce.fmax.f32.v4f32(<4 x float> %a)
12305 declare double @llvm.experimental.vector.reduce.fmax.f64.v2f64(<2 x double> %a)
12306
12307Overview:
12308"""""""""
12309
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012310The '``llvm.experimental.vector.reduce.fmax.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012311``MAX`` reduction of a vector, returning the result as a scalar. The return type
12312matches the element-type of the vector input.
12313
12314If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12315assume that NaNs are not present in the input vector.
12316
12317Arguments:
12318""""""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012319The argument to this intrinsic must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012320
12321'``llvm.experimental.vector.reduce.fmin.*``' Intrinsic
12322^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12323
12324Syntax:
12325"""""""
12326
12327::
12328
12329 declare float @llvm.experimental.vector.reduce.fmin.f32.v4f32(<4 x float> %a)
12330 declare double @llvm.experimental.vector.reduce.fmin.f64.v2f64(<2 x double> %a)
12331
12332Overview:
12333"""""""""
12334
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012335The '``llvm.experimental.vector.reduce.fmin.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012336``MIN`` reduction of a vector, returning the result as a scalar. The return type
12337matches the element-type of the vector input.
12338
12339If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12340assume that NaNs are not present in the input vector.
12341
12342Arguments:
12343""""""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012344The argument to this intrinsic must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012345
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012346Half Precision Floating-Point Intrinsics
Sean Silvab084af42012-12-07 10:36:55 +000012347----------------------------------------
12348
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012349For most target platforms, half precision floating-point is a
Sean Silvab084af42012-12-07 10:36:55 +000012350storage-only format. This means that it is a dense encoding (in memory)
12351but does not support computation in the format.
12352
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012353This means that code must first load the half-precision floating-point
Sean Silvab084af42012-12-07 10:36:55 +000012354value as an i16, then convert it to float with
12355:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
12356then be performed on the float value (including extending to double
12357etc). To store the value back to memory, it is first converted to float
12358if needed, then converted to i16 with
12359:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
12360i16 value.
12361
12362.. _int_convert_to_fp16:
12363
12364'``llvm.convert.to.fp16``' Intrinsic
12365^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12366
12367Syntax:
12368"""""""
12369
12370::
12371
Tim Northoverfd7e4242014-07-17 10:51:23 +000012372 declare i16 @llvm.convert.to.fp16.f32(float %a)
12373 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000012374
12375Overview:
12376"""""""""
12377
Tim Northoverfd7e4242014-07-17 10:51:23 +000012378The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012379conventional floating-point type to half precision floating-point format.
Sean Silvab084af42012-12-07 10:36:55 +000012380
12381Arguments:
12382""""""""""
12383
12384The intrinsic function contains single argument - the value to be
12385converted.
12386
12387Semantics:
12388""""""""""
12389
Tim Northoverfd7e4242014-07-17 10:51:23 +000012390The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012391conventional floating-point format to half precision floating-point format. The
Tim Northoverfd7e4242014-07-17 10:51:23 +000012392return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000012393
12394Examples:
12395"""""""""
12396
12397.. code-block:: llvm
12398
Tim Northoverfd7e4242014-07-17 10:51:23 +000012399 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000012400 store i16 %res, i16* @x, align 2
12401
12402.. _int_convert_from_fp16:
12403
12404'``llvm.convert.from.fp16``' Intrinsic
12405^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12406
12407Syntax:
12408"""""""
12409
12410::
12411
Tim Northoverfd7e4242014-07-17 10:51:23 +000012412 declare float @llvm.convert.from.fp16.f32(i16 %a)
12413 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012414
12415Overview:
12416"""""""""
12417
12418The '``llvm.convert.from.fp16``' intrinsic function performs a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012419conversion from half precision floating-point format to single precision
12420floating-point format.
Sean Silvab084af42012-12-07 10:36:55 +000012421
12422Arguments:
12423""""""""""
12424
12425The intrinsic function contains single argument - the value to be
12426converted.
12427
12428Semantics:
12429""""""""""
12430
12431The '``llvm.convert.from.fp16``' intrinsic function performs a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012432conversion from half single precision floating-point format to single
12433precision floating-point format. The input half-float value is
Sean Silvab084af42012-12-07 10:36:55 +000012434represented by an ``i16`` value.
12435
12436Examples:
12437"""""""""
12438
12439.. code-block:: llvm
12440
David Blaikiec7aabbb2015-03-04 22:06:14 +000012441 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000012442 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012443
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000012444.. _dbg_intrinsics:
12445
Sean Silvab084af42012-12-07 10:36:55 +000012446Debugger Intrinsics
12447-------------------
12448
12449The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
12450prefix), are described in the `LLVM Source Level
Hans Wennborg65195622017-09-28 15:16:37 +000012451Debugging <SourceLevelDebugging.html#format-common-intrinsics>`_
Sean Silvab084af42012-12-07 10:36:55 +000012452document.
12453
12454Exception Handling Intrinsics
12455-----------------------------
12456
12457The LLVM exception handling intrinsics (which all start with
12458``llvm.eh.`` prefix), are described in the `LLVM Exception
Hans Wennborg65195622017-09-28 15:16:37 +000012459Handling <ExceptionHandling.html#format-common-intrinsics>`_ document.
Sean Silvab084af42012-12-07 10:36:55 +000012460
12461.. _int_trampoline:
12462
12463Trampoline Intrinsics
12464---------------------
12465
12466These intrinsics make it possible to excise one parameter, marked with
12467the :ref:`nest <nest>` attribute, from a function. The result is a
12468callable function pointer lacking the nest parameter - the caller does
12469not need to provide a value for it. Instead, the value to use is stored
12470in advance in a "trampoline", a block of memory usually allocated on the
12471stack, which also contains code to splice the nest value into the
12472argument list. This is used to implement the GCC nested function address
12473extension.
12474
12475For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
12476then the resulting function pointer has signature ``i32 (i32, i32)*``.
12477It can be created as follows:
12478
12479.. code-block:: llvm
12480
12481 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000012482 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000012483 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
12484 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
12485 %fp = bitcast i8* %p to i32 (i32, i32)*
12486
12487The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
12488``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
12489
12490.. _int_it:
12491
12492'``llvm.init.trampoline``' Intrinsic
12493^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12494
12495Syntax:
12496"""""""
12497
12498::
12499
12500 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
12501
12502Overview:
12503"""""""""
12504
12505This fills the memory pointed to by ``tramp`` with executable code,
12506turning it into a trampoline.
12507
12508Arguments:
12509""""""""""
12510
12511The ``llvm.init.trampoline`` intrinsic takes three arguments, all
12512pointers. The ``tramp`` argument must point to a sufficiently large and
12513sufficiently aligned block of memory; this memory is written to by the
12514intrinsic. Note that the size and the alignment are target-specific -
12515LLVM currently provides no portable way of determining them, so a
12516front-end that generates this intrinsic needs to have some
12517target-specific knowledge. The ``func`` argument must hold a function
12518bitcast to an ``i8*``.
12519
12520Semantics:
12521""""""""""
12522
12523The block of memory pointed to by ``tramp`` is filled with target
12524dependent code, turning it into a function. Then ``tramp`` needs to be
12525passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
12526be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
12527function's signature is the same as that of ``func`` with any arguments
12528marked with the ``nest`` attribute removed. At most one such ``nest``
12529argument is allowed, and it must be of pointer type. Calling the new
12530function is equivalent to calling ``func`` with the same argument list,
12531but with ``nval`` used for the missing ``nest`` argument. If, after
12532calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
12533modified, then the effect of any later call to the returned function
12534pointer is undefined.
12535
12536.. _int_at:
12537
12538'``llvm.adjust.trampoline``' Intrinsic
12539^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12540
12541Syntax:
12542"""""""
12543
12544::
12545
12546 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
12547
12548Overview:
12549"""""""""
12550
12551This performs any required machine-specific adjustment to the address of
12552a trampoline (passed as ``tramp``).
12553
12554Arguments:
12555""""""""""
12556
12557``tramp`` must point to a block of memory which already has trampoline
12558code filled in by a previous call to
12559:ref:`llvm.init.trampoline <int_it>`.
12560
12561Semantics:
12562""""""""""
12563
12564On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012565different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000012566intrinsic returns the executable address corresponding to ``tramp``
12567after performing the required machine specific adjustments. The pointer
12568returned can then be :ref:`bitcast and executed <int_trampoline>`.
12569
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012570.. _int_mload_mstore:
12571
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012572Masked Vector Load and Store Intrinsics
12573---------------------------------------
12574
12575LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
12576
12577.. _int_mload:
12578
12579'``llvm.masked.load.*``' Intrinsics
12580^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12581
12582Syntax:
12583"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012584This is an overloaded intrinsic. The loaded data is a vector of any integer, floating-point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012585
12586::
12587
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012588 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12589 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012590 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012591 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012592 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012593 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012594
12595Overview:
12596"""""""""
12597
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012598Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012599
12600
12601Arguments:
12602""""""""""
12603
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012604The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012605
12606
12607Semantics:
12608""""""""""
12609
12610The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
12611The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
12612
12613
12614::
12615
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012616 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012617
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012618 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000012619 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012620 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012621
12622.. _int_mstore:
12623
12624'``llvm.masked.store.*``' Intrinsics
12625^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12626
12627Syntax:
12628"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012629This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012630
12631::
12632
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012633 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
12634 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012635 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012636 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012637 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012638 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012639
12640Overview:
12641"""""""""
12642
12643Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12644
12645Arguments:
12646""""""""""
12647
12648The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12649
12650
12651Semantics:
12652""""""""""
12653
12654The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
12655The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
12656
12657::
12658
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012659 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012660
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012661 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000012662 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012663 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
12664 store <16 x float> %res, <16 x float>* %ptr, align 4
12665
12666
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012667Masked Vector Gather and Scatter Intrinsics
12668-------------------------------------------
12669
12670LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
12671
12672.. _int_mgather:
12673
12674'``llvm.masked.gather.*``' Intrinsics
12675^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12676
12677Syntax:
12678"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012679This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating-point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012680
12681::
12682
Elad Cohenef5798a2017-05-03 12:28:54 +000012683 declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12684 declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64 (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
12685 declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012686
12687Overview:
12688"""""""""
12689
12690Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
12691
12692
12693Arguments:
12694""""""""""
12695
12696The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
12697
12698
12699Semantics:
12700""""""""""
12701
12702The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
12703The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
12704
12705
12706::
12707
Elad Cohenef5798a2017-05-03 12:28:54 +000012708 %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012709
12710 ;; The gather with all-true mask is equivalent to the following instruction sequence
12711 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
12712 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
12713 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
12714 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
12715
12716 %val0 = load double, double* %ptr0, align 8
12717 %val1 = load double, double* %ptr1, align 8
12718 %val2 = load double, double* %ptr2, align 8
12719 %val3 = load double, double* %ptr3, align 8
12720
12721 %vec0 = insertelement <4 x double>undef, %val0, 0
12722 %vec01 = insertelement <4 x double>%vec0, %val1, 1
12723 %vec012 = insertelement <4 x double>%vec01, %val2, 2
12724 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
12725
12726.. _int_mscatter:
12727
12728'``llvm.masked.scatter.*``' Intrinsics
12729^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12730
12731Syntax:
12732"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012733This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012734
12735::
12736
Elad Cohenef5798a2017-05-03 12:28:54 +000012737 declare void @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
12738 declare void @llvm.masked.scatter.v16f32.v16p1f32 (<16 x float> <value>, <16 x float addrspace(1)*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
12739 declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012740
12741Overview:
12742"""""""""
12743
12744Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12745
12746Arguments:
12747""""""""""
12748
12749The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12750
12751
12752Semantics:
12753""""""""""
12754
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000012755The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012756
12757::
12758
Sylvestre Ledru84666a12016-02-14 20:16:22 +000012759 ;; This instruction unconditionally stores data vector in multiple addresses
Elad Cohenef5798a2017-05-03 12:28:54 +000012760 call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012761
12762 ;; It is equivalent to a list of scalar stores
12763 %val0 = extractelement <8 x i32> %value, i32 0
12764 %val1 = extractelement <8 x i32> %value, i32 1
12765 ..
12766 %val7 = extractelement <8 x i32> %value, i32 7
12767 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
12768 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
12769 ..
12770 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
12771 ;; Note: the order of the following stores is important when they overlap:
12772 store i32 %val0, i32* %ptr0, align 4
12773 store i32 %val1, i32* %ptr1, align 4
12774 ..
12775 store i32 %val7, i32* %ptr7, align 4
12776
12777
Sean Silvab084af42012-12-07 10:36:55 +000012778Memory Use Markers
12779------------------
12780
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012781This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000012782memory objects and ranges where variables are immutable.
12783
Reid Klecknera534a382013-12-19 02:14:12 +000012784.. _int_lifestart:
12785
Sean Silvab084af42012-12-07 10:36:55 +000012786'``llvm.lifetime.start``' Intrinsic
12787^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12788
12789Syntax:
12790"""""""
12791
12792::
12793
12794 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
12795
12796Overview:
12797"""""""""
12798
12799The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
12800object's lifetime.
12801
12802Arguments:
12803""""""""""
12804
12805The first argument is a constant integer representing the size of the
12806object, or -1 if it is variable sized. The second argument is a pointer
12807to the object.
12808
12809Semantics:
12810""""""""""
12811
12812This intrinsic indicates that before this point in the code, the value
12813of the memory pointed to by ``ptr`` is dead. This means that it is known
12814to never be used and has an undefined value. A load from the pointer
12815that precedes this intrinsic can be replaced with ``'undef'``.
12816
Reid Klecknera534a382013-12-19 02:14:12 +000012817.. _int_lifeend:
12818
Sean Silvab084af42012-12-07 10:36:55 +000012819'``llvm.lifetime.end``' Intrinsic
12820^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12821
12822Syntax:
12823"""""""
12824
12825::
12826
12827 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
12828
12829Overview:
12830"""""""""
12831
12832The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
12833object's lifetime.
12834
12835Arguments:
12836""""""""""
12837
12838The first argument is a constant integer representing the size of the
12839object, or -1 if it is variable sized. The second argument is a pointer
12840to the object.
12841
12842Semantics:
12843""""""""""
12844
12845This intrinsic indicates that after this point in the code, the value of
12846the memory pointed to by ``ptr`` is dead. This means that it is known to
12847never be used and has an undefined value. Any stores into the memory
12848object following this intrinsic may be removed as dead.
12849
12850'``llvm.invariant.start``' Intrinsic
12851^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12852
12853Syntax:
12854"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012855This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012856
12857::
12858
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012859 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012860
12861Overview:
12862"""""""""
12863
12864The '``llvm.invariant.start``' intrinsic specifies that the contents of
12865a memory object will not change.
12866
12867Arguments:
12868""""""""""
12869
12870The first argument is a constant integer representing the size of the
12871object, or -1 if it is variable sized. The second argument is a pointer
12872to the object.
12873
12874Semantics:
12875""""""""""
12876
12877This intrinsic indicates that until an ``llvm.invariant.end`` that uses
12878the return value, the referenced memory location is constant and
12879unchanging.
12880
12881'``llvm.invariant.end``' Intrinsic
12882^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12883
12884Syntax:
12885"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012886This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000012887
12888::
12889
Mehdi Amini8c629ec2016-08-13 23:31:24 +000012890 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000012891
12892Overview:
12893"""""""""
12894
12895The '``llvm.invariant.end``' intrinsic specifies that the contents of a
12896memory object are mutable.
12897
12898Arguments:
12899""""""""""
12900
12901The first argument is the matching ``llvm.invariant.start`` intrinsic.
12902The second argument is a constant integer representing the size of the
12903object, or -1 if it is variable sized and the third argument is a
12904pointer to the object.
12905
12906Semantics:
12907""""""""""
12908
12909This intrinsic indicates that the memory is mutable again.
12910
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012911'``llvm.invariant.group.barrier``' Intrinsic
12912^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12913
12914Syntax:
12915"""""""
Yaxun Liu407ca362017-11-16 16:32:16 +000012916This is an overloaded intrinsic. The memory object can belong to any address
12917space. The returned pointer must belong to the same address space as the
12918argument.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012919
12920::
12921
Yaxun Liu407ca362017-11-16 16:32:16 +000012922 declare i8* @llvm.invariant.group.barrier.p0i8(i8* <ptr>)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012923
12924Overview:
12925"""""""""
12926
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000012927The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012928established by invariant.group metadata no longer holds, to obtain a new pointer
Piotr Padlewski74b155f2018-04-08 13:53:04 +000012929value that does not carry the invariant information. It is an experimental
12930intrinsic, which means that its semantics might change in the future.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012931
12932
12933Arguments:
12934""""""""""
12935
12936The ``llvm.invariant.group.barrier`` takes only one argument, which is
12937the pointer to the memory for which the ``invariant.group`` no longer holds.
12938
12939Semantics:
12940""""""""""
12941
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000012942Returns another pointer that aliases its argument but which is considered different
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000012943for the purposes of ``load``/``store`` ``invariant.group`` metadata.
12944
Sanjay Patel54b161e2018-03-20 16:38:22 +000012945.. _constrainedfp:
12946
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012947Constrained Floating-Point Intrinsics
Andrew Kaylora0a11642017-01-26 23:27:59 +000012948-------------------------------------
12949
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012950These intrinsics are used to provide special handling of floating-point
12951operations when specific rounding mode or floating-point exception behavior is
Andrew Kaylora0a11642017-01-26 23:27:59 +000012952required. By default, LLVM optimization passes assume that the rounding mode is
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012953round-to-nearest and that floating-point exceptions will not be monitored.
Andrew Kaylora0a11642017-01-26 23:27:59 +000012954Constrained FP intrinsics are used to support non-default rounding modes and
12955accurately preserve exception behavior without compromising LLVM's ability to
12956optimize FP code when the default behavior is used.
12957
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012958Each of these intrinsics corresponds to a normal floating-point operation. The
Andrew Kaylora0a11642017-01-26 23:27:59 +000012959first two arguments and the return value are the same as the corresponding FP
12960operation.
12961
12962The third argument is a metadata argument specifying the rounding mode to be
12963assumed. This argument must be one of the following strings:
12964
12965::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012966
Andrew Kaylora0a11642017-01-26 23:27:59 +000012967 "round.dynamic"
12968 "round.tonearest"
12969 "round.downward"
12970 "round.upward"
12971 "round.towardzero"
12972
12973If this argument is "round.dynamic" optimization passes must assume that the
12974rounding mode is unknown and may change at runtime. No transformations that
12975depend on rounding mode may be performed in this case.
12976
12977The other possible values for the rounding mode argument correspond to the
12978similarly named IEEE rounding modes. If the argument is any of these values
12979optimization passes may perform transformations as long as they are consistent
12980with the specified rounding mode.
12981
12982For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
12983"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
12984'x-0' should evaluate to '-0' when rounding downward. However, this
12985transformation is legal for all other rounding modes.
12986
12987For values other than "round.dynamic" optimization passes may assume that the
12988actual runtime rounding mode (as defined in a target-specific manner) matches
12989the specified rounding mode, but this is not guaranteed. Using a specific
12990non-dynamic rounding mode which does not match the actual rounding mode at
12991runtime results in undefined behavior.
12992
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012993The fourth argument to the constrained floating-point intrinsics specifies the
Andrew Kaylora0a11642017-01-26 23:27:59 +000012994required exception behavior. This argument must be one of the following
12995strings:
12996
12997::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000012998
Andrew Kaylora0a11642017-01-26 23:27:59 +000012999 "fpexcept.ignore"
13000 "fpexcept.maytrap"
13001 "fpexcept.strict"
13002
13003If this argument is "fpexcept.ignore" optimization passes may assume that the
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013004exception status flags will not be read and that floating-point exceptions will
Andrew Kaylora0a11642017-01-26 23:27:59 +000013005be masked. This allows transformations to be performed that may change the
13006exception semantics of the original code. For example, FP operations may be
13007speculatively executed in this case whereas they must not be for either of the
13008other possible values of this argument.
13009
13010If the exception behavior argument is "fpexcept.maytrap" optimization passes
13011must avoid transformations that may raise exceptions that would not have been
13012raised by the original code (such as speculatively executing FP operations), but
13013passes are not required to preserve all exceptions that are implied by the
13014original code. For example, exceptions may be potentially hidden by constant
13015folding.
13016
13017If the exception behavior argument is "fpexcept.strict" all transformations must
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013018strictly preserve the floating-point exception semantics of the original code.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013019Any FP exception that would have been raised by the original code must be raised
13020by the transformed code, and the transformed code must not raise any FP
13021exceptions that would not have been raised by the original code. This is the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013022exception behavior argument that will be used if the code being compiled reads
Andrew Kaylora0a11642017-01-26 23:27:59 +000013023the FP exception status flags, but this mode can also be used with code that
13024unmasks FP exceptions.
13025
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013026The number and order of floating-point exceptions is NOT guaranteed. For
Andrew Kaylora0a11642017-01-26 23:27:59 +000013027example, a series of FP operations that each may raise exceptions may be
13028vectorized into a single instruction that raises each unique exception a single
13029time.
13030
13031
13032'``llvm.experimental.constrained.fadd``' Intrinsic
13033^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13034
13035Syntax:
13036"""""""
13037
13038::
13039
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013040 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013041 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
13042 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013043 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013044
13045Overview:
13046"""""""""
13047
13048The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
13049two operands.
13050
13051
13052Arguments:
13053""""""""""
13054
13055The first two arguments to the '``llvm.experimental.constrained.fadd``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013056intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13057of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013058
13059The third and fourth arguments specify the rounding mode and exception
13060behavior as described above.
13061
13062Semantics:
13063""""""""""
13064
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013065The value produced is the floating-point sum of the two value operands and has
Andrew Kaylora0a11642017-01-26 23:27:59 +000013066the same type as the operands.
13067
13068
13069'``llvm.experimental.constrained.fsub``' Intrinsic
13070^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13071
13072Syntax:
13073"""""""
13074
13075::
13076
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013077 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013078 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
13079 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013080 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013081
13082Overview:
13083"""""""""
13084
13085The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
13086of its two operands.
13087
13088
13089Arguments:
13090""""""""""
13091
13092The first two arguments to the '``llvm.experimental.constrained.fsub``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013093intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13094of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013095
13096The third and fourth arguments specify the rounding mode and exception
13097behavior as described above.
13098
13099Semantics:
13100""""""""""
13101
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013102The value produced is the floating-point difference of the two value operands
Andrew Kaylora0a11642017-01-26 23:27:59 +000013103and has the same type as the operands.
13104
13105
13106'``llvm.experimental.constrained.fmul``' Intrinsic
13107^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13108
13109Syntax:
13110"""""""
13111
13112::
13113
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013114 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013115 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
13116 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013117 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013118
13119Overview:
13120"""""""""
13121
13122The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
13123its two operands.
13124
13125
13126Arguments:
13127""""""""""
13128
13129The first two arguments to the '``llvm.experimental.constrained.fmul``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013130intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13131of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013132
13133The third and fourth arguments specify the rounding mode and exception
13134behavior as described above.
13135
13136Semantics:
13137""""""""""
13138
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013139The value produced is the floating-point product of the two value operands and
Andrew Kaylora0a11642017-01-26 23:27:59 +000013140has the same type as the operands.
13141
13142
13143'``llvm.experimental.constrained.fdiv``' Intrinsic
13144^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13145
13146Syntax:
13147"""""""
13148
13149::
13150
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013151 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013152 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
13153 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013154 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013155
13156Overview:
13157"""""""""
13158
13159The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
13160its two operands.
13161
13162
13163Arguments:
13164""""""""""
13165
13166The first two arguments to the '``llvm.experimental.constrained.fdiv``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013167intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13168of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013169
13170The third and fourth arguments specify the rounding mode and exception
13171behavior as described above.
13172
13173Semantics:
13174""""""""""
13175
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013176The value produced is the floating-point quotient of the two value operands and
Andrew Kaylora0a11642017-01-26 23:27:59 +000013177has the same type as the operands.
13178
13179
13180'``llvm.experimental.constrained.frem``' Intrinsic
13181^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13182
13183Syntax:
13184"""""""
13185
13186::
13187
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013188 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013189 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
13190 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013191 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013192
13193Overview:
13194"""""""""
13195
13196The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
13197from the division of its two operands.
13198
13199
13200Arguments:
13201""""""""""
13202
13203The first two arguments to the '``llvm.experimental.constrained.frem``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013204intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13205of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013206
13207The third and fourth arguments specify the rounding mode and exception
13208behavior as described above. The rounding mode argument has no effect, since
13209the result of frem is never rounded, but the argument is included for
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013210consistency with the other constrained floating-point intrinsics.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013211
13212Semantics:
13213""""""""""
13214
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013215The value produced is the floating-point remainder from the division of the two
Andrew Kaylora0a11642017-01-26 23:27:59 +000013216value operands and has the same type as the operands. The remainder has the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013217same sign as the dividend.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013218
Wei Dinga131d3f2017-08-24 04:18:24 +000013219'``llvm.experimental.constrained.fma``' Intrinsic
13220^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13221
13222Syntax:
13223"""""""
13224
13225::
13226
13227 declare <type>
13228 @llvm.experimental.constrained.fma(<type> <op1>, <type> <op2>, <type> <op3>,
13229 metadata <rounding mode>,
13230 metadata <exception behavior>)
13231
13232Overview:
13233"""""""""
13234
13235The '``llvm.experimental.constrained.fma``' intrinsic returns the result of a
13236fused-multiply-add operation on its operands.
13237
13238Arguments:
13239""""""""""
13240
13241The first three arguments to the '``llvm.experimental.constrained.fma``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013242intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector
13243<t_vector>` of floating-point values. All arguments must have identical types.
Wei Dinga131d3f2017-08-24 04:18:24 +000013244
13245The fourth and fifth arguments specify the rounding mode and exception behavior
13246as described above.
13247
13248Semantics:
13249""""""""""
13250
13251The result produced is the product of the first two operands added to the third
13252operand computed with infinite precision, and then rounded to the target
13253precision.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013254
Andrew Kaylorf4660012017-05-25 21:31:00 +000013255Constrained libm-equivalent Intrinsics
13256--------------------------------------
13257
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013258In addition to the basic floating-point operations for which constrained
Andrew Kaylorf4660012017-05-25 21:31:00 +000013259intrinsics are described above, there are constrained versions of various
13260operations which provide equivalent behavior to a corresponding libm function.
13261These intrinsics allow the precise behavior of these operations with respect to
13262rounding mode and exception behavior to be controlled.
13263
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013264As with the basic constrained floating-point intrinsics, the rounding mode
Andrew Kaylorf4660012017-05-25 21:31:00 +000013265and exception behavior arguments only control the behavior of the optimizer.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013266They do not change the runtime floating-point environment.
Andrew Kaylorf4660012017-05-25 21:31:00 +000013267
13268
13269'``llvm.experimental.constrained.sqrt``' Intrinsic
13270^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13271
13272Syntax:
13273"""""""
13274
13275::
13276
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013277 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013278 @llvm.experimental.constrained.sqrt(<type> <op1>,
13279 metadata <rounding mode>,
13280 metadata <exception behavior>)
13281
13282Overview:
13283"""""""""
13284
13285The '``llvm.experimental.constrained.sqrt``' intrinsic returns the square root
13286of the specified value, returning the same value as the libm '``sqrt``'
13287functions would, but without setting ``errno``.
13288
13289Arguments:
13290""""""""""
13291
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013292The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013293type.
13294
13295The second and third arguments specify the rounding mode and exception
13296behavior as described above.
13297
13298Semantics:
13299""""""""""
13300
13301This function returns the nonnegative square root of the specified value.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013302If the value is less than negative zero, a floating-point exception occurs
Hiroshi Inoue760c0c92018-01-16 13:19:48 +000013303and the return value is architecture specific.
Andrew Kaylorf4660012017-05-25 21:31:00 +000013304
13305
13306'``llvm.experimental.constrained.pow``' Intrinsic
13307^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13308
13309Syntax:
13310"""""""
13311
13312::
13313
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013314 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013315 @llvm.experimental.constrained.pow(<type> <op1>, <type> <op2>,
13316 metadata <rounding mode>,
13317 metadata <exception behavior>)
13318
13319Overview:
13320"""""""""
13321
13322The '``llvm.experimental.constrained.pow``' intrinsic returns the first operand
13323raised to the (positive or negative) power specified by the second operand.
13324
13325Arguments:
13326""""""""""
13327
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013328The first two arguments and the return value are floating-point numbers of the
Andrew Kaylorf4660012017-05-25 21:31:00 +000013329same type. The second argument specifies the power to which the first argument
13330should be raised.
13331
13332The third and fourth arguments specify the rounding mode and exception
13333behavior as described above.
13334
13335Semantics:
13336""""""""""
13337
13338This function returns the first value raised to the second power,
13339returning the same values as the libm ``pow`` functions would, and
13340handles error conditions in the same way.
13341
13342
13343'``llvm.experimental.constrained.powi``' Intrinsic
13344^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13345
13346Syntax:
13347"""""""
13348
13349::
13350
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013351 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013352 @llvm.experimental.constrained.powi(<type> <op1>, i32 <op2>,
13353 metadata <rounding mode>,
13354 metadata <exception behavior>)
13355
13356Overview:
13357"""""""""
13358
13359The '``llvm.experimental.constrained.powi``' intrinsic returns the first operand
13360raised to the (positive or negative) power specified by the second operand. The
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013361order of evaluation of multiplications is not defined. When a vector of
13362floating-point type is used, the second argument remains a scalar integer value.
Andrew Kaylorf4660012017-05-25 21:31:00 +000013363
13364
13365Arguments:
13366""""""""""
13367
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013368The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013369type. The second argument is a 32-bit signed integer specifying the power to
13370which the first argument should be raised.
13371
13372The third and fourth arguments specify the rounding mode and exception
13373behavior as described above.
13374
13375Semantics:
13376""""""""""
13377
13378This function returns the first value raised to the second power with an
13379unspecified sequence of rounding operations.
13380
13381
13382'``llvm.experimental.constrained.sin``' Intrinsic
13383^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13384
13385Syntax:
13386"""""""
13387
13388::
13389
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013390 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013391 @llvm.experimental.constrained.sin(<type> <op1>,
13392 metadata <rounding mode>,
13393 metadata <exception behavior>)
13394
13395Overview:
13396"""""""""
13397
13398The '``llvm.experimental.constrained.sin``' intrinsic returns the sine of the
13399first operand.
13400
13401Arguments:
13402""""""""""
13403
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013404The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013405type.
13406
13407The second and third arguments specify the rounding mode and exception
13408behavior as described above.
13409
13410Semantics:
13411""""""""""
13412
13413This function returns the sine of the specified operand, returning the
13414same values as the libm ``sin`` functions would, and handles error
13415conditions in the same way.
13416
13417
13418'``llvm.experimental.constrained.cos``' Intrinsic
13419^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13420
13421Syntax:
13422"""""""
13423
13424::
13425
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013426 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013427 @llvm.experimental.constrained.cos(<type> <op1>,
13428 metadata <rounding mode>,
13429 metadata <exception behavior>)
13430
13431Overview:
13432"""""""""
13433
13434The '``llvm.experimental.constrained.cos``' intrinsic returns the cosine of the
13435first operand.
13436
13437Arguments:
13438""""""""""
13439
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013440The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013441type.
13442
13443The second and third arguments specify the rounding mode and exception
13444behavior as described above.
13445
13446Semantics:
13447""""""""""
13448
13449This function returns the cosine of the specified operand, returning the
13450same values as the libm ``cos`` functions would, and handles error
13451conditions in the same way.
13452
13453
13454'``llvm.experimental.constrained.exp``' Intrinsic
13455^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13456
13457Syntax:
13458"""""""
13459
13460::
13461
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013462 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013463 @llvm.experimental.constrained.exp(<type> <op1>,
13464 metadata <rounding mode>,
13465 metadata <exception behavior>)
13466
13467Overview:
13468"""""""""
13469
13470The '``llvm.experimental.constrained.exp``' intrinsic computes the base-e
13471exponential of the specified value.
13472
13473Arguments:
13474""""""""""
13475
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013476The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013477type.
13478
13479The second and third arguments specify the rounding mode and exception
13480behavior as described above.
13481
13482Semantics:
13483""""""""""
13484
13485This function returns the same values as the libm ``exp`` functions
13486would, and handles error conditions in the same way.
13487
13488
13489'``llvm.experimental.constrained.exp2``' Intrinsic
13490^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13491
13492Syntax:
13493"""""""
13494
13495::
13496
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013497 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013498 @llvm.experimental.constrained.exp2(<type> <op1>,
13499 metadata <rounding mode>,
13500 metadata <exception behavior>)
13501
13502Overview:
13503"""""""""
13504
13505The '``llvm.experimental.constrained.exp2``' intrinsic computes the base-2
13506exponential of the specified value.
13507
13508
13509Arguments:
13510""""""""""
13511
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013512The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013513type.
13514
13515The second and third arguments specify the rounding mode and exception
13516behavior as described above.
13517
13518Semantics:
13519""""""""""
13520
13521This function returns the same values as the libm ``exp2`` functions
13522would, and handles error conditions in the same way.
13523
13524
13525'``llvm.experimental.constrained.log``' Intrinsic
13526^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13527
13528Syntax:
13529"""""""
13530
13531::
13532
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013533 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013534 @llvm.experimental.constrained.log(<type> <op1>,
13535 metadata <rounding mode>,
13536 metadata <exception behavior>)
13537
13538Overview:
13539"""""""""
13540
13541The '``llvm.experimental.constrained.log``' intrinsic computes the base-e
13542logarithm of the specified value.
13543
13544Arguments:
13545""""""""""
13546
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013547The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013548type.
13549
13550The second and third arguments specify the rounding mode and exception
13551behavior as described above.
13552
13553
13554Semantics:
13555""""""""""
13556
13557This function returns the same values as the libm ``log`` functions
13558would, and handles error conditions in the same way.
13559
13560
13561'``llvm.experimental.constrained.log10``' Intrinsic
13562^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13563
13564Syntax:
13565"""""""
13566
13567::
13568
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013569 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013570 @llvm.experimental.constrained.log10(<type> <op1>,
13571 metadata <rounding mode>,
13572 metadata <exception behavior>)
13573
13574Overview:
13575"""""""""
13576
13577The '``llvm.experimental.constrained.log10``' intrinsic computes the base-10
13578logarithm of the specified value.
13579
13580Arguments:
13581""""""""""
13582
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013583The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013584type.
13585
13586The second and third arguments specify the rounding mode and exception
13587behavior as described above.
13588
13589Semantics:
13590""""""""""
13591
13592This function returns the same values as the libm ``log10`` functions
13593would, and handles error conditions in the same way.
13594
13595
13596'``llvm.experimental.constrained.log2``' Intrinsic
13597^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13598
13599Syntax:
13600"""""""
13601
13602::
13603
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013604 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013605 @llvm.experimental.constrained.log2(<type> <op1>,
13606 metadata <rounding mode>,
13607 metadata <exception behavior>)
13608
13609Overview:
13610"""""""""
13611
13612The '``llvm.experimental.constrained.log2``' intrinsic computes the base-2
13613logarithm of the specified value.
13614
13615Arguments:
13616""""""""""
13617
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013618The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013619type.
13620
13621The second and third arguments specify the rounding mode and exception
13622behavior as described above.
13623
13624Semantics:
13625""""""""""
13626
13627This function returns the same values as the libm ``log2`` functions
13628would, and handles error conditions in the same way.
13629
13630
13631'``llvm.experimental.constrained.rint``' Intrinsic
13632^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13633
13634Syntax:
13635"""""""
13636
13637::
13638
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013639 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013640 @llvm.experimental.constrained.rint(<type> <op1>,
13641 metadata <rounding mode>,
13642 metadata <exception behavior>)
13643
13644Overview:
13645"""""""""
13646
13647The '``llvm.experimental.constrained.rint``' intrinsic returns the first
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013648operand rounded to the nearest integer. It may raise an inexact floating-point
Andrew Kaylorf4660012017-05-25 21:31:00 +000013649exception if the operand is not an integer.
13650
13651Arguments:
13652""""""""""
13653
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013654The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013655type.
13656
13657The second and third arguments specify the rounding mode and exception
13658behavior as described above.
13659
13660Semantics:
13661""""""""""
13662
13663This function returns the same values as the libm ``rint`` functions
13664would, and handles error conditions in the same way. The rounding mode is
13665described, not determined, by the rounding mode argument. The actual rounding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013666mode is determined by the runtime floating-point environment. The rounding
Andrew Kaylorf4660012017-05-25 21:31:00 +000013667mode argument is only intended as information to the compiler.
13668
13669
13670'``llvm.experimental.constrained.nearbyint``' Intrinsic
13671^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13672
13673Syntax:
13674"""""""
13675
13676::
13677
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013678 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013679 @llvm.experimental.constrained.nearbyint(<type> <op1>,
13680 metadata <rounding mode>,
13681 metadata <exception behavior>)
13682
13683Overview:
13684"""""""""
13685
13686The '``llvm.experimental.constrained.nearbyint``' intrinsic returns the first
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013687operand rounded to the nearest integer. It will not raise an inexact
13688floating-point exception if the operand is not an integer.
Andrew Kaylorf4660012017-05-25 21:31:00 +000013689
13690
13691Arguments:
13692""""""""""
13693
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013694The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013695type.
13696
13697The second and third arguments specify the rounding mode and exception
13698behavior as described above.
13699
13700Semantics:
13701""""""""""
13702
13703This function returns the same values as the libm ``nearbyint`` functions
13704would, and handles error conditions in the same way. The rounding mode is
13705described, not determined, by the rounding mode argument. The actual rounding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013706mode is determined by the runtime floating-point environment. The rounding
Andrew Kaylorf4660012017-05-25 21:31:00 +000013707mode argument is only intended as information to the compiler.
13708
13709
Sean Silvab084af42012-12-07 10:36:55 +000013710General Intrinsics
13711------------------
13712
13713This class of intrinsics is designed to be generic and has no specific
13714purpose.
13715
13716'``llvm.var.annotation``' Intrinsic
13717^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13718
13719Syntax:
13720"""""""
13721
13722::
13723
13724 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
13725
13726Overview:
13727"""""""""
13728
13729The '``llvm.var.annotation``' intrinsic.
13730
13731Arguments:
13732""""""""""
13733
13734The first argument is a pointer to a value, the second is a pointer to a
13735global string, the third is a pointer to a global string which is the
13736source file name, and the last argument is the line number.
13737
13738Semantics:
13739""""""""""
13740
13741This intrinsic allows annotation of local variables with arbitrary
13742strings. This can be useful for special purpose optimizations that want
13743to look for these annotations. These have no other defined use; they are
13744ignored by code generation and optimization.
13745
Michael Gottesman88d18832013-03-26 00:34:27 +000013746'``llvm.ptr.annotation.*``' Intrinsic
13747^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13748
13749Syntax:
13750"""""""
13751
13752This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
13753pointer to an integer of any width. *NOTE* you must specify an address space for
13754the pointer. The identifier for the default address space is the integer
13755'``0``'.
13756
13757::
13758
13759 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
13760 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
13761 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
13762 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
13763 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
13764
13765Overview:
13766"""""""""
13767
13768The '``llvm.ptr.annotation``' intrinsic.
13769
13770Arguments:
13771""""""""""
13772
13773The first argument is a pointer to an integer value of arbitrary bitwidth
13774(result of some expression), the second is a pointer to a global string, the
13775third is a pointer to a global string which is the source file name, and the
13776last argument is the line number. It returns the value of the first argument.
13777
13778Semantics:
13779""""""""""
13780
13781This intrinsic allows annotation of a pointer to an integer with arbitrary
13782strings. This can be useful for special purpose optimizations that want to look
13783for these annotations. These have no other defined use; they are ignored by code
13784generation and optimization.
13785
Sean Silvab084af42012-12-07 10:36:55 +000013786'``llvm.annotation.*``' Intrinsic
13787^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13788
13789Syntax:
13790"""""""
13791
13792This is an overloaded intrinsic. You can use '``llvm.annotation``' on
13793any integer bit width.
13794
13795::
13796
13797 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
13798 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
13799 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
13800 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
13801 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
13802
13803Overview:
13804"""""""""
13805
13806The '``llvm.annotation``' intrinsic.
13807
13808Arguments:
13809""""""""""
13810
13811The first argument is an integer value (result of some expression), the
13812second is a pointer to a global string, the third is a pointer to a
13813global string which is the source file name, and the last argument is
13814the line number. It returns the value of the first argument.
13815
13816Semantics:
13817""""""""""
13818
13819This intrinsic allows annotations to be put on arbitrary expressions
13820with arbitrary strings. This can be useful for special purpose
13821optimizations that want to look for these annotations. These have no
13822other defined use; they are ignored by code generation and optimization.
13823
Reid Klecknere33c94f2017-09-05 20:14:58 +000013824'``llvm.codeview.annotation``' Intrinsic
Reid Klecknerd4523682017-09-05 20:26:25 +000013825^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Reid Klecknere33c94f2017-09-05 20:14:58 +000013826
13827Syntax:
13828"""""""
13829
13830This annotation emits a label at its program point and an associated
13831``S_ANNOTATION`` codeview record with some additional string metadata. This is
13832used to implement MSVC's ``__annotation`` intrinsic. It is marked
13833``noduplicate``, so calls to this intrinsic prevent inlining and should be
13834considered expensive.
13835
13836::
13837
13838 declare void @llvm.codeview.annotation(metadata)
13839
13840Arguments:
13841""""""""""
13842
13843The argument should be an MDTuple containing any number of MDStrings.
13844
Sean Silvab084af42012-12-07 10:36:55 +000013845'``llvm.trap``' Intrinsic
13846^^^^^^^^^^^^^^^^^^^^^^^^^
13847
13848Syntax:
13849"""""""
13850
13851::
13852
13853 declare void @llvm.trap() noreturn nounwind
13854
13855Overview:
13856"""""""""
13857
13858The '``llvm.trap``' intrinsic.
13859
13860Arguments:
13861""""""""""
13862
13863None.
13864
13865Semantics:
13866""""""""""
13867
13868This intrinsic is lowered to the target dependent trap instruction. If
13869the target does not have a trap instruction, this intrinsic will be
13870lowered to a call of the ``abort()`` function.
13871
13872'``llvm.debugtrap``' Intrinsic
13873^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13874
13875Syntax:
13876"""""""
13877
13878::
13879
13880 declare void @llvm.debugtrap() nounwind
13881
13882Overview:
13883"""""""""
13884
13885The '``llvm.debugtrap``' intrinsic.
13886
13887Arguments:
13888""""""""""
13889
13890None.
13891
13892Semantics:
13893""""""""""
13894
13895This intrinsic is lowered to code which is intended to cause an
13896execution trap with the intention of requesting the attention of a
13897debugger.
13898
13899'``llvm.stackprotector``' Intrinsic
13900^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13901
13902Syntax:
13903"""""""
13904
13905::
13906
13907 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
13908
13909Overview:
13910"""""""""
13911
13912The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
13913onto the stack at ``slot``. The stack slot is adjusted to ensure that it
13914is placed on the stack before local variables.
13915
13916Arguments:
13917""""""""""
13918
13919The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
13920The first argument is the value loaded from the stack guard
13921``@__stack_chk_guard``. The second variable is an ``alloca`` that has
13922enough space to hold the value of the guard.
13923
13924Semantics:
13925""""""""""
13926
Michael Gottesmandafc7d92013-08-12 18:35:32 +000013927This intrinsic causes the prologue/epilogue inserter to force the position of
13928the ``AllocaInst`` stack slot to be before local variables on the stack. This is
13929to ensure that if a local variable on the stack is overwritten, it will destroy
13930the value of the guard. When the function exits, the guard on the stack is
13931checked against the original guard by ``llvm.stackprotectorcheck``. If they are
13932different, then ``llvm.stackprotectorcheck`` causes the program to abort by
13933calling the ``__stack_chk_fail()`` function.
13934
Tim Shene885d5e2016-04-19 19:40:37 +000013935'``llvm.stackguard``' Intrinsic
13936^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13937
13938Syntax:
13939"""""""
13940
13941::
13942
13943 declare i8* @llvm.stackguard()
13944
13945Overview:
13946"""""""""
13947
13948The ``llvm.stackguard`` intrinsic returns the system stack guard value.
13949
13950It should not be generated by frontends, since it is only for internal usage.
13951The reason why we create this intrinsic is that we still support IR form Stack
13952Protector in FastISel.
13953
13954Arguments:
13955""""""""""
13956
13957None.
13958
13959Semantics:
13960""""""""""
13961
13962On some platforms, the value returned by this intrinsic remains unchanged
13963between loads in the same thread. On other platforms, it returns the same
13964global variable value, if any, e.g. ``@__stack_chk_guard``.
13965
13966Currently some platforms have IR-level customized stack guard loading (e.g.
13967X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
13968in the future.
13969
Sean Silvab084af42012-12-07 10:36:55 +000013970'``llvm.objectsize``' Intrinsic
13971^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13972
13973Syntax:
13974"""""""
13975
13976::
13977
George Burgess IV56c7e882017-03-21 20:08:59 +000013978 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>)
13979 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>)
Sean Silvab084af42012-12-07 10:36:55 +000013980
13981Overview:
13982"""""""""
13983
13984The ``llvm.objectsize`` intrinsic is designed to provide information to
13985the optimizers to determine at compile time whether a) an operation
13986(like memcpy) will overflow a buffer that corresponds to an object, or
13987b) that a runtime check for overflow isn't necessary. An object in this
13988context means an allocation of a specific class, structure, array, or
13989other object.
13990
13991Arguments:
13992""""""""""
13993
George Burgess IV56c7e882017-03-21 20:08:59 +000013994The ``llvm.objectsize`` intrinsic takes three arguments. The first argument is
13995a pointer to or into the ``object``. The second argument determines whether
13996``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size
13997is unknown. The third argument controls how ``llvm.objectsize`` acts when
13998``null`` is used as its pointer argument. If it's true and the pointer is in
13999address space 0, ``null`` is treated as an opaque value with an unknown number
14000of bytes. Otherwise, ``llvm.objectsize`` reports 0 bytes available when given
14001``null``.
14002
14003The second and third arguments only accept constants.
Sean Silvab084af42012-12-07 10:36:55 +000014004
14005Semantics:
14006""""""""""
14007
14008The ``llvm.objectsize`` intrinsic is lowered to a constant representing
14009the size of the object concerned. If the size cannot be determined at
14010compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
14011on the ``min`` argument).
14012
14013'``llvm.expect``' Intrinsic
14014^^^^^^^^^^^^^^^^^^^^^^^^^^^
14015
14016Syntax:
14017"""""""
14018
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000014019This is an overloaded intrinsic. You can use ``llvm.expect`` on any
14020integer bit width.
14021
Sean Silvab084af42012-12-07 10:36:55 +000014022::
14023
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000014024 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000014025 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
14026 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
14027
14028Overview:
14029"""""""""
14030
14031The ``llvm.expect`` intrinsic provides information about expected (the
14032most probable) value of ``val``, which can be used by optimizers.
14033
14034Arguments:
14035""""""""""
14036
14037The ``llvm.expect`` intrinsic takes two arguments. The first argument is
14038a value. The second argument is an expected value, this needs to be a
14039constant value, variables are not allowed.
14040
14041Semantics:
14042""""""""""
14043
14044This intrinsic is lowered to the ``val``.
14045
Philip Reamese0e90832015-04-26 22:23:12 +000014046.. _int_assume:
14047
Hal Finkel93046912014-07-25 21:13:35 +000014048'``llvm.assume``' Intrinsic
14049^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14050
14051Syntax:
14052"""""""
14053
14054::
14055
14056 declare void @llvm.assume(i1 %cond)
14057
14058Overview:
14059"""""""""
14060
14061The ``llvm.assume`` allows the optimizer to assume that the provided
14062condition is true. This information can then be used in simplifying other parts
14063of the code.
14064
14065Arguments:
14066""""""""""
14067
14068The condition which the optimizer may assume is always true.
14069
14070Semantics:
14071""""""""""
14072
14073The intrinsic allows the optimizer to assume that the provided condition is
14074always true whenever the control flow reaches the intrinsic call. No code is
14075generated for this intrinsic, and instructions that contribute only to the
14076provided condition are not used for code generation. If the condition is
14077violated during execution, the behavior is undefined.
14078
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000014079Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000014080used by the ``llvm.assume`` intrinsic in order to preserve the instructions
14081only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000014082if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000014083sufficient overall improvement in code quality. For this reason,
14084``llvm.assume`` should not be used to document basic mathematical invariants
14085that the optimizer can otherwise deduce or facts that are of little use to the
14086optimizer.
14087
Daniel Berlin2c438a32017-02-07 19:29:25 +000014088.. _int_ssa_copy:
14089
14090'``llvm.ssa_copy``' Intrinsic
14091^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14092
14093Syntax:
14094"""""""
14095
14096::
14097
14098 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
14099
14100Arguments:
14101""""""""""
14102
14103The first argument is an operand which is used as the returned value.
14104
14105Overview:
14106""""""""""
14107
14108The ``llvm.ssa_copy`` intrinsic can be used to attach information to
14109operations by copying them and giving them new names. For example,
14110the PredicateInfo utility uses it to build Extended SSA form, and
14111attach various forms of information to operands that dominate specific
14112uses. It is not meant for general use, only for building temporary
14113renaming forms that require value splits at certain points.
14114
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014115.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000014116
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014117'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000014118^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14119
14120Syntax:
14121"""""""
14122
14123::
14124
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014125 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000014126
14127
14128Arguments:
14129""""""""""
14130
14131The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014132metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000014133
14134Overview:
14135"""""""""
14136
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014137The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
14138with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000014139
Peter Collingbourne0312f612016-06-25 00:23:04 +000014140'``llvm.type.checked.load``' Intrinsic
14141^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14142
14143Syntax:
14144"""""""
14145
14146::
14147
14148 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
14149
14150
14151Arguments:
14152""""""""""
14153
14154The first argument is a pointer from which to load a function pointer. The
14155second argument is the byte offset from which to load the function pointer. The
14156third argument is a metadata object representing a :doc:`type identifier
14157<TypeMetadata>`.
14158
14159Overview:
14160"""""""""
14161
14162The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
14163virtual table pointer using type metadata. This intrinsic is used to implement
14164control flow integrity in conjunction with virtual call optimization. The
14165virtual call optimization pass will optimize away ``llvm.type.checked.load``
14166intrinsics associated with devirtualized calls, thereby removing the type
14167check in cases where it is not needed to enforce the control flow integrity
14168constraint.
14169
14170If the given pointer is associated with a type metadata identifier, this
14171function returns true as the second element of its return value. (Note that
14172the function may also return true if the given pointer is not associated
14173with a type metadata identifier.) If the function's return value's second
14174element is true, the following rules apply to the first element:
14175
14176- If the given pointer is associated with the given type metadata identifier,
14177 it is the function pointer loaded from the given byte offset from the given
14178 pointer.
14179
14180- If the given pointer is not associated with the given type metadata
14181 identifier, it is one of the following (the choice of which is unspecified):
14182
14183 1. The function pointer that would have been loaded from an arbitrarily chosen
14184 (through an unspecified mechanism) pointer associated with the type
14185 metadata.
14186
14187 2. If the function has a non-void return type, a pointer to a function that
14188 returns an unspecified value without causing side effects.
14189
14190If the function's return value's second element is false, the value of the
14191first element is undefined.
14192
14193
Sean Silvab084af42012-12-07 10:36:55 +000014194'``llvm.donothing``' Intrinsic
14195^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14196
14197Syntax:
14198"""""""
14199
14200::
14201
14202 declare void @llvm.donothing() nounwind readnone
14203
14204Overview:
14205"""""""""
14206
Juergen Ributzkac9161192014-10-23 22:36:13 +000014207The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000014208three intrinsics (besides ``llvm.experimental.patchpoint`` and
14209``llvm.experimental.gc.statepoint``) that can be called with an invoke
14210instruction.
Sean Silvab084af42012-12-07 10:36:55 +000014211
14212Arguments:
14213""""""""""
14214
14215None.
14216
14217Semantics:
14218""""""""""
14219
14220This intrinsic does nothing, and it's removed by optimizers and ignored
14221by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000014222
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014223'``llvm.experimental.deoptimize``' Intrinsic
14224^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14225
14226Syntax:
14227"""""""
14228
14229::
14230
14231 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
14232
14233Overview:
14234"""""""""
14235
14236This intrinsic, together with :ref:`deoptimization operand bundles
14237<deopt_opbundles>`, allow frontends to express transfer of control and
14238frame-local state from the currently executing (typically more specialized,
14239hence faster) version of a function into another (typically more generic, hence
14240slower) version.
14241
14242In languages with a fully integrated managed runtime like Java and JavaScript
14243this intrinsic can be used to implement "uncommon trap" or "side exit" like
14244functionality. In unmanaged languages like C and C++, this intrinsic can be
14245used to represent the slow paths of specialized functions.
14246
14247
14248Arguments:
14249""""""""""
14250
14251The intrinsic takes an arbitrary number of arguments, whose meaning is
14252decided by the :ref:`lowering strategy<deoptimize_lowering>`.
14253
14254Semantics:
14255""""""""""
14256
14257The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
14258deoptimization continuation (denoted using a :ref:`deoptimization
14259operand bundle <deopt_opbundles>`) and returns the value returned by
14260the deoptimization continuation. Defining the semantic properties of
14261the continuation itself is out of scope of the language reference --
14262as far as LLVM is concerned, the deoptimization continuation can
14263invoke arbitrary side effects, including reading from and writing to
14264the entire heap.
14265
14266Deoptimization continuations expressed using ``"deopt"`` operand bundles always
14267continue execution to the end of the physical frame containing them, so all
14268calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
14269
14270 - ``@llvm.experimental.deoptimize`` cannot be invoked.
14271 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
14272 - The ``ret`` instruction must return the value produced by the
14273 ``@llvm.experimental.deoptimize`` call if there is one, or void.
14274
14275Note that the above restrictions imply that the return type for a call to
14276``@llvm.experimental.deoptimize`` will match the return type of its immediate
14277caller.
14278
14279The inliner composes the ``"deopt"`` continuations of the caller into the
14280``"deopt"`` continuations present in the inlinee, and also updates calls to this
14281intrinsic to return directly from the frame of the function it inlined into.
14282
Sanjoy Dase0aa4142016-05-12 01:17:38 +000014283All declarations of ``@llvm.experimental.deoptimize`` must share the
14284same calling convention.
14285
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014286.. _deoptimize_lowering:
14287
14288Lowering:
14289"""""""""
14290
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000014291Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
14292symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
14293ensure that this symbol is defined). The call arguments to
14294``@llvm.experimental.deoptimize`` are lowered as if they were formal
14295arguments of the specified types, and not as varargs.
14296
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014297
Sanjoy Das021de052016-03-31 00:18:46 +000014298'``llvm.experimental.guard``' Intrinsic
14299^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14300
14301Syntax:
14302"""""""
14303
14304::
14305
14306 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
14307
14308Overview:
14309"""""""""
14310
14311This intrinsic, together with :ref:`deoptimization operand bundles
14312<deopt_opbundles>`, allows frontends to express guards or checks on
14313optimistic assumptions made during compilation. The semantics of
14314``@llvm.experimental.guard`` is defined in terms of
14315``@llvm.experimental.deoptimize`` -- its body is defined to be
14316equivalent to:
14317
Renato Golin124f2592016-07-20 12:16:38 +000014318.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000014319
Renato Golin124f2592016-07-20 12:16:38 +000014320 define void @llvm.experimental.guard(i1 %pred, <args...>) {
14321 %realPred = and i1 %pred, undef
14322 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000014323
Renato Golin124f2592016-07-20 12:16:38 +000014324 leave:
14325 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
14326 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000014327
Renato Golin124f2592016-07-20 12:16:38 +000014328 continue:
14329 ret void
14330 }
Sanjoy Das021de052016-03-31 00:18:46 +000014331
Sanjoy Das47cf2af2016-04-30 00:55:59 +000014332
14333with the optional ``[, !make.implicit !{}]`` present if and only if it
14334is present on the call site. For more details on ``!make.implicit``,
14335see :doc:`FaultMaps`.
14336
Sanjoy Das021de052016-03-31 00:18:46 +000014337In words, ``@llvm.experimental.guard`` executes the attached
14338``"deopt"`` continuation if (but **not** only if) its first argument
14339is ``false``. Since the optimizer is allowed to replace the ``undef``
14340with an arbitrary value, it can optimize guard to fail "spuriously",
14341i.e. without the original condition being false (hence the "not only
14342if"); and this allows for "check widening" type optimizations.
14343
14344``@llvm.experimental.guard`` cannot be invoked.
14345
14346
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000014347'``llvm.load.relative``' Intrinsic
14348^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14349
14350Syntax:
14351"""""""
14352
14353::
14354
14355 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
14356
14357Overview:
14358"""""""""
14359
14360This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
14361adds ``%ptr`` to that value and returns it. The constant folder specifically
14362recognizes the form of this intrinsic and the constant initializers it may
14363load from; if a loaded constant initializer is known to have the form
14364``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
14365
14366LLVM provides that the calculation of such a constant initializer will
14367not overflow at link time under the medium code model if ``x`` is an
14368``unnamed_addr`` function. However, it does not provide this guarantee for
14369a constant initializer folded into a function body. This intrinsic can be
14370used to avoid the possibility of overflows when loading from such a constant.
14371
Dan Gohman2c74fe92017-11-08 21:59:51 +000014372'``llvm.sideeffect``' Intrinsic
14373^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14374
14375Syntax:
14376"""""""
14377
14378::
14379
14380 declare void @llvm.sideeffect() inaccessiblememonly nounwind
14381
14382Overview:
14383"""""""""
14384
14385The ``llvm.sideeffect`` intrinsic doesn't perform any operation. Optimizers
14386treat it as having side effects, so it can be inserted into a loop to
14387indicate that the loop shouldn't be assumed to terminate (which could
14388potentially lead to the loop being optimized away entirely), even if it's
14389an infinite loop with no other side effects.
14390
14391Arguments:
14392""""""""""
14393
14394None.
14395
14396Semantics:
14397""""""""""
14398
14399This intrinsic actually does nothing, but optimizers must assume that it
14400has externally observable side effects.
14401
Andrew Trick5e029ce2013-12-24 02:57:25 +000014402Stack Map Intrinsics
14403--------------------
14404
14405LLVM provides experimental intrinsics to support runtime patching
14406mechanisms commonly desired in dynamic language JITs. These intrinsics
14407are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014408
14409Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000014410-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000014411
14412These intrinsics are similar to the standard library memory intrinsics except
14413that they perform memory transfer as a sequence of atomic memory accesses.
14414
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014415.. _int_memcpy_element_unordered_atomic:
Igor Laevsky4f31e522016-12-29 14:31:07 +000014416
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014417'``llvm.memcpy.element.unordered.atomic``' Intrinsic
14418^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000014419
14420Syntax:
14421"""""""
14422
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014423This is an overloaded intrinsic. You can use ``llvm.memcpy.element.unordered.atomic`` on
Igor Laevsky4f31e522016-12-29 14:31:07 +000014424any integer bit width and for different address spaces. Not all targets
14425support all bit widths however.
14426
14427::
14428
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014429 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
14430 i8* <src>,
14431 i32 <len>,
14432 i32 <element_size>)
14433 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
14434 i8* <src>,
14435 i64 <len>,
14436 i32 <element_size>)
Igor Laevsky4f31e522016-12-29 14:31:07 +000014437
14438Overview:
14439"""""""""
14440
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014441The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic is a specialization of the
14442'``llvm.memcpy.*``' intrinsic. It differs in that the ``dest`` and ``src`` are treated
14443as arrays with elements that are exactly ``element_size`` bytes, and the copy between
14444buffers uses a sequence of :ref:`unordered atomic <ordering>` load/store operations
14445that are a positive integer multiple of the ``element_size`` in size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014446
14447Arguments:
14448""""""""""
14449
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014450The first three arguments are the same as they are in the :ref:`@llvm.memcpy <int_memcpy>`
14451intrinsic, with the added constraint that ``len`` is required to be a positive integer
14452multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
14453``element_size``, then the behaviour of the intrinsic is undefined.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014454
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014455``element_size`` must be a compile-time constant positive power of two no greater than
14456target-specific atomic access size limit.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014457
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014458For each of the input pointers ``align`` parameter attribute must be specified. It
14459must be a power of two no less than the ``element_size``. Caller guarantees that
14460both the source and destination pointers are aligned to that boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014461
14462Semantics:
14463""""""""""
14464
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014465The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic copies ``len`` bytes of
14466memory from the source location to the destination location. These locations are not
14467allowed to overlap. The memory copy is performed as a sequence of load/store operations
14468where each access is guaranteed to be a multiple of ``element_size`` bytes wide and
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014469aligned at an ``element_size`` boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014470
14471The order of the copy is unspecified. The same value may be read from the source
14472buffer many times, but only one write is issued to the destination buffer per
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014473element. It is well defined to have concurrent reads and writes to both source and
14474destination provided those reads and writes are unordered atomic when specified.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014475
14476This intrinsic does not provide any additional ordering guarantees over those
14477provided by a set of unordered loads from the source location and stores to the
14478destination.
14479
14480Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000014481"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000014482
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014483In the most general case call to the '``llvm.memcpy.element.unordered.atomic.*``' is
14484lowered to a call to the symbol ``__llvm_memcpy_element_unordered_atomic_*``. Where '*'
14485is replaced with an actual element size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014486
Daniel Neilson57226ef2017-07-12 15:25:26 +000014487Optimizer is allowed to inline memory copy when it's profitable to do so.
14488
14489'``llvm.memmove.element.unordered.atomic``' Intrinsic
14490^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14491
14492Syntax:
14493"""""""
14494
14495This is an overloaded intrinsic. You can use
14496``llvm.memmove.element.unordered.atomic`` on any integer bit width and for
14497different address spaces. Not all targets support all bit widths however.
14498
14499::
14500
14501 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
14502 i8* <src>,
14503 i32 <len>,
14504 i32 <element_size>)
14505 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
14506 i8* <src>,
14507 i64 <len>,
14508 i32 <element_size>)
14509
14510Overview:
14511"""""""""
14512
14513The '``llvm.memmove.element.unordered.atomic.*``' intrinsic is a specialization
14514of the '``llvm.memmove.*``' intrinsic. It differs in that the ``dest`` and
14515``src`` are treated as arrays with elements that are exactly ``element_size``
14516bytes, and the copy between buffers uses a sequence of
14517:ref:`unordered atomic <ordering>` load/store operations that are a positive
14518integer multiple of the ``element_size`` in size.
14519
14520Arguments:
14521""""""""""
14522
14523The first three arguments are the same as they are in the
14524:ref:`@llvm.memmove <int_memmove>` intrinsic, with the added constraint that
14525``len`` is required to be a positive integer multiple of the ``element_size``.
14526If ``len`` is not a positive integer multiple of ``element_size``, then the
14527behaviour of the intrinsic is undefined.
14528
14529``element_size`` must be a compile-time constant positive power of two no
14530greater than a target-specific atomic access size limit.
14531
14532For each of the input pointers the ``align`` parameter attribute must be
14533specified. It must be a power of two no less than the ``element_size``. Caller
14534guarantees that both the source and destination pointers are aligned to that
14535boundary.
14536
14537Semantics:
14538""""""""""
14539
14540The '``llvm.memmove.element.unordered.atomic.*``' intrinsic copies ``len`` bytes
14541of memory from the source location to the destination location. These locations
14542are allowed to overlap. The memory copy is performed as a sequence of load/store
14543operations where each access is guaranteed to be a multiple of ``element_size``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014544bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson57226ef2017-07-12 15:25:26 +000014545
14546The order of the copy is unspecified. The same value may be read from the source
14547buffer many times, but only one write is issued to the destination buffer per
14548element. It is well defined to have concurrent reads and writes to both source
14549and destination provided those reads and writes are unordered atomic when
14550specified.
14551
14552This intrinsic does not provide any additional ordering guarantees over those
14553provided by a set of unordered loads from the source location and stores to the
14554destination.
14555
14556Lowering:
14557"""""""""
14558
14559In the most general case call to the
14560'``llvm.memmove.element.unordered.atomic.*``' is lowered to a call to the symbol
14561``__llvm_memmove_element_unordered_atomic_*``. Where '*' is replaced with an
14562actual element size.
14563
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014564The optimizer is allowed to inline the memory copy when it's profitable to do so.
Daniel Neilson965613e2017-07-12 21:57:23 +000014565
14566.. _int_memset_element_unordered_atomic:
14567
14568'``llvm.memset.element.unordered.atomic``' Intrinsic
14569^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14570
14571Syntax:
14572"""""""
14573
14574This is an overloaded intrinsic. You can use ``llvm.memset.element.unordered.atomic`` on
14575any integer bit width and for different address spaces. Not all targets
14576support all bit widths however.
14577
14578::
14579
14580 declare void @llvm.memset.element.unordered.atomic.p0i8.i32(i8* <dest>,
14581 i8 <value>,
14582 i32 <len>,
14583 i32 <element_size>)
14584 declare void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* <dest>,
14585 i8 <value>,
14586 i64 <len>,
14587 i32 <element_size>)
14588
14589Overview:
14590"""""""""
14591
14592The '``llvm.memset.element.unordered.atomic.*``' intrinsic is a specialization of the
14593'``llvm.memset.*``' intrinsic. It differs in that the ``dest`` is treated as an array
14594with elements that are exactly ``element_size`` bytes, and the assignment to that array
14595uses uses a sequence of :ref:`unordered atomic <ordering>` store operations
14596that are a positive integer multiple of the ``element_size`` in size.
14597
14598Arguments:
14599""""""""""
14600
14601The first three arguments are the same as they are in the :ref:`@llvm.memset <int_memset>`
14602intrinsic, with the added constraint that ``len`` is required to be a positive integer
14603multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
14604``element_size``, then the behaviour of the intrinsic is undefined.
14605
14606``element_size`` must be a compile-time constant positive power of two no greater than
14607target-specific atomic access size limit.
14608
14609The ``dest`` input pointer must have the ``align`` parameter attribute specified. It
14610must be a power of two no less than the ``element_size``. Caller guarantees that
14611the destination pointer is aligned to that boundary.
14612
14613Semantics:
14614""""""""""
14615
14616The '``llvm.memset.element.unordered.atomic.*``' intrinsic sets the ``len`` bytes of
14617memory starting at the destination location to the given ``value``. The memory is
14618set with a sequence of store operations where each access is guaranteed to be a
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014619multiple of ``element_size`` bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson965613e2017-07-12 21:57:23 +000014620
14621The order of the assignment is unspecified. Only one write is issued to the
14622destination buffer per element. It is well defined to have concurrent reads and
14623writes to the destination provided those reads and writes are unordered atomic
14624when specified.
14625
14626This intrinsic does not provide any additional ordering guarantees over those
14627provided by a set of unordered stores to the destination.
14628
14629Lowering:
14630"""""""""
14631
14632In the most general case call to the '``llvm.memset.element.unordered.atomic.*``' is
14633lowered to a call to the symbol ``__llvm_memset_element_unordered_atomic_*``. Where '*'
14634is replaced with an actual element size.
14635
14636The optimizer is allowed to inline the memory assignment when it's profitable to do so.