blob: 57abe7f9067ef89d73d240c4e16990875e2ba060 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
Hans Wennborg2cfcc012018-05-22 10:14:07 +000083 can be used on global values to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
George Burgess IVfbc34982017-05-20 04:52:29 +0000164 ; Convert [13 x i8]* to i8*...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledru0604c5c2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvab084af42012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
Sanjay Patel85fa9ef2018-03-21 14:15:33 +0000327 floating-point types are supported.
Sean Silvab084af42012-12-07 10:36:55 +0000328 - On *X86-64* only supports up to 10 bit type parameters and 6
Sanjay Patel85fa9ef2018-03-21 14:15:33 +0000329 floating-point parameters.
Sean Silvab084af42012-12-07 10:36:55 +0000330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Sean Fertilec70d28b2017-10-26 15:00:26 +0000530.. _runtime_preemption_model:
531
532Runtime Preemption Specifiers
533-----------------------------
534
535Global variables, functions and aliases may have an optional runtime preemption
536specifier. If a preemption specifier isn't given explicitly, then a
537symbol is assumed to be ``dso_preemptable``.
538
539``dso_preemptable``
540 Indicates that the function or variable may be replaced by a symbol from
541 outside the linkage unit at runtime.
542
543``dso_local``
544 The compiler may assume that a function or variable marked as ``dso_local``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000545 will resolve to a symbol within the same linkage unit. Direct access will
Sean Fertilec70d28b2017-10-26 15:00:26 +0000546 be generated even if the definition is not within this compilation unit.
547
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000548.. _namedtypes:
549
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000550Structure Types
551---------------
Sean Silvab084af42012-12-07 10:36:55 +0000552
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000553LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000554types <t_struct>`. Literal types are uniqued structurally, but identified types
555are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000556to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000557
Sean Silva706fba52015-08-06 22:56:24 +0000558An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000559
560.. code-block:: llvm
561
562 %mytype = type { %mytype*, i32 }
563
Sean Silvaa1190322015-08-06 22:56:48 +0000564Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000565literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000566
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000567.. _nointptrtype:
568
569Non-Integral Pointer Type
570-------------------------
571
572Note: non-integral pointer types are a work in progress, and they should be
573considered experimental at this time.
574
575LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000576spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
577Non-integral pointer types represent pointers that have an *unspecified* bitwise
578representation; that is, the integral representation may be target dependent or
579unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000580
581``inttoptr`` instructions converting integers to non-integral pointer types are
582ill-typed, and so are ``ptrtoint`` instructions converting values of
583non-integral pointer types to integers. Vector versions of said instructions
584are ill-typed as well.
585
Sean Silvab084af42012-12-07 10:36:55 +0000586.. _globalvars:
587
588Global Variables
589----------------
590
591Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000592instead of run-time.
593
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000594Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000595
596Global variables in other translation units can also be declared, in which
597case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000598
Bob Wilson85b24f22014-06-12 20:40:33 +0000599Either global variable definitions or declarations may have an explicit section
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000600to be placed in and may have an optional explicit alignment specified. If there
601is a mismatch between the explicit or inferred section information for the
602variable declaration and its definition the resulting behavior is undefined.
Bob Wilson85b24f22014-06-12 20:40:33 +0000603
Michael Gottesman006039c2013-01-31 05:48:48 +0000604A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000605the contents of the variable will **never** be modified (enabling better
606optimization, allowing the global data to be placed in the read-only
607section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000608initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000609variable.
610
611LLVM explicitly allows *declarations* of global variables to be marked
612constant, even if the final definition of the global is not. This
613capability can be used to enable slightly better optimization of the
614program, but requires the language definition to guarantee that
615optimizations based on the 'constantness' are valid for the translation
616units that do not include the definition.
617
618As SSA values, global variables define pointer values that are in scope
619(i.e. they dominate) all basic blocks in the program. Global variables
620always define a pointer to their "content" type because they describe a
621region of memory, and all memory objects in LLVM are accessed through
622pointers.
623
624Global variables can be marked with ``unnamed_addr`` which indicates
625that the address is not significant, only the content. Constants marked
626like this can be merged with other constants if they have the same
627initializer. Note that a constant with significant address *can* be
628merged with a ``unnamed_addr`` constant, the result being a constant
629whose address is significant.
630
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000631If the ``local_unnamed_addr`` attribute is given, the address is known to
632not be significant within the module.
633
Sean Silvab084af42012-12-07 10:36:55 +0000634A global variable may be declared to reside in a target-specific
635numbered address space. For targets that support them, address spaces
636may affect how optimizations are performed and/or what target
637instructions are used to access the variable. The default address space
638is zero. The address space qualifier must precede any other attributes.
639
640LLVM allows an explicit section to be specified for globals. If the
641target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000642Additionally, the global can placed in a comdat if the target has the necessary
643support.
Sean Silvab084af42012-12-07 10:36:55 +0000644
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000645External declarations may have an explicit section specified. Section
646information is retained in LLVM IR for targets that make use of this
647information. Attaching section information to an external declaration is an
648assertion that its definition is located in the specified section. If the
649definition is located in a different section, the behavior is undefined.
Erich Keane0343ef82017-08-22 15:30:43 +0000650
Michael Gottesmane743a302013-02-04 03:22:00 +0000651By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000652variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000653initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000654true even for variables potentially accessible from outside the
655module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000656``@llvm.used`` or dllexported variables. This assumption may be suppressed
657by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659An explicit alignment may be specified for a global, which must be a
660power of 2. If not present, or if the alignment is set to zero, the
661alignment of the global is set by the target to whatever it feels
662convenient. If an explicit alignment is specified, the global is forced
663to have exactly that alignment. Targets and optimizers are not allowed
664to over-align the global if the global has an assigned section. In this
665case, the extra alignment could be observable: for example, code could
666assume that the globals are densely packed in their section and try to
667iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000668iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000669
Javed Absarf3d79042017-05-11 12:28:08 +0000670Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
Sean Fertilec70d28b2017-10-26 15:00:26 +0000671an optional :ref:`runtime preemption specifier <runtime_preemption_model>`,
Javed Absarf3d79042017-05-11 12:28:08 +0000672an optional :ref:`global attributes <glattrs>` and
673an optional list of attached :ref:`metadata <metadata>`.
Nico Rieck7157bb72014-01-14 15:22:47 +0000674
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000675Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000676:ref:`Thread Local Storage Model <tls_model>`.
677
Nico Rieck7157bb72014-01-14 15:22:47 +0000678Syntax::
679
Sean Fertilec70d28b2017-10-26 15:00:26 +0000680 @<GlobalVarName> = [Linkage] [PreemptionSpecifier] [Visibility]
681 [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000682 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
683 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000684 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000685 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000686 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000687
Sean Silvab084af42012-12-07 10:36:55 +0000688For example, the following defines a global in a numbered address space
689with an initializer, section, and alignment:
690
691.. code-block:: llvm
692
693 @G = addrspace(5) constant float 1.0, section "foo", align 4
694
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000695The following example just declares a global variable
696
697.. code-block:: llvm
698
699 @G = external global i32
700
Sean Silvab084af42012-12-07 10:36:55 +0000701The following example defines a thread-local global with the
702``initialexec`` TLS model:
703
704.. code-block:: llvm
705
706 @G = thread_local(initialexec) global i32 0, align 4
707
708.. _functionstructure:
709
710Functions
711---------
712
713LLVM function definitions consist of the "``define``" keyword, an
Sean Fertilec70d28b2017-10-26 15:00:26 +0000714optional :ref:`linkage type <linkage>`, an optional :ref:`runtime preemption
715specifier <runtime_preemption_model>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000716style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
717an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000718an optional ``unnamed_addr`` attribute, a return type, an optional
719:ref:`parameter attribute <paramattrs>` for the return type, a function
720name, a (possibly empty) argument list (each with optional :ref:`parameter
721attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000722an optional section, an optional alignment,
723an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000724an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000725an optional :ref:`prologue <prologuedata>`,
726an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000727an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000728an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000731optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
732<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
733optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
734or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
735attribute <paramattrs>` for the return type, a function name, a possibly
736empty list of arguments, an optional alignment, an optional :ref:`garbage
737collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
738:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000739
Bill Wendling6822ecb2013-10-27 05:09:12 +0000740A function definition contains a list of basic blocks, forming the CFG (Control
741Flow Graph) for the function. Each basic block may optionally start with a label
742(giving the basic block a symbol table entry), contains a list of instructions,
743and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
744function return). If an explicit label is not provided, a block is assigned an
745implicit numbered label, using the next value from the same counter as used for
746unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
747entry block does not have an explicit label, it will be assigned label "%0",
748then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000749
750The first basic block in a function is special in two ways: it is
751immediately executed on entrance to the function, and it is not allowed
752to have predecessor basic blocks (i.e. there can not be any branches to
753the entry block of a function). Because the block can have no
754predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
755
756LLVM allows an explicit section to be specified for functions. If the
757target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000758Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000759
760An explicit alignment may be specified for a function. If not present,
761or if the alignment is set to zero, the alignment of the function is set
762by the target to whatever it feels convenient. If an explicit alignment
763is specified, the function is forced to have at least that much
764alignment. All alignments must be a power of 2.
765
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000766If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000767be significant and two identical functions can be merged.
768
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000769If the ``local_unnamed_addr`` attribute is given, the address is known to
770not be significant within the module.
771
Sean Silvab084af42012-12-07 10:36:55 +0000772Syntax::
773
Sean Fertilec70d28b2017-10-26 15:00:26 +0000774 define [linkage] [PreemptionSpecifier] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000775 [cconv] [ret attrs]
776 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000777 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
778 [comdat [($name)]] [align N] [gc] [prefix Constant]
779 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000780
Sean Silva706fba52015-08-06 22:56:24 +0000781The argument list is a comma separated sequence of arguments where each
782argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000783
784Syntax::
785
786 <type> [parameter Attrs] [name]
787
788
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000789.. _langref_aliases:
790
Sean Silvab084af42012-12-07 10:36:55 +0000791Aliases
792-------
793
Rafael Espindola64c1e182014-06-03 02:41:57 +0000794Aliases, unlike function or variables, don't create any new data. They
795are just a new symbol and metadata for an existing position.
796
797Aliases have a name and an aliasee that is either a global value or a
798constant expression.
799
Nico Rieck7157bb72014-01-14 15:22:47 +0000800Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Sean Fertilec70d28b2017-10-26 15:00:26 +0000801:ref:`runtime preemption specifier <runtime_preemption_model>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000802:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
803<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000804
805Syntax::
806
Sean Fertilec70d28b2017-10-26 15:00:26 +0000807 @<Name> = [Linkage] [PreemptionSpecifier] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000808
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000809The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000810``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000811might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000812
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000813Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000814the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
815to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000816
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000817If the ``local_unnamed_addr`` attribute is given, the address is known to
818not be significant within the module.
819
Rafael Espindola64c1e182014-06-03 02:41:57 +0000820Since aliases are only a second name, some restrictions apply, of which
821some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000822
Rafael Espindola64c1e182014-06-03 02:41:57 +0000823* The expression defining the aliasee must be computable at assembly
824 time. Since it is just a name, no relocations can be used.
825
826* No alias in the expression can be weak as the possibility of the
827 intermediate alias being overridden cannot be represented in an
828 object file.
829
830* No global value in the expression can be a declaration, since that
831 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000832
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000833.. _langref_ifunc:
834
835IFuncs
836-------
837
838IFuncs, like as aliases, don't create any new data or func. They are just a new
839symbol that dynamic linker resolves at runtime by calling a resolver function.
840
841IFuncs have a name and a resolver that is a function called by dynamic linker
842that returns address of another function associated with the name.
843
844IFunc may have an optional :ref:`linkage type <linkage>` and an optional
845:ref:`visibility style <visibility>`.
846
847Syntax::
848
849 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
850
851
David Majnemerdad0a642014-06-27 18:19:56 +0000852.. _langref_comdats:
853
854Comdats
855-------
856
857Comdat IR provides access to COFF and ELF object file COMDAT functionality.
858
Sean Silvaa1190322015-08-06 22:56:48 +0000859Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000860specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000861that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000862aliasee computes to, if any.
863
864Comdats have a selection kind to provide input on how the linker should
865choose between keys in two different object files.
866
867Syntax::
868
869 $<Name> = comdat SelectionKind
870
871The selection kind must be one of the following:
872
873``any``
874 The linker may choose any COMDAT key, the choice is arbitrary.
875``exactmatch``
876 The linker may choose any COMDAT key but the sections must contain the
877 same data.
878``largest``
879 The linker will choose the section containing the largest COMDAT key.
880``noduplicates``
881 The linker requires that only section with this COMDAT key exist.
882``samesize``
883 The linker may choose any COMDAT key but the sections must contain the
884 same amount of data.
885
Sam Cleggea7cace2018-01-09 23:43:14 +0000886Note that the Mach-O platform doesn't support COMDATs, and ELF and WebAssembly
887only support ``any`` as a selection kind.
David Majnemerdad0a642014-06-27 18:19:56 +0000888
889Here is an example of a COMDAT group where a function will only be selected if
890the COMDAT key's section is the largest:
891
Renato Golin124f2592016-07-20 12:16:38 +0000892.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000893
894 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000895 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000896
Rafael Espindola83a362c2015-01-06 22:55:16 +0000897 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000898 ret void
899 }
900
Rafael Espindola83a362c2015-01-06 22:55:16 +0000901As a syntactic sugar the ``$name`` can be omitted if the name is the same as
902the global name:
903
Renato Golin124f2592016-07-20 12:16:38 +0000904.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000905
906 $foo = comdat any
907 @foo = global i32 2, comdat
908
909
David Majnemerdad0a642014-06-27 18:19:56 +0000910In a COFF object file, this will create a COMDAT section with selection kind
911``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
912and another COMDAT section with selection kind
913``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000914section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000915
916There are some restrictions on the properties of the global object.
917It, or an alias to it, must have the same name as the COMDAT group when
918targeting COFF.
919The contents and size of this object may be used during link-time to determine
920which COMDAT groups get selected depending on the selection kind.
921Because the name of the object must match the name of the COMDAT group, the
922linkage of the global object must not be local; local symbols can get renamed
923if a collision occurs in the symbol table.
924
925The combined use of COMDATS and section attributes may yield surprising results.
926For example:
927
Renato Golin124f2592016-07-20 12:16:38 +0000928.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000929
930 $foo = comdat any
931 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000932 @g1 = global i32 42, section "sec", comdat($foo)
933 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000934
935From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000936with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000937COMDAT groups and COMDATs, at the object file level, are represented by
938sections.
939
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000940Note that certain IR constructs like global variables and functions may
941create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000942COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000943in individual sections (e.g. when `-data-sections` or `-function-sections`
944is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000945
Sean Silvab084af42012-12-07 10:36:55 +0000946.. _namedmetadatastructure:
947
948Named Metadata
949--------------
950
951Named metadata is a collection of metadata. :ref:`Metadata
952nodes <metadata>` (but not metadata strings) are the only valid
953operands for a named metadata.
954
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000955#. Named metadata are represented as a string of characters with the
956 metadata prefix. The rules for metadata names are the same as for
957 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
958 are still valid, which allows any character to be part of a name.
959
Sean Silvab084af42012-12-07 10:36:55 +0000960Syntax::
961
962 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000963 !0 = !{!"zero"}
964 !1 = !{!"one"}
965 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000966 ; A named metadata.
967 !name = !{!0, !1, !2}
968
969.. _paramattrs:
970
971Parameter Attributes
972--------------------
973
974The return type and each parameter of a function type may have a set of
975*parameter attributes* associated with them. Parameter attributes are
976used to communicate additional information about the result or
977parameters of a function. Parameter attributes are considered to be part
978of the function, not of the function type, so functions with different
979parameter attributes can have the same function type.
980
981Parameter attributes are simple keywords that follow the type specified.
982If multiple parameter attributes are needed, they are space separated.
983For example:
984
985.. code-block:: llvm
986
987 declare i32 @printf(i8* noalias nocapture, ...)
988 declare i32 @atoi(i8 zeroext)
989 declare signext i8 @returns_signed_char()
990
991Note that any attributes for the function result (``nounwind``,
992``readonly``) come immediately after the argument list.
993
994Currently, only the following parameter attributes are defined:
995
996``zeroext``
997 This indicates to the code generator that the parameter or return
998 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000999 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +00001000``signext``
1001 This indicates to the code generator that the parameter or return
1002 value should be sign-extended to the extent required by the target's
1003 ABI (which is usually 32-bits) by the caller (for a parameter) or
1004 the callee (for a return value).
1005``inreg``
1006 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +00001007 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +00001008 a function call or return (usually, by putting it in a register as
1009 opposed to memory, though some targets use it to distinguish between
1010 two different kinds of registers). Use of this attribute is
1011 target-specific.
1012``byval``
1013 This indicates that the pointer parameter should really be passed by
1014 value to the function. The attribute implies that a hidden copy of
1015 the pointee is made between the caller and the callee, so the callee
1016 is unable to modify the value in the caller. This attribute is only
1017 valid on LLVM pointer arguments. It is generally used to pass
1018 structs and arrays by value, but is also valid on pointers to
1019 scalars. The copy is considered to belong to the caller not the
1020 callee (for example, ``readonly`` functions should not write to
1021 ``byval`` parameters). This is not a valid attribute for return
1022 values.
1023
1024 The byval attribute also supports specifying an alignment with the
1025 align attribute. It indicates the alignment of the stack slot to
1026 form and the known alignment of the pointer specified to the call
1027 site. If the alignment is not specified, then the code generator
1028 makes a target-specific assumption.
1029
Reid Klecknera534a382013-12-19 02:14:12 +00001030.. _attr_inalloca:
1031
1032``inalloca``
1033
Reid Kleckner60d3a832014-01-16 22:59:24 +00001034 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001035 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001036 be a pointer to stack memory produced by an ``alloca`` instruction.
1037 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001038 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001039 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001040
Reid Kleckner436c42e2014-01-17 23:58:17 +00001041 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001042 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001043 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001044 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001045 ``inalloca`` attribute also disables LLVM's implicit lowering of
1046 large aggregate return values, which means that frontend authors
1047 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001048
Reid Kleckner60d3a832014-01-16 22:59:24 +00001049 When the call site is reached, the argument allocation must have
1050 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001051 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001052 space after an argument allocation and before its call site, but it
1053 must be cleared off with :ref:`llvm.stackrestore
1054 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001055
1056 See :doc:`InAlloca` for more information on how to use this
1057 attribute.
1058
Sean Silvab084af42012-12-07 10:36:55 +00001059``sret``
1060 This indicates that the pointer parameter specifies the address of a
1061 structure that is the return value of the function in the source
1062 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001063 loads and stores to the structure may be assumed by the callee not
1064 to trap and to be properly aligned. This is not a valid attribute
1065 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001066
Daniel Neilson1e687242018-01-19 17:13:12 +00001067.. _attr_align:
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001068
Hal Finkelccc70902014-07-22 16:58:55 +00001069``align <n>``
1070 This indicates that the pointer value may be assumed by the optimizer to
1071 have the specified alignment.
1072
1073 Note that this attribute has additional semantics when combined with the
1074 ``byval`` attribute.
1075
Sean Silva1703e702014-04-08 21:06:22 +00001076.. _noalias:
1077
Sean Silvab084af42012-12-07 10:36:55 +00001078``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001079 This indicates that objects accessed via pointer values
1080 :ref:`based <pointeraliasing>` on the argument or return value are not also
1081 accessed, during the execution of the function, via pointer values not
1082 *based* on the argument or return value. The attribute on a return value
1083 also has additional semantics described below. The caller shares the
1084 responsibility with the callee for ensuring that these requirements are met.
1085 For further details, please see the discussion of the NoAlias response in
1086 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001087
1088 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001089 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001090
1091 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001092 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1093 attribute on return values are stronger than the semantics of the attribute
1094 when used on function arguments. On function return values, the ``noalias``
1095 attribute indicates that the function acts like a system memory allocation
1096 function, returning a pointer to allocated storage disjoint from the
1097 storage for any other object accessible to the caller.
1098
Sean Silvab084af42012-12-07 10:36:55 +00001099``nocapture``
1100 This indicates that the callee does not make any copies of the
1101 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001102 attribute for return values. Addresses used in volatile operations
1103 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001104
1105.. _nest:
1106
1107``nest``
1108 This indicates that the pointer parameter can be excised using the
1109 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001110 attribute for return values and can only be applied to one parameter.
1111
1112``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001113 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001114 value. This is a hint to the optimizer and code generator used when
1115 generating the caller, allowing value propagation, tail call optimization,
1116 and omission of register saves and restores in some cases; it is not
1117 checked or enforced when generating the callee. The parameter and the
1118 function return type must be valid operands for the
1119 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1120 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001121
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001122``nonnull``
1123 This indicates that the parameter or return pointer is not null. This
1124 attribute may only be applied to pointer typed parameters. This is not
1125 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001126 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001127 is non-null.
1128
Hal Finkelb0407ba2014-07-18 15:51:28 +00001129``dereferenceable(<n>)``
1130 This indicates that the parameter or return pointer is dereferenceable. This
1131 attribute may only be applied to pointer typed parameters. A pointer that
1132 is dereferenceable can be loaded from speculatively without a risk of
1133 trapping. The number of bytes known to be dereferenceable must be provided
1134 in parentheses. It is legal for the number of bytes to be less than the
1135 size of the pointee type. The ``nonnull`` attribute does not imply
1136 dereferenceability (consider a pointer to one element past the end of an
1137 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1138 ``addrspace(0)`` (which is the default address space).
1139
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001140``dereferenceable_or_null(<n>)``
1141 This indicates that the parameter or return value isn't both
1142 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001143 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001144 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1145 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1146 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1147 and in other address spaces ``dereferenceable_or_null(<n>)``
1148 implies that a pointer is at least one of ``dereferenceable(<n>)``
1149 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001150 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001151 pointer typed parameters.
1152
Manman Renf46262e2016-03-29 17:37:21 +00001153``swiftself``
1154 This indicates that the parameter is the self/context parameter. This is not
1155 a valid attribute for return values and can only be applied to one
1156 parameter.
1157
Manman Ren9bfd0d02016-04-01 21:41:15 +00001158``swifterror``
1159 This attribute is motivated to model and optimize Swift error handling. It
1160 can be applied to a parameter with pointer to pointer type or a
1161 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001162 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1163 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1164 the parameter or the alloca) can only be loaded and stored from, or used as
1165 a ``swifterror`` argument. This is not a valid attribute for return values
1166 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001167
1168 These constraints allow the calling convention to optimize access to
1169 ``swifterror`` variables by associating them with a specific register at
1170 call boundaries rather than placing them in memory. Since this does change
1171 the calling convention, a function which uses the ``swifterror`` attribute
1172 on a parameter is not ABI-compatible with one which does not.
1173
1174 These constraints also allow LLVM to assume that a ``swifterror`` argument
1175 does not alias any other memory visible within a function and that a
1176 ``swifterror`` alloca passed as an argument does not escape.
1177
Sean Silvab084af42012-12-07 10:36:55 +00001178.. _gc:
1179
Philip Reamesf80bbff2015-02-25 23:45:20 +00001180Garbage Collector Strategy Names
1181--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001182
Philip Reamesf80bbff2015-02-25 23:45:20 +00001183Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001184string:
1185
1186.. code-block:: llvm
1187
1188 define void @f() gc "name" { ... }
1189
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001190The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001191<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001192strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001193named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001194garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001195which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001196
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001197.. _prefixdata:
1198
1199Prefix Data
1200-----------
1201
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001202Prefix data is data associated with a function which the code
1203generator will emit immediately before the function's entrypoint.
1204The purpose of this feature is to allow frontends to associate
1205language-specific runtime metadata with specific functions and make it
1206available through the function pointer while still allowing the
1207function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001208
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001209To access the data for a given function, a program may bitcast the
1210function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001211index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001212the prefix data. For instance, take the example of a function annotated
1213with a single ``i32``,
1214
1215.. code-block:: llvm
1216
1217 define void @f() prefix i32 123 { ... }
1218
1219The prefix data can be referenced as,
1220
1221.. code-block:: llvm
1222
David Blaikie16a97eb2015-03-04 22:02:58 +00001223 %0 = bitcast void* () @f to i32*
1224 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001225 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001226
1227Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001228of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001229beginning of the prefix data is aligned. This means that if the size
1230of the prefix data is not a multiple of the alignment size, the
1231function's entrypoint will not be aligned. If alignment of the
1232function's entrypoint is desired, padding must be added to the prefix
1233data.
1234
Sean Silvaa1190322015-08-06 22:56:48 +00001235A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001236to the ``available_externally`` linkage in that the data may be used by the
1237optimizers but will not be emitted in the object file.
1238
1239.. _prologuedata:
1240
1241Prologue Data
1242-------------
1243
1244The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1245be inserted prior to the function body. This can be used for enabling
1246function hot-patching and instrumentation.
1247
1248To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001249have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001250bytes which decode to a sequence of machine instructions, valid for the
1251module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001252the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001253the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001254definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001255makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001256
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001257A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001258which encodes the ``nop`` instruction:
1259
Renato Golin124f2592016-07-20 12:16:38 +00001260.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001261
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001262 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001263
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001264Generally prologue data can be formed by encoding a relative branch instruction
1265which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001266x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1267
Renato Golin124f2592016-07-20 12:16:38 +00001268.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001269
1270 %0 = type <{ i8, i8, i8* }>
1271
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001272 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001273
Sean Silvaa1190322015-08-06 22:56:48 +00001274A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001275to the ``available_externally`` linkage in that the data may be used by the
1276optimizers but will not be emitted in the object file.
1277
David Majnemer7fddecc2015-06-17 20:52:32 +00001278.. _personalityfn:
1279
1280Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001281--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001282
1283The ``personality`` attribute permits functions to specify what function
1284to use for exception handling.
1285
Bill Wendling63b88192013-02-06 06:52:58 +00001286.. _attrgrp:
1287
1288Attribute Groups
1289----------------
1290
1291Attribute groups are groups of attributes that are referenced by objects within
1292the IR. They are important for keeping ``.ll`` files readable, because a lot of
1293functions will use the same set of attributes. In the degenerative case of a
1294``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1295group will capture the important command line flags used to build that file.
1296
1297An attribute group is a module-level object. To use an attribute group, an
1298object references the attribute group's ID (e.g. ``#37``). An object may refer
1299to more than one attribute group. In that situation, the attributes from the
1300different groups are merged.
1301
1302Here is an example of attribute groups for a function that should always be
1303inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1304
1305.. code-block:: llvm
1306
1307 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001308 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001309
1310 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001311 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001312
1313 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1314 define void @f() #0 #1 { ... }
1315
Sean Silvab084af42012-12-07 10:36:55 +00001316.. _fnattrs:
1317
1318Function Attributes
1319-------------------
1320
1321Function attributes are set to communicate additional information about
1322a function. Function attributes are considered to be part of the
1323function, not of the function type, so functions with different function
1324attributes can have the same function type.
1325
1326Function attributes are simple keywords that follow the type specified.
1327If multiple attributes are needed, they are space separated. For
1328example:
1329
1330.. code-block:: llvm
1331
1332 define void @f() noinline { ... }
1333 define void @f() alwaysinline { ... }
1334 define void @f() alwaysinline optsize { ... }
1335 define void @f() optsize { ... }
1336
Sean Silvab084af42012-12-07 10:36:55 +00001337``alignstack(<n>)``
1338 This attribute indicates that, when emitting the prologue and
1339 epilogue, the backend should forcibly align the stack pointer.
1340 Specify the desired alignment, which must be a power of two, in
1341 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001342``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1343 This attribute indicates that the annotated function will always return at
1344 least a given number of bytes (or null). Its arguments are zero-indexed
1345 parameter numbers; if one argument is provided, then it's assumed that at
1346 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1347 returned pointer. If two are provided, then it's assumed that
1348 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1349 available. The referenced parameters must be integer types. No assumptions
1350 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001351``alwaysinline``
1352 This attribute indicates that the inliner should attempt to inline
1353 this function into callers whenever possible, ignoring any active
1354 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001355``builtin``
1356 This indicates that the callee function at a call site should be
1357 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001358 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001359 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001360 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001361``cold``
1362 This attribute indicates that this function is rarely called. When
1363 computing edge weights, basic blocks post-dominated by a cold
1364 function call are also considered to be cold; and, thus, given low
1365 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001366``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001367 In some parallel execution models, there exist operations that cannot be
1368 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001369 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001370
Justin Lebar58535b12016-02-17 17:46:41 +00001371 The ``convergent`` attribute may appear on functions or call/invoke
1372 instructions. When it appears on a function, it indicates that calls to
1373 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001374 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001375 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001376 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001377
Justin Lebar58535b12016-02-17 17:46:41 +00001378 When it appears on a call/invoke, the ``convergent`` attribute indicates
1379 that we should treat the call as though we're calling a convergent
1380 function. This is particularly useful on indirect calls; without this we
1381 may treat such calls as though the target is non-convergent.
1382
1383 The optimizer may remove the ``convergent`` attribute on functions when it
1384 can prove that the function does not execute any convergent operations.
1385 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1386 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001387``inaccessiblememonly``
1388 This attribute indicates that the function may only access memory that
1389 is not accessible by the module being compiled. This is a weaker form
1390 of ``readnone``.
1391``inaccessiblemem_or_argmemonly``
1392 This attribute indicates that the function may only access memory that is
1393 either not accessible by the module being compiled, or is pointed to
1394 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001395``inlinehint``
1396 This attribute indicates that the source code contained a hint that
1397 inlining this function is desirable (such as the "inline" keyword in
1398 C/C++). It is just a hint; it imposes no requirements on the
1399 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001400``jumptable``
1401 This attribute indicates that the function should be added to a
1402 jump-instruction table at code-generation time, and that all address-taken
1403 references to this function should be replaced with a reference to the
1404 appropriate jump-instruction-table function pointer. Note that this creates
1405 a new pointer for the original function, which means that code that depends
1406 on function-pointer identity can break. So, any function annotated with
1407 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001408``minsize``
1409 This attribute suggests that optimization passes and code generator
1410 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001411 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001412 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001413``naked``
1414 This attribute disables prologue / epilogue emission for the
1415 function. This can have very system-specific consequences.
Sumanth Gundapaneni6af104e2017-07-28 22:26:22 +00001416``no-jump-tables``
1417 When this attribute is set to true, the jump tables and lookup tables that
1418 can be generated from a switch case lowering are disabled.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001419``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001420 This indicates that the callee function at a call site is not recognized as
1421 a built-in function. LLVM will retain the original call and not replace it
1422 with equivalent code based on the semantics of the built-in function, unless
1423 the call site uses the ``builtin`` attribute. This is valid at call sites
1424 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001425``noduplicate``
1426 This attribute indicates that calls to the function cannot be
1427 duplicated. A call to a ``noduplicate`` function may be moved
1428 within its parent function, but may not be duplicated within
1429 its parent function.
1430
1431 A function containing a ``noduplicate`` call may still
1432 be an inlining candidate, provided that the call is not
1433 duplicated by inlining. That implies that the function has
1434 internal linkage and only has one call site, so the original
1435 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001436``noimplicitfloat``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001437 This attributes disables implicit floating-point instructions.
Sean Silvab084af42012-12-07 10:36:55 +00001438``noinline``
1439 This attribute indicates that the inliner should never inline this
1440 function in any situation. This attribute may not be used together
1441 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001442``nonlazybind``
1443 This attribute suppresses lazy symbol binding for the function. This
1444 may make calls to the function faster, at the cost of extra program
1445 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001446``noredzone``
1447 This attribute indicates that the code generator should not use a
1448 red zone, even if the target-specific ABI normally permits it.
1449``noreturn``
1450 This function attribute indicates that the function never returns
1451 normally. This produces undefined behavior at runtime if the
1452 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001453``norecurse``
1454 This function attribute indicates that the function does not call itself
1455 either directly or indirectly down any possible call path. This produces
1456 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001457``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001458 This function attribute indicates that the function never raises an
1459 exception. If the function does raise an exception, its runtime
1460 behavior is undefined. However, functions marked nounwind may still
1461 trap or generate asynchronous exceptions. Exception handling schemes
1462 that are recognized by LLVM to handle asynchronous exceptions, such
1463 as SEH, will still provide their implementation defined semantics.
Matt Morehouse31819412018-03-22 19:50:10 +00001464``optforfuzzing``
1465 This attribute indicates that this function should be optimized
1466 for maximum fuzzing signal.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001467``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001468 This function attribute indicates that most optimization passes will skip
1469 this function, with the exception of interprocedural optimization passes.
1470 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001471 This attribute cannot be used together with the ``alwaysinline``
1472 attribute; this attribute is also incompatible
1473 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001474
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001475 This attribute requires the ``noinline`` attribute to be specified on
1476 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001477 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001478 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001479``optsize``
1480 This attribute suggests that optimization passes and code generator
1481 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001482 and otherwise do optimizations specifically to reduce code size as
1483 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001484``"patchable-function"``
1485 This attribute tells the code generator that the code
1486 generated for this function needs to follow certain conventions that
1487 make it possible for a runtime function to patch over it later.
1488 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001489 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001490
1491 * ``"prologue-short-redirect"`` - This style of patchable
1492 function is intended to support patching a function prologue to
1493 redirect control away from the function in a thread safe
1494 manner. It guarantees that the first instruction of the
1495 function will be large enough to accommodate a short jump
1496 instruction, and will be sufficiently aligned to allow being
1497 fully changed via an atomic compare-and-swap instruction.
1498 While the first requirement can be satisfied by inserting large
1499 enough NOP, LLVM can and will try to re-purpose an existing
1500 instruction (i.e. one that would have to be emitted anyway) as
1501 the patchable instruction larger than a short jump.
1502
1503 ``"prologue-short-redirect"`` is currently only supported on
1504 x86-64.
1505
1506 This attribute by itself does not imply restrictions on
1507 inter-procedural optimizations. All of the semantic effects the
1508 patching may have to be separately conveyed via the linkage type.
whitequarked54b4a2017-06-21 18:46:50 +00001509``"probe-stack"``
1510 This attribute indicates that the function will trigger a guard region
1511 in the end of the stack. It ensures that accesses to the stack must be
1512 no further apart than the size of the guard region to a previous
1513 access of the stack. It takes one required string value, the name of
1514 the stack probing function that will be called.
1515
1516 If a function that has a ``"probe-stack"`` attribute is inlined into
1517 a function with another ``"probe-stack"`` attribute, the resulting
1518 function has the ``"probe-stack"`` attribute of the caller. If a
1519 function that has a ``"probe-stack"`` attribute is inlined into a
1520 function that has no ``"probe-stack"`` attribute at all, the resulting
1521 function has the ``"probe-stack"`` attribute of the callee.
Sean Silvab084af42012-12-07 10:36:55 +00001522``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001523 On a function, this attribute indicates that the function computes its
1524 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001525 without dereferencing any pointer arguments or otherwise accessing
1526 any mutable state (e.g. memory, control registers, etc) visible to
1527 caller functions. It does not write through any pointer arguments
1528 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das5be2e842017-02-13 23:19:07 +00001529 to callers. This means while it cannot unwind exceptions by calling
1530 the ``C++`` exception throwing methods (since they write to memory), there may
1531 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1532 visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001533
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001534 On an argument, this attribute indicates that the function does not
1535 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001536 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001537``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001538 On a function, this attribute indicates that the function does not write
1539 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001540 modify any state (e.g. memory, control registers, etc) visible to
1541 caller functions. It may dereference pointer arguments and read
1542 state that may be set in the caller. A readonly function always
1543 returns the same value (or unwinds an exception identically) when
Sanjoy Das5be2e842017-02-13 23:19:07 +00001544 called with the same set of arguments and global state. This means while it
1545 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1546 (since they write to memory), there may be non-``C++`` mechanisms that throw
1547 exceptions without writing to LLVM visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001548
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001549 On an argument, this attribute indicates that the function does not write
1550 through this pointer argument, even though it may write to the memory that
1551 the pointer points to.
whitequark08b20352017-06-22 23:22:36 +00001552``"stack-probe-size"``
1553 This attribute controls the behavior of stack probes: either
1554 the ``"probe-stack"`` attribute, or ABI-required stack probes, if any.
1555 It defines the size of the guard region. It ensures that if the function
1556 may use more stack space than the size of the guard region, stack probing
1557 sequence will be emitted. It takes one required integer value, which
1558 is 4096 by default.
1559
1560 If a function that has a ``"stack-probe-size"`` attribute is inlined into
1561 a function with another ``"stack-probe-size"`` attribute, the resulting
1562 function has the ``"stack-probe-size"`` attribute that has the lower
1563 numeric value. If a function that has a ``"stack-probe-size"`` attribute is
1564 inlined into a function that has no ``"stack-probe-size"`` attribute
1565 at all, the resulting function has the ``"stack-probe-size"`` attribute
1566 of the callee.
Hans Wennborg89c35fc2018-02-23 13:46:25 +00001567``"no-stack-arg-probe"``
1568 This attribute disables ABI-required stack probes, if any.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001569``writeonly``
1570 On a function, this attribute indicates that the function may write to but
1571 does not read from memory.
1572
1573 On an argument, this attribute indicates that the function may write to but
1574 does not read through this pointer argument (even though it may read from
1575 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001576``argmemonly``
1577 This attribute indicates that the only memory accesses inside function are
1578 loads and stores from objects pointed to by its pointer-typed arguments,
1579 with arbitrary offsets. Or in other words, all memory operations in the
1580 function can refer to memory only using pointers based on its function
1581 arguments.
1582 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1583 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001584``returns_twice``
1585 This attribute indicates that this function can return twice. The C
1586 ``setjmp`` is an example of such a function. The compiler disables
1587 some optimizations (like tail calls) in the caller of these
1588 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001589``safestack``
1590 This attribute indicates that
1591 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1592 protection is enabled for this function.
1593
1594 If a function that has a ``safestack`` attribute is inlined into a
1595 function that doesn't have a ``safestack`` attribute or which has an
1596 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1597 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001598``sanitize_address``
1599 This attribute indicates that AddressSanitizer checks
1600 (dynamic address safety analysis) are enabled for this function.
1601``sanitize_memory``
1602 This attribute indicates that MemorySanitizer checks (dynamic detection
1603 of accesses to uninitialized memory) are enabled for this function.
1604``sanitize_thread``
1605 This attribute indicates that ThreadSanitizer checks
1606 (dynamic thread safety analysis) are enabled for this function.
Evgeniy Stepanovc667c1f2017-12-09 00:21:41 +00001607``sanitize_hwaddress``
1608 This attribute indicates that HWAddressSanitizer checks
1609 (dynamic address safety analysis based on tagged pointers) are enabled for
1610 this function.
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001611``speculatable``
1612 This function attribute indicates that the function does not have any
1613 effects besides calculating its result and does not have undefined behavior.
1614 Note that ``speculatable`` is not enough to conclude that along any
Xin Tongc7180202017-05-02 23:24:12 +00001615 particular execution path the number of calls to this function will not be
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001616 externally observable. This attribute is only valid on functions
1617 and declarations, not on individual call sites. If a function is
1618 incorrectly marked as speculatable and really does exhibit
1619 undefined behavior, the undefined behavior may be observed even
1620 if the call site is dead code.
1621
Sean Silvab084af42012-12-07 10:36:55 +00001622``ssp``
1623 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001624 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001625 placed on the stack before the local variables that's checked upon
1626 return from the function to see if it has been overwritten. A
1627 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001628 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001629
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001630 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1631 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1632 - Calls to alloca() with variable sizes or constant sizes greater than
1633 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001634
Josh Magee24c7f062014-02-01 01:36:16 +00001635 Variables that are identified as requiring a protector will be arranged
1636 on the stack such that they are adjacent to the stack protector guard.
1637
Sean Silvab084af42012-12-07 10:36:55 +00001638 If a function that has an ``ssp`` attribute is inlined into a
1639 function that doesn't have an ``ssp`` attribute, then the resulting
1640 function will have an ``ssp`` attribute.
1641``sspreq``
1642 This attribute indicates that the function should *always* emit a
1643 stack smashing protector. This overrides the ``ssp`` function
1644 attribute.
1645
Josh Magee24c7f062014-02-01 01:36:16 +00001646 Variables that are identified as requiring a protector will be arranged
1647 on the stack such that they are adjacent to the stack protector guard.
1648 The specific layout rules are:
1649
1650 #. Large arrays and structures containing large arrays
1651 (``>= ssp-buffer-size``) are closest to the stack protector.
1652 #. Small arrays and structures containing small arrays
1653 (``< ssp-buffer-size``) are 2nd closest to the protector.
1654 #. Variables that have had their address taken are 3rd closest to the
1655 protector.
1656
Sean Silvab084af42012-12-07 10:36:55 +00001657 If a function that has an ``sspreq`` attribute is inlined into a
1658 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001659 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1660 an ``sspreq`` attribute.
1661``sspstrong``
1662 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001663 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001664 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001665 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001666
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001667 - Arrays of any size and type
1668 - Aggregates containing an array of any size and type.
1669 - Calls to alloca().
1670 - Local variables that have had their address taken.
1671
Josh Magee24c7f062014-02-01 01:36:16 +00001672 Variables that are identified as requiring a protector will be arranged
1673 on the stack such that they are adjacent to the stack protector guard.
1674 The specific layout rules are:
1675
1676 #. Large arrays and structures containing large arrays
1677 (``>= ssp-buffer-size``) are closest to the stack protector.
1678 #. Small arrays and structures containing small arrays
1679 (``< ssp-buffer-size``) are 2nd closest to the protector.
1680 #. Variables that have had their address taken are 3rd closest to the
1681 protector.
1682
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001683 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001684
1685 If a function that has an ``sspstrong`` attribute is inlined into a
1686 function that doesn't have an ``sspstrong`` attribute, then the
1687 resulting function will have an ``sspstrong`` attribute.
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001688``strictfp``
1689 This attribute indicates that the function was called from a scope that
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001690 requires strict floating-point semantics. LLVM will not attempt any
1691 optimizations that require assumptions about the floating-point rounding
1692 mode or that might alter the state of floating-point status flags that
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001693 might otherwise be set or cleared by calling this function.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001694``"thunk"``
1695 This attribute indicates that the function will delegate to some other
1696 function with a tail call. The prototype of a thunk should not be used for
1697 optimization purposes. The caller is expected to cast the thunk prototype to
1698 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001699``uwtable``
1700 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001701 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001702 show that no exceptions passes by it. This is normally the case for
1703 the ELF x86-64 abi, but it can be disabled for some compilation
1704 units.
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001705``nocf_check``
Hiroshi Inouec36a1f12018-06-15 05:10:09 +00001706 This attribute indicates that no control-flow check will be performed on
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001707 the attributed entity. It disables -fcf-protection=<> for a specific
1708 entity to fine grain the HW control flow protection mechanism. The flag
Hiroshi Inouec36a1f12018-06-15 05:10:09 +00001709 is target independent and currently appertains to a function or function
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001710 pointer.
Vlad Tsyrklevichd17f61e2018-04-03 20:10:40 +00001711``shadowcallstack``
1712 This attribute indicates that the ShadowCallStack checks are enabled for
1713 the function. The instrumentation checks that the return address for the
1714 function has not changed between the function prolog and eiplog. It is
1715 currently x86_64-specific.
Sean Silvab084af42012-12-07 10:36:55 +00001716
Javed Absarf3d79042017-05-11 12:28:08 +00001717.. _glattrs:
1718
1719Global Attributes
1720-----------------
1721
1722Attributes may be set to communicate additional information about a global variable.
1723Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
1724are grouped into a single :ref:`attribute group <attrgrp>`.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001725
1726.. _opbundles:
1727
1728Operand Bundles
1729---------------
1730
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001731Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001732with certain LLVM instructions (currently only ``call`` s and
1733``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001734incorrect and will change program semantics.
1735
1736Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001737
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001738 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001739 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1740 bundle operand ::= SSA value
1741 tag ::= string constant
1742
1743Operand bundles are **not** part of a function's signature, and a
1744given function may be called from multiple places with different kinds
1745of operand bundles. This reflects the fact that the operand bundles
1746are conceptually a part of the ``call`` (or ``invoke``), not the
1747callee being dispatched to.
1748
1749Operand bundles are a generic mechanism intended to support
1750runtime-introspection-like functionality for managed languages. While
1751the exact semantics of an operand bundle depend on the bundle tag,
1752there are certain limitations to how much the presence of an operand
1753bundle can influence the semantics of a program. These restrictions
1754are described as the semantics of an "unknown" operand bundle. As
1755long as the behavior of an operand bundle is describable within these
1756restrictions, LLVM does not need to have special knowledge of the
1757operand bundle to not miscompile programs containing it.
1758
David Majnemer34cacb42015-10-22 01:46:38 +00001759- The bundle operands for an unknown operand bundle escape in unknown
1760 ways before control is transferred to the callee or invokee.
1761- Calls and invokes with operand bundles have unknown read / write
1762 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001763 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001764 callsite specific attributes.
1765- An operand bundle at a call site cannot change the implementation
1766 of the called function. Inter-procedural optimizations work as
1767 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001768
Sanjoy Dascdafd842015-11-11 21:38:02 +00001769More specific types of operand bundles are described below.
1770
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001771.. _deopt_opbundles:
1772
Sanjoy Dascdafd842015-11-11 21:38:02 +00001773Deoptimization Operand Bundles
1774^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1775
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001776Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001777operand bundle tag. These operand bundles represent an alternate
1778"safe" continuation for the call site they're attached to, and can be
1779used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001780specified call site. There can be at most one ``"deopt"`` operand
1781bundle attached to a call site. Exact details of deoptimization is
1782out of scope for the language reference, but it usually involves
1783rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001784
1785From the compiler's perspective, deoptimization operand bundles make
1786the call sites they're attached to at least ``readonly``. They read
1787through all of their pointer typed operands (even if they're not
1788otherwise escaped) and the entire visible heap. Deoptimization
1789operand bundles do not capture their operands except during
1790deoptimization, in which case control will not be returned to the
1791compiled frame.
1792
Sanjoy Das2d161452015-11-18 06:23:38 +00001793The inliner knows how to inline through calls that have deoptimization
1794operand bundles. Just like inlining through a normal call site
1795involves composing the normal and exceptional continuations, inlining
1796through a call site with a deoptimization operand bundle needs to
1797appropriately compose the "safe" deoptimization continuation. The
1798inliner does this by prepending the parent's deoptimization
1799continuation to every deoptimization continuation in the inlined body.
1800E.g. inlining ``@f`` into ``@g`` in the following example
1801
1802.. code-block:: llvm
1803
1804 define void @f() {
1805 call void @x() ;; no deopt state
1806 call void @y() [ "deopt"(i32 10) ]
1807 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1808 ret void
1809 }
1810
1811 define void @g() {
1812 call void @f() [ "deopt"(i32 20) ]
1813 ret void
1814 }
1815
1816will result in
1817
1818.. code-block:: llvm
1819
1820 define void @g() {
1821 call void @x() ;; still no deopt state
1822 call void @y() [ "deopt"(i32 20, i32 10) ]
1823 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1824 ret void
1825 }
1826
1827It is the frontend's responsibility to structure or encode the
1828deoptimization state in a way that syntactically prepending the
1829caller's deoptimization state to the callee's deoptimization state is
1830semantically equivalent to composing the caller's deoptimization
1831continuation after the callee's deoptimization continuation.
1832
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001833.. _ob_funclet:
1834
David Majnemer3bb88c02015-12-15 21:27:27 +00001835Funclet Operand Bundles
1836^^^^^^^^^^^^^^^^^^^^^^^
1837
1838Funclet operand bundles are characterized by the ``"funclet"``
1839operand bundle tag. These operand bundles indicate that a call site
1840is within a particular funclet. There can be at most one
1841``"funclet"`` operand bundle attached to a call site and it must have
1842exactly one bundle operand.
1843
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001844If any funclet EH pads have been "entered" but not "exited" (per the
1845`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1846it is undefined behavior to execute a ``call`` or ``invoke`` which:
1847
1848* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1849 intrinsic, or
1850* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1851 not-yet-exited funclet EH pad.
1852
1853Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1854executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1855
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001856GC Transition Operand Bundles
1857^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1858
1859GC transition operand bundles are characterized by the
1860``"gc-transition"`` operand bundle tag. These operand bundles mark a
1861call as a transition between a function with one GC strategy to a
1862function with a different GC strategy. If coordinating the transition
1863between GC strategies requires additional code generation at the call
1864site, these bundles may contain any values that are needed by the
1865generated code. For more details, see :ref:`GC Transitions
1866<gc_transition_args>`.
1867
Sean Silvab084af42012-12-07 10:36:55 +00001868.. _moduleasm:
1869
1870Module-Level Inline Assembly
1871----------------------------
1872
1873Modules may contain "module-level inline asm" blocks, which corresponds
1874to the GCC "file scope inline asm" blocks. These blocks are internally
1875concatenated by LLVM and treated as a single unit, but may be separated
1876in the ``.ll`` file if desired. The syntax is very simple:
1877
1878.. code-block:: llvm
1879
1880 module asm "inline asm code goes here"
1881 module asm "more can go here"
1882
1883The strings can contain any character by escaping non-printable
1884characters. The escape sequence used is simply "\\xx" where "xx" is the
1885two digit hex code for the number.
1886
James Y Knightbc832ed2015-07-08 18:08:36 +00001887Note that the assembly string *must* be parseable by LLVM's integrated assembler
1888(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001889
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001890.. _langref_datalayout:
1891
Sean Silvab084af42012-12-07 10:36:55 +00001892Data Layout
1893-----------
1894
1895A module may specify a target specific data layout string that specifies
1896how data is to be laid out in memory. The syntax for the data layout is
1897simply:
1898
1899.. code-block:: llvm
1900
1901 target datalayout = "layout specification"
1902
1903The *layout specification* consists of a list of specifications
1904separated by the minus sign character ('-'). Each specification starts
1905with a letter and may include other information after the letter to
1906define some aspect of the data layout. The specifications accepted are
1907as follows:
1908
1909``E``
1910 Specifies that the target lays out data in big-endian form. That is,
1911 the bits with the most significance have the lowest address
1912 location.
1913``e``
1914 Specifies that the target lays out data in little-endian form. That
1915 is, the bits with the least significance have the lowest address
1916 location.
1917``S<size>``
1918 Specifies the natural alignment of the stack in bits. Alignment
1919 promotion of stack variables is limited to the natural stack
1920 alignment to avoid dynamic stack realignment. The stack alignment
1921 must be a multiple of 8-bits. If omitted, the natural stack
1922 alignment defaults to "unspecified", which does not prevent any
1923 alignment promotions.
Dylan McKayced2fe62018-02-19 09:56:22 +00001924``P<address space>``
1925 Specifies the address space that corresponds to program memory.
1926 Harvard architectures can use this to specify what space LLVM
1927 should place things such as functions into. If omitted, the
1928 program memory space defaults to the default address space of 0,
1929 which corresponds to a Von Neumann architecture that has code
1930 and data in the same space.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001931``A<address space>``
Dylan McKayced2fe62018-02-19 09:56:22 +00001932 Specifies the address space of objects created by '``alloca``'.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001933 Defaults to the default address space of 0.
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001934``p[n]:<size>:<abi>:<pref>:<idx>``
Sean Silvab084af42012-12-07 10:36:55 +00001935 This specifies the *size* of a pointer and its ``<abi>`` and
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001936 ``<pref>``\erred alignments for address space ``n``. The fourth parameter
1937 ``<idx>`` is a size of index that used for address calculation. If not
1938 specified, the default index size is equal to the pointer size. All sizes
1939 are in bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001940 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001941 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001942``i<size>:<abi>:<pref>``
1943 This specifies the alignment for an integer type of a given bit
1944 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1945``v<size>:<abi>:<pref>``
1946 This specifies the alignment for a vector type of a given bit
1947 ``<size>``.
1948``f<size>:<abi>:<pref>``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001949 This specifies the alignment for a floating-point type of a given bit
Sean Silvab084af42012-12-07 10:36:55 +00001950 ``<size>``. Only values of ``<size>`` that are supported by the target
1951 will work. 32 (float) and 64 (double) are supported on all targets; 80
1952 or 128 (different flavors of long double) are also supported on some
1953 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001954``a:<abi>:<pref>``
1955 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001956``m:<mangling>``
Reid Klecknerf8b51c52018-03-16 20:13:32 +00001957 If present, specifies that llvm names are mangled in the output. Symbols
1958 prefixed with the mangling escape character ``\01`` are passed through
1959 directly to the assembler without the escape character. The mangling style
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001960 options are
1961
1962 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1963 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1964 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1965 symbols get a ``_`` prefix.
Reid Klecknerf8b51c52018-03-16 20:13:32 +00001966 * ``x``: Windows x86 COFF mangling: Private symbols get the usual prefix.
1967 Regular C symbols get a ``_`` prefix. Functions with ``__stdcall``,
1968 ``__fastcall``, and ``__vectorcall`` have custom mangling that appends
1969 ``@N`` where N is the number of bytes used to pass parameters. C++ symbols
1970 starting with ``?`` are not mangled in any way.
1971 * ``w``: Windows COFF mangling: Similar to ``x``, except that normal C
1972 symbols do not receive a ``_`` prefix.
Sean Silvab084af42012-12-07 10:36:55 +00001973``n<size1>:<size2>:<size3>...``
1974 This specifies a set of native integer widths for the target CPU in
1975 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1976 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1977 this set are considered to support most general arithmetic operations
1978 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001979``ni:<address space0>:<address space1>:<address space2>...``
1980 This specifies pointer types with the specified address spaces
1981 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1982 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001983
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001984On every specification that takes a ``<abi>:<pref>``, specifying the
1985``<pref>`` alignment is optional. If omitted, the preceding ``:``
1986should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1987
Sean Silvab084af42012-12-07 10:36:55 +00001988When constructing the data layout for a given target, LLVM starts with a
1989default set of specifications which are then (possibly) overridden by
1990the specifications in the ``datalayout`` keyword. The default
1991specifications are given in this list:
1992
1993- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001994- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1995- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1996 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001997- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001998- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1999- ``i8:8:8`` - i8 is 8-bit (byte) aligned
2000- ``i16:16:16`` - i16 is 16-bit aligned
2001- ``i32:32:32`` - i32 is 32-bit aligned
2002- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
2003 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002004- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002005- ``f32:32:32`` - float is 32-bit aligned
2006- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002007- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002008- ``v64:64:64`` - 64-bit vector is 64-bit aligned
2009- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00002010- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002011
2012When LLVM is determining the alignment for a given type, it uses the
2013following rules:
2014
2015#. If the type sought is an exact match for one of the specifications,
2016 that specification is used.
2017#. If no match is found, and the type sought is an integer type, then
2018 the smallest integer type that is larger than the bitwidth of the
2019 sought type is used. If none of the specifications are larger than
2020 the bitwidth then the largest integer type is used. For example,
2021 given the default specifications above, the i7 type will use the
2022 alignment of i8 (next largest) while both i65 and i256 will use the
2023 alignment of i64 (largest specified).
2024#. If no match is found, and the type sought is a vector type, then the
2025 largest vector type that is smaller than the sought vector type will
2026 be used as a fall back. This happens because <128 x double> can be
2027 implemented in terms of 64 <2 x double>, for example.
2028
2029The function of the data layout string may not be what you expect.
2030Notably, this is not a specification from the frontend of what alignment
2031the code generator should use.
2032
2033Instead, if specified, the target data layout is required to match what
2034the ultimate *code generator* expects. This string is used by the
2035mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00002036what the ultimate code generator uses. There is no way to generate IR
2037that does not embed this target-specific detail into the IR. If you
2038don't specify the string, the default specifications will be used to
2039generate a Data Layout and the optimization phases will operate
2040accordingly and introduce target specificity into the IR with respect to
2041these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00002042
Bill Wendling5cc90842013-10-18 23:41:25 +00002043.. _langref_triple:
2044
2045Target Triple
2046-------------
2047
2048A module may specify a target triple string that describes the target
2049host. The syntax for the target triple is simply:
2050
2051.. code-block:: llvm
2052
2053 target triple = "x86_64-apple-macosx10.7.0"
2054
2055The *target triple* string consists of a series of identifiers delimited
2056by the minus sign character ('-'). The canonical forms are:
2057
2058::
2059
2060 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
2061 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
2062
2063This information is passed along to the backend so that it generates
2064code for the proper architecture. It's possible to override this on the
2065command line with the ``-mtriple`` command line option.
2066
Sean Silvab084af42012-12-07 10:36:55 +00002067.. _pointeraliasing:
2068
2069Pointer Aliasing Rules
2070----------------------
2071
2072Any memory access must be done through a pointer value associated with
2073an address range of the memory access, otherwise the behavior is
2074undefined. Pointer values are associated with address ranges according
2075to the following rules:
2076
2077- A pointer value is associated with the addresses associated with any
2078 value it is *based* on.
2079- An address of a global variable is associated with the address range
2080 of the variable's storage.
2081- The result value of an allocation instruction is associated with the
2082 address range of the allocated storage.
2083- A null pointer in the default address-space is associated with no
2084 address.
2085- An integer constant other than zero or a pointer value returned from
2086 a function not defined within LLVM may be associated with address
2087 ranges allocated through mechanisms other than those provided by
2088 LLVM. Such ranges shall not overlap with any ranges of addresses
2089 allocated by mechanisms provided by LLVM.
2090
2091A pointer value is *based* on another pointer value according to the
2092following rules:
2093
Sanjoy Das6d489492017-09-13 18:49:22 +00002094- A pointer value formed from a scalar ``getelementptr`` operation is *based* on
2095 the pointer-typed operand of the ``getelementptr``.
2096- The pointer in lane *l* of the result of a vector ``getelementptr`` operation
2097 is *based* on the pointer in lane *l* of the vector-of-pointers-typed operand
2098 of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00002099- The result value of a ``bitcast`` is *based* on the operand of the
2100 ``bitcast``.
2101- A pointer value formed by an ``inttoptr`` is *based* on all pointer
2102 values that contribute (directly or indirectly) to the computation of
2103 the pointer's value.
2104- The "*based* on" relationship is transitive.
2105
2106Note that this definition of *"based"* is intentionally similar to the
2107definition of *"based"* in C99, though it is slightly weaker.
2108
2109LLVM IR does not associate types with memory. The result type of a
2110``load`` merely indicates the size and alignment of the memory from
2111which to load, as well as the interpretation of the value. The first
2112operand type of a ``store`` similarly only indicates the size and
2113alignment of the store.
2114
2115Consequently, type-based alias analysis, aka TBAA, aka
2116``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2117:ref:`Metadata <metadata>` may be used to encode additional information
2118which specialized optimization passes may use to implement type-based
2119alias analysis.
2120
2121.. _volatile:
2122
2123Volatile Memory Accesses
2124------------------------
2125
2126Certain memory accesses, such as :ref:`load <i_load>`'s,
2127:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2128marked ``volatile``. The optimizers must not change the number of
2129volatile operations or change their order of execution relative to other
2130volatile operations. The optimizers *may* change the order of volatile
2131operations relative to non-volatile operations. This is not Java's
2132"volatile" and has no cross-thread synchronization behavior.
2133
Andrew Trick89fc5a62013-01-30 21:19:35 +00002134IR-level volatile loads and stores cannot safely be optimized into
2135llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2136flagged volatile. Likewise, the backend should never split or merge
2137target-legal volatile load/store instructions.
2138
Andrew Trick7e6f9282013-01-31 00:49:39 +00002139.. admonition:: Rationale
2140
2141 Platforms may rely on volatile loads and stores of natively supported
2142 data width to be executed as single instruction. For example, in C
2143 this holds for an l-value of volatile primitive type with native
2144 hardware support, but not necessarily for aggregate types. The
2145 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002146 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002147 do not violate the frontend's contract with the language.
2148
Sean Silvab084af42012-12-07 10:36:55 +00002149.. _memmodel:
2150
2151Memory Model for Concurrent Operations
2152--------------------------------------
2153
2154The LLVM IR does not define any way to start parallel threads of
2155execution or to register signal handlers. Nonetheless, there are
2156platform-specific ways to create them, and we define LLVM IR's behavior
2157in their presence. This model is inspired by the C++0x memory model.
2158
2159For a more informal introduction to this model, see the :doc:`Atomics`.
2160
2161We define a *happens-before* partial order as the least partial order
2162that
2163
2164- Is a superset of single-thread program order, and
2165- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2166 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2167 techniques, like pthread locks, thread creation, thread joining,
2168 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2169 Constraints <ordering>`).
2170
2171Note that program order does not introduce *happens-before* edges
2172between a thread and signals executing inside that thread.
2173
2174Every (defined) read operation (load instructions, memcpy, atomic
2175loads/read-modify-writes, etc.) R reads a series of bytes written by
2176(defined) write operations (store instructions, atomic
2177stores/read-modify-writes, memcpy, etc.). For the purposes of this
2178section, initialized globals are considered to have a write of the
2179initializer which is atomic and happens before any other read or write
2180of the memory in question. For each byte of a read R, R\ :sub:`byte`
2181may see any write to the same byte, except:
2182
2183- If write\ :sub:`1` happens before write\ :sub:`2`, and
2184 write\ :sub:`2` happens before R\ :sub:`byte`, then
2185 R\ :sub:`byte` does not see write\ :sub:`1`.
2186- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2187 R\ :sub:`byte` does not see write\ :sub:`3`.
2188
2189Given that definition, R\ :sub:`byte` is defined as follows:
2190
2191- If R is volatile, the result is target-dependent. (Volatile is
2192 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002193 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002194 like normal memory. It does not generally provide cross-thread
2195 synchronization.)
2196- Otherwise, if there is no write to the same byte that happens before
2197 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2198- Otherwise, if R\ :sub:`byte` may see exactly one write,
2199 R\ :sub:`byte` returns the value written by that write.
2200- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2201 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2202 Memory Ordering Constraints <ordering>` section for additional
2203 constraints on how the choice is made.
2204- Otherwise R\ :sub:`byte` returns ``undef``.
2205
2206R returns the value composed of the series of bytes it read. This
2207implies that some bytes within the value may be ``undef`` **without**
2208the entire value being ``undef``. Note that this only defines the
2209semantics of the operation; it doesn't mean that targets will emit more
2210than one instruction to read the series of bytes.
2211
2212Note that in cases where none of the atomic intrinsics are used, this
2213model places only one restriction on IR transformations on top of what
2214is required for single-threaded execution: introducing a store to a byte
2215which might not otherwise be stored is not allowed in general.
2216(Specifically, in the case where another thread might write to and read
2217from an address, introducing a store can change a load that may see
2218exactly one write into a load that may see multiple writes.)
2219
2220.. _ordering:
2221
2222Atomic Memory Ordering Constraints
2223----------------------------------
2224
2225Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2226:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2227:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002228ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002229the same address they *synchronize with*. These semantics are borrowed
2230from Java and C++0x, but are somewhat more colloquial. If these
2231descriptions aren't precise enough, check those specs (see spec
2232references in the :doc:`atomics guide <Atomics>`).
2233:ref:`fence <i_fence>` instructions treat these orderings somewhat
2234differently since they don't take an address. See that instruction's
2235documentation for details.
2236
2237For a simpler introduction to the ordering constraints, see the
2238:doc:`Atomics`.
2239
2240``unordered``
2241 The set of values that can be read is governed by the happens-before
2242 partial order. A value cannot be read unless some operation wrote
2243 it. This is intended to provide a guarantee strong enough to model
2244 Java's non-volatile shared variables. This ordering cannot be
2245 specified for read-modify-write operations; it is not strong enough
2246 to make them atomic in any interesting way.
2247``monotonic``
2248 In addition to the guarantees of ``unordered``, there is a single
2249 total order for modifications by ``monotonic`` operations on each
2250 address. All modification orders must be compatible with the
2251 happens-before order. There is no guarantee that the modification
2252 orders can be combined to a global total order for the whole program
2253 (and this often will not be possible). The read in an atomic
2254 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2255 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2256 order immediately before the value it writes. If one atomic read
2257 happens before another atomic read of the same address, the later
2258 read must see the same value or a later value in the address's
2259 modification order. This disallows reordering of ``monotonic`` (or
2260 stronger) operations on the same address. If an address is written
2261 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2262 read that address repeatedly, the other threads must eventually see
2263 the write. This corresponds to the C++0x/C1x
2264 ``memory_order_relaxed``.
2265``acquire``
2266 In addition to the guarantees of ``monotonic``, a
2267 *synchronizes-with* edge may be formed with a ``release`` operation.
2268 This is intended to model C++'s ``memory_order_acquire``.
2269``release``
2270 In addition to the guarantees of ``monotonic``, if this operation
2271 writes a value which is subsequently read by an ``acquire``
2272 operation, it *synchronizes-with* that operation. (This isn't a
2273 complete description; see the C++0x definition of a release
2274 sequence.) This corresponds to the C++0x/C1x
2275 ``memory_order_release``.
2276``acq_rel`` (acquire+release)
2277 Acts as both an ``acquire`` and ``release`` operation on its
2278 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2279``seq_cst`` (sequentially consistent)
2280 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002281 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002282 writes), there is a global total order on all
2283 sequentially-consistent operations on all addresses, which is
2284 consistent with the *happens-before* partial order and with the
2285 modification orders of all the affected addresses. Each
2286 sequentially-consistent read sees the last preceding write to the
2287 same address in this global order. This corresponds to the C++0x/C1x
2288 ``memory_order_seq_cst`` and Java volatile.
2289
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002290.. _syncscope:
Sean Silvab084af42012-12-07 10:36:55 +00002291
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002292If an atomic operation is marked ``syncscope("singlethread")``, it only
2293*synchronizes with* and only participates in the seq\_cst total orderings of
2294other operations running in the same thread (for example, in signal handlers).
2295
2296If an atomic operation is marked ``syncscope("<target-scope>")``, where
2297``<target-scope>`` is a target specific synchronization scope, then it is target
2298dependent if it *synchronizes with* and participates in the seq\_cst total
2299orderings of other operations.
2300
2301Otherwise, an atomic operation that is not marked ``syncscope("singlethread")``
2302or ``syncscope("<target-scope>")`` *synchronizes with* and participates in the
2303seq\_cst total orderings of other operations that are not marked
2304``syncscope("singlethread")`` or ``syncscope("<target-scope>")``.
Sean Silvab084af42012-12-07 10:36:55 +00002305
Sanjay Patel54b161e2018-03-20 16:38:22 +00002306.. _floatenv:
2307
2308Floating-Point Environment
2309--------------------------
2310
2311The default LLVM floating-point environment assumes that floating-point
2312instructions do not have side effects. Results assume the round-to-nearest
2313rounding mode. No floating-point exception state is maintained in this
2314environment. Therefore, there is no attempt to create or preserve invalid
2315operation (SNaN) or division-by-zero exceptions in these examples:
2316
2317.. code-block:: llvm
2318
2319 %A = fdiv 0x7ff0000000000001, %X ; 64-bit SNaN hex value
2320 %B = fdiv %X, 0.0
2321 Safe:
2322 %A = NaN
2323 %B = NaN
2324
2325The benefit of this exception-free assumption is that floating-point
2326operations may be speculated freely without any other fast-math relaxations
2327to the floating-point model.
2328
2329Code that requires different behavior than this should use the
Sanjay Patelec95e0e2018-03-20 17:05:19 +00002330:ref:`Constrained Floating-Point Intrinsics <constrainedfp>`.
Sanjay Patel54b161e2018-03-20 16:38:22 +00002331
Sean Silvab084af42012-12-07 10:36:55 +00002332.. _fastmath:
2333
2334Fast-Math Flags
2335---------------
2336
Sanjay Patel629c4112017-11-06 16:27:15 +00002337LLVM IR floating-point operations (:ref:`fadd <i_fadd>`,
Sean Silvab084af42012-12-07 10:36:55 +00002338:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002339:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002340may use the following flags to enable otherwise unsafe
Sanjay Patel629c4112017-11-06 16:27:15 +00002341floating-point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002342
2343``nnan``
2344 No NaNs - Allow optimizations to assume the arguments and result are not
2345 NaN. Such optimizations are required to retain defined behavior over
2346 NaNs, but the value of the result is undefined.
2347
2348``ninf``
2349 No Infs - Allow optimizations to assume the arguments and result are not
2350 +/-Inf. Such optimizations are required to retain defined behavior over
2351 +/-Inf, but the value of the result is undefined.
2352
2353``nsz``
2354 No Signed Zeros - Allow optimizations to treat the sign of a zero
2355 argument or result as insignificant.
2356
2357``arcp``
2358 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2359 argument rather than perform division.
2360
Adam Nemetcd847a82017-03-28 20:11:52 +00002361``contract``
2362 Allow floating-point contraction (e.g. fusing a multiply followed by an
2363 addition into a fused multiply-and-add).
2364
Sanjay Patel629c4112017-11-06 16:27:15 +00002365``afn``
2366 Approximate functions - Allow substitution of approximate calculations for
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002367 functions (sin, log, sqrt, etc). See floating-point intrinsic definitions
2368 for places where this can apply to LLVM's intrinsic math functions.
Sanjay Patel629c4112017-11-06 16:27:15 +00002369
2370``reassoc``
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002371 Allow reassociation transformations for floating-point instructions.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002372 This may dramatically change results in floating-point.
Sanjay Patel629c4112017-11-06 16:27:15 +00002373
Sean Silvab084af42012-12-07 10:36:55 +00002374``fast``
Sanjay Patel629c4112017-11-06 16:27:15 +00002375 This flag implies all of the others.
Sean Silvab084af42012-12-07 10:36:55 +00002376
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002377.. _uselistorder:
2378
2379Use-list Order Directives
2380-------------------------
2381
2382Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002383order to be recreated. ``<order-indexes>`` is a comma-separated list of
2384indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002385value's use-list is immediately sorted by these indexes.
2386
Sean Silvaa1190322015-08-06 22:56:48 +00002387Use-list directives may appear at function scope or global scope. They are not
2388instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002389function scope, they must appear after the terminator of the final basic block.
2390
2391If basic blocks have their address taken via ``blockaddress()`` expressions,
2392``uselistorder_bb`` can be used to reorder their use-lists from outside their
2393function's scope.
2394
2395:Syntax:
2396
2397::
2398
2399 uselistorder <ty> <value>, { <order-indexes> }
2400 uselistorder_bb @function, %block { <order-indexes> }
2401
2402:Examples:
2403
2404::
2405
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002406 define void @foo(i32 %arg1, i32 %arg2) {
2407 entry:
2408 ; ... instructions ...
2409 bb:
2410 ; ... instructions ...
2411
2412 ; At function scope.
2413 uselistorder i32 %arg1, { 1, 0, 2 }
2414 uselistorder label %bb, { 1, 0 }
2415 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002416
2417 ; At global scope.
2418 uselistorder i32* @global, { 1, 2, 0 }
2419 uselistorder i32 7, { 1, 0 }
2420 uselistorder i32 (i32) @bar, { 1, 0 }
2421 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2422
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002423.. _source_filename:
2424
2425Source Filename
2426---------------
2427
2428The *source filename* string is set to the original module identifier,
2429which will be the name of the compiled source file when compiling from
2430source through the clang front end, for example. It is then preserved through
2431the IR and bitcode.
2432
2433This is currently necessary to generate a consistent unique global
2434identifier for local functions used in profile data, which prepends the
2435source file name to the local function name.
2436
2437The syntax for the source file name is simply:
2438
Renato Golin124f2592016-07-20 12:16:38 +00002439.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002440
2441 source_filename = "/path/to/source.c"
2442
Sean Silvab084af42012-12-07 10:36:55 +00002443.. _typesystem:
2444
2445Type System
2446===========
2447
2448The LLVM type system is one of the most important features of the
2449intermediate representation. Being typed enables a number of
2450optimizations to be performed on the intermediate representation
2451directly, without having to do extra analyses on the side before the
2452transformation. A strong type system makes it easier to read the
2453generated code and enables novel analyses and transformations that are
2454not feasible to perform on normal three address code representations.
2455
Rafael Espindola08013342013-12-07 19:34:20 +00002456.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002457
Rafael Espindola08013342013-12-07 19:34:20 +00002458Void Type
2459---------
Sean Silvab084af42012-12-07 10:36:55 +00002460
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002461:Overview:
2462
Rafael Espindola08013342013-12-07 19:34:20 +00002463
2464The void type does not represent any value and has no size.
2465
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002466:Syntax:
2467
Rafael Espindola08013342013-12-07 19:34:20 +00002468
2469::
2470
2471 void
Sean Silvab084af42012-12-07 10:36:55 +00002472
2473
Rafael Espindola08013342013-12-07 19:34:20 +00002474.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002475
Rafael Espindola08013342013-12-07 19:34:20 +00002476Function Type
2477-------------
Sean Silvab084af42012-12-07 10:36:55 +00002478
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002479:Overview:
2480
Sean Silvab084af42012-12-07 10:36:55 +00002481
Rafael Espindola08013342013-12-07 19:34:20 +00002482The function type can be thought of as a function signature. It consists of a
2483return type and a list of formal parameter types. The return type of a function
2484type is a void type or first class type --- except for :ref:`label <t_label>`
2485and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002486
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002487:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002488
Rafael Espindola08013342013-12-07 19:34:20 +00002489::
Sean Silvab084af42012-12-07 10:36:55 +00002490
Rafael Espindola08013342013-12-07 19:34:20 +00002491 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002492
Rafael Espindola08013342013-12-07 19:34:20 +00002493...where '``<parameter list>``' is a comma-separated list of type
2494specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002495indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002496argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002497handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002498except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002499
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002500:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002501
Rafael Espindola08013342013-12-07 19:34:20 +00002502+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2503| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2504+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2505| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2506+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2507| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2508+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2509| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2510+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2511
2512.. _t_firstclass:
2513
2514First Class Types
2515-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002516
2517The :ref:`first class <t_firstclass>` types are perhaps the most important.
2518Values of these types are the only ones which can be produced by
2519instructions.
2520
Rafael Espindola08013342013-12-07 19:34:20 +00002521.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002522
Rafael Espindola08013342013-12-07 19:34:20 +00002523Single Value Types
2524^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002525
Rafael Espindola08013342013-12-07 19:34:20 +00002526These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002527
2528.. _t_integer:
2529
2530Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002531""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002532
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002533:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002534
2535The integer type is a very simple type that simply specifies an
2536arbitrary bit width for the integer type desired. Any bit width from 1
2537bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2538
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002539:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002540
2541::
2542
2543 iN
2544
2545The number of bits the integer will occupy is specified by the ``N``
2546value.
2547
2548Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002549*********
Sean Silvab084af42012-12-07 10:36:55 +00002550
2551+----------------+------------------------------------------------+
2552| ``i1`` | a single-bit integer. |
2553+----------------+------------------------------------------------+
2554| ``i32`` | a 32-bit integer. |
2555+----------------+------------------------------------------------+
2556| ``i1942652`` | a really big integer of over 1 million bits. |
2557+----------------+------------------------------------------------+
2558
2559.. _t_floating:
2560
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002561Floating-Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002562""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002563
2564.. list-table::
2565 :header-rows: 1
2566
2567 * - Type
2568 - Description
2569
2570 * - ``half``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002571 - 16-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002572
2573 * - ``float``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002574 - 32-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002575
2576 * - ``double``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002577 - 64-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002578
2579 * - ``fp128``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002580 - 128-bit floating-point value (112-bit mantissa)
Sean Silvab084af42012-12-07 10:36:55 +00002581
2582 * - ``x86_fp80``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002583 - 80-bit floating-point value (X87)
Sean Silvab084af42012-12-07 10:36:55 +00002584
2585 * - ``ppc_fp128``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002586 - 128-bit floating-point value (two 64-bits)
Sean Silvab084af42012-12-07 10:36:55 +00002587
Sanjay Patelbab6ce02018-03-21 15:22:09 +00002588The binary format of half, float, double, and fp128 correspond to the
2589IEEE-754-2008 specifications for binary16, binary32, binary64, and binary128
2590respectively.
2591
Reid Kleckner9a16d082014-03-05 02:41:37 +00002592X86_mmx Type
2593""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002594
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002595:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002596
Reid Kleckner9a16d082014-03-05 02:41:37 +00002597The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002598machine. The operations allowed on it are quite limited: parameters and
2599return values, load and store, and bitcast. User-specified MMX
2600instructions are represented as intrinsic or asm calls with arguments
2601and/or results of this type. There are no arrays, vectors or constants
2602of this type.
2603
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002604:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002605
2606::
2607
Reid Kleckner9a16d082014-03-05 02:41:37 +00002608 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002609
Sean Silvab084af42012-12-07 10:36:55 +00002610
Rafael Espindola08013342013-12-07 19:34:20 +00002611.. _t_pointer:
2612
2613Pointer Type
2614""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002615
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002616:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002617
Rafael Espindola08013342013-12-07 19:34:20 +00002618The pointer type is used to specify memory locations. Pointers are
2619commonly used to reference objects in memory.
2620
2621Pointer types may have an optional address space attribute defining the
2622numbered address space where the pointed-to object resides. The default
2623address space is number zero. The semantics of non-zero address spaces
2624are target-specific.
2625
2626Note that LLVM does not permit pointers to void (``void*``) nor does it
2627permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002628
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002629:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002630
2631::
2632
Rafael Espindola08013342013-12-07 19:34:20 +00002633 <type> *
2634
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002635:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002636
2637+-------------------------+--------------------------------------------------------------------------------------------------------------+
2638| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2639+-------------------------+--------------------------------------------------------------------------------------------------------------+
2640| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2641+-------------------------+--------------------------------------------------------------------------------------------------------------+
2642| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2643+-------------------------+--------------------------------------------------------------------------------------------------------------+
2644
2645.. _t_vector:
2646
2647Vector Type
2648"""""""""""
2649
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002650:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002651
2652A vector type is a simple derived type that represents a vector of
2653elements. Vector types are used when multiple primitive data are
2654operated in parallel using a single instruction (SIMD). A vector type
2655requires a size (number of elements) and an underlying primitive data
2656type. Vector types are considered :ref:`first class <t_firstclass>`.
2657
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002658:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002659
2660::
2661
2662 < <# elements> x <elementtype> >
2663
2664The number of elements is a constant integer value larger than 0;
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002665elementtype may be any integer, floating-point or pointer type. Vectors
Manuel Jacob961f7872014-07-30 12:30:06 +00002666of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002667
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002668:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002669
2670+-------------------+--------------------------------------------------+
2671| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2672+-------------------+--------------------------------------------------+
2673| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2674+-------------------+--------------------------------------------------+
2675| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2676+-------------------+--------------------------------------------------+
2677| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2678+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002679
2680.. _t_label:
2681
2682Label Type
2683^^^^^^^^^^
2684
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002685:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002686
2687The label type represents code labels.
2688
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002689:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002690
2691::
2692
2693 label
2694
David Majnemerb611e3f2015-08-14 05:09:07 +00002695.. _t_token:
2696
2697Token Type
2698^^^^^^^^^^
2699
2700:Overview:
2701
2702The token type is used when a value is associated with an instruction
2703but all uses of the value must not attempt to introspect or obscure it.
2704As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2705:ref:`select <i_select>` of type token.
2706
2707:Syntax:
2708
2709::
2710
2711 token
2712
2713
2714
Sean Silvab084af42012-12-07 10:36:55 +00002715.. _t_metadata:
2716
2717Metadata Type
2718^^^^^^^^^^^^^
2719
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002720:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002721
2722The metadata type represents embedded metadata. No derived types may be
2723created from metadata except for :ref:`function <t_function>` arguments.
2724
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002725:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002726
2727::
2728
2729 metadata
2730
Sean Silvab084af42012-12-07 10:36:55 +00002731.. _t_aggregate:
2732
2733Aggregate Types
2734^^^^^^^^^^^^^^^
2735
2736Aggregate Types are a subset of derived types that can contain multiple
2737member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2738aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2739aggregate types.
2740
2741.. _t_array:
2742
2743Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002744""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002745
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002746:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002747
2748The array type is a very simple derived type that arranges elements
2749sequentially in memory. The array type requires a size (number of
2750elements) and an underlying data type.
2751
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002752:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002753
2754::
2755
2756 [<# elements> x <elementtype>]
2757
2758The number of elements is a constant integer value; ``elementtype`` may
2759be any type with a size.
2760
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002761:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002762
2763+------------------+--------------------------------------+
2764| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2765+------------------+--------------------------------------+
2766| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2767+------------------+--------------------------------------+
2768| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2769+------------------+--------------------------------------+
2770
2771Here are some examples of multidimensional arrays:
2772
2773+-----------------------------+----------------------------------------------------------+
2774| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2775+-----------------------------+----------------------------------------------------------+
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002776| ``[12 x [10 x float]]`` | 12x10 array of single precision floating-point values. |
Sean Silvab084af42012-12-07 10:36:55 +00002777+-----------------------------+----------------------------------------------------------+
2778| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2779+-----------------------------+----------------------------------------------------------+
2780
2781There is no restriction on indexing beyond the end of the array implied
2782by a static type (though there are restrictions on indexing beyond the
2783bounds of an allocated object in some cases). This means that
2784single-dimension 'variable sized array' addressing can be implemented in
2785LLVM with a zero length array type. An implementation of 'pascal style
2786arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2787example.
2788
Sean Silvab084af42012-12-07 10:36:55 +00002789.. _t_struct:
2790
2791Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002792""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002793
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002794:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002795
2796The structure type is used to represent a collection of data members
2797together in memory. The elements of a structure may be any type that has
2798a size.
2799
2800Structures in memory are accessed using '``load``' and '``store``' by
2801getting a pointer to a field with the '``getelementptr``' instruction.
2802Structures in registers are accessed using the '``extractvalue``' and
2803'``insertvalue``' instructions.
2804
2805Structures may optionally be "packed" structures, which indicate that
2806the alignment of the struct is one byte, and that there is no padding
2807between the elements. In non-packed structs, padding between field types
2808is inserted as defined by the DataLayout string in the module, which is
2809required to match what the underlying code generator expects.
2810
2811Structures can either be "literal" or "identified". A literal structure
2812is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2813identified types are always defined at the top level with a name.
2814Literal types are uniqued by their contents and can never be recursive
2815or opaque since there is no way to write one. Identified types can be
2816recursive, can be opaqued, and are never uniqued.
2817
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002818:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002819
2820::
2821
2822 %T1 = type { <type list> } ; Identified normal struct type
2823 %T2 = type <{ <type list> }> ; Identified packed struct type
2824
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002825:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002826
2827+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2828| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2829+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002830| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002831+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2832| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2833+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2834
2835.. _t_opaque:
2836
2837Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002838""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002839
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002840:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002841
2842Opaque structure types are used to represent named structure types that
2843do not have a body specified. This corresponds (for example) to the C
2844notion of a forward declared structure.
2845
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002846:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002847
2848::
2849
2850 %X = type opaque
2851 %52 = type opaque
2852
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002853:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002854
2855+--------------+-------------------+
2856| ``opaque`` | An opaque type. |
2857+--------------+-------------------+
2858
Sean Silva1703e702014-04-08 21:06:22 +00002859.. _constants:
2860
Sean Silvab084af42012-12-07 10:36:55 +00002861Constants
2862=========
2863
2864LLVM has several different basic types of constants. This section
2865describes them all and their syntax.
2866
2867Simple Constants
2868----------------
2869
2870**Boolean constants**
2871 The two strings '``true``' and '``false``' are both valid constants
2872 of the ``i1`` type.
2873**Integer constants**
2874 Standard integers (such as '4') are constants of the
2875 :ref:`integer <t_integer>` type. Negative numbers may be used with
2876 integer types.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002877**Floating-point constants**
2878 Floating-point constants use standard decimal notation (e.g.
Sean Silvab084af42012-12-07 10:36:55 +00002879 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2880 hexadecimal notation (see below). The assembler requires the exact
2881 decimal value of a floating-point constant. For example, the
2882 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002883 decimal in binary. Floating-point constants must have a
2884 :ref:`floating-point <t_floating>` type.
Sean Silvab084af42012-12-07 10:36:55 +00002885**Null pointer constants**
2886 The identifier '``null``' is recognized as a null pointer constant
2887 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002888**Token constants**
2889 The identifier '``none``' is recognized as an empty token constant
2890 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002891
2892The one non-intuitive notation for constants is the hexadecimal form of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002893floating-point constants. For example, the form
Sean Silvab084af42012-12-07 10:36:55 +00002894'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002895than) '``double 4.5e+15``'. The only time hexadecimal floating-point
Sean Silvab084af42012-12-07 10:36:55 +00002896constants are required (and the only time that they are generated by the
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002897disassembler) is when a floating-point constant must be emitted but it
2898cannot be represented as a decimal floating-point number in a reasonable
Sean Silvab084af42012-12-07 10:36:55 +00002899number of digits. For example, NaN's, infinities, and other special
2900values are represented in their IEEE hexadecimal format so that assembly
2901and disassembly do not cause any bits to change in the constants.
2902
2903When using the hexadecimal form, constants of types half, float, and
2904double are represented using the 16-digit form shown above (which
2905matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002906must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002907precision, respectively. Hexadecimal format is always used for long
2908double, and there are three forms of long double. The 80-bit format used
2909by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2910128-bit format used by PowerPC (two adjacent doubles) is represented by
2911``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002912represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2913will only work if they match the long double format on your target.
2914The IEEE 16-bit format (half precision) is represented by ``0xH``
2915followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2916(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002917
Reid Kleckner9a16d082014-03-05 02:41:37 +00002918There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002919
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002920.. _complexconstants:
2921
Sean Silvab084af42012-12-07 10:36:55 +00002922Complex Constants
2923-----------------
2924
2925Complex constants are a (potentially recursive) combination of simple
2926constants and smaller complex constants.
2927
2928**Structure constants**
2929 Structure constants are represented with notation similar to
2930 structure type definitions (a comma separated list of elements,
2931 surrounded by braces (``{}``)). For example:
2932 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2933 "``@G = external global i32``". Structure constants must have
2934 :ref:`structure type <t_struct>`, and the number and types of elements
2935 must match those specified by the type.
2936**Array constants**
2937 Array constants are represented with notation similar to array type
2938 definitions (a comma separated list of elements, surrounded by
2939 square brackets (``[]``)). For example:
2940 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2941 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002942 match those specified by the type. As a special case, character array
2943 constants may also be represented as a double-quoted string using the ``c``
2944 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002945**Vector constants**
2946 Vector constants are represented with notation similar to vector
2947 type definitions (a comma separated list of elements, surrounded by
2948 less-than/greater-than's (``<>``)). For example:
2949 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2950 must have :ref:`vector type <t_vector>`, and the number and types of
2951 elements must match those specified by the type.
2952**Zero initialization**
2953 The string '``zeroinitializer``' can be used to zero initialize a
2954 value to zero of *any* type, including scalar and
2955 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2956 having to print large zero initializers (e.g. for large arrays) and
2957 is always exactly equivalent to using explicit zero initializers.
2958**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002959 A metadata node is a constant tuple without types. For example:
2960 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002961 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2962 Unlike other typed constants that are meant to be interpreted as part of
2963 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002964 information such as debug info.
2965
2966Global Variable and Function Addresses
2967--------------------------------------
2968
2969The addresses of :ref:`global variables <globalvars>` and
2970:ref:`functions <functionstructure>` are always implicitly valid
2971(link-time) constants. These constants are explicitly referenced when
2972the :ref:`identifier for the global <identifiers>` is used and always have
2973:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2974file:
2975
2976.. code-block:: llvm
2977
2978 @X = global i32 17
2979 @Y = global i32 42
2980 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2981
2982.. _undefvalues:
2983
2984Undefined Values
2985----------------
2986
2987The string '``undef``' can be used anywhere a constant is expected, and
2988indicates that the user of the value may receive an unspecified
2989bit-pattern. Undefined values may be of any type (other than '``label``'
2990or '``void``') and be used anywhere a constant is permitted.
2991
2992Undefined values are useful because they indicate to the compiler that
2993the program is well defined no matter what value is used. This gives the
2994compiler more freedom to optimize. Here are some examples of
2995(potentially surprising) transformations that are valid (in pseudo IR):
2996
2997.. code-block:: llvm
2998
2999 %A = add %X, undef
3000 %B = sub %X, undef
3001 %C = xor %X, undef
3002 Safe:
3003 %A = undef
3004 %B = undef
3005 %C = undef
3006
3007This is safe because all of the output bits are affected by the undef
3008bits. Any output bit can have a zero or one depending on the input bits.
3009
3010.. code-block:: llvm
3011
3012 %A = or %X, undef
3013 %B = and %X, undef
3014 Safe:
3015 %A = -1
3016 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00003017 Safe:
3018 %A = %X ;; By choosing undef as 0
3019 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00003020 Unsafe:
3021 %A = undef
3022 %B = undef
3023
3024These logical operations have bits that are not always affected by the
3025input. For example, if ``%X`` has a zero bit, then the output of the
3026'``and``' operation will always be a zero for that bit, no matter what
3027the corresponding bit from the '``undef``' is. As such, it is unsafe to
3028optimize or assume that the result of the '``and``' is '``undef``'.
3029However, it is safe to assume that all bits of the '``undef``' could be
30300, and optimize the '``and``' to 0. Likewise, it is safe to assume that
3031all the bits of the '``undef``' operand to the '``or``' could be set,
3032allowing the '``or``' to be folded to -1.
3033
3034.. code-block:: llvm
3035
3036 %A = select undef, %X, %Y
3037 %B = select undef, 42, %Y
3038 %C = select %X, %Y, undef
3039 Safe:
3040 %A = %X (or %Y)
3041 %B = 42 (or %Y)
3042 %C = %Y
3043 Unsafe:
3044 %A = undef
3045 %B = undef
3046 %C = undef
3047
3048This set of examples shows that undefined '``select``' (and conditional
3049branch) conditions can go *either way*, but they have to come from one
3050of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
3051both known to have a clear low bit, then ``%A`` would have to have a
3052cleared low bit. However, in the ``%C`` example, the optimizer is
3053allowed to assume that the '``undef``' operand could be the same as
3054``%Y``, allowing the whole '``select``' to be eliminated.
3055
Renato Golin124f2592016-07-20 12:16:38 +00003056.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003057
3058 %A = xor undef, undef
3059
3060 %B = undef
3061 %C = xor %B, %B
3062
3063 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00003064 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00003065 %F = icmp gte %D, 4
3066
3067 Safe:
3068 %A = undef
3069 %B = undef
3070 %C = undef
3071 %D = undef
3072 %E = undef
3073 %F = undef
3074
3075This example points out that two '``undef``' operands are not
3076necessarily the same. This can be surprising to people (and also matches
3077C semantics) where they assume that "``X^X``" is always zero, even if
3078``X`` is undefined. This isn't true for a number of reasons, but the
3079short answer is that an '``undef``' "variable" can arbitrarily change
3080its value over its "live range". This is true because the variable
3081doesn't actually *have a live range*. Instead, the value is logically
3082read from arbitrary registers that happen to be around when needed, so
3083the value is not necessarily consistent over time. In fact, ``%A`` and
3084``%C`` need to have the same semantics or the core LLVM "replace all
3085uses with" concept would not hold.
3086
3087.. code-block:: llvm
3088
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003089 %A = sdiv undef, %X
3090 %B = sdiv %X, undef
Sean Silvab084af42012-12-07 10:36:55 +00003091 Safe:
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003092 %A = 0
Sean Silvab084af42012-12-07 10:36:55 +00003093 b: unreachable
3094
3095These examples show the crucial difference between an *undefined value*
3096and *undefined behavior*. An undefined value (like '``undef``') is
3097allowed to have an arbitrary bit-pattern. This means that the ``%A``
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003098operation can be constant folded to '``0``', because the '``undef``'
3099could be zero, and zero divided by any value is zero.
Sean Silvab084af42012-12-07 10:36:55 +00003100However, in the second example, we can make a more aggressive
3101assumption: because the ``undef`` is allowed to be an arbitrary value,
3102we are allowed to assume that it could be zero. Since a divide by zero
3103has *undefined behavior*, we are allowed to assume that the operation
3104does not execute at all. This allows us to delete the divide and all
3105code after it. Because the undefined operation "can't happen", the
3106optimizer can assume that it occurs in dead code.
3107
Renato Golin124f2592016-07-20 12:16:38 +00003108.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003109
3110 a: store undef -> %X
3111 b: store %X -> undef
3112 Safe:
3113 a: <deleted>
3114 b: unreachable
3115
Sanjay Patel7b722402018-03-07 17:18:22 +00003116A store *of* an undefined value can be assumed to not have any effect;
3117we can assume that the value is overwritten with bits that happen to
3118match what was already there. However, a store *to* an undefined
3119location could clobber arbitrary memory, therefore, it has undefined
3120behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003121
3122.. _poisonvalues:
3123
3124Poison Values
3125-------------
3126
3127Poison values are similar to :ref:`undef values <undefvalues>`, however
3128they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00003129that cannot evoke side effects has nevertheless detected a condition
3130that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003131
3132There is currently no way of representing a poison value in the IR; they
3133only exist when produced by operations such as :ref:`add <i_add>` with
3134the ``nsw`` flag.
3135
3136Poison value behavior is defined in terms of value *dependence*:
3137
3138- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
3139- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
3140 their dynamic predecessor basic block.
3141- Function arguments depend on the corresponding actual argument values
3142 in the dynamic callers of their functions.
3143- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
3144 instructions that dynamically transfer control back to them.
3145- :ref:`Invoke <i_invoke>` instructions depend on the
3146 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
3147 call instructions that dynamically transfer control back to them.
3148- Non-volatile loads and stores depend on the most recent stores to all
3149 of the referenced memory addresses, following the order in the IR
3150 (including loads and stores implied by intrinsics such as
3151 :ref:`@llvm.memcpy <int_memcpy>`.)
3152- An instruction with externally visible side effects depends on the
3153 most recent preceding instruction with externally visible side
3154 effects, following the order in the IR. (This includes :ref:`volatile
3155 operations <volatile>`.)
3156- An instruction *control-depends* on a :ref:`terminator
3157 instruction <terminators>` if the terminator instruction has
3158 multiple successors and the instruction is always executed when
3159 control transfers to one of the successors, and may not be executed
3160 when control is transferred to another.
3161- Additionally, an instruction also *control-depends* on a terminator
3162 instruction if the set of instructions it otherwise depends on would
3163 be different if the terminator had transferred control to a different
3164 successor.
3165- Dependence is transitive.
3166
Richard Smith32dbdf62014-07-31 04:25:36 +00003167Poison values have the same behavior as :ref:`undef values <undefvalues>`,
3168with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00003169on a poison value has undefined behavior.
3170
3171Here are some examples:
3172
3173.. code-block:: llvm
3174
3175 entry:
3176 %poison = sub nuw i32 0, 1 ; Results in a poison value.
3177 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00003178 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00003179 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3180
3181 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003182 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003183
3184 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3185
3186 %narrowaddr = bitcast i32* @g to i16*
3187 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003188 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3189 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003190
3191 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3192 br i1 %cmp, label %true, label %end ; Branch to either destination.
3193
3194 true:
3195 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3196 ; it has undefined behavior.
3197 br label %end
3198
3199 end:
3200 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3201 ; Both edges into this PHI are
3202 ; control-dependent on %cmp, so this
3203 ; always results in a poison value.
3204
3205 store volatile i32 0, i32* @g ; This would depend on the store in %true
3206 ; if %cmp is true, or the store in %entry
3207 ; otherwise, so this is undefined behavior.
3208
3209 br i1 %cmp, label %second_true, label %second_end
3210 ; The same branch again, but this time the
3211 ; true block doesn't have side effects.
3212
3213 second_true:
3214 ; No side effects!
3215 ret void
3216
3217 second_end:
3218 store volatile i32 0, i32* @g ; This time, the instruction always depends
3219 ; on the store in %end. Also, it is
3220 ; control-equivalent to %end, so this is
3221 ; well-defined (ignoring earlier undefined
3222 ; behavior in this example).
3223
3224.. _blockaddress:
3225
3226Addresses of Basic Blocks
3227-------------------------
3228
3229``blockaddress(@function, %block)``
3230
3231The '``blockaddress``' constant computes the address of the specified
3232basic block in the specified function, and always has an ``i8*`` type.
3233Taking the address of the entry block is illegal.
3234
3235This value only has defined behavior when used as an operand to the
3236':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3237against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003238undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003239no label is equal to the null pointer. This may be passed around as an
3240opaque pointer sized value as long as the bits are not inspected. This
3241allows ``ptrtoint`` and arithmetic to be performed on these values so
3242long as the original value is reconstituted before the ``indirectbr``
3243instruction.
3244
3245Finally, some targets may provide defined semantics when using the value
3246as the operand to an inline assembly, but that is target specific.
3247
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003248.. _constantexprs:
3249
Sean Silvab084af42012-12-07 10:36:55 +00003250Constant Expressions
3251--------------------
3252
3253Constant expressions are used to allow expressions involving other
3254constants to be used as constants. Constant expressions may be of any
3255:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3256that does not have side effects (e.g. load and call are not supported).
3257The following is the syntax for constant expressions:
3258
3259``trunc (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003260 Perform the :ref:`trunc operation <i_trunc>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003261``zext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003262 Perform the :ref:`zext operation <i_zext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003263``sext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003264 Perform the :ref:`sext operation <i_sext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003265``fptrunc (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003266 Truncate a floating-point constant to another floating-point type.
Sean Silvab084af42012-12-07 10:36:55 +00003267 The size of CST must be larger than the size of TYPE. Both types
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003268 must be floating-point.
Sean Silvab084af42012-12-07 10:36:55 +00003269``fpext (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003270 Floating-point extend a constant to another type. The size of CST
Sean Silvab084af42012-12-07 10:36:55 +00003271 must be smaller or equal to the size of TYPE. Both types must be
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003272 floating-point.
Sean Silvab084af42012-12-07 10:36:55 +00003273``fptoui (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003274 Convert a floating-point constant to the corresponding unsigned
Sean Silvab084af42012-12-07 10:36:55 +00003275 integer constant. TYPE must be a scalar or vector integer type. CST
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003276 must be of scalar or vector floating-point type. Both CST and TYPE
Sean Silvab084af42012-12-07 10:36:55 +00003277 must be scalars, or vectors of the same number of elements. If the
Eli Friedmanc065bb22018-06-08 21:33:33 +00003278 value won't fit in the integer type, the result is a
3279 :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00003280``fptosi (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003281 Convert a floating-point constant to the corresponding signed
Sean Silvab084af42012-12-07 10:36:55 +00003282 integer constant. TYPE must be a scalar or vector integer type. CST
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003283 must be of scalar or vector floating-point type. Both CST and TYPE
Sean Silvab084af42012-12-07 10:36:55 +00003284 must be scalars, or vectors of the same number of elements. If the
Eli Friedmanc065bb22018-06-08 21:33:33 +00003285 value won't fit in the integer type, the result is a
3286 :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00003287``uitofp (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003288 Convert an unsigned integer constant to the corresponding
3289 floating-point constant. TYPE must be a scalar or vector floating-point
3290 type. CST must be of scalar or vector integer type. Both CST and TYPE must
Eli Friedman3f1ce092018-06-14 22:58:48 +00003291 be scalars, or vectors of the same number of elements.
Sean Silvab084af42012-12-07 10:36:55 +00003292``sitofp (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003293 Convert a signed integer constant to the corresponding floating-point
3294 constant. TYPE must be a scalar or vector floating-point type.
Sean Silvab084af42012-12-07 10:36:55 +00003295 CST must be of scalar or vector integer type. Both CST and TYPE must
Eli Friedman3f1ce092018-06-14 22:58:48 +00003296 be scalars, or vectors of the same number of elements.
Sean Silvab084af42012-12-07 10:36:55 +00003297``ptrtoint (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003298 Perform the :ref:`ptrtoint operation <i_ptrtoint>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003299``inttoptr (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003300 Perform the :ref:`inttoptr operation <i_inttoptr>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003301 This one is *really* dangerous!
3302``bitcast (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003303 Convert a constant, CST, to another TYPE.
3304 The constraints of the operands are the same as those for the
3305 :ref:`bitcast instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003306``addrspacecast (CST to TYPE)``
3307 Convert a constant pointer or constant vector of pointer, CST, to another
3308 TYPE in a different address space. The constraints of the operands are the
3309 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003310``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003311 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3312 constants. As with the :ref:`getelementptr <i_getelementptr>`
David Blaikief91b0302017-06-19 05:34:21 +00003313 instruction, the index list may have one or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003314 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003315``select (COND, VAL1, VAL2)``
3316 Perform the :ref:`select operation <i_select>` on constants.
3317``icmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003318 Perform the :ref:`icmp operation <i_icmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003319``fcmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003320 Perform the :ref:`fcmp operation <i_fcmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003321``extractelement (VAL, IDX)``
3322 Perform the :ref:`extractelement operation <i_extractelement>` on
3323 constants.
3324``insertelement (VAL, ELT, IDX)``
3325 Perform the :ref:`insertelement operation <i_insertelement>` on
3326 constants.
3327``shufflevector (VEC1, VEC2, IDXMASK)``
3328 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3329 constants.
3330``extractvalue (VAL, IDX0, IDX1, ...)``
3331 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3332 constants. The index list is interpreted in a similar manner as
3333 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3334 least one index value must be specified.
3335``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3336 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3337 The index list is interpreted in a similar manner as indices in a
3338 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3339 value must be specified.
3340``OPCODE (LHS, RHS)``
3341 Perform the specified operation of the LHS and RHS constants. OPCODE
3342 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3343 binary <bitwiseops>` operations. The constraints on operands are
3344 the same as those for the corresponding instruction (e.g. no bitwise
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003345 operations on floating-point values are allowed).
Sean Silvab084af42012-12-07 10:36:55 +00003346
3347Other Values
3348============
3349
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003350.. _inlineasmexprs:
3351
Sean Silvab084af42012-12-07 10:36:55 +00003352Inline Assembler Expressions
3353----------------------------
3354
3355LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003356Inline Assembly <moduleasm>`) through the use of a special value. This value
3357represents the inline assembler as a template string (containing the
3358instructions to emit), a list of operand constraints (stored as a string), a
3359flag that indicates whether or not the inline asm expression has side effects,
3360and a flag indicating whether the function containing the asm needs to align its
3361stack conservatively.
3362
3363The template string supports argument substitution of the operands using "``$``"
3364followed by a number, to indicate substitution of the given register/memory
3365location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3366be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3367operand (See :ref:`inline-asm-modifiers`).
3368
3369A literal "``$``" may be included by using "``$$``" in the template. To include
3370other special characters into the output, the usual "``\XX``" escapes may be
3371used, just as in other strings. Note that after template substitution, the
3372resulting assembly string is parsed by LLVM's integrated assembler unless it is
3373disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3374syntax known to LLVM.
3375
Reid Kleckner71cb1642017-02-06 18:08:45 +00003376LLVM also supports a few more substitions useful for writing inline assembly:
3377
3378- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3379 This substitution is useful when declaring a local label. Many standard
3380 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3381 Adding a blob-unique identifier ensures that the two labels will not conflict
3382 during assembly. This is used to implement `GCC's %= special format
3383 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3384- ``${:comment}``: Expands to the comment character of the current target's
3385 assembly dialect. This is usually ``#``, but many targets use other strings,
3386 such as ``;``, ``//``, or ``!``.
3387- ``${:private}``: Expands to the assembler private label prefix. Labels with
3388 this prefix will not appear in the symbol table of the assembled object.
3389 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3390 relatively popular.
3391
James Y Knightbc832ed2015-07-08 18:08:36 +00003392LLVM's support for inline asm is modeled closely on the requirements of Clang's
3393GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3394modifier codes listed here are similar or identical to those in GCC's inline asm
3395support. However, to be clear, the syntax of the template and constraint strings
3396described here is *not* the same as the syntax accepted by GCC and Clang, and,
3397while most constraint letters are passed through as-is by Clang, some get
3398translated to other codes when converting from the C source to the LLVM
3399assembly.
3400
3401An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003402
3403.. code-block:: llvm
3404
3405 i32 (i32) asm "bswap $0", "=r,r"
3406
3407Inline assembler expressions may **only** be used as the callee operand
3408of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3409Thus, typically we have:
3410
3411.. code-block:: llvm
3412
3413 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3414
3415Inline asms with side effects not visible in the constraint list must be
3416marked as having side effects. This is done through the use of the
3417'``sideeffect``' keyword, like so:
3418
3419.. code-block:: llvm
3420
3421 call void asm sideeffect "eieio", ""()
3422
3423In some cases inline asms will contain code that will not work unless
3424the stack is aligned in some way, such as calls or SSE instructions on
3425x86, yet will not contain code that does that alignment within the asm.
3426The compiler should make conservative assumptions about what the asm
3427might contain and should generate its usual stack alignment code in the
3428prologue if the '``alignstack``' keyword is present:
3429
3430.. code-block:: llvm
3431
3432 call void asm alignstack "eieio", ""()
3433
3434Inline asms also support using non-standard assembly dialects. The
3435assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3436the inline asm is using the Intel dialect. Currently, ATT and Intel are
3437the only supported dialects. An example is:
3438
3439.. code-block:: llvm
3440
3441 call void asm inteldialect "eieio", ""()
3442
3443If multiple keywords appear the '``sideeffect``' keyword must come
3444first, the '``alignstack``' keyword second and the '``inteldialect``'
3445keyword last.
3446
James Y Knightbc832ed2015-07-08 18:08:36 +00003447Inline Asm Constraint String
3448^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3449
3450The constraint list is a comma-separated string, each element containing one or
3451more constraint codes.
3452
3453For each element in the constraint list an appropriate register or memory
3454operand will be chosen, and it will be made available to assembly template
3455string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3456second, etc.
3457
3458There are three different types of constraints, which are distinguished by a
3459prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3460constraints must always be given in that order: outputs first, then inputs, then
3461clobbers. They cannot be intermingled.
3462
3463There are also three different categories of constraint codes:
3464
3465- Register constraint. This is either a register class, or a fixed physical
3466 register. This kind of constraint will allocate a register, and if necessary,
3467 bitcast the argument or result to the appropriate type.
3468- Memory constraint. This kind of constraint is for use with an instruction
3469 taking a memory operand. Different constraints allow for different addressing
3470 modes used by the target.
3471- Immediate value constraint. This kind of constraint is for an integer or other
3472 immediate value which can be rendered directly into an instruction. The
3473 various target-specific constraints allow the selection of a value in the
3474 proper range for the instruction you wish to use it with.
3475
3476Output constraints
3477""""""""""""""""""
3478
3479Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3480indicates that the assembly will write to this operand, and the operand will
3481then be made available as a return value of the ``asm`` expression. Output
3482constraints do not consume an argument from the call instruction. (Except, see
3483below about indirect outputs).
3484
3485Normally, it is expected that no output locations are written to by the assembly
3486expression until *all* of the inputs have been read. As such, LLVM may assign
3487the same register to an output and an input. If this is not safe (e.g. if the
3488assembly contains two instructions, where the first writes to one output, and
3489the second reads an input and writes to a second output), then the "``&``"
3490modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003491"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003492will not use the same register for any inputs (other than an input tied to this
3493output).
3494
3495Input constraints
3496"""""""""""""""""
3497
3498Input constraints do not have a prefix -- just the constraint codes. Each input
3499constraint will consume one argument from the call instruction. It is not
3500permitted for the asm to write to any input register or memory location (unless
3501that input is tied to an output). Note also that multiple inputs may all be
3502assigned to the same register, if LLVM can determine that they necessarily all
3503contain the same value.
3504
3505Instead of providing a Constraint Code, input constraints may also "tie"
3506themselves to an output constraint, by providing an integer as the constraint
3507string. Tied inputs still consume an argument from the call instruction, and
3508take up a position in the asm template numbering as is usual -- they will simply
3509be constrained to always use the same register as the output they've been tied
3510to. For example, a constraint string of "``=r,0``" says to assign a register for
3511output, and use that register as an input as well (it being the 0'th
3512constraint).
3513
3514It is permitted to tie an input to an "early-clobber" output. In that case, no
3515*other* input may share the same register as the input tied to the early-clobber
3516(even when the other input has the same value).
3517
3518You may only tie an input to an output which has a register constraint, not a
3519memory constraint. Only a single input may be tied to an output.
3520
3521There is also an "interesting" feature which deserves a bit of explanation: if a
3522register class constraint allocates a register which is too small for the value
3523type operand provided as input, the input value will be split into multiple
3524registers, and all of them passed to the inline asm.
3525
3526However, this feature is often not as useful as you might think.
3527
3528Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3529architectures that have instructions which operate on multiple consecutive
3530instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3531SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3532hardware then loads into both the named register, and the next register. This
3533feature of inline asm would not be useful to support that.)
3534
3535A few of the targets provide a template string modifier allowing explicit access
3536to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3537``D``). On such an architecture, you can actually access the second allocated
3538register (yet, still, not any subsequent ones). But, in that case, you're still
3539probably better off simply splitting the value into two separate operands, for
3540clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3541despite existing only for use with this feature, is not really a good idea to
3542use)
3543
3544Indirect inputs and outputs
3545"""""""""""""""""""""""""""
3546
3547Indirect output or input constraints can be specified by the "``*``" modifier
3548(which goes after the "``=``" in case of an output). This indicates that the asm
3549will write to or read from the contents of an *address* provided as an input
3550argument. (Note that in this way, indirect outputs act more like an *input* than
3551an output: just like an input, they consume an argument of the call expression,
3552rather than producing a return value. An indirect output constraint is an
3553"output" only in that the asm is expected to write to the contents of the input
3554memory location, instead of just read from it).
3555
3556This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3557address of a variable as a value.
3558
3559It is also possible to use an indirect *register* constraint, but only on output
3560(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3561value normally, and then, separately emit a store to the address provided as
3562input, after the provided inline asm. (It's not clear what value this
3563functionality provides, compared to writing the store explicitly after the asm
3564statement, and it can only produce worse code, since it bypasses many
3565optimization passes. I would recommend not using it.)
3566
3567
3568Clobber constraints
3569"""""""""""""""""""
3570
3571A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3572consume an input operand, nor generate an output. Clobbers cannot use any of the
3573general constraint code letters -- they may use only explicit register
3574constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3575"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3576memory locations -- not only the memory pointed to by a declared indirect
3577output.
3578
Peter Zotov00257232016-08-30 10:48:31 +00003579Note that clobbering named registers that are also present in output
3580constraints is not legal.
3581
James Y Knightbc832ed2015-07-08 18:08:36 +00003582
3583Constraint Codes
3584""""""""""""""""
3585After a potential prefix comes constraint code, or codes.
3586
3587A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3588followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3589(e.g. "``{eax}``").
3590
3591The one and two letter constraint codes are typically chosen to be the same as
3592GCC's constraint codes.
3593
3594A single constraint may include one or more than constraint code in it, leaving
3595it up to LLVM to choose which one to use. This is included mainly for
3596compatibility with the translation of GCC inline asm coming from clang.
3597
3598There are two ways to specify alternatives, and either or both may be used in an
3599inline asm constraint list:
3600
36011) Append the codes to each other, making a constraint code set. E.g. "``im``"
3602 or "``{eax}m``". This means "choose any of the options in the set". The
3603 choice of constraint is made independently for each constraint in the
3604 constraint list.
3605
36062) Use "``|``" between constraint code sets, creating alternatives. Every
3607 constraint in the constraint list must have the same number of alternative
3608 sets. With this syntax, the same alternative in *all* of the items in the
3609 constraint list will be chosen together.
3610
3611Putting those together, you might have a two operand constraint string like
3612``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3613operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3614may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3615
3616However, the use of either of the alternatives features is *NOT* recommended, as
3617LLVM is not able to make an intelligent choice about which one to use. (At the
3618point it currently needs to choose, not enough information is available to do so
3619in a smart way.) Thus, it simply tries to make a choice that's most likely to
3620compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3621always choose to use memory, not registers). And, if given multiple registers,
3622or multiple register classes, it will simply choose the first one. (In fact, it
3623doesn't currently even ensure explicitly specified physical registers are
3624unique, so specifying multiple physical registers as alternatives, like
3625``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3626intended.)
3627
3628Supported Constraint Code List
3629""""""""""""""""""""""""""""""
3630
3631The constraint codes are, in general, expected to behave the same way they do in
3632GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3633inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3634and GCC likely indicates a bug in LLVM.
3635
3636Some constraint codes are typically supported by all targets:
3637
3638- ``r``: A register in the target's general purpose register class.
3639- ``m``: A memory address operand. It is target-specific what addressing modes
3640 are supported, typical examples are register, or register + register offset,
3641 or register + immediate offset (of some target-specific size).
3642- ``i``: An integer constant (of target-specific width). Allows either a simple
3643 immediate, or a relocatable value.
3644- ``n``: An integer constant -- *not* including relocatable values.
3645- ``s``: An integer constant, but allowing *only* relocatable values.
3646- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3647 useful to pass a label for an asm branch or call.
3648
3649 .. FIXME: but that surely isn't actually okay to jump out of an asm
3650 block without telling llvm about the control transfer???)
3651
3652- ``{register-name}``: Requires exactly the named physical register.
3653
3654Other constraints are target-specific:
3655
3656AArch64:
3657
3658- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3659- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3660 i.e. 0 to 4095 with optional shift by 12.
3661- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3662 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3663- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3664 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3665- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3666 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3667- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3668 32-bit register. This is a superset of ``K``: in addition to the bitmask
3669 immediate, also allows immediate integers which can be loaded with a single
3670 ``MOVZ`` or ``MOVL`` instruction.
3671- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3672 64-bit register. This is a superset of ``L``.
3673- ``Q``: Memory address operand must be in a single register (no
3674 offsets). (However, LLVM currently does this for the ``m`` constraint as
3675 well.)
3676- ``r``: A 32 or 64-bit integer register (W* or X*).
3677- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3678- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3679
3680AMDGPU:
3681
3682- ``r``: A 32 or 64-bit integer register.
3683- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3684- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3685
3686
3687All ARM modes:
3688
3689- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3690 operand. Treated the same as operand ``m``, at the moment.
3691
3692ARM and ARM's Thumb2 mode:
3693
3694- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3695- ``I``: An immediate integer valid for a data-processing instruction.
3696- ``J``: An immediate integer between -4095 and 4095.
3697- ``K``: An immediate integer whose bitwise inverse is valid for a
3698 data-processing instruction. (Can be used with template modifier "``B``" to
3699 print the inverted value).
3700- ``L``: An immediate integer whose negation is valid for a data-processing
3701 instruction. (Can be used with template modifier "``n``" to print the negated
3702 value).
3703- ``M``: A power of two or a integer between 0 and 32.
3704- ``N``: Invalid immediate constraint.
3705- ``O``: Invalid immediate constraint.
3706- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3707- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3708 as ``r``.
3709- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3710 invalid.
3711- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3712 ``d0-d31``, or ``q0-q15``.
3713- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3714 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003715- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3716 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003717
3718ARM's Thumb1 mode:
3719
3720- ``I``: An immediate integer between 0 and 255.
3721- ``J``: An immediate integer between -255 and -1.
3722- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3723 some amount.
3724- ``L``: An immediate integer between -7 and 7.
3725- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3726- ``N``: An immediate integer between 0 and 31.
3727- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3728- ``r``: A low 32-bit GPR register (``r0-r7``).
3729- ``l``: A low 32-bit GPR register (``r0-r7``).
3730- ``h``: A high GPR register (``r0-r7``).
3731- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3732 ``d0-d31``, or ``q0-q15``.
3733- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3734 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003735- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3736 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003737
3738
3739Hexagon:
3740
3741- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3742 at the moment.
3743- ``r``: A 32 or 64-bit register.
3744
3745MSP430:
3746
3747- ``r``: An 8 or 16-bit register.
3748
3749MIPS:
3750
3751- ``I``: An immediate signed 16-bit integer.
3752- ``J``: An immediate integer zero.
3753- ``K``: An immediate unsigned 16-bit integer.
3754- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3755- ``N``: An immediate integer between -65535 and -1.
3756- ``O``: An immediate signed 15-bit integer.
3757- ``P``: An immediate integer between 1 and 65535.
3758- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3759 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3760- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3761 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3762 ``m``.
3763- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3764 ``sc`` instruction on the given subtarget (details vary).
3765- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3766- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003767 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3768 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003769- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3770 ``25``).
3771- ``l``: The ``lo`` register, 32 or 64-bit.
3772- ``x``: Invalid.
3773
3774NVPTX:
3775
3776- ``b``: A 1-bit integer register.
3777- ``c`` or ``h``: A 16-bit integer register.
3778- ``r``: A 32-bit integer register.
3779- ``l`` or ``N``: A 64-bit integer register.
3780- ``f``: A 32-bit float register.
3781- ``d``: A 64-bit float register.
3782
3783
3784PowerPC:
3785
3786- ``I``: An immediate signed 16-bit integer.
3787- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3788- ``K``: An immediate unsigned 16-bit integer.
3789- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3790- ``M``: An immediate integer greater than 31.
3791- ``N``: An immediate integer that is an exact power of 2.
3792- ``O``: The immediate integer constant 0.
3793- ``P``: An immediate integer constant whose negation is a signed 16-bit
3794 constant.
3795- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3796 treated the same as ``m``.
3797- ``r``: A 32 or 64-bit integer register.
3798- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3799 ``R1-R31``).
3800- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3801 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3802- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3803 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3804 altivec vector register (``V0-V31``).
3805
3806 .. FIXME: is this a bug that v accepts QPX registers? I think this
3807 is supposed to only use the altivec vector registers?
3808
3809- ``y``: Condition register (``CR0-CR7``).
3810- ``wc``: An individual CR bit in a CR register.
3811- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3812 register set (overlapping both the floating-point and vector register files).
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003813- ``ws``: A 32 or 64-bit floating-point register, from the full VSX register
James Y Knightbc832ed2015-07-08 18:08:36 +00003814 set.
3815
3816Sparc:
3817
3818- ``I``: An immediate 13-bit signed integer.
3819- ``r``: A 32-bit integer register.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003820- ``f``: Any floating-point register on SparcV8, or a floating-point
James Y Knightd4e1b002017-05-12 15:59:10 +00003821 register in the "low" half of the registers on SparcV9.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003822- ``e``: Any floating-point register. (Same as ``f`` on SparcV8.)
James Y Knightbc832ed2015-07-08 18:08:36 +00003823
3824SystemZ:
3825
3826- ``I``: An immediate unsigned 8-bit integer.
3827- ``J``: An immediate unsigned 12-bit integer.
3828- ``K``: An immediate signed 16-bit integer.
3829- ``L``: An immediate signed 20-bit integer.
3830- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003831- ``Q``: A memory address operand with a base address and a 12-bit immediate
3832 unsigned displacement.
3833- ``R``: A memory address operand with a base address, a 12-bit immediate
3834 unsigned displacement, and an index register.
3835- ``S``: A memory address operand with a base address and a 20-bit immediate
3836 signed displacement.
3837- ``T``: A memory address operand with a base address, a 20-bit immediate
3838 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003839- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3840- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3841 address context evaluates as zero).
3842- ``h``: A 32-bit value in the high part of a 64bit data register
3843 (LLVM-specific)
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003844- ``f``: A 32, 64, or 128-bit floating-point register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003845
3846X86:
3847
3848- ``I``: An immediate integer between 0 and 31.
3849- ``J``: An immediate integer between 0 and 64.
3850- ``K``: An immediate signed 8-bit integer.
3851- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3852 0xffffffff.
3853- ``M``: An immediate integer between 0 and 3.
3854- ``N``: An immediate unsigned 8-bit integer.
3855- ``O``: An immediate integer between 0 and 127.
3856- ``e``: An immediate 32-bit signed integer.
3857- ``Z``: An immediate 32-bit unsigned integer.
3858- ``o``, ``v``: Treated the same as ``m``, at the moment.
3859- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3860 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3861 registers, and on X86-64, it is all of the integer registers.
3862- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3863 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3864- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3865- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3866 existed since i386, and can be accessed without the REX prefix.
3867- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3868- ``y``: A 64-bit MMX register, if MMX is enabled.
3869- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3870 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3871 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3872 512-bit vector operand in an AVX512 register, Otherwise, an error.
3873- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3874- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3875 32-bit mode, a 64-bit integer operand will get split into two registers). It
3876 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3877 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3878 you're better off splitting it yourself, before passing it to the asm
3879 statement.
3880
3881XCore:
3882
3883- ``r``: A 32-bit integer register.
3884
3885
3886.. _inline-asm-modifiers:
3887
3888Asm template argument modifiers
3889^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3890
3891In the asm template string, modifiers can be used on the operand reference, like
3892"``${0:n}``".
3893
3894The modifiers are, in general, expected to behave the same way they do in
3895GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3896inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3897and GCC likely indicates a bug in LLVM.
3898
3899Target-independent:
3900
Sean Silvaa1190322015-08-06 22:56:48 +00003901- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003902 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3903- ``n``: Negate and print immediate integer constant unadorned, without the
3904 target-specific immediate punctuation (e.g. no ``$`` prefix).
3905- ``l``: Print as an unadorned label, without the target-specific label
3906 punctuation (e.g. no ``$`` prefix).
3907
3908AArch64:
3909
3910- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3911 instead of ``x30``, print ``w30``.
3912- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3913- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3914 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3915 ``v*``.
3916
3917AMDGPU:
3918
3919- ``r``: No effect.
3920
3921ARM:
3922
3923- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3924 register).
3925- ``P``: No effect.
3926- ``q``: No effect.
3927- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3928 as ``d4[1]`` instead of ``s9``)
3929- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3930 prefix.
3931- ``L``: Print the low 16-bits of an immediate integer constant.
3932- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3933 register operands subsequent to the specified one (!), so use carefully.
3934- ``Q``: Print the low-order register of a register-pair, or the low-order
3935 register of a two-register operand.
3936- ``R``: Print the high-order register of a register-pair, or the high-order
3937 register of a two-register operand.
3938- ``H``: Print the second register of a register-pair. (On a big-endian system,
3939 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3940 to ``R``.)
3941
3942 .. FIXME: H doesn't currently support printing the second register
3943 of a two-register operand.
3944
3945- ``e``: Print the low doubleword register of a NEON quad register.
3946- ``f``: Print the high doubleword register of a NEON quad register.
3947- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3948 adornment.
3949
3950Hexagon:
3951
3952- ``L``: Print the second register of a two-register operand. Requires that it
3953 has been allocated consecutively to the first.
3954
3955 .. FIXME: why is it restricted to consecutive ones? And there's
3956 nothing that ensures that happens, is there?
3957
3958- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3959 nothing. Used to print 'addi' vs 'add' instructions.
3960
3961MSP430:
3962
3963No additional modifiers.
3964
3965MIPS:
3966
3967- ``X``: Print an immediate integer as hexadecimal
3968- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3969- ``d``: Print an immediate integer as decimal.
3970- ``m``: Subtract one and print an immediate integer as decimal.
3971- ``z``: Print $0 if an immediate zero, otherwise print normally.
3972- ``L``: Print the low-order register of a two-register operand, or prints the
3973 address of the low-order word of a double-word memory operand.
3974
3975 .. FIXME: L seems to be missing memory operand support.
3976
3977- ``M``: Print the high-order register of a two-register operand, or prints the
3978 address of the high-order word of a double-word memory operand.
3979
3980 .. FIXME: M seems to be missing memory operand support.
3981
3982- ``D``: Print the second register of a two-register operand, or prints the
3983 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3984 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3985 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003986- ``w``: No effect. Provided for compatibility with GCC which requires this
3987 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3988 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003989
3990NVPTX:
3991
3992- ``r``: No effect.
3993
3994PowerPC:
3995
3996- ``L``: Print the second register of a two-register operand. Requires that it
3997 has been allocated consecutively to the first.
3998
3999 .. FIXME: why is it restricted to consecutive ones? And there's
4000 nothing that ensures that happens, is there?
4001
4002- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
4003 nothing. Used to print 'addi' vs 'add' instructions.
4004- ``y``: For a memory operand, prints formatter for a two-register X-form
4005 instruction. (Currently always prints ``r0,OPERAND``).
4006- ``U``: Prints 'u' if the memory operand is an update form, and nothing
4007 otherwise. (NOTE: LLVM does not support update form, so this will currently
4008 always print nothing)
4009- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
4010 not support indexed form, so this will currently always print nothing)
4011
4012Sparc:
4013
4014- ``r``: No effect.
4015
4016SystemZ:
4017
4018SystemZ implements only ``n``, and does *not* support any of the other
4019target-independent modifiers.
4020
4021X86:
4022
4023- ``c``: Print an unadorned integer or symbol name. (The latter is
4024 target-specific behavior for this typically target-independent modifier).
4025- ``A``: Print a register name with a '``*``' before it.
4026- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
4027 operand.
4028- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
4029 memory operand.
4030- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
4031 operand.
4032- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
4033 operand.
4034- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
4035 available, otherwise the 32-bit register name; do nothing on a memory operand.
4036- ``n``: Negate and print an unadorned integer, or, for operands other than an
4037 immediate integer (e.g. a relocatable symbol expression), print a '-' before
4038 the operand. (The behavior for relocatable symbol expressions is a
4039 target-specific behavior for this typically target-independent modifier)
4040- ``H``: Print a memory reference with additional offset +8.
4041- ``P``: Print a memory reference or operand for use as the argument of a call
4042 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
4043
4044XCore:
4045
4046No additional modifiers.
4047
4048
Sean Silvab084af42012-12-07 10:36:55 +00004049Inline Asm Metadata
4050^^^^^^^^^^^^^^^^^^^
4051
4052The call instructions that wrap inline asm nodes may have a
4053"``!srcloc``" MDNode attached to it that contains a list of constant
4054integers. If present, the code generator will use the integer as the
4055location cookie value when report errors through the ``LLVMContext``
4056error reporting mechanisms. This allows a front-end to correlate backend
4057errors that occur with inline asm back to the source code that produced
4058it. For example:
4059
4060.. code-block:: llvm
4061
4062 call void asm sideeffect "something bad", ""(), !srcloc !42
4063 ...
4064 !42 = !{ i32 1234567 }
4065
4066It is up to the front-end to make sense of the magic numbers it places
4067in the IR. If the MDNode contains multiple constants, the code generator
4068will use the one that corresponds to the line of the asm that the error
4069occurs on.
4070
4071.. _metadata:
4072
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004073Metadata
4074========
Sean Silvab084af42012-12-07 10:36:55 +00004075
4076LLVM IR allows metadata to be attached to instructions in the program
4077that can convey extra information about the code to the optimizers and
4078code generator. One example application of metadata is source-level
4079debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004080
Sean Silvaa1190322015-08-06 22:56:48 +00004081Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004082``call`` instruction, it uses the ``metadata`` type.
4083
4084All metadata are identified in syntax by a exclamation point ('``!``').
4085
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004086.. _metadata-string:
4087
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004088Metadata Nodes and Metadata Strings
4089-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00004090
4091A metadata string is a string surrounded by double quotes. It can
4092contain any character by escaping non-printable characters with
4093"``\xx``" where "``xx``" is the two digit hex code. For example:
4094"``!"test\00"``".
4095
4096Metadata nodes are represented with notation similar to structure
4097constants (a comma separated list of elements, surrounded by braces and
4098preceded by an exclamation point). Metadata nodes can have any values as
4099their operand. For example:
4100
4101.. code-block:: llvm
4102
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004103 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00004104
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004105Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
4106
Renato Golin124f2592016-07-20 12:16:38 +00004107.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004108
4109 !0 = distinct !{!"test\00", i32 10}
4110
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004111``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00004112content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004113when metadata operands change.
4114
Sean Silvab084af42012-12-07 10:36:55 +00004115A :ref:`named metadata <namedmetadatastructure>` is a collection of
4116metadata nodes, which can be looked up in the module symbol table. For
4117example:
4118
4119.. code-block:: llvm
4120
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004121 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00004122
Adrian Prantl1b842da2017-07-28 20:44:29 +00004123Metadata can be used as function arguments. Here the ``llvm.dbg.value``
4124intrinsic is using three metadata arguments:
Sean Silvab084af42012-12-07 10:36:55 +00004125
4126.. code-block:: llvm
4127
Adrian Prantlabe04752017-07-28 20:21:02 +00004128 call void @llvm.dbg.value(metadata !24, metadata !25, metadata !26)
Sean Silvab084af42012-12-07 10:36:55 +00004129
Peter Collingbourne50108682015-11-06 02:41:02 +00004130Metadata can be attached to an instruction. Here metadata ``!21`` is attached
4131to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00004132
4133.. code-block:: llvm
4134
4135 %indvar.next = add i64 %indvar, 1, !dbg !21
4136
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004137Metadata can also be attached to a function or a global variable. Here metadata
4138``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
4139and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00004140
4141.. code-block:: llvm
4142
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004143 declare !dbg !22 void @f1()
4144 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00004145 ret void
4146 }
4147
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004148 @g1 = global i32 0, !dbg !22
4149 @g2 = external global i32, !dbg !22
4150
4151A transformation is required to drop any metadata attachment that it does not
4152know or know it can't preserve. Currently there is an exception for metadata
4153attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
4154unconditionally dropped unless the global is itself deleted.
4155
4156Metadata attached to a module using named metadata may not be dropped, with
4157the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
4158
Sean Silvab084af42012-12-07 10:36:55 +00004159More information about specific metadata nodes recognized by the
4160optimizers and code generator is found below.
4161
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004162.. _specialized-metadata:
4163
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004164Specialized Metadata Nodes
4165^^^^^^^^^^^^^^^^^^^^^^^^^^
4166
4167Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00004168to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004169order.
4170
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004171These aren't inherently debug info centric, but currently all the specialized
4172metadata nodes are related to debug info.
4173
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004174.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004175
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004176DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004177"""""""""""""
4178
Sean Silvaa1190322015-08-06 22:56:48 +00004179``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004180``retainedTypes:``, ``globals:``, ``imports:`` and ``macros:`` fields are tuples
4181containing the debug info to be emitted along with the compile unit, regardless
4182of code optimizations (some nodes are only emitted if there are references to
4183them from instructions). The ``debugInfoForProfiling:`` field is a boolean
4184indicating whether or not line-table discriminators are updated to provide
4185more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004186
Renato Golin124f2592016-07-20 12:16:38 +00004187.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004188
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004189 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004190 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004191 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004192 enums: !2, retainedTypes: !3, globals: !4, imports: !5,
4193 macros: !6, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004194
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004195Compile unit descriptors provide the root scope for objects declared in a
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004196specific compilation unit. File descriptors are defined using this scope. These
4197descriptors are collected by a named metadata node ``!llvm.dbg.cu``. They keep
4198track of global variables, type information, and imported entities (declarations
4199and namespaces).
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004200
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004201.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004202
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004203DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004204""""""
4205
Sean Silvaa1190322015-08-06 22:56:48 +00004206``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004207
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004208.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004209
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004210 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4211 checksumkind: CSK_MD5,
4212 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004213
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004214Files are sometimes used in ``scope:`` fields, and are the only valid target
4215for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004216Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004217
Michael Kuperstein605308a2015-05-14 10:58:59 +00004218.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004219
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004220DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004221"""""""""""
4222
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004223``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004224``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004225
Renato Golin124f2592016-07-20 12:16:38 +00004226.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004227
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004228 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004229 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004230 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004231
Sean Silvaa1190322015-08-06 22:56:48 +00004232The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004233following:
4234
Renato Golin124f2592016-07-20 12:16:38 +00004235.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004236
4237 DW_ATE_address = 1
4238 DW_ATE_boolean = 2
4239 DW_ATE_float = 4
4240 DW_ATE_signed = 5
4241 DW_ATE_signed_char = 6
4242 DW_ATE_unsigned = 7
4243 DW_ATE_unsigned_char = 8
4244
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004245.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004246
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004247DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004248""""""""""""""""
4249
Sean Silvaa1190322015-08-06 22:56:48 +00004250``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004251refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004252types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004253represents a function with no return value (such as ``void foo() {}`` in C++).
4254
Renato Golin124f2592016-07-20 12:16:38 +00004255.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004256
4257 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4258 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004259 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004260
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004261.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004262
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004263DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004264"""""""""""""
4265
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004266``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004267qualified types.
4268
Renato Golin124f2592016-07-20 12:16:38 +00004269.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004270
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004271 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004272 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004273 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004274 align: 32)
4275
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004276The following ``tag:`` values are valid:
4277
Renato Golin124f2592016-07-20 12:16:38 +00004278.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004279
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004280 DW_TAG_member = 13
4281 DW_TAG_pointer_type = 15
4282 DW_TAG_reference_type = 16
4283 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004284 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004285 DW_TAG_ptr_to_member_type = 31
4286 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004287 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004288 DW_TAG_volatile_type = 53
4289 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004290 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004291
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004292.. _DIDerivedTypeMember:
4293
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004294``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004295<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004296``offset:`` is the member's bit offset. If the composite type has an ODR
4297``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4298uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004299
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004300``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4301field of :ref:`composite types <DICompositeType>` to describe parents and
4302friends.
4303
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004304``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4305
4306``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004307``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4308are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004309
4310Note that the ``void *`` type is expressed as a type derived from NULL.
4311
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004312.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004313
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004314DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004315"""""""""""""""
4316
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004317``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004318structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004319
4320If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004321identifier used for type merging between modules. When specified,
4322:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4323derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4324``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004325
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004326For a given ``identifier:``, there should only be a single composite type that
4327does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4328together will unique such definitions at parse time via the ``identifier:``
4329field, even if the nodes are ``distinct``.
4330
Renato Golin124f2592016-07-20 12:16:38 +00004331.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004332
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004333 !0 = !DIEnumerator(name: "SixKind", value: 7)
4334 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4335 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4336 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004337 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4338 elements: !{!0, !1, !2})
4339
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004340The following ``tag:`` values are valid:
4341
Renato Golin124f2592016-07-20 12:16:38 +00004342.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004343
4344 DW_TAG_array_type = 1
4345 DW_TAG_class_type = 2
4346 DW_TAG_enumeration_type = 4
4347 DW_TAG_structure_type = 19
4348 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004349
4350For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004351descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004352level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004353array type is a native packed vector.
4354
4355For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004356descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004357value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004358``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004359
4360For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4361``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004362<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4363``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4364``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004365
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004366.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004367
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004368DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004369""""""""""
4370
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004371``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sander de Smalen1cb94312018-01-24 10:30:23 +00004372:ref:`DICompositeType`.
4373
4374- ``count: -1`` indicates an empty array.
4375- ``count: !9`` describes the count with a :ref:`DILocalVariable`.
4376- ``count: !11`` describes the count with a :ref:`DIGlobalVariable`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004377
4378.. code-block:: llvm
4379
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004380 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4381 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4382 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004383
Sander de Smalenfdf40912018-01-24 09:56:07 +00004384 ; Scopes used in rest of example
4385 !6 = !DIFile(filename: "vla.c", directory: "/path/to/file")
4386 !7 = distinct !DICompileUnit(language: DW_LANG_C99, ...
4387 !8 = distinct !DISubprogram(name: "foo", scope: !7, file: !6, line: 5, ...
4388
4389 ; Use of local variable as count value
4390 !9 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
4391 !10 = !DILocalVariable(name: "count", scope: !8, file: !6, line: 42, type: !9)
4392 !11 = !DISubrange(count !10, lowerBound: 0)
4393
4394 ; Use of global variable as count value
4395 !12 = !DIGlobalVariable(name: "count", scope: !8, file: !6, line: 22, type: !9)
4396 !13 = !DISubrange(count !12, lowerBound: 0)
4397
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004398.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004399
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004400DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004401""""""""""""
4402
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004403``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4404variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004405
4406.. code-block:: llvm
4407
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004408 !0 = !DIEnumerator(name: "SixKind", value: 7)
4409 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4410 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004411
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004412DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004413"""""""""""""""""""""""
4414
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004415``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004416language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004417:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004418
4419.. code-block:: llvm
4420
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004421 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004422
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004423DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004424""""""""""""""""""""""""
4425
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004426``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004427language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004428but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004429``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004430:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004431
4432.. code-block:: llvm
4433
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004434 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004435
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004436DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004437"""""""""""
4438
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004439``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004440
4441.. code-block:: llvm
4442
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004443 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004444
Sander de Smalen1cb94312018-01-24 10:30:23 +00004445.. _DIGlobalVariable:
4446
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004447DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004448""""""""""""""""
4449
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004450``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004451
4452.. code-block:: llvm
4453
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004454 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004455 file: !2, line: 7, type: !3, isLocal: true,
4456 isDefinition: false, variable: i32* @foo,
4457 declaration: !4)
4458
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004459All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004460:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004461
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004462.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004463
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004464DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004465""""""""""""
4466
Peter Collingbourne50108682015-11-06 02:41:02 +00004467``DISubprogram`` nodes represent functions from the source language. A
4468``DISubprogram`` may be attached to a function definition using ``!dbg``
4469metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4470that must be retained, even if their IR counterparts are optimized out of
4471the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004472
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004473.. _DISubprogramDeclaration:
4474
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004475When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004476tree as opposed to a definition of a function. If the scope is a composite
4477type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4478then the subprogram declaration is uniqued based only on its ``linkageName:``
4479and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004480
Renato Golin124f2592016-07-20 12:16:38 +00004481.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004482
Peter Collingbourne50108682015-11-06 02:41:02 +00004483 define void @_Z3foov() !dbg !0 {
4484 ...
4485 }
4486
4487 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4488 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004489 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004490 containingType: !4,
4491 virtuality: DW_VIRTUALITY_pure_virtual,
4492 virtualIndex: 10, flags: DIFlagPrototyped,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004493 isOptimized: true, unit: !5, templateParams: !6,
4494 declaration: !7, variables: !8, thrownTypes: !9)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004495
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004496.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004497
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004498DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004499""""""""""""""
4500
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004501``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004502<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004503two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004504fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004505
Renato Golin124f2592016-07-20 12:16:38 +00004506.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004507
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004508 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004509
4510Usually lexical blocks are ``distinct`` to prevent node merging based on
4511operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004512
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004513.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004514
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004515DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004516""""""""""""""""""
4517
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004518``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004519:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004520indicate textual inclusion, or the ``discriminator:`` field can be used to
4521discriminate between control flow within a single block in the source language.
4522
4523.. code-block:: llvm
4524
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004525 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4526 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4527 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004528
Michael Kuperstein605308a2015-05-14 10:58:59 +00004529.. _DILocation:
4530
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004531DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004532""""""""""
4533
Sean Silvaa1190322015-08-06 22:56:48 +00004534``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004535mandatory, and points at an :ref:`DILexicalBlockFile`, an
4536:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004537
4538.. code-block:: llvm
4539
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004540 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004541
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004542.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004543
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004544DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004545"""""""""""""""
4546
Sean Silvaa1190322015-08-06 22:56:48 +00004547``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004548the ``arg:`` field is set to non-zero, then this variable is a subprogram
4549parameter, and it will be included in the ``variables:`` field of its
4550:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004551
Renato Golin124f2592016-07-20 12:16:38 +00004552.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004553
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004554 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4555 type: !3, flags: DIFlagArtificial)
4556 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4557 type: !3)
4558 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004559
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004560DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004561""""""""""""
4562
Adrian Prantlb44c7762017-03-22 18:01:01 +00004563``DIExpression`` nodes represent expressions that are inspired by the DWARF
4564expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
4565(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
4566referenced LLVM variable relates to the source language variable.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004567
4568The current supported vocabulary is limited:
4569
Adrian Prantl6825fb62017-04-18 01:21:53 +00004570- ``DW_OP_deref`` dereferences the top of the expression stack.
Florian Hahnffc498d2017-06-14 13:14:38 +00004571- ``DW_OP_plus`` pops the last two entries from the expression stack, adds
4572 them together and appends the result to the expression stack.
4573- ``DW_OP_minus`` pops the last two entries from the expression stack, subtracts
4574 the last entry from the second last entry and appends the result to the
4575 expression stack.
Florian Hahnc9c403c2017-06-13 16:54:44 +00004576- ``DW_OP_plus_uconst, 93`` adds ``93`` to the working expression.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004577- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
4578 here, respectively) of the variable fragment from the working expression. Note
Hiroshi Inoue760c0c92018-01-16 13:19:48 +00004579 that contrary to DW_OP_bit_piece, the offset is describing the location
Adrian Prantlb44c7762017-03-22 18:01:01 +00004580 within the described source variable.
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004581- ``DW_OP_swap`` swaps top two stack entries.
4582- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
4583 of the stack is treated as an address. The second stack entry is treated as an
4584 address space identifier.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004585- ``DW_OP_stack_value`` marks a constant value.
4586
Adrian Prantl6825fb62017-04-18 01:21:53 +00004587DWARF specifies three kinds of simple location descriptions: Register, memory,
4588and implicit location descriptions. Register and memory location descriptions
4589describe the *location* of a source variable (in the sense that a debugger might
4590modify its value), whereas implicit locations describe merely the *value* of a
4591source variable. DIExpressions also follow this model: A DIExpression that
4592doesn't have a trailing ``DW_OP_stack_value`` will describe an *address* when
4593combined with a concrete location.
4594
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004595.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004596
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004597 !0 = !DIExpression(DW_OP_deref)
Florian Hahnc9c403c2017-06-13 16:54:44 +00004598 !1 = !DIExpression(DW_OP_plus_uconst, 3)
Florian Hahnffc498d2017-06-14 13:14:38 +00004599 !1 = !DIExpression(DW_OP_constu, 3, DW_OP_plus)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004600 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
Florian Hahnffc498d2017-06-14 13:14:38 +00004601 !3 = !DIExpression(DW_OP_deref, DW_OP_constu, 3, DW_OP_plus, DW_OP_LLVM_fragment, 3, 7)
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004602 !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004603 !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004604
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004605DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004606""""""""""""""
4607
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004608``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004609
4610.. code-block:: llvm
4611
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004612 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004613 getter: "getFoo", attributes: 7, type: !2)
4614
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004615DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004616""""""""""""""""
4617
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004618``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004619compile unit.
4620
Renato Golin124f2592016-07-20 12:16:38 +00004621.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004622
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004623 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004624 entity: !1, line: 7)
4625
Amjad Abouda9bcf162015-12-10 12:56:35 +00004626DIMacro
4627"""""""
4628
4629``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4630The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004631defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004632used to expand the macro identifier.
4633
Renato Golin124f2592016-07-20 12:16:38 +00004634.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004635
4636 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4637 value: "((x) + 1)")
4638 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4639
4640DIMacroFile
4641"""""""""""
4642
4643``DIMacroFile`` nodes represent inclusion of source files.
4644The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4645appear in the included source file.
4646
Renato Golin124f2592016-07-20 12:16:38 +00004647.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004648
4649 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4650 nodes: !3)
4651
Sean Silvab084af42012-12-07 10:36:55 +00004652'``tbaa``' Metadata
4653^^^^^^^^^^^^^^^^^^^
4654
4655In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004656suitable for doing type based alias analysis (TBAA). Instead, metadata is
4657added to the IR to describe a type system of a higher level language. This
4658can be used to implement C/C++ strict type aliasing rules, but it can also
4659be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004660
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004661This description of LLVM's TBAA system is broken into two parts:
4662:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4663:ref:`Representation<tbaa_node_representation>` talks about the metadata
4664encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004665
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004666It is always possible to trace any TBAA node to a "root" TBAA node (details
4667in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4668nodes with different roots have an unknown aliasing relationship, and LLVM
4669conservatively infers ``MayAlias`` between them. The rules mentioned in
4670this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004671
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004672.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004673
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004674Semantics
4675"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004676
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004677The TBAA metadata system, referred to as "struct path TBAA" (not to be
4678confused with ``tbaa.struct``), consists of the following high level
4679concepts: *Type Descriptors*, further subdivided into scalar type
4680descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004681
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004682**Type descriptors** describe the type system of the higher level language
4683being compiled. **Scalar type descriptors** describe types that do not
4684contain other types. Each scalar type has a parent type, which must also
4685be a scalar type or the TBAA root. Via this parent relation, scalar types
4686within a TBAA root form a tree. **Struct type descriptors** denote types
4687that contain a sequence of other type descriptors, at known offsets. These
4688contained type descriptors can either be struct type descriptors themselves
4689or scalar type descriptors.
4690
4691**Access tags** are metadata nodes attached to load and store instructions.
4692Access tags use type descriptors to describe the *location* being accessed
4693in terms of the type system of the higher level language. Access tags are
4694tuples consisting of a base type, an access type and an offset. The base
4695type is a scalar type descriptor or a struct type descriptor, the access
4696type is a scalar type descriptor, and the offset is a constant integer.
4697
4698The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4699things:
4700
4701 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4702 or store) of a value of type ``AccessTy`` contained in the struct type
4703 ``BaseTy`` at offset ``Offset``.
4704
4705 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4706 ``AccessTy`` must be the same; and the access tag describes a scalar
4707 access with scalar type ``AccessTy``.
4708
4709We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4710tuples this way:
4711
4712 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4713 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4714 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4715 undefined if ``Offset`` is non-zero.
4716
4717 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4718 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4719 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4720 to be relative within that inner type.
4721
4722A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4723aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4724Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4725Offset2)`` via the ``Parent`` relation or vice versa.
4726
4727As a concrete example, the type descriptor graph for the following program
4728
4729.. code-block:: c
4730
4731 struct Inner {
4732 int i; // offset 0
4733 float f; // offset 4
4734 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004735
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004736 struct Outer {
4737 float f; // offset 0
4738 double d; // offset 4
4739 struct Inner inner_a; // offset 12
4740 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004741
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004742 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4743 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4744 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
Fangrui Song74d6a742018-05-29 05:38:05 +00004745 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, FloatScalarTy, 16)
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004746 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4747 }
4748
4749is (note that in C and C++, ``char`` can be used to access any arbitrary
4750type):
4751
4752.. code-block:: text
4753
4754 Root = "TBAA Root"
4755 CharScalarTy = ("char", Root, 0)
4756 FloatScalarTy = ("float", CharScalarTy, 0)
4757 DoubleScalarTy = ("double", CharScalarTy, 0)
4758 IntScalarTy = ("int", CharScalarTy, 0)
4759 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4760 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4761 (InnerStructTy, 12)}
4762
4763
4764with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
47650)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4766``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4767
4768.. _tbaa_node_representation:
4769
4770Representation
4771""""""""""""""
4772
4773The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4774with exactly one ``MDString`` operand.
4775
4776Scalar type descriptors are represented as an ``MDNode`` s with two
4777operands. The first operand is an ``MDString`` denoting the name of the
4778struct type. LLVM does not assign meaning to the value of this operand, it
4779only cares about it being an ``MDString``. The second operand is an
4780``MDNode`` which points to the parent for said scalar type descriptor,
4781which is either another scalar type descriptor or the TBAA root. Scalar
4782type descriptors can have an optional third argument, but that must be the
4783constant integer zero.
4784
4785Struct type descriptors are represented as ``MDNode`` s with an odd number
4786of operands greater than 1. The first operand is an ``MDString`` denoting
4787the name of the struct type. Like in scalar type descriptors the actual
4788value of this name operand is irrelevant to LLVM. After the name operand,
4789the struct type descriptors have a sequence of alternating ``MDNode`` and
4790``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4791an ``MDNode``, denotes a contained field, and the 2N th operand, a
4792``ConstantInt``, is the offset of the said contained field. The offsets
4793must be in non-decreasing order.
4794
4795Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4796The first operand is an ``MDNode`` pointing to the node representing the
4797base type. The second operand is an ``MDNode`` pointing to the node
4798representing the access type. The third operand is a ``ConstantInt`` that
4799states the offset of the access. If a fourth field is present, it must be
4800a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4801that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004802``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004803AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4804the access type and the base type of an access tag must be the same, and
4805that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004806
4807'``tbaa.struct``' Metadata
4808^^^^^^^^^^^^^^^^^^^^^^^^^^
4809
4810The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4811aggregate assignment operations in C and similar languages, however it
4812is defined to copy a contiguous region of memory, which is more than
4813strictly necessary for aggregate types which contain holes due to
4814padding. Also, it doesn't contain any TBAA information about the fields
4815of the aggregate.
4816
4817``!tbaa.struct`` metadata can describe which memory subregions in a
4818memcpy are padding and what the TBAA tags of the struct are.
4819
4820The current metadata format is very simple. ``!tbaa.struct`` metadata
4821nodes are a list of operands which are in conceptual groups of three.
4822For each group of three, the first operand gives the byte offset of a
4823field in bytes, the second gives its size in bytes, and the third gives
4824its tbaa tag. e.g.:
4825
4826.. code-block:: llvm
4827
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004828 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004829
4830This describes a struct with two fields. The first is at offset 0 bytes
4831with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4832and has size 4 bytes and has tbaa tag !2.
4833
4834Note that the fields need not be contiguous. In this example, there is a
48354 byte gap between the two fields. This gap represents padding which
4836does not carry useful data and need not be preserved.
4837
Hal Finkel94146652014-07-24 14:25:39 +00004838'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004839^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004840
4841``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4842noalias memory-access sets. This means that some collection of memory access
4843instructions (loads, stores, memory-accessing calls, etc.) that carry
4844``noalias`` metadata can specifically be specified not to alias with some other
4845collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004846Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004847a domain.
4848
4849When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004850of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004851subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004852instruction's ``noalias`` list, then the two memory accesses are assumed not to
4853alias.
Hal Finkel94146652014-07-24 14:25:39 +00004854
Adam Nemet569a5b32016-04-27 00:52:48 +00004855Because scopes in one domain don't affect scopes in other domains, separate
4856domains can be used to compose multiple independent noalias sets. This is
4857used for example during inlining. As the noalias function parameters are
4858turned into noalias scope metadata, a new domain is used every time the
4859function is inlined.
4860
Hal Finkel029cde62014-07-25 15:50:02 +00004861The metadata identifying each domain is itself a list containing one or two
4862entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004863string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004864self-reference can be used to create globally unique domain names. A
4865descriptive string may optionally be provided as a second list entry.
4866
4867The metadata identifying each scope is also itself a list containing two or
4868three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004869is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004870self-reference can be used to create globally unique scope names. A metadata
4871reference to the scope's domain is the second entry. A descriptive string may
4872optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004873
4874For example,
4875
4876.. code-block:: llvm
4877
Hal Finkel029cde62014-07-25 15:50:02 +00004878 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004879 !0 = !{!0}
4880 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004881
Hal Finkel029cde62014-07-25 15:50:02 +00004882 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004883 !2 = !{!2, !0}
4884 !3 = !{!3, !0}
4885 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004886
Hal Finkel029cde62014-07-25 15:50:02 +00004887 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004888 !5 = !{!4} ; A list containing only scope !4
4889 !6 = !{!4, !3, !2}
4890 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004891
4892 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004893 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004894 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004895
Hal Finkel029cde62014-07-25 15:50:02 +00004896 ; These two instructions also don't alias (for domain !1, the set of scopes
4897 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004898 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004899 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004900
Adam Nemet0a8416f2015-05-11 08:30:28 +00004901 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004902 ; the !noalias list is not a superset of, or equal to, the scopes in the
4903 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004904 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004905 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004906
Sean Silvab084af42012-12-07 10:36:55 +00004907'``fpmath``' Metadata
4908^^^^^^^^^^^^^^^^^^^^^
4909
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00004910``fpmath`` metadata may be attached to any instruction of floating-point
Sean Silvab084af42012-12-07 10:36:55 +00004911type. It can be used to express the maximum acceptable error in the
4912result of that instruction, in ULPs, thus potentially allowing the
4913compiler to use a more efficient but less accurate method of computing
4914it. ULP is defined as follows:
4915
4916 If ``x`` is a real number that lies between two finite consecutive
4917 floating-point numbers ``a`` and ``b``, without being equal to one
4918 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4919 distance between the two non-equal finite floating-point numbers
4920 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4921
Matt Arsenault82f41512016-06-27 19:43:15 +00004922The metadata node shall consist of a single positive float type number
4923representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004924
4925.. code-block:: llvm
4926
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004927 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004928
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004929.. _range-metadata:
4930
Sean Silvab084af42012-12-07 10:36:55 +00004931'``range``' Metadata
4932^^^^^^^^^^^^^^^^^^^^
4933
Jingyue Wu37fcb592014-06-19 16:50:16 +00004934``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4935integer types. It expresses the possible ranges the loaded value or the value
4936returned by the called function at this call site is in. The ranges are
4937represented with a flattened list of integers. The loaded value or the value
4938returned is known to be in the union of the ranges defined by each consecutive
4939pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004940
4941- The type must match the type loaded by the instruction.
4942- The pair ``a,b`` represents the range ``[a,b)``.
4943- Both ``a`` and ``b`` are constants.
4944- The range is allowed to wrap.
4945- The range should not represent the full or empty set. That is,
4946 ``a!=b``.
4947
4948In addition, the pairs must be in signed order of the lower bound and
4949they must be non-contiguous.
4950
4951Examples:
4952
4953.. code-block:: llvm
4954
David Blaikiec7aabbb2015-03-04 22:06:14 +00004955 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4956 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004957 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4958 %d = invoke i8 @bar() to label %cont
4959 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004960 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004961 !0 = !{ i8 0, i8 2 }
4962 !1 = !{ i8 255, i8 2 }
4963 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4964 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004965
Peter Collingbourne235c2752016-12-08 19:01:00 +00004966'``absolute_symbol``' Metadata
4967^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4968
4969``absolute_symbol`` metadata may be attached to a global variable
4970declaration. It marks the declaration as a reference to an absolute symbol,
4971which causes the backend to use absolute relocations for the symbol even
4972in position independent code, and expresses the possible ranges that the
4973global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00004974``range`` metadata, with the extension that the pair ``all-ones,all-ones``
4975may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00004976
Peter Collingbourned88f9282017-01-20 21:56:37 +00004977Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00004978
4979.. code-block:: llvm
4980
4981 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00004982 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00004983
4984 ...
4985 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00004986 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00004987
Matthew Simpson36bbc8c2017-10-16 22:22:11 +00004988'``callees``' Metadata
4989^^^^^^^^^^^^^^^^^^^^^^
4990
4991``callees`` metadata may be attached to indirect call sites. If ``callees``
4992metadata is attached to a call site, and any callee is not among the set of
4993functions provided by the metadata, the behavior is undefined. The intent of
4994this metadata is to facilitate optimizations such as indirect-call promotion.
4995For example, in the code below, the call instruction may only target the
4996``add`` or ``sub`` functions:
4997
4998.. code-block:: llvm
4999
5000 %result = call i64 %binop(i64 %x, i64 %y), !callees !0
5001
5002 ...
5003 !0 = !{i64 (i64, i64)* @add, i64 (i64, i64)* @sub}
5004
Sanjay Patela99ab1f2015-09-02 19:06:43 +00005005'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00005006^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00005007
5008``unpredictable`` metadata may be attached to any branch or switch
5009instruction. It can be used to express the unpredictability of control
5010flow. Similar to the llvm.expect intrinsic, it may be used to alter
5011optimizations related to compare and branch instructions. The metadata
5012is treated as a boolean value; if it exists, it signals that the branch
5013or switch that it is attached to is completely unpredictable.
5014
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005015'``llvm.loop``'
5016^^^^^^^^^^^^^^^
5017
5018It is sometimes useful to attach information to loop constructs. Currently,
5019loop metadata is implemented as metadata attached to the branch instruction
5020in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00005021guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00005022specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005023
5024The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00005025itself to avoid merging it with any other identifier metadata, e.g.,
5026during module linkage or function inlining. That is, each loop should refer
5027to their own identification metadata even if they reside in separate functions.
5028The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00005029constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005030
5031.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00005032
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005033 !0 = !{!0}
5034 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00005035
Mark Heffernan893752a2014-07-18 19:24:51 +00005036The loop identifier metadata can be used to specify additional
5037per-loop metadata. Any operands after the first operand can be treated
5038as user-defined metadata. For example the ``llvm.loop.unroll.count``
5039suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005040
Paul Redmond5fdf8362013-05-28 20:00:34 +00005041.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005042
Paul Redmond5fdf8362013-05-28 20:00:34 +00005043 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
5044 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005045 !0 = !{!0, !1}
5046 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005047
Mark Heffernan9d20e422014-07-21 23:11:03 +00005048'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
5049^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00005050
Mark Heffernan9d20e422014-07-21 23:11:03 +00005051Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
5052used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00005053vectorization width and interleave count. These metadata should be used in
5054conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00005055``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
5056optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00005057it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00005058which contains information about loop-carried memory dependencies can be helpful
5059in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00005060
Mark Heffernan9d20e422014-07-21 23:11:03 +00005061'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00005062^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5063
Mark Heffernan9d20e422014-07-21 23:11:03 +00005064This metadata suggests an interleave count to the loop interleaver.
5065The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00005066second operand is an integer specifying the interleave count. For
5067example:
5068
5069.. code-block:: llvm
5070
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005071 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005072
Mark Heffernan9d20e422014-07-21 23:11:03 +00005073Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00005074multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00005075then the interleave count will be determined automatically.
5076
5077'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00005078^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00005079
5080This metadata selectively enables or disables vectorization for the loop. The
5081first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00005082is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000050830 disables vectorization:
5084
5085.. code-block:: llvm
5086
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005087 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
5088 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00005089
5090'``llvm.loop.vectorize.width``' Metadata
5091^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5092
5093This metadata sets the target width of the vectorizer. The first
5094operand is the string ``llvm.loop.vectorize.width`` and the second
5095operand is an integer specifying the width. For example:
5096
5097.. code-block:: llvm
5098
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005099 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005100
5101Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00005102vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000051030 or if the loop does not have this metadata the width will be
5104determined automatically.
5105
5106'``llvm.loop.unroll``'
5107^^^^^^^^^^^^^^^^^^^^^^
5108
5109Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
5110optimization hints such as the unroll factor. ``llvm.loop.unroll``
5111metadata should be used in conjunction with ``llvm.loop`` loop
5112identification metadata. The ``llvm.loop.unroll`` metadata are only
5113optimization hints and the unrolling will only be performed if the
5114optimizer believes it is safe to do so.
5115
Mark Heffernan893752a2014-07-18 19:24:51 +00005116'``llvm.loop.unroll.count``' Metadata
5117^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5118
5119This metadata suggests an unroll factor to the loop unroller. The
5120first operand is the string ``llvm.loop.unroll.count`` and the second
5121operand is a positive integer specifying the unroll factor. For
5122example:
5123
5124.. code-block:: llvm
5125
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005126 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005127
5128If the trip count of the loop is less than the unroll count the loop
5129will be partially unrolled.
5130
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005131'``llvm.loop.unroll.disable``' Metadata
5132^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5133
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005134This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00005135which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005136
5137.. code-block:: llvm
5138
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005139 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005140
Kevin Qin715b01e2015-03-09 06:14:18 +00005141'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00005142^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00005143
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005144This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00005145operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00005146
5147.. code-block:: llvm
5148
5149 !0 = !{!"llvm.loop.unroll.runtime.disable"}
5150
Mark Heffernan89391542015-08-10 17:28:08 +00005151'``llvm.loop.unroll.enable``' Metadata
5152^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5153
5154This metadata suggests that the loop should be fully unrolled if the trip count
5155is known at compile time and partially unrolled if the trip count is not known
5156at compile time. The metadata has a single operand which is the string
5157``llvm.loop.unroll.enable``. For example:
5158
5159.. code-block:: llvm
5160
5161 !0 = !{!"llvm.loop.unroll.enable"}
5162
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005163'``llvm.loop.unroll.full``' Metadata
5164^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5165
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005166This metadata suggests that the loop should be unrolled fully. The
5167metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005168For example:
5169
5170.. code-block:: llvm
5171
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005172 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005173
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005174'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00005175^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005176
5177This metadata indicates that the loop should not be versioned for the purpose
5178of enabling loop-invariant code motion (LICM). The metadata has a single operand
5179which is the string ``llvm.loop.licm_versioning.disable``. For example:
5180
5181.. code-block:: llvm
5182
5183 !0 = !{!"llvm.loop.licm_versioning.disable"}
5184
Adam Nemetd2fa4142016-04-27 05:28:18 +00005185'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00005186^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00005187
5188Loop distribution allows splitting a loop into multiple loops. Currently,
5189this is only performed if the entire loop cannot be vectorized due to unsafe
Hiroshi Inoueb93daec2017-07-02 12:44:27 +00005190memory dependencies. The transformation will attempt to isolate the unsafe
Adam Nemetd2fa4142016-04-27 05:28:18 +00005191dependencies into their own loop.
5192
5193This metadata can be used to selectively enable or disable distribution of the
5194loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
5195second operand is a bit. If the bit operand value is 1 distribution is
5196enabled. A value of 0 disables distribution:
5197
5198.. code-block:: llvm
5199
5200 !0 = !{!"llvm.loop.distribute.enable", i1 0}
5201 !1 = !{!"llvm.loop.distribute.enable", i1 1}
5202
5203This metadata should be used in conjunction with ``llvm.loop`` loop
5204identification metadata.
5205
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005206'``llvm.mem``'
5207^^^^^^^^^^^^^^^
5208
5209Metadata types used to annotate memory accesses with information helpful
5210for optimizations are prefixed with ``llvm.mem``.
5211
5212'``llvm.mem.parallel_loop_access``' Metadata
5213^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5214
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005215The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
5216or metadata containing a list of loop identifiers for nested loops.
5217The metadata is attached to memory accessing instructions and denotes that
5218no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00005219with the same loop identifier. The metadata on memory reads also implies that
5220if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005221
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005222Precisely, given two instructions ``m1`` and ``m2`` that both have the
5223``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
5224set of loops associated with that metadata, respectively, then there is no loop
5225carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005226``L2``.
5227
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005228As a special case, if all memory accessing instructions in a loop have
5229``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
5230loop has no loop carried memory dependences and is considered to be a parallel
5231loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005232
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005233Note that if not all memory access instructions have such metadata referring to
5234the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00005235memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005236safe mechanism, this causes loops that were originally parallel to be considered
5237sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005238insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005239
5240Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00005241both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005242metadata types that refer to the same loop identifier metadata.
5243
5244.. code-block:: llvm
5245
5246 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005247 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005248 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005249 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005250 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005251 ...
5252 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005253
5254 for.end:
5255 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005256 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005257
5258It is also possible to have nested parallel loops. In that case the
5259memory accesses refer to a list of loop identifier metadata nodes instead of
5260the loop identifier metadata node directly:
5261
5262.. code-block:: llvm
5263
5264 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005265 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005266 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005267 ...
5268 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005269
5270 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005271 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005272 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005273 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005274 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005275 ...
5276 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005277
5278 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005279 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005280 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00005281 ...
5282 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005283
5284 outer.for.end: ; preds = %for.body
5285 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005286 !0 = !{!1, !2} ; a list of loop identifiers
5287 !1 = !{!1} ; an identifier for the inner loop
5288 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005289
Hiroshi Yamauchidce9def2017-11-02 22:26:51 +00005290'``irr_loop``' Metadata
5291^^^^^^^^^^^^^^^^^^^^^^^
5292
5293``irr_loop`` metadata may be attached to the terminator instruction of a basic
5294block that's an irreducible loop header (note that an irreducible loop has more
5295than once header basic blocks.) If ``irr_loop`` metadata is attached to the
5296terminator instruction of a basic block that is not really an irreducible loop
5297header, the behavior is undefined. The intent of this metadata is to improve the
5298accuracy of the block frequency propagation. For example, in the code below, the
5299block ``header0`` may have a loop header weight (relative to the other headers of
5300the irreducible loop) of 100:
5301
5302.. code-block:: llvm
5303
5304 header0:
5305 ...
5306 br i1 %cmp, label %t1, label %t2, !irr_loop !0
5307
5308 ...
5309 !0 = !{"loop_header_weight", i64 100}
5310
5311Irreducible loop header weights are typically based on profile data.
5312
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005313'``invariant.group``' Metadata
5314^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5315
Piotr Padlewski74b155f2018-04-08 13:53:04 +00005316The experimental ``invariant.group`` metadata may be attached to
Piotr Padlewskice358262018-05-18 23:53:46 +00005317``load``/``store`` instructions referencing a single metadata with no entries.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005318The existence of the ``invariant.group`` metadata on the instruction tells
5319the optimizer that every ``load`` and ``store`` to the same pointer operand
Piotr Padlewskice358262018-05-18 23:53:46 +00005320can be assumed to load or store the same
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005321value (but see the ``llvm.launder.invariant.group`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005322when two pointers are considered the same). Pointers returned by bitcast or
5323getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005324
5325Examples:
5326
5327.. code-block:: llvm
5328
5329 @unknownPtr = external global i8
5330 ...
5331 %ptr = alloca i8
5332 store i8 42, i8* %ptr, !invariant.group !0
5333 call void @foo(i8* %ptr)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005334
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005335 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5336 call void @foo(i8* %ptr)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005337
5338 %newPtr = call i8* @getPointer(i8* %ptr)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005339 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005340
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005341 %unknownValue = load i8, i8* @unknownPtr
5342 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005343
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005344 call void @foo(i8* %ptr)
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005345 %newPtr2 = call i8* @llvm.launder.invariant.group(i8* %ptr)
5346 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through launder.invariant.group to get value of %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005347
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005348 ...
5349 declare void @foo(i8*)
5350 declare i8* @getPointer(i8*)
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005351 declare i8* @llvm.launder.invariant.group(i8*)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005352
Piotr Padlewskice358262018-05-18 23:53:46 +00005353 !0 = !{}
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005354
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005355The invariant.group metadata must be dropped when replacing one pointer by
5356another based on aliasing information. This is because invariant.group is tied
5357to the SSA value of the pointer operand.
5358
5359.. code-block:: llvm
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005360
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005361 %v = load i8, i8* %x, !invariant.group !0
5362 ; if %x mustalias %y then we can replace the above instruction with
5363 %v = load i8, i8* %y
5364
Piotr Padlewski74b155f2018-04-08 13:53:04 +00005365Note that this is an experimental feature, which means that its semantics might
5366change in the future.
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005367
Peter Collingbournea333db82016-07-26 22:31:30 +00005368'``type``' Metadata
5369^^^^^^^^^^^^^^^^^^^
5370
5371See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005372
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005373'``associated``' Metadata
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005374^^^^^^^^^^^^^^^^^^^^^^^^^
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005375
5376The ``associated`` metadata may be attached to a global object
5377declaration with a single argument that references another global object.
5378
5379This metadata prevents discarding of the global object in linker GC
5380unless the referenced object is also discarded. The linker support for
5381this feature is spotty. For best compatibility, globals carrying this
5382metadata may also:
5383
5384- Be in a comdat with the referenced global.
5385- Be in @llvm.compiler.used.
5386- Have an explicit section with a name which is a valid C identifier.
5387
5388It does not have any effect on non-ELF targets.
5389
5390Example:
5391
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005392.. code-block:: text
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005393
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005394 $a = comdat any
5395 @a = global i32 1, comdat $a
5396 @b = internal global i32 2, comdat $a, section "abc", !associated !0
5397 !0 = !{i32* @a}
5398
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005399
Teresa Johnsond72f51c2017-06-15 15:57:12 +00005400'``prof``' Metadata
5401^^^^^^^^^^^^^^^^^^^
5402
5403The ``prof`` metadata is used to record profile data in the IR.
5404The first operand of the metadata node indicates the profile metadata
5405type. There are currently 3 types:
5406:ref:`branch_weights<prof_node_branch_weights>`,
5407:ref:`function_entry_count<prof_node_function_entry_count>`, and
5408:ref:`VP<prof_node_VP>`.
5409
5410.. _prof_node_branch_weights:
5411
5412branch_weights
5413""""""""""""""
5414
5415Branch weight metadata attached to a branch, select, switch or call instruction
5416represents the likeliness of the associated branch being taken.
5417For more information, see :doc:`BranchWeightMetadata`.
5418
5419.. _prof_node_function_entry_count:
5420
5421function_entry_count
5422""""""""""""""""""""
5423
5424Function entry count metadata can be attached to function definitions
5425to record the number of times the function is called. Used with BFI
5426information, it is also used to derive the basic block profile count.
5427For more information, see :doc:`BranchWeightMetadata`.
5428
5429.. _prof_node_VP:
5430
5431VP
5432""
5433
5434VP (value profile) metadata can be attached to instructions that have
5435value profile information. Currently this is indirect calls (where it
5436records the hottest callees) and calls to memory intrinsics such as memcpy,
5437memmove, and memset (where it records the hottest byte lengths).
5438
5439Each VP metadata node contains "VP" string, then a uint32_t value for the value
5440profiling kind, a uint64_t value for the total number of times the instruction
5441is executed, followed by uint64_t value and execution count pairs.
5442The value profiling kind is 0 for indirect call targets and 1 for memory
5443operations. For indirect call targets, each profile value is a hash
5444of the callee function name, and for memory operations each value is the
5445byte length.
5446
5447Note that the value counts do not need to add up to the total count
5448listed in the third operand (in practice only the top hottest values
5449are tracked and reported).
5450
5451Indirect call example:
5452
5453.. code-block:: llvm
5454
5455 call void %f(), !prof !1
5456 !1 = !{!"VP", i32 0, i64 1600, i64 7651369219802541373, i64 1030, i64 -4377547752858689819, i64 410}
5457
5458Note that the VP type is 0 (the second operand), which indicates this is
5459an indirect call value profile data. The third operand indicates that the
5460indirect call executed 1600 times. The 4th and 6th operands give the
5461hashes of the 2 hottest target functions' names (this is the same hash used
5462to represent function names in the profile database), and the 5th and 7th
5463operands give the execution count that each of the respective prior target
5464functions was called.
5465
Sean Silvab084af42012-12-07 10:36:55 +00005466Module Flags Metadata
5467=====================
5468
5469Information about the module as a whole is difficult to convey to LLVM's
5470subsystems. The LLVM IR isn't sufficient to transmit this information.
5471The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005472this. These flags are in the form of key / value pairs --- much like a
5473dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005474look it up.
5475
5476The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5477Each triplet has the following form:
5478
5479- The first element is a *behavior* flag, which specifies the behavior
5480 when two (or more) modules are merged together, and it encounters two
5481 (or more) metadata with the same ID. The supported behaviors are
5482 described below.
5483- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005484 metadata. Each module may only have one flag entry for each unique ID (not
5485 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005486- The third element is the value of the flag.
5487
5488When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005489``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5490each unique metadata ID string, there will be exactly one entry in the merged
5491modules ``llvm.module.flags`` metadata table, and the value for that entry will
5492be determined by the merge behavior flag, as described below. The only exception
5493is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005494
5495The following behaviors are supported:
5496
5497.. list-table::
5498 :header-rows: 1
5499 :widths: 10 90
5500
5501 * - Value
5502 - Behavior
5503
5504 * - 1
5505 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005506 Emits an error if two values disagree, otherwise the resulting value
5507 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005508
5509 * - 2
5510 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005511 Emits a warning if two values disagree. The result value will be the
5512 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005513
5514 * - 3
5515 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005516 Adds a requirement that another module flag be present and have a
5517 specified value after linking is performed. The value must be a
5518 metadata pair, where the first element of the pair is the ID of the
5519 module flag to be restricted, and the second element of the pair is
5520 the value the module flag should be restricted to. This behavior can
5521 be used to restrict the allowable results (via triggering of an
5522 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005523
5524 * - 4
5525 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005526 Uses the specified value, regardless of the behavior or value of the
5527 other module. If both modules specify **Override**, but the values
5528 differ, an error will be emitted.
5529
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005530 * - 5
5531 - **Append**
5532 Appends the two values, which are required to be metadata nodes.
5533
5534 * - 6
5535 - **AppendUnique**
5536 Appends the two values, which are required to be metadata
5537 nodes. However, duplicate entries in the second list are dropped
5538 during the append operation.
5539
Steven Wu86a511e2017-08-15 16:16:33 +00005540 * - 7
5541 - **Max**
5542 Takes the max of the two values, which are required to be integers.
5543
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005544It is an error for a particular unique flag ID to have multiple behaviors,
5545except in the case of **Require** (which adds restrictions on another metadata
5546value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005547
5548An example of module flags:
5549
5550.. code-block:: llvm
5551
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005552 !0 = !{ i32 1, !"foo", i32 1 }
5553 !1 = !{ i32 4, !"bar", i32 37 }
5554 !2 = !{ i32 2, !"qux", i32 42 }
5555 !3 = !{ i32 3, !"qux",
5556 !{
5557 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005558 }
5559 }
5560 !llvm.module.flags = !{ !0, !1, !2, !3 }
5561
5562- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5563 if two or more ``!"foo"`` flags are seen is to emit an error if their
5564 values are not equal.
5565
5566- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5567 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005568 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005569
5570- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5571 behavior if two or more ``!"qux"`` flags are seen is to emit a
5572 warning if their values are not equal.
5573
5574- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5575
5576 ::
5577
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005578 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005579
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005580 The behavior is to emit an error if the ``llvm.module.flags`` does not
5581 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5582 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005583
5584Objective-C Garbage Collection Module Flags Metadata
5585----------------------------------------------------
5586
5587On the Mach-O platform, Objective-C stores metadata about garbage
5588collection in a special section called "image info". The metadata
5589consists of a version number and a bitmask specifying what types of
5590garbage collection are supported (if any) by the file. If two or more
5591modules are linked together their garbage collection metadata needs to
5592be merged rather than appended together.
5593
5594The Objective-C garbage collection module flags metadata consists of the
5595following key-value pairs:
5596
5597.. list-table::
5598 :header-rows: 1
5599 :widths: 30 70
5600
5601 * - Key
5602 - Value
5603
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005604 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005605 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005606
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005607 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005608 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005609 always 0.
5610
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005611 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005612 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005613 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5614 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5615 Objective-C ABI version 2.
5616
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005617 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005618 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005619 not. Valid values are 0, for no garbage collection, and 2, for garbage
5620 collection supported.
5621
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005622 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005623 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005624 If present, its value must be 6. This flag requires that the
5625 ``Objective-C Garbage Collection`` flag have the value 2.
5626
5627Some important flag interactions:
5628
5629- If a module with ``Objective-C Garbage Collection`` set to 0 is
5630 merged with a module with ``Objective-C Garbage Collection`` set to
5631 2, then the resulting module has the
5632 ``Objective-C Garbage Collection`` flag set to 0.
5633- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5634 merged with a module with ``Objective-C GC Only`` set to 6.
5635
Oliver Stannard5dc29342014-06-20 10:08:11 +00005636C type width Module Flags Metadata
5637----------------------------------
5638
5639The ARM backend emits a section into each generated object file describing the
5640options that it was compiled with (in a compiler-independent way) to prevent
5641linking incompatible objects, and to allow automatic library selection. Some
5642of these options are not visible at the IR level, namely wchar_t width and enum
5643width.
5644
5645To pass this information to the backend, these options are encoded in module
5646flags metadata, using the following key-value pairs:
5647
5648.. list-table::
5649 :header-rows: 1
5650 :widths: 30 70
5651
5652 * - Key
5653 - Value
5654
5655 * - short_wchar
5656 - * 0 --- sizeof(wchar_t) == 4
5657 * 1 --- sizeof(wchar_t) == 2
5658
5659 * - short_enum
5660 - * 0 --- Enums are at least as large as an ``int``.
5661 * 1 --- Enums are stored in the smallest integer type which can
5662 represent all of its values.
5663
5664For example, the following metadata section specifies that the module was
5665compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5666enum is the smallest type which can represent all of its values::
5667
5668 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005669 !0 = !{i32 1, !"short_wchar", i32 1}
5670 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005671
Peter Collingbourne89061b22017-06-12 20:10:48 +00005672Automatic Linker Flags Named Metadata
5673=====================================
5674
5675Some targets support embedding flags to the linker inside individual object
5676files. Typically this is used in conjunction with language extensions which
5677allow source files to explicitly declare the libraries they depend on, and have
5678these automatically be transmitted to the linker via object files.
5679
5680These flags are encoded in the IR using named metadata with the name
5681``!llvm.linker.options``. Each operand is expected to be a metadata node
5682which should be a list of other metadata nodes, each of which should be a
5683list of metadata strings defining linker options.
5684
5685For example, the following metadata section specifies two separate sets of
5686linker options, presumably to link against ``libz`` and the ``Cocoa``
5687framework::
5688
5689 !0 = !{ !"-lz" },
5690 !1 = !{ !"-framework", !"Cocoa" } } }
5691 !llvm.linker.options = !{ !0, !1 }
5692
5693The metadata encoding as lists of lists of options, as opposed to a collapsed
5694list of options, is chosen so that the IR encoding can use multiple option
5695strings to specify e.g., a single library, while still having that specifier be
5696preserved as an atomic element that can be recognized by a target specific
5697assembly writer or object file emitter.
5698
5699Each individual option is required to be either a valid option for the target's
5700linker, or an option that is reserved by the target specific assembly writer or
5701object file emitter. No other aspect of these options is defined by the IR.
5702
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005703.. _summary:
5704
5705ThinLTO Summary
5706===============
5707
5708Compiling with `ThinLTO <https://clang.llvm.org/docs/ThinLTO.html>`_
5709causes the building of a compact summary of the module that is emitted into
5710the bitcode. The summary is emitted into the LLVM assembly and identified
5711in syntax by a caret ('``^``').
5712
5713*Note that temporarily the summary entries are skipped when parsing the
5714assembly, although the parsing support is actively being implemented. The
5715following describes when the summary entries will be parsed once implemented.*
5716The summary will be parsed into a ModuleSummaryIndex object under the
5717same conditions where summary index is currently built from bitcode.
5718Specifically, tools that test the Thin Link portion of a ThinLTO compile
5719(i.e. llvm-lto and llvm-lto2), or when parsing a combined index
5720for a distributed ThinLTO backend via clang's "``-fthinlto-index=<>``" flag.
5721Additionally, it will be parsed into a bitcode output, along with the Module
5722IR, via the "``llvm-as``" tool. Tools that parse the Module IR for the purposes
5723of optimization (e.g. "``clang -x ir``" and "``opt``"), will ignore the
5724summary entries (just as they currently ignore summary entries in a bitcode
5725input file).
5726
5727There are currently 3 types of summary entries in the LLVM assembly:
5728:ref:`module paths<module_path_summary>`,
5729:ref:`global values<gv_summary>`, and
5730:ref:`type identifiers<typeid_summary>`.
5731
5732.. _module_path_summary:
5733
5734Module Path Summary Entry
5735-------------------------
5736
5737Each module path summary entry lists a module containing global values included
5738in the summary. For a single IR module there will be one such entry, but
5739in a combined summary index produced during the thin link, there will be
5740one module path entry per linked module with summary.
5741
5742Example:
5743
5744.. code-block:: llvm
5745
5746 ^0 = module: (path: "/path/to/file.o", hash: (2468601609, 1329373163, 1565878005, 638838075, 3148790418))
5747
5748The ``path`` field is a string path to the bitcode file, and the ``hash``
5749field is the 160-bit SHA-1 hash of the IR bitcode contents, used for
5750incremental builds and caching.
5751
5752.. _gv_summary:
5753
5754Global Value Summary Entry
5755--------------------------
5756
5757Each global value summary entry corresponds to a global value defined or
5758referenced by a summarized module.
5759
5760Example:
5761
5762.. code-block:: llvm
5763
5764 ^4 = gv: (name: "f"[, summaries: (Summary)[, (Summary)]*]?) ; guid = 14740650423002898831
5765
5766For declarations, there will not be a summary list. For definitions, a
5767global value will contain a list of summaries, one per module containing
5768a definition. There can be multiple entries in a combined summary index
5769for symbols with weak linkage.
5770
5771Each ``Summary`` format will depend on whether the global value is a
5772:ref:`function<function_summary>`, :ref:`variable<variable_summary>`, or
5773:ref:`alias<alias_summary>`.
5774
5775.. _function_summary:
5776
5777Function Summary
5778^^^^^^^^^^^^^^^^
5779
5780If the global value is a function, the ``Summary`` entry will look like:
5781
5782.. code-block:: llvm
5783
5784 function: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), insts: 2[, FuncFlags]?[, Calls]?[, TypeIdInfo]?[, Refs]?
5785
5786The ``module`` field includes the summary entry id for the module containing
5787this definition, and the ``flags`` field contains information such as
5788the linkage type, a flag indicating whether it is legal to import the
5789definition, whether it is globally live and whether the linker resolved it
5790to a local definition (the latter two are populated during the thin link).
5791The ``insts`` field contains the number of IR instructions in the function.
5792Finally, there are several optional fields: :ref:`FuncFlags<funcflags_summary>`,
5793:ref:`Calls<calls_summary>`, :ref:`TypeIdInfo<typeidinfo_summary>`,
5794:ref:`Refs<refs_summary>`.
5795
5796.. _variable_summary:
5797
5798Global Variable Summary
5799^^^^^^^^^^^^^^^^^^^^^^^
5800
5801If the global value is a variable, the ``Summary`` entry will look like:
5802
5803.. code-block:: llvm
5804
5805 variable: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0)[, Refs]?
5806
5807The variable entry contains a subset of the fields in a
5808:ref:`function summary <function_summary>`, see the descriptions there.
5809
5810.. _alias_summary:
5811
5812Alias Summary
5813^^^^^^^^^^^^^
5814
5815If the global value is an alias, the ``Summary`` entry will look like:
5816
5817.. code-block:: llvm
5818
5819 alias: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), aliasee: ^2)
5820
5821The ``module`` and ``flags`` fields are as described for a
5822:ref:`function summary <function_summary>`. The ``aliasee`` field
5823contains a reference to the global value summary entry of the aliasee.
5824
5825.. _funcflags_summary:
5826
5827Function Flags
5828^^^^^^^^^^^^^^
5829
5830The optional ``FuncFlags`` field looks like:
5831
5832.. code-block:: llvm
5833
5834 funcFlags: (readNone: 0, readOnly: 0, noRecurse: 0, returnDoesNotAlias: 0)
5835
5836If unspecified, flags are assumed to hold the conservative ``false`` value of
5837``0``.
5838
5839.. _calls_summary:
5840
5841Calls
5842^^^^^
5843
5844The optional ``Calls`` field looks like:
5845
5846.. code-block:: llvm
5847
5848 calls: ((Callee)[, (Callee)]*)
5849
5850where each ``Callee`` looks like:
5851
5852.. code-block:: llvm
5853
5854 callee: ^1[, hotness: None]?[, relbf: 0]?
5855
5856The ``callee`` refers to the summary entry id of the callee. At most one
5857of ``hotness`` (which can take the values ``Unknown``, ``Cold``, ``None``,
5858``Hot``, and ``Critical``), and ``relbf`` (which holds the integer
5859branch frequency relative to the entry frequency, scaled down by 2^8)
5860may be specified. The defaults are ``Unknown`` and ``0``, respectively.
5861
5862.. _refs_summary:
5863
5864Refs
5865^^^^
5866
5867The optional ``Refs`` field looks like:
5868
5869.. code-block:: llvm
5870
5871 refs: ((Ref)[, (Ref)]*)
5872
5873where each ``Ref`` contains a reference to the summary id of the referenced
5874value (e.g. ``^1``).
5875
5876.. _typeidinfo_summary:
5877
5878TypeIdInfo
5879^^^^^^^^^^
5880
5881The optional ``TypeIdInfo`` field, used for
5882`Control Flow Integrity <http://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
5883looks like:
5884
5885.. code-block:: llvm
5886
5887 typeIdInfo: [(TypeTests)]?[, (TypeTestAssumeVCalls)]?[, (TypeCheckedLoadVCalls)]?[, (TypeTestAssumeConstVCalls)]?[, (TypeCheckedLoadConstVCalls)]?
5888
5889These optional fields have the following forms:
5890
5891TypeTests
5892"""""""""
5893
5894.. code-block:: llvm
5895
5896 typeTests: (TypeIdRef[, TypeIdRef]*)
5897
5898Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
5899by summary id or ``GUID``.
5900
5901TypeTestAssumeVCalls
5902""""""""""""""""""""
5903
5904.. code-block:: llvm
5905
5906 typeTestAssumeVCalls: (VFuncId[, VFuncId]*)
5907
5908Where each VFuncId has the format:
5909
5910.. code-block:: llvm
5911
5912 vFuncId: (TypeIdRef, offset: 16)
5913
5914Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
5915by summary id or ``GUID`` preceeded by a ``guid:`` tag.
5916
5917TypeCheckedLoadVCalls
5918"""""""""""""""""""""
5919
5920.. code-block:: llvm
5921
5922 typeCheckedLoadVCalls: (VFuncId[, VFuncId]*)
5923
5924Where each VFuncId has the format described for ``TypeTestAssumeVCalls``.
5925
5926TypeTestAssumeConstVCalls
5927"""""""""""""""""""""""""
5928
5929.. code-block:: llvm
5930
5931 typeTestAssumeConstVCalls: (ConstVCall[, ConstVCall]*)
5932
5933Where each ConstVCall has the format:
5934
5935.. code-block:: llvm
5936
5937 VFuncId, args: (Arg[, Arg]*)
5938
5939and where each VFuncId has the format described for ``TypeTestAssumeVCalls``,
5940and each Arg is an integer argument number.
5941
5942TypeCheckedLoadConstVCalls
5943""""""""""""""""""""""""""
5944
5945.. code-block:: llvm
5946
5947 typeCheckedLoadConstVCalls: (ConstVCall[, ConstVCall]*)
5948
5949Where each ConstVCall has the format described for
5950``TypeTestAssumeConstVCalls``.
5951
5952.. _typeid_summary:
5953
5954Type ID Summary Entry
5955---------------------
5956
5957Each type id summary entry corresponds to a type identifier resolution
5958which is generated during the LTO link portion of the compile when building
5959with `Control Flow Integrity <http://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
5960so these are only present in a combined summary index.
5961
5962Example:
5963
5964.. code-block:: llvm
5965
5966 ^4 = typeid: (name: "_ZTS1A", summary: (typeTestRes: (kind: allOnes, sizeM1BitWidth: 7[, alignLog2: 0]?[, sizeM1: 0]?[, bitMask: 0]?[, inlineBits: 0]?)[, WpdResolutions]?)) ; guid = 7004155349499253778
5967
5968The ``typeTestRes`` gives the type test resolution ``kind`` (which may
5969be ``unsat``, ``byteArray``, ``inline``, ``single``, or ``allOnes``), and
5970the ``size-1`` bit width. It is followed by optional flags, which default to 0,
5971and an optional WpdResolutions (whole program devirtualization resolution)
5972field that looks like:
5973
5974.. code-block:: llvm
5975
5976 wpdResolutions: ((offset: 0, WpdRes)[, (offset: 1, WpdRes)]*
5977
5978where each entry is a mapping from the given byte offset to the whole-program
5979devirtualization resolution WpdRes, that has one of the following formats:
5980
5981.. code-block:: llvm
5982
5983 wpdRes: (kind: branchFunnel)
5984 wpdRes: (kind: singleImpl, singleImplName: "_ZN1A1nEi")
5985 wpdRes: (kind: indir)
5986
5987Additionally, each wpdRes has an optional ``resByArg`` field, which
5988describes the resolutions for calls with all constant integer arguments:
5989
5990.. code-block:: llvm
5991
5992 resByArg: (ResByArg[, ResByArg]*)
5993
5994where ResByArg is:
5995
5996.. code-block:: llvm
5997
5998 args: (Arg[, Arg]*), byArg: (kind: UniformRetVal[, info: 0][, byte: 0][, bit: 0])
5999
6000Where the ``kind`` can be ``Indir``, ``UniformRetVal``, ``UniqueRetVal``
6001or ``VirtualConstProp``. The ``info`` field is only used if the kind
6002is ``UniformRetVal`` (indicates the uniform return value), or
6003``UniqueRetVal`` (holds the return value associated with the unique vtable
6004(0 or 1)). The ``byte`` and ``bit`` fields are only used if the target does
6005not support the use of absolute symbols to store constants.
6006
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006007.. _intrinsicglobalvariables:
6008
Sean Silvab084af42012-12-07 10:36:55 +00006009Intrinsic Global Variables
6010==========================
6011
6012LLVM has a number of "magic" global variables that contain data that
6013affect code generation or other IR semantics. These are documented here.
6014All globals of this sort should have a section specified as
6015"``llvm.metadata``". This section and all globals that start with
6016"``llvm.``" are reserved for use by LLVM.
6017
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006018.. _gv_llvmused:
6019
Sean Silvab084af42012-12-07 10:36:55 +00006020The '``llvm.used``' Global Variable
6021-----------------------------------
6022
Rafael Espindola74f2e462013-04-22 14:58:02 +00006023The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00006024:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00006025pointers to named global variables, functions and aliases which may optionally
6026have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00006027use of it is:
6028
6029.. code-block:: llvm
6030
6031 @X = global i8 4
6032 @Y = global i32 123
6033
6034 @llvm.used = appending global [2 x i8*] [
6035 i8* @X,
6036 i8* bitcast (i32* @Y to i8*)
6037 ], section "llvm.metadata"
6038
Rafael Espindola74f2e462013-04-22 14:58:02 +00006039If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
6040and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00006041symbol that it cannot see (which is why they have to be named). For example, if
6042a variable has internal linkage and no references other than that from the
6043``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
6044references from inline asms and other things the compiler cannot "see", and
6045corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00006046
6047On some targets, the code generator must emit a directive to the
6048assembler or object file to prevent the assembler and linker from
6049molesting the symbol.
6050
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006051.. _gv_llvmcompilerused:
6052
Sean Silvab084af42012-12-07 10:36:55 +00006053The '``llvm.compiler.used``' Global Variable
6054--------------------------------------------
6055
6056The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
6057directive, except that it only prevents the compiler from touching the
6058symbol. On targets that support it, this allows an intelligent linker to
6059optimize references to the symbol without being impeded as it would be
6060by ``@llvm.used``.
6061
6062This is a rare construct that should only be used in rare circumstances,
6063and should not be exposed to source languages.
6064
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006065.. _gv_llvmglobalctors:
6066
Sean Silvab084af42012-12-07 10:36:55 +00006067The '``llvm.global_ctors``' Global Variable
6068-------------------------------------------
6069
6070.. code-block:: llvm
6071
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006072 %0 = type { i32, void ()*, i8* }
6073 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00006074
6075The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006076functions, priorities, and an optional associated global or function.
6077The functions referenced by this array will be called in ascending order
6078of priority (i.e. lowest first) when the module is loaded. The order of
6079functions with the same priority is not defined.
6080
6081If the third field is present, non-null, and points to a global variable
6082or function, the initializer function will only run if the associated
6083data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00006084
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006085.. _llvmglobaldtors:
6086
Sean Silvab084af42012-12-07 10:36:55 +00006087The '``llvm.global_dtors``' Global Variable
6088-------------------------------------------
6089
6090.. code-block:: llvm
6091
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006092 %0 = type { i32, void ()*, i8* }
6093 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00006094
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006095The ``@llvm.global_dtors`` array contains a list of destructor
6096functions, priorities, and an optional associated global or function.
6097The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00006098order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006099order of functions with the same priority is not defined.
6100
6101If the third field is present, non-null, and points to a global variable
6102or function, the destructor function will only run if the associated
6103data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00006104
6105Instruction Reference
6106=====================
6107
6108The LLVM instruction set consists of several different classifications
6109of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
6110instructions <binaryops>`, :ref:`bitwise binary
6111instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
6112:ref:`other instructions <otherops>`.
6113
6114.. _terminators:
6115
6116Terminator Instructions
6117-----------------------
6118
6119As mentioned :ref:`previously <functionstructure>`, every basic block in a
6120program ends with a "Terminator" instruction, which indicates which
6121block should be executed after the current block is finished. These
6122terminator instructions typically yield a '``void``' value: they produce
6123control flow, not values (the one exception being the
6124':ref:`invoke <i_invoke>`' instruction).
6125
6126The terminator instructions are: ':ref:`ret <i_ret>`',
6127':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
6128':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00006129':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00006130':ref:`catchret <i_catchret>`',
6131':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00006132and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00006133
6134.. _i_ret:
6135
6136'``ret``' Instruction
6137^^^^^^^^^^^^^^^^^^^^^
6138
6139Syntax:
6140"""""""
6141
6142::
6143
6144 ret <type> <value> ; Return a value from a non-void function
6145 ret void ; Return from void function
6146
6147Overview:
6148"""""""""
6149
6150The '``ret``' instruction is used to return control flow (and optionally
6151a value) from a function back to the caller.
6152
6153There are two forms of the '``ret``' instruction: one that returns a
6154value and then causes control flow, and one that just causes control
6155flow to occur.
6156
6157Arguments:
6158""""""""""
6159
6160The '``ret``' instruction optionally accepts a single argument, the
6161return value. The type of the return value must be a ':ref:`first
6162class <t_firstclass>`' type.
6163
6164A function is not :ref:`well formed <wellformed>` if it it has a non-void
6165return type and contains a '``ret``' instruction with no return value or
6166a return value with a type that does not match its type, or if it has a
6167void return type and contains a '``ret``' instruction with a return
6168value.
6169
6170Semantics:
6171""""""""""
6172
6173When the '``ret``' instruction is executed, control flow returns back to
6174the calling function's context. If the caller is a
6175":ref:`call <i_call>`" instruction, execution continues at the
6176instruction after the call. If the caller was an
6177":ref:`invoke <i_invoke>`" instruction, execution continues at the
6178beginning of the "normal" destination block. If the instruction returns
6179a value, that value shall set the call or invoke instruction's return
6180value.
6181
6182Example:
6183""""""""
6184
6185.. code-block:: llvm
6186
6187 ret i32 5 ; Return an integer value of 5
6188 ret void ; Return from a void function
6189 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
6190
6191.. _i_br:
6192
6193'``br``' Instruction
6194^^^^^^^^^^^^^^^^^^^^
6195
6196Syntax:
6197"""""""
6198
6199::
6200
6201 br i1 <cond>, label <iftrue>, label <iffalse>
6202 br label <dest> ; Unconditional branch
6203
6204Overview:
6205"""""""""
6206
6207The '``br``' instruction is used to cause control flow to transfer to a
6208different basic block in the current function. There are two forms of
6209this instruction, corresponding to a conditional branch and an
6210unconditional branch.
6211
6212Arguments:
6213""""""""""
6214
6215The conditional branch form of the '``br``' instruction takes a single
6216'``i1``' value and two '``label``' values. The unconditional form of the
6217'``br``' instruction takes a single '``label``' value as a target.
6218
6219Semantics:
6220""""""""""
6221
6222Upon execution of a conditional '``br``' instruction, the '``i1``'
6223argument is evaluated. If the value is ``true``, control flows to the
6224'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
6225to the '``iffalse``' ``label`` argument.
6226
6227Example:
6228""""""""
6229
6230.. code-block:: llvm
6231
6232 Test:
6233 %cond = icmp eq i32 %a, %b
6234 br i1 %cond, label %IfEqual, label %IfUnequal
6235 IfEqual:
6236 ret i32 1
6237 IfUnequal:
6238 ret i32 0
6239
6240.. _i_switch:
6241
6242'``switch``' Instruction
6243^^^^^^^^^^^^^^^^^^^^^^^^
6244
6245Syntax:
6246"""""""
6247
6248::
6249
6250 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
6251
6252Overview:
6253"""""""""
6254
6255The '``switch``' instruction is used to transfer control flow to one of
6256several different places. It is a generalization of the '``br``'
6257instruction, allowing a branch to occur to one of many possible
6258destinations.
6259
6260Arguments:
6261""""""""""
6262
6263The '``switch``' instruction uses three parameters: an integer
6264comparison value '``value``', a default '``label``' destination, and an
6265array of pairs of comparison value constants and '``label``'s. The table
6266is not allowed to contain duplicate constant entries.
6267
6268Semantics:
6269""""""""""
6270
6271The ``switch`` instruction specifies a table of values and destinations.
6272When the '``switch``' instruction is executed, this table is searched
6273for the given value. If the value is found, control flow is transferred
6274to the corresponding destination; otherwise, control flow is transferred
6275to the default destination.
6276
6277Implementation:
6278"""""""""""""""
6279
6280Depending on properties of the target machine and the particular
6281``switch`` instruction, this instruction may be code generated in
6282different ways. For example, it could be generated as a series of
6283chained conditional branches or with a lookup table.
6284
6285Example:
6286""""""""
6287
6288.. code-block:: llvm
6289
6290 ; Emulate a conditional br instruction
6291 %Val = zext i1 %value to i32
6292 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
6293
6294 ; Emulate an unconditional br instruction
6295 switch i32 0, label %dest [ ]
6296
6297 ; Implement a jump table:
6298 switch i32 %val, label %otherwise [ i32 0, label %onzero
6299 i32 1, label %onone
6300 i32 2, label %ontwo ]
6301
6302.. _i_indirectbr:
6303
6304'``indirectbr``' Instruction
6305^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6306
6307Syntax:
6308"""""""
6309
6310::
6311
6312 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
6313
6314Overview:
6315"""""""""
6316
6317The '``indirectbr``' instruction implements an indirect branch to a
6318label within the current function, whose address is specified by
6319"``address``". Address must be derived from a
6320:ref:`blockaddress <blockaddress>` constant.
6321
6322Arguments:
6323""""""""""
6324
6325The '``address``' argument is the address of the label to jump to. The
6326rest of the arguments indicate the full set of possible destinations
6327that the address may point to. Blocks are allowed to occur multiple
6328times in the destination list, though this isn't particularly useful.
6329
6330This destination list is required so that dataflow analysis has an
6331accurate understanding of the CFG.
6332
6333Semantics:
6334""""""""""
6335
6336Control transfers to the block specified in the address argument. All
6337possible destination blocks must be listed in the label list, otherwise
6338this instruction has undefined behavior. This implies that jumps to
6339labels defined in other functions have undefined behavior as well.
6340
6341Implementation:
6342"""""""""""""""
6343
6344This is typically implemented with a jump through a register.
6345
6346Example:
6347""""""""
6348
6349.. code-block:: llvm
6350
6351 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
6352
6353.. _i_invoke:
6354
6355'``invoke``' Instruction
6356^^^^^^^^^^^^^^^^^^^^^^^^
6357
6358Syntax:
6359"""""""
6360
6361::
6362
David Blaikieb83cf102016-07-13 17:21:34 +00006363 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006364 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00006365
6366Overview:
6367"""""""""
6368
6369The '``invoke``' instruction causes control to transfer to a specified
6370function, with the possibility of control flow transfer to either the
6371'``normal``' label or the '``exception``' label. If the callee function
6372returns with the "``ret``" instruction, control flow will return to the
6373"normal" label. If the callee (or any indirect callees) returns via the
6374":ref:`resume <i_resume>`" instruction or other exception handling
6375mechanism, control is interrupted and continued at the dynamically
6376nearest "exception" label.
6377
6378The '``exception``' label is a `landing
6379pad <ExceptionHandling.html#overview>`_ for the exception. As such,
6380'``exception``' label is required to have the
6381":ref:`landingpad <i_landingpad>`" instruction, which contains the
6382information about the behavior of the program after unwinding happens,
6383as its first non-PHI instruction. The restrictions on the
6384"``landingpad``" instruction's tightly couples it to the "``invoke``"
6385instruction, so that the important information contained within the
6386"``landingpad``" instruction can't be lost through normal code motion.
6387
6388Arguments:
6389""""""""""
6390
6391This instruction requires several arguments:
6392
6393#. The optional "cconv" marker indicates which :ref:`calling
6394 convention <callingconv>` the call should use. If none is
6395 specified, the call defaults to using C calling conventions.
6396#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6397 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6398 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00006399#. '``ty``': the type of the call instruction itself which is also the
6400 type of the return value. Functions that return no value are marked
6401 ``void``.
6402#. '``fnty``': shall be the signature of the function being invoked. The
6403 argument types must match the types implied by this signature. This
6404 type can be omitted if the function is not varargs.
6405#. '``fnptrval``': An LLVM value containing a pointer to a function to
6406 be invoked. In most cases, this is a direct function invocation, but
6407 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
6408 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00006409#. '``function args``': argument list whose types match the function
6410 signature argument types and parameter attributes. All arguments must
6411 be of :ref:`first class <t_firstclass>` type. If the function signature
6412 indicates the function accepts a variable number of arguments, the
6413 extra arguments can be specified.
6414#. '``normal label``': the label reached when the called function
6415 executes a '``ret``' instruction.
6416#. '``exception label``': the label reached when a callee returns via
6417 the :ref:`resume <i_resume>` instruction or other exception handling
6418 mechanism.
George Burgess IV8a464a72017-04-13 05:00:31 +00006419#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006420#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00006421
6422Semantics:
6423""""""""""
6424
6425This instruction is designed to operate as a standard '``call``'
6426instruction in most regards. The primary difference is that it
6427establishes an association with a label, which is used by the runtime
6428library to unwind the stack.
6429
6430This instruction is used in languages with destructors to ensure that
6431proper cleanup is performed in the case of either a ``longjmp`` or a
6432thrown exception. Additionally, this is important for implementation of
6433'``catch``' clauses in high-level languages that support them.
6434
6435For the purposes of the SSA form, the definition of the value returned
6436by the '``invoke``' instruction is deemed to occur on the edge from the
6437current block to the "normal" label. If the callee unwinds then no
6438return value is available.
6439
6440Example:
6441""""""""
6442
6443.. code-block:: llvm
6444
6445 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006446 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006447 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006448 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006449
6450.. _i_resume:
6451
6452'``resume``' Instruction
6453^^^^^^^^^^^^^^^^^^^^^^^^
6454
6455Syntax:
6456"""""""
6457
6458::
6459
6460 resume <type> <value>
6461
6462Overview:
6463"""""""""
6464
6465The '``resume``' instruction is a terminator instruction that has no
6466successors.
6467
6468Arguments:
6469""""""""""
6470
6471The '``resume``' instruction requires one argument, which must have the
6472same type as the result of any '``landingpad``' instruction in the same
6473function.
6474
6475Semantics:
6476""""""""""
6477
6478The '``resume``' instruction resumes propagation of an existing
6479(in-flight) exception whose unwinding was interrupted with a
6480:ref:`landingpad <i_landingpad>` instruction.
6481
6482Example:
6483""""""""
6484
6485.. code-block:: llvm
6486
6487 resume { i8*, i32 } %exn
6488
David Majnemer8a1c45d2015-12-12 05:38:55 +00006489.. _i_catchswitch:
6490
6491'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00006492^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00006493
6494Syntax:
6495"""""""
6496
6497::
6498
6499 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
6500 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
6501
6502Overview:
6503"""""""""
6504
6505The '``catchswitch``' instruction is used by `LLVM's exception handling system
6506<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
6507that may be executed by the :ref:`EH personality routine <personalityfn>`.
6508
6509Arguments:
6510""""""""""
6511
6512The ``parent`` argument is the token of the funclet that contains the
6513``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
6514this operand may be the token ``none``.
6515
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006516The ``default`` argument is the label of another basic block beginning with
6517either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
6518must be a legal target with respect to the ``parent`` links, as described in
6519the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00006520
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006521The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00006522:ref:`catchpad <i_catchpad>` instruction.
6523
6524Semantics:
6525""""""""""
6526
6527Executing this instruction transfers control to one of the successors in
6528``handlers``, if appropriate, or continues to unwind via the unwind label if
6529present.
6530
6531The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
6532it must be both the first non-phi instruction and last instruction in the basic
6533block. Therefore, it must be the only non-phi instruction in the block.
6534
6535Example:
6536""""""""
6537
Renato Golin124f2592016-07-20 12:16:38 +00006538.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00006539
6540 dispatch1:
6541 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
6542 dispatch2:
6543 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
6544
David Majnemer654e1302015-07-31 17:58:14 +00006545.. _i_catchret:
6546
6547'``catchret``' Instruction
6548^^^^^^^^^^^^^^^^^^^^^^^^^^
6549
6550Syntax:
6551"""""""
6552
6553::
6554
David Majnemer8a1c45d2015-12-12 05:38:55 +00006555 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00006556
6557Overview:
6558"""""""""
6559
6560The '``catchret``' instruction is a terminator instruction that has a
6561single successor.
6562
6563
6564Arguments:
6565""""""""""
6566
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006567The first argument to a '``catchret``' indicates which ``catchpad`` it
6568exits. It must be a :ref:`catchpad <i_catchpad>`.
6569The second argument to a '``catchret``' specifies where control will
6570transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00006571
6572Semantics:
6573""""""""""
6574
David Majnemer8a1c45d2015-12-12 05:38:55 +00006575The '``catchret``' instruction ends an existing (in-flight) exception whose
6576unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
6577:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
6578code to, for example, destroy the active exception. Control then transfers to
6579``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006580
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006581The ``token`` argument must be a token produced by a ``catchpad`` instruction.
6582If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
6583funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6584the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00006585
6586Example:
6587""""""""
6588
Renato Golin124f2592016-07-20 12:16:38 +00006589.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006590
David Majnemer8a1c45d2015-12-12 05:38:55 +00006591 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006592
David Majnemer654e1302015-07-31 17:58:14 +00006593.. _i_cleanupret:
6594
6595'``cleanupret``' Instruction
6596^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6597
6598Syntax:
6599"""""""
6600
6601::
6602
David Majnemer8a1c45d2015-12-12 05:38:55 +00006603 cleanupret from <value> unwind label <continue>
6604 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00006605
6606Overview:
6607"""""""""
6608
6609The '``cleanupret``' instruction is a terminator instruction that has
6610an optional successor.
6611
6612
6613Arguments:
6614""""""""""
6615
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006616The '``cleanupret``' instruction requires one argument, which indicates
6617which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006618If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
6619funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6620the ``cleanupret``'s behavior is undefined.
6621
6622The '``cleanupret``' instruction also has an optional successor, ``continue``,
6623which must be the label of another basic block beginning with either a
6624``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
6625be a legal target with respect to the ``parent`` links, as described in the
6626`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00006627
6628Semantics:
6629""""""""""
6630
6631The '``cleanupret``' instruction indicates to the
6632:ref:`personality function <personalityfn>` that one
6633:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
6634It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006635
David Majnemer654e1302015-07-31 17:58:14 +00006636Example:
6637""""""""
6638
Renato Golin124f2592016-07-20 12:16:38 +00006639.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006640
David Majnemer8a1c45d2015-12-12 05:38:55 +00006641 cleanupret from %cleanup unwind to caller
6642 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00006643
Sean Silvab084af42012-12-07 10:36:55 +00006644.. _i_unreachable:
6645
6646'``unreachable``' Instruction
6647^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6648
6649Syntax:
6650"""""""
6651
6652::
6653
6654 unreachable
6655
6656Overview:
6657"""""""""
6658
6659The '``unreachable``' instruction has no defined semantics. This
6660instruction is used to inform the optimizer that a particular portion of
6661the code is not reachable. This can be used to indicate that the code
6662after a no-return function cannot be reached, and other facts.
6663
6664Semantics:
6665""""""""""
6666
6667The '``unreachable``' instruction has no defined semantics.
6668
6669.. _binaryops:
6670
6671Binary Operations
6672-----------------
6673
6674Binary operators are used to do most of the computation in a program.
6675They require two operands of the same type, execute an operation on
6676them, and produce a single value. The operands might represent multiple
6677data, as is the case with the :ref:`vector <t_vector>` data type. The
6678result value has the same type as its operands.
6679
6680There are several different binary operators:
6681
6682.. _i_add:
6683
6684'``add``' Instruction
6685^^^^^^^^^^^^^^^^^^^^^
6686
6687Syntax:
6688"""""""
6689
6690::
6691
Tim Northover675a0962014-06-13 14:24:23 +00006692 <result> = add <ty> <op1>, <op2> ; yields ty:result
6693 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
6694 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
6695 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006696
6697Overview:
6698"""""""""
6699
6700The '``add``' instruction returns the sum of its two operands.
6701
6702Arguments:
6703""""""""""
6704
6705The two arguments to the '``add``' instruction must be
6706:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6707arguments must have identical types.
6708
6709Semantics:
6710""""""""""
6711
6712The value produced is the integer sum of the two operands.
6713
6714If the sum has unsigned overflow, the result returned is the
6715mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6716the result.
6717
6718Because LLVM integers use a two's complement representation, this
6719instruction is appropriate for both signed and unsigned integers.
6720
6721``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6722respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6723result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
6724unsigned and/or signed overflow, respectively, occurs.
6725
6726Example:
6727""""""""
6728
Renato Golin124f2592016-07-20 12:16:38 +00006729.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006730
Tim Northover675a0962014-06-13 14:24:23 +00006731 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006732
6733.. _i_fadd:
6734
6735'``fadd``' Instruction
6736^^^^^^^^^^^^^^^^^^^^^^
6737
6738Syntax:
6739"""""""
6740
6741::
6742
Tim Northover675a0962014-06-13 14:24:23 +00006743 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006744
6745Overview:
6746"""""""""
6747
6748The '``fadd``' instruction returns the sum of its two operands.
6749
6750Arguments:
6751""""""""""
6752
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00006753The two arguments to the '``fadd``' instruction must be
6754:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
6755floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00006756
6757Semantics:
6758""""""""""
6759
Sanjay Patel7b722402018-03-07 17:18:22 +00006760The value produced is the floating-point sum of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00006761This instruction is assumed to execute in the default :ref:`floating-point
6762environment <floatenv>`.
Sanjay Patel7b722402018-03-07 17:18:22 +00006763This instruction can also take any number of :ref:`fast-math
6764flags <fastmath>`, which are optimization hints to enable otherwise
6765unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006766
6767Example:
6768""""""""
6769
Renato Golin124f2592016-07-20 12:16:38 +00006770.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006771
Tim Northover675a0962014-06-13 14:24:23 +00006772 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006773
6774'``sub``' Instruction
6775^^^^^^^^^^^^^^^^^^^^^
6776
6777Syntax:
6778"""""""
6779
6780::
6781
Tim Northover675a0962014-06-13 14:24:23 +00006782 <result> = sub <ty> <op1>, <op2> ; yields ty:result
6783 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
6784 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
6785 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006786
6787Overview:
6788"""""""""
6789
6790The '``sub``' instruction returns the difference of its two operands.
6791
6792Note that the '``sub``' instruction is used to represent the '``neg``'
6793instruction present in most other intermediate representations.
6794
6795Arguments:
6796""""""""""
6797
6798The two arguments to the '``sub``' instruction must be
6799:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6800arguments must have identical types.
6801
6802Semantics:
6803""""""""""
6804
6805The value produced is the integer difference of the two operands.
6806
6807If the difference has unsigned overflow, the result returned is the
6808mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6809the result.
6810
6811Because LLVM integers use a two's complement representation, this
6812instruction is appropriate for both signed and unsigned integers.
6813
6814``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6815respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6816result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
6817unsigned and/or signed overflow, respectively, occurs.
6818
6819Example:
6820""""""""
6821
Renato Golin124f2592016-07-20 12:16:38 +00006822.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006823
Tim Northover675a0962014-06-13 14:24:23 +00006824 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6825 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006826
6827.. _i_fsub:
6828
6829'``fsub``' Instruction
6830^^^^^^^^^^^^^^^^^^^^^^
6831
6832Syntax:
6833"""""""
6834
6835::
6836
Tim Northover675a0962014-06-13 14:24:23 +00006837 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006838
6839Overview:
6840"""""""""
6841
6842The '``fsub``' instruction returns the difference of its two operands.
6843
6844Note that the '``fsub``' instruction is used to represent the '``fneg``'
6845instruction present in most other intermediate representations.
6846
6847Arguments:
6848""""""""""
6849
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00006850The two arguments to the '``fsub``' instruction must be
6851:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
6852floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00006853
6854Semantics:
6855""""""""""
6856
Sanjay Patel7b722402018-03-07 17:18:22 +00006857The value produced is the floating-point difference of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00006858This instruction is assumed to execute in the default :ref:`floating-point
6859environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00006860This instruction can also take any number of :ref:`fast-math
6861flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00006862unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006863
6864Example:
6865""""""""
6866
Renato Golin124f2592016-07-20 12:16:38 +00006867.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006868
Tim Northover675a0962014-06-13 14:24:23 +00006869 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6870 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006871
6872'``mul``' Instruction
6873^^^^^^^^^^^^^^^^^^^^^
6874
6875Syntax:
6876"""""""
6877
6878::
6879
Tim Northover675a0962014-06-13 14:24:23 +00006880 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6881 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6882 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6883 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006884
6885Overview:
6886"""""""""
6887
6888The '``mul``' instruction returns the product of its two operands.
6889
6890Arguments:
6891""""""""""
6892
6893The two arguments to the '``mul``' instruction must be
6894:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6895arguments must have identical types.
6896
6897Semantics:
6898""""""""""
6899
6900The value produced is the integer product of the two operands.
6901
6902If the result of the multiplication has unsigned overflow, the result
6903returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6904bit width of the result.
6905
6906Because LLVM integers use a two's complement representation, and the
6907result is the same width as the operands, this instruction returns the
6908correct result for both signed and unsigned integers. If a full product
6909(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6910sign-extended or zero-extended as appropriate to the width of the full
6911product.
6912
6913``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6914respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6915result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6916unsigned and/or signed overflow, respectively, occurs.
6917
6918Example:
6919""""""""
6920
Renato Golin124f2592016-07-20 12:16:38 +00006921.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006922
Tim Northover675a0962014-06-13 14:24:23 +00006923 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006924
6925.. _i_fmul:
6926
6927'``fmul``' Instruction
6928^^^^^^^^^^^^^^^^^^^^^^
6929
6930Syntax:
6931"""""""
6932
6933::
6934
Tim Northover675a0962014-06-13 14:24:23 +00006935 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006936
6937Overview:
6938"""""""""
6939
6940The '``fmul``' instruction returns the product of its two operands.
6941
6942Arguments:
6943""""""""""
6944
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00006945The two arguments to the '``fmul``' instruction must be
6946:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
6947floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00006948
6949Semantics:
6950""""""""""
6951
Sanjay Patel7b722402018-03-07 17:18:22 +00006952The value produced is the floating-point product of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00006953This instruction is assumed to execute in the default :ref:`floating-point
6954environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00006955This instruction can also take any number of :ref:`fast-math
6956flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00006957unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006958
6959Example:
6960""""""""
6961
Renato Golin124f2592016-07-20 12:16:38 +00006962.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006963
Tim Northover675a0962014-06-13 14:24:23 +00006964 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006965
6966'``udiv``' Instruction
6967^^^^^^^^^^^^^^^^^^^^^^
6968
6969Syntax:
6970"""""""
6971
6972::
6973
Tim Northover675a0962014-06-13 14:24:23 +00006974 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6975 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006976
6977Overview:
6978"""""""""
6979
6980The '``udiv``' instruction returns the quotient of its two operands.
6981
6982Arguments:
6983""""""""""
6984
6985The two arguments to the '``udiv``' instruction must be
6986:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6987arguments must have identical types.
6988
6989Semantics:
6990""""""""""
6991
6992The value produced is the unsigned integer quotient of the two operands.
6993
6994Note that unsigned integer division and signed integer division are
6995distinct operations; for signed integer division, use '``sdiv``'.
6996
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00006997Division by zero is undefined behavior. For vectors, if any element
6998of the divisor is zero, the operation has undefined behavior.
6999
Sean Silvab084af42012-12-07 10:36:55 +00007000
7001If the ``exact`` keyword is present, the result value of the ``udiv`` is
7002a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
7003such, "((a udiv exact b) mul b) == a").
7004
7005Example:
7006""""""""
7007
Renato Golin124f2592016-07-20 12:16:38 +00007008.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007009
Tim Northover675a0962014-06-13 14:24:23 +00007010 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007011
7012'``sdiv``' Instruction
7013^^^^^^^^^^^^^^^^^^^^^^
7014
7015Syntax:
7016"""""""
7017
7018::
7019
Tim Northover675a0962014-06-13 14:24:23 +00007020 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
7021 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007022
7023Overview:
7024"""""""""
7025
7026The '``sdiv``' instruction returns the quotient of its two operands.
7027
7028Arguments:
7029""""""""""
7030
7031The two arguments to the '``sdiv``' instruction must be
7032:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7033arguments must have identical types.
7034
7035Semantics:
7036""""""""""
7037
7038The value produced is the signed integer quotient of the two operands
7039rounded towards zero.
7040
7041Note that signed integer division and unsigned integer division are
7042distinct operations; for unsigned integer division, use '``udiv``'.
7043
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007044Division by zero is undefined behavior. For vectors, if any element
7045of the divisor is zero, the operation has undefined behavior.
7046Overflow also leads to undefined behavior; this is a rare case, but can
7047occur, for example, by doing a 32-bit division of -2147483648 by -1.
Sean Silvab084af42012-12-07 10:36:55 +00007048
7049If the ``exact`` keyword is present, the result value of the ``sdiv`` is
7050a :ref:`poison value <poisonvalues>` if the result would be rounded.
7051
7052Example:
7053""""""""
7054
Renato Golin124f2592016-07-20 12:16:38 +00007055.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007056
Tim Northover675a0962014-06-13 14:24:23 +00007057 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007058
7059.. _i_fdiv:
7060
7061'``fdiv``' Instruction
7062^^^^^^^^^^^^^^^^^^^^^^
7063
7064Syntax:
7065"""""""
7066
7067::
7068
Tim Northover675a0962014-06-13 14:24:23 +00007069 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007070
7071Overview:
7072"""""""""
7073
7074The '``fdiv``' instruction returns the quotient of its two operands.
7075
7076Arguments:
7077""""""""""
7078
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007079The two arguments to the '``fdiv``' instruction must be
7080:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
7081floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007082
7083Semantics:
7084""""""""""
7085
Sanjay Patel7b722402018-03-07 17:18:22 +00007086The value produced is the floating-point quotient of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007087This instruction is assumed to execute in the default :ref:`floating-point
7088environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00007089This instruction can also take any number of :ref:`fast-math
7090flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00007091unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007092
7093Example:
7094""""""""
7095
Renato Golin124f2592016-07-20 12:16:38 +00007096.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007097
Tim Northover675a0962014-06-13 14:24:23 +00007098 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007099
7100'``urem``' Instruction
7101^^^^^^^^^^^^^^^^^^^^^^
7102
7103Syntax:
7104"""""""
7105
7106::
7107
Tim Northover675a0962014-06-13 14:24:23 +00007108 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007109
7110Overview:
7111"""""""""
7112
7113The '``urem``' instruction returns the remainder from the unsigned
7114division of its two arguments.
7115
7116Arguments:
7117""""""""""
7118
7119The two arguments to the '``urem``' instruction must be
7120:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7121arguments must have identical types.
7122
7123Semantics:
7124""""""""""
7125
7126This instruction returns the unsigned integer *remainder* of a division.
7127This instruction always performs an unsigned division to get the
7128remainder.
7129
7130Note that unsigned integer remainder and signed integer remainder are
7131distinct operations; for signed integer remainder, use '``srem``'.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007132
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007133Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007134For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007135undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00007136
7137Example:
7138""""""""
7139
Renato Golin124f2592016-07-20 12:16:38 +00007140.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007141
Tim Northover675a0962014-06-13 14:24:23 +00007142 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007143
7144'``srem``' Instruction
7145^^^^^^^^^^^^^^^^^^^^^^
7146
7147Syntax:
7148"""""""
7149
7150::
7151
Tim Northover675a0962014-06-13 14:24:23 +00007152 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007153
7154Overview:
7155"""""""""
7156
7157The '``srem``' instruction returns the remainder from the signed
7158division of its two operands. This instruction can also take
7159:ref:`vector <t_vector>` versions of the values in which case the elements
7160must be integers.
7161
7162Arguments:
7163""""""""""
7164
7165The two arguments to the '``srem``' instruction must be
7166:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7167arguments must have identical types.
7168
7169Semantics:
7170""""""""""
7171
7172This instruction returns the *remainder* of a division (where the result
7173is either zero or has the same sign as the dividend, ``op1``), not the
7174*modulo* operator (where the result is either zero or has the same sign
7175as the divisor, ``op2``) of a value. For more information about the
7176difference, see `The Math
7177Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
7178table of how this is implemented in various languages, please see
7179`Wikipedia: modulo
7180operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
7181
7182Note that signed integer remainder and unsigned integer remainder are
7183distinct operations; for unsigned integer remainder, use '``urem``'.
7184
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007185Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007186For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007187undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00007188Overflow also leads to undefined behavior; this is a rare case, but can
7189occur, for example, by taking the remainder of a 32-bit division of
7190-2147483648 by -1. (The remainder doesn't actually overflow, but this
7191rule lets srem be implemented using instructions that return both the
7192result of the division and the remainder.)
7193
7194Example:
7195""""""""
7196
Renato Golin124f2592016-07-20 12:16:38 +00007197.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007198
Tim Northover675a0962014-06-13 14:24:23 +00007199 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007200
7201.. _i_frem:
7202
7203'``frem``' Instruction
7204^^^^^^^^^^^^^^^^^^^^^^
7205
7206Syntax:
7207"""""""
7208
7209::
7210
Tim Northover675a0962014-06-13 14:24:23 +00007211 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007212
7213Overview:
7214"""""""""
7215
7216The '``frem``' instruction returns the remainder from the division of
7217its two operands.
7218
7219Arguments:
7220""""""""""
7221
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007222The two arguments to the '``frem``' instruction must be
7223:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
7224floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007225
7226Semantics:
7227""""""""""
7228
Sanjay Patel7b722402018-03-07 17:18:22 +00007229The value produced is the floating-point remainder of the two operands.
7230This is the same output as a libm '``fmod``' function, but without any
7231possibility of setting ``errno``. The remainder has the same sign as the
7232dividend.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007233This instruction is assumed to execute in the default :ref:`floating-point
7234environment <floatenv>`.
Sanjay Patel7b722402018-03-07 17:18:22 +00007235This instruction can also take any number of :ref:`fast-math
7236flags <fastmath>`, which are optimization hints to enable otherwise
7237unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007238
7239Example:
7240""""""""
7241
Renato Golin124f2592016-07-20 12:16:38 +00007242.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007243
Tim Northover675a0962014-06-13 14:24:23 +00007244 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007245
7246.. _bitwiseops:
7247
7248Bitwise Binary Operations
7249-------------------------
7250
7251Bitwise binary operators are used to do various forms of bit-twiddling
7252in a program. They are generally very efficient instructions and can
7253commonly be strength reduced from other instructions. They require two
7254operands of the same type, execute an operation on them, and produce a
7255single value. The resulting value is the same type as its operands.
7256
7257'``shl``' Instruction
7258^^^^^^^^^^^^^^^^^^^^^
7259
7260Syntax:
7261"""""""
7262
7263::
7264
Tim Northover675a0962014-06-13 14:24:23 +00007265 <result> = shl <ty> <op1>, <op2> ; yields ty:result
7266 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
7267 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
7268 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007269
7270Overview:
7271"""""""""
7272
7273The '``shl``' instruction returns the first operand shifted to the left
7274a specified number of bits.
7275
7276Arguments:
7277""""""""""
7278
7279Both arguments to the '``shl``' instruction must be the same
7280:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7281'``op2``' is treated as an unsigned value.
7282
7283Semantics:
7284""""""""""
7285
7286The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
7287where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00007288dynamically) equal to or larger than the number of bits in
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007289``op1``, this instruction returns a :ref:`poison value <poisonvalues>`.
7290If the arguments are vectors, each vector element of ``op1`` is shifted
7291by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007292
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007293If the ``nuw`` keyword is present, then the shift produces a poison
7294value if it shifts out any non-zero bits.
7295If the ``nsw`` keyword is present, then the shift produces a poison
Sanjay Patel2896c772018-06-01 15:21:14 +00007296value if it shifts out any bits that disagree with the resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00007297
7298Example:
7299""""""""
7300
Renato Golin124f2592016-07-20 12:16:38 +00007301.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007302
Tim Northover675a0962014-06-13 14:24:23 +00007303 <result> = shl i32 4, %var ; yields i32: 4 << %var
7304 <result> = shl i32 4, 2 ; yields i32: 16
7305 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00007306 <result> = shl i32 1, 32 ; undefined
7307 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
7308
7309'``lshr``' Instruction
7310^^^^^^^^^^^^^^^^^^^^^^
7311
7312Syntax:
7313"""""""
7314
7315::
7316
Tim Northover675a0962014-06-13 14:24:23 +00007317 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
7318 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007319
7320Overview:
7321"""""""""
7322
7323The '``lshr``' instruction (logical shift right) returns the first
7324operand shifted to the right a specified number of bits with zero fill.
7325
7326Arguments:
7327""""""""""
7328
7329Both arguments to the '``lshr``' instruction must be the same
7330:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7331'``op2``' is treated as an unsigned value.
7332
7333Semantics:
7334""""""""""
7335
7336This instruction always performs a logical shift right operation. The
7337most significant bits of the result will be filled with zero bits after
7338the shift. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007339than the number of bits in ``op1``, this instruction returns a :ref:`poison
7340value <poisonvalues>`. If the arguments are vectors, each vector element
7341of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007342
7343If the ``exact`` keyword is present, the result value of the ``lshr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007344a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007345
7346Example:
7347""""""""
7348
Renato Golin124f2592016-07-20 12:16:38 +00007349.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007350
Tim Northover675a0962014-06-13 14:24:23 +00007351 <result> = lshr i32 4, 1 ; yields i32:result = 2
7352 <result> = lshr i32 4, 2 ; yields i32:result = 1
7353 <result> = lshr i8 4, 3 ; yields i8:result = 0
7354 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00007355 <result> = lshr i32 1, 32 ; undefined
7356 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
7357
7358'``ashr``' Instruction
7359^^^^^^^^^^^^^^^^^^^^^^
7360
7361Syntax:
7362"""""""
7363
7364::
7365
Tim Northover675a0962014-06-13 14:24:23 +00007366 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
7367 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007368
7369Overview:
7370"""""""""
7371
7372The '``ashr``' instruction (arithmetic shift right) returns the first
7373operand shifted to the right a specified number of bits with sign
7374extension.
7375
7376Arguments:
7377""""""""""
7378
7379Both arguments to the '``ashr``' instruction must be the same
7380:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7381'``op2``' is treated as an unsigned value.
7382
7383Semantics:
7384""""""""""
7385
7386This instruction always performs an arithmetic shift right operation,
7387The most significant bits of the result will be filled with the sign bit
7388of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007389than the number of bits in ``op1``, this instruction returns a :ref:`poison
7390value <poisonvalues>`. If the arguments are vectors, each vector element
7391of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007392
7393If the ``exact`` keyword is present, the result value of the ``ashr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007394a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007395
7396Example:
7397""""""""
7398
Renato Golin124f2592016-07-20 12:16:38 +00007399.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007400
Tim Northover675a0962014-06-13 14:24:23 +00007401 <result> = ashr i32 4, 1 ; yields i32:result = 2
7402 <result> = ashr i32 4, 2 ; yields i32:result = 1
7403 <result> = ashr i8 4, 3 ; yields i8:result = 0
7404 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00007405 <result> = ashr i32 1, 32 ; undefined
7406 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
7407
7408'``and``' Instruction
7409^^^^^^^^^^^^^^^^^^^^^
7410
7411Syntax:
7412"""""""
7413
7414::
7415
Tim Northover675a0962014-06-13 14:24:23 +00007416 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007417
7418Overview:
7419"""""""""
7420
7421The '``and``' instruction returns the bitwise logical and of its two
7422operands.
7423
7424Arguments:
7425""""""""""
7426
7427The two arguments to the '``and``' instruction must be
7428:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7429arguments must have identical types.
7430
7431Semantics:
7432""""""""""
7433
7434The truth table used for the '``and``' instruction is:
7435
7436+-----+-----+-----+
7437| In0 | In1 | Out |
7438+-----+-----+-----+
7439| 0 | 0 | 0 |
7440+-----+-----+-----+
7441| 0 | 1 | 0 |
7442+-----+-----+-----+
7443| 1 | 0 | 0 |
7444+-----+-----+-----+
7445| 1 | 1 | 1 |
7446+-----+-----+-----+
7447
7448Example:
7449""""""""
7450
Renato Golin124f2592016-07-20 12:16:38 +00007451.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007452
Tim Northover675a0962014-06-13 14:24:23 +00007453 <result> = and i32 4, %var ; yields i32:result = 4 & %var
7454 <result> = and i32 15, 40 ; yields i32:result = 8
7455 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00007456
7457'``or``' Instruction
7458^^^^^^^^^^^^^^^^^^^^
7459
7460Syntax:
7461"""""""
7462
7463::
7464
Tim Northover675a0962014-06-13 14:24:23 +00007465 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007466
7467Overview:
7468"""""""""
7469
7470The '``or``' instruction returns the bitwise logical inclusive or of its
7471two operands.
7472
7473Arguments:
7474""""""""""
7475
7476The two arguments to the '``or``' instruction must be
7477:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7478arguments must have identical types.
7479
7480Semantics:
7481""""""""""
7482
7483The truth table used for the '``or``' instruction is:
7484
7485+-----+-----+-----+
7486| In0 | In1 | Out |
7487+-----+-----+-----+
7488| 0 | 0 | 0 |
7489+-----+-----+-----+
7490| 0 | 1 | 1 |
7491+-----+-----+-----+
7492| 1 | 0 | 1 |
7493+-----+-----+-----+
7494| 1 | 1 | 1 |
7495+-----+-----+-----+
7496
7497Example:
7498""""""""
7499
7500::
7501
Tim Northover675a0962014-06-13 14:24:23 +00007502 <result> = or i32 4, %var ; yields i32:result = 4 | %var
7503 <result> = or i32 15, 40 ; yields i32:result = 47
7504 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00007505
7506'``xor``' Instruction
7507^^^^^^^^^^^^^^^^^^^^^
7508
7509Syntax:
7510"""""""
7511
7512::
7513
Tim Northover675a0962014-06-13 14:24:23 +00007514 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007515
7516Overview:
7517"""""""""
7518
7519The '``xor``' instruction returns the bitwise logical exclusive or of
7520its two operands. The ``xor`` is used to implement the "one's
7521complement" operation, which is the "~" operator in C.
7522
7523Arguments:
7524""""""""""
7525
7526The two arguments to the '``xor``' instruction must be
7527:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7528arguments must have identical types.
7529
7530Semantics:
7531""""""""""
7532
7533The truth table used for the '``xor``' instruction is:
7534
7535+-----+-----+-----+
7536| In0 | In1 | Out |
7537+-----+-----+-----+
7538| 0 | 0 | 0 |
7539+-----+-----+-----+
7540| 0 | 1 | 1 |
7541+-----+-----+-----+
7542| 1 | 0 | 1 |
7543+-----+-----+-----+
7544| 1 | 1 | 0 |
7545+-----+-----+-----+
7546
7547Example:
7548""""""""
7549
Renato Golin124f2592016-07-20 12:16:38 +00007550.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007551
Tim Northover675a0962014-06-13 14:24:23 +00007552 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
7553 <result> = xor i32 15, 40 ; yields i32:result = 39
7554 <result> = xor i32 4, 8 ; yields i32:result = 12
7555 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00007556
7557Vector Operations
7558-----------------
7559
7560LLVM supports several instructions to represent vector operations in a
7561target-independent manner. These instructions cover the element-access
7562and vector-specific operations needed to process vectors effectively.
7563While LLVM does directly support these vector operations, many
7564sophisticated algorithms will want to use target-specific intrinsics to
7565take full advantage of a specific target.
7566
7567.. _i_extractelement:
7568
7569'``extractelement``' Instruction
7570^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7571
7572Syntax:
7573"""""""
7574
7575::
7576
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007577 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00007578
7579Overview:
7580"""""""""
7581
7582The '``extractelement``' instruction extracts a single scalar element
7583from a vector at a specified index.
7584
7585Arguments:
7586""""""""""
7587
7588The first operand of an '``extractelement``' instruction is a value of
7589:ref:`vector <t_vector>` type. The second operand is an index indicating
7590the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007591variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007592
7593Semantics:
7594""""""""""
7595
7596The result is a scalar of the same type as the element type of ``val``.
7597Its value is the value at position ``idx`` of ``val``. If ``idx``
Eli Friedman2c7a81b2018-06-08 21:23:09 +00007598exceeds the length of ``val``, the result is a
7599:ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00007600
7601Example:
7602""""""""
7603
Renato Golin124f2592016-07-20 12:16:38 +00007604.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007605
7606 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
7607
7608.. _i_insertelement:
7609
7610'``insertelement``' Instruction
7611^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7612
7613Syntax:
7614"""""""
7615
7616::
7617
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007618 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00007619
7620Overview:
7621"""""""""
7622
7623The '``insertelement``' instruction inserts a scalar element into a
7624vector at a specified index.
7625
7626Arguments:
7627""""""""""
7628
7629The first operand of an '``insertelement``' instruction is a value of
7630:ref:`vector <t_vector>` type. The second operand is a scalar value whose
7631type must equal the element type of the first operand. The third operand
7632is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007633index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007634
7635Semantics:
7636""""""""""
7637
7638The result is a vector of the same type as ``val``. Its element values
7639are those of ``val`` except at position ``idx``, where it gets the value
Eli Friedman2c7a81b2018-06-08 21:23:09 +00007640``elt``. If ``idx`` exceeds the length of ``val``, the result
7641is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00007642
7643Example:
7644""""""""
7645
Renato Golin124f2592016-07-20 12:16:38 +00007646.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007647
7648 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
7649
7650.. _i_shufflevector:
7651
7652'``shufflevector``' Instruction
7653^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7654
7655Syntax:
7656"""""""
7657
7658::
7659
7660 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
7661
7662Overview:
7663"""""""""
7664
7665The '``shufflevector``' instruction constructs a permutation of elements
7666from two input vectors, returning a vector with the same element type as
7667the input and length that is the same as the shuffle mask.
7668
7669Arguments:
7670""""""""""
7671
7672The first two operands of a '``shufflevector``' instruction are vectors
7673with the same type. The third argument is a shuffle mask whose element
7674type is always 'i32'. The result of the instruction is a vector whose
7675length is the same as the shuffle mask and whose element type is the
7676same as the element type of the first two operands.
7677
7678The shuffle mask operand is required to be a constant vector with either
7679constant integer or undef values.
7680
7681Semantics:
7682""""""""""
7683
7684The elements of the two input vectors are numbered from left to right
7685across both of the vectors. The shuffle mask operand specifies, for each
7686element of the result vector, which element of the two input vectors the
Sanjay Patel6e410182017-04-12 18:39:53 +00007687result element gets. If the shuffle mask is undef, the result vector is
7688undef. If any element of the mask operand is undef, that element of the
7689result is undef. If the shuffle mask selects an undef element from one
7690of the input vectors, the resulting element is undef.
Sean Silvab084af42012-12-07 10:36:55 +00007691
7692Example:
7693""""""""
7694
Renato Golin124f2592016-07-20 12:16:38 +00007695.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007696
7697 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7698 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
7699 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
7700 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
7701 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
7702 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
7703 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7704 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
7705
7706Aggregate Operations
7707--------------------
7708
7709LLVM supports several instructions for working with
7710:ref:`aggregate <t_aggregate>` values.
7711
7712.. _i_extractvalue:
7713
7714'``extractvalue``' Instruction
7715^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7716
7717Syntax:
7718"""""""
7719
7720::
7721
7722 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
7723
7724Overview:
7725"""""""""
7726
7727The '``extractvalue``' instruction extracts the value of a member field
7728from an :ref:`aggregate <t_aggregate>` value.
7729
7730Arguments:
7731""""""""""
7732
7733The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00007734:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00007735constant indices to specify which value to extract in a similar manner
7736as indices in a '``getelementptr``' instruction.
7737
7738The major differences to ``getelementptr`` indexing are:
7739
7740- Since the value being indexed is not a pointer, the first index is
7741 omitted and assumed to be zero.
7742- At least one index must be specified.
7743- Not only struct indices but also array indices must be in bounds.
7744
7745Semantics:
7746""""""""""
7747
7748The result is the value at the position in the aggregate specified by
7749the index operands.
7750
7751Example:
7752""""""""
7753
Renato Golin124f2592016-07-20 12:16:38 +00007754.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007755
7756 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
7757
7758.. _i_insertvalue:
7759
7760'``insertvalue``' Instruction
7761^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7762
7763Syntax:
7764"""""""
7765
7766::
7767
7768 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
7769
7770Overview:
7771"""""""""
7772
7773The '``insertvalue``' instruction inserts a value into a member field in
7774an :ref:`aggregate <t_aggregate>` value.
7775
7776Arguments:
7777""""""""""
7778
7779The first operand of an '``insertvalue``' instruction is a value of
7780:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
7781a first-class value to insert. The following operands are constant
7782indices indicating the position at which to insert the value in a
7783similar manner as indices in a '``extractvalue``' instruction. The value
7784to insert must have the same type as the value identified by the
7785indices.
7786
7787Semantics:
7788""""""""""
7789
7790The result is an aggregate of the same type as ``val``. Its value is
7791that of ``val`` except that the value at the position specified by the
7792indices is that of ``elt``.
7793
7794Example:
7795""""""""
7796
7797.. code-block:: llvm
7798
7799 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
7800 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00007801 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00007802
7803.. _memoryops:
7804
7805Memory Access and Addressing Operations
7806---------------------------------------
7807
7808A key design point of an SSA-based representation is how it represents
7809memory. In LLVM, no memory locations are in SSA form, which makes things
7810very simple. This section describes how to read, write, and allocate
7811memory in LLVM.
7812
7813.. _i_alloca:
7814
7815'``alloca``' Instruction
7816^^^^^^^^^^^^^^^^^^^^^^^^
7817
7818Syntax:
7819"""""""
7820
7821::
7822
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007823 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result
Sean Silvab084af42012-12-07 10:36:55 +00007824
7825Overview:
7826"""""""""
7827
7828The '``alloca``' instruction allocates memory on the stack frame of the
7829currently executing function, to be automatically released when this
7830function returns to its caller. The object is always allocated in the
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007831address space for allocas indicated in the datalayout.
Sean Silvab084af42012-12-07 10:36:55 +00007832
7833Arguments:
7834""""""""""
7835
7836The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7837bytes of memory on the runtime stack, returning a pointer of the
7838appropriate type to the program. If "NumElements" is specified, it is
7839the number of elements allocated, otherwise "NumElements" is defaulted
7840to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007841allocation is guaranteed to be aligned to at least that boundary. The
7842alignment may not be greater than ``1 << 29``. If not specified, or if
7843zero, the target can choose to align the allocation on any convenient
7844boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007845
7846'``type``' may be any sized type.
7847
7848Semantics:
7849""""""""""
7850
7851Memory is allocated; a pointer is returned. The operation is undefined
7852if there is insufficient stack space for the allocation. '``alloca``'d
7853memory is automatically released when the function returns. The
7854'``alloca``' instruction is commonly used to represent automatic
7855variables that must have an address available. When the function returns
7856(either with the ``ret`` or ``resume`` instructions), the memory is
7857reclaimed. Allocating zero bytes is legal, but the result is undefined.
7858The order in which memory is allocated (ie., which way the stack grows)
7859is not specified.
7860
7861Example:
7862""""""""
7863
7864.. code-block:: llvm
7865
Tim Northover675a0962014-06-13 14:24:23 +00007866 %ptr = alloca i32 ; yields i32*:ptr
7867 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7868 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7869 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007870
7871.. _i_load:
7872
7873'``load``' Instruction
7874^^^^^^^^^^^^^^^^^^^^^^
7875
7876Syntax:
7877"""""""
7878
7879::
7880
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007881 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007882 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007883 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007884 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007885 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007886
7887Overview:
7888"""""""""
7889
7890The '``load``' instruction is used to read from memory.
7891
7892Arguments:
7893""""""""""
7894
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007895The argument to the ``load`` instruction specifies the memory address from which
7896to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7897known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7898the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7899modify the number or order of execution of this ``load`` with other
7900:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007901
JF Bastiend1fb5852015-12-17 22:09:19 +00007902If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007903<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
7904``release`` and ``acq_rel`` orderings are not valid on ``load`` instructions.
7905Atomic loads produce :ref:`defined <memmodel>` results when they may see
7906multiple atomic stores. The type of the pointee must be an integer, pointer, or
7907floating-point type whose bit width is a power of two greater than or equal to
7908eight and less than or equal to a target-specific size limit. ``align`` must be
7909explicitly specified on atomic loads, and the load has undefined behavior if the
7910alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00007911pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007912
7913The optional constant ``align`` argument specifies the alignment of the
7914operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007915or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007916alignment for the target. It is the responsibility of the code emitter
7917to ensure that the alignment information is correct. Overestimating the
7918alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007919may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007920maximum possible alignment is ``1 << 29``. An alignment value higher
7921than the size of the loaded type implies memory up to the alignment
7922value bytes can be safely loaded without trapping in the default
7923address space. Access of the high bytes can interfere with debugging
7924tools, so should not be accessed if the function has the
7925``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007926
7927The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007928metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007929``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007930metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007931that this load is not expected to be reused in the cache. The code
7932generator may select special instructions to save cache bandwidth, such
7933as the ``MOVNT`` instruction on x86.
7934
7935The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007936metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00007937entries. If a load instruction tagged with the ``!invariant.load``
7938metadata is executed, the optimizer may assume the memory location
7939referenced by the load contains the same value at all points in the
7940program where the memory location is known to be dereferenceable.
Sean Silvab084af42012-12-07 10:36:55 +00007941
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007942The optional ``!invariant.group`` metadata must reference a single metadata name
Piotr Padlewskice358262018-05-18 23:53:46 +00007943 ``<index>`` corresponding to a metadata node with no entries.
7944 See ``invariant.group`` metadata.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007945
Philip Reamescdb72f32014-10-20 22:40:55 +00007946The optional ``!nonnull`` metadata must reference a single
7947metadata name ``<index>`` corresponding to a metadata node with no
7948entries. The existence of the ``!nonnull`` metadata on the
7949instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007950never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007951on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007952to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007953
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007954The optional ``!dereferenceable`` metadata must reference a single metadata
7955name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007956entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007957tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007958The number of bytes known to be dereferenceable is specified by the integer
7959value in the metadata node. This is analogous to the ''dereferenceable''
7960attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007961to loads of a pointer type.
7962
7963The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007964metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7965``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007966instruction tells the optimizer that the value loaded is known to be either
7967dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007968The number of bytes known to be dereferenceable is specified by the integer
7969value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7970attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007971to loads of a pointer type.
7972
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007973The optional ``!align`` metadata must reference a single metadata name
7974``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7975The existence of the ``!align`` metadata on the instruction tells the
7976optimizer that the value loaded is known to be aligned to a boundary specified
7977by the integer value in the metadata node. The alignment must be a power of 2.
7978This is analogous to the ''align'' attribute on parameters and return values.
7979This metadata can only be applied to loads of a pointer type.
7980
Sean Silvab084af42012-12-07 10:36:55 +00007981Semantics:
7982""""""""""
7983
7984The location of memory pointed to is loaded. If the value being loaded
7985is of scalar type then the number of bytes read does not exceed the
7986minimum number of bytes needed to hold all bits of the type. For
7987example, loading an ``i24`` reads at most three bytes. When loading a
7988value of a type like ``i20`` with a size that is not an integral number
7989of bytes, the result is undefined if the value was not originally
7990written using a store of the same type.
7991
7992Examples:
7993"""""""""
7994
7995.. code-block:: llvm
7996
Tim Northover675a0962014-06-13 14:24:23 +00007997 %ptr = alloca i32 ; yields i32*:ptr
7998 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007999 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00008000
8001.. _i_store:
8002
8003'``store``' Instruction
8004^^^^^^^^^^^^^^^^^^^^^^^
8005
8006Syntax:
8007"""""""
8008
8009::
8010
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008011 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008012 store atomic [volatile] <ty> <value>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008013
8014Overview:
8015"""""""""
8016
8017The '``store``' instruction is used to write to memory.
8018
8019Arguments:
8020""""""""""
8021
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00008022There are two arguments to the ``store`` instruction: a value to store and an
8023address at which to store it. The type of the ``<pointer>`` operand must be a
8024pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
8025operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
8026allowed to modify the number or order of execution of this ``store`` with other
8027:ref:`volatile operations <volatile>`. Only values of :ref:`first class
8028<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
8029structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00008030
JF Bastiend1fb5852015-12-17 22:09:19 +00008031If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008032<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
8033``acquire`` and ``acq_rel`` orderings aren't valid on ``store`` instructions.
8034Atomic loads produce :ref:`defined <memmodel>` results when they may see
8035multiple atomic stores. The type of the pointee must be an integer, pointer, or
8036floating-point type whose bit width is a power of two greater than or equal to
8037eight and less than or equal to a target-specific size limit. ``align`` must be
8038explicitly specified on atomic stores, and the store has undefined behavior if
8039the alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00008040pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00008041
Eli Benderskyca380842013-04-17 17:17:20 +00008042The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00008043operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00008044or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00008045alignment for the target. It is the responsibility of the code emitter
8046to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00008047alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00008048alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00008049safe. The maximum possible alignment is ``1 << 29``. An alignment
8050value higher than the size of the stored type implies memory up to the
8051alignment value bytes can be stored to without trapping in the default
8052address space. Storing to the higher bytes however may result in data
8053races if another thread can access the same address. Introducing a
8054data race is not allowed. Storing to the extra bytes is not allowed
8055even in situations where a data race is known to not exist if the
8056function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00008057
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008058The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00008059name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008060value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00008061tells the optimizer and code generator that this load is not expected to
8062be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00008063instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00008064x86.
8065
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008066The optional ``!invariant.group`` metadata must reference a
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008067single metadata name ``<index>``. See ``invariant.group`` metadata.
8068
Sean Silvab084af42012-12-07 10:36:55 +00008069Semantics:
8070""""""""""
8071
Eli Benderskyca380842013-04-17 17:17:20 +00008072The contents of memory are updated to contain ``<value>`` at the
8073location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00008074of scalar type then the number of bytes written does not exceed the
8075minimum number of bytes needed to hold all bits of the type. For
8076example, storing an ``i24`` writes at most three bytes. When writing a
8077value of a type like ``i20`` with a size that is not an integral number
8078of bytes, it is unspecified what happens to the extra bits that do not
8079belong to the type, but they will typically be overwritten.
8080
8081Example:
8082""""""""
8083
8084.. code-block:: llvm
8085
Tim Northover675a0962014-06-13 14:24:23 +00008086 %ptr = alloca i32 ; yields i32*:ptr
8087 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00008088 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00008089
8090.. _i_fence:
8091
8092'``fence``' Instruction
8093^^^^^^^^^^^^^^^^^^^^^^^
8094
8095Syntax:
8096"""""""
8097
8098::
8099
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008100 fence [syncscope("<target-scope>")] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008101
8102Overview:
8103"""""""""
8104
8105The '``fence``' instruction is used to introduce happens-before edges
8106between operations.
8107
8108Arguments:
8109""""""""""
8110
8111'``fence``' instructions take an :ref:`ordering <ordering>` argument which
8112defines what *synchronizes-with* edges they add. They can only be given
8113``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
8114
8115Semantics:
8116""""""""""
8117
8118A fence A which has (at least) ``release`` ordering semantics
8119*synchronizes with* a fence B with (at least) ``acquire`` ordering
8120semantics if and only if there exist atomic operations X and Y, both
8121operating on some atomic object M, such that A is sequenced before X, X
8122modifies M (either directly or through some side effect of a sequence
8123headed by X), Y is sequenced before B, and Y observes M. This provides a
8124*happens-before* dependency between A and B. Rather than an explicit
8125``fence``, one (but not both) of the atomic operations X or Y might
8126provide a ``release`` or ``acquire`` (resp.) ordering constraint and
8127still *synchronize-with* the explicit ``fence`` and establish the
8128*happens-before* edge.
8129
8130A ``fence`` which has ``seq_cst`` ordering, in addition to having both
8131``acquire`` and ``release`` semantics specified above, participates in
8132the global program order of other ``seq_cst`` operations and/or fences.
8133
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008134A ``fence`` instruction can also take an optional
8135":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00008136
8137Example:
8138""""""""
8139
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008140.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008141
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008142 fence acquire ; yields void
8143 fence syncscope("singlethread") seq_cst ; yields void
8144 fence syncscope("agent") seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008145
8146.. _i_cmpxchg:
8147
8148'``cmpxchg``' Instruction
8149^^^^^^^^^^^^^^^^^^^^^^^^^
8150
8151Syntax:
8152"""""""
8153
8154::
8155
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008156 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [syncscope("<target-scope>")] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00008157
8158Overview:
8159"""""""""
8160
8161The '``cmpxchg``' instruction is used to atomically modify memory. It
8162loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00008163equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00008164
8165Arguments:
8166""""""""""
8167
8168There are three arguments to the '``cmpxchg``' instruction: an address
8169to operate on, a value to compare to the value currently be at that
8170address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00008171are equal. The type of '<cmp>' must be an integer or pointer type whose
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008172bit width is a power of two greater than or equal to eight and less
Philip Reames1960cfd2016-02-19 00:06:41 +00008173than or equal to a target-specific size limit. '<cmp>' and '<new>' must
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008174have the same type, and the type of '<pointer>' must be a pointer to
8175that type. If the ``cmpxchg`` is marked as ``volatile``, then the
Philip Reames1960cfd2016-02-19 00:06:41 +00008176optimizer is not allowed to modify the number or order of execution of
8177this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00008178
Tim Northovere94a5182014-03-11 10:48:52 +00008179The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00008180``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
8181must be at least ``monotonic``, the ordering constraint on failure must be no
8182stronger than that on success, and the failure ordering cannot be either
8183``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00008184
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008185A ``cmpxchg`` instruction can also take an optional
8186":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00008187
8188The pointer passed into cmpxchg must have alignment greater than or
8189equal to the size in memory of the operand.
8190
8191Semantics:
8192""""""""""
8193
Tim Northover420a2162014-06-13 14:24:07 +00008194The contents of memory at the location specified by the '``<pointer>``' operand
Matthias Braun93f2b4b2017-08-09 22:22:04 +00008195is read and compared to '``<cmp>``'; if the values are equal, '``<new>``' is
8196written to the location. The original value at the location is returned,
8197together with a flag indicating success (true) or failure (false).
Tim Northover420a2162014-06-13 14:24:07 +00008198
8199If the cmpxchg operation is marked as ``weak`` then a spurious failure is
8200permitted: the operation may not write ``<new>`` even if the comparison
8201matched.
8202
8203If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
8204if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00008205
Tim Northovere94a5182014-03-11 10:48:52 +00008206A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
8207identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
8208load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00008209
8210Example:
8211""""""""
8212
8213.. code-block:: llvm
8214
8215 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00008216 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00008217 br label %loop
8218
8219 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00008220 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00008221 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00008222 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00008223 %value_loaded = extractvalue { i32, i1 } %val_success, 0
8224 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00008225 br i1 %success, label %done, label %loop
8226
8227 done:
8228 ...
8229
8230.. _i_atomicrmw:
8231
8232'``atomicrmw``' Instruction
8233^^^^^^^^^^^^^^^^^^^^^^^^^^^
8234
8235Syntax:
8236"""""""
8237
8238::
8239
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008240 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [syncscope("<target-scope>")] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00008241
8242Overview:
8243"""""""""
8244
8245The '``atomicrmw``' instruction is used to atomically modify memory.
8246
8247Arguments:
8248""""""""""
8249
8250There are three arguments to the '``atomicrmw``' instruction: an
8251operation to apply, an address whose value to modify, an argument to the
8252operation. The operation must be one of the following keywords:
8253
8254- xchg
8255- add
8256- sub
8257- and
8258- nand
8259- or
8260- xor
8261- max
8262- min
8263- umax
8264- umin
8265
8266The type of '<value>' must be an integer type whose bit width is a power
8267of two greater than or equal to eight and less than or equal to a
8268target-specific size limit. The type of the '``<pointer>``' operand must
8269be a pointer to that type. If the ``atomicrmw`` is marked as
8270``volatile``, then the optimizer is not allowed to modify the number or
8271order of execution of this ``atomicrmw`` with other :ref:`volatile
8272operations <volatile>`.
8273
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008274A ``atomicrmw`` instruction can also take an optional
8275":ref:`syncscope <syncscope>`" argument.
8276
Sean Silvab084af42012-12-07 10:36:55 +00008277Semantics:
8278""""""""""
8279
8280The contents of memory at the location specified by the '``<pointer>``'
8281operand are atomically read, modified, and written back. The original
8282value at the location is returned. The modification is specified by the
8283operation argument:
8284
8285- xchg: ``*ptr = val``
8286- add: ``*ptr = *ptr + val``
8287- sub: ``*ptr = *ptr - val``
8288- and: ``*ptr = *ptr & val``
8289- nand: ``*ptr = ~(*ptr & val)``
8290- or: ``*ptr = *ptr | val``
8291- xor: ``*ptr = *ptr ^ val``
8292- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
8293- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
8294- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
8295 comparison)
8296- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
8297 comparison)
8298
8299Example:
8300""""""""
8301
8302.. code-block:: llvm
8303
Tim Northover675a0962014-06-13 14:24:23 +00008304 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00008305
8306.. _i_getelementptr:
8307
8308'``getelementptr``' Instruction
8309^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8310
8311Syntax:
8312"""""""
8313
8314::
8315
Peter Collingbourned93620b2016-11-10 22:34:55 +00008316 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
8317 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
8318 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00008319
8320Overview:
8321"""""""""
8322
8323The '``getelementptr``' instruction is used to get the address of a
8324subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008325address calculation only and does not access memory. The instruction can also
8326be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00008327
8328Arguments:
8329""""""""""
8330
David Blaikie16a97eb2015-03-04 22:02:58 +00008331The first argument is always a type used as the basis for the calculations.
8332The second argument is always a pointer or a vector of pointers, and is the
8333base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00008334that indicate which of the elements of the aggregate object are indexed.
8335The interpretation of each index is dependent on the type being indexed
8336into. The first index always indexes the pointer value given as the
David Blaikief91b0302017-06-19 05:34:21 +00008337second argument, the second index indexes a value of the type pointed to
Sean Silvab084af42012-12-07 10:36:55 +00008338(not necessarily the value directly pointed to, since the first index
8339can be non-zero), etc. The first type indexed into must be a pointer
8340value, subsequent types can be arrays, vectors, and structs. Note that
8341subsequent types being indexed into can never be pointers, since that
8342would require loading the pointer before continuing calculation.
8343
8344The type of each index argument depends on the type it is indexing into.
8345When indexing into a (optionally packed) structure, only ``i32`` integer
8346**constants** are allowed (when using a vector of indices they must all
8347be the **same** ``i32`` integer constant). When indexing into an array,
8348pointer or vector, integers of any width are allowed, and they are not
8349required to be constant. These integers are treated as signed values
8350where relevant.
8351
8352For example, let's consider a C code fragment and how it gets compiled
8353to LLVM:
8354
8355.. code-block:: c
8356
8357 struct RT {
8358 char A;
8359 int B[10][20];
8360 char C;
8361 };
8362 struct ST {
8363 int X;
8364 double Y;
8365 struct RT Z;
8366 };
8367
8368 int *foo(struct ST *s) {
8369 return &s[1].Z.B[5][13];
8370 }
8371
8372The LLVM code generated by Clang is:
8373
8374.. code-block:: llvm
8375
8376 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
8377 %struct.ST = type { i32, double, %struct.RT }
8378
8379 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
8380 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00008381 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00008382 ret i32* %arrayidx
8383 }
8384
8385Semantics:
8386""""""""""
8387
8388In the example above, the first index is indexing into the
8389'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
8390= '``{ i32, double, %struct.RT }``' type, a structure. The second index
8391indexes into the third element of the structure, yielding a
8392'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
8393structure. The third index indexes into the second element of the
8394structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
8395dimensions of the array are subscripted into, yielding an '``i32``'
8396type. The '``getelementptr``' instruction returns a pointer to this
8397element, thus computing a value of '``i32*``' type.
8398
8399Note that it is perfectly legal to index partially through a structure,
8400returning a pointer to an inner element. Because of this, the LLVM code
8401for the given testcase is equivalent to:
8402
8403.. code-block:: llvm
8404
8405 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00008406 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
8407 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
8408 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
8409 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
8410 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00008411 ret i32* %t5
8412 }
8413
8414If the ``inbounds`` keyword is present, the result value of the
8415``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
8416pointer is not an *in bounds* address of an allocated object, or if any
8417of the addresses that would be formed by successive addition of the
8418offsets implied by the indices to the base address with infinitely
8419precise signed arithmetic are not an *in bounds* address of that
8420allocated object. The *in bounds* addresses for an allocated object are
8421all the addresses that point into the object, plus the address one byte
Eli Friedman13f2e352017-02-23 00:48:18 +00008422past the end. The only *in bounds* address for a null pointer in the
8423default address-space is the null pointer itself. In cases where the
8424base is a vector of pointers the ``inbounds`` keyword applies to each
8425of the computations element-wise.
Sean Silvab084af42012-12-07 10:36:55 +00008426
8427If the ``inbounds`` keyword is not present, the offsets are added to the
8428base address with silently-wrapping two's complement arithmetic. If the
8429offsets have a different width from the pointer, they are sign-extended
8430or truncated to the width of the pointer. The result value of the
8431``getelementptr`` may be outside the object pointed to by the base
8432pointer. The result value may not necessarily be used to access memory
8433though, even if it happens to point into allocated storage. See the
8434:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
8435information.
8436
Peter Collingbourned93620b2016-11-10 22:34:55 +00008437If the ``inrange`` keyword is present before any index, loading from or
8438storing to any pointer derived from the ``getelementptr`` has undefined
8439behavior if the load or store would access memory outside of the bounds of
8440the element selected by the index marked as ``inrange``. The result of a
8441pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
8442involving memory) involving a pointer derived from a ``getelementptr`` with
8443the ``inrange`` keyword is undefined, with the exception of comparisons
8444in the case where both operands are in the range of the element selected
8445by the ``inrange`` keyword, inclusive of the address one past the end of
8446that element. Note that the ``inrange`` keyword is currently only allowed
8447in constant ``getelementptr`` expressions.
8448
Sean Silvab084af42012-12-07 10:36:55 +00008449The getelementptr instruction is often confusing. For some more insight
8450into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
8451
8452Example:
8453""""""""
8454
8455.. code-block:: llvm
8456
8457 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008458 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008459 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008460 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008461 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008462 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008463 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008464 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00008465
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008466Vector of pointers:
8467"""""""""""""""""""
8468
8469The ``getelementptr`` returns a vector of pointers, instead of a single address,
8470when one or more of its arguments is a vector. In such cases, all vector
8471arguments should have the same number of elements, and every scalar argument
8472will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00008473
8474.. code-block:: llvm
8475
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008476 ; All arguments are vectors:
8477 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
8478 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008479
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008480 ; Add the same scalar offset to each pointer of a vector:
8481 ; A[i] = ptrs[i] + offset*sizeof(i8)
8482 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00008483
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008484 ; Add distinct offsets to the same pointer:
8485 ; A[i] = ptr + offsets[i]*sizeof(i8)
8486 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008487
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008488 ; In all cases described above the type of the result is <4 x i8*>
8489
8490The two following instructions are equivalent:
8491
8492.. code-block:: llvm
8493
8494 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8495 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
8496 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
8497 <4 x i32> %ind4,
8498 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00008499
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008500 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8501 i32 2, i32 1, <4 x i32> %ind4, i64 13
8502
8503Let's look at the C code, where the vector version of ``getelementptr``
8504makes sense:
8505
8506.. code-block:: c
8507
8508 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00008509 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008510 for (int i = 0; i < size; ++i) {
8511 A[i] = B[C[i]];
8512 }
8513
8514.. code-block:: llvm
8515
8516 ; get pointers for 8 elements from array B
8517 %ptrs = getelementptr double, double* %B, <8 x i32> %C
8518 ; load 8 elements from array B into A
Elad Cohenef5798a2017-05-03 12:28:54 +00008519 %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008520 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00008521
8522Conversion Operations
8523---------------------
8524
8525The instructions in this category are the conversion instructions
8526(casting) which all take a single operand and a type. They perform
8527various bit conversions on the operand.
8528
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008529.. _i_trunc:
8530
Sean Silvab084af42012-12-07 10:36:55 +00008531'``trunc .. to``' Instruction
8532^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8533
8534Syntax:
8535"""""""
8536
8537::
8538
8539 <result> = trunc <ty> <value> to <ty2> ; yields ty2
8540
8541Overview:
8542"""""""""
8543
8544The '``trunc``' instruction truncates its operand to the type ``ty2``.
8545
8546Arguments:
8547""""""""""
8548
8549The '``trunc``' instruction takes a value to trunc, and a type to trunc
8550it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
8551of the same number of integers. The bit size of the ``value`` must be
8552larger than the bit size of the destination type, ``ty2``. Equal sized
8553types are not allowed.
8554
8555Semantics:
8556""""""""""
8557
8558The '``trunc``' instruction truncates the high order bits in ``value``
8559and converts the remaining bits to ``ty2``. Since the source size must
8560be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
8561It will always truncate bits.
8562
8563Example:
8564""""""""
8565
8566.. code-block:: llvm
8567
8568 %X = trunc i32 257 to i8 ; yields i8:1
8569 %Y = trunc i32 123 to i1 ; yields i1:true
8570 %Z = trunc i32 122 to i1 ; yields i1:false
8571 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
8572
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008573.. _i_zext:
8574
Sean Silvab084af42012-12-07 10:36:55 +00008575'``zext .. to``' Instruction
8576^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8577
8578Syntax:
8579"""""""
8580
8581::
8582
8583 <result> = zext <ty> <value> to <ty2> ; yields ty2
8584
8585Overview:
8586"""""""""
8587
8588The '``zext``' instruction zero extends its operand to type ``ty2``.
8589
8590Arguments:
8591""""""""""
8592
8593The '``zext``' instruction takes a value to cast, and a type to cast it
8594to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8595the same number of integers. The bit size of the ``value`` must be
8596smaller than the bit size of the destination type, ``ty2``.
8597
8598Semantics:
8599""""""""""
8600
8601The ``zext`` fills the high order bits of the ``value`` with zero bits
8602until it reaches the size of the destination type, ``ty2``.
8603
8604When zero extending from i1, the result will always be either 0 or 1.
8605
8606Example:
8607""""""""
8608
8609.. code-block:: llvm
8610
8611 %X = zext i32 257 to i64 ; yields i64:257
8612 %Y = zext i1 true to i32 ; yields i32:1
8613 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8614
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008615.. _i_sext:
8616
Sean Silvab084af42012-12-07 10:36:55 +00008617'``sext .. to``' Instruction
8618^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8619
8620Syntax:
8621"""""""
8622
8623::
8624
8625 <result> = sext <ty> <value> to <ty2> ; yields ty2
8626
8627Overview:
8628"""""""""
8629
8630The '``sext``' sign extends ``value`` to the type ``ty2``.
8631
8632Arguments:
8633""""""""""
8634
8635The '``sext``' instruction takes a value to cast, and a type to cast it
8636to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8637the same number of integers. The bit size of the ``value`` must be
8638smaller than the bit size of the destination type, ``ty2``.
8639
8640Semantics:
8641""""""""""
8642
8643The '``sext``' instruction performs a sign extension by copying the sign
8644bit (highest order bit) of the ``value`` until it reaches the bit size
8645of the type ``ty2``.
8646
8647When sign extending from i1, the extension always results in -1 or 0.
8648
8649Example:
8650""""""""
8651
8652.. code-block:: llvm
8653
8654 %X = sext i8 -1 to i16 ; yields i16 :65535
8655 %Y = sext i1 true to i32 ; yields i32:-1
8656 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8657
8658'``fptrunc .. to``' Instruction
8659^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8660
8661Syntax:
8662"""""""
8663
8664::
8665
8666 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
8667
8668Overview:
8669"""""""""
8670
8671The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
8672
8673Arguments:
8674""""""""""
8675
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008676The '``fptrunc``' instruction takes a :ref:`floating-point <t_floating>`
8677value to cast and a :ref:`floating-point <t_floating>` type to cast it to.
Sean Silvab084af42012-12-07 10:36:55 +00008678The size of ``value`` must be larger than the size of ``ty2``. This
8679implies that ``fptrunc`` cannot be used to make a *no-op cast*.
8680
8681Semantics:
8682""""""""""
8683
Dan Liew50456fb2015-09-03 18:43:56 +00008684The '``fptrunc``' instruction casts a ``value`` from a larger
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008685:ref:`floating-point <t_floating>` type to a smaller :ref:`floating-point
Sanjay Pateld96a3632018-04-03 13:05:20 +00008686<t_floating>` type.
8687This instruction is assumed to execute in the default :ref:`floating-point
8688environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00008689
8690Example:
8691""""""""
8692
8693.. code-block:: llvm
8694
Sanjay Pateld96a3632018-04-03 13:05:20 +00008695 %X = fptrunc double 16777217.0 to float ; yields float:16777216.0
8696 %Y = fptrunc double 1.0E+300 to half ; yields half:+infinity
Sean Silvab084af42012-12-07 10:36:55 +00008697
8698'``fpext .. to``' Instruction
8699^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8700
8701Syntax:
8702"""""""
8703
8704::
8705
8706 <result> = fpext <ty> <value> to <ty2> ; yields ty2
8707
8708Overview:
8709"""""""""
8710
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008711The '``fpext``' extends a floating-point ``value`` to a larger floating-point
8712value.
Sean Silvab084af42012-12-07 10:36:55 +00008713
8714Arguments:
8715""""""""""
8716
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008717The '``fpext``' instruction takes a :ref:`floating-point <t_floating>`
8718``value`` to cast, and a :ref:`floating-point <t_floating>` type to cast it
Sean Silvab084af42012-12-07 10:36:55 +00008719to. The source type must be smaller than the destination type.
8720
8721Semantics:
8722""""""""""
8723
8724The '``fpext``' instruction extends the ``value`` from a smaller
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008725:ref:`floating-point <t_floating>` type to a larger :ref:`floating-point
8726<t_floating>` type. The ``fpext`` cannot be used to make a
Sean Silvab084af42012-12-07 10:36:55 +00008727*no-op cast* because it always changes bits. Use ``bitcast`` to make a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008728*no-op cast* for a floating-point cast.
Sean Silvab084af42012-12-07 10:36:55 +00008729
8730Example:
8731""""""""
8732
8733.. code-block:: llvm
8734
8735 %X = fpext float 3.125 to double ; yields double:3.125000e+00
8736 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
8737
8738'``fptoui .. to``' Instruction
8739^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8740
8741Syntax:
8742"""""""
8743
8744::
8745
8746 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
8747
8748Overview:
8749"""""""""
8750
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008751The '``fptoui``' converts a floating-point ``value`` to its unsigned
Sean Silvab084af42012-12-07 10:36:55 +00008752integer equivalent of type ``ty2``.
8753
8754Arguments:
8755""""""""""
8756
8757The '``fptoui``' instruction takes a value to cast, which must be a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008758scalar or vector :ref:`floating-point <t_floating>` value, and a type to
Sean Silvab084af42012-12-07 10:36:55 +00008759cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008760``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
Sean Silvab084af42012-12-07 10:36:55 +00008761type with the same number of elements as ``ty``
8762
8763Semantics:
8764""""""""""
8765
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008766The '``fptoui``' instruction converts its :ref:`floating-point
8767<t_floating>` operand into the nearest (rounding towards zero)
Eli Friedmanc065bb22018-06-08 21:33:33 +00008768unsigned integer value. If the value cannot fit in ``ty2``, the result
8769is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00008770
8771Example:
8772""""""""
8773
8774.. code-block:: llvm
8775
8776 %X = fptoui double 123.0 to i32 ; yields i32:123
8777 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
8778 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
8779
8780'``fptosi .. to``' Instruction
8781^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8782
8783Syntax:
8784"""""""
8785
8786::
8787
8788 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
8789
8790Overview:
8791"""""""""
8792
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008793The '``fptosi``' instruction converts :ref:`floating-point <t_floating>`
Sean Silvab084af42012-12-07 10:36:55 +00008794``value`` to type ``ty2``.
8795
8796Arguments:
8797""""""""""
8798
8799The '``fptosi``' instruction takes a value to cast, which must be a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008800scalar or vector :ref:`floating-point <t_floating>` value, and a type to
Sean Silvab084af42012-12-07 10:36:55 +00008801cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008802``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
Sean Silvab084af42012-12-07 10:36:55 +00008803type with the same number of elements as ``ty``
8804
8805Semantics:
8806""""""""""
8807
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008808The '``fptosi``' instruction converts its :ref:`floating-point
8809<t_floating>` operand into the nearest (rounding towards zero)
Eli Friedmanc065bb22018-06-08 21:33:33 +00008810signed integer value. If the value cannot fit in ``ty2``, the result
8811is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00008812
8813Example:
8814""""""""
8815
8816.. code-block:: llvm
8817
8818 %X = fptosi double -123.0 to i32 ; yields i32:-123
8819 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
8820 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
8821
8822'``uitofp .. to``' Instruction
8823^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8824
8825Syntax:
8826"""""""
8827
8828::
8829
8830 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
8831
8832Overview:
8833"""""""""
8834
8835The '``uitofp``' instruction regards ``value`` as an unsigned integer
8836and converts that value to the ``ty2`` type.
8837
8838Arguments:
8839""""""""""
8840
8841The '``uitofp``' instruction takes a value to cast, which must be a
8842scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008843``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
8844``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
Sean Silvab084af42012-12-07 10:36:55 +00008845type with the same number of elements as ``ty``
8846
8847Semantics:
8848""""""""""
8849
8850The '``uitofp``' instruction interprets its operand as an unsigned
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008851integer quantity and converts it to the corresponding floating-point
Eli Friedman3f1ce092018-06-14 22:58:48 +00008852value. If the value cannot be exactly represented, it is rounded using
8853the default rounding mode.
8854
Sean Silvab084af42012-12-07 10:36:55 +00008855
8856Example:
8857""""""""
8858
8859.. code-block:: llvm
8860
8861 %X = uitofp i32 257 to float ; yields float:257.0
8862 %Y = uitofp i8 -1 to double ; yields double:255.0
8863
8864'``sitofp .. to``' Instruction
8865^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8866
8867Syntax:
8868"""""""
8869
8870::
8871
8872 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8873
8874Overview:
8875"""""""""
8876
8877The '``sitofp``' instruction regards ``value`` as a signed integer and
8878converts that value to the ``ty2`` type.
8879
8880Arguments:
8881""""""""""
8882
8883The '``sitofp``' instruction takes a value to cast, which must be a
8884scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008885``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
8886``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
Sean Silvab084af42012-12-07 10:36:55 +00008887type with the same number of elements as ``ty``
8888
8889Semantics:
8890""""""""""
8891
8892The '``sitofp``' instruction interprets its operand as a signed integer
Eli Friedman3f1ce092018-06-14 22:58:48 +00008893quantity and converts it to the corresponding floating-point value. If the
8894value cannot be exactly represented, it is rounded using the default rounding
8895mode.
Sean Silvab084af42012-12-07 10:36:55 +00008896
8897Example:
8898""""""""
8899
8900.. code-block:: llvm
8901
8902 %X = sitofp i32 257 to float ; yields float:257.0
8903 %Y = sitofp i8 -1 to double ; yields double:-1.0
8904
8905.. _i_ptrtoint:
8906
8907'``ptrtoint .. to``' Instruction
8908^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8909
8910Syntax:
8911"""""""
8912
8913::
8914
8915 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8916
8917Overview:
8918"""""""""
8919
8920The '``ptrtoint``' instruction converts the pointer or a vector of
8921pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8922
8923Arguments:
8924""""""""""
8925
8926The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008927a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008928type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8929a vector of integers type.
8930
8931Semantics:
8932""""""""""
8933
8934The '``ptrtoint``' instruction converts ``value`` to integer type
8935``ty2`` by interpreting the pointer value as an integer and either
8936truncating or zero extending that value to the size of the integer type.
8937If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8938``value`` is larger than ``ty2`` then a truncation is done. If they are
8939the same size, then nothing is done (*no-op cast*) other than a type
8940change.
8941
8942Example:
8943""""""""
8944
8945.. code-block:: llvm
8946
8947 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8948 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8949 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8950
8951.. _i_inttoptr:
8952
8953'``inttoptr .. to``' Instruction
8954^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8955
8956Syntax:
8957"""""""
8958
8959::
8960
8961 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8962
8963Overview:
8964"""""""""
8965
8966The '``inttoptr``' instruction converts an integer ``value`` to a
8967pointer type, ``ty2``.
8968
8969Arguments:
8970""""""""""
8971
8972The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8973cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8974type.
8975
8976Semantics:
8977""""""""""
8978
8979The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8980applying either a zero extension or a truncation depending on the size
8981of the integer ``value``. If ``value`` is larger than the size of a
8982pointer then a truncation is done. If ``value`` is smaller than the size
8983of a pointer then a zero extension is done. If they are the same size,
8984nothing is done (*no-op cast*).
8985
8986Example:
8987""""""""
8988
8989.. code-block:: llvm
8990
8991 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8992 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8993 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8994 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8995
8996.. _i_bitcast:
8997
8998'``bitcast .. to``' Instruction
8999^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9000
9001Syntax:
9002"""""""
9003
9004::
9005
9006 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
9007
9008Overview:
9009"""""""""
9010
9011The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
9012changing any bits.
9013
9014Arguments:
9015""""""""""
9016
9017The '``bitcast``' instruction takes a value to cast, which must be a
9018non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00009019also be a non-aggregate :ref:`first class <t_firstclass>` type. The
9020bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00009021identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00009022also be a pointer of the same size. This instruction supports bitwise
9023conversion of vectors to integers and to vectors of other types (as
9024long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00009025
9026Semantics:
9027""""""""""
9028
Matt Arsenault24b49c42013-07-31 17:49:08 +00009029The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
9030is always a *no-op cast* because no bits change with this
9031conversion. The conversion is done as if the ``value`` had been stored
9032to memory and read back as type ``ty2``. Pointer (or vector of
9033pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009034pointers) types with the same address space through this instruction.
9035To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
9036or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00009037
9038Example:
9039""""""""
9040
Renato Golin124f2592016-07-20 12:16:38 +00009041.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009042
9043 %X = bitcast i8 255 to i8 ; yields i8 :-1
9044 %Y = bitcast i32* %x to sint* ; yields sint*:%x
9045 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
9046 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
9047
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009048.. _i_addrspacecast:
9049
9050'``addrspacecast .. to``' Instruction
9051^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9052
9053Syntax:
9054"""""""
9055
9056::
9057
9058 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
9059
9060Overview:
9061"""""""""
9062
9063The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
9064address space ``n`` to type ``pty2`` in address space ``m``.
9065
9066Arguments:
9067""""""""""
9068
9069The '``addrspacecast``' instruction takes a pointer or vector of pointer value
9070to cast and a pointer type to cast it to, which must have a different
9071address space.
9072
9073Semantics:
9074""""""""""
9075
9076The '``addrspacecast``' instruction converts the pointer value
9077``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00009078value modification, depending on the target and the address space
9079pair. Pointer conversions within the same address space must be
9080performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009081conversion is legal then both result and operand refer to the same memory
9082location.
9083
9084Example:
9085""""""""
9086
9087.. code-block:: llvm
9088
Matt Arsenault9c13dd02013-11-15 22:43:50 +00009089 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
9090 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
9091 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009092
Sean Silvab084af42012-12-07 10:36:55 +00009093.. _otherops:
9094
9095Other Operations
9096----------------
9097
9098The instructions in this category are the "miscellaneous" instructions,
9099which defy better classification.
9100
9101.. _i_icmp:
9102
9103'``icmp``' Instruction
9104^^^^^^^^^^^^^^^^^^^^^^
9105
9106Syntax:
9107"""""""
9108
9109::
9110
Tim Northover675a0962014-06-13 14:24:23 +00009111 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00009112
9113Overview:
9114"""""""""
9115
9116The '``icmp``' instruction returns a boolean value or a vector of
9117boolean values based on comparison of its two integer, integer vector,
9118pointer, or pointer vector operands.
9119
9120Arguments:
9121""""""""""
9122
9123The '``icmp``' instruction takes three operands. The first operand is
9124the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00009125not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00009126
9127#. ``eq``: equal
9128#. ``ne``: not equal
9129#. ``ugt``: unsigned greater than
9130#. ``uge``: unsigned greater or equal
9131#. ``ult``: unsigned less than
9132#. ``ule``: unsigned less or equal
9133#. ``sgt``: signed greater than
9134#. ``sge``: signed greater or equal
9135#. ``slt``: signed less than
9136#. ``sle``: signed less or equal
9137
9138The remaining two arguments must be :ref:`integer <t_integer>` or
9139:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
9140must also be identical types.
9141
9142Semantics:
9143""""""""""
9144
9145The '``icmp``' compares ``op1`` and ``op2`` according to the condition
9146code given as ``cond``. The comparison performed always yields either an
9147:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
9148
9149#. ``eq``: yields ``true`` if the operands are equal, ``false``
9150 otherwise. No sign interpretation is necessary or performed.
9151#. ``ne``: yields ``true`` if the operands are unequal, ``false``
9152 otherwise. No sign interpretation is necessary or performed.
9153#. ``ugt``: interprets the operands as unsigned values and yields
9154 ``true`` if ``op1`` is greater than ``op2``.
9155#. ``uge``: interprets the operands as unsigned values and yields
9156 ``true`` if ``op1`` is greater than or equal to ``op2``.
9157#. ``ult``: interprets the operands as unsigned values and yields
9158 ``true`` if ``op1`` is less than ``op2``.
9159#. ``ule``: interprets the operands as unsigned values and yields
9160 ``true`` if ``op1`` is less than or equal to ``op2``.
9161#. ``sgt``: interprets the operands as signed values and yields ``true``
9162 if ``op1`` is greater than ``op2``.
9163#. ``sge``: interprets the operands as signed values and yields ``true``
9164 if ``op1`` is greater than or equal to ``op2``.
9165#. ``slt``: interprets the operands as signed values and yields ``true``
9166 if ``op1`` is less than ``op2``.
9167#. ``sle``: interprets the operands as signed values and yields ``true``
9168 if ``op1`` is less than or equal to ``op2``.
9169
9170If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
9171are compared as if they were integers.
9172
9173If the operands are integer vectors, then they are compared element by
9174element. The result is an ``i1`` vector with the same number of elements
9175as the values being compared. Otherwise, the result is an ``i1``.
9176
9177Example:
9178""""""""
9179
Renato Golin124f2592016-07-20 12:16:38 +00009180.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009181
9182 <result> = icmp eq i32 4, 5 ; yields: result=false
9183 <result> = icmp ne float* %X, %X ; yields: result=false
9184 <result> = icmp ult i16 4, 5 ; yields: result=true
9185 <result> = icmp sgt i16 4, 5 ; yields: result=false
9186 <result> = icmp ule i16 -4, 5 ; yields: result=false
9187 <result> = icmp sge i16 4, 5 ; yields: result=false
9188
Sean Silvab084af42012-12-07 10:36:55 +00009189.. _i_fcmp:
9190
9191'``fcmp``' Instruction
9192^^^^^^^^^^^^^^^^^^^^^^
9193
9194Syntax:
9195"""""""
9196
9197::
9198
James Molloy88eb5352015-07-10 12:52:00 +00009199 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00009200
9201Overview:
9202"""""""""
9203
9204The '``fcmp``' instruction returns a boolean value or vector of boolean
9205values based on comparison of its operands.
9206
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009207If the operands are floating-point scalars, then the result type is a
Sean Silvab084af42012-12-07 10:36:55 +00009208boolean (:ref:`i1 <t_integer>`).
9209
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009210If the operands are floating-point vectors, then the result type is a
Sean Silvab084af42012-12-07 10:36:55 +00009211vector of boolean with the same number of elements as the operands being
9212compared.
9213
9214Arguments:
9215""""""""""
9216
9217The '``fcmp``' instruction takes three operands. The first operand is
9218the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00009219not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00009220
9221#. ``false``: no comparison, always returns false
9222#. ``oeq``: ordered and equal
9223#. ``ogt``: ordered and greater than
9224#. ``oge``: ordered and greater than or equal
9225#. ``olt``: ordered and less than
9226#. ``ole``: ordered and less than or equal
9227#. ``one``: ordered and not equal
9228#. ``ord``: ordered (no nans)
9229#. ``ueq``: unordered or equal
9230#. ``ugt``: unordered or greater than
9231#. ``uge``: unordered or greater than or equal
9232#. ``ult``: unordered or less than
9233#. ``ule``: unordered or less than or equal
9234#. ``une``: unordered or not equal
9235#. ``uno``: unordered (either nans)
9236#. ``true``: no comparison, always returns true
9237
9238*Ordered* means that neither operand is a QNAN while *unordered* means
9239that either operand may be a QNAN.
9240
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009241Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating-point
9242<t_floating>` type or a :ref:`vector <t_vector>` of floating-point type.
9243They must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00009244
9245Semantics:
9246""""""""""
9247
9248The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
9249condition code given as ``cond``. If the operands are vectors, then the
9250vectors are compared element by element. Each comparison performed
9251always yields an :ref:`i1 <t_integer>` result, as follows:
9252
9253#. ``false``: always yields ``false``, regardless of operands.
9254#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
9255 is equal to ``op2``.
9256#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
9257 is greater than ``op2``.
9258#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
9259 is greater than or equal to ``op2``.
9260#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
9261 is less than ``op2``.
9262#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
9263 is less than or equal to ``op2``.
9264#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
9265 is not equal to ``op2``.
9266#. ``ord``: yields ``true`` if both operands are not a QNAN.
9267#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
9268 equal to ``op2``.
9269#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
9270 greater than ``op2``.
9271#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
9272 greater than or equal to ``op2``.
9273#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
9274 less than ``op2``.
9275#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
9276 less than or equal to ``op2``.
9277#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
9278 not equal to ``op2``.
9279#. ``uno``: yields ``true`` if either operand is a QNAN.
9280#. ``true``: always yields ``true``, regardless of operands.
9281
James Molloy88eb5352015-07-10 12:52:00 +00009282The ``fcmp`` instruction can also optionally take any number of
9283:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009284otherwise unsafe floating-point optimizations.
James Molloy88eb5352015-07-10 12:52:00 +00009285
9286Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
9287only flags that have any effect on its semantics are those that allow
9288assumptions to be made about the values of input arguments; namely
9289``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
9290
Sean Silvab084af42012-12-07 10:36:55 +00009291Example:
9292""""""""
9293
Renato Golin124f2592016-07-20 12:16:38 +00009294.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009295
9296 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
9297 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
9298 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
9299 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
9300
Sean Silvab084af42012-12-07 10:36:55 +00009301.. _i_phi:
9302
9303'``phi``' Instruction
9304^^^^^^^^^^^^^^^^^^^^^
9305
9306Syntax:
9307"""""""
9308
9309::
9310
9311 <result> = phi <ty> [ <val0>, <label0>], ...
9312
9313Overview:
9314"""""""""
9315
9316The '``phi``' instruction is used to implement the φ node in the SSA
9317graph representing the function.
9318
9319Arguments:
9320""""""""""
9321
9322The type of the incoming values is specified with the first type field.
9323After this, the '``phi``' instruction takes a list of pairs as
9324arguments, with one pair for each predecessor basic block of the current
9325block. Only values of :ref:`first class <t_firstclass>` type may be used as
9326the value arguments to the PHI node. Only labels may be used as the
9327label arguments.
9328
9329There must be no non-phi instructions between the start of a basic block
9330and the PHI instructions: i.e. PHI instructions must be first in a basic
9331block.
9332
9333For the purposes of the SSA form, the use of each incoming value is
9334deemed to occur on the edge from the corresponding predecessor block to
9335the current block (but after any definition of an '``invoke``'
9336instruction's return value on the same edge).
9337
9338Semantics:
9339""""""""""
9340
9341At runtime, the '``phi``' instruction logically takes on the value
9342specified by the pair corresponding to the predecessor basic block that
9343executed just prior to the current block.
9344
9345Example:
9346""""""""
9347
9348.. code-block:: llvm
9349
9350 Loop: ; Infinite loop that counts from 0 on up...
9351 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
9352 %nextindvar = add i32 %indvar, 1
9353 br label %Loop
9354
9355.. _i_select:
9356
9357'``select``' Instruction
9358^^^^^^^^^^^^^^^^^^^^^^^^
9359
9360Syntax:
9361"""""""
9362
9363::
9364
9365 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
9366
9367 selty is either i1 or {<N x i1>}
9368
9369Overview:
9370"""""""""
9371
9372The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00009373condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00009374
9375Arguments:
9376""""""""""
9377
9378The '``select``' instruction requires an 'i1' value or a vector of 'i1'
9379values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00009380class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00009381
9382Semantics:
9383""""""""""
9384
9385If the condition is an i1 and it evaluates to 1, the instruction returns
9386the first value argument; otherwise, it returns the second value
9387argument.
9388
9389If the condition is a vector of i1, then the value arguments must be
9390vectors of the same size, and the selection is done element by element.
9391
David Majnemer40a0b592015-03-03 22:45:47 +00009392If the condition is an i1 and the value arguments are vectors of the
9393same size, then an entire vector is selected.
9394
Sean Silvab084af42012-12-07 10:36:55 +00009395Example:
9396""""""""
9397
9398.. code-block:: llvm
9399
9400 %X = select i1 true, i8 17, i8 42 ; yields i8:17
9401
9402.. _i_call:
9403
9404'``call``' Instruction
9405^^^^^^^^^^^^^^^^^^^^^^
9406
9407Syntax:
9408"""""""
9409
9410::
9411
David Blaikieb83cf102016-07-13 17:21:34 +00009412 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00009413 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00009414
9415Overview:
9416"""""""""
9417
9418The '``call``' instruction represents a simple function call.
9419
9420Arguments:
9421""""""""""
9422
9423This instruction requires several arguments:
9424
Reid Kleckner5772b772014-04-24 20:14:34 +00009425#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00009426 should perform tail call optimization. The ``tail`` marker is a hint that
9427 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00009428 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00009429 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00009430
9431 #. The call will not cause unbounded stack growth if it is part of a
9432 recursive cycle in the call graph.
9433 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
9434 forwarded in place.
9435
Florian Hahnedae5a62018-01-17 23:29:25 +00009436 Both markers imply that the callee does not access allocas from the caller.
9437 The ``tail`` marker additionally implies that the callee does not access
9438 varargs from the caller, while ``musttail`` implies that varargs from the
9439 caller are passed to the callee. Calls marked ``musttail`` must obey the
9440 following additional rules:
Reid Kleckner5772b772014-04-24 20:14:34 +00009441
9442 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
9443 or a pointer bitcast followed by a ret instruction.
9444 - The ret instruction must return the (possibly bitcasted) value
9445 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00009446 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00009447 parameters or return types may differ in pointee type, but not
9448 in address space.
9449 - The calling conventions of the caller and callee must match.
9450 - All ABI-impacting function attributes, such as sret, byval, inreg,
9451 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00009452 - The callee must be varargs iff the caller is varargs. Bitcasting a
9453 non-varargs function to the appropriate varargs type is legal so
9454 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00009455
9456 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
9457 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00009458
9459 - Caller and callee both have the calling convention ``fastcc``.
9460 - The call is in tail position (ret immediately follows call and ret
9461 uses value of call or is void).
9462 - Option ``-tailcallopt`` is enabled, or
9463 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00009464 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00009465 met. <CodeGenerator.html#tailcallopt>`_
9466
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00009467#. The optional ``notail`` marker indicates that the optimizers should not add
9468 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
9469 call optimization from being performed on the call.
9470
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00009471#. The optional ``fast-math flags`` marker indicates that the call has one or more
Sanjay Patelfa54ace2015-12-14 21:59:03 +00009472 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
9473 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
9474 for calls that return a floating-point scalar or vector type.
9475
Sean Silvab084af42012-12-07 10:36:55 +00009476#. The optional "cconv" marker indicates which :ref:`calling
9477 convention <callingconv>` the call should use. If none is
9478 specified, the call defaults to using C calling conventions. The
9479 calling convention of the call must match the calling convention of
9480 the target function, or else the behavior is undefined.
9481#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
9482 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
9483 are valid here.
9484#. '``ty``': the type of the call instruction itself which is also the
9485 type of the return value. Functions that return no value are marked
9486 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00009487#. '``fnty``': shall be the signature of the function being called. The
9488 argument types must match the types implied by this signature. This
9489 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00009490#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00009491 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00009492 indirect ``call``'s are just as possible, calling an arbitrary pointer
9493 to function value.
9494#. '``function args``': argument list whose types match the function
9495 signature argument types and parameter attributes. All arguments must
9496 be of :ref:`first class <t_firstclass>` type. If the function signature
9497 indicates the function accepts a variable number of arguments, the
9498 extra arguments can be specified.
George Burgess IV39c91052017-04-13 04:01:55 +00009499#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00009500#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00009501
9502Semantics:
9503""""""""""
9504
9505The '``call``' instruction is used to cause control flow to transfer to
9506a specified function, with its incoming arguments bound to the specified
9507values. Upon a '``ret``' instruction in the called function, control
9508flow continues with the instruction after the function call, and the
9509return value of the function is bound to the result argument.
9510
9511Example:
9512""""""""
9513
9514.. code-block:: llvm
9515
9516 %retval = call i32 @test(i32 %argc)
9517 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
9518 %X = tail call i32 @foo() ; yields i32
9519 %Y = tail call fastcc i32 @foo() ; yields i32
9520 call void %foo(i8 97 signext)
9521
9522 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00009523 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00009524 %gr = extractvalue %struct.A %r, 0 ; yields i32
9525 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
9526 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
9527 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
9528
9529llvm treats calls to some functions with names and arguments that match
9530the standard C99 library as being the C99 library functions, and may
9531perform optimizations or generate code for them under that assumption.
9532This is something we'd like to change in the future to provide better
9533support for freestanding environments and non-C-based languages.
9534
9535.. _i_va_arg:
9536
9537'``va_arg``' Instruction
9538^^^^^^^^^^^^^^^^^^^^^^^^
9539
9540Syntax:
9541"""""""
9542
9543::
9544
9545 <resultval> = va_arg <va_list*> <arglist>, <argty>
9546
9547Overview:
9548"""""""""
9549
9550The '``va_arg``' instruction is used to access arguments passed through
9551the "variable argument" area of a function call. It is used to implement
9552the ``va_arg`` macro in C.
9553
9554Arguments:
9555""""""""""
9556
9557This instruction takes a ``va_list*`` value and the type of the
9558argument. It returns a value of the specified argument type and
9559increments the ``va_list`` to point to the next argument. The actual
9560type of ``va_list`` is target specific.
9561
9562Semantics:
9563""""""""""
9564
9565The '``va_arg``' instruction loads an argument of the specified type
9566from the specified ``va_list`` and causes the ``va_list`` to point to
9567the next argument. For more information, see the variable argument
9568handling :ref:`Intrinsic Functions <int_varargs>`.
9569
9570It is legal for this instruction to be called in a function which does
9571not take a variable number of arguments, for example, the ``vfprintf``
9572function.
9573
9574``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
9575function <intrinsics>` because it takes a type as an argument.
9576
9577Example:
9578""""""""
9579
9580See the :ref:`variable argument processing <int_varargs>` section.
9581
9582Note that the code generator does not yet fully support va\_arg on many
9583targets. Also, it does not currently support va\_arg with aggregate
9584types on any target.
9585
9586.. _i_landingpad:
9587
9588'``landingpad``' Instruction
9589^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9590
9591Syntax:
9592"""""""
9593
9594::
9595
David Majnemer7fddecc2015-06-17 20:52:32 +00009596 <resultval> = landingpad <resultty> <clause>+
9597 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00009598
9599 <clause> := catch <type> <value>
9600 <clause> := filter <array constant type> <array constant>
9601
9602Overview:
9603"""""""""
9604
9605The '``landingpad``' instruction is used by `LLVM's exception handling
9606system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009607is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00009608code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00009609defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00009610re-entry to the function. The ``resultval`` has the type ``resultty``.
9611
9612Arguments:
9613""""""""""
9614
David Majnemer7fddecc2015-06-17 20:52:32 +00009615The optional
Sean Silvab084af42012-12-07 10:36:55 +00009616``cleanup`` flag indicates that the landing pad block is a cleanup.
9617
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009618A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00009619contains the global variable representing the "type" that may be caught
9620or filtered respectively. Unlike the ``catch`` clause, the ``filter``
9621clause takes an array constant as its argument. Use
9622"``[0 x i8**] undef``" for a filter which cannot throw. The
9623'``landingpad``' instruction must contain *at least* one ``clause`` or
9624the ``cleanup`` flag.
9625
9626Semantics:
9627""""""""""
9628
9629The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00009630:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00009631therefore the "result type" of the ``landingpad`` instruction. As with
9632calling conventions, how the personality function results are
9633represented in LLVM IR is target specific.
9634
9635The clauses are applied in order from top to bottom. If two
9636``landingpad`` instructions are merged together through inlining, the
9637clauses from the calling function are appended to the list of clauses.
9638When the call stack is being unwound due to an exception being thrown,
9639the exception is compared against each ``clause`` in turn. If it doesn't
9640match any of the clauses, and the ``cleanup`` flag is not set, then
9641unwinding continues further up the call stack.
9642
9643The ``landingpad`` instruction has several restrictions:
9644
9645- A landing pad block is a basic block which is the unwind destination
9646 of an '``invoke``' instruction.
9647- A landing pad block must have a '``landingpad``' instruction as its
9648 first non-PHI instruction.
9649- There can be only one '``landingpad``' instruction within the landing
9650 pad block.
9651- A basic block that is not a landing pad block may not include a
9652 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009653
9654Example:
9655""""""""
9656
9657.. code-block:: llvm
9658
9659 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00009660 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009661 catch i8** @_ZTIi
9662 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00009663 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009664 cleanup
9665 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00009666 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009667 catch i8** @_ZTIi
9668 filter [1 x i8**] [@_ZTId]
9669
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009670.. _i_catchpad:
9671
9672'``catchpad``' Instruction
9673^^^^^^^^^^^^^^^^^^^^^^^^^^
9674
9675Syntax:
9676"""""""
9677
9678::
9679
9680 <resultval> = catchpad within <catchswitch> [<args>*]
9681
9682Overview:
9683"""""""""
9684
9685The '``catchpad``' instruction is used by `LLVM's exception handling
9686system <ExceptionHandling.html#overview>`_ to specify that a basic block
9687begins a catch handler --- one where a personality routine attempts to transfer
9688control to catch an exception.
9689
9690Arguments:
9691""""""""""
9692
9693The ``catchswitch`` operand must always be a token produced by a
9694:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
9695ensures that each ``catchpad`` has exactly one predecessor block, and it always
9696terminates in a ``catchswitch``.
9697
9698The ``args`` correspond to whatever information the personality routine
9699requires to know if this is an appropriate handler for the exception. Control
9700will transfer to the ``catchpad`` if this is the first appropriate handler for
9701the exception.
9702
9703The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
9704``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
9705pads.
9706
9707Semantics:
9708""""""""""
9709
9710When the call stack is being unwound due to an exception being thrown, the
9711exception is compared against the ``args``. If it doesn't match, control will
9712not reach the ``catchpad`` instruction. The representation of ``args`` is
9713entirely target and personality function-specific.
9714
9715Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
9716instruction must be the first non-phi of its parent basic block.
9717
9718The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
9719instructions is described in the
9720`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
9721
9722When a ``catchpad`` has been "entered" but not yet "exited" (as
9723described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9724it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9725that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
9726
9727Example:
9728""""""""
9729
Renato Golin124f2592016-07-20 12:16:38 +00009730.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009731
9732 dispatch:
9733 %cs = catchswitch within none [label %handler0] unwind to caller
9734 ;; A catch block which can catch an integer.
9735 handler0:
9736 %tok = catchpad within %cs [i8** @_ZTIi]
9737
David Majnemer654e1302015-07-31 17:58:14 +00009738.. _i_cleanuppad:
9739
9740'``cleanuppad``' Instruction
9741^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9742
9743Syntax:
9744"""""""
9745
9746::
9747
David Majnemer8a1c45d2015-12-12 05:38:55 +00009748 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00009749
9750Overview:
9751"""""""""
9752
9753The '``cleanuppad``' instruction is used by `LLVM's exception handling
9754system <ExceptionHandling.html#overview>`_ to specify that a basic block
9755is a cleanup block --- one where a personality routine attempts to
9756transfer control to run cleanup actions.
9757The ``args`` correspond to whatever additional
9758information the :ref:`personality function <personalityfn>` requires to
9759execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00009760The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00009761match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
9762The ``parent`` argument is the token of the funclet that contains the
9763``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
9764this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00009765
9766Arguments:
9767""""""""""
9768
9769The instruction takes a list of arbitrary values which are interpreted
9770by the :ref:`personality function <personalityfn>`.
9771
9772Semantics:
9773""""""""""
9774
David Majnemer654e1302015-07-31 17:58:14 +00009775When the call stack is being unwound due to an exception being thrown,
9776the :ref:`personality function <personalityfn>` transfers control to the
9777``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00009778As with calling conventions, how the personality function results are
9779represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00009780
9781The ``cleanuppad`` instruction has several restrictions:
9782
9783- A cleanup block is a basic block which is the unwind destination of
9784 an exceptional instruction.
9785- A cleanup block must have a '``cleanuppad``' instruction as its
9786 first non-PHI instruction.
9787- There can be only one '``cleanuppad``' instruction within the
9788 cleanup block.
9789- A basic block that is not a cleanup block may not include a
9790 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009791
Joseph Tremoulete28885e2016-01-10 04:28:38 +00009792When a ``cleanuppad`` has been "entered" but not yet "exited" (as
9793described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9794it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9795that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009796
David Majnemer654e1302015-07-31 17:58:14 +00009797Example:
9798""""""""
9799
Renato Golin124f2592016-07-20 12:16:38 +00009800.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00009801
David Majnemer8a1c45d2015-12-12 05:38:55 +00009802 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00009803
Sean Silvab084af42012-12-07 10:36:55 +00009804.. _intrinsics:
9805
9806Intrinsic Functions
9807===================
9808
9809LLVM supports the notion of an "intrinsic function". These functions
9810have well known names and semantics and are required to follow certain
9811restrictions. Overall, these intrinsics represent an extension mechanism
9812for the LLVM language that does not require changing all of the
9813transformations in LLVM when adding to the language (or the bitcode
9814reader/writer, the parser, etc...).
9815
9816Intrinsic function names must all start with an "``llvm.``" prefix. This
9817prefix is reserved in LLVM for intrinsic names; thus, function names may
9818not begin with this prefix. Intrinsic functions must always be external
9819functions: you cannot define the body of intrinsic functions. Intrinsic
9820functions may only be used in call or invoke instructions: it is illegal
9821to take the address of an intrinsic function. Additionally, because
9822intrinsic functions are part of the LLVM language, it is required if any
9823are added that they be documented here.
9824
9825Some intrinsic functions can be overloaded, i.e., the intrinsic
9826represents a family of functions that perform the same operation but on
9827different data types. Because LLVM can represent over 8 million
9828different integer types, overloading is used commonly to allow an
9829intrinsic function to operate on any integer type. One or more of the
9830argument types or the result type can be overloaded to accept any
9831integer type. Argument types may also be defined as exactly matching a
9832previous argument's type or the result type. This allows an intrinsic
9833function which accepts multiple arguments, but needs all of them to be
9834of the same type, to only be overloaded with respect to a single
9835argument or the result.
9836
9837Overloaded intrinsics will have the names of its overloaded argument
9838types encoded into its function name, each preceded by a period. Only
9839those types which are overloaded result in a name suffix. Arguments
9840whose type is matched against another type do not. For example, the
9841``llvm.ctpop`` function can take an integer of any width and returns an
9842integer of exactly the same integer width. This leads to a family of
9843functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
9844``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
9845overloaded, and only one type suffix is required. Because the argument's
9846type is matched against the return type, it does not require its own
9847name suffix.
9848
9849To learn how to add an intrinsic function, please see the `Extending
9850LLVM Guide <ExtendingLLVM.html>`_.
9851
9852.. _int_varargs:
9853
9854Variable Argument Handling Intrinsics
9855-------------------------------------
9856
9857Variable argument support is defined in LLVM with the
9858:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9859functions. These functions are related to the similarly named macros
9860defined in the ``<stdarg.h>`` header file.
9861
9862All of these functions operate on arguments that use a target-specific
9863value type "``va_list``". The LLVM assembly language reference manual
9864does not define what this type is, so all transformations should be
9865prepared to handle these functions regardless of the type used.
9866
9867This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9868variable argument handling intrinsic functions are used.
9869
9870.. code-block:: llvm
9871
Tim Northoverab60bb92014-11-02 01:21:51 +00009872 ; This struct is different for every platform. For most platforms,
9873 ; it is merely an i8*.
9874 %struct.va_list = type { i8* }
9875
9876 ; For Unix x86_64 platforms, va_list is the following struct:
9877 ; %struct.va_list = type { i32, i32, i8*, i8* }
9878
Sean Silvab084af42012-12-07 10:36:55 +00009879 define i32 @test(i32 %X, ...) {
9880 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009881 %ap = alloca %struct.va_list
9882 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009883 call void @llvm.va_start(i8* %ap2)
9884
9885 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009886 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009887
9888 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9889 %aq = alloca i8*
9890 %aq2 = bitcast i8** %aq to i8*
9891 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9892 call void @llvm.va_end(i8* %aq2)
9893
9894 ; Stop processing of arguments.
9895 call void @llvm.va_end(i8* %ap2)
9896 ret i32 %tmp
9897 }
9898
9899 declare void @llvm.va_start(i8*)
9900 declare void @llvm.va_copy(i8*, i8*)
9901 declare void @llvm.va_end(i8*)
9902
9903.. _int_va_start:
9904
9905'``llvm.va_start``' Intrinsic
9906^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9907
9908Syntax:
9909"""""""
9910
9911::
9912
Nick Lewycky04f6de02013-09-11 22:04:52 +00009913 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009914
9915Overview:
9916"""""""""
9917
9918The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9919subsequent use by ``va_arg``.
9920
9921Arguments:
9922""""""""""
9923
9924The argument is a pointer to a ``va_list`` element to initialize.
9925
9926Semantics:
9927""""""""""
9928
9929The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9930available in C. In a target-dependent way, it initializes the
9931``va_list`` element to which the argument points, so that the next call
9932to ``va_arg`` will produce the first variable argument passed to the
9933function. Unlike the C ``va_start`` macro, this intrinsic does not need
9934to know the last argument of the function as the compiler can figure
9935that out.
9936
9937'``llvm.va_end``' Intrinsic
9938^^^^^^^^^^^^^^^^^^^^^^^^^^^
9939
9940Syntax:
9941"""""""
9942
9943::
9944
9945 declare void @llvm.va_end(i8* <arglist>)
9946
9947Overview:
9948"""""""""
9949
9950The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9951initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9952
9953Arguments:
9954""""""""""
9955
9956The argument is a pointer to a ``va_list`` to destroy.
9957
9958Semantics:
9959""""""""""
9960
9961The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9962available in C. In a target-dependent way, it destroys the ``va_list``
9963element to which the argument points. Calls to
9964:ref:`llvm.va_start <int_va_start>` and
9965:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9966``llvm.va_end``.
9967
9968.. _int_va_copy:
9969
9970'``llvm.va_copy``' Intrinsic
9971^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9972
9973Syntax:
9974"""""""
9975
9976::
9977
9978 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9979
9980Overview:
9981"""""""""
9982
9983The '``llvm.va_copy``' intrinsic copies the current argument position
9984from the source argument list to the destination argument list.
9985
9986Arguments:
9987""""""""""
9988
9989The first argument is a pointer to a ``va_list`` element to initialize.
9990The second argument is a pointer to a ``va_list`` element to copy from.
9991
9992Semantics:
9993""""""""""
9994
9995The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9996available in C. In a target-dependent way, it copies the source
9997``va_list`` element into the destination ``va_list`` element. This
9998intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9999arbitrarily complex and require, for example, memory allocation.
10000
10001Accurate Garbage Collection Intrinsics
10002--------------------------------------
10003
Philip Reamesc5b0f562015-02-25 23:52:06 +000010004LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010005(GC) requires the frontend to generate code containing appropriate intrinsic
10006calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +000010007intrinsics in a manner which is appropriate for the target collector.
10008
Sean Silvab084af42012-12-07 10:36:55 +000010009These intrinsics allow identification of :ref:`GC roots on the
10010stack <int_gcroot>`, as well as garbage collector implementations that
10011require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +000010012Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +000010013these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +000010014details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +000010015
Philip Reamesf80bbff2015-02-25 23:45:20 +000010016Experimental Statepoint Intrinsics
10017^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10018
10019LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +000010020collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010021to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +000010022:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010023differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +000010024<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +000010025described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +000010026
10027.. _int_gcroot:
10028
10029'``llvm.gcroot``' Intrinsic
10030^^^^^^^^^^^^^^^^^^^^^^^^^^^
10031
10032Syntax:
10033"""""""
10034
10035::
10036
10037 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
10038
10039Overview:
10040"""""""""
10041
10042The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
10043the code generator, and allows some metadata to be associated with it.
10044
10045Arguments:
10046""""""""""
10047
10048The first argument specifies the address of a stack object that contains
10049the root pointer. The second pointer (which must be either a constant or
10050a global value address) contains the meta-data to be associated with the
10051root.
10052
10053Semantics:
10054""""""""""
10055
10056At runtime, a call to this intrinsic stores a null pointer into the
10057"ptrloc" location. At compile-time, the code generator generates
10058information to allow the runtime to find the pointer at GC safe points.
10059The '``llvm.gcroot``' intrinsic may only be used in a function which
10060:ref:`specifies a GC algorithm <gc>`.
10061
10062.. _int_gcread:
10063
10064'``llvm.gcread``' Intrinsic
10065^^^^^^^^^^^^^^^^^^^^^^^^^^^
10066
10067Syntax:
10068"""""""
10069
10070::
10071
10072 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
10073
10074Overview:
10075"""""""""
10076
10077The '``llvm.gcread``' intrinsic identifies reads of references from heap
10078locations, allowing garbage collector implementations that require read
10079barriers.
10080
10081Arguments:
10082""""""""""
10083
10084The second argument is the address to read from, which should be an
10085address allocated from the garbage collector. The first object is a
10086pointer to the start of the referenced object, if needed by the language
10087runtime (otherwise null).
10088
10089Semantics:
10090""""""""""
10091
10092The '``llvm.gcread``' intrinsic has the same semantics as a load
10093instruction, but may be replaced with substantially more complex code by
10094the garbage collector runtime, as needed. The '``llvm.gcread``'
10095intrinsic may only be used in a function which :ref:`specifies a GC
10096algorithm <gc>`.
10097
10098.. _int_gcwrite:
10099
10100'``llvm.gcwrite``' Intrinsic
10101^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10102
10103Syntax:
10104"""""""
10105
10106::
10107
10108 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
10109
10110Overview:
10111"""""""""
10112
10113The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
10114locations, allowing garbage collector implementations that require write
10115barriers (such as generational or reference counting collectors).
10116
10117Arguments:
10118""""""""""
10119
10120The first argument is the reference to store, the second is the start of
10121the object to store it to, and the third is the address of the field of
10122Obj to store to. If the runtime does not require a pointer to the
10123object, Obj may be null.
10124
10125Semantics:
10126""""""""""
10127
10128The '``llvm.gcwrite``' intrinsic has the same semantics as a store
10129instruction, but may be replaced with substantially more complex code by
10130the garbage collector runtime, as needed. The '``llvm.gcwrite``'
10131intrinsic may only be used in a function which :ref:`specifies a GC
10132algorithm <gc>`.
10133
10134Code Generator Intrinsics
10135-------------------------
10136
10137These intrinsics are provided by LLVM to expose special features that
10138may only be implemented with code generator support.
10139
10140'``llvm.returnaddress``' Intrinsic
10141^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10142
10143Syntax:
10144"""""""
10145
10146::
10147
George Burgess IVfbc34982017-05-20 04:52:29 +000010148 declare i8* @llvm.returnaddress(i32 <level>)
Sean Silvab084af42012-12-07 10:36:55 +000010149
10150Overview:
10151"""""""""
10152
10153The '``llvm.returnaddress``' intrinsic attempts to compute a
10154target-specific value indicating the return address of the current
10155function or one of its callers.
10156
10157Arguments:
10158""""""""""
10159
10160The argument to this intrinsic indicates which function to return the
10161address for. Zero indicates the calling function, one indicates its
10162caller, etc. The argument is **required** to be a constant integer
10163value.
10164
10165Semantics:
10166""""""""""
10167
10168The '``llvm.returnaddress``' intrinsic either returns a pointer
10169indicating the return address of the specified call frame, or zero if it
10170cannot be identified. The value returned by this intrinsic is likely to
10171be incorrect or 0 for arguments other than zero, so it should only be
10172used for debugging purposes.
10173
10174Note that calling this intrinsic does not prevent function inlining or
10175other aggressive transformations, so the value returned may not be that
10176of the obvious source-language caller.
10177
Albert Gutowski795d7d62016-10-12 22:13:19 +000010178'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +000010179^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +000010180
10181Syntax:
10182"""""""
10183
10184::
10185
George Burgess IVfbc34982017-05-20 04:52:29 +000010186 declare i8* @llvm.addressofreturnaddress()
Albert Gutowski795d7d62016-10-12 22:13:19 +000010187
10188Overview:
10189"""""""""
10190
10191The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
10192pointer to the place in the stack frame where the return address of the
10193current function is stored.
10194
10195Semantics:
10196""""""""""
10197
10198Note that calling this intrinsic does not prevent function inlining or
10199other aggressive transformations, so the value returned may not be that
10200of the obvious source-language caller.
10201
10202This intrinsic is only implemented for x86.
10203
Sean Silvab084af42012-12-07 10:36:55 +000010204'``llvm.frameaddress``' Intrinsic
10205^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10206
10207Syntax:
10208"""""""
10209
10210::
10211
10212 declare i8* @llvm.frameaddress(i32 <level>)
10213
10214Overview:
10215"""""""""
10216
10217The '``llvm.frameaddress``' intrinsic attempts to return the
10218target-specific frame pointer value for the specified stack frame.
10219
10220Arguments:
10221""""""""""
10222
10223The argument to this intrinsic indicates which function to return the
10224frame pointer for. Zero indicates the calling function, one indicates
10225its caller, etc. The argument is **required** to be a constant integer
10226value.
10227
10228Semantics:
10229""""""""""
10230
10231The '``llvm.frameaddress``' intrinsic either returns a pointer
10232indicating the frame address of the specified call frame, or zero if it
10233cannot be identified. The value returned by this intrinsic is likely to
10234be incorrect or 0 for arguments other than zero, so it should only be
10235used for debugging purposes.
10236
10237Note that calling this intrinsic does not prevent function inlining or
10238other aggressive transformations, so the value returned may not be that
10239of the obvious source-language caller.
10240
Reid Kleckner60381792015-07-07 22:25:32 +000010241'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +000010242^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10243
10244Syntax:
10245"""""""
10246
10247::
10248
Reid Kleckner60381792015-07-07 22:25:32 +000010249 declare void @llvm.localescape(...)
10250 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +000010251
10252Overview:
10253"""""""""
10254
Reid Kleckner60381792015-07-07 22:25:32 +000010255The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
10256allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010257live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +000010258computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +000010259
10260Arguments:
10261""""""""""
10262
Reid Kleckner60381792015-07-07 22:25:32 +000010263All arguments to '``llvm.localescape``' must be pointers to static allocas or
10264casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010265once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +000010266
Reid Kleckner60381792015-07-07 22:25:32 +000010267The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +000010268bitcasted pointer to a function defined in the current module. The code
10269generator cannot determine the frame allocation offset of functions defined in
10270other modules.
10271
Reid Klecknerd5afc62f2015-07-07 23:23:03 +000010272The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
10273call frame that is currently live. The return value of '``llvm.localaddress``'
10274is one way to produce such a value, but various runtimes also expose a suitable
10275pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +000010276
Reid Kleckner60381792015-07-07 22:25:32 +000010277The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
10278'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010279
Reid Klecknere9b89312015-01-13 00:48:10 +000010280Semantics:
10281""""""""""
10282
Reid Kleckner60381792015-07-07 22:25:32 +000010283These intrinsics allow a group of functions to share access to a set of local
10284stack allocations of a one parent function. The parent function may call the
10285'``llvm.localescape``' intrinsic once from the function entry block, and the
10286child functions can use '``llvm.localrecover``' to access the escaped allocas.
10287The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
10288the escaped allocas are allocated, which would break attempts to use
10289'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +000010290
Renato Golinc7aea402014-05-06 16:51:25 +000010291.. _int_read_register:
10292.. _int_write_register:
10293
10294'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
10295^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10296
10297Syntax:
10298"""""""
10299
10300::
10301
10302 declare i32 @llvm.read_register.i32(metadata)
10303 declare i64 @llvm.read_register.i64(metadata)
10304 declare void @llvm.write_register.i32(metadata, i32 @value)
10305 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +000010306 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +000010307
10308Overview:
10309"""""""""
10310
10311The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
10312provides access to the named register. The register must be valid on
10313the architecture being compiled to. The type needs to be compatible
10314with the register being read.
10315
10316Semantics:
10317""""""""""
10318
10319The '``llvm.read_register``' intrinsic returns the current value of the
10320register, where possible. The '``llvm.write_register``' intrinsic sets
10321the current value of the register, where possible.
10322
10323This is useful to implement named register global variables that need
10324to always be mapped to a specific register, as is common practice on
10325bare-metal programs including OS kernels.
10326
10327The compiler doesn't check for register availability or use of the used
10328register in surrounding code, including inline assembly. Because of that,
10329allocatable registers are not supported.
10330
10331Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +000010332architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +000010333work is needed to support other registers and even more so, allocatable
10334registers.
10335
Sean Silvab084af42012-12-07 10:36:55 +000010336.. _int_stacksave:
10337
10338'``llvm.stacksave``' Intrinsic
10339^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10340
10341Syntax:
10342"""""""
10343
10344::
10345
10346 declare i8* @llvm.stacksave()
10347
10348Overview:
10349"""""""""
10350
10351The '``llvm.stacksave``' intrinsic is used to remember the current state
10352of the function stack, for use with
10353:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
10354implementing language features like scoped automatic variable sized
10355arrays in C99.
10356
10357Semantics:
10358""""""""""
10359
10360This intrinsic returns a opaque pointer value that can be passed to
10361:ref:`llvm.stackrestore <int_stackrestore>`. When an
10362``llvm.stackrestore`` intrinsic is executed with a value saved from
10363``llvm.stacksave``, it effectively restores the state of the stack to
10364the state it was in when the ``llvm.stacksave`` intrinsic executed. In
10365practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
10366were allocated after the ``llvm.stacksave`` was executed.
10367
10368.. _int_stackrestore:
10369
10370'``llvm.stackrestore``' Intrinsic
10371^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10372
10373Syntax:
10374"""""""
10375
10376::
10377
10378 declare void @llvm.stackrestore(i8* %ptr)
10379
10380Overview:
10381"""""""""
10382
10383The '``llvm.stackrestore``' intrinsic is used to restore the state of
10384the function stack to the state it was in when the corresponding
10385:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
10386useful for implementing language features like scoped automatic variable
10387sized arrays in C99.
10388
10389Semantics:
10390""""""""""
10391
10392See the description for :ref:`llvm.stacksave <int_stacksave>`.
10393
Yury Gribovd7dbb662015-12-01 11:40:55 +000010394.. _int_get_dynamic_area_offset:
10395
10396'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +000010397^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +000010398
10399Syntax:
10400"""""""
10401
10402::
10403
10404 declare i32 @llvm.get.dynamic.area.offset.i32()
10405 declare i64 @llvm.get.dynamic.area.offset.i64()
10406
Lang Hames10239932016-10-08 00:20:42 +000010407Overview:
10408"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +000010409
10410 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
10411 get the offset from native stack pointer to the address of the most
10412 recent dynamic alloca on the caller's stack. These intrinsics are
10413 intendend for use in combination with
10414 :ref:`llvm.stacksave <int_stacksave>` to get a
10415 pointer to the most recent dynamic alloca. This is useful, for example,
10416 for AddressSanitizer's stack unpoisoning routines.
10417
10418Semantics:
10419""""""""""
10420
10421 These intrinsics return a non-negative integer value that can be used to
10422 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
10423 on the caller's stack. In particular, for targets where stack grows downwards,
10424 adding this offset to the native stack pointer would get the address of the most
10425 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +000010426 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +000010427 one past the end of the most recent dynamic alloca.
10428
10429 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
10430 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
10431 compile-time-known constant value.
10432
10433 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
Matt Arsenaultc749bdc2017-03-30 23:36:47 +000010434 must match the target's default address space's (address space 0) pointer type.
Yury Gribovd7dbb662015-12-01 11:40:55 +000010435
Sean Silvab084af42012-12-07 10:36:55 +000010436'``llvm.prefetch``' Intrinsic
10437^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10438
10439Syntax:
10440"""""""
10441
10442::
10443
10444 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
10445
10446Overview:
10447"""""""""
10448
10449The '``llvm.prefetch``' intrinsic is a hint to the code generator to
10450insert a prefetch instruction if supported; otherwise, it is a noop.
10451Prefetches have no effect on the behavior of the program but can change
10452its performance characteristics.
10453
10454Arguments:
10455""""""""""
10456
10457``address`` is the address to be prefetched, ``rw`` is the specifier
10458determining if the fetch should be for a read (0) or write (1), and
10459``locality`` is a temporal locality specifier ranging from (0) - no
10460locality, to (3) - extremely local keep in cache. The ``cache type``
10461specifies whether the prefetch is performed on the data (1) or
10462instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
10463arguments must be constant integers.
10464
10465Semantics:
10466""""""""""
10467
10468This intrinsic does not modify the behavior of the program. In
10469particular, prefetches cannot trap and do not produce a value. On
10470targets that support this intrinsic, the prefetch can provide hints to
10471the processor cache for better performance.
10472
10473'``llvm.pcmarker``' Intrinsic
10474^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10475
10476Syntax:
10477"""""""
10478
10479::
10480
10481 declare void @llvm.pcmarker(i32 <id>)
10482
10483Overview:
10484"""""""""
10485
10486The '``llvm.pcmarker``' intrinsic is a method to export a Program
10487Counter (PC) in a region of code to simulators and other tools. The
10488method is target specific, but it is expected that the marker will use
10489exported symbols to transmit the PC of the marker. The marker makes no
10490guarantees that it will remain with any specific instruction after
10491optimizations. It is possible that the presence of a marker will inhibit
10492optimizations. The intended use is to be inserted after optimizations to
10493allow correlations of simulation runs.
10494
10495Arguments:
10496""""""""""
10497
10498``id`` is a numerical id identifying the marker.
10499
10500Semantics:
10501""""""""""
10502
10503This intrinsic does not modify the behavior of the program. Backends
10504that do not support this intrinsic may ignore it.
10505
10506'``llvm.readcyclecounter``' Intrinsic
10507^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10508
10509Syntax:
10510"""""""
10511
10512::
10513
10514 declare i64 @llvm.readcyclecounter()
10515
10516Overview:
10517"""""""""
10518
10519The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
10520counter register (or similar low latency, high accuracy clocks) on those
10521targets that support it. On X86, it should map to RDTSC. On Alpha, it
10522should map to RPCC. As the backing counters overflow quickly (on the
10523order of 9 seconds on alpha), this should only be used for small
10524timings.
10525
10526Semantics:
10527""""""""""
10528
10529When directly supported, reading the cycle counter should not modify any
10530memory. Implementations are allowed to either return a application
10531specific value or a system wide value. On backends without support, this
10532is lowered to a constant 0.
10533
Tim Northoverbc933082013-05-23 19:11:20 +000010534Note that runtime support may be conditional on the privilege-level code is
10535running at and the host platform.
10536
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010537'``llvm.clear_cache``' Intrinsic
10538^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10539
10540Syntax:
10541"""""""
10542
10543::
10544
10545 declare void @llvm.clear_cache(i8*, i8*)
10546
10547Overview:
10548"""""""""
10549
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010550The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
10551in the specified range to the execution unit of the processor. On
10552targets with non-unified instruction and data cache, the implementation
10553flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010554
10555Semantics:
10556""""""""""
10557
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010558On platforms with coherent instruction and data caches (e.g. x86), this
10559intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +000010560cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010561instructions or a system call, if cache flushing requires special
10562privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010563
Sean Silvad02bf3e2014-04-07 22:29:53 +000010564The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010565time library.
Renato Golin93010e62014-03-26 14:01:32 +000010566
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010567This instrinsic does *not* empty the instruction pipeline. Modifications
10568of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010569
Vedant Kumar51ce6682018-01-26 23:54:25 +000010570'``llvm.instrprof.increment``' Intrinsic
Justin Bogner61ba2e32014-12-08 18:02:35 +000010571^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10572
10573Syntax:
10574"""""""
10575
10576::
10577
Vedant Kumar51ce6682018-01-26 23:54:25 +000010578 declare void @llvm.instrprof.increment(i8* <name>, i64 <hash>,
Justin Bogner61ba2e32014-12-08 18:02:35 +000010579 i32 <num-counters>, i32 <index>)
10580
10581Overview:
10582"""""""""
10583
Vedant Kumar51ce6682018-01-26 23:54:25 +000010584The '``llvm.instrprof.increment``' intrinsic can be emitted by a
Justin Bogner61ba2e32014-12-08 18:02:35 +000010585frontend for use with instrumentation based profiling. These will be
10586lowered by the ``-instrprof`` pass to generate execution counts of a
10587program at runtime.
10588
10589Arguments:
10590""""""""""
10591
10592The first argument is a pointer to a global variable containing the
10593name of the entity being instrumented. This should generally be the
10594(mangled) function name for a set of counters.
10595
10596The second argument is a hash value that can be used by the consumer
10597of the profile data to detect changes to the instrumented source, and
10598the third is the number of counters associated with ``name``. It is an
10599error if ``hash`` or ``num-counters`` differ between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000010600``instrprof.increment`` that refer to the same name.
Justin Bogner61ba2e32014-12-08 18:02:35 +000010601
10602The last argument refers to which of the counters for ``name`` should
10603be incremented. It should be a value between 0 and ``num-counters``.
10604
10605Semantics:
10606""""""""""
10607
10608This intrinsic represents an increment of a profiling counter. It will
10609cause the ``-instrprof`` pass to generate the appropriate data
10610structures and the code to increment the appropriate value, in a
10611format that can be written out by a compiler runtime and consumed via
10612the ``llvm-profdata`` tool.
10613
Vedant Kumar51ce6682018-01-26 23:54:25 +000010614'``llvm.instrprof.increment.step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +000010615^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +000010616
10617Syntax:
10618"""""""
10619
10620::
10621
Vedant Kumar51ce6682018-01-26 23:54:25 +000010622 declare void @llvm.instrprof.increment.step(i8* <name>, i64 <hash>,
Xinliang David Li4ca17332016-09-18 18:34:07 +000010623 i32 <num-counters>,
10624 i32 <index>, i64 <step>)
10625
10626Overview:
10627"""""""""
10628
Vedant Kumar51ce6682018-01-26 23:54:25 +000010629The '``llvm.instrprof.increment.step``' intrinsic is an extension to
10630the '``llvm.instrprof.increment``' intrinsic with an additional fifth
Xinliang David Li4ca17332016-09-18 18:34:07 +000010631argument to specify the step of the increment.
10632
10633Arguments:
10634""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000010635The first four arguments are the same as '``llvm.instrprof.increment``'
Pete Couperused9569d2017-08-23 20:58:22 +000010636intrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000010637
10638The last argument specifies the value of the increment of the counter variable.
10639
10640Semantics:
10641""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000010642See description of '``llvm.instrprof.increment``' instrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000010643
10644
Vedant Kumar51ce6682018-01-26 23:54:25 +000010645'``llvm.instrprof.value.profile``' Intrinsic
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010646^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10647
10648Syntax:
10649"""""""
10650
10651::
10652
Vedant Kumar51ce6682018-01-26 23:54:25 +000010653 declare void @llvm.instrprof.value.profile(i8* <name>, i64 <hash>,
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010654 i64 <value>, i32 <value_kind>,
10655 i32 <index>)
10656
10657Overview:
10658"""""""""
10659
Vedant Kumar51ce6682018-01-26 23:54:25 +000010660The '``llvm.instrprof.value.profile``' intrinsic can be emitted by a
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010661frontend for use with instrumentation based profiling. This will be
10662lowered by the ``-instrprof`` pass to find out the target values,
10663instrumented expressions take in a program at runtime.
10664
10665Arguments:
10666""""""""""
10667
10668The first argument is a pointer to a global variable containing the
10669name of the entity being instrumented. ``name`` should generally be the
10670(mangled) function name for a set of counters.
10671
10672The second argument is a hash value that can be used by the consumer
10673of the profile data to detect changes to the instrumented source. It
10674is an error if ``hash`` differs between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000010675``llvm.instrprof.*`` that refer to the same name.
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010676
10677The third argument is the value of the expression being profiled. The profiled
10678expression's value should be representable as an unsigned 64-bit value. The
10679fourth argument represents the kind of value profiling that is being done. The
10680supported value profiling kinds are enumerated through the
10681``InstrProfValueKind`` type declared in the
10682``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
10683index of the instrumented expression within ``name``. It should be >= 0.
10684
10685Semantics:
10686""""""""""
10687
10688This intrinsic represents the point where a call to a runtime routine
10689should be inserted for value profiling of target expressions. ``-instrprof``
10690pass will generate the appropriate data structures and replace the
Vedant Kumar51ce6682018-01-26 23:54:25 +000010691``llvm.instrprof.value.profile`` intrinsic with the call to the profile
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010692runtime library with proper arguments.
10693
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000010694'``llvm.thread.pointer``' Intrinsic
10695^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10696
10697Syntax:
10698"""""""
10699
10700::
10701
10702 declare i8* @llvm.thread.pointer()
10703
10704Overview:
10705"""""""""
10706
10707The '``llvm.thread.pointer``' intrinsic returns the value of the thread
10708pointer.
10709
10710Semantics:
10711""""""""""
10712
10713The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
10714for the current thread. The exact semantics of this value are target
10715specific: it may point to the start of TLS area, to the end, or somewhere
10716in the middle. Depending on the target, this intrinsic may read a register,
10717call a helper function, read from an alternate memory space, or perform
10718other operations necessary to locate the TLS area. Not all targets support
10719this intrinsic.
10720
Sean Silvab084af42012-12-07 10:36:55 +000010721Standard C Library Intrinsics
10722-----------------------------
10723
10724LLVM provides intrinsics for a few important standard C library
10725functions. These intrinsics allow source-language front-ends to pass
10726information about the alignment of the pointer arguments to the code
10727generator, providing opportunity for more efficient code generation.
10728
10729.. _int_memcpy:
10730
10731'``llvm.memcpy``' Intrinsic
10732^^^^^^^^^^^^^^^^^^^^^^^^^^^
10733
10734Syntax:
10735"""""""
10736
10737This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
10738integer bit width and for different address spaces. Not all targets
10739support all bit widths however.
10740
10741::
10742
10743 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010744 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010745 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010746 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010747
10748Overview:
10749"""""""""
10750
10751The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10752source location to the destination location.
10753
10754Note that, unlike the standard libc function, the ``llvm.memcpy.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000010755intrinsics do not return a value, takes extra isvolatile
Sean Silvab084af42012-12-07 10:36:55 +000010756arguments and the pointers can be in specified address spaces.
10757
10758Arguments:
10759""""""""""
10760
10761The first argument is a pointer to the destination, the second is a
10762pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000010763specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000010764boolean indicating a volatile access.
10765
Daniel Neilson39eb6a52018-01-19 17:24:21 +000010766The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010767for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010768
10769If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
10770a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10771very cleanly specified and it is unwise to depend on it.
10772
10773Semantics:
10774""""""""""
10775
10776The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10777source location to the destination location, which are not allowed to
10778overlap. It copies "len" bytes of memory over. If the argument is known
10779to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +000010780argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010781
Daniel Neilson57226ef2017-07-12 15:25:26 +000010782.. _int_memmove:
10783
Sean Silvab084af42012-12-07 10:36:55 +000010784'``llvm.memmove``' Intrinsic
10785^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10786
10787Syntax:
10788"""""""
10789
10790This is an overloaded intrinsic. You can use llvm.memmove on any integer
10791bit width and for different address space. Not all targets support all
10792bit widths however.
10793
10794::
10795
10796 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010797 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010798 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010799 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010800
10801Overview:
10802"""""""""
10803
10804The '``llvm.memmove.*``' intrinsics move a block of memory from the
10805source location to the destination location. It is similar to the
10806'``llvm.memcpy``' intrinsic but allows the two memory locations to
10807overlap.
10808
10809Note that, unlike the standard libc function, the ``llvm.memmove.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000010810intrinsics do not return a value, takes an extra isvolatile
10811argument and the pointers can be in specified address spaces.
Sean Silvab084af42012-12-07 10:36:55 +000010812
10813Arguments:
10814""""""""""
10815
10816The first argument is a pointer to the destination, the second is a
10817pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000010818specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000010819boolean indicating a volatile access.
10820
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000010821The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010822for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010823
10824If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
10825is a :ref:`volatile operation <volatile>`. The detailed access behavior is
10826not very cleanly specified and it is unwise to depend on it.
10827
10828Semantics:
10829""""""""""
10830
10831The '``llvm.memmove.*``' intrinsics copy a block of memory from the
10832source location to the destination location, which may overlap. It
10833copies "len" bytes of memory over. If the argument is known to be
10834aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000010835otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010836
Daniel Neilson965613e2017-07-12 21:57:23 +000010837.. _int_memset:
10838
Sean Silvab084af42012-12-07 10:36:55 +000010839'``llvm.memset.*``' Intrinsics
10840^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10841
10842Syntax:
10843"""""""
10844
10845This is an overloaded intrinsic. You can use llvm.memset on any integer
10846bit width and for different address spaces. However, not all targets
10847support all bit widths.
10848
10849::
10850
10851 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010852 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010853 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010854 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010855
10856Overview:
10857"""""""""
10858
10859The '``llvm.memset.*``' intrinsics fill a block of memory with a
10860particular byte value.
10861
10862Note that, unlike the standard libc function, the ``llvm.memset``
Daniel Neilson1e687242018-01-19 17:13:12 +000010863intrinsic does not return a value and takes an extra volatile
10864argument. Also, the destination can be in an arbitrary address space.
Sean Silvab084af42012-12-07 10:36:55 +000010865
10866Arguments:
10867""""""""""
10868
10869The first argument is a pointer to the destination to fill, the second
10870is the byte value with which to fill it, the third argument is an
10871integer argument specifying the number of bytes to fill, and the fourth
Daniel Neilson1e687242018-01-19 17:13:12 +000010872is a boolean indicating a volatile access.
Sean Silvab084af42012-12-07 10:36:55 +000010873
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000010874The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010875for the first arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010876
10877If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10878a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10879very cleanly specified and it is unwise to depend on it.
10880
10881Semantics:
10882""""""""""
10883
10884The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010885at the destination location.
Sean Silvab084af42012-12-07 10:36:55 +000010886
10887'``llvm.sqrt.*``' Intrinsic
10888^^^^^^^^^^^^^^^^^^^^^^^^^^^
10889
10890Syntax:
10891"""""""
10892
10893This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010894floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010895all types however.
10896
10897::
10898
10899 declare float @llvm.sqrt.f32(float %Val)
10900 declare double @llvm.sqrt.f64(double %Val)
10901 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10902 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10903 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10904
10905Overview:
10906"""""""""
10907
Sanjay Patel629c4112017-11-06 16:27:15 +000010908The '``llvm.sqrt``' intrinsics return the square root of the specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010909
10910Arguments:
10911""""""""""
10912
Sanjay Patel629c4112017-11-06 16:27:15 +000010913The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010914
10915Semantics:
10916""""""""""
10917
Sanjay Patel629c4112017-11-06 16:27:15 +000010918Return the same value as a corresponding libm '``sqrt``' function but without
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010919trapping or setting ``errno``. For types specified by IEEE-754, the result
Sanjay Patel629c4112017-11-06 16:27:15 +000010920matches a conforming libm implementation.
10921
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010922When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010923using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010924
10925'``llvm.powi.*``' Intrinsic
10926^^^^^^^^^^^^^^^^^^^^^^^^^^^
10927
10928Syntax:
10929"""""""
10930
10931This is an overloaded intrinsic. You can use ``llvm.powi`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000010932floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010933all types however.
10934
10935::
10936
10937 declare float @llvm.powi.f32(float %Val, i32 %power)
10938 declare double @llvm.powi.f64(double %Val, i32 %power)
10939 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10940 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10941 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10942
10943Overview:
10944"""""""""
10945
10946The '``llvm.powi.*``' intrinsics return the first operand raised to the
10947specified (positive or negative) power. The order of evaluation of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000010948multiplications is not defined. When a vector of floating-point type is
Sean Silvab084af42012-12-07 10:36:55 +000010949used, the second argument remains a scalar integer value.
10950
10951Arguments:
10952""""""""""
10953
10954The second argument is an integer power, and the first is a value to
10955raise to that power.
10956
10957Semantics:
10958""""""""""
10959
10960This function returns the first value raised to the second power with an
10961unspecified sequence of rounding operations.
10962
10963'``llvm.sin.*``' Intrinsic
10964^^^^^^^^^^^^^^^^^^^^^^^^^^
10965
10966Syntax:
10967"""""""
10968
10969This is an overloaded intrinsic. You can use ``llvm.sin`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010970floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010971all types however.
10972
10973::
10974
10975 declare float @llvm.sin.f32(float %Val)
10976 declare double @llvm.sin.f64(double %Val)
10977 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10978 declare fp128 @llvm.sin.f128(fp128 %Val)
10979 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10980
10981Overview:
10982"""""""""
10983
10984The '``llvm.sin.*``' intrinsics return the sine of the operand.
10985
10986Arguments:
10987""""""""""
10988
Sanjay Patel629c4112017-11-06 16:27:15 +000010989The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010990
10991Semantics:
10992""""""""""
10993
Sanjay Patel629c4112017-11-06 16:27:15 +000010994Return the same value as a corresponding libm '``sin``' function but without
10995trapping or setting ``errno``.
10996
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010997When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000010998using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000010999
11000'``llvm.cos.*``' Intrinsic
11001^^^^^^^^^^^^^^^^^^^^^^^^^^
11002
11003Syntax:
11004"""""""
11005
11006This is an overloaded intrinsic. You can use ``llvm.cos`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011007floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011008all types however.
11009
11010::
11011
11012 declare float @llvm.cos.f32(float %Val)
11013 declare double @llvm.cos.f64(double %Val)
11014 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
11015 declare fp128 @llvm.cos.f128(fp128 %Val)
11016 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
11017
11018Overview:
11019"""""""""
11020
11021The '``llvm.cos.*``' intrinsics return the cosine of the operand.
11022
11023Arguments:
11024""""""""""
11025
Sanjay Patel629c4112017-11-06 16:27:15 +000011026The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011027
11028Semantics:
11029""""""""""
11030
Sanjay Patel629c4112017-11-06 16:27:15 +000011031Return the same value as a corresponding libm '``cos``' function but without
11032trapping or setting ``errno``.
11033
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011034When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011035using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011036
11037'``llvm.pow.*``' Intrinsic
11038^^^^^^^^^^^^^^^^^^^^^^^^^^
11039
11040Syntax:
11041"""""""
11042
11043This is an overloaded intrinsic. You can use ``llvm.pow`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011044floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011045all types however.
11046
11047::
11048
11049 declare float @llvm.pow.f32(float %Val, float %Power)
11050 declare double @llvm.pow.f64(double %Val, double %Power)
11051 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
11052 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
11053 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
11054
11055Overview:
11056"""""""""
11057
11058The '``llvm.pow.*``' intrinsics return the first operand raised to the
11059specified (positive or negative) power.
11060
11061Arguments:
11062""""""""""
11063
Sanjay Patel629c4112017-11-06 16:27:15 +000011064The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011065
11066Semantics:
11067""""""""""
11068
Sanjay Patel629c4112017-11-06 16:27:15 +000011069Return the same value as a corresponding libm '``pow``' function but without
11070trapping or setting ``errno``.
11071
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011072When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011073using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011074
11075'``llvm.exp.*``' Intrinsic
11076^^^^^^^^^^^^^^^^^^^^^^^^^^
11077
11078Syntax:
11079"""""""
11080
11081This is an overloaded intrinsic. You can use ``llvm.exp`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011082floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011083all types however.
11084
11085::
11086
11087 declare float @llvm.exp.f32(float %Val)
11088 declare double @llvm.exp.f64(double %Val)
11089 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
11090 declare fp128 @llvm.exp.f128(fp128 %Val)
11091 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
11092
11093Overview:
11094"""""""""
11095
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011096The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
11097value.
Sean Silvab084af42012-12-07 10:36:55 +000011098
11099Arguments:
11100""""""""""
11101
Sanjay Patel629c4112017-11-06 16:27:15 +000011102The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011103
11104Semantics:
11105""""""""""
11106
Sanjay Patel629c4112017-11-06 16:27:15 +000011107Return the same value as a corresponding libm '``exp``' function but without
11108trapping or setting ``errno``.
11109
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011110When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011111using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011112
11113'``llvm.exp2.*``' Intrinsic
11114^^^^^^^^^^^^^^^^^^^^^^^^^^^
11115
11116Syntax:
11117"""""""
11118
11119This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011120floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011121all types however.
11122
11123::
11124
11125 declare float @llvm.exp2.f32(float %Val)
11126 declare double @llvm.exp2.f64(double %Val)
11127 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
11128 declare fp128 @llvm.exp2.f128(fp128 %Val)
11129 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
11130
11131Overview:
11132"""""""""
11133
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011134The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
11135specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011136
11137Arguments:
11138""""""""""
11139
Sanjay Patel629c4112017-11-06 16:27:15 +000011140The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011141
11142Semantics:
11143""""""""""
11144
Sanjay Patel629c4112017-11-06 16:27:15 +000011145Return the same value as a corresponding libm '``exp2``' function but without
11146trapping or setting ``errno``.
11147
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011148When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011149using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011150
11151'``llvm.log.*``' Intrinsic
11152^^^^^^^^^^^^^^^^^^^^^^^^^^
11153
11154Syntax:
11155"""""""
11156
11157This is an overloaded intrinsic. You can use ``llvm.log`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011158floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011159all types however.
11160
11161::
11162
11163 declare float @llvm.log.f32(float %Val)
11164 declare double @llvm.log.f64(double %Val)
11165 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
11166 declare fp128 @llvm.log.f128(fp128 %Val)
11167 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
11168
11169Overview:
11170"""""""""
11171
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011172The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
11173value.
Sean Silvab084af42012-12-07 10:36:55 +000011174
11175Arguments:
11176""""""""""
11177
Sanjay Patel629c4112017-11-06 16:27:15 +000011178The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011179
11180Semantics:
11181""""""""""
11182
Sanjay Patel629c4112017-11-06 16:27:15 +000011183Return the same value as a corresponding libm '``log``' function but without
11184trapping or setting ``errno``.
11185
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011186When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011187using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011188
11189'``llvm.log10.*``' Intrinsic
11190^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11191
11192Syntax:
11193"""""""
11194
11195This is an overloaded intrinsic. You can use ``llvm.log10`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011196floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011197all types however.
11198
11199::
11200
11201 declare float @llvm.log10.f32(float %Val)
11202 declare double @llvm.log10.f64(double %Val)
11203 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
11204 declare fp128 @llvm.log10.f128(fp128 %Val)
11205 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
11206
11207Overview:
11208"""""""""
11209
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011210The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
11211specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011212
11213Arguments:
11214""""""""""
11215
Sanjay Patel629c4112017-11-06 16:27:15 +000011216The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011217
11218Semantics:
11219""""""""""
11220
Sanjay Patel629c4112017-11-06 16:27:15 +000011221Return the same value as a corresponding libm '``log10``' function but without
11222trapping or setting ``errno``.
11223
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011224When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011225using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011226
11227'``llvm.log2.*``' Intrinsic
11228^^^^^^^^^^^^^^^^^^^^^^^^^^^
11229
11230Syntax:
11231"""""""
11232
11233This is an overloaded intrinsic. You can use ``llvm.log2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011234floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011235all types however.
11236
11237::
11238
11239 declare float @llvm.log2.f32(float %Val)
11240 declare double @llvm.log2.f64(double %Val)
11241 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
11242 declare fp128 @llvm.log2.f128(fp128 %Val)
11243 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
11244
11245Overview:
11246"""""""""
11247
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011248The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
11249value.
Sean Silvab084af42012-12-07 10:36:55 +000011250
11251Arguments:
11252""""""""""
11253
Sanjay Patel629c4112017-11-06 16:27:15 +000011254The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011255
11256Semantics:
11257""""""""""
11258
Sanjay Patel629c4112017-11-06 16:27:15 +000011259Return the same value as a corresponding libm '``log2``' function but without
11260trapping or setting ``errno``.
11261
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011262When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011263using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011264
11265'``llvm.fma.*``' Intrinsic
11266^^^^^^^^^^^^^^^^^^^^^^^^^^
11267
11268Syntax:
11269"""""""
11270
11271This is an overloaded intrinsic. You can use ``llvm.fma`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011272floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011273all types however.
11274
11275::
11276
11277 declare float @llvm.fma.f32(float %a, float %b, float %c)
11278 declare double @llvm.fma.f64(double %a, double %b, double %c)
11279 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
11280 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
11281 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
11282
11283Overview:
11284"""""""""
11285
Sanjay Patel629c4112017-11-06 16:27:15 +000011286The '``llvm.fma.*``' intrinsics perform the fused multiply-add operation.
Sean Silvab084af42012-12-07 10:36:55 +000011287
11288Arguments:
11289""""""""""
11290
Sanjay Patel629c4112017-11-06 16:27:15 +000011291The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011292
11293Semantics:
11294""""""""""
11295
Sanjay Patel629c4112017-11-06 16:27:15 +000011296Return the same value as a corresponding libm '``fma``' function but without
11297trapping or setting ``errno``.
11298
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011299When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011300using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011301
11302'``llvm.fabs.*``' Intrinsic
11303^^^^^^^^^^^^^^^^^^^^^^^^^^^
11304
11305Syntax:
11306"""""""
11307
11308This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011309floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011310all types however.
11311
11312::
11313
11314 declare float @llvm.fabs.f32(float %Val)
11315 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011316 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000011317 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011318 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000011319
11320Overview:
11321"""""""""
11322
11323The '``llvm.fabs.*``' intrinsics return the absolute value of the
11324operand.
11325
11326Arguments:
11327""""""""""
11328
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011329The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011330type.
11331
11332Semantics:
11333""""""""""
11334
11335This function returns the same values as the libm ``fabs`` functions
11336would, and handles error conditions in the same way.
11337
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011338'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000011339^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011340
11341Syntax:
11342"""""""
11343
11344This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011345floating-point or vector of floating-point type. Not all targets support
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011346all types however.
11347
11348::
11349
Matt Arsenault64313c92014-10-22 18:25:02 +000011350 declare float @llvm.minnum.f32(float %Val0, float %Val1)
11351 declare double @llvm.minnum.f64(double %Val0, double %Val1)
11352 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11353 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
11354 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011355
11356Overview:
11357"""""""""
11358
11359The '``llvm.minnum.*``' intrinsics return the minimum of the two
11360arguments.
11361
11362
11363Arguments:
11364""""""""""
11365
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011366The arguments and return value are floating-point numbers of the same
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011367type.
11368
11369Semantics:
11370""""""""""
11371
11372Follows the IEEE-754 semantics for minNum, which also match for libm's
11373fmin.
11374
11375If either operand is a NaN, returns the other non-NaN operand. Returns
11376NaN only if both operands are NaN. If the operands compare equal,
11377returns a value that compares equal to both operands. This means that
11378fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
11379
11380'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000011381^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011382
11383Syntax:
11384"""""""
11385
11386This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011387floating-point or vector of floating-point type. Not all targets support
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011388all types however.
11389
11390::
11391
Matt Arsenault64313c92014-10-22 18:25:02 +000011392 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
11393 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
11394 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11395 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
11396 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011397
11398Overview:
11399"""""""""
11400
11401The '``llvm.maxnum.*``' intrinsics return the maximum of the two
11402arguments.
11403
11404
11405Arguments:
11406""""""""""
11407
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011408The arguments and return value are floating-point numbers of the same
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011409type.
11410
11411Semantics:
11412""""""""""
11413Follows the IEEE-754 semantics for maxNum, which also match for libm's
11414fmax.
11415
11416If either operand is a NaN, returns the other non-NaN operand. Returns
11417NaN only if both operands are NaN. If the operands compare equal,
11418returns a value that compares equal to both operands. This means that
11419fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
11420
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011421'``llvm.copysign.*``' Intrinsic
11422^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11423
11424Syntax:
11425"""""""
11426
11427This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011428floating-point or vector of floating-point type. Not all targets support
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011429all types however.
11430
11431::
11432
11433 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
11434 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
11435 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
11436 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
11437 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
11438
11439Overview:
11440"""""""""
11441
11442The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
11443first operand and the sign of the second operand.
11444
11445Arguments:
11446""""""""""
11447
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011448The arguments and return value are floating-point numbers of the same
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011449type.
11450
11451Semantics:
11452""""""""""
11453
11454This function returns the same values as the libm ``copysign``
11455functions would, and handles error conditions in the same way.
11456
Sean Silvab084af42012-12-07 10:36:55 +000011457'``llvm.floor.*``' Intrinsic
11458^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11459
11460Syntax:
11461"""""""
11462
11463This is an overloaded intrinsic. You can use ``llvm.floor`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011464floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011465all types however.
11466
11467::
11468
11469 declare float @llvm.floor.f32(float %Val)
11470 declare double @llvm.floor.f64(double %Val)
11471 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
11472 declare fp128 @llvm.floor.f128(fp128 %Val)
11473 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
11474
11475Overview:
11476"""""""""
11477
11478The '``llvm.floor.*``' intrinsics return the floor of the operand.
11479
11480Arguments:
11481""""""""""
11482
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011483The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011484type.
11485
11486Semantics:
11487""""""""""
11488
11489This function returns the same values as the libm ``floor`` functions
11490would, and handles error conditions in the same way.
11491
11492'``llvm.ceil.*``' Intrinsic
11493^^^^^^^^^^^^^^^^^^^^^^^^^^^
11494
11495Syntax:
11496"""""""
11497
11498This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011499floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011500all types however.
11501
11502::
11503
11504 declare float @llvm.ceil.f32(float %Val)
11505 declare double @llvm.ceil.f64(double %Val)
11506 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
11507 declare fp128 @llvm.ceil.f128(fp128 %Val)
11508 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
11509
11510Overview:
11511"""""""""
11512
11513The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
11514
11515Arguments:
11516""""""""""
11517
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011518The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011519type.
11520
11521Semantics:
11522""""""""""
11523
11524This function returns the same values as the libm ``ceil`` functions
11525would, and handles error conditions in the same way.
11526
11527'``llvm.trunc.*``' Intrinsic
11528^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11529
11530Syntax:
11531"""""""
11532
11533This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011534floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011535all types however.
11536
11537::
11538
11539 declare float @llvm.trunc.f32(float %Val)
11540 declare double @llvm.trunc.f64(double %Val)
11541 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
11542 declare fp128 @llvm.trunc.f128(fp128 %Val)
11543 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
11544
11545Overview:
11546"""""""""
11547
11548The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
11549nearest integer not larger in magnitude than the operand.
11550
11551Arguments:
11552""""""""""
11553
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011554The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011555type.
11556
11557Semantics:
11558""""""""""
11559
11560This function returns the same values as the libm ``trunc`` functions
11561would, and handles error conditions in the same way.
11562
11563'``llvm.rint.*``' Intrinsic
11564^^^^^^^^^^^^^^^^^^^^^^^^^^^
11565
11566Syntax:
11567"""""""
11568
11569This is an overloaded intrinsic. You can use ``llvm.rint`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011570floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011571all types however.
11572
11573::
11574
11575 declare float @llvm.rint.f32(float %Val)
11576 declare double @llvm.rint.f64(double %Val)
11577 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
11578 declare fp128 @llvm.rint.f128(fp128 %Val)
11579 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
11580
11581Overview:
11582"""""""""
11583
11584The '``llvm.rint.*``' intrinsics returns the operand rounded to the
11585nearest integer. It may raise an inexact floating-point exception if the
11586operand isn't an integer.
11587
11588Arguments:
11589""""""""""
11590
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011591The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011592type.
11593
11594Semantics:
11595""""""""""
11596
11597This function returns the same values as the libm ``rint`` functions
11598would, and handles error conditions in the same way.
11599
11600'``llvm.nearbyint.*``' Intrinsic
11601^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11602
11603Syntax:
11604"""""""
11605
11606This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011607floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011608all types however.
11609
11610::
11611
11612 declare float @llvm.nearbyint.f32(float %Val)
11613 declare double @llvm.nearbyint.f64(double %Val)
11614 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
11615 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
11616 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
11617
11618Overview:
11619"""""""""
11620
11621The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
11622nearest integer.
11623
11624Arguments:
11625""""""""""
11626
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011627The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011628type.
11629
11630Semantics:
11631""""""""""
11632
11633This function returns the same values as the libm ``nearbyint``
11634functions would, and handles error conditions in the same way.
11635
Hal Finkel171817e2013-08-07 22:49:12 +000011636'``llvm.round.*``' Intrinsic
11637^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11638
11639Syntax:
11640"""""""
11641
11642This is an overloaded intrinsic. You can use ``llvm.round`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011643floating-point or vector of floating-point type. Not all targets support
Hal Finkel171817e2013-08-07 22:49:12 +000011644all types however.
11645
11646::
11647
11648 declare float @llvm.round.f32(float %Val)
11649 declare double @llvm.round.f64(double %Val)
11650 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
11651 declare fp128 @llvm.round.f128(fp128 %Val)
11652 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
11653
11654Overview:
11655"""""""""
11656
11657The '``llvm.round.*``' intrinsics returns the operand rounded to the
11658nearest integer.
11659
11660Arguments:
11661""""""""""
11662
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011663The argument and return value are floating-point numbers of the same
Hal Finkel171817e2013-08-07 22:49:12 +000011664type.
11665
11666Semantics:
11667""""""""""
11668
11669This function returns the same values as the libm ``round``
11670functions would, and handles error conditions in the same way.
11671
Sean Silvab084af42012-12-07 10:36:55 +000011672Bit Manipulation Intrinsics
11673---------------------------
11674
11675LLVM provides intrinsics for a few important bit manipulation
11676operations. These allow efficient code generation for some algorithms.
11677
James Molloy90111f72015-11-12 12:29:09 +000011678'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000011679^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000011680
11681Syntax:
11682"""""""
11683
11684This is an overloaded intrinsic function. You can use bitreverse on any
11685integer type.
11686
11687::
11688
11689 declare i16 @llvm.bitreverse.i16(i16 <id>)
11690 declare i32 @llvm.bitreverse.i32(i32 <id>)
11691 declare i64 @llvm.bitreverse.i64(i64 <id>)
11692
11693Overview:
11694"""""""""
11695
11696The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000011697bitpattern of an integer value; for example ``0b10110110`` becomes
11698``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000011699
11700Semantics:
11701""""""""""
11702
Yichao Yu5abf14b2016-11-23 16:25:31 +000011703The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000011704``M`` in the input moved to bit ``N-M`` in the output.
11705
Sean Silvab084af42012-12-07 10:36:55 +000011706'``llvm.bswap.*``' Intrinsics
11707^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11708
11709Syntax:
11710"""""""
11711
11712This is an overloaded intrinsic function. You can use bswap on any
11713integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
11714
11715::
11716
11717 declare i16 @llvm.bswap.i16(i16 <id>)
11718 declare i32 @llvm.bswap.i32(i32 <id>)
11719 declare i64 @llvm.bswap.i64(i64 <id>)
11720
11721Overview:
11722"""""""""
11723
11724The '``llvm.bswap``' family of intrinsics is used to byte swap integer
11725values with an even number of bytes (positive multiple of 16 bits).
11726These are useful for performing operations on data that is not in the
11727target's native byte order.
11728
11729Semantics:
11730""""""""""
11731
11732The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
11733and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
11734intrinsic returns an i32 value that has the four bytes of the input i32
11735swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
11736returned i32 will have its bytes in 3, 2, 1, 0 order. The
11737``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
11738concept to additional even-byte lengths (6 bytes, 8 bytes and more,
11739respectively).
11740
11741'``llvm.ctpop.*``' Intrinsic
11742^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11743
11744Syntax:
11745"""""""
11746
11747This is an overloaded intrinsic. You can use llvm.ctpop on any integer
11748bit width, or on any vector with integer elements. Not all targets
11749support all bit widths or vector types, however.
11750
11751::
11752
11753 declare i8 @llvm.ctpop.i8(i8 <src>)
11754 declare i16 @llvm.ctpop.i16(i16 <src>)
11755 declare i32 @llvm.ctpop.i32(i32 <src>)
11756 declare i64 @llvm.ctpop.i64(i64 <src>)
11757 declare i256 @llvm.ctpop.i256(i256 <src>)
11758 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
11759
11760Overview:
11761"""""""""
11762
11763The '``llvm.ctpop``' family of intrinsics counts the number of bits set
11764in a value.
11765
11766Arguments:
11767""""""""""
11768
11769The only argument is the value to be counted. The argument may be of any
11770integer type, or a vector with integer elements. The return type must
11771match the argument type.
11772
11773Semantics:
11774""""""""""
11775
11776The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
11777each element of a vector.
11778
11779'``llvm.ctlz.*``' Intrinsic
11780^^^^^^^^^^^^^^^^^^^^^^^^^^^
11781
11782Syntax:
11783"""""""
11784
11785This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
11786integer bit width, or any vector whose elements are integers. Not all
11787targets support all bit widths or vector types, however.
11788
11789::
11790
11791 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
11792 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
11793 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
11794 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
11795 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011796 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011797
11798Overview:
11799"""""""""
11800
11801The '``llvm.ctlz``' family of intrinsic functions counts the number of
11802leading zeros in a variable.
11803
11804Arguments:
11805""""""""""
11806
11807The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011808any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011809type must match the first argument type.
11810
11811The second argument must be a constant and is a flag to indicate whether
11812the intrinsic should ensure that a zero as the first argument produces a
11813defined result. Historically some architectures did not provide a
11814defined result for zero values as efficiently, and many algorithms are
11815now predicated on avoiding zero-value inputs.
11816
11817Semantics:
11818""""""""""
11819
11820The '``llvm.ctlz``' intrinsic counts the leading (most significant)
11821zeros in a variable, or within each element of the vector. If
11822``src == 0`` then the result is the size in bits of the type of ``src``
11823if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11824``llvm.ctlz(i32 2) = 30``.
11825
11826'``llvm.cttz.*``' Intrinsic
11827^^^^^^^^^^^^^^^^^^^^^^^^^^^
11828
11829Syntax:
11830"""""""
11831
11832This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
11833integer bit width, or any vector of integer elements. Not all targets
11834support all bit widths or vector types, however.
11835
11836::
11837
11838 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
11839 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
11840 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
11841 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
11842 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011843 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011844
11845Overview:
11846"""""""""
11847
11848The '``llvm.cttz``' family of intrinsic functions counts the number of
11849trailing zeros.
11850
11851Arguments:
11852""""""""""
11853
11854The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011855any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011856type must match the first argument type.
11857
11858The second argument must be a constant and is a flag to indicate whether
11859the intrinsic should ensure that a zero as the first argument produces a
11860defined result. Historically some architectures did not provide a
11861defined result for zero values as efficiently, and many algorithms are
11862now predicated on avoiding zero-value inputs.
11863
11864Semantics:
11865""""""""""
11866
11867The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11868zeros in a variable, or within each element of a vector. If ``src == 0``
11869then the result is the size in bits of the type of ``src`` if
11870``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11871``llvm.cttz(2) = 1``.
11872
Philip Reames34843ae2015-03-05 05:55:55 +000011873.. _int_overflow:
11874
Sean Silvab084af42012-12-07 10:36:55 +000011875Arithmetic with Overflow Intrinsics
11876-----------------------------------
11877
John Regehr6a493f22016-05-12 20:55:09 +000011878LLVM provides intrinsics for fast arithmetic overflow checking.
11879
11880Each of these intrinsics returns a two-element struct. The first
11881element of this struct contains the result of the corresponding
11882arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
11883the result. Therefore, for example, the first element of the struct
11884returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
11885result of a 32-bit ``add`` instruction with the same operands, where
11886the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
11887
11888The second element of the result is an ``i1`` that is 1 if the
11889arithmetic operation overflowed and 0 otherwise. An operation
11890overflows if, for any values of its operands ``A`` and ``B`` and for
11891any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
11892not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
11893``sext`` for signed overflow and ``zext`` for unsigned overflow, and
11894``op`` is the underlying arithmetic operation.
11895
11896The behavior of these intrinsics is well-defined for all argument
11897values.
Sean Silvab084af42012-12-07 10:36:55 +000011898
11899'``llvm.sadd.with.overflow.*``' Intrinsics
11900^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11901
11902Syntax:
11903"""""""
11904
11905This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
11906on any integer bit width.
11907
11908::
11909
11910 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
11911 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11912 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
11913
11914Overview:
11915"""""""""
11916
11917The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
11918a signed addition of the two arguments, and indicate whether an overflow
11919occurred during the signed summation.
11920
11921Arguments:
11922""""""""""
11923
11924The arguments (%a and %b) and the first element of the result structure
11925may be of integer types of any bit width, but they must have the same
11926bit width. The second element of the result structure must be of type
11927``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11928addition.
11929
11930Semantics:
11931""""""""""
11932
11933The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011934a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011935first element of which is the signed summation, and the second element
11936of which is a bit specifying if the signed summation resulted in an
11937overflow.
11938
11939Examples:
11940"""""""""
11941
11942.. code-block:: llvm
11943
11944 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
11945 %sum = extractvalue {i32, i1} %res, 0
11946 %obit = extractvalue {i32, i1} %res, 1
11947 br i1 %obit, label %overflow, label %normal
11948
11949'``llvm.uadd.with.overflow.*``' Intrinsics
11950^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11951
11952Syntax:
11953"""""""
11954
11955This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11956on any integer bit width.
11957
11958::
11959
11960 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11961 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11962 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11963
11964Overview:
11965"""""""""
11966
11967The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11968an unsigned addition of the two arguments, and indicate whether a carry
11969occurred during the unsigned summation.
11970
11971Arguments:
11972""""""""""
11973
11974The arguments (%a and %b) and the first element of the result structure
11975may be of integer types of any bit width, but they must have the same
11976bit width. The second element of the result structure must be of type
11977``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11978addition.
11979
11980Semantics:
11981""""""""""
11982
11983The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011984an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011985first element of which is the sum, and the second element of which is a
11986bit specifying if the unsigned summation resulted in a carry.
11987
11988Examples:
11989"""""""""
11990
11991.. code-block:: llvm
11992
11993 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11994 %sum = extractvalue {i32, i1} %res, 0
11995 %obit = extractvalue {i32, i1} %res, 1
11996 br i1 %obit, label %carry, label %normal
11997
11998'``llvm.ssub.with.overflow.*``' Intrinsics
11999^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12000
12001Syntax:
12002"""""""
12003
12004This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
12005on any integer bit width.
12006
12007::
12008
12009 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
12010 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
12011 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
12012
12013Overview:
12014"""""""""
12015
12016The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
12017a signed subtraction of the two arguments, and indicate whether an
12018overflow occurred during the signed subtraction.
12019
12020Arguments:
12021""""""""""
12022
12023The arguments (%a and %b) and the first element of the result structure
12024may be of integer types of any bit width, but they must have the same
12025bit width. The second element of the result structure must be of type
12026``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12027subtraction.
12028
12029Semantics:
12030""""""""""
12031
12032The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012033a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012034first element of which is the subtraction, and the second element of
12035which is a bit specifying if the signed subtraction resulted in an
12036overflow.
12037
12038Examples:
12039"""""""""
12040
12041.. code-block:: llvm
12042
12043 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
12044 %sum = extractvalue {i32, i1} %res, 0
12045 %obit = extractvalue {i32, i1} %res, 1
12046 br i1 %obit, label %overflow, label %normal
12047
12048'``llvm.usub.with.overflow.*``' Intrinsics
12049^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12050
12051Syntax:
12052"""""""
12053
12054This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
12055on any integer bit width.
12056
12057::
12058
12059 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
12060 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
12061 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
12062
12063Overview:
12064"""""""""
12065
12066The '``llvm.usub.with.overflow``' family of intrinsic functions perform
12067an unsigned subtraction of the two arguments, and indicate whether an
12068overflow occurred during the unsigned subtraction.
12069
12070Arguments:
12071""""""""""
12072
12073The arguments (%a and %b) and the first element of the result structure
12074may be of integer types of any bit width, but they must have the same
12075bit width. The second element of the result structure must be of type
12076``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12077subtraction.
12078
12079Semantics:
12080""""""""""
12081
12082The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012083an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000012084the first element of which is the subtraction, and the second element of
12085which is a bit specifying if the unsigned subtraction resulted in an
12086overflow.
12087
12088Examples:
12089"""""""""
12090
12091.. code-block:: llvm
12092
12093 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
12094 %sum = extractvalue {i32, i1} %res, 0
12095 %obit = extractvalue {i32, i1} %res, 1
12096 br i1 %obit, label %overflow, label %normal
12097
12098'``llvm.smul.with.overflow.*``' Intrinsics
12099^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12100
12101Syntax:
12102"""""""
12103
12104This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
12105on any integer bit width.
12106
12107::
12108
12109 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
12110 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
12111 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
12112
12113Overview:
12114"""""""""
12115
12116The '``llvm.smul.with.overflow``' family of intrinsic functions perform
12117a signed multiplication of the two arguments, and indicate whether an
12118overflow occurred during the signed multiplication.
12119
12120Arguments:
12121""""""""""
12122
12123The arguments (%a and %b) and the first element of the result structure
12124may be of integer types of any bit width, but they must have the same
12125bit width. The second element of the result structure must be of type
12126``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12127multiplication.
12128
12129Semantics:
12130""""""""""
12131
12132The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012133a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000012134the first element of which is the multiplication, and the second element
12135of which is a bit specifying if the signed multiplication resulted in an
12136overflow.
12137
12138Examples:
12139"""""""""
12140
12141.. code-block:: llvm
12142
12143 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
12144 %sum = extractvalue {i32, i1} %res, 0
12145 %obit = extractvalue {i32, i1} %res, 1
12146 br i1 %obit, label %overflow, label %normal
12147
12148'``llvm.umul.with.overflow.*``' Intrinsics
12149^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12150
12151Syntax:
12152"""""""
12153
12154This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
12155on any integer bit width.
12156
12157::
12158
12159 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
12160 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
12161 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
12162
12163Overview:
12164"""""""""
12165
12166The '``llvm.umul.with.overflow``' family of intrinsic functions perform
12167a unsigned multiplication of the two arguments, and indicate whether an
12168overflow occurred during the unsigned multiplication.
12169
12170Arguments:
12171""""""""""
12172
12173The arguments (%a and %b) and the first element of the result structure
12174may be of integer types of any bit width, but they must have the same
12175bit width. The second element of the result structure must be of type
12176``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12177multiplication.
12178
12179Semantics:
12180""""""""""
12181
12182The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012183an unsigned multiplication of the two arguments. They return a structure ---
12184the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000012185element of which is a bit specifying if the unsigned multiplication
12186resulted in an overflow.
12187
12188Examples:
12189"""""""""
12190
12191.. code-block:: llvm
12192
12193 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
12194 %sum = extractvalue {i32, i1} %res, 0
12195 %obit = extractvalue {i32, i1} %res, 1
12196 br i1 %obit, label %overflow, label %normal
12197
12198Specialised Arithmetic Intrinsics
12199---------------------------------
12200
Owen Anderson1056a922015-07-11 07:01:27 +000012201'``llvm.canonicalize.*``' Intrinsic
12202^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12203
12204Syntax:
12205"""""""
12206
12207::
12208
12209 declare float @llvm.canonicalize.f32(float %a)
12210 declare double @llvm.canonicalize.f64(double %b)
12211
12212Overview:
12213"""""""""
12214
12215The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012216encoding of a floating-point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000012217implementing certain numeric primitives such as frexp. The canonical encoding is
12218defined by IEEE-754-2008 to be:
12219
12220::
12221
12222 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000012223 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000012224 numbers, infinities, and NaNs, especially in decimal formats.
12225
12226This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000012227conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000012228according to section 6.2.
12229
12230Examples of non-canonical encodings:
12231
Sean Silvaa1190322015-08-06 22:56:48 +000012232- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000012233 converted to a canonical representation per hardware-specific protocol.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012234- Many normal decimal floating-point numbers have non-canonical alternative
Owen Anderson1056a922015-07-11 07:01:27 +000012235 encodings.
12236- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000012237 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000012238 a zero of the same sign by this operation.
12239
12240Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
12241default exception handling must signal an invalid exception, and produce a
12242quiet NaN result.
12243
12244This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000012245that the compiler does not constant fold the operation. Likewise, division by
122461.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000012247-0.0 is also sufficient provided that the rounding mode is not -Infinity.
12248
Sean Silvaa1190322015-08-06 22:56:48 +000012249``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000012250
12251- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
12252- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
12253 to ``(x == y)``
12254
12255Additionally, the sign of zero must be conserved:
12256``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
12257
12258The payload bits of a NaN must be conserved, with two exceptions.
12259First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000012260must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000012261usual methods.
12262
12263The canonicalization operation may be optimized away if:
12264
Sean Silvaa1190322015-08-06 22:56:48 +000012265- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000012266 floating-point operation that is required by the standard to be canonical.
12267- The result is consumed only by (or fused with) other floating-point
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012268 operations. That is, the bits of the floating-point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000012269
Sean Silvab084af42012-12-07 10:36:55 +000012270'``llvm.fmuladd.*``' Intrinsic
12271^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12272
12273Syntax:
12274"""""""
12275
12276::
12277
12278 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
12279 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
12280
12281Overview:
12282"""""""""
12283
12284The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000012285expressions that can be fused if the code generator determines that (a) the
12286target instruction set has support for a fused operation, and (b) that the
12287fused operation is more efficient than the equivalent, separate pair of mul
12288and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000012289
12290Arguments:
12291""""""""""
12292
12293The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
12294multiplicands, a and b, and an addend c.
12295
12296Semantics:
12297""""""""""
12298
12299The expression:
12300
12301::
12302
12303 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
12304
12305is equivalent to the expression a \* b + c, except that rounding will
12306not be performed between the multiplication and addition steps if the
12307code generator fuses the operations. Fusion is not guaranteed, even if
12308the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000012309corresponding llvm.fma.\* intrinsic function should be used
12310instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000012311
12312Examples:
12313"""""""""
12314
12315.. code-block:: llvm
12316
Tim Northover675a0962014-06-13 14:24:23 +000012317 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000012318
Amara Emersoncf9daa32017-05-09 10:43:25 +000012319
12320Experimental Vector Reduction Intrinsics
12321----------------------------------------
12322
12323Horizontal reductions of vectors can be expressed using the following
12324intrinsics. Each one takes a vector operand as an input and applies its
12325respective operation across all elements of the vector, returning a single
12326scalar result of the same element type.
12327
12328
12329'``llvm.experimental.vector.reduce.add.*``' Intrinsic
12330^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12331
12332Syntax:
12333"""""""
12334
12335::
12336
12337 declare i32 @llvm.experimental.vector.reduce.add.i32.v4i32(<4 x i32> %a)
12338 declare i64 @llvm.experimental.vector.reduce.add.i64.v2i64(<2 x i64> %a)
12339
12340Overview:
12341"""""""""
12342
12343The '``llvm.experimental.vector.reduce.add.*``' intrinsics do an integer ``ADD``
12344reduction of a vector, returning the result as a scalar. The return type matches
12345the element-type of the vector input.
12346
12347Arguments:
12348""""""""""
12349The argument to this intrinsic must be a vector of integer values.
12350
12351'``llvm.experimental.vector.reduce.fadd.*``' Intrinsic
12352^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12353
12354Syntax:
12355"""""""
12356
12357::
12358
12359 declare float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %a)
12360 declare double @llvm.experimental.vector.reduce.fadd.f64.v2f64(double %acc, <2 x double> %a)
12361
12362Overview:
12363"""""""""
12364
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012365The '``llvm.experimental.vector.reduce.fadd.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012366``ADD`` reduction of a vector, returning the result as a scalar. The return type
12367matches the element-type of the vector input.
12368
12369If the intrinsic call has fast-math flags, then the reduction will not preserve
12370the associativity of an equivalent scalarized counterpart. If it does not have
12371fast-math flags, then the reduction will be *ordered*, implying that the
12372operation respects the associativity of a scalarized reduction.
12373
12374
12375Arguments:
12376""""""""""
12377The first argument to this intrinsic is a scalar accumulator value, which is
12378only used when there are no fast-math flags attached. This argument may be undef
12379when fast-math flags are used.
12380
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012381The second argument must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012382
12383Examples:
12384"""""""""
12385
12386.. code-block:: llvm
12387
12388 %fast = call fast float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
12389 %ord = call float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
12390
12391
12392'``llvm.experimental.vector.reduce.mul.*``' Intrinsic
12393^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12394
12395Syntax:
12396"""""""
12397
12398::
12399
12400 declare i32 @llvm.experimental.vector.reduce.mul.i32.v4i32(<4 x i32> %a)
12401 declare i64 @llvm.experimental.vector.reduce.mul.i64.v2i64(<2 x i64> %a)
12402
12403Overview:
12404"""""""""
12405
12406The '``llvm.experimental.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
12407reduction of a vector, returning the result as a scalar. The return type matches
12408the element-type of the vector input.
12409
12410Arguments:
12411""""""""""
12412The argument to this intrinsic must be a vector of integer values.
12413
12414'``llvm.experimental.vector.reduce.fmul.*``' Intrinsic
12415^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12416
12417Syntax:
12418"""""""
12419
12420::
12421
12422 declare float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %a)
12423 declare double @llvm.experimental.vector.reduce.fmul.f64.v2f64(double %acc, <2 x double> %a)
12424
12425Overview:
12426"""""""""
12427
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012428The '``llvm.experimental.vector.reduce.fmul.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012429``MUL`` reduction of a vector, returning the result as a scalar. The return type
12430matches the element-type of the vector input.
12431
12432If the intrinsic call has fast-math flags, then the reduction will not preserve
12433the associativity of an equivalent scalarized counterpart. If it does not have
12434fast-math flags, then the reduction will be *ordered*, implying that the
12435operation respects the associativity of a scalarized reduction.
12436
12437
12438Arguments:
12439""""""""""
12440The first argument to this intrinsic is a scalar accumulator value, which is
12441only used when there are no fast-math flags attached. This argument may be undef
12442when fast-math flags are used.
12443
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012444The second argument must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012445
12446Examples:
12447"""""""""
12448
12449.. code-block:: llvm
12450
12451 %fast = call fast float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
12452 %ord = call float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
12453
12454'``llvm.experimental.vector.reduce.and.*``' Intrinsic
12455^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12456
12457Syntax:
12458"""""""
12459
12460::
12461
12462 declare i32 @llvm.experimental.vector.reduce.and.i32.v4i32(<4 x i32> %a)
12463
12464Overview:
12465"""""""""
12466
12467The '``llvm.experimental.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
12468reduction of a vector, returning the result as a scalar. The return type matches
12469the element-type of the vector input.
12470
12471Arguments:
12472""""""""""
12473The argument to this intrinsic must be a vector of integer values.
12474
12475'``llvm.experimental.vector.reduce.or.*``' Intrinsic
12476^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12477
12478Syntax:
12479"""""""
12480
12481::
12482
12483 declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
12484
12485Overview:
12486"""""""""
12487
12488The '``llvm.experimental.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
12489of a vector, returning the result as a scalar. The return type matches the
12490element-type of the vector input.
12491
12492Arguments:
12493""""""""""
12494The argument to this intrinsic must be a vector of integer values.
12495
12496'``llvm.experimental.vector.reduce.xor.*``' Intrinsic
12497^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12498
12499Syntax:
12500"""""""
12501
12502::
12503
12504 declare i32 @llvm.experimental.vector.reduce.xor.i32.v4i32(<4 x i32> %a)
12505
12506Overview:
12507"""""""""
12508
12509The '``llvm.experimental.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
12510reduction of a vector, returning the result as a scalar. The return type matches
12511the element-type of the vector input.
12512
12513Arguments:
12514""""""""""
12515The argument to this intrinsic must be a vector of integer values.
12516
12517'``llvm.experimental.vector.reduce.smax.*``' Intrinsic
12518^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12519
12520Syntax:
12521"""""""
12522
12523::
12524
12525 declare i32 @llvm.experimental.vector.reduce.smax.i32.v4i32(<4 x i32> %a)
12526
12527Overview:
12528"""""""""
12529
12530The '``llvm.experimental.vector.reduce.smax.*``' intrinsics do a signed integer
12531``MAX`` reduction of a vector, returning the result as a scalar. The return type
12532matches the element-type of the vector input.
12533
12534Arguments:
12535""""""""""
12536The argument to this intrinsic must be a vector of integer values.
12537
12538'``llvm.experimental.vector.reduce.smin.*``' Intrinsic
12539^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12540
12541Syntax:
12542"""""""
12543
12544::
12545
12546 declare i32 @llvm.experimental.vector.reduce.smin.i32.v4i32(<4 x i32> %a)
12547
12548Overview:
12549"""""""""
12550
12551The '``llvm.experimental.vector.reduce.smin.*``' intrinsics do a signed integer
12552``MIN`` reduction of a vector, returning the result as a scalar. The return type
12553matches the element-type of the vector input.
12554
12555Arguments:
12556""""""""""
12557The argument to this intrinsic must be a vector of integer values.
12558
12559'``llvm.experimental.vector.reduce.umax.*``' Intrinsic
12560^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12561
12562Syntax:
12563"""""""
12564
12565::
12566
12567 declare i32 @llvm.experimental.vector.reduce.umax.i32.v4i32(<4 x i32> %a)
12568
12569Overview:
12570"""""""""
12571
12572The '``llvm.experimental.vector.reduce.umax.*``' intrinsics do an unsigned
12573integer ``MAX`` reduction of a vector, returning the result as a scalar. The
12574return type matches the element-type of the vector input.
12575
12576Arguments:
12577""""""""""
12578The argument to this intrinsic must be a vector of integer values.
12579
12580'``llvm.experimental.vector.reduce.umin.*``' Intrinsic
12581^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12582
12583Syntax:
12584"""""""
12585
12586::
12587
12588 declare i32 @llvm.experimental.vector.reduce.umin.i32.v4i32(<4 x i32> %a)
12589
12590Overview:
12591"""""""""
12592
12593The '``llvm.experimental.vector.reduce.umin.*``' intrinsics do an unsigned
12594integer ``MIN`` reduction of a vector, returning the result as a scalar. The
12595return type matches the element-type of the vector input.
12596
12597Arguments:
12598""""""""""
12599The argument to this intrinsic must be a vector of integer values.
12600
12601'``llvm.experimental.vector.reduce.fmax.*``' Intrinsic
12602^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12603
12604Syntax:
12605"""""""
12606
12607::
12608
12609 declare float @llvm.experimental.vector.reduce.fmax.f32.v4f32(<4 x float> %a)
12610 declare double @llvm.experimental.vector.reduce.fmax.f64.v2f64(<2 x double> %a)
12611
12612Overview:
12613"""""""""
12614
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012615The '``llvm.experimental.vector.reduce.fmax.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012616``MAX`` reduction of a vector, returning the result as a scalar. The return type
12617matches the element-type of the vector input.
12618
12619If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12620assume that NaNs are not present in the input vector.
12621
12622Arguments:
12623""""""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012624The argument to this intrinsic must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012625
12626'``llvm.experimental.vector.reduce.fmin.*``' Intrinsic
12627^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12628
12629Syntax:
12630"""""""
12631
12632::
12633
12634 declare float @llvm.experimental.vector.reduce.fmin.f32.v4f32(<4 x float> %a)
12635 declare double @llvm.experimental.vector.reduce.fmin.f64.v2f64(<2 x double> %a)
12636
12637Overview:
12638"""""""""
12639
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012640The '``llvm.experimental.vector.reduce.fmin.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012641``MIN`` reduction of a vector, returning the result as a scalar. The return type
12642matches the element-type of the vector input.
12643
12644If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12645assume that NaNs are not present in the input vector.
12646
12647Arguments:
12648""""""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012649The argument to this intrinsic must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012650
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012651Half Precision Floating-Point Intrinsics
Sean Silvab084af42012-12-07 10:36:55 +000012652----------------------------------------
12653
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012654For most target platforms, half precision floating-point is a
Sean Silvab084af42012-12-07 10:36:55 +000012655storage-only format. This means that it is a dense encoding (in memory)
12656but does not support computation in the format.
12657
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012658This means that code must first load the half-precision floating-point
Sean Silvab084af42012-12-07 10:36:55 +000012659value as an i16, then convert it to float with
12660:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
12661then be performed on the float value (including extending to double
12662etc). To store the value back to memory, it is first converted to float
12663if needed, then converted to i16 with
12664:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
12665i16 value.
12666
12667.. _int_convert_to_fp16:
12668
12669'``llvm.convert.to.fp16``' Intrinsic
12670^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12671
12672Syntax:
12673"""""""
12674
12675::
12676
Tim Northoverfd7e4242014-07-17 10:51:23 +000012677 declare i16 @llvm.convert.to.fp16.f32(float %a)
12678 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000012679
12680Overview:
12681"""""""""
12682
Tim Northoverfd7e4242014-07-17 10:51:23 +000012683The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012684conventional floating-point type to half precision floating-point format.
Sean Silvab084af42012-12-07 10:36:55 +000012685
12686Arguments:
12687""""""""""
12688
12689The intrinsic function contains single argument - the value to be
12690converted.
12691
12692Semantics:
12693""""""""""
12694
Tim Northoverfd7e4242014-07-17 10:51:23 +000012695The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012696conventional floating-point format to half precision floating-point format. The
Tim Northoverfd7e4242014-07-17 10:51:23 +000012697return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000012698
12699Examples:
12700"""""""""
12701
12702.. code-block:: llvm
12703
Tim Northoverfd7e4242014-07-17 10:51:23 +000012704 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000012705 store i16 %res, i16* @x, align 2
12706
12707.. _int_convert_from_fp16:
12708
12709'``llvm.convert.from.fp16``' Intrinsic
12710^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12711
12712Syntax:
12713"""""""
12714
12715::
12716
Tim Northoverfd7e4242014-07-17 10:51:23 +000012717 declare float @llvm.convert.from.fp16.f32(i16 %a)
12718 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012719
12720Overview:
12721"""""""""
12722
12723The '``llvm.convert.from.fp16``' intrinsic function performs a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012724conversion from half precision floating-point format to single precision
12725floating-point format.
Sean Silvab084af42012-12-07 10:36:55 +000012726
12727Arguments:
12728""""""""""
12729
12730The intrinsic function contains single argument - the value to be
12731converted.
12732
12733Semantics:
12734""""""""""
12735
12736The '``llvm.convert.from.fp16``' intrinsic function performs a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012737conversion from half single precision floating-point format to single
12738precision floating-point format. The input half-float value is
Sean Silvab084af42012-12-07 10:36:55 +000012739represented by an ``i16`` value.
12740
12741Examples:
12742"""""""""
12743
12744.. code-block:: llvm
12745
David Blaikiec7aabbb2015-03-04 22:06:14 +000012746 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000012747 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012748
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000012749.. _dbg_intrinsics:
12750
Sean Silvab084af42012-12-07 10:36:55 +000012751Debugger Intrinsics
12752-------------------
12753
12754The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
12755prefix), are described in the `LLVM Source Level
Hans Wennborg65195622017-09-28 15:16:37 +000012756Debugging <SourceLevelDebugging.html#format-common-intrinsics>`_
Sean Silvab084af42012-12-07 10:36:55 +000012757document.
12758
12759Exception Handling Intrinsics
12760-----------------------------
12761
12762The LLVM exception handling intrinsics (which all start with
12763``llvm.eh.`` prefix), are described in the `LLVM Exception
Hans Wennborg65195622017-09-28 15:16:37 +000012764Handling <ExceptionHandling.html#format-common-intrinsics>`_ document.
Sean Silvab084af42012-12-07 10:36:55 +000012765
12766.. _int_trampoline:
12767
12768Trampoline Intrinsics
12769---------------------
12770
12771These intrinsics make it possible to excise one parameter, marked with
12772the :ref:`nest <nest>` attribute, from a function. The result is a
12773callable function pointer lacking the nest parameter - the caller does
12774not need to provide a value for it. Instead, the value to use is stored
12775in advance in a "trampoline", a block of memory usually allocated on the
12776stack, which also contains code to splice the nest value into the
12777argument list. This is used to implement the GCC nested function address
12778extension.
12779
12780For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
12781then the resulting function pointer has signature ``i32 (i32, i32)*``.
12782It can be created as follows:
12783
12784.. code-block:: llvm
12785
12786 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000012787 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000012788 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
12789 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
12790 %fp = bitcast i8* %p to i32 (i32, i32)*
12791
12792The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
12793``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
12794
12795.. _int_it:
12796
12797'``llvm.init.trampoline``' Intrinsic
12798^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12799
12800Syntax:
12801"""""""
12802
12803::
12804
12805 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
12806
12807Overview:
12808"""""""""
12809
12810This fills the memory pointed to by ``tramp`` with executable code,
12811turning it into a trampoline.
12812
12813Arguments:
12814""""""""""
12815
12816The ``llvm.init.trampoline`` intrinsic takes three arguments, all
12817pointers. The ``tramp`` argument must point to a sufficiently large and
12818sufficiently aligned block of memory; this memory is written to by the
12819intrinsic. Note that the size and the alignment are target-specific -
12820LLVM currently provides no portable way of determining them, so a
12821front-end that generates this intrinsic needs to have some
12822target-specific knowledge. The ``func`` argument must hold a function
12823bitcast to an ``i8*``.
12824
12825Semantics:
12826""""""""""
12827
12828The block of memory pointed to by ``tramp`` is filled with target
12829dependent code, turning it into a function. Then ``tramp`` needs to be
12830passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
12831be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
12832function's signature is the same as that of ``func`` with any arguments
12833marked with the ``nest`` attribute removed. At most one such ``nest``
12834argument is allowed, and it must be of pointer type. Calling the new
12835function is equivalent to calling ``func`` with the same argument list,
12836but with ``nval`` used for the missing ``nest`` argument. If, after
12837calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
12838modified, then the effect of any later call to the returned function
12839pointer is undefined.
12840
12841.. _int_at:
12842
12843'``llvm.adjust.trampoline``' Intrinsic
12844^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12845
12846Syntax:
12847"""""""
12848
12849::
12850
12851 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
12852
12853Overview:
12854"""""""""
12855
12856This performs any required machine-specific adjustment to the address of
12857a trampoline (passed as ``tramp``).
12858
12859Arguments:
12860""""""""""
12861
12862``tramp`` must point to a block of memory which already has trampoline
12863code filled in by a previous call to
12864:ref:`llvm.init.trampoline <int_it>`.
12865
12866Semantics:
12867""""""""""
12868
12869On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000012870different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000012871intrinsic returns the executable address corresponding to ``tramp``
12872after performing the required machine specific adjustments. The pointer
12873returned can then be :ref:`bitcast and executed <int_trampoline>`.
12874
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012875.. _int_mload_mstore:
12876
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012877Masked Vector Load and Store Intrinsics
12878---------------------------------------
12879
12880LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
12881
12882.. _int_mload:
12883
12884'``llvm.masked.load.*``' Intrinsics
12885^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12886
12887Syntax:
12888"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012889This is an overloaded intrinsic. The loaded data is a vector of any integer, floating-point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012890
12891::
12892
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012893 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12894 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012895 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012896 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012897 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012898 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012899
12900Overview:
12901"""""""""
12902
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012903Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012904
12905
12906Arguments:
12907""""""""""
12908
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012909The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012910
12911
12912Semantics:
12913""""""""""
12914
12915The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
12916The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
12917
12918
12919::
12920
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012921 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012922
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012923 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000012924 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012925 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012926
12927.. _int_mstore:
12928
12929'``llvm.masked.store.*``' Intrinsics
12930^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12931
12932Syntax:
12933"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012934This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012935
12936::
12937
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012938 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
12939 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012940 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012941 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000012942 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012943 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012944
12945Overview:
12946"""""""""
12947
12948Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
12949
12950Arguments:
12951""""""""""
12952
12953The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
12954
12955
12956Semantics:
12957""""""""""
12958
12959The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
12960The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
12961
12962::
12963
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000012964 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000012965
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000012966 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000012967 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000012968 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
12969 store <16 x float> %res, <16 x float>* %ptr, align 4
12970
12971
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012972Masked Vector Gather and Scatter Intrinsics
12973-------------------------------------------
12974
12975LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
12976
12977.. _int_mgather:
12978
12979'``llvm.masked.gather.*``' Intrinsics
12980^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12981
12982Syntax:
12983"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012984This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating-point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012985
12986::
12987
Elad Cohenef5798a2017-05-03 12:28:54 +000012988 declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
12989 declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64 (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
12990 declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000012991
12992Overview:
12993"""""""""
12994
12995Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
12996
12997
12998Arguments:
12999""""""""""
13000
13001The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
13002
13003
13004Semantics:
13005""""""""""
13006
13007The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
13008The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
13009
13010
13011::
13012
Elad Cohenef5798a2017-05-03 12:28:54 +000013013 %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013014
13015 ;; The gather with all-true mask is equivalent to the following instruction sequence
13016 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
13017 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
13018 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
13019 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
13020
13021 %val0 = load double, double* %ptr0, align 8
13022 %val1 = load double, double* %ptr1, align 8
13023 %val2 = load double, double* %ptr2, align 8
13024 %val3 = load double, double* %ptr3, align 8
13025
13026 %vec0 = insertelement <4 x double>undef, %val0, 0
13027 %vec01 = insertelement <4 x double>%vec0, %val1, 1
13028 %vec012 = insertelement <4 x double>%vec01, %val2, 2
13029 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
13030
13031.. _int_mscatter:
13032
13033'``llvm.masked.scatter.*``' Intrinsics
13034^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13035
13036Syntax:
13037"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013038This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013039
13040::
13041
Elad Cohenef5798a2017-05-03 12:28:54 +000013042 declare void @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
13043 declare void @llvm.masked.scatter.v16f32.v16p1f32 (<16 x float> <value>, <16 x float addrspace(1)*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
13044 declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013045
13046Overview:
13047"""""""""
13048
13049Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
13050
13051Arguments:
13052""""""""""
13053
13054The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
13055
13056
13057Semantics:
13058""""""""""
13059
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000013060The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013061
13062::
13063
Sylvestre Ledru84666a12016-02-14 20:16:22 +000013064 ;; This instruction unconditionally stores data vector in multiple addresses
Elad Cohenef5798a2017-05-03 12:28:54 +000013065 call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013066
13067 ;; It is equivalent to a list of scalar stores
13068 %val0 = extractelement <8 x i32> %value, i32 0
13069 %val1 = extractelement <8 x i32> %value, i32 1
13070 ..
13071 %val7 = extractelement <8 x i32> %value, i32 7
13072 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
13073 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
13074 ..
13075 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
13076 ;; Note: the order of the following stores is important when they overlap:
13077 store i32 %val0, i32* %ptr0, align 4
13078 store i32 %val1, i32* %ptr1, align 4
13079 ..
13080 store i32 %val7, i32* %ptr7, align 4
13081
13082
Elena Demikhovsky0ef2ce32018-06-06 09:11:46 +000013083Masked Vector Expanding Load and Compressing Store Intrinsics
13084-------------------------------------------------------------
13085
13086LLVM provides intrinsics for expanding load and compressing store operations. Data selected from a vector according to a mask is stored in consecutive memory addresses (compressed store), and vice-versa (expanding load). These operations effective map to "if (cond.i) a[j++] = v.i" and "if (cond.i) v.i = a[j++]" patterns, respectively. Note that when the mask starts with '1' bits followed by '0' bits, these operations are identical to :ref:`llvm.masked.store <int_mstore>` and :ref:`llvm.masked.load <int_mload>`.
13087
13088.. _int_expandload:
13089
13090'``llvm.masked.expandload.*``' Intrinsics
13091^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13092
13093Syntax:
13094"""""""
13095This is an overloaded intrinsic. Several values of integer, floating point or pointer data type are loaded from consecutive memory addresses and stored into the elements of a vector according to the mask.
13096
13097::
13098
13099 declare <16 x float> @llvm.masked.expandload.v16f32 (float* <ptr>, <16 x i1> <mask>, <16 x float> <passthru>)
13100 declare <2 x i64> @llvm.masked.expandload.v2i64 (i64* <ptr>, <2 x i1> <mask>, <2 x i64> <passthru>)
13101
13102Overview:
13103"""""""""
13104
13105Reads a number of scalar values sequentially from memory location provided in '``ptr``' and spreads them in a vector. The '``mask``' holds a bit for each vector lane. The number of elements read from memory is equal to the number of '1' bits in the mask. The loaded elements are positioned in the destination vector according to the sequence of '1' and '0' bits in the mask. E.g., if the mask vector is '10010001', "explandload" reads 3 values from memory addresses ptr, ptr+1, ptr+2 and places them in lanes 0, 3 and 7 accordingly. The masked-off lanes are filled by elements from the corresponding lanes of the '``passthru``' operand.
13106
13107
13108Arguments:
13109""""""""""
13110
13111The first operand is the base pointer for the load. It has the same underlying type as the element of the returned vector. The second operand, mask, is a vector of boolean values with the same number of elements as the return type. The third is a pass-through value that is used to fill the masked-off lanes of the result. The return type and the type of the '``passthru``' operand have the same vector type.
13112
13113Semantics:
13114""""""""""
13115
13116The '``llvm.masked.expandload``' intrinsic is designed for reading multiple scalar values from adjacent memory addresses into possibly non-adjacent vector lanes. It is useful for targets that support vector expanding loads and allows vectorizing loop with cross-iteration dependency like in the following example:
13117
13118.. code-block:: c
13119
13120 // In this loop we load from B and spread the elements into array A.
13121 double *A, B; int *C;
13122 for (int i = 0; i < size; ++i) {
13123 if (C[i] != 0)
13124 A[i] = B[j++];
13125 }
13126
13127
13128.. code-block:: llvm
13129
13130 ; Load several elements from array B and expand them in a vector.
13131 ; The number of loaded elements is equal to the number of '1' elements in the Mask.
13132 %Tmp = call <8 x double> @llvm.masked.expandload.v8f64(double* %Bptr, <8 x i1> %Mask, <8 x double> undef)
13133 ; Store the result in A
13134 call void @llvm.masked.store.v8f64.p0v8f64(<8 x double> %Tmp, <8 x double>* %Aptr, i32 8, <8 x i1> %Mask)
13135
13136 ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
13137 %MaskI = bitcast <8 x i1> %Mask to i8
13138 %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
13139 %MaskI64 = zext i8 %MaskIPopcnt to i64
13140 %BNextInd = add i64 %BInd, %MaskI64
13141
13142
13143Other targets may support this intrinsic differently, for example, by lowering it into a sequence of conditional scalar load operations and shuffles.
13144If all mask elements are '1', the intrinsic behavior is equivalent to the regular unmasked vector load.
13145
13146.. _int_compressstore:
13147
13148'``llvm.masked.compressstore.*``' Intrinsics
13149^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13150
13151Syntax:
13152"""""""
13153This is an overloaded intrinsic. A number of scalar values of integer, floating point or pointer data type are collected from an input vector and stored into adjacent memory addresses. A mask defines which elements to collect from the vector.
13154
13155::
13156
13157 declare void @llvm.masked.compressstore.v8i32 (<8 x i32> <value>, i32* <ptr>, <8 x i1> <mask>)
13158 declare void @llvm.masked.compressstore.v16f32 (<16 x float> <value>, float* <ptr>, <16 x i1> <mask>)
13159
13160Overview:
13161"""""""""
13162
13163Selects elements from input vector '``value``' according to the '``mask``'. All selected elements are written into adjacent memory addresses starting at address '`ptr`', from lower to higher. The mask holds a bit for each vector lane, and is used to select elements to be stored. The number of elements to be stored is equal to the number of active bits in the mask.
13164
13165Arguments:
13166""""""""""
13167
13168The first operand is the input vector, from which elements are collected and written to memory. The second operand is the base pointer for the store, it has the same underlying type as the element of the input vector operand. The third operand is the mask, a vector of boolean values. The mask and the input vector must have the same number of vector elements.
13169
13170
13171Semantics:
13172""""""""""
13173
13174The '``llvm.masked.compressstore``' intrinsic is designed for compressing data in memory. It allows to collect elements from possibly non-adjacent lanes of a vector and store them contiguously in memory in one IR operation. It is useful for targets that support compressing store operations and allows vectorizing loops with cross-iteration dependences like in the following example:
13175
13176.. code-block:: c
13177
13178 // In this loop we load elements from A and store them consecutively in B
13179 double *A, B; int *C;
13180 for (int i = 0; i < size; ++i) {
13181 if (C[i] != 0)
13182 B[j++] = A[i]
13183 }
13184
13185
13186.. code-block:: llvm
13187
13188 ; Load elements from A.
13189 %Tmp = call <8 x double> @llvm.masked.load.v8f64.p0v8f64(<8 x double>* %Aptr, i32 8, <8 x i1> %Mask, <8 x double> undef)
13190 ; Store all selected elements consecutively in array B
13191 call <void> @llvm.masked.compressstore.v8f64(<8 x double> %Tmp, double* %Bptr, <8 x i1> %Mask)
13192
13193 ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
13194 %MaskI = bitcast <8 x i1> %Mask to i8
13195 %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
13196 %MaskI64 = zext i8 %MaskIPopcnt to i64
13197 %BNextInd = add i64 %BInd, %MaskI64
13198
13199
13200Other targets may support this intrinsic differently, for example, by lowering it into a sequence of branches that guard scalar store operations.
13201
13202
Sean Silvab084af42012-12-07 10:36:55 +000013203Memory Use Markers
13204------------------
13205
Sanjay Patel69bf48e2014-07-04 19:40:43 +000013206This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000013207memory objects and ranges where variables are immutable.
13208
Reid Klecknera534a382013-12-19 02:14:12 +000013209.. _int_lifestart:
13210
Sean Silvab084af42012-12-07 10:36:55 +000013211'``llvm.lifetime.start``' Intrinsic
13212^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13213
13214Syntax:
13215"""""""
13216
13217::
13218
13219 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
13220
13221Overview:
13222"""""""""
13223
13224The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
13225object's lifetime.
13226
13227Arguments:
13228""""""""""
13229
13230The first argument is a constant integer representing the size of the
13231object, or -1 if it is variable sized. The second argument is a pointer
13232to the object.
13233
13234Semantics:
13235""""""""""
13236
13237This intrinsic indicates that before this point in the code, the value
13238of the memory pointed to by ``ptr`` is dead. This means that it is known
13239to never be used and has an undefined value. A load from the pointer
13240that precedes this intrinsic can be replaced with ``'undef'``.
13241
Reid Klecknera534a382013-12-19 02:14:12 +000013242.. _int_lifeend:
13243
Sean Silvab084af42012-12-07 10:36:55 +000013244'``llvm.lifetime.end``' Intrinsic
13245^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13246
13247Syntax:
13248"""""""
13249
13250::
13251
13252 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
13253
13254Overview:
13255"""""""""
13256
13257The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
13258object's lifetime.
13259
13260Arguments:
13261""""""""""
13262
13263The first argument is a constant integer representing the size of the
13264object, or -1 if it is variable sized. The second argument is a pointer
13265to the object.
13266
13267Semantics:
13268""""""""""
13269
13270This intrinsic indicates that after this point in the code, the value of
13271the memory pointed to by ``ptr`` is dead. This means that it is known to
13272never be used and has an undefined value. Any stores into the memory
13273object following this intrinsic may be removed as dead.
13274
13275'``llvm.invariant.start``' Intrinsic
13276^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13277
13278Syntax:
13279"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000013280This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000013281
13282::
13283
Mehdi Amini8c629ec2016-08-13 23:31:24 +000013284 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000013285
13286Overview:
13287"""""""""
13288
13289The '``llvm.invariant.start``' intrinsic specifies that the contents of
13290a memory object will not change.
13291
13292Arguments:
13293""""""""""
13294
13295The first argument is a constant integer representing the size of the
13296object, or -1 if it is variable sized. The second argument is a pointer
13297to the object.
13298
13299Semantics:
13300""""""""""
13301
13302This intrinsic indicates that until an ``llvm.invariant.end`` that uses
13303the return value, the referenced memory location is constant and
13304unchanging.
13305
13306'``llvm.invariant.end``' Intrinsic
13307^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13308
13309Syntax:
13310"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000013311This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000013312
13313::
13314
Mehdi Amini8c629ec2016-08-13 23:31:24 +000013315 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000013316
13317Overview:
13318"""""""""
13319
13320The '``llvm.invariant.end``' intrinsic specifies that the contents of a
13321memory object are mutable.
13322
13323Arguments:
13324""""""""""
13325
13326The first argument is the matching ``llvm.invariant.start`` intrinsic.
13327The second argument is a constant integer representing the size of the
13328object, or -1 if it is variable sized and the third argument is a
13329pointer to the object.
13330
13331Semantics:
13332""""""""""
13333
13334This intrinsic indicates that the memory is mutable again.
13335
Piotr Padlewski5dde8092018-05-03 11:03:01 +000013336'``llvm.launder.invariant.group``' Intrinsic
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013337^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13338
13339Syntax:
13340"""""""
Yaxun Liu407ca362017-11-16 16:32:16 +000013341This is an overloaded intrinsic. The memory object can belong to any address
13342space. The returned pointer must belong to the same address space as the
13343argument.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013344
13345::
13346
Piotr Padlewski5dde8092018-05-03 11:03:01 +000013347 declare i8* @llvm.launder.invariant.group.p0i8(i8* <ptr>)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013348
13349Overview:
13350"""""""""
13351
Piotr Padlewski5dde8092018-05-03 11:03:01 +000013352The '``llvm.launder.invariant.group``' intrinsic can be used when an invariant
Piotr Padlewski5b3db452018-07-02 04:49:30 +000013353established by ``invariant.group`` metadata no longer holds, to obtain a new
13354pointer value that carries fresh invariant group information. It is an
13355experimental intrinsic, which means that its semantics might change in the
13356future.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013357
13358
13359Arguments:
13360""""""""""
13361
Piotr Padlewski5b3db452018-07-02 04:49:30 +000013362The ``llvm.launder.invariant.group`` takes only one argument, which is a pointer
13363to the memory.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013364
13365Semantics:
13366""""""""""
13367
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013368Returns another pointer that aliases its argument but which is considered different
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013369for the purposes of ``load``/``store`` ``invariant.group`` metadata.
Piotr Padlewski5dde8092018-05-03 11:03:01 +000013370It does not read any accessible memory and the execution can be speculated.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013371
Piotr Padlewski5b3db452018-07-02 04:49:30 +000013372'``llvm.strip.invariant.group``' Intrinsic
13373^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13374
13375Syntax:
13376"""""""
13377This is an overloaded intrinsic. The memory object can belong to any address
13378space. The returned pointer must belong to the same address space as the
13379argument.
13380
13381::
13382
13383 declare i8* @llvm.strip.invariant.group.p0i8(i8* <ptr>)
13384
13385Overview:
13386"""""""""
13387
13388The '``llvm.strip.invariant.group``' intrinsic can be used when an invariant
13389established by ``invariant.group`` metadata no longer holds, to obtain a new pointer
13390value that does not carry the invariant information. It is an experimental
13391intrinsic, which means that its semantics might change in the future.
13392
13393
13394Arguments:
13395""""""""""
13396
13397The ``llvm.strip.invariant.group`` takes only one argument, which is a pointer
13398to the memory.
13399
13400Semantics:
13401""""""""""
13402
13403Returns another pointer that aliases its argument but which has no associated
13404``invariant.group`` metadata.
13405It does not read any memory and can be speculated.
13406
13407
13408
Sanjay Patel54b161e2018-03-20 16:38:22 +000013409.. _constrainedfp:
13410
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013411Constrained Floating-Point Intrinsics
Andrew Kaylora0a11642017-01-26 23:27:59 +000013412-------------------------------------
13413
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013414These intrinsics are used to provide special handling of floating-point
13415operations when specific rounding mode or floating-point exception behavior is
Andrew Kaylora0a11642017-01-26 23:27:59 +000013416required. By default, LLVM optimization passes assume that the rounding mode is
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013417round-to-nearest and that floating-point exceptions will not be monitored.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013418Constrained FP intrinsics are used to support non-default rounding modes and
13419accurately preserve exception behavior without compromising LLVM's ability to
13420optimize FP code when the default behavior is used.
13421
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013422Each of these intrinsics corresponds to a normal floating-point operation. The
Andrew Kaylora0a11642017-01-26 23:27:59 +000013423first two arguments and the return value are the same as the corresponding FP
13424operation.
13425
13426The third argument is a metadata argument specifying the rounding mode to be
13427assumed. This argument must be one of the following strings:
13428
13429::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000013430
Andrew Kaylora0a11642017-01-26 23:27:59 +000013431 "round.dynamic"
13432 "round.tonearest"
13433 "round.downward"
13434 "round.upward"
13435 "round.towardzero"
13436
13437If this argument is "round.dynamic" optimization passes must assume that the
13438rounding mode is unknown and may change at runtime. No transformations that
13439depend on rounding mode may be performed in this case.
13440
13441The other possible values for the rounding mode argument correspond to the
13442similarly named IEEE rounding modes. If the argument is any of these values
13443optimization passes may perform transformations as long as they are consistent
13444with the specified rounding mode.
13445
13446For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
13447"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
13448'x-0' should evaluate to '-0' when rounding downward. However, this
13449transformation is legal for all other rounding modes.
13450
13451For values other than "round.dynamic" optimization passes may assume that the
13452actual runtime rounding mode (as defined in a target-specific manner) matches
13453the specified rounding mode, but this is not guaranteed. Using a specific
13454non-dynamic rounding mode which does not match the actual rounding mode at
13455runtime results in undefined behavior.
13456
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013457The fourth argument to the constrained floating-point intrinsics specifies the
Andrew Kaylora0a11642017-01-26 23:27:59 +000013458required exception behavior. This argument must be one of the following
13459strings:
13460
13461::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000013462
Andrew Kaylora0a11642017-01-26 23:27:59 +000013463 "fpexcept.ignore"
13464 "fpexcept.maytrap"
13465 "fpexcept.strict"
13466
13467If this argument is "fpexcept.ignore" optimization passes may assume that the
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013468exception status flags will not be read and that floating-point exceptions will
Andrew Kaylora0a11642017-01-26 23:27:59 +000013469be masked. This allows transformations to be performed that may change the
13470exception semantics of the original code. For example, FP operations may be
13471speculatively executed in this case whereas they must not be for either of the
13472other possible values of this argument.
13473
13474If the exception behavior argument is "fpexcept.maytrap" optimization passes
13475must avoid transformations that may raise exceptions that would not have been
13476raised by the original code (such as speculatively executing FP operations), but
13477passes are not required to preserve all exceptions that are implied by the
13478original code. For example, exceptions may be potentially hidden by constant
13479folding.
13480
13481If the exception behavior argument is "fpexcept.strict" all transformations must
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013482strictly preserve the floating-point exception semantics of the original code.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013483Any FP exception that would have been raised by the original code must be raised
13484by the transformed code, and the transformed code must not raise any FP
13485exceptions that would not have been raised by the original code. This is the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013486exception behavior argument that will be used if the code being compiled reads
Andrew Kaylora0a11642017-01-26 23:27:59 +000013487the FP exception status flags, but this mode can also be used with code that
13488unmasks FP exceptions.
13489
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013490The number and order of floating-point exceptions is NOT guaranteed. For
Andrew Kaylora0a11642017-01-26 23:27:59 +000013491example, a series of FP operations that each may raise exceptions may be
13492vectorized into a single instruction that raises each unique exception a single
13493time.
13494
13495
13496'``llvm.experimental.constrained.fadd``' Intrinsic
13497^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13498
13499Syntax:
13500"""""""
13501
13502::
13503
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013504 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013505 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
13506 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013507 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013508
13509Overview:
13510"""""""""
13511
13512The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
13513two operands.
13514
13515
13516Arguments:
13517""""""""""
13518
13519The first two arguments to the '``llvm.experimental.constrained.fadd``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013520intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13521of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013522
13523The third and fourth arguments specify the rounding mode and exception
13524behavior as described above.
13525
13526Semantics:
13527""""""""""
13528
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013529The value produced is the floating-point sum of the two value operands and has
Andrew Kaylora0a11642017-01-26 23:27:59 +000013530the same type as the operands.
13531
13532
13533'``llvm.experimental.constrained.fsub``' Intrinsic
13534^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13535
13536Syntax:
13537"""""""
13538
13539::
13540
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013541 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013542 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
13543 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013544 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013545
13546Overview:
13547"""""""""
13548
13549The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
13550of its two operands.
13551
13552
13553Arguments:
13554""""""""""
13555
13556The first two arguments to the '``llvm.experimental.constrained.fsub``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013557intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13558of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013559
13560The third and fourth arguments specify the rounding mode and exception
13561behavior as described above.
13562
13563Semantics:
13564""""""""""
13565
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013566The value produced is the floating-point difference of the two value operands
Andrew Kaylora0a11642017-01-26 23:27:59 +000013567and has the same type as the operands.
13568
13569
13570'``llvm.experimental.constrained.fmul``' Intrinsic
13571^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13572
13573Syntax:
13574"""""""
13575
13576::
13577
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013578 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013579 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
13580 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013581 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013582
13583Overview:
13584"""""""""
13585
13586The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
13587its two operands.
13588
13589
13590Arguments:
13591""""""""""
13592
13593The first two arguments to the '``llvm.experimental.constrained.fmul``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013594intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13595of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013596
13597The third and fourth arguments specify the rounding mode and exception
13598behavior as described above.
13599
13600Semantics:
13601""""""""""
13602
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013603The value produced is the floating-point product of the two value operands and
Andrew Kaylora0a11642017-01-26 23:27:59 +000013604has the same type as the operands.
13605
13606
13607'``llvm.experimental.constrained.fdiv``' Intrinsic
13608^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13609
13610Syntax:
13611"""""""
13612
13613::
13614
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013615 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013616 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
13617 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013618 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013619
13620Overview:
13621"""""""""
13622
13623The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
13624its two operands.
13625
13626
13627Arguments:
13628""""""""""
13629
13630The first two arguments to the '``llvm.experimental.constrained.fdiv``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013631intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13632of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013633
13634The third and fourth arguments specify the rounding mode and exception
13635behavior as described above.
13636
13637Semantics:
13638""""""""""
13639
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013640The value produced is the floating-point quotient of the two value operands and
Andrew Kaylora0a11642017-01-26 23:27:59 +000013641has the same type as the operands.
13642
13643
13644'``llvm.experimental.constrained.frem``' Intrinsic
13645^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13646
13647Syntax:
13648"""""""
13649
13650::
13651
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013652 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013653 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
13654 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013655 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013656
13657Overview:
13658"""""""""
13659
13660The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
13661from the division of its two operands.
13662
13663
13664Arguments:
13665""""""""""
13666
13667The first two arguments to the '``llvm.experimental.constrained.frem``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013668intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13669of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013670
13671The third and fourth arguments specify the rounding mode and exception
13672behavior as described above. The rounding mode argument has no effect, since
13673the result of frem is never rounded, but the argument is included for
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013674consistency with the other constrained floating-point intrinsics.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013675
13676Semantics:
13677""""""""""
13678
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013679The value produced is the floating-point remainder from the division of the two
Andrew Kaylora0a11642017-01-26 23:27:59 +000013680value operands and has the same type as the operands. The remainder has the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013681same sign as the dividend.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013682
Wei Dinga131d3f2017-08-24 04:18:24 +000013683'``llvm.experimental.constrained.fma``' Intrinsic
13684^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13685
13686Syntax:
13687"""""""
13688
13689::
13690
13691 declare <type>
13692 @llvm.experimental.constrained.fma(<type> <op1>, <type> <op2>, <type> <op3>,
13693 metadata <rounding mode>,
13694 metadata <exception behavior>)
13695
13696Overview:
13697"""""""""
13698
13699The '``llvm.experimental.constrained.fma``' intrinsic returns the result of a
13700fused-multiply-add operation on its operands.
13701
13702Arguments:
13703""""""""""
13704
13705The first three arguments to the '``llvm.experimental.constrained.fma``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013706intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector
13707<t_vector>` of floating-point values. All arguments must have identical types.
Wei Dinga131d3f2017-08-24 04:18:24 +000013708
13709The fourth and fifth arguments specify the rounding mode and exception behavior
13710as described above.
13711
13712Semantics:
13713""""""""""
13714
13715The result produced is the product of the first two operands added to the third
13716operand computed with infinite precision, and then rounded to the target
13717precision.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013718
Andrew Kaylorf4660012017-05-25 21:31:00 +000013719Constrained libm-equivalent Intrinsics
13720--------------------------------------
13721
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013722In addition to the basic floating-point operations for which constrained
Andrew Kaylorf4660012017-05-25 21:31:00 +000013723intrinsics are described above, there are constrained versions of various
13724operations which provide equivalent behavior to a corresponding libm function.
13725These intrinsics allow the precise behavior of these operations with respect to
13726rounding mode and exception behavior to be controlled.
13727
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013728As with the basic constrained floating-point intrinsics, the rounding mode
Andrew Kaylorf4660012017-05-25 21:31:00 +000013729and exception behavior arguments only control the behavior of the optimizer.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013730They do not change the runtime floating-point environment.
Andrew Kaylorf4660012017-05-25 21:31:00 +000013731
13732
13733'``llvm.experimental.constrained.sqrt``' Intrinsic
13734^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13735
13736Syntax:
13737"""""""
13738
13739::
13740
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013741 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013742 @llvm.experimental.constrained.sqrt(<type> <op1>,
13743 metadata <rounding mode>,
13744 metadata <exception behavior>)
13745
13746Overview:
13747"""""""""
13748
13749The '``llvm.experimental.constrained.sqrt``' intrinsic returns the square root
13750of the specified value, returning the same value as the libm '``sqrt``'
13751functions would, but without setting ``errno``.
13752
13753Arguments:
13754""""""""""
13755
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013756The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013757type.
13758
13759The second and third arguments specify the rounding mode and exception
13760behavior as described above.
13761
13762Semantics:
13763""""""""""
13764
13765This function returns the nonnegative square root of the specified value.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013766If the value is less than negative zero, a floating-point exception occurs
Hiroshi Inoue760c0c92018-01-16 13:19:48 +000013767and the return value is architecture specific.
Andrew Kaylorf4660012017-05-25 21:31:00 +000013768
13769
13770'``llvm.experimental.constrained.pow``' Intrinsic
13771^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13772
13773Syntax:
13774"""""""
13775
13776::
13777
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013778 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013779 @llvm.experimental.constrained.pow(<type> <op1>, <type> <op2>,
13780 metadata <rounding mode>,
13781 metadata <exception behavior>)
13782
13783Overview:
13784"""""""""
13785
13786The '``llvm.experimental.constrained.pow``' intrinsic returns the first operand
13787raised to the (positive or negative) power specified by the second operand.
13788
13789Arguments:
13790""""""""""
13791
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013792The first two arguments and the return value are floating-point numbers of the
Andrew Kaylorf4660012017-05-25 21:31:00 +000013793same type. The second argument specifies the power to which the first argument
13794should be raised.
13795
13796The third and fourth arguments specify the rounding mode and exception
13797behavior as described above.
13798
13799Semantics:
13800""""""""""
13801
13802This function returns the first value raised to the second power,
13803returning the same values as the libm ``pow`` functions would, and
13804handles error conditions in the same way.
13805
13806
13807'``llvm.experimental.constrained.powi``' Intrinsic
13808^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13809
13810Syntax:
13811"""""""
13812
13813::
13814
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013815 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013816 @llvm.experimental.constrained.powi(<type> <op1>, i32 <op2>,
13817 metadata <rounding mode>,
13818 metadata <exception behavior>)
13819
13820Overview:
13821"""""""""
13822
13823The '``llvm.experimental.constrained.powi``' intrinsic returns the first operand
13824raised to the (positive or negative) power specified by the second operand. The
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013825order of evaluation of multiplications is not defined. When a vector of
13826floating-point type is used, the second argument remains a scalar integer value.
Andrew Kaylorf4660012017-05-25 21:31:00 +000013827
13828
13829Arguments:
13830""""""""""
13831
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013832The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013833type. The second argument is a 32-bit signed integer specifying the power to
13834which the first argument should be raised.
13835
13836The third and fourth arguments specify the rounding mode and exception
13837behavior as described above.
13838
13839Semantics:
13840""""""""""
13841
13842This function returns the first value raised to the second power with an
13843unspecified sequence of rounding operations.
13844
13845
13846'``llvm.experimental.constrained.sin``' Intrinsic
13847^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13848
13849Syntax:
13850"""""""
13851
13852::
13853
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013854 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013855 @llvm.experimental.constrained.sin(<type> <op1>,
13856 metadata <rounding mode>,
13857 metadata <exception behavior>)
13858
13859Overview:
13860"""""""""
13861
13862The '``llvm.experimental.constrained.sin``' intrinsic returns the sine of the
13863first operand.
13864
13865Arguments:
13866""""""""""
13867
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013868The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013869type.
13870
13871The second and third arguments specify the rounding mode and exception
13872behavior as described above.
13873
13874Semantics:
13875""""""""""
13876
13877This function returns the sine of the specified operand, returning the
13878same values as the libm ``sin`` functions would, and handles error
13879conditions in the same way.
13880
13881
13882'``llvm.experimental.constrained.cos``' Intrinsic
13883^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13884
13885Syntax:
13886"""""""
13887
13888::
13889
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013890 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013891 @llvm.experimental.constrained.cos(<type> <op1>,
13892 metadata <rounding mode>,
13893 metadata <exception behavior>)
13894
13895Overview:
13896"""""""""
13897
13898The '``llvm.experimental.constrained.cos``' intrinsic returns the cosine of the
13899first operand.
13900
13901Arguments:
13902""""""""""
13903
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013904The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013905type.
13906
13907The second and third arguments specify the rounding mode and exception
13908behavior as described above.
13909
13910Semantics:
13911""""""""""
13912
13913This function returns the cosine of the specified operand, returning the
13914same values as the libm ``cos`` functions would, and handles error
13915conditions in the same way.
13916
13917
13918'``llvm.experimental.constrained.exp``' Intrinsic
13919^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13920
13921Syntax:
13922"""""""
13923
13924::
13925
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013926 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013927 @llvm.experimental.constrained.exp(<type> <op1>,
13928 metadata <rounding mode>,
13929 metadata <exception behavior>)
13930
13931Overview:
13932"""""""""
13933
13934The '``llvm.experimental.constrained.exp``' intrinsic computes the base-e
13935exponential of the specified value.
13936
13937Arguments:
13938""""""""""
13939
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013940The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013941type.
13942
13943The second and third arguments specify the rounding mode and exception
13944behavior as described above.
13945
13946Semantics:
13947""""""""""
13948
13949This function returns the same values as the libm ``exp`` functions
13950would, and handles error conditions in the same way.
13951
13952
13953'``llvm.experimental.constrained.exp2``' Intrinsic
13954^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13955
13956Syntax:
13957"""""""
13958
13959::
13960
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013961 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013962 @llvm.experimental.constrained.exp2(<type> <op1>,
13963 metadata <rounding mode>,
13964 metadata <exception behavior>)
13965
13966Overview:
13967"""""""""
13968
13969The '``llvm.experimental.constrained.exp2``' intrinsic computes the base-2
13970exponential of the specified value.
13971
13972
13973Arguments:
13974""""""""""
13975
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013976The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013977type.
13978
13979The second and third arguments specify the rounding mode and exception
13980behavior as described above.
13981
13982Semantics:
13983""""""""""
13984
13985This function returns the same values as the libm ``exp2`` functions
13986would, and handles error conditions in the same way.
13987
13988
13989'``llvm.experimental.constrained.log``' Intrinsic
13990^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13991
13992Syntax:
13993"""""""
13994
13995::
13996
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013997 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013998 @llvm.experimental.constrained.log(<type> <op1>,
13999 metadata <rounding mode>,
14000 metadata <exception behavior>)
14001
14002Overview:
14003"""""""""
14004
14005The '``llvm.experimental.constrained.log``' intrinsic computes the base-e
14006logarithm of the specified value.
14007
14008Arguments:
14009""""""""""
14010
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014011The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014012type.
14013
14014The second and third arguments specify the rounding mode and exception
14015behavior as described above.
14016
14017
14018Semantics:
14019""""""""""
14020
14021This function returns the same values as the libm ``log`` functions
14022would, and handles error conditions in the same way.
14023
14024
14025'``llvm.experimental.constrained.log10``' Intrinsic
14026^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14027
14028Syntax:
14029"""""""
14030
14031::
14032
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014033 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014034 @llvm.experimental.constrained.log10(<type> <op1>,
14035 metadata <rounding mode>,
14036 metadata <exception behavior>)
14037
14038Overview:
14039"""""""""
14040
14041The '``llvm.experimental.constrained.log10``' intrinsic computes the base-10
14042logarithm of the specified value.
14043
14044Arguments:
14045""""""""""
14046
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014047The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014048type.
14049
14050The second and third arguments specify the rounding mode and exception
14051behavior as described above.
14052
14053Semantics:
14054""""""""""
14055
14056This function returns the same values as the libm ``log10`` functions
14057would, and handles error conditions in the same way.
14058
14059
14060'``llvm.experimental.constrained.log2``' Intrinsic
14061^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14062
14063Syntax:
14064"""""""
14065
14066::
14067
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014068 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014069 @llvm.experimental.constrained.log2(<type> <op1>,
14070 metadata <rounding mode>,
14071 metadata <exception behavior>)
14072
14073Overview:
14074"""""""""
14075
14076The '``llvm.experimental.constrained.log2``' intrinsic computes the base-2
14077logarithm of the specified value.
14078
14079Arguments:
14080""""""""""
14081
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014082The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014083type.
14084
14085The second and third arguments specify the rounding mode and exception
14086behavior as described above.
14087
14088Semantics:
14089""""""""""
14090
14091This function returns the same values as the libm ``log2`` functions
14092would, and handles error conditions in the same way.
14093
14094
14095'``llvm.experimental.constrained.rint``' Intrinsic
14096^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14097
14098Syntax:
14099"""""""
14100
14101::
14102
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014103 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014104 @llvm.experimental.constrained.rint(<type> <op1>,
14105 metadata <rounding mode>,
14106 metadata <exception behavior>)
14107
14108Overview:
14109"""""""""
14110
14111The '``llvm.experimental.constrained.rint``' intrinsic returns the first
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014112operand rounded to the nearest integer. It may raise an inexact floating-point
Andrew Kaylorf4660012017-05-25 21:31:00 +000014113exception if the operand is not an integer.
14114
14115Arguments:
14116""""""""""
14117
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014118The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014119type.
14120
14121The second and third arguments specify the rounding mode and exception
14122behavior as described above.
14123
14124Semantics:
14125""""""""""
14126
14127This function returns the same values as the libm ``rint`` functions
14128would, and handles error conditions in the same way. The rounding mode is
14129described, not determined, by the rounding mode argument. The actual rounding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014130mode is determined by the runtime floating-point environment. The rounding
Andrew Kaylorf4660012017-05-25 21:31:00 +000014131mode argument is only intended as information to the compiler.
14132
14133
14134'``llvm.experimental.constrained.nearbyint``' Intrinsic
14135^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14136
14137Syntax:
14138"""""""
14139
14140::
14141
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014142 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014143 @llvm.experimental.constrained.nearbyint(<type> <op1>,
14144 metadata <rounding mode>,
14145 metadata <exception behavior>)
14146
14147Overview:
14148"""""""""
14149
14150The '``llvm.experimental.constrained.nearbyint``' intrinsic returns the first
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014151operand rounded to the nearest integer. It will not raise an inexact
14152floating-point exception if the operand is not an integer.
Andrew Kaylorf4660012017-05-25 21:31:00 +000014153
14154
14155Arguments:
14156""""""""""
14157
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014158The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014159type.
14160
14161The second and third arguments specify the rounding mode and exception
14162behavior as described above.
14163
14164Semantics:
14165""""""""""
14166
14167This function returns the same values as the libm ``nearbyint`` functions
14168would, and handles error conditions in the same way. The rounding mode is
14169described, not determined, by the rounding mode argument. The actual rounding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014170mode is determined by the runtime floating-point environment. The rounding
Andrew Kaylorf4660012017-05-25 21:31:00 +000014171mode argument is only intended as information to the compiler.
14172
14173
Sean Silvab084af42012-12-07 10:36:55 +000014174General Intrinsics
14175------------------
14176
14177This class of intrinsics is designed to be generic and has no specific
14178purpose.
14179
14180'``llvm.var.annotation``' Intrinsic
14181^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14182
14183Syntax:
14184"""""""
14185
14186::
14187
14188 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
14189
14190Overview:
14191"""""""""
14192
14193The '``llvm.var.annotation``' intrinsic.
14194
14195Arguments:
14196""""""""""
14197
14198The first argument is a pointer to a value, the second is a pointer to a
14199global string, the third is a pointer to a global string which is the
14200source file name, and the last argument is the line number.
14201
14202Semantics:
14203""""""""""
14204
14205This intrinsic allows annotation of local variables with arbitrary
14206strings. This can be useful for special purpose optimizations that want
14207to look for these annotations. These have no other defined use; they are
14208ignored by code generation and optimization.
14209
Michael Gottesman88d18832013-03-26 00:34:27 +000014210'``llvm.ptr.annotation.*``' Intrinsic
14211^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14212
14213Syntax:
14214"""""""
14215
14216This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
14217pointer to an integer of any width. *NOTE* you must specify an address space for
14218the pointer. The identifier for the default address space is the integer
14219'``0``'.
14220
14221::
14222
14223 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
14224 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
14225 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
14226 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
14227 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
14228
14229Overview:
14230"""""""""
14231
14232The '``llvm.ptr.annotation``' intrinsic.
14233
14234Arguments:
14235""""""""""
14236
14237The first argument is a pointer to an integer value of arbitrary bitwidth
14238(result of some expression), the second is a pointer to a global string, the
14239third is a pointer to a global string which is the source file name, and the
14240last argument is the line number. It returns the value of the first argument.
14241
14242Semantics:
14243""""""""""
14244
14245This intrinsic allows annotation of a pointer to an integer with arbitrary
14246strings. This can be useful for special purpose optimizations that want to look
14247for these annotations. These have no other defined use; they are ignored by code
14248generation and optimization.
14249
Sean Silvab084af42012-12-07 10:36:55 +000014250'``llvm.annotation.*``' Intrinsic
14251^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14252
14253Syntax:
14254"""""""
14255
14256This is an overloaded intrinsic. You can use '``llvm.annotation``' on
14257any integer bit width.
14258
14259::
14260
14261 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
14262 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
14263 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
14264 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
14265 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
14266
14267Overview:
14268"""""""""
14269
14270The '``llvm.annotation``' intrinsic.
14271
14272Arguments:
14273""""""""""
14274
14275The first argument is an integer value (result of some expression), the
14276second is a pointer to a global string, the third is a pointer to a
14277global string which is the source file name, and the last argument is
14278the line number. It returns the value of the first argument.
14279
14280Semantics:
14281""""""""""
14282
14283This intrinsic allows annotations to be put on arbitrary expressions
14284with arbitrary strings. This can be useful for special purpose
14285optimizations that want to look for these annotations. These have no
14286other defined use; they are ignored by code generation and optimization.
14287
Reid Klecknere33c94f2017-09-05 20:14:58 +000014288'``llvm.codeview.annotation``' Intrinsic
Reid Klecknerd4523682017-09-05 20:26:25 +000014289^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Reid Klecknere33c94f2017-09-05 20:14:58 +000014290
14291Syntax:
14292"""""""
14293
14294This annotation emits a label at its program point and an associated
14295``S_ANNOTATION`` codeview record with some additional string metadata. This is
14296used to implement MSVC's ``__annotation`` intrinsic. It is marked
14297``noduplicate``, so calls to this intrinsic prevent inlining and should be
14298considered expensive.
14299
14300::
14301
14302 declare void @llvm.codeview.annotation(metadata)
14303
14304Arguments:
14305""""""""""
14306
14307The argument should be an MDTuple containing any number of MDStrings.
14308
Sean Silvab084af42012-12-07 10:36:55 +000014309'``llvm.trap``' Intrinsic
14310^^^^^^^^^^^^^^^^^^^^^^^^^
14311
14312Syntax:
14313"""""""
14314
14315::
14316
14317 declare void @llvm.trap() noreturn nounwind
14318
14319Overview:
14320"""""""""
14321
14322The '``llvm.trap``' intrinsic.
14323
14324Arguments:
14325""""""""""
14326
14327None.
14328
14329Semantics:
14330""""""""""
14331
14332This intrinsic is lowered to the target dependent trap instruction. If
14333the target does not have a trap instruction, this intrinsic will be
14334lowered to a call of the ``abort()`` function.
14335
14336'``llvm.debugtrap``' Intrinsic
14337^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14338
14339Syntax:
14340"""""""
14341
14342::
14343
14344 declare void @llvm.debugtrap() nounwind
14345
14346Overview:
14347"""""""""
14348
14349The '``llvm.debugtrap``' intrinsic.
14350
14351Arguments:
14352""""""""""
14353
14354None.
14355
14356Semantics:
14357""""""""""
14358
14359This intrinsic is lowered to code which is intended to cause an
14360execution trap with the intention of requesting the attention of a
14361debugger.
14362
14363'``llvm.stackprotector``' Intrinsic
14364^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14365
14366Syntax:
14367"""""""
14368
14369::
14370
14371 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
14372
14373Overview:
14374"""""""""
14375
14376The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
14377onto the stack at ``slot``. The stack slot is adjusted to ensure that it
14378is placed on the stack before local variables.
14379
14380Arguments:
14381""""""""""
14382
14383The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
14384The first argument is the value loaded from the stack guard
14385``@__stack_chk_guard``. The second variable is an ``alloca`` that has
14386enough space to hold the value of the guard.
14387
14388Semantics:
14389""""""""""
14390
Michael Gottesmandafc7d92013-08-12 18:35:32 +000014391This intrinsic causes the prologue/epilogue inserter to force the position of
14392the ``AllocaInst`` stack slot to be before local variables on the stack. This is
14393to ensure that if a local variable on the stack is overwritten, it will destroy
14394the value of the guard. When the function exits, the guard on the stack is
14395checked against the original guard by ``llvm.stackprotectorcheck``. If they are
14396different, then ``llvm.stackprotectorcheck`` causes the program to abort by
14397calling the ``__stack_chk_fail()`` function.
14398
Tim Shene885d5e2016-04-19 19:40:37 +000014399'``llvm.stackguard``' Intrinsic
14400^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14401
14402Syntax:
14403"""""""
14404
14405::
14406
14407 declare i8* @llvm.stackguard()
14408
14409Overview:
14410"""""""""
14411
14412The ``llvm.stackguard`` intrinsic returns the system stack guard value.
14413
14414It should not be generated by frontends, since it is only for internal usage.
14415The reason why we create this intrinsic is that we still support IR form Stack
14416Protector in FastISel.
14417
14418Arguments:
14419""""""""""
14420
14421None.
14422
14423Semantics:
14424""""""""""
14425
14426On some platforms, the value returned by this intrinsic remains unchanged
14427between loads in the same thread. On other platforms, it returns the same
14428global variable value, if any, e.g. ``@__stack_chk_guard``.
14429
14430Currently some platforms have IR-level customized stack guard loading (e.g.
14431X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
14432in the future.
14433
Sean Silvab084af42012-12-07 10:36:55 +000014434'``llvm.objectsize``' Intrinsic
14435^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14436
14437Syntax:
14438"""""""
14439
14440::
14441
George Burgess IV56c7e882017-03-21 20:08:59 +000014442 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>)
14443 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>)
Sean Silvab084af42012-12-07 10:36:55 +000014444
14445Overview:
14446"""""""""
14447
14448The ``llvm.objectsize`` intrinsic is designed to provide information to
14449the optimizers to determine at compile time whether a) an operation
14450(like memcpy) will overflow a buffer that corresponds to an object, or
14451b) that a runtime check for overflow isn't necessary. An object in this
14452context means an allocation of a specific class, structure, array, or
14453other object.
14454
14455Arguments:
14456""""""""""
14457
George Burgess IV56c7e882017-03-21 20:08:59 +000014458The ``llvm.objectsize`` intrinsic takes three arguments. The first argument is
14459a pointer to or into the ``object``. The second argument determines whether
14460``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size
14461is unknown. The third argument controls how ``llvm.objectsize`` acts when
George Burgess IV3fbfa9c42018-07-09 22:21:16 +000014462``null`` in address space 0 is used as its pointer argument. If it's ``false``,
14463``llvm.objectsize`` reports 0 bytes available when given ``null``. Otherwise, if
14464the ``null`` is in a non-zero address space or if ``true`` is given for the
14465third argument of ``llvm.objectsize``, we assume its size is unknown.
George Burgess IV56c7e882017-03-21 20:08:59 +000014466
14467The second and third arguments only accept constants.
Sean Silvab084af42012-12-07 10:36:55 +000014468
14469Semantics:
14470""""""""""
14471
14472The ``llvm.objectsize`` intrinsic is lowered to a constant representing
14473the size of the object concerned. If the size cannot be determined at
14474compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
14475on the ``min`` argument).
14476
14477'``llvm.expect``' Intrinsic
14478^^^^^^^^^^^^^^^^^^^^^^^^^^^
14479
14480Syntax:
14481"""""""
14482
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000014483This is an overloaded intrinsic. You can use ``llvm.expect`` on any
14484integer bit width.
14485
Sean Silvab084af42012-12-07 10:36:55 +000014486::
14487
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000014488 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000014489 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
14490 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
14491
14492Overview:
14493"""""""""
14494
14495The ``llvm.expect`` intrinsic provides information about expected (the
14496most probable) value of ``val``, which can be used by optimizers.
14497
14498Arguments:
14499""""""""""
14500
14501The ``llvm.expect`` intrinsic takes two arguments. The first argument is
14502a value. The second argument is an expected value, this needs to be a
14503constant value, variables are not allowed.
14504
14505Semantics:
14506""""""""""
14507
14508This intrinsic is lowered to the ``val``.
14509
Philip Reamese0e90832015-04-26 22:23:12 +000014510.. _int_assume:
14511
Hal Finkel93046912014-07-25 21:13:35 +000014512'``llvm.assume``' Intrinsic
14513^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14514
14515Syntax:
14516"""""""
14517
14518::
14519
14520 declare void @llvm.assume(i1 %cond)
14521
14522Overview:
14523"""""""""
14524
14525The ``llvm.assume`` allows the optimizer to assume that the provided
14526condition is true. This information can then be used in simplifying other parts
14527of the code.
14528
14529Arguments:
14530""""""""""
14531
14532The condition which the optimizer may assume is always true.
14533
14534Semantics:
14535""""""""""
14536
14537The intrinsic allows the optimizer to assume that the provided condition is
14538always true whenever the control flow reaches the intrinsic call. No code is
14539generated for this intrinsic, and instructions that contribute only to the
14540provided condition are not used for code generation. If the condition is
14541violated during execution, the behavior is undefined.
14542
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000014543Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000014544used by the ``llvm.assume`` intrinsic in order to preserve the instructions
14545only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000014546if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000014547sufficient overall improvement in code quality. For this reason,
14548``llvm.assume`` should not be used to document basic mathematical invariants
14549that the optimizer can otherwise deduce or facts that are of little use to the
14550optimizer.
14551
Daniel Berlin2c438a32017-02-07 19:29:25 +000014552.. _int_ssa_copy:
14553
14554'``llvm.ssa_copy``' Intrinsic
14555^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14556
14557Syntax:
14558"""""""
14559
14560::
14561
14562 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
14563
14564Arguments:
14565""""""""""
14566
14567The first argument is an operand which is used as the returned value.
14568
14569Overview:
14570""""""""""
14571
14572The ``llvm.ssa_copy`` intrinsic can be used to attach information to
14573operations by copying them and giving them new names. For example,
14574the PredicateInfo utility uses it to build Extended SSA form, and
14575attach various forms of information to operands that dominate specific
14576uses. It is not meant for general use, only for building temporary
14577renaming forms that require value splits at certain points.
14578
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014579.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000014580
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014581'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000014582^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14583
14584Syntax:
14585"""""""
14586
14587::
14588
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014589 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000014590
14591
14592Arguments:
14593""""""""""
14594
14595The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014596metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000014597
14598Overview:
14599"""""""""
14600
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014601The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
14602with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000014603
Peter Collingbourne0312f612016-06-25 00:23:04 +000014604'``llvm.type.checked.load``' Intrinsic
14605^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14606
14607Syntax:
14608"""""""
14609
14610::
14611
14612 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
14613
14614
14615Arguments:
14616""""""""""
14617
14618The first argument is a pointer from which to load a function pointer. The
14619second argument is the byte offset from which to load the function pointer. The
14620third argument is a metadata object representing a :doc:`type identifier
14621<TypeMetadata>`.
14622
14623Overview:
14624"""""""""
14625
14626The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
14627virtual table pointer using type metadata. This intrinsic is used to implement
14628control flow integrity in conjunction with virtual call optimization. The
14629virtual call optimization pass will optimize away ``llvm.type.checked.load``
14630intrinsics associated with devirtualized calls, thereby removing the type
14631check in cases where it is not needed to enforce the control flow integrity
14632constraint.
14633
14634If the given pointer is associated with a type metadata identifier, this
14635function returns true as the second element of its return value. (Note that
14636the function may also return true if the given pointer is not associated
14637with a type metadata identifier.) If the function's return value's second
14638element is true, the following rules apply to the first element:
14639
14640- If the given pointer is associated with the given type metadata identifier,
14641 it is the function pointer loaded from the given byte offset from the given
14642 pointer.
14643
14644- If the given pointer is not associated with the given type metadata
14645 identifier, it is one of the following (the choice of which is unspecified):
14646
14647 1. The function pointer that would have been loaded from an arbitrarily chosen
14648 (through an unspecified mechanism) pointer associated with the type
14649 metadata.
14650
14651 2. If the function has a non-void return type, a pointer to a function that
14652 returns an unspecified value without causing side effects.
14653
14654If the function's return value's second element is false, the value of the
14655first element is undefined.
14656
14657
Sean Silvab084af42012-12-07 10:36:55 +000014658'``llvm.donothing``' Intrinsic
14659^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14660
14661Syntax:
14662"""""""
14663
14664::
14665
14666 declare void @llvm.donothing() nounwind readnone
14667
14668Overview:
14669"""""""""
14670
Juergen Ributzkac9161192014-10-23 22:36:13 +000014671The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000014672three intrinsics (besides ``llvm.experimental.patchpoint`` and
14673``llvm.experimental.gc.statepoint``) that can be called with an invoke
14674instruction.
Sean Silvab084af42012-12-07 10:36:55 +000014675
14676Arguments:
14677""""""""""
14678
14679None.
14680
14681Semantics:
14682""""""""""
14683
14684This intrinsic does nothing, and it's removed by optimizers and ignored
14685by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000014686
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014687'``llvm.experimental.deoptimize``' Intrinsic
14688^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14689
14690Syntax:
14691"""""""
14692
14693::
14694
14695 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
14696
14697Overview:
14698"""""""""
14699
14700This intrinsic, together with :ref:`deoptimization operand bundles
14701<deopt_opbundles>`, allow frontends to express transfer of control and
14702frame-local state from the currently executing (typically more specialized,
14703hence faster) version of a function into another (typically more generic, hence
14704slower) version.
14705
14706In languages with a fully integrated managed runtime like Java and JavaScript
14707this intrinsic can be used to implement "uncommon trap" or "side exit" like
14708functionality. In unmanaged languages like C and C++, this intrinsic can be
14709used to represent the slow paths of specialized functions.
14710
14711
14712Arguments:
14713""""""""""
14714
14715The intrinsic takes an arbitrary number of arguments, whose meaning is
14716decided by the :ref:`lowering strategy<deoptimize_lowering>`.
14717
14718Semantics:
14719""""""""""
14720
14721The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
14722deoptimization continuation (denoted using a :ref:`deoptimization
14723operand bundle <deopt_opbundles>`) and returns the value returned by
14724the deoptimization continuation. Defining the semantic properties of
14725the continuation itself is out of scope of the language reference --
14726as far as LLVM is concerned, the deoptimization continuation can
14727invoke arbitrary side effects, including reading from and writing to
14728the entire heap.
14729
14730Deoptimization continuations expressed using ``"deopt"`` operand bundles always
14731continue execution to the end of the physical frame containing them, so all
14732calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
14733
14734 - ``@llvm.experimental.deoptimize`` cannot be invoked.
14735 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
14736 - The ``ret`` instruction must return the value produced by the
14737 ``@llvm.experimental.deoptimize`` call if there is one, or void.
14738
14739Note that the above restrictions imply that the return type for a call to
14740``@llvm.experimental.deoptimize`` will match the return type of its immediate
14741caller.
14742
14743The inliner composes the ``"deopt"`` continuations of the caller into the
14744``"deopt"`` continuations present in the inlinee, and also updates calls to this
14745intrinsic to return directly from the frame of the function it inlined into.
14746
Sanjoy Dase0aa4142016-05-12 01:17:38 +000014747All declarations of ``@llvm.experimental.deoptimize`` must share the
14748same calling convention.
14749
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014750.. _deoptimize_lowering:
14751
14752Lowering:
14753"""""""""
14754
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000014755Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
14756symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
14757ensure that this symbol is defined). The call arguments to
14758``@llvm.experimental.deoptimize`` are lowered as if they were formal
14759arguments of the specified types, and not as varargs.
14760
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014761
Sanjoy Das021de052016-03-31 00:18:46 +000014762'``llvm.experimental.guard``' Intrinsic
14763^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14764
14765Syntax:
14766"""""""
14767
14768::
14769
14770 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
14771
14772Overview:
14773"""""""""
14774
14775This intrinsic, together with :ref:`deoptimization operand bundles
14776<deopt_opbundles>`, allows frontends to express guards or checks on
14777optimistic assumptions made during compilation. The semantics of
14778``@llvm.experimental.guard`` is defined in terms of
14779``@llvm.experimental.deoptimize`` -- its body is defined to be
14780equivalent to:
14781
Renato Golin124f2592016-07-20 12:16:38 +000014782.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000014783
Renato Golin124f2592016-07-20 12:16:38 +000014784 define void @llvm.experimental.guard(i1 %pred, <args...>) {
14785 %realPred = and i1 %pred, undef
14786 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000014787
Renato Golin124f2592016-07-20 12:16:38 +000014788 leave:
14789 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
14790 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000014791
Renato Golin124f2592016-07-20 12:16:38 +000014792 continue:
14793 ret void
14794 }
Sanjoy Das021de052016-03-31 00:18:46 +000014795
Sanjoy Das47cf2af2016-04-30 00:55:59 +000014796
14797with the optional ``[, !make.implicit !{}]`` present if and only if it
14798is present on the call site. For more details on ``!make.implicit``,
14799see :doc:`FaultMaps`.
14800
Sanjoy Das021de052016-03-31 00:18:46 +000014801In words, ``@llvm.experimental.guard`` executes the attached
14802``"deopt"`` continuation if (but **not** only if) its first argument
14803is ``false``. Since the optimizer is allowed to replace the ``undef``
14804with an arbitrary value, it can optimize guard to fail "spuriously",
14805i.e. without the original condition being false (hence the "not only
14806if"); and this allows for "check widening" type optimizations.
14807
14808``@llvm.experimental.guard`` cannot be invoked.
14809
14810
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000014811'``llvm.load.relative``' Intrinsic
14812^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14813
14814Syntax:
14815"""""""
14816
14817::
14818
14819 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
14820
14821Overview:
14822"""""""""
14823
14824This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
14825adds ``%ptr`` to that value and returns it. The constant folder specifically
14826recognizes the form of this intrinsic and the constant initializers it may
14827load from; if a loaded constant initializer is known to have the form
14828``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
14829
14830LLVM provides that the calculation of such a constant initializer will
14831not overflow at link time under the medium code model if ``x`` is an
14832``unnamed_addr`` function. However, it does not provide this guarantee for
14833a constant initializer folded into a function body. This intrinsic can be
14834used to avoid the possibility of overflows when loading from such a constant.
14835
Dan Gohman2c74fe92017-11-08 21:59:51 +000014836'``llvm.sideeffect``' Intrinsic
14837^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14838
14839Syntax:
14840"""""""
14841
14842::
14843
14844 declare void @llvm.sideeffect() inaccessiblememonly nounwind
14845
14846Overview:
14847"""""""""
14848
14849The ``llvm.sideeffect`` intrinsic doesn't perform any operation. Optimizers
14850treat it as having side effects, so it can be inserted into a loop to
14851indicate that the loop shouldn't be assumed to terminate (which could
14852potentially lead to the loop being optimized away entirely), even if it's
14853an infinite loop with no other side effects.
14854
14855Arguments:
14856""""""""""
14857
14858None.
14859
14860Semantics:
14861""""""""""
14862
14863This intrinsic actually does nothing, but optimizers must assume that it
14864has externally observable side effects.
14865
Andrew Trick5e029ce2013-12-24 02:57:25 +000014866Stack Map Intrinsics
14867--------------------
14868
14869LLVM provides experimental intrinsics to support runtime patching
14870mechanisms commonly desired in dynamic language JITs. These intrinsics
14871are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014872
14873Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000014874-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000014875
14876These intrinsics are similar to the standard library memory intrinsics except
14877that they perform memory transfer as a sequence of atomic memory accesses.
14878
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014879.. _int_memcpy_element_unordered_atomic:
Igor Laevsky4f31e522016-12-29 14:31:07 +000014880
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014881'``llvm.memcpy.element.unordered.atomic``' Intrinsic
14882^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000014883
14884Syntax:
14885"""""""
14886
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014887This is an overloaded intrinsic. You can use ``llvm.memcpy.element.unordered.atomic`` on
Igor Laevsky4f31e522016-12-29 14:31:07 +000014888any integer bit width and for different address spaces. Not all targets
14889support all bit widths however.
14890
14891::
14892
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014893 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
14894 i8* <src>,
14895 i32 <len>,
14896 i32 <element_size>)
14897 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
14898 i8* <src>,
14899 i64 <len>,
14900 i32 <element_size>)
Igor Laevsky4f31e522016-12-29 14:31:07 +000014901
14902Overview:
14903"""""""""
14904
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014905The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic is a specialization of the
14906'``llvm.memcpy.*``' intrinsic. It differs in that the ``dest`` and ``src`` are treated
14907as arrays with elements that are exactly ``element_size`` bytes, and the copy between
14908buffers uses a sequence of :ref:`unordered atomic <ordering>` load/store operations
14909that are a positive integer multiple of the ``element_size`` in size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014910
14911Arguments:
14912""""""""""
14913
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014914The first three arguments are the same as they are in the :ref:`@llvm.memcpy <int_memcpy>`
14915intrinsic, with the added constraint that ``len`` is required to be a positive integer
14916multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
14917``element_size``, then the behaviour of the intrinsic is undefined.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014918
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014919``element_size`` must be a compile-time constant positive power of two no greater than
14920target-specific atomic access size limit.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014921
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014922For each of the input pointers ``align`` parameter attribute must be specified. It
14923must be a power of two no less than the ``element_size``. Caller guarantees that
14924both the source and destination pointers are aligned to that boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014925
14926Semantics:
14927""""""""""
14928
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014929The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic copies ``len`` bytes of
14930memory from the source location to the destination location. These locations are not
14931allowed to overlap. The memory copy is performed as a sequence of load/store operations
14932where each access is guaranteed to be a multiple of ``element_size`` bytes wide and
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014933aligned at an ``element_size`` boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014934
14935The order of the copy is unspecified. The same value may be read from the source
14936buffer many times, but only one write is issued to the destination buffer per
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014937element. It is well defined to have concurrent reads and writes to both source and
14938destination provided those reads and writes are unordered atomic when specified.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014939
14940This intrinsic does not provide any additional ordering guarantees over those
14941provided by a set of unordered loads from the source location and stores to the
14942destination.
14943
14944Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000014945"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000014946
Daniel Neilson3faabbb2017-06-16 14:43:59 +000014947In the most general case call to the '``llvm.memcpy.element.unordered.atomic.*``' is
14948lowered to a call to the symbol ``__llvm_memcpy_element_unordered_atomic_*``. Where '*'
14949is replaced with an actual element size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000014950
Daniel Neilson57226ef2017-07-12 15:25:26 +000014951Optimizer is allowed to inline memory copy when it's profitable to do so.
14952
14953'``llvm.memmove.element.unordered.atomic``' Intrinsic
14954^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14955
14956Syntax:
14957"""""""
14958
14959This is an overloaded intrinsic. You can use
14960``llvm.memmove.element.unordered.atomic`` on any integer bit width and for
14961different address spaces. Not all targets support all bit widths however.
14962
14963::
14964
14965 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
14966 i8* <src>,
14967 i32 <len>,
14968 i32 <element_size>)
14969 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
14970 i8* <src>,
14971 i64 <len>,
14972 i32 <element_size>)
14973
14974Overview:
14975"""""""""
14976
14977The '``llvm.memmove.element.unordered.atomic.*``' intrinsic is a specialization
14978of the '``llvm.memmove.*``' intrinsic. It differs in that the ``dest`` and
14979``src`` are treated as arrays with elements that are exactly ``element_size``
14980bytes, and the copy between buffers uses a sequence of
14981:ref:`unordered atomic <ordering>` load/store operations that are a positive
14982integer multiple of the ``element_size`` in size.
14983
14984Arguments:
14985""""""""""
14986
14987The first three arguments are the same as they are in the
14988:ref:`@llvm.memmove <int_memmove>` intrinsic, with the added constraint that
14989``len`` is required to be a positive integer multiple of the ``element_size``.
14990If ``len`` is not a positive integer multiple of ``element_size``, then the
14991behaviour of the intrinsic is undefined.
14992
14993``element_size`` must be a compile-time constant positive power of two no
14994greater than a target-specific atomic access size limit.
14995
14996For each of the input pointers the ``align`` parameter attribute must be
14997specified. It must be a power of two no less than the ``element_size``. Caller
14998guarantees that both the source and destination pointers are aligned to that
14999boundary.
15000
15001Semantics:
15002""""""""""
15003
15004The '``llvm.memmove.element.unordered.atomic.*``' intrinsic copies ``len`` bytes
15005of memory from the source location to the destination location. These locations
15006are allowed to overlap. The memory copy is performed as a sequence of load/store
15007operations where each access is guaranteed to be a multiple of ``element_size``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015008bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson57226ef2017-07-12 15:25:26 +000015009
15010The order of the copy is unspecified. The same value may be read from the source
15011buffer many times, but only one write is issued to the destination buffer per
15012element. It is well defined to have concurrent reads and writes to both source
15013and destination provided those reads and writes are unordered atomic when
15014specified.
15015
15016This intrinsic does not provide any additional ordering guarantees over those
15017provided by a set of unordered loads from the source location and stores to the
15018destination.
15019
15020Lowering:
15021"""""""""
15022
15023In the most general case call to the
15024'``llvm.memmove.element.unordered.atomic.*``' is lowered to a call to the symbol
15025``__llvm_memmove_element_unordered_atomic_*``. Where '*' is replaced with an
15026actual element size.
15027
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015028The optimizer is allowed to inline the memory copy when it's profitable to do so.
Daniel Neilson965613e2017-07-12 21:57:23 +000015029
15030.. _int_memset_element_unordered_atomic:
15031
15032'``llvm.memset.element.unordered.atomic``' Intrinsic
15033^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15034
15035Syntax:
15036"""""""
15037
15038This is an overloaded intrinsic. You can use ``llvm.memset.element.unordered.atomic`` on
15039any integer bit width and for different address spaces. Not all targets
15040support all bit widths however.
15041
15042::
15043
15044 declare void @llvm.memset.element.unordered.atomic.p0i8.i32(i8* <dest>,
15045 i8 <value>,
15046 i32 <len>,
15047 i32 <element_size>)
15048 declare void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* <dest>,
15049 i8 <value>,
15050 i64 <len>,
15051 i32 <element_size>)
15052
15053Overview:
15054"""""""""
15055
15056The '``llvm.memset.element.unordered.atomic.*``' intrinsic is a specialization of the
15057'``llvm.memset.*``' intrinsic. It differs in that the ``dest`` is treated as an array
15058with elements that are exactly ``element_size`` bytes, and the assignment to that array
15059uses uses a sequence of :ref:`unordered atomic <ordering>` store operations
15060that are a positive integer multiple of the ``element_size`` in size.
15061
15062Arguments:
15063""""""""""
15064
15065The first three arguments are the same as they are in the :ref:`@llvm.memset <int_memset>`
15066intrinsic, with the added constraint that ``len`` is required to be a positive integer
15067multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
15068``element_size``, then the behaviour of the intrinsic is undefined.
15069
15070``element_size`` must be a compile-time constant positive power of two no greater than
15071target-specific atomic access size limit.
15072
15073The ``dest`` input pointer must have the ``align`` parameter attribute specified. It
15074must be a power of two no less than the ``element_size``. Caller guarantees that
15075the destination pointer is aligned to that boundary.
15076
15077Semantics:
15078""""""""""
15079
15080The '``llvm.memset.element.unordered.atomic.*``' intrinsic sets the ``len`` bytes of
15081memory starting at the destination location to the given ``value``. The memory is
15082set with a sequence of store operations where each access is guaranteed to be a
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015083multiple of ``element_size`` bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson965613e2017-07-12 21:57:23 +000015084
15085The order of the assignment is unspecified. Only one write is issued to the
15086destination buffer per element. It is well defined to have concurrent reads and
15087writes to the destination provided those reads and writes are unordered atomic
15088when specified.
15089
15090This intrinsic does not provide any additional ordering guarantees over those
15091provided by a set of unordered stores to the destination.
15092
15093Lowering:
15094"""""""""
15095
15096In the most general case call to the '``llvm.memset.element.unordered.atomic.*``' is
15097lowered to a call to the symbol ``__llvm_memset_element_unordered_atomic_*``. Where '*'
15098is replaced with an actual element size.
15099
15100The optimizer is allowed to inline the memory assignment when it's profitable to do so.